OXY USA Inc. - Mesa Verde 18-7 Federal Com 4H

1. Geologic Formations

TVD of target	10470'	Pilot Hole Depth	N/A
MD at TD:	17968'	Deepest Expected fresh water:	920'

Delaware Basin

Formation	TVD - RKB	Expected Fluids
Rustler	920	Water/Oil/Gas
Salado	1030	
Castile	3310	
Lamar/Delaware	4632	
Bell Canyon*	4647	
Cherry Canyon*	5554	
Brushy Canyon*	6827	Oil/Gas
Bone Spring	8477	Oil/Gas
1st Bone Spring	9655	Oil/Gas
2nd Bone Spring	9909	Oil/Gas

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

									Buoyant	Buoyant
	Casing Int	erval	Csg. Size	Weight	Curit	C	SF	CE Durint	Body SF	Joint SF
Hole Size (III)	From (ft)	To (ft)	(in)	(lbs)	Grade	Conn.	Collapse	Sr Burst	Tension	Tension
14.75	0	971	10.75	45.5	J55	BTC	8.91	1.75	3.51	3.56
9.875	0	7500	7.625	29.7	L80	BTC	1.22	1.84	4.65	2.16
9.875	7500	9854	7.625	29.7	HP L80	BTC	1.46	1.95	2.13	2.15
6.75	9754	17968	4.5	11.6	P-110	DQX	1.68	1.20	2.25	2.28

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

*OXY requests the option to set casing shallower yet still below the salts if losses or hole conditions require this. Cement volumes may be adjusted if casing is set shallower and a DV tool may be run in case hole conditions merit pumping a second stage cement job to comply with permitted top of cement. If cement circulated to surface during first stage we will drop a cancelation cone and not pump the second stage.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
	 T
Is well located within Capitan Reef?	N N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	_
Is well within the designated 4 string boundary.	

	리카이 가격 실수
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
	್ ಕ್ರಾಂಕ್ರಿಸಿ
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H20 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surface	496	. 14.2	1.68	6.53	6:50	Class C Cement, Accelerator
Production	1043	10.2	3.05	15.63	15:07	Pozzolan Cement, Retarder
Casing	163	13.2	1.65	8.45	12:57	Class H Cement, Retarder, Dispersant, Salt
DV/ECP Tool @	4682' (We requ	est the option to o	cancel the seco	nd stage if ceme	nt is circulated to s	surface during the first stage of cement operations)
2-1 54	770	12.9	1.85	9.86	12:44	Class C Cement, Accelerator, Retarder
2110 Stage	182	14.8	1.33	6.34	6:31	Class C Cement
Production Liner	802	13.2	1.631	8.37	15:15	Class H Cement, Retarder, Dispersant, Salt

Casing String	Top of Lead (ft)	Bottom of Lead (ft)	Top of Tail (ft)	Bottom of Tail (ft)	% Excess Lead	% Excess Tail
Surface	N/A	N/A	0	971	N/A ,	50%
Production Casing	0	8854	8854	9854	75%	20%
2nd Stage Prodution Casing	0	4182	4182	4682	75%	125%
Production Liner	N/A	N/A	9754	17968	N/A	15%

• <u>Cement Top and Liner Overlap</u>

- OXY is requesting permission to have minimum fill of cement behind the 4.5" production liner to be 100 ft into previous casing string. The reason for this is so that we can come back and develop shallower benches from the same 7.625" mainbore in the future
- Our plan is to use a whipstock for our exit through the mainbore. Based on our lateral target, we are planning a whipstock cased/hole exit so that kick-off point will allow for roughly 10deg/100' doglegs needed for the curve
- Cement will be brought to the top of this liner hanger

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре	1	Tested to:
			Annular	1	70% of working pressure
0.975" Droduction	13-5/8"	5M	Blind Ram	✓	
9.875 Production			Pipe Ram		250/5000-0
			Double Ram	√	250/5000psi
			Other*		

4. Pressure Control Equipment

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.
Y Are anchors required by manufacturer?
A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015. See attached schematic.

OXY USA Inc. - Mesa Verde 18-7 Federal Com 4H

5. Mud Program

	Depth				
From (ft)	To (ft)	туре	weight (ppg)	VISCOSITY	water Loss
0	971	Water-Based Mud	8.4-8.6	40-60	
971	4682	Brine	9.8-10.0	35-45	N/C
4682	9854	Water-Based Mud	8.8-9.6	38-50	N/C
9854	17968	Oil-Based Mud	8.8-9.6	35-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, 'Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. OXY will use a closed mud system.

OXY proposes to drill out the 10-3/4" surface casing shoe with a saturated brine system from 971-4682', which is the base of the salt system. At this point we will swap fluid systems to a high viscosity mixed metal hydroxide system or a fully saturated brine direct emulsion system. We will drill with this system to the production TD @ 9854'.

What will be used to monitor the loss or gain	PVT/MD Totco/Visual Monitoring
of fluid?	

an a shi mi sinti

6. Logging and Testing Procedures

in the second second

Logg	ing, Coring and Testing.
Yes	Will run GR from TD to surface (horizontal well - vertical portion of hole). Stated logs
	run will be in the Completion Report and submitted to the BLM.
No	Logs are planned based on well control or offset log information.
No	Drill stem test? If yes, explain
No	Coring? If yes, explain

	the second s	<u>,这些人,我们就是我们的时候,我们就能能做了。""你</u> 是我们的。"
Addi	tional logs planned	Interval
No	Resistivity	
No	Density	
No	CBL: has a set of the	
Yes	Mud log	Surface Shoe - TD
No	PEX	

OXY USA Inc. - Mesa Verde 18-7 Federal Com 4H

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	5227 psi
Abnormal Temperature	No
BH Temperature at deepest TVD	164°F

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

8. Other facets of operation

	Yes/No
Will the well be drilled with a walking/skidding operation? If yes, describe.	Yes
• We plan to drill the two well pad in batch by section: all surface sections,	
intermediate sections and production sections. The wellhead will be	
secured with a night cap whenever the rig is not over the well.	
Will more than one drilling rig be used for drilling operations? If yes, describe.	Yes
• OXY requests the option to contract a Surface Rig to drill, set surface	
casing, and cement for this well. If the timing between rigs is such that	
OXY would not be able to preset surface, the Primary Rig will MIRU and	
drill the well in its entirety per the APD. Please see the attached document	
for information on the spudder rig.	1

Total estimated cuttings volume: 1405.8 bbls.

