

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Well Name: DOGWOOD 23 FED COM

Drilling Plan Data Report

APD ID: 10400010761

Submission Date: 03/07/2017

Highlighted data reflects the most recent changes

Operator Name: EOG RESOURCES INCORPORATED

Well Number: 706H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID ,	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
17706	PERMIAN	3304	0	0	ANHYDRITE	NONE	No
17746	RUSTLER	-942	942	942	ANHYDRITE	NONE	No
17718	TOP SALT	-1292	1292	1292	SALT	NONE	No
17722	BASE OF SALT	-4902	4902	4902	SALT	NONE	No
17719	LAMAR	-5129	5129	5129	LIMESTONE	NONE	No
15332	BELL CANYON	-5168	5168	5168	SANDSTONE	NATURAL GAS,OIL	No
15316	CHERRY CANYON	-6210	6210	6210	SANDSTONE	NATURAL GAS,OIL	No
17713	BRUSHY CANYON	-7891	7891	7891	SANDSTONE	NATURAL GAS,OIL	No
17721	BONE SPRING LIME	-9365	9365	9365	LIMESTONE	NONE	No
15338	BONE SPRING 1ST	-10293	10293	10293	SANDSTONE	NATURAL GAS,OIL	No
17737	BONE SPRING 2ND	-10847	10847	10847	SANDSTONE	NATURAL GAS,OIL	No
17738	BONE SPRING 3RD	-11920	11920	11920	SANDSTONE	NATURAL GAS,OIL	No
17709	WOLFCAMP	-12341	12341	12341	SHALE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Well Name: DOGWOOD 23 FED COM Well Number: 706H

Pressure Rating (PSI): 10M

Rating Depth: 12500

Equipment: The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (10000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil and Gas order No. 2.

Requesting Variance? YES

Variance request: Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line). Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation. Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Testing Procedure: Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 5000/ 250 psig. The surface casing will be tested to 1500 psi for 30 minutes. Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 5000/ 250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

Choke Diagram Attachment:

10M_Choke_Manifold_07-12-2017.pdf

BOP Diagram Attachment:

10M_BOPE_07-12-2017.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Osg Size	Condition	Standard	apered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	op Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE		_	NEW	API	N				970	-9196		970		40.5		1.12 5	-	BUOY			1.6
2	INTERMED IATE	9.87 5	7.625	NEW	API	N	0	1000	0	1000	-9196	- 10196	1000	HCP -110	29.7	LTC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
3	INTERMED IATE	9.87 5	7.625	NEW	API	N	1000	3000	1000	3000	- 10196	- 12196	1	OTH ER	l .	OTHER - SJIJ II	1.12 5	1.25	BUOY	1.6	BUOY	1.6
4	PRODUCTI ON	6.75	5.5	NEW	API	N	0	11100	0	11100		- 20296	11100	OTH ER		OTHER - DWC/C-IS MS	1.12 5	1.25	BUOY	1.6	BUOY	1.6
5	INTERMED IATE	8.75	7.625	NEW	API	N	3000	11600	3000	11600		- 20796	l	HCP -110	29.7			1.25	BUOY	1.6	BUOY	1.6
6	PRODUCTI ON	6.75	5.5	NEW	API	N	11100	22570	11100	12500	- 20296	ı	11470	OTH ER		OTHER - VAM SFC	1.12 5	1.25	BUOY	1.6	BUOY	1.6

Casing Attachments String Type: SURFACE Casing ID: 1 **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Dogwood 23 Fed Com 706H BLM Plan_03-03-2017.pdf Casing ID: 2 String Type: INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Dogwood 23 Fed Com 706H BLM Plan_03-03-2017.pdf Casing ID: 3 String Type: INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Dogwood 23 Fed Com 706H BLM Plan_03-03-2017.pdf

