OXxy USA Inc. - Red Tank 30-31 State 24Y

1. Geologic Formations

TVD of target	10877'	Pilot Hole Depth	N/A
MD at TD:	20975'	Deepest Expected fresh	1037'
		water:	

Delaware Basin

Formation	TVD - RKB	Expected Fluids
Rustler	1037	Brine
Salado	1425	Losses
Castile	3530	
Lamar/Delaware	4889	
Bell Canyon	4916	
Cherry Canyon	5829	Water
Brushy Canyon	7366	Oil/Gas
Bone Spring	8701	Oil/Gas
1st Bone Spring	9769	Oil/Gas
2nd Bone Spring	10129	Oil/Gas

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

Buoyant Buoyant

Hole Size	Casing Interval		Csg. Size	Weight	Weight	C-1	C	SF	CE D.	Body SF	Joint SF
(in)	From (ft)	To (ft)	(in)	(lbs)	Grade	Conn.	Collapse	SF Burst	Tension	Tension	
17.5	0	1087	13.375	54.5	J55	BTC	1.125	1.2	1.4	1.4	
12.25	0	7500	9.625	43.5	HCL-80	BTC	1.125	1.2	1.4	1.4	
12.25	7500	10217	9.625	47	HCL-80	BTC	1.125	1.2	1.4	1.4	
8.5	0	20975	5.5	20	P-110	DQX	1.125	1.2	1.4	1.4	
							CEA	Johnson will	most or Ev	aaad	

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

*OXY requests the option to set casing shallower yet still below the salts if losses or hole conditions require this. Cement volumes may be adjusted if casing is set shallower and a DV tool may be run in case hole conditions merit pumping a second stage cement job to comply with permitted top of cement. If cement circulated to surface during first stage we will drop a cancelation cone and not pump the second stage.

Y or N
Y
Y
Y
Y
Y

OXxy USA Inc. - Red Tank 30-31 State 24Y

Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	IN
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	IN

3. Cementing Program

Casing	# Sks	Wt.	Yld (ft3/sack)	H20 (gal/sk)	500# Comp. Strength (hours)	Slurry Description
Surface	921	14.2	1.68	6.53	6:50	Class C Cement, Accelerator
1st Stage	540	10.2	3.05	15.63	15:07	Pozzolan Cement, Retarder
Intermediate	239	13.2	1.65	8.45	12:57	Class H Cement, Retarder, Dispersant, Salt
DV/ECP Tool	@ 4939' (W	e request the	_		cond stage if ce t operations)	ement is circulated to surface during the
2nd Stage Int	2464	12.9	1.85	9.86	12:44	Class C Cement, Accelerator, Retarder
Casing	142	14.8	1.33	6.34	6:31	Class C Cement
Production Casing	1817	13.2	1.631	8.37	15:15	Class H Cement, Retarder, Dispersant, Salt

Casing String	Top of Lead (ft)	Bottom of Lead (ft)	Top of Tail (ft)	Bottom of Tail (ft)	% Excess Lead	% Excess Tail
Surface	N/A	N/A	0	1087	N/A	100%
1st Stage Intermediate Casing	4839	9217	9217	10217	20%	20%
2nd Stage Intermediate Casing	0	4439	4439	4939	75%	20%
Production Casing	N/A	N/A	9717	20975	N/A	15%

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		· ·	Tested to:
		Annular		✓	70% of working pressure	
12.25" Hala	12.25"11.1	13-5/8" 5M	Blind R	am	✓	
12.25" Hole	13-3/8		Pipe Ra	m		250/5000==:
			Double F	Ram	1	250/5000psi
		Other*				

^{*}Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Formation integrity test will be performed per Onshore Order #2.

On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.

A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.

Y Are anchors required by manufacturer?

A multibowl or a unionized multibowl wellhead system will be employed. The wellhead and connection to the BOPE will meet all API 6A requirements. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

See attached schematics.

OXxy USA Inc. - Red Tank 30-31 State 24Y

5. Mud Program

D	epth		Weight		A company of the second	
From (ft)	To (ft)	Type (ppg)		Viscosity	Water Loss	
0	1087	Water-Based Mud	8.4-8.6	40-60	N/C	
1087	4939	Brine	9.8-10.0	35-45	N/C	
4939	10217	Water-Based Mud	8.8-9.6	38-50	N/C	
10217	20975	Oil-Based Mud	8.8-9.6	35-50	N/C	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

Oxy proposes to drill out the 13.375" surface casing shoe with a saturated brine system from 1087' - 4939', which is the base of the salt system. At this point we will swap fluid systems to a high viscosity mixed metal hydroxide system or a fully saturated brine direct emulsion system. We will drill with this system to the intermediate TD @ 10217'.

What will be used to monitor the loss or gain	PVT/MD Totco/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.
Yes	Will run GR from TD to surface (horizontal well – vertical portion of hole). Stated logs
	run will be in the Completion Report and submitted to the BLM.
No	Logs are planned based on well control or offset log information.
No	Drill stem test? If yes, explain
No	Coring? If yes, explain

Addi	tional logs planned	Interval
No	Resistivity	
No	Density	
No	CBL	
Yes	Mud log	ICP - TD
No	PEX	

7. Drilling Conditions

Condition	Specify what type and where?	
BH Pressure at deepest TVD	5430 psi	
Abnormal Temperature	No	
BH Temperature at deepest TVD	168°F	

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

vaiu	values and formations will be provided to the BLM.		
N	H2S is present		
Y	H2S Plan attached		

8. Other facets of operation

	Yes/No
 Will the well be drilled with a walking/skidding operation? If yes, describe. We plan to drill the two well pad in batch by section: all surface sections, intermediate sections and production sections. The wellhead will be secured with a night cap whenever the rig is not over the well. 	Yes
 Will more than one drilling rig be used for drilling operations? If yes, describe. Oxy requests the option to contract a Surface Rig to drill, set surface casing, and cement for this well. If the timing between rigs is such that Oxy would not be able to preset surface, the Primary Rig will MIRU and drill the well in its entirety per the APD. Please see the attached document for information on the spudder rig. 	

Total estimated cuttings volume: 2409.4 bbls.

9. Company Personnel

Name	Title	Office Phone	Mobile Phone
Philippe Haffner	Drilling Engineer	713-985-6379	832-767-9047
Diego Tellez	Drilling Engineer Supervisor	713-350-4602	713-303-4932
Simon Benavides	Drilling Superintendent	713-522-8652	281-684-6897
John Willis	Drilling Manager	713-366-5556	713-259-1417