						•
		HOBB	3 O C	Ð		/
orm 3160 -3 March 2012)		FEB 0	6 2018	FORM	APPROVI No. 1004-01	ED 37
UNITED STATES DEPARTMENT OF THE	; INTERIOR	REC	EIVE	5. Lease Serial No.	October 31,	2014
BUREAU OF LAND MAN	AGEMENT	REENTER		6. If Indian, Allotee	or Tribe	Name
				7 If Unit or CA Agr	eement, Na	me and No.
				8. Lease Name and	Well No.	320700
b. Type of Well: Oil Well Gas Well Other 2. Name of Operator MATADOR PRODUCTION COMPANY	V Sir	ngle Zone 🔛 Multip	le Zone	MJ FEDERAL 233 9. API Well No.		
Ba. Address	3b. Phone No.	(include area code)		30-025- 10. Field and Pool, or	Explorator	471 7 596 0
5400 LBJ Freeway, Suite 1500 Dallas 1X 7524	(972)371-5	200		TONTO / WOLFC		
 Location of Well (Report location clearly and in accordance with an At surface NWNE / 169 FNL / 2211 FEL / LAT 32.65249 	iy State requirem 178 / LONG -	ents.*) 103.6323813		SEC 23 / T19S / R	Blk. and Su 33E / NM	NP
At proposed prod. zone SWSE / 240 FSL / 1980 FEL / LAT 4. Distance in miles and direction from nearest town or post office*	32.6390927	' / LONG -103.6316	575	12. County or Parish		13. State
5. Distance from proposed* location to nearest 169 feet property or lease line, ft.	16. No. of a 520	cres in lease	17. Spacir 160	g Unit dedicated to this	well	
 8. Distance from proposed location* to nearest well, drilling, completed, 30 feet applied for on this lease ft 	19. Proposed	l Depth	20. BLM/	BIA Bond No. on file MB001079		
1. Elevations (Show whether DF, KDB, RT, GL, etc.) 3663 feet	22. Approxir 10/01/201	nate date work will star 7	rt*	23. Estimated duration 90 days	n	
	24. Attac	hments				
he following, completed in accordance with the requirements of Onsho	re Oil and Gas	Order No.1, must be at	tached to th	is form:		
. Well plat certified by a registered surveyor. 2 A Drilling Plan. 4 A Surface Use Plan (if the location is on National Forest System	lands the	 Bond to cover the Item 20 above). Operator certification 	ne operatio	ns unless covered by ar	n existing	oond on file (see
SUPO must be filed with the appropriate Forest Service Office).	Lunds, the	6. Such other site BLM.	specific inf	ormation and/or plans a	s may be r	equired by the
 Signature (Electronic Submission) 	Name Brian	(Printed/Typed) Wood / Ph: (505)4	66-8120		Date 08/17/	2017
itle President					•	
Approved by <i>(Signature)</i> (Electronic Submission)	Name Cody	(Printed/Typed) Layton / Ph: (575)2	34-5959		Date 01/31	2018
itle Supervisor Multiple Resources	Office CARL	SBAD				
pplication approval does not warrant or certify that the applicant hole onduct operations thereon. Conditions of approval, if any, are attached.	ls legal or equi	table title to those righ	ts in the sut	oject lease which would	entitle the	applicant to
itle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a c tates any false, fictitious or fraudulent statements or representations as	rime for any po to any matter w	erson knowingly and v ithin its jurisdiction.	villfully to r	nake to any department	or agency	of the United
(Continued on page 2)			1	*(Ins	truction	s on page 2)
		onvnitt	ONS	Nº III	6/18	F
	IN WI	H CONDIN		0-2100	/ / / 0	
APPKU						
Approv	val Date:	01/31/2018				

ble	ļ
Downer	n
0	

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

SHL: NWNE / 169 FNL / 2211 FEL / TWSP: 19S / RANGE: 33E / SECTION: 23 / LAT: 32.6524978 / LONG: -103.6323813 (TVD: 0 feet, MD: 0 feet)
 PPP: NWNE / 169 FNL / 2211 FEL / TWSP: 19S / RANGE: 33E / SECTION: 23 / LAT: 32.6524978 / LONG: -103.6323813 (TVD: 0 feet, MD: 0 feet)
 BHL: SWSE / 240 FSL / 1980 FEL / TWSP: 19S / RANGE: 33E / SECTION: 23 / LAT: 32.6390927 / LONG: -103.6316575 (TVD: 11730 feet, MD: 16489 feet)

BLM Point of Contact

Name: Priscilla Perez Title: Legal Instruments Examiner Phone: 5752345934 Email: pperez@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Approval Date: 01/31/2018

(Form 3160-3, page 4)

HOBBS OCD

⁷AFMSS

Operator Name: MATADOR PRODUCTION COMPANY

RECEIVED

FEB 06 2018

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Submission Date: 08/17/2017

Highlighted data reflects the most recent changes

Well Name: MJ FEDERAL

Well Type: OIL WELL

APD ID: 10400019973

Well Number: 233H.