Well Number: 706H

Operator Name: EOG RESOURCES INCORPORATED

Well Name: DOGWOOD 23 FED COM

Casing Attachments		
Casing ID: 4 String Type: PRODUCTION	· · · · · · · · · · · · · · · · · · ·	
Inspection Document:		•
Spec Document:		
Tapered String Spec:		
Casing Design Assumptions and Worksheet(s):		
Dogwood 23 Fed Com 706H BLM Plan_03-03-2017.pdf		
Casing ID: 5 String Type: INTERMEDIATE		
Inspection Document:		
Spec Document:		
Tapered String Spec:		
Casing Design Assumptions and Worksheet(s):		
Dogwood 23 Fed Com 706H BLM Plan_03-03-2017.pdf		
Casing ID: 6 String Type: PRODUCTION		
Inspection Document:		
Spec Document:		
Tapered String Spec:		
Casing Design Assumptions and Worksheet(s):		
Dogwood 23 Fed Com 706H BLM Plan_03-03-2017.pdf		

Well Number: 706H

Section 4 - Cement

Operator Name: EOG RESOURCES INCORPORATED

Well Name: DOGWOOD 23 FED COM

Well Name: DOGWOOD 23 FED COM

apalika jili 11 a aya da a gaji da B

Well Number: 706H

1	:										
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Lead		0	0	0	0	0	0		0	0
PRODUCTION	Lead		0	, O.	0	0	0	0	0	0	
INTERMEDIATE	Lead		0	0	0	0	0	0		0	0
SURFACE	Lead		0	970	325	1.73	13.5	562	25	Class C	Class C + 4.0% Bentonite + 0.6% CD- 32 + 0.5% CaCl2 + 0.25 lb/sk Cello-Flake (TOC @ Surface)
SURFACE	Tail		970	970	200	1.34	14.8	268	25	Class C	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
INTERMEDIATE	Lead		0	1160 0	2250	1.38	14.8	3105	25	Class C	Class C + 5% Gypsum + 3% CaCl2 pumped via bradenhead (TOC@surface)
INTERMEDIATE	Tail		1160 0	1160 0	<i>′</i> 550	1.2	14.4	660	25	Class H	50:50 Class H:Poz + 0:25% CPT20A + 0.40% CPT49 + 0.20% CPT35 + 0.80% CPT16A + 0.25% CPT503P pumped conventionally.
PRODUCTION	Lead	1	1110 0	2257 0	950	1.26	14.1	1197	25	Class H	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 11100')

Well Name: DOGWOOD 23 FED COM

Well Number: 706H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: (A) A Kelly cock will be kept in the drill string at all times. (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times. (C) H2S monitoring and detection equipment will be utilized from surface casing point to TD. **Describe the mud monitoring system utilized:** An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure and stroke rate.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
970	1160 0	SALT SATURATED	8.8	10							٠.
1160 0	2257 0	OIL-BASED MUD	10	11.5							
0	970	WATER-BASED MUD	8.6	8.8							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Open-hole logs are not planned for this well.

List of open and cased hole logs run in the well:

DS

Coring operation description for the well:

None

Well Name: DOGWOOD 23 FED COM

Well Number: 706H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7480

Anticipated Surface Pressure: 4730

35 634 Cal

医复数硫酸 斯尔斯斯 化二氯甲基甲基

Anticipated Bottom Hole Temperature(F): 181

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Dogwood 23 Fed Com 706H H2S Plan Summary_03-03-2017.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Dogwood 23 Fed Com 706H Planning Report_03-03-2017.pdf

Dogwood 23 Fed Com 706H Wall Plot_03-03-2017.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

Dogwood 23 Fed Com 706H 5.500in 20.00 VST P110EC DWC_C-IS MS Spec Sheet_03-03-2017.pdf

Dogwood 23 Fed Com 706H 5.500in 20.00 VST P110EC VAM SFC Spec Sheet 03-03-2017.pdf

