1. Component and Preventer Compatibility Table

The table below, which covers the drilling and casing of the 10M MASP portion of the well, outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Component	OD	Preventer	RWP
Drillpipe	4.5"	Fixed lower 4.5"	10M
		Upper 3.5-5.5" VBR	
HWDP	4.5"	Fixed lower 4.5"	10M
		Upper 3.5-5.5" VBR	
Drill collars and MWD tools	4.75"	Upper 3.5-5.5" VBR	10M
Mud Motor	4.75"	Upper 3.5-5.5" VBR	10M
Production casing	5.5"	Upper 3.5-5.5" VBR	10M
ALL	0-13-5/8"	Annular	5M
Open-hole	-	Blind Rams	10M

6-3/4" Production hole section, 10M requirement

VBR = Variable Bore Ram. Compatible range listed in chart.

2. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. The pressure at which control is swapped from the annular to another compatible ram is variable, but the operator will document in the submission their operating pressure limit. The operator may chose an operating pressure less than or equal to RWP, but in no case will it exceed the RWP of the annular preventer.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram.

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram.

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to compatible pipe ram.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams or BSR. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

2 Drilling Plan

General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drillpipe thru the stack.
 - a. Perform flowcheck, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper pipe ram.
 - e. Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the compatible pipe ram.
 - d. Shut-in using compatible pipe ram. (HCR and choke will already be in the closed position.)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
 - c. If impossible to pick up high enough to pull the string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper pipe ram.
 - f. Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

1. Geologic Formations

TVD of target	12,941'	Pilot hole depth	N/A
MD at TD:	22,868'	Deepest expected fresh water:	746'

Basin

.

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Rustler	976		
Top of Salt	1348		
Base of Salt	5138		
Delaware	5138		
Lower Brushy Canyon	9136		
1st BSPG Lime	9299		
1st BSPG Sand	10248		
2nd BSPG Lime	10495		
2nd BSPG Sand	10796		
3rd BSPG Lime	11257		
3rd BSPG Sand	11880		
Wolfcamp	12332		
Wolfcamp X	12358		
Wolfcamp Y	12436		
Wolfcamp 110	12512		
Wolfcamp 120	12633		
Wolfcamp 130	12728		
Wolfcamp 200	12847		
Wolfcamp 300	13214		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

Devon Energy, Seawolf 1-12 102H

2. Casing Program

Hole	Casin	g Interval	Csg.	Weight	Weight Grade		SF	SF	SF
Size	From	То	Size	(lbs)			Collapse	Bur st	Tension
6.75"	0	12,405'	5.5"	20	P110	Vam Top HT	1.125	1.25	1.6
6.75"	12,405'	23,274'	5.5"	20	P110	Vam SG	1.125	1.25	1.6

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.

A variance is requested to wave the centralizer requirement for 5-1/2" SF/Flush casing in the 6-3/4" hole.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3.	Ceme	enting	Program
----	------	--------	---------

Casing	# Sks	Wt. lb/ gal	H ₂ 0 gal/sk	Yld ft3/ sack	Slurry Description
5-1/2" Producti on	852	14.8	6.32	1.33	Tail: Class C Cement + 0.125 lbs/sack Poly-E-Flake

If a DV tool is used, depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	% Excess
5-1/2" Production Casing	12,405'	25%

4. Pressure Control Equipment

N A variance is requested for the use of a diverter on the surface casing. See attached for schematic.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Т	уре	-	Tested to:
			Annu	lar (5M)	X	50% of rated working pressure
		×	Blin	d Ram	X	<u>^</u>
6-3/4"	13-5/8"	10M	Pip	e Ram	X	
			Dout	ole Ram	X	10M
			Other *			
			Ar	nular	-	
			Blin	ld Ram		
			Pip	e Ram		
			Doub	ole Ram		
			Other *			

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a

higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Y	Formation integrity test will be performed per Onshore Order #2.
	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or
	greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in
	accordance with Onshore Oil and Gas Order #2 III.B.1.i.
	A variance is requested for the use of a flexible choke line from the BOP to Choke
Y	Manifold. See attached for specs and hydrostatic test chart.
	Y Are anchors required by manufacturer?
Y	A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after
	installation on the surface casing which will cover testing requirements for a maximum of
	30 days. If any seal subject to test pressure is broken the system must be tested.
	Devon proposes using a multi-bowl wellhead assembly. This assembly will only be tested
	when installed on the surface casing. Minimum working pressure of the blowout
	preventer (BOP) and related equipment (BOPE) required for drilling below the surface
	casing shoe shall be 5000 (5M) psi.
	• Wellhead will be installed by wellhead representatives.
	• If the welding is performed by a third party, the wellhead representative will
	monitor the temperature to verify that it does not exceed the maximum
• •	temperature of the seal.
	• Wellhead representative will install the test plug for the initial BOP test.
	• Wellhead company will install a solid steel body pack-off to completely isolate
	the lower head after cementing intermediate casing. After installation of the pack-
	off, the pack-off and the lower flange will be tested to 3M, as shown on the
	attached schematic. Everything above the pack-off will not have been altered
	whatsoever from the initial nipple up. Therefore the BOP components will not be
	retested at that time.
1	• If the cement does not circulate and one inch operations would have been possible
	with a standard wellhead, the well head will be cut and top out operations will be
	conducted.
	• Devon will pressure test all seals above and below the mandrel (but still above the
	casing) to full working pressure rating.
	• Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per
	Onshore Order #?
	After running the 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum
1	rating of 5M will be installed on the wellhead system and will undergo a 250 psi low
	pressure test followed by a 5 000 psi high pressure test. The 5 000 psi high and 250 psi
	pressure test followed by a 5,000 psi high pressure test. The 5,000 psi high and 250 psi

low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

13-5/8" BOP/BOPE system will have been tested to 10M rating prior to drilling out 7 5/8" casing.

The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 3,000 psi WP.

Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.

Devon requests a variance to use a flexible line with flanged ends between the BOP and the choke manifold (choke line). The line will be kept as straight as possible with minimal turns.

5. Mud Program

	Depth	Туре	Weight (ppg)	Viscosity	Water Loss	
From	То					
12,605'	22,868'	Oil Based Mud	9.5-12	45-65	N/C - 6	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	PVT/Pason/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logging, Coring and Testing.				
X	Will run GR/CNL fromTD to surface (horizontal well - vertical portion of hole). Stated			
	logs run will be in the Completion Report and submitted to the BLM.			
	No Logs are planned based on well control or offset log information.			

Devon Energy, Seawolf 1-12 102H

	Drill stem test? If yes, explain	
×	Coring? If yes, explain	

Additional logs planned		Interval
	Resistivity Int. shoe to KOP	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	7200 psi
Abnormal Temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

NH2S is presentYH2S Plan attached

Attachments

x Directional Plan

Other, describe