Well Work Type: Drill

Show Final Text

Section 1 - General APD ID: 10400019973 **Tie to previous NOS?** Submission Date: 08/17/2017 **BLM Office: CARLSBAD** User: Brian Wood Title: President Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED Lease number: NMNM63763 Lease Acres: 520 Surface access agreement in place? Allotted? Reservation: Agreement in place? NO Federal or Indian agreement: Agreement number: Agreement name: Keep application confidential? NO Permitting Agent? YES **APD Operator: MATADOR PRODUCTION COMPANY Operator letter of designation:**

Operator Info

Operator Organization Name: MATADOR PRODUCTION COMPANY

Operator Address: 5400 LBJ Freeway, Suite 1500

Operator PO Box:

Zip: 75240

Operator City: Dallas State: TX

Operator Phone: (972)371-5200

Operator Internet Address: amonroe@matadorresources.com

Section 2 - Well Information

Well in Master Development Plan? NO Mater Development Plan name: Well in Master SUPO? NO Master SUPO name: Well in Master Drilling Plan? NO Master Drilling Plan name: Well API Number: Well Number: 233H

Well Name: MJ FEDERAL

Field/Pool or Exploratory? Field and Pool

Is the proposed well in an area containing other mineral resources? USEABLE WATER, POTASH

Field Name: TONTO

Pool Name: WOLFCAMP

Operator Name: MATADOR PRODUCTION COMPANY Well Name: MJ FEDERAL

Well Number: 233H

Describe other minerals:

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO Type of Well Pad: MULTIPLE WELL

Well Class: HORIZONTAL

Well Work Type: Drill

Well Type: OIL WELL

Describe Well Type:

Well sub-Type: INFILL

Describe sub-type:

Distance to town: 21 Miles

Reservoir well spacing assigned acres Measurement: 160 Acres

Well plat: MJ_233H_Plat_08-17-2017.pdf

Well work start Date: 10/01/2017

Multiple Well Pad Name: MJ FEDERAL Number of Legs: 1

New surface disturbance?

Number: 3-4

Distance to lease line: 169 FT

Duration: 90 DAYS

Distance to nearest well: 30 FT

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Survey number: 18329

Vertical Datum: NAVD88

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
SHL	169	FNL	221	FEL	19S	33E	23	Aliquot	32.65249	-	LEA	NEW	NEW	F	NMNM	366	0	0
Leg			1					NWNE	78	103.6323		MEXI	MEXI		63763	3		
#1										813		00	CO					
KOP	169	FNL	221	FEL	19S	33E	23	Aliquot	32.65249	-	LEA	NEW	ŅEW	F	NMNM	-	112	111
Leg			1			1	1	NWNE	78	103.6323		MEXI	MEXI		63763	752	00	89
#1										813		co	со			6		
PPP	169	FNL	221	FEL	19S	33E	23	Aliquot	32.65249	-	LEA	NEW	NEW	F	NMNM	366	Ó	0
Leg			1					NWNE	78	103.6323		MEXI	MEXI		63763	3		
#1					1					813		co	со		ĺ			

Well Name: MJ FEDERAL

Well Number: 233H

Pressure Rating (PSI): 5M

Rating Depth: 12000

Equipment: A 12,000' 5000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attached BOP, choke manifold, co-flex hose, and speed head diagrams. An accumulator complying with Onshore Order 2 for the BOP stack pressure rating will be present. Rotating head will be installed as needed.

Requesting Variance? YES

Variance request: Matador is requesting a variance to use a speed head. Speed head diameter range is 13.375" x 9.625" x 7.625" x 5.5". Matador requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. Manufacturer does not require the hose to be anchored. If the specific hose is not available, then one of equal or higher rating will be used.

Testing Procedure: Pressure tests will be conducted before drilling out from under all casing strings. BOP will be inspected and operated as required in Onshore Order 2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs. After surface casing is set and the BOP is nippled up, then BOP pressure tests will be made to 250 psi low and 2000 psi high. Intermediate 1 pressure tests will be made to 250 psi low and 2000 psi high. Intermediate 2 pressure tests will be made to 250 psi low and 2500 psi high. Annular preventer will be tested to 250 psi low and 2500 psi high on the surface casing, and 250 psi low and 2500 psi high on the intermediate 1 and 2 casing. In the case of running a speed head with landing mandrel for 9.625" and 7" casing, after surface casing is set, BOP test pressures will be 250 psi low and 3000 psi high. Wellhead seals will be tested to 5000 psi once the 9.625" casing has been landed and cemented. BOP will then be lifted to install the C-section of the wellhead. BOP will then be nippled back up and pressure tested to 250 psi low and 7500 psi high. Annular will be tested to 250 psi low and 2500 psi high.