9. Company Personnel

Name	Title	Office Phone	Mobile Phone
Philippe Haffner	Drilling Engineer	713-985-6379	832-767-9047
Diego Tellez	Drilling Engineer Supervisor	713-350-4602	713-303-4932
Simon Benavides	Drilling Superintendent	713-522-8652	281-684-6897
John Willis	Drilling Manager	713-366-5556	713-259-1417

OXY USA Inc APD ATTACHMENT: SPUDDER RIG DATA

OPERATOR NAME / NUMBER: OXY USA Inc

1. SUMMARY OF REQUEST:

Oxy USA respectfully requests approval for the following operations for the surface hole in the drill plan:

1. Utilize a spudder rig to pre-set surface casing for time and cost savings.

2. Description of Operations

- 1. Spudder rig will move in to drill the surface hole and pre-set surface casing on the well.
 - **a.** After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - **b.** The spudder rig will utilize fresh water-based mud to drill the surface hole to TD. Solids control will be handled entirely on a closed loop basis. No earth pits will be used.
- 2. The wellhead will be installed and tested as soon as the surface casing is cut off and the WOC time has been reached.
- 3. A blind flange at the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wingvalves.
 - **a.** A means for intervention will be maintained while the drilling rig is not over the well.
- 4. Spudder rig operations are expected to take 2-3 days per well on the pad.
- 5. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 6. Drilling operations will begin with a larger rig and a BOP stack equal to or greater than the pressure rating that was permitted will be nippled up and tested on the wellhead before drilling operations resume on each well.
 - **a.** The larger rig will move back onto the location within 90 days from the point at which the wells are secured and the spudder rig is moved off location.
 - **b.** The BLM will be contacted / notified 24 hours before the larger rig moves back on the pre-set locations.
- 7. Oxy will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 8. Once the rig is removed, Oxy will secure the wellhead area by placing a guard rail around the cellar area.

OXY USA Inc. Mesa Verde 18-7 Federal Com 4H

Below is a summary that describes the general operational steps to drill and complete this well:

- Drill 14-3/4" hole x 10-3/4" casing for surface section. Cement to surface.
- Drill 9-7/8" hole x 7-5/8" casing for intermediate section. Cement to surface.
- Drill 6-3/4" hole x 4-1/2" liner for production section. Cement to top of liner, 100' inside 7-5/8" shoe.
- Release drilling rig from location.
- Move in workover rig and run a 5-1/2" 17# P110 USF tie-back frack string and seal assembly (see connection specs below). Tie into liner hanger Polished Bore Receptacle (PBR) with seal assembly.
- Pump hydraulic fracture job.
- Flowback and produce well.

When a decision is made to develop a secondary bench from this wellbore, a workover rig will be moved to location. The workover rig will then retrieve the tie-back frack string and seal assembly before temporarily abandoning the initial lateral.

General well schematic:

11

5 1/2" 17# P110 USF Tie-back string specifications:

PERFORMANCE DATA

17.00 lbs/ft

P-110

5.500 in

TMK UP ULTRATAL SF **Technical Data Sheet**

Tubular Parameters					
Size :	5 500	- in	Ninimum Yeid	110 000	psi
Nominal Weight	17.00	løs/#	Minimum Tensile	125 000	ps,
Grade	P-116		steld Load	545 000	ibs
PE Weight	16 87	'bs/ti	Tensile Load	620 000	ibs
Wall Inickness	0 304	an -	Min Internal Weld Pressure	10.600	ps'
Nominal 10	4 892	15	Collapse Pressure	7 460	D5:
Drift Diameter	4 787	in			•
Nom Pipe Body Area	4 962	urs?			
Connection Parameters		······································			
Connection OD	5 663	111			
Connection IC	4 848	in	n	主導之	
Make-Up Loss	5 911	in .			Server 1
Critical Section Area	4 569	ir of			Ser and
Tension Elfic ancy	91.6	34			Carried States
Compression Efficiency	918	з'n		لينغ ليستح بربو المستح -	
Yield Load In Tension	499 000	lbs			
Min Internet Yield Pressure	10 600	psi			
Collapse Pressure	7 480	psi			
Uniakial Bending	84	1/ 100 ft		م ال الم من ال الع	
Make-Up Torques					
Min Make-Up Torque	10 300	st-755			
Opt Make-Up Torque	11 306	ft-tbs			1
Max Make-Up Torque	12 400	ft-lbs			
Yield Torque	15 500	ft-ibs			ic in

Printed on: July-24-2015

NOTE

The content of this Technical Bata Sheet is for general information only and does not guarantee. performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyona using the information herein does so at their own risk. To verify that you have the latest TMK (PSCO technical information, please contact TMK IPSCO Technical Sales (oli free at 1-888-258-2000

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

1) Casing Design Assumptions

a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- o External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- o Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- o Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
- **b)** Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- o External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- o Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- o Internal: Full void pipe.
- o External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

 Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus cement plug bump pressure load.

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- **1)** Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- o External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig. whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- o Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- Internal: SITP plus a packer fluid gradient to the shoe or top of packer. 0
- o External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- o Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient. a a start of the start of the
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- o Internal: Surface pressure plus injection fluid gradient.
- o External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
- b) Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- and the second second second
- External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- o Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

54 J.

Full Evacuation (Production)

- Internal: Full void pipe.
- External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

o Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

Axial: Buoyant weight of the string plus cement plug bump pressure load.

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- **1)** Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- o External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

5

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- o Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
- **b)** Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- o External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- o Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- o Internal: Full void pipe.
- External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

o Axial: Buoyant weight of the string plus cement plug bump pressure load.

