Casing Assumptions

Casing Program

Hole Size		Casing Depth To	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse		SF Tension
17 1/2	0	1034	13-3/8"	48.00	H-40/J-55 Hybrid	ST&C	1.56		6.49
12 1/4	0	4936	9-5/8"	40.00	J-55	LT&C	1.12	1.51	2.63
8 3/4	0	11867	7"	32.00	L-80	LT&C	1.55	1.63	1.70
8 3/4	11867	12492	7"	32.00	L-80	BT&C	1.49	1.46	46.19
6	11867	22025	4-1/2"	11.60	P-110	BT&C	1.16	1.63	62.77
				BLM	Minimum Sa	fety Factor	1.125	1	1.6 Dry 1.8 Wet

Casing Assumptions

Casing Program

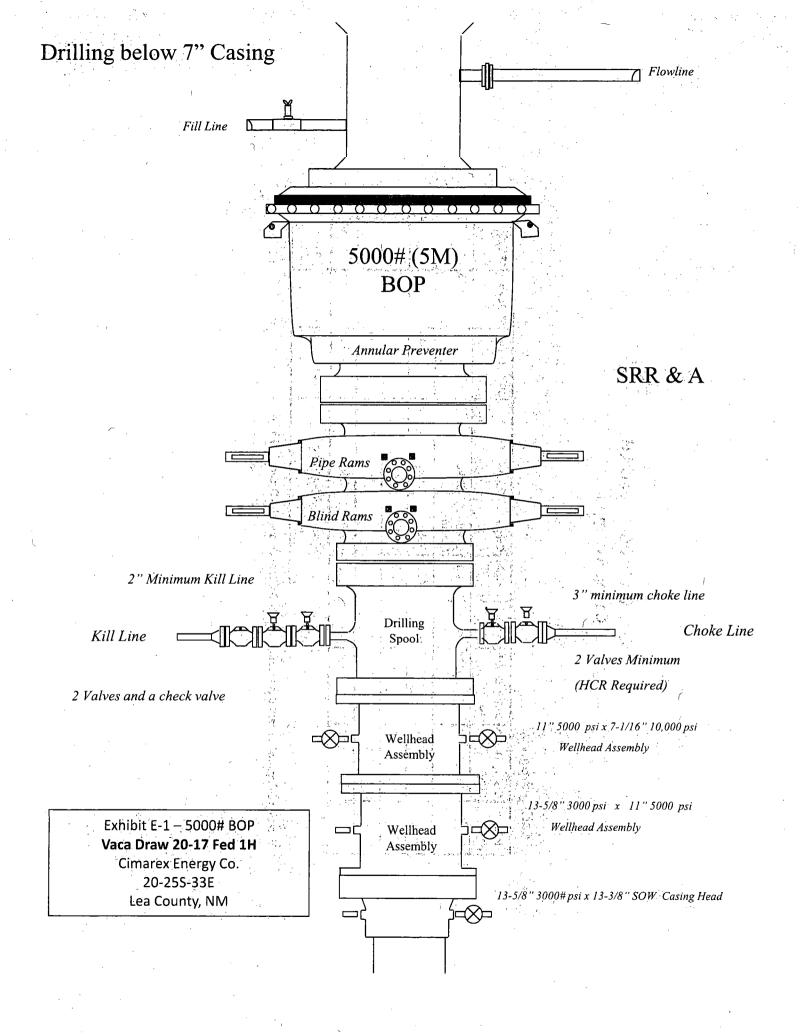
Hole Size	Casing Depth From	Casing Depth To	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
17 1/2	0	1034	13-3/8"	48.00	H-40/J-55 Hybnd	ST&C	1.56	3.66	. 6.49
12 1/4	···· ~ 0	-4936	9-5/8"	40.00	J-55	LT&C	1.12	1. 51	2.63
8 3/4	~ 0	11867	7	32.00	L-80 -	LT&C	1.55	1.63	1.70
8 3/4	11867	12492	7" -	32.00	L-80	BT&C	1.49	1.46	46.19
6	11867	22025	4-1/2"	11.60	P-110	вт&С	-1.16	1.63	62.77
				BLM	Minimum Sa	fety Factor	1.125	1,	1.6 Dry 1.8 Wet