Choke Diagram Attachment:

MJ_233H_Choke_20171024074449.pdf

BOP Diagram Attachment:

MJ_233H_BOP_08-17-2017.pdf

Se	ect	io	n	3	÷ f	C	as	in	g

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	20	13.375	NEW	API	N	0	1515	0	1512	3663	2151	1515	J-55	54.5	OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
2	INTERMED IATE	8.75	7.625	NEW	API	Y	0	4900	0	4889	3663		4900	P- 110	29.7	OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
3		12.2 5	9.625	NEW	API	N	0.	5000	0	4989	3663		5000	J-55	40	OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
4	PRODUCTI ON	6.12 5	5.5	NEW	API	Y	0	11017	0	11006	3663		11017	P- 110	20	OTHER - Tenaris XP	1.12 5	1.12 5	DRY	1.8	DRY	1.8
5	INTERMED IATE	8.75	7.625	NEW	API	Y	4900	11117	4889	11106			6217	P- 110	29.7	OTHER - VAM HTF- NR	1.12 5	1.12 5	DRY	1.8	DRY	1.8

Well Name: MJ FEDERAL

Well Number: 233H

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
6	INTERMED IATE	8.75	7.0	NEW	API	Y	11117	11975	11106	11721			858	Р- 110	29	OTHER - BTC	1.12 5	1.12 5	DRY	1.8.	DRY	1.8
7	PRODUCTI ON	6.12 5	4.5	NEW	API	Y	11017	16489	11006	11730			5472	P- 110	13.5	OTHER - Tenaris XP	1.12 5	1.12 5	DRY	1.8	DRY	1.8

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Casing_Design_Assumptions_Surface_08-17-2017.docx

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing_Design_Assumptions_Intermediate_08-17-2017.docx

Casing Design Assumptions and Worksheet(s):

Casing_Design_Assumptions_Intermediate_08-17-2017.docx

Operator Name: MATADOR PRODUCTION COMPANY Well Name: MJ FEDERAL

Well Number: 233H

Casing Attachments

Casing ID: 3 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Casing_Design_Assumptions_Intermediate_08-17-2017.docx

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

5.5_Inch_Casing_Spec_20171024074524.PDF

Casing Design Assumptions and Worksheet(s):

Casing_Design_Assumptions_Production_08-17-2017.docx

Casing ID: 5 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

7.625_Inch_Casing_Spec_20171024074745.PDF

Casing_Design_Assumptions_Intermediate_08-17-2017.docx

Casing Design Assumptions and Worksheet(s):

Casing_Design_Assumptions_Intermediate_08-17-2017.docx

Well Name: MJ FEDERAL

Well Number: 233H

Casing Attachments

Casing ID: 6

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing_Design_Assumptions_Intermediate_08-17-2017.docx

Casing Design Assumptions and Worksheet(s):

Casing_Design_Assumptions_Intermediate_08-17-2017.docx

Casing ID: 7 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

4.5_Inch_Casing_Spec_08-17-2017.pdf

Casing Design Assumptions and Worksheet(s):

Casing_Design_Assumptions_Production_08-17-2017.docx

Section	4 - Ce	emen	τ		·						
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1515	1670	1.75	13.5	2922	100	Class C	3% NaCl + LCM
SURFACE	Tail		0	1515	530	1.38	14.8	731	100	Class C	5% NaCl + LCM
INTERMEDIATE	Lead		0	4900	837	2.36	11.5	1975	35	TXI	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		0	4900	224	1.38	13.2	309	35	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		0	5000	1164	1.81	13.5	2106	100	Class C	Bentonite + 1% CaCl2 + 8% NaCl + LCM

. ----...

Well Name: MJ FEDERAL

Well Number: 233H

·	T	r		· · · · ·			·····				· · · · · · · · · · · · · · · · · · ·
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Tail		0	5000	454	1.38	14.8	626	100	Class C	5% NaCl + LCM
PRODUCTION	Lead		0	1101 7	414	1.38	15.8	571	10	Class H	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Tail		0	1101 7	414	1.38	15.8	571	10	Class H	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead	· ·	4900	1111 7	837	2.36	11.5	1975	35	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		4900	1111 7	224	1.38	13.2	309	35	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Lead		1101 7	1648 9	414	1.38	15.8	571	10	Class H	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Tail		1101 7	1648 9	414	1.38	15.8	571	10	Class H	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		1101 7	1648 9	837	2.36	11.5	1975	35	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		1101 7	1648 9	224	1.38	13.2	309	35	TXI	Fluid Loss + Dispersant + Retarder + LCM

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times.

Describe the mud monitoring system utilized: An electronic Parson mud monitoring system complying with Onshore Order 1 will be used.

Top Depth Bottom Depth Mud Type Min Weight (lbs/gal) Max Weight (lbs/gal) Max Weight (lbs/dal) Max Weight (lbs/dal) Gel Strength (lbs/100 sqft) PH Viscosity (CP) PH Viscosity (CP) Filtration (cc) Filtration (cc)		Circ	ulating Medi	um Ta	able							
	Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (Ibs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics

Well Name: MJ FEDERAL

Well Number: 233H

·											
Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1515	OTHER : Fresh water	8.3	8.3							
1515	5000	SALT SATURATED	10	10							
5000	1197 5	OTHER : Fresh water & cut brine	9	9							
1197 5	1648 9	OIL-BASED MUD	12.5	12.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A 2-person mud logging program will be used from 1515' to TD.

No electric log is planned at this time. GR will be collected through the MWD tools from intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to TOC.