Dogwood 23 Fed Com 706H 7.625in 29.7 P110EC VAM SLIJ-II 03-03-2017.pdf

Dogwood 23 Fed Com 706H BLM Plan_03-03-2017.pdf

Dogwood 23 Fed Com 706H 7.625in 29.70 P-110 FlushMax III Spec Sheet 03-03-2017.pdf

Dogwood 23 Fed Com 706H Rig Layout 03-03-2017.pdf

Dogwood 23 Fed Com 706H Proposed Wellbore_03-03-2017.pdf

Dogwood23FC706 deficiency response 07-12-2017.pdf

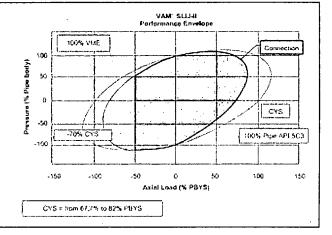
Other Variance attachment:

Dogwood 23 Fed Com 706H Co-Flex Hose Certification 03-03-2017.PDF

Dogwood 23 Fed Com 706H Co-Flex Hose Test Chart_03-03-2017.pdf

OD	Weight	Wall Th.	Grade	API Drift	Connection
7 5/8 in.	29.70 lb/ft	0.375 in.	VM 110 HC	6.750 in.	VAM® SLIJ-II

PIPE PROPERTIE	S
Nominal OD	7.625 in.
Nominal ID	6.875 in.
Nominal Cross Section Area	8.541 sqin.
Grade Type	High Collapse
Min. Yield Strength	110 ksi
Max. Yield Strength	140 ksi
Min. Ultimate Tensile Strength	125 ksi


CONTREMION (PROPERILES
Connection Type	Premium integral semi-flush
Connection OD (nom)	7.711 in.
Connection ID (nom)	6.820 in.
Make-up Loss	4.822 in.
Critical Cross Section	5.912 sqin.
Tension Efficiency	69.2 % of pipe
Compression Efficiency	48.5 % of pipe
Internal Departure Efficiency	100.9/ of pipe
Internal Pressure Efficiency	100 % of pipe
External Pressure Efficiency	100 % of pipe

CONNECTION PERFORM	IANGES	
Tensile Yield Strength	651	kib
Compression Resistance	455	klb
Internal Yield Pressure	9470	psi
Uniaxial Collapse Pressure	7890	psi
Max. Bending Capacity	TDB	
Max Bending with Sealability	20	°/100 ft

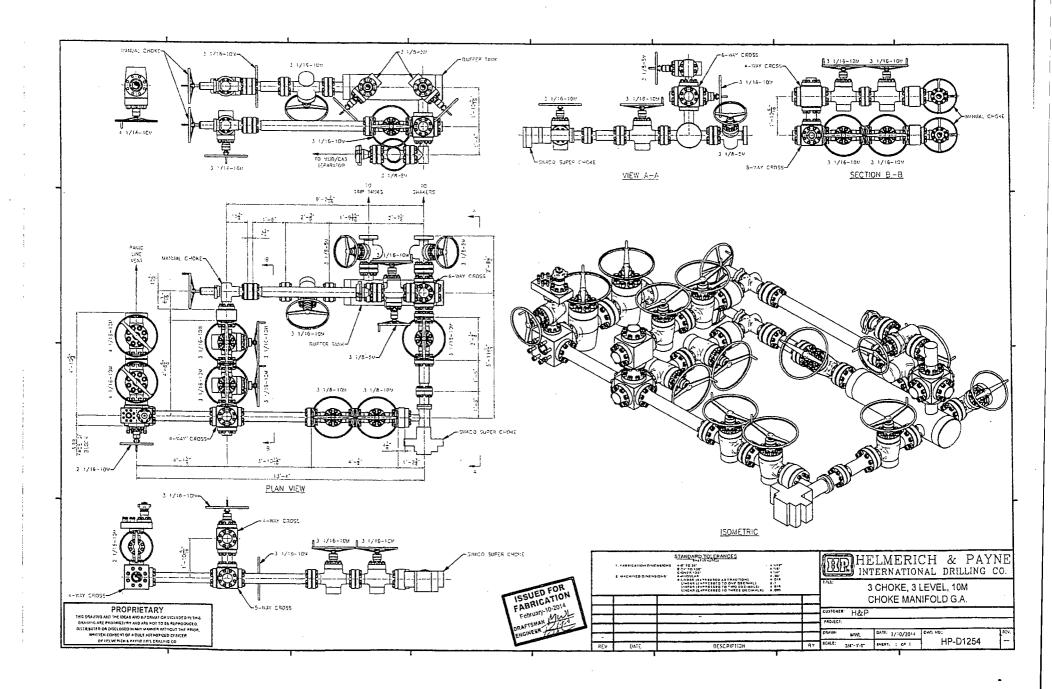
FIELD TOROUEY	ALUES .
Min. Make-up torque	11300 ft.lb
Opti. Make-up torque	12600 ft.lb
Max. Make-up torque	13900 ft.lb

