Form 3160-3 (March 2012)

HOBBS O

FORM APPROVED OMB No. 1004-0137 Expires October 31, 2014

UNITED STATES DEPARTMENT OF THE INTERIOR **BUREAU OF LAND MANAGEMENT**

JAN 0 3 2018

Lease Serial No.

NMNM27506

APPLICATION FOR PERMIT TO	DRILL OR REPUTER		6. If Indian, Allotee	or Tribe Name
la. Type of work: DRILL REENTI			7 If Unit or CA Agree	ement, Name and No.
lb. Type of Well: Oil Well Gas Well Other	Single Zone Mul	tiple Zone	8. Lease Name and V SD EA 29 32 FED 0	
Name of Operator CHEVRON USA INCORPORATED	4323)		9. API Well No.	44336
3a. Address 6301 Deauville Blvd. Midland TX 79706	3b. Phone No. (include area code) (432)687-7866		10. Field and Pool, or E WC025G09S26332	exploratory 7807 27G / UPPER WOLFC
 Location of Well (Report location clearly and in accordance with an At surface NWNW / 195 FNL / 903 FWL / LAT 32.02122 At proposed prod. zone LOT 3 / 180 FSL / 1590 FWL / LAT 	26 / LONG -103.599893	642	11. Sec., T. R. M. or B	•
14. Distance in miles and direction from nearest town or post office* 33 miles			12. County or Parish LEA	13. State
15. Distance from proposed* location to nearest 330 feet property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No. of acres in lease 1517.74	17 Spacin 237.37	g Unit dedicated to this v	vell
18. Distance from proposed location* to nearest well, drilling, completed, 813 feet applied for, on this lease, ft.	19. Proposed Depth 12523 feet / 23000 feet	20. BLM/I	BIA Bond No. on file	
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3215 feet	22. Approximate date work will s 10/15/2018	tart*	23. Estimated duration 120 days	1 .
	24. Attachments			
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office). 	Lands, the ltem 20 above 5. Operator certis). fication	ormation and/or plans as	may be required by the
25. Signature (Electronic Submission)	Name (Printed/Typed) Denise Pinkerton / Ph:	(432)687-7	375	Date 07/13/2017
Title Regulatory Specialist	,			
Approved by (Signature) (Electronic Submission)	Name (Printed/Typed) Bobby Ballard / Ph: (57	5)234-2235	5	Date 12/20/2017
Title Natural Resource Specialist	Office CARLSBAD			
Application approval does not warrant or certify that the applicant hold conduct operations thereon. Conditions of approval, if any, are attached.	ls legal or equitable title to those rig	ghts in the sub	jectlease which would e	ntitle the applicant to
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a c States any false, fictitious or fraudulent statements or representations as	rime for any person knowingly and to any matter within its jurisdiction.	willfully to n	nake to any department o	r agency of the United
	IND WITH CONDITION OF THE PROPERTY OF THE PROP	IONS		ructions on page 2) 118 QUIRE NSV A SANTA PR

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Approval Date: 12/20/2017

Additional Operator Remarks

Location of Well

1. SHL: NWNW / 195 FNL / 903 FWL / TWSP: 26S / RANGE: 33E / SECTION: 29 / LAT: 32.021226 / LONG: -103.599893 (TVD: 0 feet, MD: 0 feet)

PPP: NWNW / 330 FNL / 1590 FWL / TWSP: 26S / RANGE: 33E / SECTION: 29 / LAT: 32.020855 / LONG: -103.597676 (TVD: 12140 feet, MD: 12140 feet)

BHL: LOT 3 / 180 FSL / 1590 FWL / TWSP: 26S / RANGE: 33E / SECTION: 32 / LAT: 32.000738 / LONG: -103.597642 (TVD: 12523 feet, MD: 23000 feet)

BLM Point of Contact

Name: Judith Yeager

Title: Legal Instruments Examiner

Phone: 5752345936 Email: jyeager@blm.gov

(Form 3160-3, page 3)

Approval Date: 12/20/2017

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

Approval Date: 12/20/2017

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Denise Pinkerton Signed on: 07/13/2017

Title: Regulatory Specialist

Street Address: 6301 Deauville Blvd

City: Midland State: TX Zip: 79706

Phone: (432)687-7375

Representative Name:

Email address: leakejd@chevron.com

Field Representative

City:	State:	Zip:
Street Address:		

Phone:

Email address:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

APD ID: 10400016188

Submission Date: 07/13/2017

Highlighted data reflects the most

Operator Name: CHEVRON USA INCORPORATED

Well Number: 16H

reflects the most recent changes

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

APD ID:

10400016188

Tie to previous NOS?

Submission Date: 07/13/2017

BLM Office: CARLSBAD

User: Denise Pinkerton

Title: Regulatory Specialist

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM27506

Lease Acres: 1517.74

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? NO

APD Operator: CHEVRON USA INCORPORATED

Operator letter of designation:

Operator Info

Operator Organization Name: CHEVRON USA INCORPORATED

Operator Address: 6301 Deauville Blvd.

Operator PO Box:

Zip: 79706

Operator City: Midland

State: TX

Operator Phone: (432)687-7866

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Mater Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name:

Pool Name: UPPER

WC025G09S263327G

WOLFCAMP

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Describe other minerals:

Is the proposed well in a Helium production area? N. Use Existing Well Pad? NO New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name: SD EA Number: 13 14 15 16

29 32 FED COM P11 Number of Legs: 1

Well Class: HORIZONTAL

Well Work Type: Drill

Well Type: OIL WELL

Describe Well Type: Well sub-Type: INFILL

Describe sub-type:

Distance to town: 33 Miles

Distance to nearest well: 813 FT

Distance to lease line: 330 FT

Reservoir well spacing assigned acres Measurement: 237.37 Acres

Well plat:

SD_EA_29_32_Fed_Com_P11_16H_Well_Plat_07-13-2017.pdf

SD_EA_29_32_P11_16H_C102_07-13-2017.pdf

Well work start Date: 10/15/2018

Duration: 120 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number:

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	ΟW	TVD
SHL Leg #1	195	FNL	903	FWL	26\$	33E	29	Aliquot NWN W	32.02122 6	- 103.5998 93	LEA	l	NEW MEXI CO	ı	NMNM 27506	321 5	0	0
KOP Leg #1	195	FNL	903	FWL	26S	33E	29	Aliquot NWN W	32.02122 6	- 103.5998 93	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 27506	321 5	0 .	0
PPP Leg #1	330	FNL	159 0	FWL	26S _.	33E	29	Aliquot NWN W	32.02085 5	- 103.5976 76	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 27506	- 892 5	121 40	121 40

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	dvī
EXIT	330	FSL	159	FWL	26S	33E	32	Lot	32.00114	-	LEA	l .		s	STATE	-	121	121
Leg			0			l'		3	9	103.5976		MEXI				892	40	40
#1										43		СО	СО			5		
BHL	180	FSL	159	FWL	26S	33E	32	Lot	32.00073	-	LEA	NEW	NEW	s	STATE	 -	230	125
Leg			0					3	8	103.5976		MEXI	ŀ			930	00	23
#1						[[42		co	co			8		

Well Name: SD EA 29 32 FED COM P11 Well Number: 16H

needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal. ALSO, REQUEST VARIANCE for Flex Choke Hose to be used for all wells on the pad. (See attached spec).

Testing Procedure: Stack will be tested as specified in the attached testing requirements. Full BOP test will be performed unless approval from BLM is received otherwise. BOP test will be conducted by a 3rd party. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test info will be provided in a subsequent report at the end of the well. Installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

Choke Diagram Attachment:

Choke_hose_Spec_X30_20170918110459.pdf 1684_001_20170918110518.pdf

BOP Diagram Attachment:

10M_BOP_Choke_Schematics_BLM_new_20170918110531.pdf UH_2_10K_20170918110544.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	800	0	800	-9308	- 10108		J-55	55	STC	3.12	1.36	DRY	3.17	DRY .	1.7
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	11500	0	11500	-9308	- 20808	11500	HCL -80	43.5	LTC	1.44	1.12	DRY	1.93	DRY	1.37
3	LINER	8.5	7.625	NEW	API	N	10850	12300	10850	- 12300		-	1450	HCP -110		OTHER - H513	5.36	1.69	DRY _.	2.5	DRY	2.09
4	PRODUCTI ON	6.75	5.5	NEW	API	N	0	12500	0	- 12500	-9308	- 32308	12500	P- 110	20	OTHER - TXP BTC	1.23	1.11	DRY	1.97	DRY	1.37
5	PRODUCTI ON	6.75	5.0	NEW	API	Y	12500	23000	12500	- 23000			10500	P- 110	18	OTHER - TSH521	1.23	1.11	DRY	1.97	DRY	1.37

Casing Attachments

Operator Name: CHEVRON USA INCORPORATED Well Name: SD EA 29 32 FED COM P11 Well Number: 16H **Casing Attachments** Casing ID: 1 String Type: SURFACE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): SD_EA_29_32_P11_16H_9_PT_PLAN_20170918110715.pdf Casing ID: 2 String Type: INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): SD_EA_29_32_P11_16H_9_PT_PLAN_20170918111205.pdf 9.625_43.5lb_L80IC_LTC_20170918111226.pdf Casing ID: 3 String Type: LINER **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s):

7.625_Casing_Liner_20170918112834.pdf

SD_EA_29_32_P11_16H_9_PT_PLAN_20170918112849.pdf

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Casing Attachments

Casing ID: 4

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

SPECIAL_CSG_1_07-13-2017.pdf SPECIAL_CASING_07-13-2017.pdf TENARIS SPEC CSG 07-13-2017.pdf SD_EA_29_32_P11_16H_9_PT_PLAN_07-13-2017.pdf

Casing Design Assumptions and Worksheet(s):

TenarisXP_BTC_5.500_20_P110_ICY_20170918111753.PDF SD_EA_29_32_P11_16H_9_PT_PLAN_20170918111808.pdf

Casing ID: 5

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

5_INCH_18LB_P110_ICY_90PERCENT_RBW_521_20170918111959.pdf SD_EA_29_32_P11_16H_9_PT_PLAN_20170918112026.pdf 5_INCH_18LB_P110_IC_521_20170918111946.pdf

5_INCH_18LB_P110_ICY_90PERCENT_RBW_TXP_20170918112009.PDF

Casing Design Assumptions and Worksheet(s):

SD EA 29 32 P11 16H 9 PT PLAN 20170918112137.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	800	650	1.33	14.8	6.57	50	CLASS C	NONE

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Lead	4870	0	4570	1070	2.39	11.9	13.46	100	CLASS C	NONE
INTERMEDIATE	Tail		4570	4870	89	1.33	14.8	6.35	25	CLASS C	NONE
INTERMEDIATE	Lead	4870	4870	1065 0	1024	2.21	11.9	12.18	25	50:50 POZ CLASS C	50/50 POZ CL H, ANTIFOAM, EXTENDER, SALT, RETARDER
INTERMEDIATE	Tail		1065 0	1115 0	184	1.22	15.6	5.37	25	CLASS H	CL H RETARDER DISPERSANT
LINER	Lead		1085 0	1230 0	123	1.22	15.6	5.34	17	CLASS H	NONE

PRODUCTION	Lead	1035	2300	1300	1.2	15,6	5.05	10	ACID SOLUBLE	CL H VISCOSIFIER
,		0	0							ANTIFOAM
				ļ			1			DISPERSANT FLUID
							ļ			LOSS RETARDER,
										EXPANDING AGENT

PRODUCTION	Lead		1035	2300	1300	1.2	15.6	5.05	10	ACID SOLUBLE	NONE
			0	0							

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: a closed system will be utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical port-toilet and then hauled to an approved sanitary landfill. all fluids and cuttings will be disposed of in accordance with NMOCD regulations.