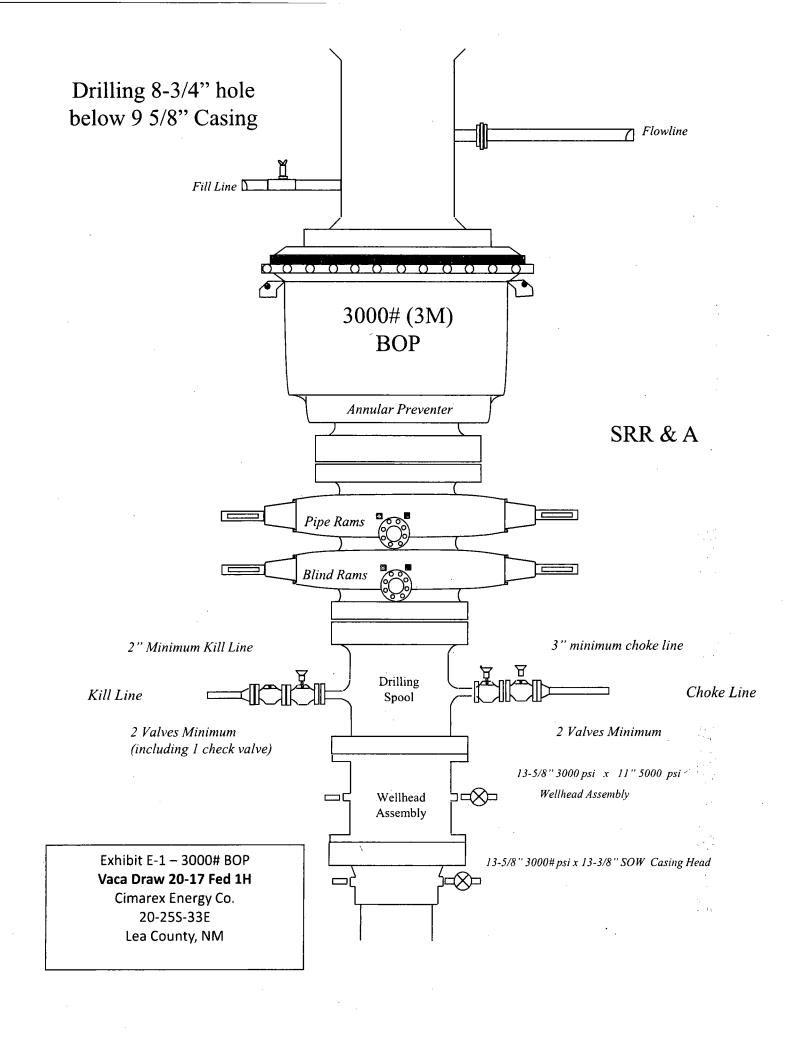
Casing Assumptions

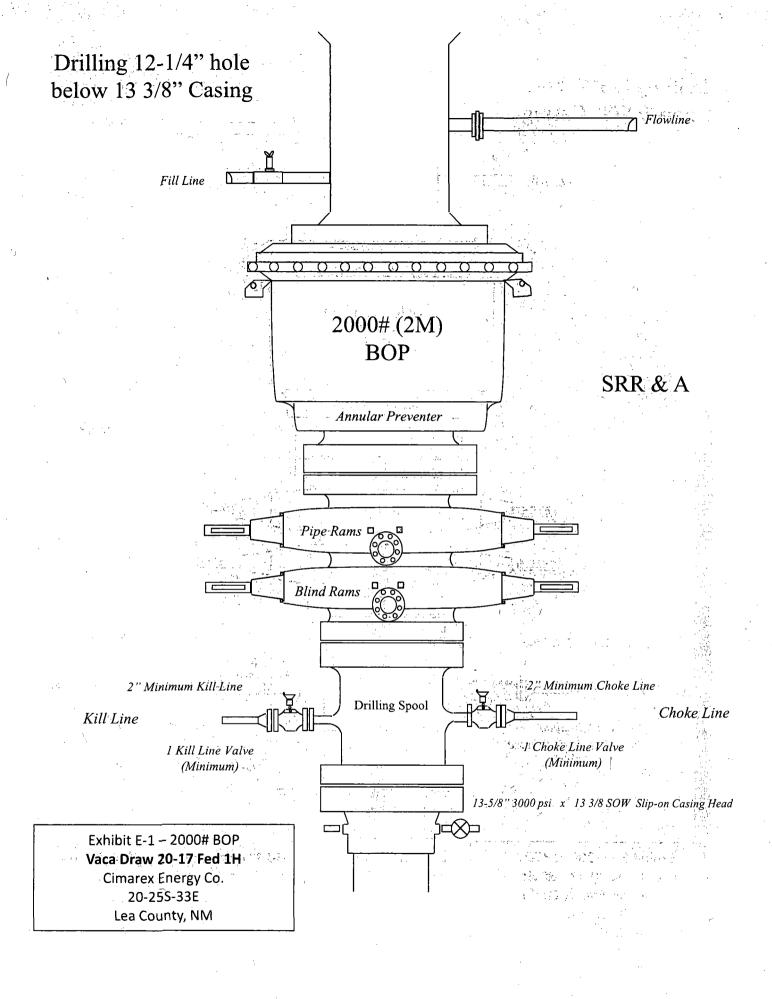
Casing Program

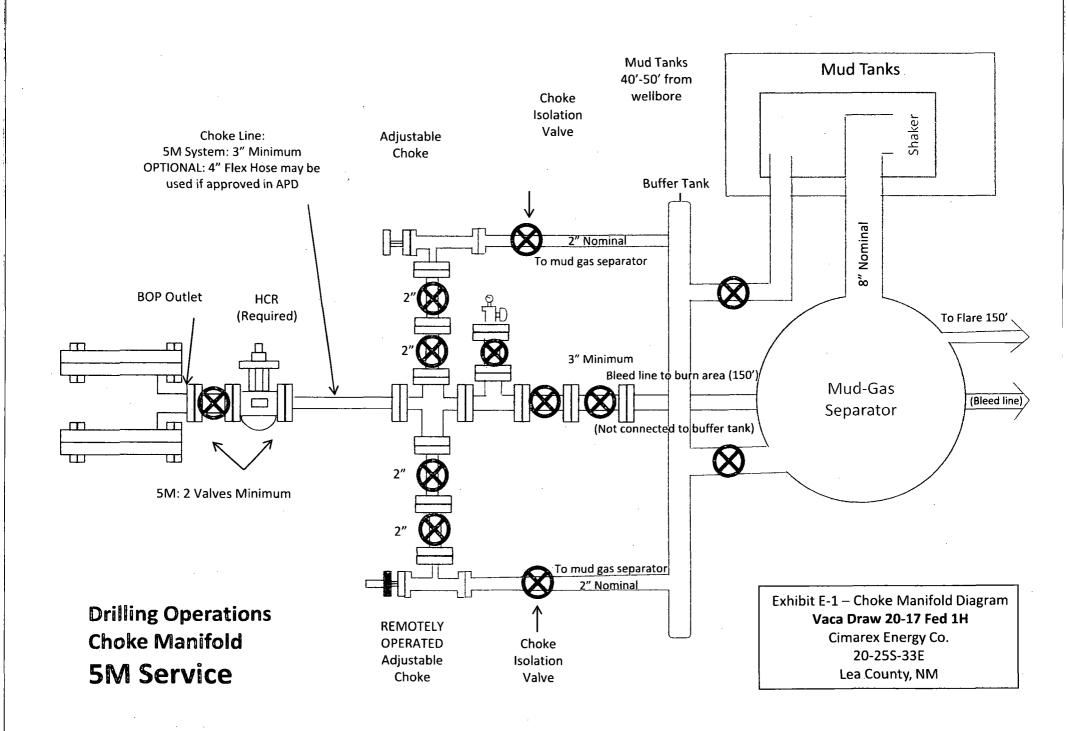
Hole Size		Casing Depth To	Casing Size	Weight (lb/ft)	Grade		SF Collapse		SF Tension
17 1/2	0	1034	13-3/8"	48.00	H-40/J-55 Hybrid	ST&C	1.56		I
12 1/4	0	4936	9-5/8*	40.00	J-55	LT&C	1.12	. 1.51	2.63
8 3/4	0	11867	7"	32.00	L-80	LT&C	1.55	1 .63	1.70
8 3/4	11867	12492	7*	32.00	L-80	BT&C	1.49	1.46	46.19
6	11867	22025	4-1/2"	11.60	P-110	BT&C	1.16	1.63	62.77
				BLM	Minimum Sa	fety Factor	1.125	1	1.6 Dry 1.8 Wet