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- **1)** Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- o External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- o Internal: Surface pressure or pressure-relief system pressure whichever is lower plus packer fluid gradient.
 - External: Mud base-fluid density to TOC, cement mix water gradient (8.4.ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- o Internal: Surface pressure plus injection fluid gradient.
- o External: Mud base-fluid density to TOC, cement mix water gradient (8:4 ppg) below TOC, and pore pressure in open hole.
- b) Collapse Loads
 - Lost Circulation (Surface / Intermediate)

L. M. Martin & Martin

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- o External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- o Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

lanes in a star

Full Evacuation (Production)

Internal: Full void pipe.

이 아이는 것은 한 것을 수 없는 것

External: MW of drilling mud in the hole when the casing was run.

c) Tension Loads

Running Casing (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus cement plug bump pressure load.

PERFORMANCE DATA

TMK UP DQX Technical Data Sheet

4.500 in

11.60 lbs/ft

Minimum Yield

Minimum Tensile

P-110

110,000

125.000

rechnical Data Sheet

Tubular Parameters		
Size	4.500	in
Nominal Weight	11.60	lbs/ft
Grade	P-110	
PE Weight	11.35	lbs/ft
Wall Thickness	0.250	in
Nominal ID	4.000	in
Drift Diameter	3.875	in
Nom. Pipe Body Area	3.338	in²

Connection Parameters

5.000	in
4.000	in
3.772	in
3.338	in²
100.0	%
100.0	%
367.000	lbs
10,700	psi
7.600	psi
· .	,
	5.000 4.000 3.772 3.338 100.0 100.0 367.000 10,700 7.600

Make-Up TorquesMin. Make-Up Torque4,800ft-lbsOpt. Make-Up Torque5,400ft-lbsMax. Make-Up Torque5,900ft-lbsYield Torque8,600ft-lbs

Printed on: July-29-2014

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

5M BOP Stack

Mud Cross Valves:

- 5. 5M Check Valve
- 6. Outside 5M Kill Line Valve
- 7. Inside 5M Kill Line
- 8. Outside 5M Kill Line Valve
- 9. 5M HCR Valve
- *Minimum ID = 2-1/16" on Kill Line side and 3" minimum ID on choke line side

To Killぐ Line

1

Coflex Hose Certification

Ontinental & CONTITECH

Fluid Technology

Quality Document

CERTIFICATE OF CONFORMITY

Supplier : CONTITECH RUBBER INDUSTRIAL KFT. Equipment : 6 pcs. Choke and Kill Hose with installed couplings Type : 3" x 10,67 m WP: 10000 psi Supplier File Number : 412638 Date of Shipment : April. 2008 Customer : Phoenix Beattie Co. Customer P.o. : 002491 Referenced Standards / Codes / Specifications : API Spec 16 C Serial No.: 52754,52755,52776,52777,52778,52782

STATEMENT OF CONFORMITY

We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.

COUNTRY OF ORIGIN HUNGARY/EU

Signed

Position: Q.C. Manager

_ontiTech Bubber Industrial Kit. Quality Control Dept. (1)

Date: 04. April. 2008

	OENIV Roa	ttio	Materia	l Iden	tificati	on Certifi	cate			
	venia dea	LLIE				on ooran			·	
PA No 006	330 Client HE	LMERICH & PA	YNE INT'L DRILLING	COent	Ref 3	70-369-001	· · · · · · · · · · · · · · · · · · ·		Page	1
Part No	Description	Material Desc	Material Spec	Ωtγ	WO No	Batch No	Test Cert No	Bin No	Drg No	Issue No
HP10CK3A-35-4F1	3" 10K 16C CAK HOSE x 35ft OAL			1	2491	52777/1884		MATER		
SEOKJ-HITF3	LIFTING & SAFETY EQUIPHENT TO		(1	2440	002440		N/STK		
SC725-200CS	SAFETY CLAMP 200MN 7.25T	CARBON STEEL		1	2519	1465		22C		
SC725-132CS	SAFETY CLAMP 132HH 7.25T	CARBON STEEL		1	2242	(1139		22		
l				I	l					
			· · · · · · · · · · · · · · · · · · ·		ļ	L				ļ
<u> </u>			· · · · · · · · · · · · · · · · · · ·	ļ	L					
				· · · · · · · · · · · · · · · · · · ·	ļ	l				
					Į					
<u> </u>					ļ					
1					ļ					
			<u>}</u>	ļ	<u> </u>		<u> </u>	 	L	<u></u>
					ļ				l	<u></u>
t			· · · · · · · · · · · · · · · · · · ·	<u> </u>	1			L		J
			·	1	1					
								I		
1				1						
				1	L		I			
				1				1		1
í			l							
			<u>:</u>					L		
i.								<u> </u>		1
							1	1		
l l			1							1
(1	1	<u>.</u>							

We hereby certify that these goods have been inspected by our Quality Management System, and to the best of our knowledge are found to conform to relevant industry standards within the requirements of the purchase order as issued to Phoenix Beattle Corporation.

Coflex Hose Certification

FH-4

Phoenix Beattle Corp 1155 Brithmore Park Drive Houston, TX 77041 Tel: (832) 327-0141 Faz: (832) 327-0146 E-sail sailphoonixbeattle.com ww.phoenixbasttle.com

Delivery Note

Customer Order Number	370-369-001	Delivery Note Number	003078	Page	2
Customer / Invoice Addres HELMERICH & PAYNE INT'L I 1437 SOUTH BOULDER TULSA, OK 74119	ss Drilling CD	Delivery / Address Helmerich & Payne IDC Attn: Joe Stephenson - Rig 13609 Industrial Road Houston, Tx 77015	G 370		