Describe the mud monitoring system utilized: a mud test shall be performed every 24 hours after mudding up to determine as applicable density viscosity, gel strength, filtration, and pH. Visual Mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated a PVT, Stroke counter, flow sensor, will be used to detect volume changes indicating loss or gain of circulating fluid volume

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1115 0	1230 0	OIL-BASED MUD	9.5	13.5							
0	800	SPUD MUD	8.3	8.7			,				
800	1115 0	OIL-BASED MUD	8.7	9.2							
1230	2300	OIL-BASED MUD	12	15							the mud weights will range depending on the targeted formation. a weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate. To control pressure we are using 11.0 and may end up using heavier mud weight 13.0-14.0.

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

drill stem tests are not planned the logging program attached to 9PT Plan List of open and cased hole logs run in the well:

CBL,GR,MWD

Coring operation description for the well:

conventional whole core samples are not planned a direction survey will be run

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 9768

Anticipated Surface Pressure: 7012.94

Anticipated Bottom Hole Temperature(F): 150

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

SD_EA_29_32_Fed_Com_P11_H2S_07-12-2017.pdf

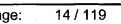
Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

SD_EA_29_32_P11_16H_PLOT_07-13-2017.pdf SD_EA_29_32_P11_16H_DIREC_SURV_07-13-2017.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:


Gas_Capture_Plan_Form_Pad_11_20170918113154.pdf

Other Variance attachment:

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 231/ 2014

Page:

ContiTech

Hose Data Sheet

CRI Order No.	538332
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500412631 CBC544771, CBC544769, CBC544767, CBC544763, CBC544768, CBC544745, CBC544744, CBC544746
Item No.	1
Hose Type	Flexible Hose
Standard [′]	API SPEC 16 C
Inside dia in inches	3
Length	45 ft
Type of coupling one end	FLANGE 4.1/16" 10KPSI API SPEC 17D SV SWIVEL FLANGE SOURC/W BX155 ST/ST INLAID R.GR.
Type of coupling other end	FLANGE 4.1/16" 10KPSI API SPEC 17D SV SWIVEL FLANGE SOUR C/W BX155 ST/ST INLAID R.GR.
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL + GAS RESISTANT SOUR
Safety clamp	Yes
Lifting collar	Yes
Element C	Yes
Safety chain	Yes
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

Printed: TIRETECH2\\BacsaL - 2014.03.27 16:50:38

Ontinental

ContiTech

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 231/ 2014

Page:

10 / 119

QUAL INSPECTION	ITY CONT AND TEST		ATE	CERT. 1	V° :	594	
PURCHASER:	ContiTech C	Oil & Marine Co	orp.	P.O. N°:		4500412631	
CONTITECH ORDER N°:	538332	HOSE TYPE:	3" ID	l.	Choke &	k Kill Hose	
HOSE SERIAL Nº:	67349	NOMINAL / ACT	TUAL LENGTH:		13,72 m	n / 13,85 m	
W.P. 68,9 MPa	10000 psi	T.P. 103,4	MPa 1500)() psi	Duration:	60	min.
Pressure test with water at ambient temperature							İ
↑ 10 mm = 10 Mii → 10 mm = 25 MF		See attachi	ment. (1 pa	ge)			
COUPLINGS Ty	/ре	Serial	N°	Q	uality	Heat No	
3" coupling wit		1435	1436		SI 4130	A1258L	J
4 1/16" 10K API Swivel	Flange end				14130	034939	
Not Designed For	Wall Testing	· · · · · · · · · · · · · · · · · · ·	L	AIS	SI 4130	A1045N PI Spec 16 C	
Tag No.: 66 – 1198 All metal parts are flawless	•	9				perature rate	
WE CERTIFY THAT THE ABOV					H THE TERM	S OF THE ORDER	
STATEMENT OF CONFORM conditions and specifications accordance with the referenced	ITY: We hereby of of the above Purc	ertify that the above haser Order and the	e items/equipmen at these items/eq	t supplied uipment we	ere fabricated	inspected and teste	d in
Date:	Inspector		Quality Contro	Cont	tiTech Rubb dustrial Kft. ty Control De		//

ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE

No: 594, 596, 597

Page: 1/1

-	00000 00000 00:30		Industrial Kit. Quality Control Dept.
FAIT 20-11 EL 1805 Lot	965 9 667 9	1	(1)
OMA (15/ 68/ 90 ROT (26,7/ 90 1 BL +105 (bar	2013 4 100 2013 4 100 2013 4 100		
GN4 (19.8) 9C RD4 (20.7) 9C St. (1856) bor	0 3400 0 3 4 50 110 : 30		11 1
GNA +19.85 90 RO4 +20.76 90 BL +1057 box	231-0 231-0 231-0		1:
GN: 19.80 °C 80: 120.7: °C BL 1859 box	9		: }
GNr 119.8 20 RDr 20.7 20 8. 1862 bar	20:15 20:19 12:19		1:
GNr (19.8% °C ROr (20.7% °C BL (1868) bar	등 위 3 (이 실명: 결정:	()	
		!	
92. 910 28140 22140 57341-6730 (773)	30 60	70 EO	90 100
	,,		, ,

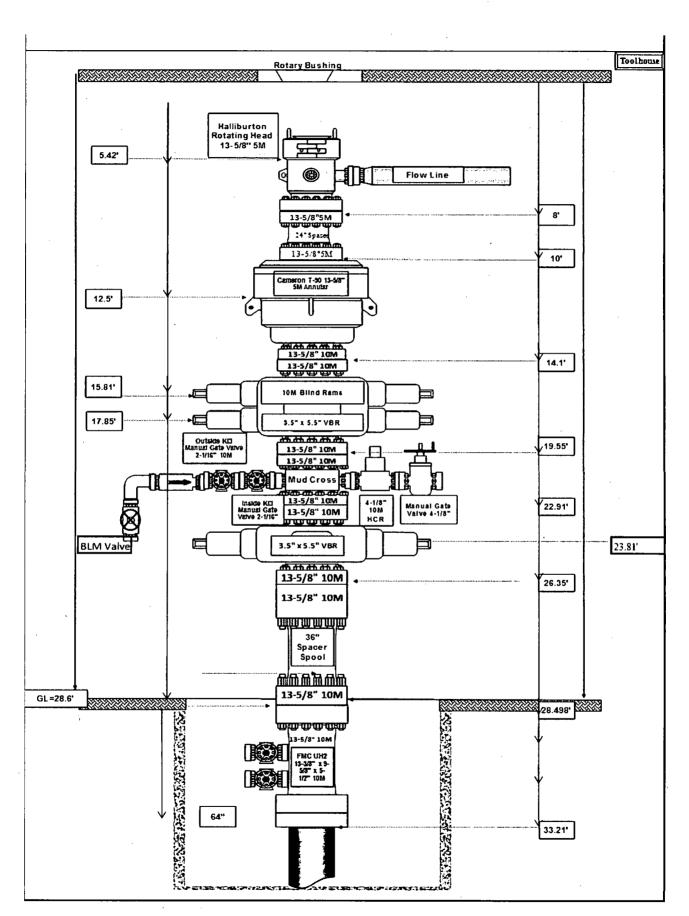
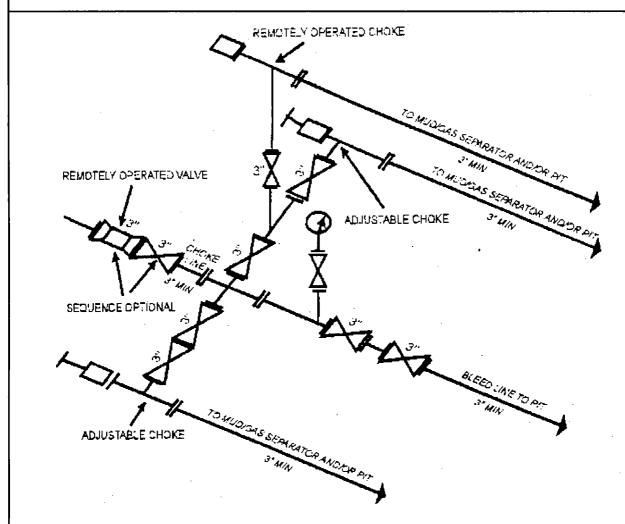
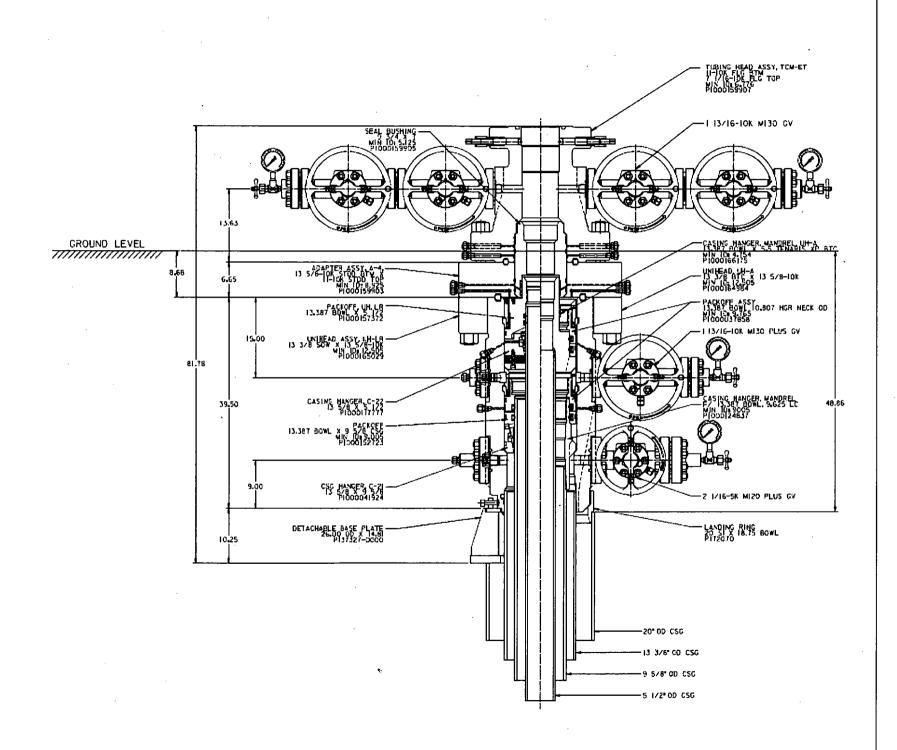