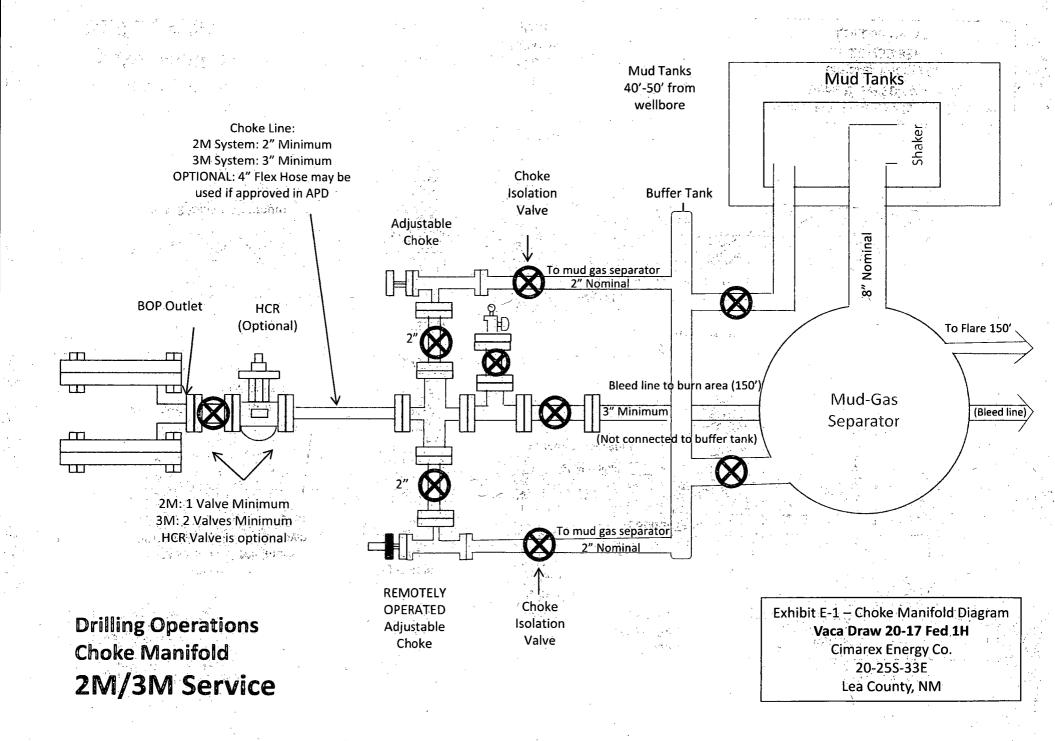
Casing Assumptions

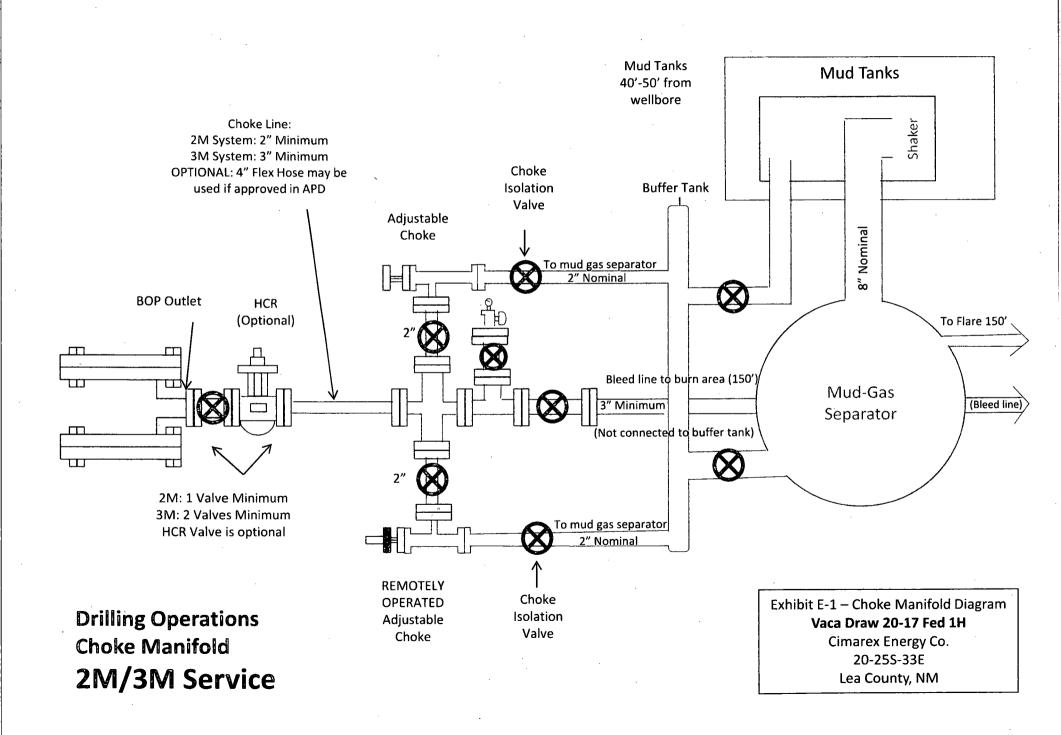

Casing Program


Hole Size	Casing Depth From	Casing Depth To		Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
17 1/2	0	1034	13-3/8"	48.00	H-40/J-55 Hybrid	ST&C	1.56	3.66	6.49
12 1/4	,0,	4936	9-5/8"	40.00	J-55.	LT&C	1.12	1.51	2.63
8 3/4		11867	7"	32.00	L-80	LT&C	1,55	1.63	1.70
8 3/4	11867	- , -12492	7.	32.00	Ĺ-80	вт&С	1.49	146	46.19
6	11867	22025	4-1/2"	11.60	P-110	вт&С	1.16	1.6 3	62.77
				BLM	Minimum Sa	fety Factor	1.125	16	1.6 Dry 1.8 Wet


Casing Assumptions


Casing Program


Hole Size	Casing Depth From	Casing Depth To	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
17 1/2	0	1034	13-3/8*	48.00	H-40/J-55 Hybrid	ST&C	1.56	3.66	6.49
12 1/4	0	4936	9-5/8"	40.00	J-55	LT&C	1.12	1.51	2.63
8 3/4	. 0	11867	7"	32:00	L-80	LT&C	1.55	1.63	1.70
8 3/4	11867	12492	7" ~	32.00	L-80	BT&C	1.49	1.46	46.19
6	11867	22025	4-1/2"	11.60	P-110	BT&C	1.16	1.63	62.77
				BLM	Minimum Sa	fety Factor	1.125	1	1.6 Dry 1.8 Wet



Cimarex Energy Co., Vaca Draw 20-17 Fed 1H

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Υ
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	N
Is well within the designated 4 string boundary.	N
ls well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3rd string cement tied back 500' into previous casing?	N