VAM® SLIJ-II is a semi-flush integral premium connection for all casing applications. It combines a near flush design with high performances in tension, compression and gas sealability.

VAM® SLIJ-II has been validated according to the most stringent tests protocols, and has an excellent performance history in the world's most prolific HPHT wells.

Do you need help on this product? - Remember no one knows VAM® like VAM

canàda@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazii@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigerie@vamfieldservice.com angola@vamfieldservice.com


china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

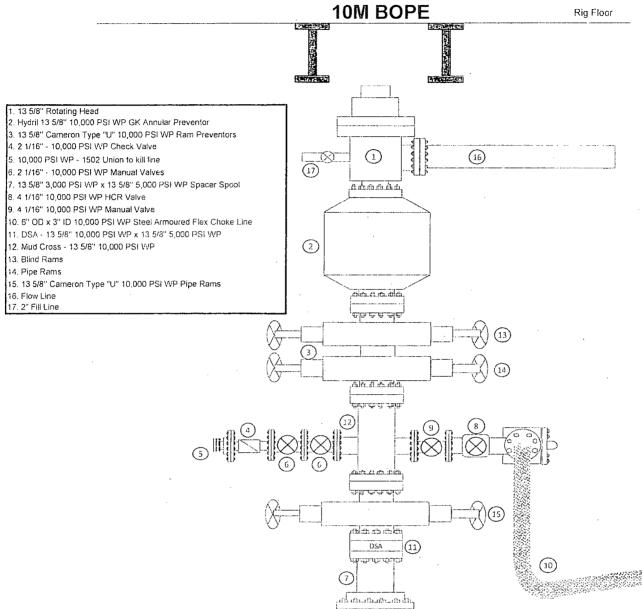

Other Connection Data Sheets are available at www.vamservices.com

Exhibit 1 EOG Resources

1. GEOLOGIC NAME OF SURFACE FORMATION:

Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	942'
Top of Salt	1,292'
Base of Salt / Top Anhydrite	4,902'
Base Anhydrite	5,129'
Lamar	5,129'
Bell Canyon	5,168'
Cherry Canyon	6,210'
Brushy Canyon	7,891'
Bone Spring Lime	9,365'
1 st Bone Spring Sand	10,293'
2 nd Bone Spring Shale	10,479°
2 nd Bone Spring Sand	10,847'
3 rd Bone Spring Carb	11,392'
3 rd Bone Spring Sand	11,920'
Wolfcamp	12,341'
TD	12,509'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Cherry Canyon	6,210'	Oil
Brushy Canyon	7,891'	Oil
1st Bone Spring Sand	10,293	Oil
2 nd Bone Spring Shale	10,479'	Oil
2 nd Bone Spring Sand	10,847	Oil
3 rd Bone Spring Carb	11,392'	Oil
3 rd Bone Spring Sand	11,920'	Oil
Wolfcamp	12,341'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10.75" casing at 970' and circulating cement back to surface.