Diagram A


CHOKE MANIFOLD SCHEMATIC **Minimum Requirements OPERATION**: Wolfcamp A wells Minimum System 10,000 psi **Pressure Rating Choke Manifold** DESCRIPTION PRESSURE SIZE 10,000 psi | Panic Line Valves Mud Pit **Cuttings Pit** Flow Line from bell 10,000 psi 1 3* Valves on Choke Lines nipple Shale Slide Shaker Remotely **Mud Gas** Operated Separator Choke Flare Line (if separator is used) 3" Choke Line from BOP 3" Panic Line Open Top Valve and Pit Guage fit for drilling fluid service Adjustable Choke Line to trip tank **Installation Checklist** The following item must be verified and checked off prior to pressure testing of BOP equipment. The installed BOP equipment meets at least the minimum requirements (rating, type, size, configuration) as shown on this schematic. Components may be substituted for equivalent equipment rated to higher pressures. Additional components may be put into place as long as they meet or exceed the minimum pressure rating of the system. Adjustable Chokes may be Remotely Operated but will have backup hand pump for hydraulic actuation in case of loss of rig air pressure or power. Flare and Panic lines will terminate a minimum of 150' from the wellhead. These lines will terminate at a location as per approved APD. The choke line, kill line, and choke manifold lines will be straight unless turns use tee blocks or are targeted with running tess, and will be anchored to provent whip and reduce vibration. This excludes the line between mud gas separator and shale shaker. All valves (except chokes) on choke line, kill line, and choke manifold will be full opening and will allow straight through flow. This excludes any valves between mud gas separator and shale shakers. All manual valves will have hand wheels installed. If used, flare system will have effective method for ignition All connections will be flanged, welded, or clamped (no threaded connections like hammer unions) If buffer tank is used, a valve will be used on all lines at any entry or exit point to or from the buffer tank. After Installation Checklist is complete, fill out the Information below and omail to Superintendent and Drilling Engineer Wellname: Representative: Date:

10M BLOWOUT PREVENTER SCHEMATIC Minimum Requirements **OPERATION:** Wolfcamp Wells in Salado Draw Minimum System Pressure Rating: 10,000 PSI Flowline to Shaker Fill-Up Line Annular **BLIND RAMS** PIPE RAMS Kill Line - 2" Minimum e to Choke Manifold - 3" min Mud Cross HCR PIPE RAMS


10M Choke Manifold SCHEMATIC

Minimum Requirements

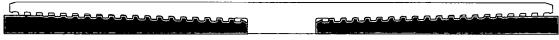
OPERATION: Production and Open Hole Sections **Minimum System Pressure Rating:** 10,000 PSI

10M AND 15M CHOKE MANIFOLD EQUIPMENT - CONFIGURATION OF CHOKES MAY VARY [53 FR 49661, Dec. 9, 1988 and 54 FR 39528, Sept. 27, 1989]

TH DS-16.0372 23 August 2016 Rev 00

5.000" 18.00 lb/ft P110-ICY TenarisHydril Wedge 521®

and the second	Carrier Salarina de como de Carrier de Carri				
		PIPE BOI	DY DATA	_	
···		GEON		.,,	
Nominal OD	5.000 in.	Nominal Weight	18.00 lbs/ft	Standard Drift Diameter	4.151 in.
Nominal ID	4.276 in.	Wall Thickness	0.362 in.	Special Drift Diameter	: N/A
Plain End Weight	17.95 lbs/ft			1	
		PERFOR	MANCE		
Body Yield Strength	659 x 1000 lbs	Internal Yield¹	16290 psi	Collapse	14840 psi
		CONNECT	ION DATA		
		GEON	METRY		
Box OD (Turned)	5.359 in.	Pin ID (Bored)	4.226 in.	Make-Up Loss	`3.62 in.
Critical Section Area	3.891 sq. in.	Threads per in.	3.36		ALL ALLES OF THE STREET OF THE
		PERFOR	MANCE	· · · · · · · · · · · · · · · · · · ·	
Tension Efficiency	73.8 %	Joint Yield Strength	486 x 1000 lbs	Internal Yield¹	16290 psi
Compression Efficiency	88.7 %	Compression Rating	585 x 1000 lbs	Collapse	14840 psi
Bending	85°/100 ft	İ		1	
		MAKE-UP	TORQUES		
Minimum	6100 ft-lbs	Optimum	7300 ft-lbs	Maximum*	10700 ft-lbs
		OPERATIONAL	LIMIT TORQUES		
Operational	20000 ft-lbs			Yield Torque	30000 ft-lbs


^{*}If you need to use torque values that are higher than the maximum indicated, please contact a local Tenaris technical sales representative

^{1.} Internal Yield Rating is based on 90% RBW.

TH DS-16.0370 11 ago 16 Rev 00

5" 18.00 ppf P110-ICY - TenarisXP® BTC (min wt 90%) (USC Units)

		PIPE BOD			
The second secon		GEOM	ETRY		- Andrewson of the state of the
Nominal OD	5.000 in.	Nominal Weight	18.00 lbs/ft	Standard Drift Diameter	4.151 in.
Nominal ID	4.276 in.	Wall Thickness	0.362 in.	Special Drift Diameter	-
Plain End Weight	17.95 lbs/ft				
		PERFORM	JANCE		
Body Yield Strength	659 x 1000 lbs	Internal Yield (4)	16290 psi	Collapse	14840 psi
	-	CONNECTION	ON DATA		
Regular OD	5.720 in.	Coupling Length	9.325 in.	Connection ID	4.264 in.
Critical Section Area	5.275 sq. in.	Threads per in.	.5	Make-Up Loss	4.141 in.
		PERFORM	MANCE		
Tension Efficiency	100.0 %	Joint Yield Strength	659 x 1000 lbs	Internal Pressure Capacity (1) (4)	16290 psi
Structural Compression Efficiency	100.0 %	Structural Compression Rating	659 x 1000 lbs	External Pressure Capacity	14840 psi
Structural Bending ⁽²⁾	115°/100 ft				
		MAKE-UP TO	ORQUES ⁽³⁾		,
Minimum	11480 ft-lbs	Target	Target 12750 ft-lbs M		14030 ft-lbs
Operating Torque	15800 ft-lbs	Yield Torque	17700 ft-lbs		

⁽¹⁾ Internal Yield pressure related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 - 2007.

⁽²⁾ Structural rating, pure bending to yield (i.e no other loads applied)

⁽³⁾ Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at licensees@oilfield.tenaris.com.

⁽⁴⁾ Minimum wall thickness 90% of nominal

January 18 2016 -

Size: 5.500 in.

Wall: 0.361 in.

Weight: 20.00 lbs/ft Grade: P110-ICY

Min. Wall Thickness: 87.5 %

Connection: TenarisXP® BTC

Casing/Tubing: CAS

Coupling Option: REGULAR

		GEOMET	IKY	•	
lominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
Plain End Weight	19.83 lbs/ft				
-		PERFORM	ANCE		
Body Yield Strength	729 x 1000 lbs	Internal Yield	14360 psi	SMYS	125000 psi
Collapse	12100 psi			_	
	TEI			AIA	
Connection OD	6 100 in	T	 	Connection ID	4.766 in.
	0.100 III.	Coupling Length	9.430 m.	Connection 1D	4.700 III.
Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
		PERFORM	ANCE	<u> </u>	
ension Efficiency	100 %	Joint Yield Strength	729 x 1000	Internal Pressure Capacity $^{(\underline{1})}$	14360 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	729 x 1000 lbs	Structural Bending ⁽²⁾	104 °/100
external Pressure	12100 psi				
	E	STIMATED MAKE-L	JP TORQUES	3)	
1inimum	11540 ft-lbs	Optimum	12820 ft-lbs	Maximum	14100 ft-lb
•		ÓPERATIONAL LI	MIT TORQUES	5	
perating Torque	22700 ft-lbs	Yield Torque	25250 ft-lbs		
		BLANKING DI	MENSIONS		
	lain End Weight lody Yield litrength collapse Connection OD critical Section litrea fension Efficiency litructural compression fficiency external Pressure capacity linimum	lain End Weight 19.83 lbs/ft rody Yield 729 x 1000 lbs 12100 psi TER Connection OD 6.100 in. Critical Section 100 % Gension Efficiency 100 % Compression 100 % Citructural Compression 100 % Citructural Pressure Capacity 12100 psi Capacity Efficiency 1540 ft-lbs	PERFORM Front Structural Formula Personn Formu	PERFORMANCE Tody Yield Strength TENARISXP® BTC CONNECTION D GEOMETRY Connection OD Stritical Section Trea Tenal Yield Coupling Length Threads per in. T	Special Drift Diameter

- (1) Internal Pressure Capacity related to structural resistance only, Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 2007.
- (2) Structural rating, pure bending to yield (i.e no other loads applied)
- (3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at licensees@oilfield.tenaris.com. Torque values may be further reviewed. For additional information, please contact us at contact-tenarishydril@tenaris.com

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

1

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Rustler		800	
Castile		3480	
Lamar		4900	
Bell Canyon		4930	
Cherry Canyon		5970	
Brushy Canyon		7620	
Bone Spring Limestone		9090	
Upr. Avalon		9120	
Top Bone Spring 1		10040	
Top Bone Spring 2		10700	
Top Bone Spring 3		11740	
Wolfcamp		12140	
Wolfcamp A1		12193	
Wolfcamp A2	,	12,523	
Lateral TD (Wolfcamp A2)		12,523	23000

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest Exp	700	
Water	Rustler	800
Water	Bell Canyon	4930
Water	Cherry Canyon	5970
Oil/Gas	Brushy Canyon	7620
Oil/Gas	Bone Spring Limestone	9090
Oil/Gas	Upr. Avalon	9120
Oil/Gas	Top Bone Spring 1	10040
Oil/Gas	Top Bone Spring 2	10700
Oil/Gas	Top Bone Spring 3	. 11740
Oil/Gas	Wolfcamp	12140
Oil/Gas	Wolfcamp A1	12193
Oil/Gas	Wolfcamp A2	12,523

All shows of fresh water and minerals will be reported and protected.

3. BOP EQUIPMENT

Will have a minimum of a 5000 psi rig stack (see proposed schematic) for drill out below surface casing. Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

ONSHORE ORDER NO. 1 Chevron SD EA 29/32 Fed Com P11 16H Lea County, NM CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

2

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	800'	17-1/2"	13-3/8"	55 #	J55	STC	New
Intermediate	0'	11,500'	12-1/4"	9-5/8"	43.5#	HCK-L80	LTC	New
, Liner	10,850'	12,300'	8-1/2"	7-5/8"	29.7 #	HCP-110	H513	New
Production	0'	12,500'	6-3/4"	5.5"	20#	P-110-ICY	TXP BTC	New
(Taper String)	12,500'	23,000'	6-3/4"	5"	18#	P-110 IC	TSH521	New

- b. Casing design subject to revision based on geologic conditions encountered.
- c. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalcuated & sent to the BLM prior to drilling.
- d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based on the following "Worst Case" casing design:

Surface Casing:

850'

Intermediate Casing:

11,200' TVD

Production Casing:

23,000' MD/12,750' TVD (10,300' VS @ 90 deg inc)

Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.36	3.12	3.17	1.70
Intermediate	1.12	1.44	1.93	1.37
Liner	1.69	5.36	2.50	2.09
Production	1.11	1.23	1.97	1.37

Min SF is the smallest of a group of safety factors that include the following considerations:

•	Surf	Int	Liner	Prod
Burst Design				
Pressure Test- Surface, Int, Prod Csg		X	X	X
P external: Water				1
P internal: Test psi + next section heaviest mud in csg				
Displace to Gas- Surf Csg	X .			
P external: Water	· •			
P internal: Dry Gas from Next Csg Point				
Frac at Shoe, Gas to Surf- Int Csg		×	X	
P external: Water .				
P internal: Dry Gas, 13 ppg Frac Gradient				
Stimulation (Frac) Pressures- Prod Csg				X
P external: Water				
P internal: Max inj pressure w/ heaviest injected fluid		j		
Tubing leak- Prod Csg (packer at KOP)				X
P external: Water		,		
P internal: Leak just below surf, 8.7 ppg packer fluid				
Collapse Design				
Full Evacuation	X	X	X	X
P external: Water gradient in cement, mud above TOC				
P internal: none				
Cementing- Surf, Int, Prod Csg	Х	X	X	X
P external: Wet cement				ļ.
P internal: water				
Tension Design				
100k lb overpull	X	X	X	X