List of open and cased hole logs run in the well:

CBL,GR

Coring operation description for the well:

No core or drill stem test is planned.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8211

Anticipated Surface Pressure: 5630.4

Anticipated Bottom Hole Temperature(F): 180

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES Hydrogen sulfide drilling operations plan: Operator Name: MATADOR PRODUCTION COMPANY Well Name: MJ FEDERAL

Well Number: 233H

 $MJ_{233H}H2S_{Plan}20171024074821.pdf$

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

MJ_233H_Horizontal_Drill_Plan_08-17-2017.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

MJ_233H_General_Drill_Plan_08-17-2017.pdf MJ_233H_Speedhead_Specs_20171024074839.pdf

Other Variance attachment:

MJ_224H_DV_Tool_Variance_Request_20171030151344.pdf

VAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400019973

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: MJ FEDERAL

Well Type: OIL WELL

Submission Date: 08/17/2017

Highlighted data reflects the most recent changes

SUPO Data F

Well Number: 233H

Well Work Type: Drill

recent changes Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

MJ_233H_Road_Map_08-17-2017.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

MJ_233H_New_Road_Map_08-17-2017.pdf

New road type: LOCAL

Length: 553

Width (ft.): 30

Max slope (%): 0

Max grade (%): 1

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Crown and ditch; caliche surface

Feet

New road access plan or profile prepared? NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Well Name: MJ FEDERAL

Well Number: 233H

Access surfacing type: OTHER Access topsoil source: ONSITE Access surfacing type description: Caliche Access onsite topsoil source depth: 6 Offsite topsoil source description: Onsite topsoil removal process: Grader Access other construction information: Access miscellaneous information: Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crown and ditch

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

MJ_233H_Well_Map_08-17-2017.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description:

Production Facilities map:

MJ_233H_Production_Diagram_20171024075247.PDF

Section 5 - Location and Types of Water Supply

Water Source Table

	Wall Num	per: 233H	
Water source use type: DUST CON INTERMEDIATE/PRODUCTION CAS CASING	TROL, ING, STIMULATION, SURFACE	Water source type: GW WELL	
Source latitude:		Source longitude:	
Source latitude.			
Water source permit type: PRIVATE			
Source land ownershin: PRIVATE			
Water source transport method: TR			
Source transportation land owners	hip: PRIVATE		
Water source volume (barrels): 200	00'	Source volume (acre-feet): 2 577862	
Source volume (gal): 840000			
(J)			
later source and transportation map:			
IJ_233H_Water_Source_Map_08-17-20	017.pdf		
/ater source comments:		•	
lew water well? NO	•		
	· ·		
New Water Well In	fo	·	
Well latitude:	Well Longitude:	Well datum:	
Well target aquifer:			
Est. depth to top of aquifer(ft):	Est thickness of a	quifer:	
Aquifer comments:			
Aquifer documentation:			
/ell depth (ft):	Well casing type:		
/ell casing outside diameter (in.):	Well casing inside o	liameter (in.):	
ew water well casing?	Used casing source	:	
rilling method:	Drill material:		
rout material:	Grout depth:		
asing length (ft.):	Casing top depth (fi	.):	
ell Production type:	Completion Method	· · · ·	
ater well additional information:			
tate appropriation permit:			

Well Name: MJ FEDERAL

Well Number: 233H

Section 6 - Construction Materials

Construction Materials description: NM One Call (811) will be notified before construction starts. A fence will be built east of the pad to protect dunes (wildlife habitat). Top 6" of soil and brush will be stockpiled north of the pad. V-door will face north. Closed loop drilling system will be used. Caliche will be hauled from existing caliche pits on private land. Caviness pit is in SWNE 9-18s-33e. Berry pit is in SENE 35-20s-34e.

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Cuttings and mud

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE FACILITY

Disposal type description:

Disposal location description: Halfway NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks

Cuttings area length (ft.)

Cuttings area depth (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Well Name: MJ FEDERAL

Well Number: 233H

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

MJ_233H_Well_Site_Layout_20171024075352.PDF

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: MJ FEDERAL

Multiple Well Pad Number: 3-4

Recontouring attachment:

MJ 233H Recontour Plat 08-17-2017 PDF

MJ_233H_Interim_Reclamation_Diagram_20171024075420.PDF

Drainage/Erosion control construction: Crown and ditch

Drainage/Erosion control reclamation: Harrow with contour and reseed

Wellpad long term disturbance (acres): 3.25 Access road long term disturbance (acres): 0.38 Pipeline long term disturbance (acres): 0 Other long term disturbance (acres): 0 Total long term disturbance: 3.63

Wellpad short term disturbance (acres): 3.65 Access road short term disturbance (acres): 0.38 Pipeline short term disturbance (acres): 0 Other short term disturbance (acres): 0 Total short term disturbance: 4.03

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 11% (0.40 acre) by removing caliche and reclaiming the northwest corner (130' x 270' x 300'). This will leave 3.25 acres for the production equipment (e. g., tank battery, heater-treaters, CBU), 5 pump jacks, and tractor-trailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements.

Well Name: MJ FEDERAL

Well Number: 233H

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. Once the well is plugged, then the rest of the pad and 553' of new road will be similarly reclaimed within 6 months of plugging **Soil treatment:** None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project?