1. GEOLOGIC NAME OF SURFACE FORMATION:

Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	942'
Top of Salt	1,292'
Base of Salt / Top Anhydrite	4,902'
Base Anhydrite	5,129'
Lamar	5,129'
Bell Canyon	5,168'
Cherry Canyon	6,210'
Brushy Canyon	7,891'
Bone Spring Lime	9,365'
1 st Bone Spring Sand	10,293'
2 nd Bone Spring Shale	10,479°
2 nd Bone Spring Sand	10,847
3 rd Bone Spring Carb	11,392'
3 rd Bone Spring Sand	11,920'
Wolfcamp	12,341'
TD .	12,509

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Cherry Canyon	6,210'	Oil
Brushy Canyon	7,891'	Oil
1st Bone Spring Sand	10,293'	Oil
2 nd Bone Spring Shale	10,479'	Oil
2 nd Bone Spring Sand	10,847'	Oil
3 rd Bone Spring Carb	11,392'	Oil
3 rd Bone Spring Sand	11,920'	Oil
Wolfcamp	12,341'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10.75" casing at 970' and circulating cement back to surface.

4. CASING PROGRAM - NEW

Hole		Csg	•	,		DFmin	DF _{min}	DF _{min}
Size	Interval	OD	Weight	Grade	Conn	Collapse	Burst	Tension
14.75"	0 – 970'	10.75"	40.5#	J55	STC	1.125	1.25	1.60
9.875"	0-1,000	7.625"	29.7#	HCP-	LTC	1.125	1.25	1.60
				110				
9.875"	1,000' – 3,000'	7.625"	29.7#	P-110EC	SLIJ II	1.125	1.25	1.60
8.75"	3,000' – 11,600'	7.625"	29.7#	HCP- 110	FlushMax III	1.125	1.25	1.60
6.75"	0'-11,100'	5.5"	20#	P-110EC	DWC/C-IS MS	1.125	1.25	1.60
6.75"	11,100'-22,570'	5.5"	20#	P-110EC	VAM SFC	1.125	1.25	1.60

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Cementing Program:

Depth	No. Sacks	Wt.	Yld Ft³/ft	Mix Water Gal/sk	Slurry Description
10-3/4" 970'	325	13.5	1.73	9.13	Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl ₂ + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	200	14.8	1.34	6.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
7-5/8" 11,600'	250	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead (TOC @ Surface)
	2000	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead
	550	14.4	1.20	4.81	50:50 Class H:Poz + 0.25% CPT20A + 0.40% CPT49 + 0.20% CPT35 + 0.80% CPT16A + 0.25% CPT503P pumped Conventionally
5-1/2" 22,570'	950	14.1	1.26	5:80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 11,100')

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (5000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/250 psig and the annular preventer to 3500/250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/250 psig and the annular preventer to 3500/250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

The applicable depths and properties of the drilling fluid systems are as follows.

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0 – 970'	Fresh - Gel	8.6-8.8	28-34	N/c
970' – 11,600'	Brine	8.8-10.0	28-34	N/c
11,600' - 22,570'	Oil Base	10.0-14.0	58-68	3 - 6
Lateral				

The highest mud weight needed to balance formation is expected to be 11.5 ppg. In order to maintain hole stability, mud weights up to 14.0 ppg may be utilized.

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR-CCL Will be run in cased hole during completions phase of operations.

9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 181 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 7480 psig (based on 11.5 ppg MW). No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7,300' to Intermediate casing point.

10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

(A) EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and cement on the subject well. If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

11. WELLHEAD:

A multi-bowl wellhead system will be utilized.

After running the 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2

The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 5000 psi.

The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Stream Flo FBD100 Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.

The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi.

Both the surface and intermediate casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.