ONSHORE ÓRDER NO. 1 Chevron SD EA 29/32 Fed Com P11 16H Lea County, NM CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

3

5. **CEMENTING PROGRAM**

Slurry	Туре	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface				(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	0'	800'	14.8	1.33	50	650	6.57
Intermediate								
Stage 2 Lead	Class C	0'	4570	11.9	2.39	100	1070	13.46
Stage 2 Tail	Class C	4570	4870	14.8	1.33	25	<u>89</u>	6.35
Stage 1 Lead	50:50 Poz Class C	4,870'	10,650'	11.9	2.21	25	1024	12.18
Stage 1 Tail	Class H	10,650'_	11,150'	15.6	1.22	25	184	5.37
Liner	,							
Tail	Class H	10,850'	12,300'	15.6	1.22	17	123	5.34
Production								
Tail	Acid Soluble	10,350'	23,000'	15.6	1.2	17	1362	5.05

1. Final cement volumes will be determined by caliper.

^{2.} Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

^{3.} Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

ONSHORE ORDER NO. 1 Chevron SD EA 29/32 Fed Com P11 16H Lea County, NM CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

4

6. MUD PROGRAM

From	То	Туре	Weight	F. Vis	Filtrate
0'	800'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
800'	11,150'	Oil Based Mud	8.7-9.2	28 - 30	25-30
11,150'	12,300'	Oil Based Mud	9.5-11.0	70 - 75	25 - 30
12,300'	23,000'	Oil Based Mud	9.5-11.0	70 - 75	25 - 30

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	Interval	Timing	Vendor
Mudlogs	2 man mudlog	Int Csg to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma	Int. and Prod. Hole	While Drilling	TBD

- c. Conventional whole core samples are not planned.
- d. A Directional Survey will be run.

8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

a. No abnormal pressures or temperatures are expected. Estimated BHP is: 450

4500 psi

b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event that H2S is encountered

For the latest performance data, always visit our website: www.tenaris.com

June 17 2015

Size: 5.000 in. Wall: 0.362 in.

Weight: 18.00 lbs/ft

Grade: P110-IC Min. Wall Thickness: 87.5 %

Connection: Wedge 521[™] Casing/Tubing: CAS

		PIPE BODY	DATA		
		GEOME.	TRY		
Nominal OD	5.000 in.	Nominal Weight	18.00 lbs/ft	Standard Drift Diameter	4.151 in.
Nominal ID	4.276 in.	Wall Thickness	0.362 in.	Special Drift Diameter	N/A
Plain End Weight	17.95 lbs/ft	·		•	
•		PERFORM	ANCE		
Body Yield Strength	580 × 1000 lbs	Internal Yield	13940 psi	SMYS	110000 psi
Collapse	14840 psi	~			
	· v	VEDGE 521™ CON	NECTION DAT	ΓΑ	
		GEOME	TRY		
Connection OD	5.359 in.	Connection ID	4.226 in.	Make-Up Loss	3.620 in.
Critical Section Area	3.891 sq. in.	Threads per in.	3.36		
		PERFORM	ANCE		
Tension Efficiency	73.8 %	Joint Yield Strength	428 × 1000	Internal Pressure Capacity	13940 psi
Compression Strength	514 x 1000 lbs	Compression ,	88.7 %	Bending	75 °/100 ft
External Pressure Capacity	14840 psi				
		MAKE-UP TO	ORQUES		
Minimum	6100 ft-lbs	Optimum	7300 ft-lbs	Maximum (<u>*</u>)	10700 ft-lbs
		OPERATIONAL LI	MIT TORQUES	3	
Operating Torque	17300 ft-lbs	Yield Torque	26000 ft-lbs		
		BLANKING DII	MENSIONS		

Blanking Dimensions

^{*} If you need to use torque values that are higher than the maximum indicated, please contact a local Tenaris technical sales representative.

TH DS-16.0372 23 August 2016 Rev 00

5.000" 18.00 lb/ft P110-ICY TenarisHydril Wedge 521®

			DY DATA		
	·	GEON	METRY		
Nominal OD	5.000 in.	Nominal Weight	18.00 lb√ft	Standard Drift Diameter	4.151 in.
Nominal ID	4.276 in.	Wall Thickness	0.362 in.	Special Drift Diameter	N/A
Plain End Weight	17.95 lbs/ft			i 	
		PERFOR	MANCE		
Body Yield Strength	659 x 1000 lbs	Internal Yield	16290 psi	Collapse	14840 psi
	•	CONNECT	ION DATA	•	
			METRY	· · · · · · · · · · · · · · · · · · ·	
Box OD (Turned)	5.359 in.	Pin ID (Bored)	4.226 in.	Make-Up Loss	3.62 in.
Critical Section Area	3.891 sq. in.	Threads per in.	3.36	†	
		PERFOR	MANCE		
Tension Efficiency	73.8 %	Joint Yield Strength	486 x 1000 lbs	Internal Yield¹	16290 psi
Compression Efficiency	88.7 %	Compression Rating	585 x 1000 lbs	Collapse	14840 psi
Bending	85°/100 ft				
		MAKE-UP	TORQUES		
Minimum	6100 ft-lbs	Optimum	7300 ft-lbs	Maximum*	10700 ft-lbs
		OPERATIONAL	LIMIT TORQUES		
Operational	20000 ft-lbs			Yield Torque	30000 ft-lbs

^{*}If you need to use torque values that are higher than the maximum indicated, please contact a local Tenaris technical sales representative

^{1.} Internal Yield Rating is based on 90% RBW.

TH DS-16.0370 11 ago 16 Rev 00

5" 18.00 ppf P110-ICY - TenarisXP® BTC (min wt 90%) (USC Units)

 boroning

		PIPE BOD	Y DATA		
		GEOM	EURY		
Nominal OD	5.000 in.	Nominal Weight	18.00 lbs/ft	Standard Drift Diameter	4.151 in.
Nominal ID	4.276 in.	Wall Thickness	0.362 in.	Special Drift Diameter	-
Plain End Weight	17.95 lbs/ft				
The second secon		PERFORI	ANGE	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Body Yield Strength	659 x 1000 lbs	Internal Yield ⁽⁴⁾	16290 psi	Collapse	14840 psi
		CONNECTIO	ON DATA		
Regular OD	5.720 in.	Coupling Length	9.325 in.	Connection ID	4.264 in.
Critical Section Area	5.275 sq. in.	Threads per in.	5	Make-Up Loss	4.141 in.
	Annua (m. 1906) de la Constantina de Constantina de Constantina de Constantina de Constantina de Constantina d	Perform	EDMAN		
Tension Efficiency	100.0 %	Joint Yield Strength	659 x 1000 lbs	Internal Pressure Capacity (1) (4)	16290 psi
Structural Compression Efficiency	100.0 %	Structural Compression Rating	659 x 1000 lbs	External Pressure Capacity	14840 psi
Structural Bending ⁽²⁾	115°/100 ft				
		MAKE-UP TO	DRQUES (E)		
Minimum	11480 ft-lbs	Target	12750 ft-lbs	Maximum	14030 ft-lbs
Operating Torque	15800 ft-lbs	Yield Torque	17700 ft-lbs	·	

⁽¹⁾ Internal Yield pressure related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 - 2007.

⁽²⁾ Structural rating, pure bending to yield (i.e no other loads applied)

⁽³⁾ Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at licensees@oilfield.tenaris.com.

⁽⁴⁾ Minimum wall thickness 90% of nominal

ONSHORE ORDER NO. 1 Chevron SD EA 29/32 Fed Com P11 16H Lea County, NM CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

1

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	" MD
Rustler		800	
Castile		3480	•
Lamar		4900	•
Bell Canyon		4930	
Cherry Canyon		5970	
Brushy Canyon		7620	
Bone Spring Limestone		9090	
Upr. Avalon		9120	
Top Bone Spring 1		10040	
Top Bone Spring 2		10700	
Top Bone Spring 3		11740	
Wolfcamp		12140	
Wolfcamp A1		12193	
Wolfcamp A2		12,523	
Leteral TD (Malfaema A2)		10 500	22000
Lateral TD (Wolfcamp A2)		12,523	23000

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest Exp	ected Base of Fresh Water	. 700
Water	Rustler	800
Water	Bell Canyon	4930
Water	Cherry Canyon	5970
Oil/Gas	Brushy Canyon	7620
Oil/Gas .	Bone Spring Limestone	9090
Oil/Gas	Upr. Avalon	9120
Oil/Gas	Top Bone Spring 1	10040
Oil/Gas	Top Bone Spring 2	10700
Oil/Gas	Top Bone Spring 3	11740
Oil/Gas	Wolfcamp	12140
Oil/Gas	Wolfcamp A1	12193
Oil/Gas	Wolfcamp A2	12,523

All shows of fresh water and minerals will be reported and protected.

3. **BOP EQUIPMENT**

Will have a minimum of a 10000 psi rig stack (see proposed schematic) for drill out below surface (Wolfcamp is not exposed until drillout of the intermediate casing). Could possibly utilize the 5000 psi rig stack (see proposed schematic) for drill out below surface casing due to the availabity of 10 M annular. (Wolfcamp is not exposed until drillout of the intermediate casing) Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs) BOP test will be conducted by a third party.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

2

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	800'	17-1/2"	13-3/8"	55 #	J55	STC	New
Intermediate	0'	11,500'	12-1/4"	9-5/8"	43.5#	HCK-L80	LTC	New
Liner	10,850'	12,300'	8-1/2"	7-5/8"	29.7 #	HCP-110	H513	New
Production	0'	12,500'	6-3/4"	5.5"	20#	P-110-ICY	TXP BTC	New
(Taper String)	12,500'	23,000'	6-3/4"	5"	18#	P-110 IC	TSH521	New

- b. Casing design subject to revision based on geologic conditions encountered.
- c. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalcuated & sent to the BLM prior to drilling.
- d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based on the following "Worst Case" casing design:

Surface Casing:

850'

Intermediate Casing:

11,200' TVD

Production Casing:

23,000' MD/12,750' TVD (10,300' VS @ 90 deg inc)

Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.36	3.12	3.17	1.70
Intermediate	1.12	1.44	1.93	1.37
Liner	1.69	5.36	2.50	2.09
Production	1.11	1.23	1.97	1.37 -

Min SF is the smallest of a group of safety factors that include the following considerations:

•	Surf	Int	Liner	Prod
Burst Design				
Pressure Test- Surface, Int, Prod Csg	X	X	X	X
P external: Water				
P internal: Test psi + next section heaviest mud in csg				
Displace to Gas- Surf Csg	X			
P external: Water				
P internal: Dry Gas from Next Csg Point	<u>.</u>			
Frac at Shoe, Gas to Surf- Int Csg		×	X	ļ
P external: Water				
P internal: Dry Gas, 16 ppg Frac Gradient				
Stimulation (Frac) Pressures- Prod Csg	1			X
P external: Water	1			i
P internal: Max inj pressure w/ heaviest injected fluid				
Tubing leak- Prod Csg (packer at KOP)	i	i		ļΧ
P external: Water				·
P internal: Leak just below surf, 8.7 ppg packer fluid				
Collapse Design				
Full Evacuation	X	X	X	X
P external: Water gradient in cement, mud above TOC		ł	•	
P internal: none				
Cementing- Surf, Int, Prod Csg	Х	X	X	X
P external: Wet cement				
P internal: water			1	
Tension Design				
100k lb overpull	X	X	X	X