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? Seed harvest description: Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed name:

Source name:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Seed source:

Source address:

Proposed seeding season:

Operator Name: MATADOR PRODUCTION COMPANY Well Name: MJ FEDERAL

Well Number: 233H

Seed Su	ummary
Seed Type	Pounds/Acre

Total pounds/Acre:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name:

Last Name:

Email:

Seedbed prep:

Seed BMP:

Phone:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Pit closure description: No pit

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Operator Name: MATADOR PRODUCTION COMPANY Well Name: MJ FEDERAL

Well Number: 233H

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: WELL PAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Wilitary Local Office: USFWS Local Office: USFS Region: USFS Forest/Grassland:

USFS Ranger District:

Use APD as ROW?

Section 12 - Other Information

Right of Way needed? NO

ROW Type(s):

ROW Applications

Well Name: MJ FEDERAL

Well Number: 233H

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: On site inspection was held with Vance Wolf (BLM) on April 20, 2017. Lone Mountain will inspect and file an archaeology report.

Other SUPO Attachment

MJ_233H_General_SUPO_20171024075509.pdf

VAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001079

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

ond Info Data Repo

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

.

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

فتؤتك

Midwest Hose & Specialty, Inc.

Internal Hydrostatic Test Certificate

General Infor	mation	Hose Spec	ifications	
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill	
MWH Sales Representative	AMY WHITE	Certification	API 7K/FSL Level 2	
Date Assembled	3/10/2015	Hose Grade	MUD	
Location Assembled	OKC	Hose Working Pressure	10000	
Sales Order #	245805	Hose Lot # and Date Code	11839-11/14	
Customer Purchase Order #	270590	Hose I.D. (Inches)	2"	
Assembly Serial # (Pick Ticket #)	296283	Hose O.D. (Inches)	3.99"	
Hose Assembly Length	50'	Armor (yes/no)	YES	
	······································	Itings		
End A	an a	End	В	
Stem (Part and Revision #)	R2.0X32M1502	Stem (Port and Revision #)	RF2.0 32F1502	
Stem (Heat #)	14104546	Sterre (Heat #)	A144853	
Ferrule (Part and Revision #)	RF2.0.10K	Ferrule (Part and Revision #)	RF2.0 10K	
Ferrule (Heat #)	41044	Ferrule (Heot #) 4104		
Connection . Flange Hammer Union Pai	t	Connection (Part #)		
Connection (Heat #)		Connection (Heat #)		
Nut (Part #)	2" 1502 H2S	Nut (Port #)		
Nut (Heat#)		Nut (Heat #)		
Dies Üsed	97MM	Dies Used	97MM	
	Hydrostatic Te	est lieguirements		
Test Pressure (psi)	15,000	Hose assembly was tested with ambient water		
Test Pressure Hold Time (minutes) 17 3/4		temper	ature.	

Date Tested 3/10/2015

÷

Tested By

Approved By

Jama

Bue	MARE
M &S	idwest Hose Specialty, inc.
Certifica	ate of Conformity
Customer: PATTERSON B&E	Customer P.O.# 270590
Sales Order # 245805	Date Assembled: 3/10/2015
Sp	ecifications
Hose Assembly Type: Choke & Kill	
Assembly Serial # 296283	Hose Lot # and Date Code 11839-11/14
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
Ve hereby certify that the above material suppli o the requirements of the purchase order and cu	ed for the referenced purchase order to be true according urrent industry standards.
upplier: Aidwest Hose & Specialty, Inc. 312 S I-35 Service Rd Adabama City, OK 73129	
omments:	
Approved By	Date 3/19/2015

Midwest Hose & Specialty, Inc.

Internal Hydrostatic Test Certificate

General Information		Hose Specifications		
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill	
MWH Sales Representative	AMY WHITE	Certification	API 7K/FSL Level 2	
Date Assembled	12/23/2014	Hose Grade	MUD	
Location Assembled	ОКС	Hose Working Pressure	10000	
Sales Order #	237566	Hose Lot # and Date Code	11784-10/14	
Customer Purchase Order #	261581	Hose I.D. (Inches)	2"	
Assembly Serial # (Pick Ticket #)	286159	Hose O.D. (Inches)	4.00"	
Hose Assembly Length	50'	Armor (yes/no)	YES	
	Fi	ttings		
End A	· · · · · · · · · · · · · · · · · · ·	End	B	
Stem (Part and Revision #)	R2.0X32M1502	Stem (Part and Revision #)	R2.0X32M1502	
Stem (Heat #)	W14104546	Stem (Heat #)	M14101226	
Ferrule (Part and Revision #)	RF2.0 10K	Ferrule (Part and Revision #)	RF2.0 10K	
Ferrule (Heat #)	41044	Ferrule (Heot #)	41044	
Connection . Flange Hammer Union Part	2"1502	Connection (Part #)		
Connection (Heat #)	2866	Connection (Heat #)		
			· · · · · · · · · · · · · · · · · · ·	