Customer Acc No	Phoenix Beattie Contract Manager	Phoenix Beattle Reference	Date
. H01	JJL	006330	05/23/2008

	ltem No	Beattle Part Number / Description	Qty Ordered	Qty Sent	Qty To Follow
	4	SC725-132CS SAFETY CLAMP 132MM 7.25T C/S GALVANIZED C/W BOLTS	1	1	0
	5	ODCERT-HYDRO HYDROSTATIC PRESSURE TEST CERTIFICATE	1	1	O
	6	DOCERT-LOAD LOAD TEST CERTIFICATES	1	1	0
	7	OOFREIGHT INBOUND / OUTBOUND FREIGHT PRE-PAY & ADD TO FINAL INVOICE NOTE: MATERIAL MUST BE ACCOMPANIED BY PAPERWORK INCLUDING	1	1	, O
		THE FURCHASE ORDER, RIG NUMBER TO ENSURE PROPER PAYMENT			ar yang gang gang gang di kang
			~	\wedge	
		, · · · · · · · · · · · · · · · · · · ·	Pal		
		Phoenix Beattle Inspection Signature :	MAMAN	Which	
		Received in Good Condition : Signature			
dure e					an a
		Date _			

All goods remain the property of Phoenix Beattle until paid for in full. Any damage or shortage on this delivery must be advised within 5 days. Returns may be subject to a handling charge.

FH-3

Coflex Hose Certification

Form No 100/12

Phoenix Beattie Corp 11535 Grittmore Park Drive Houston, TX 77041 Tel: (632) 327-0141 Fax: (632) 327-0146 E-sail sailsphoenistesttie.com wer.phoenistesttie.com

Delivery Note

Customer Order Number	370-369-001	Delivery Note Number	003078	Page	1
Customar / Invoice Addres HELMERICH & PAYNE INT'L (1437 SOUTH BOULDER TULSA, OK 74119	88 Xrilling Co	Delivery / Address HELMERICH & PAYNE IDC ATTN: JOE STEPHENSON - RIG 13609 INDUSTRIAL ROAD HOUSTON, TX 77015	3 370		

Customer Acc No	Phoenix Beattle Contract Manager	Phoenix Beattie Reference	Date	
HOI	JJL	006330	05/23/2008	

item No	Beattle Part Number / Description	Qty Ordered	Qty Sent	Oty To Follow
1	HP10CK3A-35-4F1 3° 10K 16C C&K HOSE x 35ft OAL CW 4.1/16° API SPEC FLANGE E/ End 1: 4.1/16° 10Kpsi API Spec 6A Type 68X Flange End 2: 4.1/16° 10Kpsi API Spec 6A Type 68X Flange c/w BX155 Standard ring groove at each end Suitable for H2S Service Working pressure: 10,000psi Test pressure: 15,000psi Standard: API 16C Full specification Armor Guarding: Included Fire Rating: Not Included Temperature rating: -20 Deg C to +100 Deg C	1	1	0
2	SECK3-HPF3 LIFTING & SAFETY EQUIPMENT TO SUIT HP10CK3-35-F1 2 × 160mm ID Safety Clamps 2 × 244mm ID Lifting Collars & element C's 2 × 7ft Stainless Steel wire rope 3/4" OD 4 × 7.75t Shackles		1	0
3	SC725-200CS SAFETY CLAMP 200MM 7.25T C/S GALVANISED	1	1	D

Continued...

All goods remain the property of Phoenix Beattie until peld for in full. Any damage or shortage on this delivery must be edviced within 5 days. Returns may be subject to a handling charge.

Constitution Hubber Industrial Kit. Willy Control Dept. (1) (1) मान-विव 1 峭阳 躗 州 1 B) 1 ΠΠ

1

1 ł Í 1

ļ

Fluid Technology

Quality Document

QUALITY CONTROL INSPECTION AND TEST CERTIFICATE						CERT. Nº: 746						
PURC	HASER:		Phoer	ix Bea	ittie C	.			P.O. Nº:	00)2491	1
CONTI	TECH OR	DER Nº:	41263	8	ноз	E TYPE:	3"	D	Ch	oke and Kil	l Hose	
HOBE	SERIAL	Nº:	5277	7	NOM	NOMINAL / ACTUAL LENGTH:			10,67 m			
W.P.	68,96	MPa	10000	psi	T.P.	103,4	MPa	1500) psi	Duration:	60 ~-	min.
Pressu	ıra test w	ith water	at									
ambiei	ni lemper	aure										
				See	atta	chment	. (1 pa	ge)			•	
												-
↑ .,		10	Min									
→ 1	0 mm =	25	MPa									
						COUF	PLINGS					
	Ту	pê			Serial	N°		(Quality		Heat N°	
	3" coup!	ing with		917		913		AIS	1 4130	1993 I.	T7998A	- 2012 and 2012 and 2013
	4 1/16° 1	Flange e	and			:		AIS	14130		26984	
												
INFO	OCHIP	INSTA	LLED							A Terr	PI Spec 16	C te:"B"
411 mate	al norte ar	a flaulaa	19							. 20		
AT THE LE	TIFY THA	ET THE AL ED AS AB	BOVE HOSE BOVE WITH S	has be Atisfa	EEN M/	NUFACTL RESULT.	Red in	ACCORD	ANCE WI	TH THE TERM	is of the ord	ER AND
WE CEF PRESSL						فنناهيب عندل باده	OunHt	Control				
WE CEP PRESBL Date:			Inspec	lor			Cuan	y comio				

5M Choke Panel

2

-

Mesa Verde Development – Surface Production Facilities – 9/6/17

CTB Site

All wells will route to the Mesa Verde Unit CTB which will be composed of (3) tracts with the following dimensions: 600'x600', 200'x30', and 150'x150'.

Reference Plats:

(3) John West Surveying Company W.O. No: 16110946 Survey: 12/12/16 CAD: 1/13/17

Production Flowlines

Each well will have (2) surface laid flowlines operating at less than 75% of the MAWP of the flowline per the survey plats from the well site to the CTB following access roads.

Reference plats per well APD package

Buried Lines (General)

Mesa Verde development will have a 100' "pipeline corridor" that buried lines will be consolidated to where possible as to minimize disturbances. Pipelines within corridor are described below. Certain interconnections outside of the pipeline corridor are required but have been minimized.