1. GEOLOGIC NAME OF SURFACE FORMATION:

Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	942'
Top of Salt	1,292'
Base of Salt / Top Anhydrite	4,902'
Base Anhydrite	5,129'
Lamar	5,129'
Bell Canyon	5,168'
Cherry Canyon	6,210'
Brushy Canyon	7,891'
Bone Spring Lime	9,365'
1 st Bone Spring Sand	10,293
2 nd Bone Spring Shale	10,479°
2 nd Bone Spring Sand	10,847'
3 rd Bone Spring Carb	11,392'
3 rd Bone Spring Sand	11,920'
Wolfcamp	12,341'
TD	12,509

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0- 400'	Fresh Water
Cherry Canyon	6,210'	Oil
Brushy Canyon	7,891'	Oil
1 st Bone Spring Sand	10,293'	Oil
2 nd Bone Spring Shale	10,479'	Oil
2 nd Bone Spring Sand	10,847	Oil
3 rd Bone Spring Carb	11,392	Oil
3 rd Bone Spring Sand	11,920'	Oil
Wolfcamp	12,341'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10.75" casing at 970' and circulating cement back to surface.

1. GEOLOGIC NAME OF SURFACE FORMATION:

Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler	942'
Top of Salt	1,292'
Base of Salt / Top Anhydrite	4,902'
Base Anhydrite	5,129'
Lamar	5,129'
Bell Canyon	5,168'
Cherry Canyon	6,210'
Brushy Canyon	7,891'
Bone Spring Lime	9,365'
1 st Bone Spring Sand	10,293
2 nd Bone Spring Shale	10,479'
2 nd Bone Spring Sand	10,847
3 rd Bone Spring Carb	11,392'
3 rd Bone Spring Sand	11,920'
Wolfcamp	12,341'
TD	12,509

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0- 400'	Fresh Water
Cherry Canyon	6,210'	Oil
Brushy Canyon	7,891'	Oil
1st Bone Spring Sand	10,293'	Oil
2 nd Bone Spring Shale	10,479'	Oil
2 nd Bone Spring Sand	10,847'	Oil
3 rd Bone Spring Carb	11,392'	Oil
3rd Bone Spring Sand	11,920'	Oil
Wolfcamp	12,341'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10.75" casing at 970' and circulating cement back to surface.

4. CASING PROGRAM - NEW

Hole		Csg				DF _{min}	DF _{min}	DF _{min}
Size	Interval	OD	Weight	Grade	Conn	Collapse	Burst	Tension
14.75"	0 – 970'	10.75"	40.5#	J55	STC	1.125	1.25	1.60
9.875"	0 – 1,000'	7.625"	29.7#	HCP-	LTC	1.125	1.25	1.60
				110		1		
9.875"	1,000' –	7.625"	29.7#	P-110EC	SLIJ II	1.125	1.25	1.60
	3,000'							
8.75"	3,000' - 11,600'	7.625"	29.7#	HCP-	FlushMax III	1.125	1.25	1.60
				110				
6.75"	0'-11,100'	5.5"	20#	P-110EC	DWC/C-IS	1.125	1.25	1.60
			1		MS			
6.75"	11,100'-22,570'	5.5"	20#	P-110EC	VAM SFC	1.125	1.25	1.60

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Cementing Program:

Depth	No. Sacks	Wt.	Yld Ft ³ /ft	Mix Water Gal/sk	Slurry Description	
10-3/4" 970'	325	13.5	1.73	9.13	Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% CaCl ₂ + 0.25 lb/sk Cello-Flake (TOC @ Surface)	
	200	14.8	1.34	6.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate	
7-5/8" 11,600'	250	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead (TOC @ Surface)	
	2000	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead	
	550	14.4	1.20	4.81	50:50 Class H:Poz + 0.25% CPT20A + 0.40% CPT49 + 0.20% CPT35 + 0.80% CPT16A + 0.25% CPT503P pumped Conventionally	
5-1/2" 22,570°	950	14.1	1.26	5.80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 11,100')	

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (5000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/250 psig and the annular preventer to 3500/250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/250 psig and the annular preventer to 3500/250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

The applicable depths and properties of the drilling fluid systems are as follows.