End A	• *	Enc	B
Stem (Part and Revision #)	R2.0X32M1502	Stem (Port and Revision #)	R2.0X32M1502
Stem (Heat #)	M14104546	Stem (Heat #)	M14101226
Ferrule (Part and Revision #)	RF2.0 10K	Ferrule (Part and Revision #)	RF2.0 10K
Ferrule (Heat #)	41044	Ferrule (Heot #)	41044
Connection . Flange Hammer Union Part	2"1502	Connection (Port #)	n a statut in de la seconda de la second
Connection (Heat #)	2866	Connection (Heat #)	
Nut (Part #)		Nut (Part #)	
Nut (Heat #)	· · ·	Nut (Heat #)	
Dies Used	97MM	Dies Used	97MM
	Hydrostatic To	est Requirements	
Test Pressure (psi)	15,000	Hose assembly was test	ed with ambient water
Test Pressure Hold Time (minutes)	15 1/4	temper	ature.

Approved By

ano

Date Tested

Tested By

12/24/2014

Windwest Hose & Specialty, Inc. Customer: PATTERSON B&E Customer: PATTERSON B&E Sales Order # 237566 Date Assembled: 12/23/2014 Sales Order # 237566 Date Assembled: 12/23/2014 Sales Order # 237566 Date Assembled: 12/29/2014		
Midwest Hose & Specialty, Inc. Certificate of Conformity Customer: PATTERSON B&E Customer P.O.# 261581 Sales Order # 237566 Date Assembled: 12/23/2014 Specifications. Hose Assembly Type: Choke & Kill Assembly Serial # 286159 Hose Lot # and Date Code 11784-10/14 Hose Working Pressure (psi) 10000 Test Pressure (psi) 15000 We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S 1-35 Service Rd Date Midwest Hose & Specialty, Inc. 3312 D Continents: Date Date Approved By Date Date Date Maxee 12/29/2014 Date 12/29/2014		
& Specialty, Inc. Certificate of Conformity Customer: PATTERSON B&E Customer P.O.# 261581 Sales Order # 237566 Date Assembled: 12/23/2014 Specifications Hose Assembly Type: Choke & Kill Assembly Serial # 286159 Hose Lot # and Date Code 11784-10/14 Hose Working Pressure (psi) 10000 Test Pressure (psi) 15000 We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-3S Service Rd Oklahoma City, OK 73129 Comments: Date 12/29/2014 Date	Μ	lidwest Hose
Certificate of Conformity Customer: PATTERSON B&E Customer P.O.# 261581 Sales Order # 237566 Date Assembled: 12/23/2014 Specifications Specifications Hose Assembly Type: Choke & KIII Assembly Serial # 286159 Hose Lot # and Date Code 11784-10/14 Hose Working Pressure (psi) 10000 Test Pressure (psi) 15000 We hereby certify that the above imaterial supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Widwest Hose & Specialty, Inc. 3312 51-35 Service Rd Date Oklahoma City, OK 73129 Date Corriments: Date Maxue 12/29/2014	&	Specialty, Inc.
Customer: PATTERSON B&E Customer P.O.# 261581 Sales Order # 237566 Date Assembled: 12/23/2014 Specifications: Specifications: Hose Assembly Type: Choke & Kill Assembly Serial # 286159 Hose Lot # and Date Code 11784-10/14 Hose Working Pressure (psi) 10000 Test Pressure (psi) 15000 We hereby certify that the above matérial supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oktahoma City, OK 73129 Corriments: Date Approved By Date Maxan 12/29/2014	Certifica	ate of Conformity
Sales Order # 237566 Date Assembled: 12/23/2014 Specifications. Hose Assembly Type: Choke & Kill Assembly Serial # 286159 Hose Lot # and Date Code 11784-10/14 Hose Working Pressure (psi) 10000 Test Pressure (psi) 15000 We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Nidwest Hose & Specialty, Inc. 3312 5 I-35 Service Rd Oklahoma City, OK 73129 Corriments: Date Approved By Date Maxwa 12/29/2014	Customer: PATTERSON B&E	Customer P.O.# 261581
Specifications Hose Assembly Type: Choke & Kill Assembly Serial # 286159 Hose Lot # and Date Code 11784-10/14 Hose Working Pressure (psi) 10000 Test Pressure (psi) 15000 We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 51-35 Service Rd Oklahoma City, OK 73129 Comments: Date Approved By Date Markan 12/29/2014	Sales Order # 237566	Date Assembled: 12/23/2014
Hose Assembly Type: Choke & Kill Assembly Serial # 286159 Hose Lot # and Date Code 11784-10/14 Hose Working Pressure (psi) 10000 Test Pressure (psi) 15000 We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Nidwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments: Date Approved By Date Macuae 12/29/2014	Sp	ecifications
Assembly Serial # 286159 Hose Lot # and Date Code 11784-10/14 Hose Working Pressure (psi) 10000 Test Pressure (psi) 15000 We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S 1-35 Service Rd Oklahoma City, OK 73129 Comments: Date Approved By Date Maxwa 12/29/2014	Hose Assembly Type: Choke & Kill	
Hose Working Pressure (psi) 10000 Test Pressure (psi) 15000 We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oktahoma City, OK 73129 Comments: Date Approved By Date 12/29/2014 Maune	Assembly Serial # 286159	Hose Lot # and Date Code 11784-10/14
We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments: Approved By Date 12/29/2014	Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments: Approved By Date 12/29/2014 12/29/2014		
We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments: Approved By Date 12/29/2014		
We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments: Approved By Date 12/29/2014 12/29/2014		
We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments: Approved By Date 12/29/2014	· · · · · · · · · · · · · · · · · · ·	
We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments: Approved By Date 12/29/2014		
Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments: Approved By Date 12/29/2014	We hereby certify that the above material suppli to the requirements of the purchase order and cu	ed for the referenced purchase order to be true according
Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments: Approved By Date 12/29/2014		
Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments: Approved By Date 12/29/2014	Sunnlier	
3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments: Approved By Date 12/29/2014	Midwest Hose & Specialty, Inc.	
Oklahoma City, OK 73129 Comments: Approved By Date 12/29/2014	3312 S I-35 Service Rd	
Approved By Date 12/29/2014	Oklahoma City, OK 73129	· · · · · · · · · · · · · · · · · · ·
Approved By Date 12/29/2014	Comments:	
Approved by Date 12/29/2014		
	Approved By	<u>Date</u> 12/29/2014