Reference Plats:

(1) John West Surveying Company W.O. No: 16.11.0947 Survey: 12/13/16 CAD: 1/19/17 Rev: 2/03/17

Gas Lift Compressor Site, Suction, and Injection Lines

Wells with gas lift as their artificial lift mechanism in the Mesa Verde development will be supported by a centralized gas lift compressor station. This gas lift compressor station will be located on a 400'x200' pad in Section 18 Township 24 South Range 32 East and will be fed by a buried 20" HDPE line, laid in the pipeline corridor, from the Mesa Verde unit CTB operating at less than 125 PSIG. The discharge of the compressors will feed into (1) 8" gas injection trunk line operating < 1,500 PSIG running the length of the pipeline corridor connecting to each well pad.

Reference Plats:

(1) John West Surveying Company W.O. No: 16.11.0947 Survey: 12/13/16 CAD: 1/19/17 Rev: 2/03/17

Salt Water Disposal

Produced water will be pumped into (2) 16" HDPE buried lines operating at less than 300 PSIG in the pipeline corridor. This produced water line will also connect to the McCloy SWD and Bran SWD through routes outside of the pipeline corridor per the attached plats.

Reference Plats:

(1) John West Surveying Company W.O. No: 16.11.0947 Survey: 12/13/16 CAD: 1/19/17 Rev: 2/03/17

(1) John West Surveying Company W.O. No: 17110705 Survey: 7/6/17 CAD: 7/31/17

(1) John West Surveying Company W.O. No: 16110099 Survey: 2/2/16 CAD: 2/17/16

(1) John West Surveying Company W.O. No: 16110113 Survey: 2/5/16 CAD: 2/17/16

(1) John West Surveying Company W.O. No: 16110102 Survey: 2/3&4/16 CAD: 2/22/16

<u>Oil Sales</u>

Oil will be pumped into (1) 6" steel buried line operating at less than 750 PSIG in the pipeline corridor. This oil line will interconnect to the Mesa Verde oil gathering point through a route outside of the pipeline corridor per the attached plat.

Reference Plat:

(1) John West Surveying Company W.O. No: 16.11.0947 Survey: 12/13/16 CAD: 1/19/17 Rev: 2/03/17

(1) John West Surveying Company W.O. No: 17110705 Survey: 7/6/17 CAD: 7/31/17

(1) John West Surveying Company W.O. No: 16111047 Survey: 1/10/17 CAD: 2/01/17

Gas Sales

1.14.14.1.1

Gas will flow into (1) 20" HDPE buried line operating at less than 125 PSIG in the pipeline corridor. This gas line will interconnect to the Enlink (3rd Party Processor) tie-in point through a route outside of the pipeline corridor per the attached plat. This 20" HDPE line will also interconnect to the Sand Dunes development to provide more takeaway capacity. To allow movement of higher volumes of gas (1) 12" steel line operating less than 1,500 PSIG will also be installed along these routes:

ભારત અને

. .

12.2

÷ *

State Constant State . 1

化连缩过度 人名法法加斯尔 机分析实现的 the instance of the

1 · · · ·

Ng kang P

Reference Plat:

May a strange and

1.5.2.1

(1) John West Surveying Company W.O. No: 16.11.0947 Survey: 12/13/16 CAD: 1/19/17 Rev: 2/03/17 (1) John West Surveying Company W.O. No: 17110705 Survey: 7/6/17 CAD: 7/31/17

(1) John West Surveying Company W.O. No: 17110042 Survey: 1/27/17 CAD: 2/1/17 के जन्म समिति के जन्म जन्म Constant Section 201

Prepared by: Dave Andersen GRR Land Department

GRR, INC. WATER SOURCES FOR OXY CERTAIN POND LOCATIONS

Pond Name	Water Source1	Water Source2	Water Source3	Water Source4
Cedar Canyon	<u>Mine Industrial</u>	<u>C-3478</u>	<u>C-2772</u>	<u>C-1360</u>
Corral Fly	<u>C-1360</u>	<u>C-1361</u>	<u>C-3358</u>	<u>C-3836</u>
Cypress	Mine_Industrial	<u>C-3478</u>	<u>C-2772</u>	<u>C-1361</u>
Mesa Verde	<u>C-2571</u>	<u>C-2574</u>	<u>J-27</u>	<u>J-5</u>
Peaches	<u>C-906</u>	<u>C-3200</u>	<u>SP-55 & SP-1279</u> <u>A</u>	<u>C-100</u>