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

3

5. **CEMENTING PROGRAM**

Slurry	Туре	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface				(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	. 0,	800'	14.8	1.33	50	650	6.57
Intermediate								
Stage 2 Lead	Class C	0'	4570	11.9	2.39	100	1070	13.46
Stage 2 Tail	Class C	4570	4870	14.8	1.33	25	<u>89</u>	<u>6.35</u>
Stage 1 Lead	50:50 Poz Class C	4,870'	10,650'	11.9	2.21	25	1024	12.18
Stage 1 Tail	Class H	10,650'	11,150'	15.6	1.22	25	184	5.37
Liner		+						
Tail	Class H	10,850'	12,300'	15.6	1.22	17	123	5.34
Production								
Tail	Acid Soluble	10,350'	23,000'	15.6	1.2	10	1300	5.05

1. Final cement volumes will be determined by caliper.

^{2.} Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

^{3.} Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

4

6. MUD PROGRAM

From	То	Туре	Weight	F. Vis	Filtrate
0'	800'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
800'	11,150'	Oil Based Mud	8.7-9.2	28 - 30	25-30
11,150'	12,300'	Oil Based Mud	9.5-13.5	70 - 75	25 - 30
12,300'	23,000'	Oil Based Mud	12.0-15.0	70 - 75	25 - 30

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	Interval	Timing	Vendor
Mudlogs	2 man mudlog	Int Csg to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma	Int. and Prod. Hole	While Drilling	TBD

- c. Conventional whole core samples are not planned.
- d. A Directional Survey will be run.

8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

a. No abnormal pressures or temperatures are expected. Estimated BHP at intermediate TD is:
 5750 psi
 No abnormal pressures or temperatures are expected. Estimated BHP at production TD is:
 9830 psi

b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event that H2S is encountered

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN PAGE:

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Rustler		800	
Castile		3480	
Lamar		4900	
Bell Canyon		4930	
Cherry Canyon		5970	
Brushy Canyon		7620	_
Bone Spring Limestone		9090	
Upr. Avalon		9120	
Top Bone Spring 1		10040	
Top Bone Spring 2		10700	
Top Bone Spring 3		11740	
Wolfcamp .		12140	
Wolfcamp A1		. 12193	
Wolfcamp A2		12,523	/
Lateral TD (Wolfcamp A2)		12,523	23000

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest Exp	700	
Water	Rustler	800
Water	Bell Canyon	4930
Water	Cherry Canyon	5970
Oil/Gas	Brushy Canyon	7620
Oil/Gas	Bone Spring Limestone	9090
Oil/Gas	Upr. Avalon	9120
Oil/Gas	Top Bone Spring 1	10040
Oil/Gas	Top Bone Spring 2	10700
Oil/Gas	Top Bone Spring 3	11740
Oil/Gas	Wolfcamp ·	12140
Oil/Gas	Wolfcamp A1	12193
Oil/Gas	Wolfcamp A2	12,523

All shows of fresh water and minerals will be reported and protected.

3. BOP EQUIPMENT

Will have a minimum of a 10000 psi rig stack (see proposed schematic) for drill out below surface (Wolfcamp is not exposed until drillout of the intermediate casing). Could possibly utilize the 5000 psi rig stack (see proposed schematic) for drill out below surface casing due to the availabity of 10 M annular. (Wolfcamp is not exposed until drillout of the intermediate casing) Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs) BOP test will be conducted by a third party.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

2

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	800'	17-1/2"	13-3/8"	55 #	J55	STC	New
Intermediate	0'	11,500'	12-1/4"	9-5/8"	43.5#	HCK-L80	LTC	New
Liner	10,850'	12,300'	8-1/2"	7-5/8"	29.7 #	HCP-110	H513	New
Production	0'	12,500'	6-3/4"	5.5"	20#	P-110-ICY	TXP BTC	New
(Taper String)	12,500'	23,000'	6-3/4"	5"	18#	P-110 IC	TSH521	New

- b. Casing design subject to revision based on geologic conditions encountered.
- c. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalcuated & sent to the BLM prior to drilling.
- d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based on the following "Worst Case" casing design:

Surface Casing:

850'

Intermediate Casing:

11,200' TVD

Production Casing:

23,000' MD/12,750' TVD (10,300' VS @ 90 deg inc)

	Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
	Surface	1.36	3.12	3.17	1.70
	Intermediate	1.12	1.44	1.93	1.37
ſ	Liner	1.69	5.36	2.50	2.09
ſ	Production	1.11	1.23	1.97	1.37

Min SF is the smallest of a group of safety factors that include the following considerations:

	Surf	Int	Liner	Prod
Burst Design				
Pressure Test- Surface, Int, Prod Csg	X	X	X	X
P external: Water				
P internal: Test psi + next section heaviest mud in csg				
Displace to Gas- Surf Csg	×			
P external: Water				
P internal: Dry Gas from Next Csg Point			•	
Frac at Shoe, Gas to Surf- Int Csg		×	X	
P external: Water				
P internal: Dry Gas, 16 ppg Frac Gradient				
Stimulation (Frac) Pressures- Prod Csg				X
P external: Water				
P internal: Max inj pressure w/ heaviest injected fluid				
Tubing leak- Prod Csg (packer at KOP)				X
P external: Water				
P internal: Leak just below surf, 8.7 ppg packer fluid				
Collapse Design				
Full Evacuation	X	X	X	X
P external: Water gradient in cement, mud above TOC				
P internal: none		1		
Cementing- Surf, Int, Prod Csg	X	X	X	X
P external: Wet cement			•	
P internal: water		1		
Tension Design				
100k lb overpull	X	×	X	X

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

3

5. **CEMENTING PROGRAM**

Slurry	Туре	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface				(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	0,	800'	14.8	1.33	50	650	6.57
<u>Intermediate</u>		-			•			
Stage 2 Lead	Class C	0,	4570	11.9	2.39	100	1070	13.46
Stage 2 Tail	Class C	4570	4870	14.8	1.33	25	89	6.35
Stage 1 Lead Stage 1 Tail	50:50 Poz Class C	4,870' 10,650'	10,650'	11.9	2.21	25	1024	12.18
Liner			, , , , , , , , ,			 		
Tail	Class H	10,850'	12,300'	15.6	1.22	17	123	5.34
Production						•		
Tail	Acid Soluble	10,350'	23,000'	15.6	1.2	10	1300	5.05

1. Final cement volumes will be determined by caliper.

^{2.} Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

^{3.} Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

4

6. MUD PROGRAM

From	То	Туре	Weight	F. Vis	Filtrate
0'	800'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
800'	11,150'	Oil Based Mud	8.7-9.2	28 - 30	25-30
11,150'	12,300'	Oil Based Mud	9.5-13.5	70 - 75	25 - 30
12,300'	23,000'	Oil Based Mud	12.0-15.0	70 - 75	25 - 30

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	Interval	Timing	Vendor
Mudlogs	2 man mudlog	Int Csg to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma	Int. and Prod. Hole	While Drilling	TBD

- c. Conventional whole core samples are not planned.
- d. A Directional Survey will be run.

8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

a. No abnormal pressures or temperatures are expected. Estimated BHP at intermediate TD is:
 b. No abnormal pressures or temperatures are expected. Estimated BHP at production TD is:
 b. 9830
 c. 9830

b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event that H2S is encountered

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN PAGE: 1

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

SUB-SEA TVD	KBTVD	MD
	800	
	3480	,
	4900	
	4930	_
	5970	
	7620	
	9090	
	9120	
1	10040	
	10700	
	11740	
	12140	
	12193	
	12,523	
 	12 522	23000
	SUB-SEA TVD	800 3480 4900 4930 5970 7620 9090 9120 10040 10700 11740 12140

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest Ex	700	
Water	Rustler	800
Water	Bell Canyon	4930
Water	Cherry Canyon	5970
Oil/Gas	Brushy Canyon	7620
Oil/Gas	Bone Spring Limestone	9090
Oil/Gas	Upr. Avalon	9120
Oil/Gas	Top Bone Spring 1	10040
Oil/Gas	Top Bone Spring 2	10700
Oil/Gas	Top Bone Spring 3	11740
Oil/Gas	Wolfcamp	12140
Oil/Gas	Wolfcamp A1	12193
Oil/Gas	Wolfcamp A2	12,523

All shows of fresh water and minerals will be reported and protected.

3. BOP EQUIPMENT

Will have a minimum of a 10000 psi rig stack (see proposed schematic) for drill out below surface (Wolfcamp is not exposed until drillout of the intermediate casing). Could possibly utilize the 5000 psi rig stack (see proposed schematic) for drill out below surface casing due to the availabity of 10 M annular. (Wolfcamp is not exposed until drillout of the intermediate casing) Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs) BOP test will be conducted by a third party.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

2

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	800'	17-1/2"	13-3/8"	55 #	J55	STC	New
Intermediate	0'	11,500'	12-1/4"	9-5/8"	43.5#	HCK-L80	LTC	New
Liner	10,850'	12,300'	8-1/2"	7-5/8"	29.7 #	HCP-110	H513	New
Production	0'	12,500'	6-3/4"	5.5"	20#	P-110-ICY	TXP BTC	New
(Taper String)	12,500'	23,000	6-3/4"	5"	18#	P-110 IC	TSH521	New

- b. Casing design subject to revision based on geologic conditions encountered.
- C. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalcuated & sent to the BLM prior to drilling.
- d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based on the following "Worst Case" casing design:

Surface Casing:

850'

Intermediate Casing:

11,200' TVD

Production Casing: 23,000' MD/12,750' TVD (10,300' VS @ 90 deg inc)

Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.36	3.12	3.17	1.70
Intermediate	1.12	1.44	1.93	1.37
Liner	1.69	5.36	2.50	2.09
Production	1.11	1.23	1.97	1.37

Min SF is the smallest of a group of safety factors that include the following considerations:

	Surf	Int	Liner	Prod
Burst Design				İ
Pressure Test- Surface, Int, Prod Csg	X	X	Х	X
P external: Water				ļ
P internal: Test psi + next section heaviest mud in csg				
Displace to Gas- Surf Csg	X			
P external: Water				
P internal: Dry Gas from Next Csg Point	L`			
Frac at Shoe, Gas to Surf- Int Csg		X	X	
P external: Water		İ		
P internal: Dry Gas, 16 ppg Frac Gradient				
Stimulation (Frac) Pressures- Prod Csg		ı		X
P external: Water	ľ	i		
P internal: Max inj pressure w/ heaviest injected fluid		j		
Tubing leak- Prod Csg (packer at KOP)		ľ		X
P external: Water				
P internal: Leak just below surf, 8.7 ppg packer fluid				
Collapse Design				
Full Evacuation	X	X	Х	X
P external: Water gradient in cement, mud above TOC				
P internal: none				ļ
Cementing- Surf, Int, Prod Csg	X	X	Х	X
P external: Wet cement		+		1
P internal: water				- 1
Tension Design	1			
100k lb overpull	· X	X	Х	x

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

3

5. **CEMENTING PROGRAM**

Slurry	Type	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface		-		(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	0'	800'	14.8	1.33	50	650	6.57
Intermediate					•			
Stage 2 Lead	Class C	0' .	4570	11.9	2.39	100	1070	13.46
Stage 2 Tail	Class C	4570	4870	14.8	1.33	25	89	6.35
Stage 1 Lead Stage 1 Tail	50:50 Poz Class C	4,870' 10,650'	10,650' 11,150'	11.9	2.21	25	1024	12.18
Liner	0103311	10,030	1 11,130 1	13.0	1.22	25	104	1 3.31
Tail	Class H	10,850'	12,300'	15.6	1.22	17	123	5.34
<u>Production</u>					1			
Tail	Acid Soluble	10,350	23,000'	15.6	1.2	10	1300	5.05

1. Final cement volumes will be determined by caliper.

^{2.} Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

^{3.} Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

4

6. MUD PROGRAM

From	То	Туре	Weight	F. Vis	Filtrate
0'	800'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
800'	11,150'	Oil Based Mud	8.7-9.2	28 - 30	25-30
11,150'	12,300'	Oil Based Mud	9.5-13.5	70 - 75	25 - 30
12,300'	23,000'	Oil Based Mud	12.0-15.0	70 - 75	25 - 30

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	Interval	Timing	Vendor
Mudlogs	2 man mudlog	Int Csg to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma	Int. and Prod. Hole	While Drilling	TBD

- c. Conventional whole core samples are not planned.
- d. A Directional Survey will be run.