Depth	Type	Weight (ppg)	Viscosity	Water Loss
0 – 970'	Fresh - Gel	8.6-8.8	28-34	N/c
970' – 11,600'	Brine	8.8-10.0	28-34	N/c
11,600' - 22,570'	Oil Base	10.0-14.0	58-68	3 - 6
Lateral				

The highest mud weight needed to balance formation is expected to be 11.5 ppg. In order to maintain hole stability, mud weights up to 14.0 ppg may be utilized.

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR-CCL Will be run in cased hole during completions phase of operations.

9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 181 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 7480 psig (based on 11.5 ppg MW). No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7.300' to Intermediate casing point.

10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

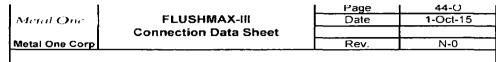
(A) EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and cement on the subject well. If the timing between rigs is such that EOG Resources would not be able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

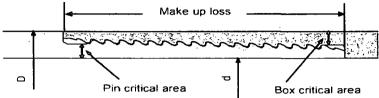
11. WELLHEAD:

A multi-bowl wellhead system will be utilized.

After running the 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum working pressure of 5000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 5000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2

The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 5000 psi.


The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Stream Flo FBD100 Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.


The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

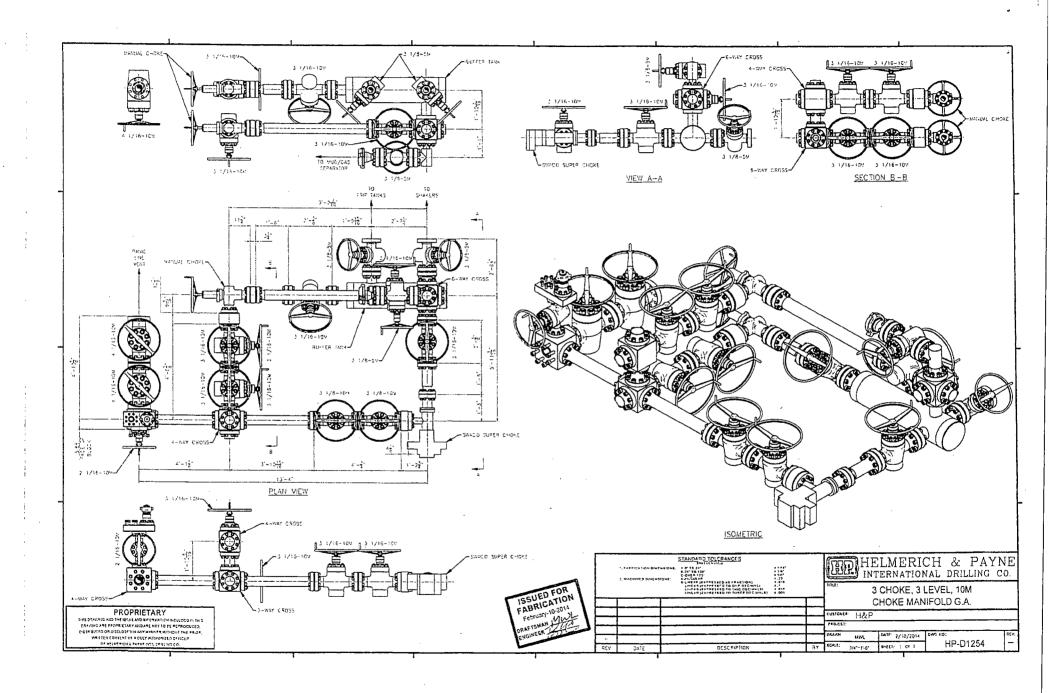
A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi.

Both the surface and intermediate casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.