NMOSE WELL NUMBER	GRR In WELL COMMON NAME	C. LAND OWNERSHIP	GPS LOCATION
C-100	Tres Rios - Next to well shack	PRIVATE	32.201921° -104.254317°
C-100-A	Tres Rios - Center of turnaround	PRIVATE	32.201856° -104.254443°
С-272-В	Tres Rios - Northwest	PRIVATE	32.202315° -104.254812°
C-906	Whites City Commercial	PRIVATE	32.176949°-104.374371°
C-1246-AC & C-1246-AC-S	Lackey	PRIVATE	32.266978°-104.271212°
C-1886	1886 Tank	BLM	32.229316° -104.312930°
C-1083	Petska	PRIVATE	32:30904° -104.16979°
C-1142	Winston West	BLM	32.507845-104.177410
C-1360	ENG#1	PRIVATE	32.064922° -103.908818°
C-1361	ENG#2	PRIVATE	32.064908° -103.906266°
C-1573	Cooksey	PRIVATE	32.113463°-104.108092°
C-1575	ROCKHOUSE Ranch Well - Wildcat	BLM	32.493190° -104.444163°
C-2270	CŴ#1 (Oliver Kiehnē)	PRIVATE	32.021440° - 103.559208°
C-2242	Walterscheid	PRIVATE	32.39199° -104.17694°
C-2492POD2	Stacy Mills	PRIVATE	32.324203° -103.812472°
C-2569	Paduca well #2	BLM	32.160588 -103.742051
C-2569POD2	Paduca well replacement	BLM	32.160588 -103:742051
C-2570	Paduca (tank) well #4	BLM	32.15668 -103.74114
C-2571	Paduca (road) well	BLM	32.163993° -103.745457°
C-2572	Paduca well #6	BLM	32.163985 -103.7412
C-2573	Paduca (in the bush) well	BLM	32.16229 -103.74363
C-2574	Paduca well (on grid power)	BLM	32.165777° -103.747590°
C-2701	401 Water Station	BLM	32.458767° -104.528097°
C-2772	Mobley Alternate	BLM	32.305220° -103.852360°
C-3011	ROCKY ARROYO - MIDDLE	BLM	32.409046° -104.452045°
C-3060	Max Vasquez	PRIVATE	32.31291° -104.17033°
C-3095	ROCKHOUSE Ranch Well - North of Rockcrusher	PRIVATE	32.486794° -104.426227°
C-3200	Beard East	PRIVATE	32.168720 -104.276600
C-3260	Hayhurst	PRIVATE	32.227110° -104.150925°
C-3350	Winston Barn	PRIVATE	32.511871° -104.139094°
C-3358	Branson	PRIVATE	32.19214° -104.06201°
C-3363	Watts#2	PRIVATE	32.444637° -103.931313°
C-3453	ROCKY ARROYO - FIELD	PRIVATE	32.458657° -104.460804°
C-3478	Mobley Private	PRIVATE	32.294937° -103.888656°
C-3483pod1	ENG#3	BLM	32.065556° -103.894722°
C-3483pod3	ENG#5	BLM	32.06614° -103.89231°
C-3483POD4	CW#4 (Oliver Kiehne)	PRIVATE	32.021803° -103.559030°
C-3483POD5	CW#5 (Oliver Kiehne)	PRIVATE	32.021692° -103.560158°
C-3554	Jesse Baker #1 well	PRIVATE	32.071937° -103.723030°
C-3577	CW#3 (Oliver Kiehne)	PRIVATE	32.021773° -103.559738°
C-3581	ENG#4	BLM	32.066083° -103.895024°
C-3595	Oliver Kiehne house well #2	PRIVATE	32.025484° -103 682529°
C-3596	CW#2 (Oliver Kiehne)	PRIVATE	32.021793° -103.559018°

•

NMOSE WELL NUMBER WELL COMMON NAME LAND OWNERSHIP GPS LOCATION C-3614 Dale Hood #2 well PRIVATE 32.449290° -104.214500° C-3639 Jesse Baker #2 well PRIVATE 32.073692° -103.727121° C-3679 McCloy-Batty PRIVATE 32.215790° -103.537690° C-3689 Winston Barn_South PRIVATE 32.511504° -104.139073° C-3731 Ballard Construction PRIVATE 32.458551° -104.144219° C-3764 Watts#4 PRIVATE 32.443360° -103.942890°	
C-3614 Dale Hood #2 well PRIVATE 32.449290° -104.214500° C-3639 Jesse Baker #2 well PRIVATE 32.073692° -103.727121° C-3679 McCloy-Batty PRIVATE 32.215790° -103.537690° C-3689 Winston Bam_South PRIVATE 32.511504° -104.139073° C-3731 Ballard Construction PRIVATE 32.449290° -103.537690° C-3764 Watts#4 PRIVATE 32.511504° -104.139073°	
C-3639 Jesse Baker #2 well PRIVATE 32.073692° -103.727121° C-3679 McCloy-Batty PRIVATE 32.215790° -103.537690° C-3689 Winston Barn_South PRIVATE 32.511504° -104.139073° C-3731 Ballard Construction PRIVATE 32.458551° -104.144219° C-3764 Watts#4 PRIVATE 32.443360° -103.942800°	
C-3679 McCloy-Batty PRIVATE 32.215790° -103.537690° C-3689 Winston Bam_South PRIVATE 32.511504° -104.139073° C-3731 Ballard Construction PRIVATE 32.458551° -104.144219° C-3764 Watts#4 PRIVATE 32.443360° -103.942890°	·
C-3689 Winston Bam_South PRIVATE 32.511504° -104.139073° C-3731 Ballard Construction PRIVATE 32.458551° -104.144219° C-3764 Watts#4 PRIVATE 32.458560° -103.942890°	
C-3731 Ballard Construction PRIVATE 32.458551° -104.144219° C-3764 Watts#4 PRIVATE 32.443360° -103.942890°	
C-3764 Watts#4 PRIVATE 32 443360° -103 942890°	
C-3795 Beckham#6 BLM 32.023434°-103.321968°	
C-3821 Three River Trucking PRIVATE 32.34636° -104.21355	
C-3824 Collins PRIVATE 32.224053° -104.090129°	
C-3829 Jesse Baker #3 well PRIVATE 32.072545°-103.722258°	
C-3830 Paduca BLM 32.156400° -103.742060°	
C-3836 Granger PRIVATE 32.10073° -104.10284°	
C-384 ROCKHOUSE Ranch Well - PRIVATE 32.481275° -104.420706° Rockcrusher	
C-459 Walker PRIVATE 32.3379° -104.1498°	
C-496pod2 Munoz #3 Trash Pit Well PRIVATE 32.34224° -104.15365°	
C-496pod3&4 Munoz #2 Corner of Porter & Derrick PRIVATE 32.34182° -104.15272°	
C-552 Dale Hood #1 well PRIVATE 32.448720° -104.214330°	
C-764 Mike Vasquez PRIVATE 32.230553° -104.083518°	
C-766(old) Grandi PRIVATE 32.32352° -104.16941°	
C-93-S Don Kidd well PRIVATE 32.344876 -104.151793	
C-987 ROCKY ARROYO - HOUSE PRIVATE 32.457049° -104.461506°	
C-98-A Bindel well PRIVATE 32.335125° -104.187255°	
CP-1170POD1 Beckham#1 PRIVATE 32.065889° -103.312583°	
CP-1201 Winston Ballard BLM 32.580380° -104.115980°	
CP-1202 Winston Ballard BLM 32.538178° -104.046024°	
CP-1231 Winston Ballard PRIVATE 32.618968° -104.122690°	
CP-1263POD5 Beckham#5 PRIVATE 32.065670° -103.307530°	
CP-1414 Crawford #1 PRIVATE 32.238380° -103.260890°	
CP-1414 POD 1 RRR PRIVATE 32.23911° • 103.25988°	
CP-1414 POD 2 RRR PRIVATE 32.23914° -103.25981°	
CP-519 Bond_Private PRIVATE 32.485546 -104.117583	
CP-556 Jimmy Mills (Stacy) STATE 32.317170° -103.495080°	
CP-626 OI Loco (W) STATE 32.692660° -104.068064°	
CP-626-S Beach Exploration/ OI Loco (E) STATE 32.694229° -104.064759°	
CP-73 Laguna #1 BLM 32.615015°-103.747615°	
CP-74 Laguna #2 BLM 32.615255°-103.747688°	
CP-741 Jimmy Richardson BLM .32.61913° -104.06101°	
CP-742 Jimmy Richardson BLM 32.614061° -104.017211°	
CP-742 Hidden Well BLM 32.614061 -104.017211	
CP-745 Leaning Tower of Pisa BLM 32.584619° -104.037179°	
CP-75 Laguna #3 BLM 32.615499°-103.747715°	
CP-924 Winston Ballard BLM 32.545888° -104.110114°	
CP-926 Winchester well (Winston) BLM 32.601125° -104.128358°	