8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

a. No abnormal pressures or temperatures are expected. Estimated BHP at intermediate TD is:
 5750 psi
 No abnormal pressures or temperatures are expected. Estimated BHP at production TD is:
 9830 psi

b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event that H2S is encountered

6,330 psi

Joint Strength

813,000 lbs

Casing and Tubing Performance Data

PIPE BODY DATA

~	BAI	CT	D١

			GEOMETR1		
Outside Diameter	9.625 in	Wall Thickness	0.435 in	API Drift Diameter	8.599 in
Nominal Weight	43.50 lbs/ft	Nominal ID	8.755 in	Alternative Drift Diameter	8.625 in
Plain End Weight	42.73 lbs/ft	Nominal cross section	12.559 in		
		Р	ERFORMANCI		
Steel Grade	L80	Minimum Yield	80,000 psi	Minimum Ultimate	95,000 psi
Tension Yield	1,005,000 in	Internal Pressure Yield	6,330 psi	Collapse Pressure	3,810 psi
Available Seamless	Yes	Available Welded	No	•	*.
		CON	NECTION DA	TA	
TYPE: LTC			GEOMETRY		
Coupling Reg OD	10.625 in	Threads per in	8	Thread turns make up	3.5
		P	ERFORMANCI	AND THE STATE OF T	
Steel Grade	L80	Coupling Min Yield	80,000 psi	Coupling Min Ultimate	95,000 psi

January 18 2016

Size: 5.500 in.

Wall: 0.361 in.

Weight: 20.00 lbs/ft Grade: P110-ICY

%

	*
TAM	aris

Connection: TenarisXP® BTC

•		PIPE BODY	DATA		
		GEOMET	RY		•
Nominal OD ·	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
Plain End Weight	19.83 lbs/ft				
		PERFORM	ANCE		
Body Yield Strength	729 x 1000 lbs	Internal Yield	14360 psi	SMYS	125000 psi
Collapse	12100 psi			·	
	TE	NARISXP® BTC CO		PATA	
Connection OD	6.100 in.			Connection ID	4.766 in.
Critical Section		GEOMET	RY	· 	4.766 in. 4.204 in.
Connection OD Critical Section Area	6.100 in.	GEOMET Coupling Length	9.450 in. 5.00	Connection ID	
Critical Section	6.100 in. 5.828 sq. in.	GEOMET Coupling Length Threads per in.	9.450 in. 5.00	Connection ID	
Critical Section Area	6.100 in. 5.828 sq. in.	GEOMET Coupling Length Threads per in. PERFORM	9.450 in. 5.00 ANCE 729 x 1000	Connection ID Make-Up Loss Internal Pressure	4.204 in.

		CTIMATED MAL	(E-UP TORQUES	1 3)					
Minimum	11540 ft-lbs	Optimum	12820 ft-lbs	Maximum	14100 ft-lbs				
	OPERATIONAL LIMIT TORQUES								
Operating Torque	22700 ft-lbs	Yield Torque	25250 ft-lbs						
	•	BLANKING	DIMENSIONS						
		Blanking	Dimensions						

- (1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 2007.
- (2) Structural rating, pure bending to yield (i.e no other loads applied)
- (3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at licensees@oilfield.tenaris.com. Torque values may be further reviewed. For additional information, please contact us at contact-tenarishydril@tenaris.com

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Rustler		800	
Castile		3480	
Lamar	_	4900	
Bell Canyon		4930	
Cherry Canyon		5970	
Brushy Canyon		7620	
Bone Spring Limestone		9090	
Upr. Avalon		9120	
Top Bone Spring 1		10040	
Top Bone Spring 2		10700	
Top Bone Spring 3		11740	
Wolfcamp		12140	
Wolfcamp A1		12193	
Wolfcamp A2		12,523	
Lateral TD (Wolfcamp A2)		12,523	23000

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest E	700	
Water	Rustler	800
Water	Bell Canyon	4930
Water	Cherry Canyon	5970
Oil/Gas	Brushy Canyon	7620
Oil/Gas	Bone Spring Limestone	9090
Oil/Gas	Upr. Avalon	9120
Oil/Gas	Top Bone Spring 1	10040
Oil/Gas	Top Bone Spring 2	10700
Oil/Gas	Top Bone Spring 3	11740
Oil/Gas	Wolfcamp	12140
Oil/Gas	Wolfcamp A1	12193
Oil/Gas	Wolfcamp A2	12,523

All shows of fresh water and minerals will be reported and protected.

3. BOP EQUIPMENT

Will have a minimum of a 10000 psi rig stack (see proposed schematic) for drill out below surface (Wolfcamp is not exposed until drillout of the intermediate casing). Could possibly utilize the 5000 psi rig stack (see proposed schematic) for drill out below surface casing due to the availabity of 10 M annular. (Wolfcamp is not exposed until drillout of the intermediate casing) Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs) BOP test will be conducted by a third party.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

2

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	800'	17-1/2"	13-3/8"	55 #	J55	STC	New
Intermediate	0'	11,500'	12-1/4"	9-5/8"	43.5#	HCK-L80	LTC	New
Liner	10,850'	12,300'	8-1/2"	7-5/8"	29.7 #	HCP-110	H513	New
Production	0'	12,500'	6-3/4"	5.5"	20#	P-110-ICY	TXP BTC	New
(Taper String)	12,500'	23,000'	6-3/4"	5"	18#	P-110 IC	TSH521	New

- b. Casing design subject to revision based on geologic conditions encountered.
- C. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalcuated & sent to the BLM prior to drilling.
- d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based on the following "Worst Case" casing design:

Surface Casing:

850'

Intermediate Casing:

11,200' TVD

Production Casing:

23,000' MD/12,750' TVD (10,300' VS @ 90 deg inc)

Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.36	3.12	3.17	1.70
Intermediate	1.12	1.44	1.93	1.37
Liner	1.69	5.36	2.50	2.09
Production	1.11	1.23	1.97	1.37

Min SF is the smallest of a group of safety factors that include the following considerations:

	Surf	Int	Liner	Prod
Burst Design				
Pressure Test- Surface, Int, Prod Csg	X	X	X	X
P external: Water				
P internal: Test psi + next section heaviest mud in	csg			
Displace to Gas- Surf Csg	X			
P external: Water				
P internal: Dry Gas from Next Csg Point				
Frac at Shoe, Gas to Surf- Int Csg		X	X	
P external: Water				
P internal: Dry Gas, 16 ppg Frac Gradient				
Stimulation (Frac) Pressures- Prod Csg				X
P external: Water			. ,	
P internal: Max inj pressure w/ heaviest injected fl	uid			
Tubing leak- Prod Csg (packer at KOP)				X
P external: Water		,		
P internal: Leak just below surf, 8.7 ppg packer flu	iid			
Collapse Design				
Full Evacuation	. X	X	X	X
P external: Water gradient in cement, mud above	гос			
P internal: none				
Cementing- Surf, Int, Prod Csg	X	X	X	X
P external: Wet cement			,	
P internal: water		,	.]	
Tension Design		1		
100k lb overpull	X	Х	X	X

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

3

5. **CEMENTING PROGRAM**

Slurry	Туре	. Top	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface				(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	0'	800'	14.8	1.33	50	650	6.57
Intermediate	•			-		• •	, , ,	
Stage 2 Lead	Class C	0'	4570	11.9	2.39	100	1070	13.46
Stage 2 Tail	Class C	4570	4870	14.8	1.33	25	89	6.35
Stage 1 Lead	50:50 Poz Class C	4,870'	10,650'	11.9	2.21	25	1024	12.18
Stage 1 Tail	Class H	10,650'	11,150'	15.6	1.22	25	184	5.37
<u>Liner</u>								
Tail	Class H	10,850'	12,300'	15.6	1.22	17	123	5.34
Production								
Tail	Acid Soluble	10,350'	23,000'	15.6	1.2	10	1300	5.05

^{1.} Final cement volumes will be determined by caliper.

^{2.} Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

^{3.} Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

4

6. MUD PROGRAM

From	То	Type	Weight	F. Vis	Filtrate
0'	800'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
800'	11,150'	Oil Based Mud	8.7-9.2	28 - 30	25-30
11,150'	12,300'	Oil Based Mud	9.5-13.5	70 - 75	25 - 30
12,300'	23,000'	Oil Based Mud	12.0-15.0	70 - 75	25 - 30

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	Interval	Timing	Vendor ·
Mudiogs	2 man mudlog	Int Csg to TD	Drillout of Int Csg	TBD.
LWD	MWD Gamma	Int. and Prod. Hole	While Drilling	TBD

- c. Conventional whole core samples are not planned.
- d. A Directional Survey will be run.

8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

a. No abnormal pressures or temperatures are expected. Estimated BHP at intermediate TD is:
 b. No abnormal pressures or temperatures are expected. Estimated BHP at production TD is:
 b. 9830
 c. 9830

b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event that H2S is encountered

PAGE:

1

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Rustler		800	
Castile		3480	
Lamar		4900	
Bell Canyon		4930	
Cherry Canyon		5970	
Brushy Canyon		7620	
Bone Spring Limestone		9090	
Upr. Avalon		9120	
Top Bone Spring 1		10040	
Top Bone Spring 2		10700	
Top Bone Spring 3		11740	
Wolfcamp		12140	
Wolfcamp A1		12193	
Wolfcamp A2		12,523	
Lateral TD (Wolfcamp A2)		12,523	. 23000

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest Exp	700	
Water	Rustler	800
Water	Bell Canyon	4930
Water	Cherry Canyon	5970
Oil/Gas	Brushy Canyon	7620
Oil/Gas	Bone Spring Limestone	9090
Oil/Gas	Upr. Avalon	9120
Oil/Gas	Top Bone Spring 1	10040
Oil/Gas	Top Bone Spring 2	10700
Oil/Gas	Top Bone Spring 3	11740
Oil/Gas	Wolfcamp	12140
Oil/Gas	Wolfcamp A1	12193
Oil/Gas	Wolfcamp A2	12,523

All shows of fresh water and minerals will be reported and protected.