ſ

Matador Resources Company

Midwest Hose & Specialty, Inc.

Internal Hydrostatic Test Certificate

Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K/FSL Level 2
Date Assembled	3/10/2015	Hose Grade	MUD
Location Assembled	OKC	Hose Working Pressure	10000
Sales Order #	245805	Hose Lot # and Date Code	11839-11/14
Customer Purchase Order #	270590	Hose I.D. (Inches)	2"
Assembly Serial # (Pick Ticket#)	296283	HOSE O.D. (Inches)	3.99"
Hose Assembly Length	50'	Armor (yes/no)	YES
		dings.	
End A		End	B
Stem (Part and Revision #)	R2.0X32M1502	Stern (Part and Revision #)	RF2.0 32F1502
Stem (Heat #)	14104546	Stem (Heat #)	A144853
Ferrule (Part and Revision #)	RF2.0 10X	Ferrule (Part and Revision #)	RF2.0 10X
Ferrule (Heat #)	41044	Ferrule (Heat #)	41044
Connection . Flange Hammer Union Part		Connection (Part #)	
Connection (Heat #)		Connection (Heat #)	
Nut (Part #)	2" 1502 H2S	Nut (Port#)	
Nut (Heat#)		Nut (Heat #)	
Dies Used 97MM		Dies Used	97MM
	Hydrostatich	st Requirements - 44	
Test Pressure (psi)	15,000	Hose assembly was tested with ambient water	
Test Pressure Hold Time (minutes)	173/4	temperature.	

Date Tested 3/10/2015

Approved By

WHSI-008 Rev. D.O. Proprietary

1

Tested By

Casing Design Criteria and Load Case Assumptions

Intermediate #1 Casing

Collapse: DF_c=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture
 Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting
 depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft)
 which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting

depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Casing Design Criteria and Load Case Assumptions

Intermediate #1 Casing

Collapse: DF_c=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture
 Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting
 depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft)
 which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting

depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Issued on: 12 Janv. 2017 by T. DELBOSCO

VRCC 16-1177 Rev02 for Houston Field Service

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B Connection Data Sheet

OD	Weight	Wall Th.	Grade	API Drift	Connection
7/5/8 in.	29.70 lb/ft	0.375 in.	P110 EC	6.750 in.	VAM® HTF.NR

PIPE PROPERIES			
Nominal OD	7.625 in.		
Nominal ID	6.875 in.		
Nominal Cross Section Area	8.541 sqin.		
Grade Type	Enhanced API		
Min. Yield Strength	125 ksi		
Max. Yield Strength	140 ksi		
Min. Ultimate Tensile Strength	135 ksi		
Tensile Yield Strength	1 068 klb		
Internal Yield Pressure	10 760 psi		
Collapse pressure	7 360 psi		

CONNECTION PERFORMANCES		
Tensile Yield Strength	619 klb	
Compression Resistance	778 kib	
Compression with Sealability	372 klb	
Internal Yield Pressure	10 760 psi	
External Pressure Resistance	7 360 [°] psi	
Max. Bending	44 °/100ft	
Max. Bending with Sealability	17 °/100ft	

CONNECTION PROPERTIES			
Connection Type	Premium Integral Flush		
Connection OD (nom)	7.701 in.		
Connection ID (nom)	6.782 in.		
Make-Up Loss	4.657 in.		
Critical Cross Section	4.971 sqin.		
Tension Efficiency	58 % of pipe		
Compression Efficiency	72.7 % of pipe		
Compression Efficiency with Sealability	34,8 % of pipe		
Internal Pressure Efficiency	100 % of pipe		
External Pressure Efficiency	100 % of nine		

TORQUE VALUES	· · · · · · · · · · · · · · · · · · ·
Min. Make-up torque	9 600 ft.lb
Opti. Make-up torque	11 300 ft.lb
Max. Make-up torque	13 000 ft.lb
Max. Torque with Sealability	58 500 ft.lb
Max. Torsional Value	73 000 ft.lb