GRR Inc.					
NMOSE WELL NUMBER	WELL COMMON NAME	LAND OWNERSHIP	GPS LOCATION		
J-27	Beckham	PRIVATE	32.020403° -103.299333°		
J-5	EPNG Jal Well	PRIVATE	32.050232° -103.313117°		
J-33	Beckham	PRIVATE	32.016443° -103.297714°		
J-34	Beckham	PRIVATE	32.016443° -103.297714°		
J-35	Beckham	PRIVATE	32.016443° -103.297714°		
L-10167	Angell Ranch well	PRIVATE	32.785847° -103.644705°		
L-10613	Northcutt3 (2nd House well)	PRIVATE	32.687922°-103.472452°		
L-11281	Northcutt4	PRIVATE	32.687675°-103.471512°		
L-12459	Northcutt1 (House well)	PRIVATE	32.689498°-103.472697°		
L-12462	Northcutt8 Private Well	PRIVATE	32.686238°-103.435409°		
L-13049	EPNG Maljamar well	PRIVATE	32.81274° -103.67730°		
L-13129	Pearce State	STATE	32.726305°-103.553172°		
L-13179	Pearce Trust	STATE	32.731304°-103.548461°		
L-13384	Northcutt7 (State) CAZA	STATE	32.694651°-103.434997°		
L-1880S-2	HB Intrepid well #7	PRIVATE	32.842212° -103.621299°		
L-1880S-3	HB Intrepid well #8	PRIVATE	32.852415° -103.620405°		
L-1881	HB Intrepid well #1	PRIVATE	32.829124° -103.624139°		
L-1883	HB Intrepid well #4	PRIVATE	32.828041° -103.607654°		
L-3887	Northcutt2 (Tower or Pond well)	PRIVATE	32.689036°-103.472437°		
L-5434	Northcutt5 (State)	STATE	32.694074°-103.405111°		
L-5434-S	Northcutt6 (State)	STATE	32.693355°-103.407004°		
RA-14	Horner Can	PRIVATE	32.89348° -104.37208°		
RA-1474	Irvin Smith	PRIVATE	32.705773° -104.393043°		
RA-1474-B	NLake WS / Jack Clayton	PRIVATE	32.561221°-104.293095°		
RA-9193	Angell Ranch North Hummingbird	PRIVATE	32.885162° -103.676376°		
SP-55 & SP-1279-A	Blue Springs Surface POD	PRIVATE	32.181358° -104.294009°		
SP-55 & SP-1279 (Bounds)	Bounds Surface POD	PRIVATE	32.203875° -104.247076°		
SP-55 & SP-1279 (Wilson)	Wilson Surface POD	PRIVATE	32.243010° -104.052197°		
City Treated Effluent	City of Carlsbad Waste Treatment Plant	PRIVATE	32.411122° -104.177030°		
Mine Industrial	Mosaic Industrial Water	PRIVATE	32.370286° -103.947839°		
Mobley State Well (NO OSE)	Mobley Ranch	STATE	32.308859° -103.891806°		
EPNG Industrial	Monument Water Well Pipeline (Oil Center, Eunice)	PRIVATE	32.512943° -103.290300°		
MCOX Commercial	Matt Cox Commercial	PRIVATE	32.529431° -104.188017°		
AMAX Mine Industrial	Mosaic Industrial Water	N/A	VARIOUS TAPS		
WAG Mine Industrial	Mosaic Industrial Water	N/A	VARIOUS TAPS		
HB Mine Industrial	Intrepid Industrial Water	N/A	VARIOUS TAPS		

._____

Mesquite

Cedar Canyon

Major Source: C464 (McDonald) Sec. 13 T24S R28E Secondary Source: C-00738 (McDonald/Faulk) Sec. 12 T24S R28E

Corral Fly - South of Cedar Canyon

Major Source: C464 (McDonald) Sec. 13 T24S R28E Secondary Source: C-00738 (McDonald/Faulk) Sec. 12 T24S R28E

Cypress – North of Cedar Canyon

Major Source: Caviness B: C-501-AS2 Sec 23 T28S R15E Secondary Source: George Arnis; C-1303

Sand Dunes - new frac pond

Major Source: 128 Fresh Water Pond (Mesquite/Mosaic) – located at MM 4 on 128; 240,000 bbl pond

Secondary Source: George Arnis; C-1303

Mesa Verde – east of Sand Dunes

Major Source: 128 Fresh Water Pond (Mesquite/Mosaic) – located at MM 4 on 128; 240,000 bbl pond

Secondary Source: Unknown at this time; needs coordinates to determine secondary source

Smokey Bits/Ivore/Misty - had posiden tanks before

Major Source: Unknown at this time; need coordinates to determine major source Secondary Source: Unknown at this time; needs coordinates to determine secondary source

Red Tank/Lost Tank

Major Source: Unknown at this time; need coordinates to determine major source Secondary Source: Unknown at this time; needs coordinates to determine secondary source

Peaches

Major Source: Unknown at this time; need coordinates to determine major source Secondary Source: Unknown at this time; needs coordinates to determine secondary source

Pad Site Overall Rig Layout 2 Well Pad Site

Oxy U.S.A Inc.