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	N
Is 2nd string set 100' to 600' below the base of salt?	N
ls well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	N
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	N
ls well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	N

1. Geological Formations

TVD of target 12,371 MD at TD 22,025 Pilot Hole TD 13,000 Deepest expected fresh water

Formation	Depth (TVD) from KB	Water/Mineral Bearing/Target Zone Hazards
Rustler		N/A
Top of Salt	1128	N/A
Base of Salt	4687	N/A
Bell Canyon	4956	N/A
Cherry Canyon	5974	Hydrocarbons
Brushy Canyon	7484	Hydrocarbons
Bone Spring	9040	Hydrocarbons
2nd Bone Spring	10573	Hydrocarbons
3rd Bone Spring Sand	11726	Hydrocarbons
Wolfcamp	12196	Hydrocarbons
Wolfcamp A1 Shale	12361	Hydrocarbons

2. Casing Program

Hole Size		Casing Depth To	Casing Size	Weight (lb/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
17 1/2	0	1034	13-3/8"	48.00	H-40/J-55 Hybrid	ST&C	1.56	3.66	6.49
12 1/4	0	4936	9-5/8;"	40.00	J-55	LT&C	1.12	1.51	2.63
8 3/4	0	11867	7" .	32.00	L-80	LT&C	1.55	1.63	1.70
8 3/4	11867	12492	7"	32.00	L-80	вт&с	1.49	1.46	46.19
6	11867	22025	4-1/2"	11.60	P-110	вт&с	1.16	1.63	62.77
				BLM	Minimum S	afety Factor	1.125	1	1.6 Dry 1.8 Wet