Pipe Body	<u>imperial</u>		<u>S.I.</u>	
Grade	P110		P110	
Pipe OD (D)	7 5/8	in	193.68	mm
Weight	29.7	lb/ft	44.25	kg/m
Actual weight	29.0	lb/ft	43.26	kg/m
Wall thickness (t)	0.375	in	9.53	mm
Pipe ID (d)	6.875	in	174.63	mm
Pipe body cross section	8.537	in ²	5,508	mm²
Drift Dia.	6.750	in	171.45	mm

Connection				
Box OD (W)	7.625	in	193.68	mm
PIN ID	6.875	in	174.63	mm
Pin critical area	4.420	in ²	2,852	mm ²
Box critical area	4.424	in ²	2,854	mm ²
Joint load efficiency	60	%	60	%
Make up loss	3.040	in	77.22	mm
Thread taper	1/16 (3/4 in per ft)			
Number of threads	5 thread per in.			

Connection Performance Properties				
Tensile Yield load	563.4	kips	2,506	kN
M.I.Y.P.	7,574	psi	52.2	MPa
Collapse strength	5,350	psi	36.9	MPa

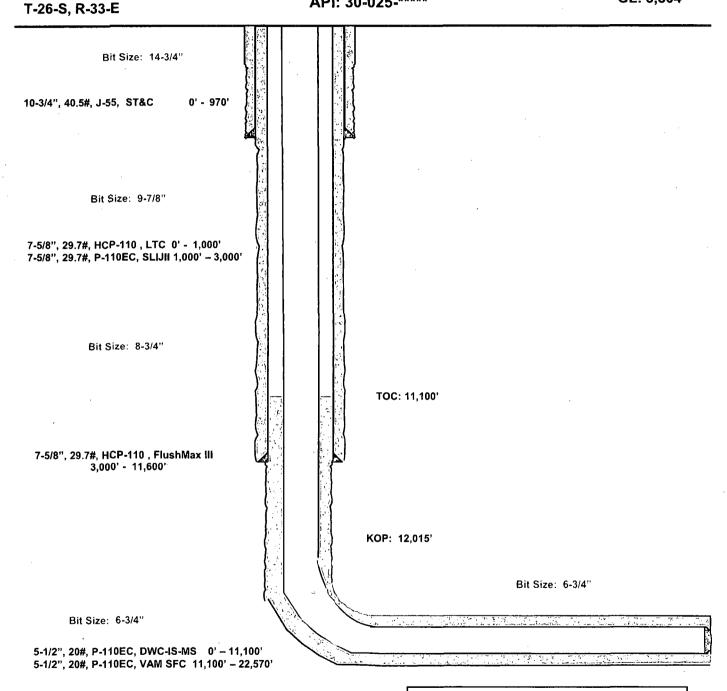

M.I.Y.P. = Minimum Internal Yield Pressure of the connection

Torque Recommended

Min.	8,700	ft-lb	11,700	N-m
Opti	9,700	ft-lb	13,100	N-m
Max.	10,700	ft-lb	14,500	N-m
Operational Max.	23.600	ft-lb	32,000	N-m

Note: Operational Max. torque can be applied for high torque application

Exhibit 4 **EOG** Resources Well Site Diagram Dogwood 23 Fed Com #706H Flare Stack (150') **Mud Cleaners** -<u>Vent lin</u>e Access (Buried) catch tank catch tank Road **Mud Gas Seperator** Caution / Danger **Choke Manifold** Signs Rig Secondary Wind Direction Indicators V-door Briefing 400' Area Alarms Route of Secondary Egress Primary Briefing Co. Man Housing Personnel Housing Toolpusher Housing Area


Dogwood 23 Fed Com #706H

194' FSL 2387' FWL Section 23

Lea County, New Mexico Proposed Wellbore

API: 30-025-****

KB: 3,329' GL: 3,304'

Lateral: 22,570' MD, 12,500' TVD Upper Most Perf: 330' FSL & 2387' FWL Sec. 23 Lower Most Perf:

330' FNL & 2390' FWL Sec. 14 BH Location: 230' FNL & 2390' FWL

Section 14 T-26-S, R-33-E