R	lew Mexico Staking Form
Bate Statical:	12-17-15
iese/Weil Name	MESA VERDE 18-7 Fed #4H
Legal Decorption:	280' F5L 2563 FWL Sec 18 T243 R32E
	32° 12' 39.28" NAC 83
Longitutie:	-1030 42' 52.89"
Nove Information:	
Sourchy:	Len
Seriese Owner/Tenani:	BLM
Stearest Residence:	5 miles
Nearest Water Hell:	
V-DIDT:	EAST
Read Description:	Asad into comes from
Nau Road:	
Upprote Disting Root:	
Interim Reclemation:	30' EAST SO' NORTH
Source of Caliche:	
Tap Soll:	West
Onsite Dete Performed:	10-5-15 ESSIE BASSETT BOME IN LOUR DUM
Onsite Atlendecs: //	<u>ile Wilson-Oxy SWCA Asel Surv</u> ey
Special Riotes:	

Mesa Verde Development – Surface Production Facilities ~ 02/13/2017

CTB Site

All wells will route to the Mesa Verde Unit CTB which will be composed of (3) tracts with the following dimensions: 600'x600', 200'x30', and 150'x150'.

Reference Plats:

(3) John West Surveying Company W.O. No: 16110946 Survey: 12/12/16 CAD: 1/13/17

Production Flowlines

Each well will have (2) surface laid flowlines operating at less than 75% of the MAWP of the flowline per the survey plats from the well site to the CTB following access roads.

Reference plats per well APD package

Electrical Lines

Power lines will be routed from PME to well sites and surface facilities per referenced survey plats. Reference Plats:

(1) John West Surveying Company W.O. No: 16.11.0949 Survey: 12/15/16-1/3/2017 CAD: 1/24/17

(1) John West Surveying Company W.O. No: 16111047 Survey: 1/10/17 CAD: 2/01/17

Buried Lines (General)

Mesa Verde development will have a 100' "pipeline corridor" that buried lines will be consolidated to where possible as to minimize disturbances. Pipelines within corridor are described below. Certain interconnections outside of the pipeline corridor are required but have been minimized.

Reference Plat:

(1) John West Surveying Company W.O. No: 16.11.0947 Survey: 12/13/16 CAD: 1/19/17 Rev: 2/03/17

Gas Lift Compressor Site, Suction, and Injection Lines

Wells with gas lift as their artificial lift mechanism in the Mesa Verde development will be supported by a centralized gas lift compressor station. This gas lift compressor station will be located on a 400'x200' pad in Section 18 Township 24 South Range 32 East and will be fed by a buried 20" HDPE line, laid in the pipeline corridor, from the Mesa Verde unit CTB operating at less than 125 PSIG. The discharge of the compressors will feed into (1) 6" gas injection trunk line operating < 1,500 PSIG running the length of the pipeline corridor connecting to each well pad. An access road will be required to access this pad per the associated plat.

Reference Plat:

(1) John West Surveying Company W.O. No: 16.11.0947 Survey: 12/13/16 CAD: 1/19/17 Rev: 2/03/17

(2) John West Surveying Company W.O. No: 16110948 Survey: 12/14/16 CAD: 1/13/17

(1) John West Surveying Company W.O. No: 16111041 Survey: 1/4/17 CAD: 1/13/17

Salt Water Disposal

Produced water will be pumped into (2) 16" HDPE buried lines operating at less than 300 PSIG in the pipeline corridor. This produced water line will also connect to the McCloy SWD and Bran SWD through routes outside of the pipeline corridor per the attached plats.

Reference Plats:

(1) John West Surveying Company W.O. No: 16.11.0947 Survey: 12/13/16 CAD: 1/19/17 Rev: 2/03/17

(1) John West Surveying Company W.O. No: 16110099 Survey: 2/2/16 CAD: 2/17/16

(1) John West Surveying Company W.O. No: 16110113 Survey: 2/5/16 CAD: 2/17/16

(4) John West Surveying Company W.O. No: 16110102 Survey: 2/3&4/16 CAD: 2/22/16

<u>Oil Sales</u>

Oil will be pumped into (1) 6" steel buried line operating at less than 750 PSIG in the pipeline corridor. This oil line will interconnect to the Mesa Verde oil gathering point through a route outside of the pipeline corridor per the attached plat.

Reference Plat:

(1) John West Surveying Company W.O. No: 16.11.0947 Survey: 12/13/16 CAD: 1/19/17 Rev: 2/03/17 (1) John West Surveying Company W.O. No: 16111047 Survey: 1/10/17 CAD: 2/01/17

Gas Sales

Gas will flow into (1) 20" HDPE buried line operating at less than 125 PSIG in the pipeline corridor. This gas line will interconnect to the Enlink (3rd Party Processor) tie-in point through a route outside of the pipeline corridor per the attached plat. This 20" HDPE line will also interconnect to the Sand Dunes development to provide more takeaway capacity. To allow movement of higher volumes of gas (1) 12" steel line operating less than 1,500 PSIG will also be installed along these routes.

Reference Plat:

(1) John West Surveying Company W.O. No: 16.11.0947 Survey: 12/13/16 CAD: 1/19/17 Rev: 2/03/17 (1) John West Surveying Company W.O. No: 17110042 Survey: 1/27/17 CAD: 2/1/17

CAnjelico/2016/0XY USA WC/TRACTS/16110946 600:600, 150:150 & PL Corridor for the Meso Verde CTB in Sec 18, 1245, R326