VAM[●] HTF™ (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com

Vallourec Group

uk@vamfieldservice.com dubaj@vamfieldservice.com nigena@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

allourec

Over 180 VAM[®] Specialists available worldwide 24/7 for Rig Site Assistance Other Connection Data Sheets are available at www.vamservices.com

Casing Design Criteria and Load Case Assumptions

Intermediate #1 Casing

Collapse: DF_c=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF₁=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting

depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

DS-TenarisHydril TenarisXP BTC-5.500-20.000-P110-IC

Page 1 of 2

For the latest performance data, always visit our website: www.tenaris.com

July 15 2015

いいいくいい

Area

Connection: TenarisXP[™] BTC Casing/Tubing: CAS Coupling Option: REGULAR

Size: 5.500 in. Wall: 0.361 in. Weight: 20.00 lbs/ft Grade: P110-IC Min. Wall Thickness: 87.5 %

		PIPE BOD	DY DATA		
		GEOM	ETRÝ		
Nominal OD	Standard Drift Diameter	4.653 in.			
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
Plain End Weight	19.83 lbs/ft				
		PERFOR	MANCE		
Body Yield Strength	641 x 1000 lbs	Internal Yield 12630 psi		SMYS	110000 psi
Collapse	12100 psi				
	TE	NARISXP™ BTC C GEOM		ОАТА	
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.
Critical Section	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.

Internal Pressure 641 x 1000 **Tension Efficiency** 100 % Joint Yield Strength 12630 psi lbs Capacity⁽¹⁾ Structural Structural Structural 641 x 1000 100 % Compression Compression 92 °/100 ft lbs Bending⁽²⁾ Efficiency Strength **External Pressure** 12100 psi Capacity **ESTIMATED MAKE-UP TORQUES**⁽³⁾ 11270 ft-lbs Minimum Optimum 12520 ft-lbs Maximum 13770 ft-lbs **OPERATIONAL LIMIT TORQUES** 21500 ft-lbs Yield Torque **Operating Torque** 23900 ft-lbs

PERFORMANCE

DS-TenarisHydril TenarisXP BTC-5.500-20.000-P110-IC

Page 2 of 2

BLANKING DIMENSIONS

Blanking Dimensions

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed. For additional information, please contact us at <u>contact-tenarishydril@tenaris.com</u>

For the latest performance data, always visit our website: www.tenaris.com

December 31 2015

Connection: TenarisXP® BTC **Casing/Tubing:** CAS **Coupling Option:** REGULAR

College

Size: 4.500 in. Wall: 0.290 in. Weight: 13.50 lbs/ft Grade: P110-ICY Min. Wall Thickness: 87.5 %

Nominal OD	4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.		
Nominal ID	3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A		
Plain End Weight	13.05 lbs/ft	. 		3			
Body Yield Strength	479 x 1000 lbs	Internal Yield	14100 psi	SMYS	125000 psi		
Collapse	11620 psi						
Connection OD	5.000 in.	Coupling Length	9.075 in.	Connection ID	3.908 in.		
Critical Section Area	3.836 sq. in.	Threads per in.	5.00	Make-Up Loss	4.016 in.		
· · · · · · · · · · · · · · · · · · ·				T			
Tension Efficiency	100 %	Joint Yield Strength	479 x 1000 lbs	Internal Pressure Capacity ⁽¹⁾	14100 psi		
Structural Compression Efficiency	100 %	Structural Compression Strength	479 x 1000 lbs	Structural Bending ⁽²⁾	127 '/ 100 ft		
External Pressure Capacity	11620 psi						
				·			
Minimum	6950 ft-lbs	Optimum	7720 ft-lbs	Məximum	8490 ft-lbs		

Blanking Dimensions

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

 Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Casing Design Criteria and Load Case Assumptions

Intermediate #1 Casing

Collapse: DF_c=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture
 Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting
 depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft)
 which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting

depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Casing Design Criteria and Load Case Assumptions

Intermediate #1 Casing

Collapse: DF_c=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture
 Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting
 depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft)
 which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting

depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Casing Design Criteria and Load Case Assumptions

Intermediate #1 Casing

Collapse: DF_c=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture
 Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting
 depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft)
 which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting

depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF₁=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Casing Design Criteria and Load Case Assumptions

Intermediate #1 Casing

Collapse: DF_c=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

- Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface
 burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of
 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be
 run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing
 will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting

depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Casing Design Criteria and Load Case Assumptions

Production Casing

Collapse: DF_c=1.125

• Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Well Name: MJ FEDERAL

Well Number: 233H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
EXIT Leg #1	240	FSL	198 0	FEL	19S	33E	23	Aliquot SWSE	32.63909 27	-` 103.6316 575	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 63763	- 806 7	164 89	117 30
BHL Leg #1	240	FSL	198 0	FEL	195	33E	23	Aliquot SWSE	32.63909 27	- 103.6316 575	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 63763	- 806 7	164 89	117 30