3. **BOP EQUIPMENT**

Will have a minimum of a 10000 psi rig stack (see proposed schematic) for drill out below surface (Wolfcamp is not exposed until drillout of the intermediate casing). Could possibly utilize the 5000 psi rig stack (see proposed schematic) for drill out below surface casing due to the availabity of 10 M annular. (Wolfcamp is not exposed until drillout of the intermediate casing) Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs) BOP test will be conducted by a third party.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

2

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	800'	17-1/2"	13-3/8"	55 #	J55	STC	New
Intermediate	0'	11,500'	12-1/4"	9-5/8"	43.5#	HCK-L80	LTC	New
Liner	10,850'	12,300'	8-1/2"	7-5/8"	29.7 #	HCP-110	H513	New
Production	0'	12,500'	6-3/4"	5.5"	20#	P-110-ICY	TXP BTC	New
(Taper String)	12,500'	23,000'	6-3/4"	5"	18#	P-110 IC	TSH521	New

- b. Casing design subject to revision based on geologic conditions encountered.
- c. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalculated & sent to the BLM prior to drilling.
- d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based on the following "Worst Case" casing design:

Surface Casing:

850'

Intermediate Casing:

11,200' TVD

Production Casing:

23,000' MD/12,750' TVD (10,300' VS @ 90 deg inc)

Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.36	3.12	3.17	1.70
Intermediate	1.12	1.44	1.93	1.37
Liner	1.69	5.36	2.50	2.09
Production	1.11	1.23	1.97	1.37

Min SF is the smallest of a group of safety factors that include the following considerations:

	Surf	Int	Liner	Prod
Burst Design				
Pressure Test- Surface, Int, Prod Csg	X	X	X	X
P external: Water				
P internal: Test psi + next section heaviest mud in ca	sg			
Displace to Gas- Surf Csg	Х			
P external: Water				
P internal: Dry Gas from Next Csg Point		1.		•
Frac at Shoe, Gas to Surf- Int Csg		×	X	
P external: Water				
P internal: Dry Gas, 16 ppg Frac Gradient				
Stimulation (Frac) Pressures- Prod Csg				X
P external: Water				*
P internal: Max inj pressure w/ heaviest injected fluid	1	-		
Tubing leak- Prod Csg (packer at KOP)				- X
P external: Water				
P internal: Leak just below surf, 8.7 ppg packer fluid				,
Collapse Design				
Full Evacuation	X	X	X	X
P external: Water gradient in cement, mud above TC	ic .		ľ	
P internal: none				
Cementing- Surf, Int, Prod Csg	X	X	X	X
P external: Wet cement				
P internal: water				
Tension Design				
100k lb overpull	X	X	X	X

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

3

5. **CEMENTING PROGRAM**

Slurry	Туре	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface				(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	0'	800'	14.8	1.33	50	650	6.57
<u>Intermediate</u>			·					
Stage 2 Lead	Class C	0'	4570	11.9	2.39	100	1070	13.46
Stage 2 Tail	Class C	4570	4870	14.8	1.33	25	<u>89</u>	<u>6.35</u>
Stage 1 Lead		4,870'	10,650'	11.9	2.21	25	1024	12.18
Stage 1 Tail	Class H	10,650'	11,150'	15.6	1.22	25	184	5.37
<u>Liner</u>								
Tail	Class H	10,850'	12,300'	15.6	1.22	17	123	5.34
<u>Production</u>								
Tail	Acid Soluble	10,350'	23,000'	15.6	1.2	10	1300	5.05

1. Final cement volumes will be determined by caliper.

^{2.} Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

^{3.} Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

4

6. MUD PROGRAM

From	To	Туре	Weight	F. Vis	Filtrate
0'	800'	Spud Mud	8.3 - 8.7	32 - 34	NC - NC
800'	11,150'	Oil Based Mud	8.7-9.2	28 - 30	25-30
11,150'	12,300'	Oil Based Mud	9.5-13.5	70 - 75	25 - 30
12,300'	23,000'	Oil Based Mud	12.0-15.0	70 - 75	25 - 30

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume.

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	Interval	Timing	Vendor
Mudlogs	2 man mudlog	Int Csg to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma	Int. and Prod. Hole	While Drilling	TBD

- c. Conventional whole core samples are not planned.
- d. A Directional Survey will be run.

8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

a. No abnormal pressures or temperatures are expected. Estimated BHP at intermediate TD is:
 b. No abnormal pressures or temperatures are expected. Estimated BHP at production TD is:
 9830

b. Hydrogen sulfide gas is not anticipated. An H2S Contingency plan is attached with this APD in the event that H2S is encountered

For the latest performance data, always visit our website: www.tenaris.com

June 17 2015

Size: 7.625 in.

Wall: 0.375 in.

Weight: 29.70 lbs/ft

Grade: P110-IC

Min. Wall Thickness: 87.5 %

Connection: Wedge 513[™] Casing/Tubing: CAS

		PIPE BODY	DATA		
		GEOME	ry		
Nominal OD	7.625 in.	Nominal Weight	29.70 lbs/ft	Standard Drift Diameter	6.750 in.
Nominal ID	6.875 in.	Wall Thickness	0.375 in.	Special Drift Diameter	N/A
Plain End Weight	29.06 lbs/ft				
		PERFORM	ANCE		
Body Yield Strength	940 x 1000 lbs	Internal Yield	9470 psi	SMYS	110000 psi
Collapse	7150 psi				
	. v	VEDGE 513™ CONI		ТА	
Connection OD	7.625 in.	Connection ID	6.800 in.	Måke-Up Loss	4.420 in.
Critical Section Area	5.125 sq. in.	Threads per in.	3.29		
		PERFORM	AŅCE		
Tension Efficiency	60.0 %	Joint Yield Strength	564 x 1000 lbs	Internal Pressure Capacity	9470 psi
Compression Strength	707 × 1000 lbs	Compression Efficiency	75.2 %	Bending	. 40 °/100 ft
External Pressure Capacity	7150 psi				
		MAKE-UP TO	RQUES		

10800 ft-lbs

70000 ft-lbs

OPERATIONAL LIMIT TORQUES

Maximum (*)

9000 ft-lbs

47000 ft-lbs

Minimum

Operating Torque

Yield Torque

Optimum

15800 ft-lbs

Blanking Dimensions

* If you need to use torque values that are higher than the maximum indicated, please contact a local Tenaris technical sales representative.

PAGE:

- 1

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Rustler		800	
Castile		3480	
Lamar		4900	
Bell Canyon		4930	
Cherry Canyon		5970	
Brushy Canyon		7620	
Bone Spring Limestone		9090	
Upr. Avalon		9120	
Top Bone Spring 1		10040	
Top Bone Spring 2		10700	
Top Bone Spring 3		11740	-
Wolfcamp		12140	
Wolfcamp A1		12193	
Wolfcamp A2		12,523	
		•	•
Lateral TD (Wolfcamp A2)		12,523	23000

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance Formation		Depth
Deepest Exp	ected Base of Fresh Water	700
Water	Rustler	800
Water	Bell Canyon	4930
Water	Cherry Canyon	5970
Oil/Gas	Brushy Canyon	7620
Oil/Gas	Bone Spring Limestone	9090
Oil/Gas	Upr. Avalon	9120
Oil/Gas	Top Bone Spring 1	10040
Oil/Gas	Top Bone Spring 2	10700
Oil/Gas	Top Bone Spring 3	11740
Oil/Gas	Wolfcamp	12140
Oil/Gas	Wolfcamp A1	12193
Oil/Gas	Wolfcamp A2	12,523

All shows of fresh water and minerals will be reported and protected.

3. **BOP EQUIPMENT**

Will have a minimum of a 10000 psi rig stack (see proposed schematic) for drill out below surface (Wolfcamp is not exposed until drillout of the intermediate casing). Could possibly utilize the 5000 psi rig stack (see proposed schematic) for drill out below surface casing due to the availabity of 10 M annular. (Wolfcamp is not exposed until drillout of the intermediate casing) Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs) BOP test will be conducted by a third party.

Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

PAGE:

2

4. CASING PROGRAM

a. The proposed casing program will be as follows:

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	800'	17-1/2"	13-3/8"	55 #	J55	STC	New
Intermediate	0'	11,500'	12-1/4"	9-5/8"	43.5#	HCK-L80	LTC	New
Liner	10,850'	12,300'	8-1/2"	7-5/8"	29.7 #	HCP-110	H513	New
Production	0'	12,500'	6-3/4"	5.5"	20#	P-110-ICY	TXP BTC	New
(Taper String)	12,500'	23,000'	6-3/4"	5"	18#	P-110 IC	TSH521	New

- b. Casing design subject to revision based on geologic conditions encountered.
- c. ***A "Worst Case" casing design for wells in a particular area is used below to calculate the Casing Safety Factors. If for any reason the casing design for a particular well requires setting casing deeper than the following "worst case" design, then the Casing Safety Factors will be recalcuated & sent to the BLM prior to drilling.
- d. Chevron will fill casing at a minimum of every 20 jts (840') while running for intermediate and production casing in order to maintain collapse SF.

SF Calculations based on the following "Worst Case" casing design:

Surface Casing:

850'

Intermediate Casing:

11,200' TVD

Production Casing:

23,000' MD/12,750' TVD (10,300' VS @ 90 deg inc)

Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.36	3.12	3.17	1.70
Intermediate	1.12	1.44	1.93	1.37
Liner	1.69	5.36	2.50	2.09
Production	1.11	1.23	1.97	1.37

Min SF is the smallest of a group of safety factors that include the following considerations:

•		Surf	Int	Liner	Prod
Burst Design					
Pressure Test- Surface	e, Int, Prod Csg	X	X	X	X
P external:	Water				
P internal:	Test psi + next section heaviest mud in csg				
Displace to Gas- Surf (Csg	Х			·
P external:	Water				
P internal:	Dry Gas from Next Csg Point				
Frac at Shoe, Gas to S	Surf- Int Csg		×	X	
P external:	Water			į	
	Dry Gas, 16 ppg Frac Gradient				
Stimulation (Frac) Pres	ssures- Prod Csg				X
P external:	Water				
P internal:	Max inj pressure w/ heaviest injected fluid				
Tubing leak- Prod Csg	(packer at KOP)				X
P external:	Water		1		
P internal:	Leak just below surf, 8.7 ppg packer fluid			[
Collapse Design					
Full Evacuation		X	X	X	X
P external:	Water gradient in cement, mud above TOC	·	1		
P internal:	none				
Cementing-Surf, Int, P	Prod Csg	X	X	X	X
P external:	Wet cement				
P internal:	water				
Tension Design					
100k lb overpull		X	X	X	X

3

5. **CEMENTING PROGRAM**

Slurry	Туре	Тор	Bottom	Weight	Yield	%Excess	Sacks	Water
Surface	5			(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	0'	800'	14.8	1.33	50	650	6.57
Intermediate								
Stage 2 Lead	Class C	0'	4570	11.9	2.39	100	1070	13.46
Stage 2 Tail	Class C	4570	4870	14.8	1.33	25	89	6.35
Stage 1 Lead	50:50 Poz Class C	4,870'	10,650'	11.9	2.21	25	1024	12.18
Stage 1 Tail	Class H	10,650'	11,150'	15.6	1.22	25	184	5.37
Liner		_						
Tail	Class H	10,850'	12,300'	15.6	1.22	17	123	5.34
<u>Production</u>							•	
Tail	Acid Soluble	10,350'	23,000'	15.6	1.2	10	1300	5.05

- 1. Final cement volumes will be determined by caliper.
- 2. Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.
- 3. Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400016188

Submission Date: 07/13/2017

Highlighted data reflects the most

Operator Name: CHEVRON USA INCORPORATED

recent changes

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

SD_EA_29_32_Fed_Com_P11_16H_Work_Area_Detail_07-13-2017.pdf SD_EA_29_32_Fed_Com_P11_16H_Road_Plat_20170918113307.pdf

Existing Road Purpose: FLUID TRANSPORT

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? YES

Existing Road Improvement Description: REPAIR POT HOLES, CLEAR DITCHES, REPAIR THE CROWN, ETC.