3. Cementing Program

Casing	# Sks	Wt. lb/gal	Yld ft3/sack	H2O gal/sk	500# Comp. Strength (hours)	Slurry Description
Surface	501	13.50	: 1.72	9.15	15.5	Lead: Class C + Bentonite
	134	14.80	1.34	`6.32	9.5	Tail: Class C+ LCM to the last
Mercal Control of the Market			. 17	Y 3 2 - 0 1		The control of the co
Intermediate	936	12.90	1.88	`" 9.65	12	Lead: 35:65 (Poz:C) + Salt + Bentonite
	284	× 14.80	- 1.36	6.57	9.5	Tail: Class C + Retarder
					,	the production of the production of the design of the first of the contract of
Production	568	10.80	2.35	9.60	17:43	Lead: Tuned Light I Class H
ng ta takan argu kan argus	80	14.20	1.30	5.86	14:30	Tail: 50:50 (Poz:H) + Salt + Bentonite + Fluid Loss + Dispersant + SMS
land a fight of			· · -	practices in		and the state of t
Completion System	693	. 14.20	1.30	5.86	14:30	Tail: 50:50 (Poz:H) + Salt + Bentonite + Fluid Loss + Dispersant + SMS
l i svenik. Ludina				1		

Casing String	TOC	% Excess
Surface	· · · · · · · · · · · · · · · · · · ·	45
Intermediate		44
Production	4736	24 The market of the control of the
Completion System	12492	10

Pilot Hole Cementing Specs Pilot Hole Depth: 13000 KOP: 11867

4. Pressure Control Equipment

A variance is requested for the use of a diverter on the surface casing. See attached for schematic.

BOP installed and tested before drilling which hole?	Size	Min Required WP	Туре		Tested To
		·			
12 1/4	13 5/8	2M	Annular	Х	50% of working pressure
			Blind Ram		
			Pipe Ram		2M
			Double Ram	X	
			Other		
8 3/4	13 5/8	3M	Annular	, X	50% of working pressure
			Blind Ram	. ×	·
			Pipe Ram		3M
			Double Ram	Х	
			Other		
6	13 5/8	5M	Annular	×	50% of working pressure
			Blind Ram		
			Pipe Ram	Х	5M
			Double Ram	Х	
			Other		7

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

- X Formation integrity test will be performed per Onshore Order #2.
 On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed.
 Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
- X A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.
 - N Are anchors required by manufacturer?

5. Mud Program

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0' to 1034'	FW Spud Mud	8.30 - 8.80	28	N/C
1034' to 4936'	Brine Water	9.70 - 10.20	30-32	N/C
4936' to 12492'	FW/Cut Brine	8.50 - 9.00	30-32	N/C
12740' to 22025'	Oil Based Mud	9.70 - 10.20	50-70	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Log	ging, Coring and Testing				
Х	Will run GR/CNL fromTD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.				
	No logs are planned based on well control or offset log information.				
	Drill stem test?				
	Coring?				

Additional Logs Planned	Interval		
Additional Logs Flammed	Interval	and the second second	

7. Drilling Conditions

Condition			
BH Pressure at deepest TVD	5789 psi		
Abnormal Temperature	No		

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

X H2S is present

X H2S plan is attached

8. Other Facets of Operation

Construction Steps

- 1. Salvage topsoil
- 3. Redistribute topsoil
- 2. Construct road
- 4. Revegetate slopes

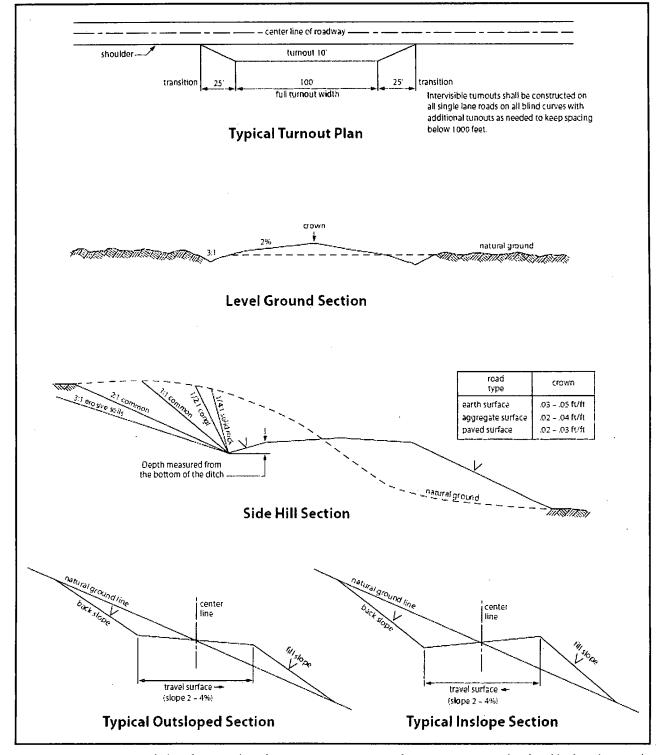


Figure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.