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

SD_EA_29_32_Fed_Com_P11_16H_Well_Plat_07-13-2017.pdf

SD_EA_29_32_Fed_Com_P11_16H_Work_Area_Detail_20170918113455.pdf

New road type: LOCAL

Length: 34.37

Feet

Width (ft.): 25

Max slope (%): 2

Max grade (%): 3

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 25

New road access erosion control: Erosion / Drainage: Drainage control system shall be constructed on the entire length of road by the use of any of the following: ditches, side hill out-sloping and in-sloping, lead-off ditches, culvert installation, or low water crossings.

New road access plan or profile prepared? NO

New road access plan attachment:

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: NONE

Access topsoil source: ONSITE

Access surfacing type description:

Access onsite topsoil source depth: 0

Offsite topsoil source description:

Onsite topsoil removal process: none needed

Access other construction information: Enclosure fencing will be installed around open cellar to prevent livestock or large wildlife from being trapped after installation. Fencing will remain in place while no activity is present and until back-filling takes place.

Access miscellaneous information: No surface water concerns, Low Karst area with no caves or visual signs of caves found, the entire perimeter of the well pad wil be bermed to prevent oil, salt, and other chemical contaminates from leaving the well pad, no known water wells within the 1-mile radius, no dwellings within the immediate vicinity of the proposed location, well signs will be in compliance per federal and state requirements and specifications.

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: CULVERT, OTHER

Drainage Control comments: Sediment traps (hay bales suggested by BLM) we don't use every time but keep handy.

Road Drainage Control Structures (DCS) description: Ditching will be constructed on both sides of road.

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

SD EA 29 32 Fed Com Pad 11 16H One Mile Radius 07-13-2017.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description:

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Production Facilities map:

SD_EA_29_32_Fed_Com_P11_16H_Work_Area_Detail_07-13-2017.pdf

 $SD_EA_29_32_Fed_Com_P11_13H_16H_PrelimFlowlines_20170918113540.pdf$

SD_EA_29_32_Fed_Com_P11_13H_16H_PrelimGas Lift Lines 20170918113601.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: INTERMEDIATE/PRODUCTION CASING,

Water source type: GW WELL

STIMULATION, SURFACE CASING

Describe type:

Source latitude:

Source longitude:

Source datum: NAD83

Water source permit type: PRIVATE CONTRACT

Source land ownership: FEDERAL

Water source transport method: PIPELINE

Source transportation land ownership: FEDERAL

Water source volume (barrels): 725000

Source volume (acre-feet): 93.447495

Source volume (gal): 30450000

Water source and transportation map:

SD_EA_29_32_Fed_Com_P11_16H_Work_Area_Detail_07-13-2017.pdf

Water source comments: EXISTING PONDS IN SEC 19,T26S-33E FOR FW & SEC 23 T26S-R33E & SEC 13 T26S-R33E FOR RECYCLED & BRACKISH WTR. FW FROM A PRIVATE WTR SOURCE.

New water well? NO

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well depth (ft):

Well casing type:

Well casing outside diameter (in.):

Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method:

Drill material:

Grout material:

Grout depth:

Casing length (ft.):

Casing top depth (ft.):

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Well Production type:

Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Caliche will be used to construct well pad and roads. Material will be purchased from the private land ownders (Oliver Kiehne) caliche pit located in Sec. 27, T26S, R33E, Lea County, NM & alternative @ N2 Sec 21, T26S, R33E, Lea County, NM. The proposed source of construction material will be located and purchased by Chevron USA Inc. Notification shall be given to BLM at 575-234-5909 at least 3 working days prior to commencing construction of access road and/or well pad.

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: GARBAGE

Waste content description: Garbage and trash

Amount of waste: 200

barrels

Waste disposal frequency: Daily

Safe containment description: collected in a trash container properly contained and disposed of properly disposed of into

steel tanks

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL

Disposal location ownership: STATE

FACILITY

Disposal type description:

Disposal location description: NMOCD approved disposal facility

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Cuttings Area being used? NO

Are you storing cuttings on location? NO

Description of cuttings location

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

SD_EA_29_32_Fed_Com_P11_16H_Well_Plat_07-13-2017.pdf SD_EA_29_32_Fed_Com_P11_16H_Pad_Cut_Fill_07-13-2017.pdf SD_EA_2932_Fed_Com_P11_Rig_layout_07-13-2017.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: SD EA 29 32 FED COM P11

Multiple Well Pad Number: 13 14 15 16

Recontouring attachment:

SD_EA_29_32_Fed_Com_P11_RECLAMATION_07-13-2017.pdf SD_EA_29_32_Fed_Com_P11_16H_APD_SUPO_07-13-2017.pdf

Drainage/Erosion control construction: Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.

Drainage/Erosion control reclamation: please refer to the attached APD SUP

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Wellpad long term disturbance (acres): 2.46

Access road long term disturbance (acres): 0.02

Pipeline long term disturbance (acres): 0

Other long term disturbance (acres): 1.74

Total long term disturbance: 4.22

Wellpad short term disturbance (acres): 1.86

Access road short term disturbance (acres): 0

Pipeline short term disturbance (acres): 11.100551

Other short term disturbance (acres): 0

Total short term disturbance: 12.960551

Reconstruction method: refer to the APD SUP attached.

Topsoil redistribution: refer to the APD SUP attached.

Soil treatment: After all the disturbed areas have been properly prepared the areas will be seeded with the proper BLM seed

mixture, free of noxious weeds.

Existing Vegetation at the well pad: mesquite, shrubs, grass

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: mesquite, shrubs, grass

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: mesquite, shrubs, grass

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: mesquite, shrubs, grass

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Seed	Mana	aem	ent
------	------	-----	-----

Seed Table

Seed type:

Seed source:

Seed name:

Source name:

Source address:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Seed Summary

Seed Type

Pounds/Acre

Total pounds/Acre:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Mark

Last Name: Woodard

Phone:

Email: markwoodard@chevron.com

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: Treat with BLM seed mixture (BLM #2 free of noxious weeds.

Weed treatment plan attachment:

Monitoring plan description: the interim reclamation will be monitored periodically to ensure that vegetation has reestablished.

Monitoring plan attachment:

Success standards: As per BLM requirements

Pit closure description: none

Pit closure attachment:

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Section 11 - Surface Ownership

oution in carrage emicromp	
Disturbance type: NEW ACCESS ROAD	
Describe:	
Surface Owner: BUREAU OF LAND MANAGEMENT	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Disturbance type: EXISTING ACCESS ROAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:	USFS Ranger District:
Disturbance type: WELL PAD	
Describe:	
Surface Owner: BUREAU OF LAND MANAGEMENT	•
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	V
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	•
Other Local Office:	
USFS Region:	•
USFS Forest/Grassland:	USFS Ranger District:
Disturbance type: PIPELINE	
Describe:	
Surface Owner: BUREAU OF LAND MANAGEMENT	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	

Well Number: 16H

Operator Name: CHEVRON USA INCORPORATED

Well Name: SD EA 29 32 FED COM P11

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? YES

Use APD as ROW? YES

ROW Type(s): 288100 ROW – O&G Pipeline

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: ON-SITE PERFORMED BY BLM NRS: PAUL MURPHY 4/26/2017

Other SUPO Attachment

Section 3 - Unlined Pits

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Unlined pit PWD on or off channel:	
Unlined pit PWD discharge volume (bbl/day):	
Unlined pit specifications:	
Precipitated solids disposal:	
Decribe precipitated solids disposal:	•
Precipitated solids disposal permit:	
Unlined pit precipitated solids disposal schedule:	
Unlined pit precipitated solids disposal schedule attachmen	it:
Unlined pit reclamation description:	
Unlined pit reclamation attachment:	
Unlined pit Monitor description:	
Unlined pit Monitor attachment:	· •
Do you propose to put the produced water to beneficial use	?
Beneficial use user confirmation:	
Estimated depth of the shallowest aquifer (feet):	•
Does the produced water have an annual average Total Diss that of the existing water to be protected?	olved Solids (TDS) concentration equal to or less than
TDS lab results:	
Geologic and hydrologic evidence:	
State authorization:	
Unlined Produced Water Pit Estimated percolation:	
Unlined pit: do you have a reclamation bond for the pit?	
Is the reclamation bond a rider under the BLM bond?	
Unlined pit bond number:	
Unlined pit bond amount:	,
Additional bond information attachment:	
Section 4 - Injection	
Would you like to utilize Injection PWD options? NO	•
Produced Water Disposal (PWD) Location:	•
PWD surface owner:	PWD disturbance (acres):

Injection well type:	
Injection well number:	Injection well name:
Assigned injection well API number?	Injection well API number:
Injection well new surface disturbance (acres):	•
Minerals protection information:	
Mineral protection attachment:	
Underground Injection Control (UIC) Permit?	
UIC Permit attachment:	
Section 5 - Surface Discharge	
Would you like to utilize Surface Discharge PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Surface discharge PWD discharge volume (bbl/day):	
Surface Discharge NPDES Permit?	
Surface Discharge NPDES Permit attachment:	
Surface Discharge site facilities information:	
Surface discharge site facilities map:	
Section 6 - Other	
Would you like to utilize Other PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Other PWD discharge volume (bbl/day):	
Other PWD type description:	
Other PWD type attachment:	·
Have other regulatory requirements been met?	
Other regulatory requirements attachment:	

.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

Bond Information

Federal/Indian APD: FED

BLM Bond number: CA0329

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

APD ID: 10400016188

Submission Date: 07/13/2017

Highlighted data reflects the most

recent changes

Well Name: SD EA 29 32 FED COM P11

Well Number: 16H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Operator Name: CHEVRON USA INCORPORATED

Formation	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation
1	RUSTLER	3215	800	800	ANHYDRITE	NONE	No
2	CASTILE	-3480	3480	3480	LIMESTONE,ANHYDRIT	NONE	No
3	LAMAR	-4900	4900	4900	LIMESTONE	NONE	No
4	BELL CANYON	-4930	4930	4930	SANDSTONE	NONE	No
5	CHERRY CANYON	-5970	5970	5970	SANDSTONE	NONE	No
6	BRUSHY CANYON	-7620	7620	7620	SANDSTONE	NONE	No
7	BONE SPRING LIME	-9090	9090	9090	LIMESTONE	NONE	No
8	UPPER AVALON SHALE	-9120	9120	9120	SHALE	NONE	No
9	BONE SPRING 1ST	-10040	10040	10040	SANDSTONE	NONE	No
10	BONE SPRING 2ND	-10700	10700	10700	SHALE	NONE	No
11	BONE SPRING 3RD	-11740	11740	11740	LIMESTONE	NONE	No
12	WOLFCAMP	-12140	12140	23000	MUDSTONE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M

Rating Depth: 12523

Equipment: Will have a minimum of a 10000 psi rig stack (see proposed schematic) for drill out below surface casing. (Wolfcamp is not exposed until drillout of the inter csg. Could possibly use the 5M Rig stack for drillout below surf csg due to availability of 10M annular. Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad.

Requesting Variance? YES

Variance request: Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as