Form 3160 -3 (March 2012)

HOBBS OCD

FEB 2 8 2018

UNITED STATES

FORM APPROVED OMB No. 1004-0137 Expires October 31, 2014

Lease Serial No.

DEPARTMENT OF THE BUREAU OF LAND MA		R	200 8 FF 175	5. Lease Serial No. NMLC064149	
APPLICATION FOR PERMIT TO		えたしに	IAEL	6. If Indian, Allotee	or Tribe Name
la. Type of work: DRILL REEN	ITER			7. If Unit or CA Agre	eement, Name and No.
lb. Type of Well: Oil Well Gas Well Other		Single Zone Mult	tiple Zone	8. Lease Name and 'PERIDOT 8 FEDE	
2. Name of Operator CONOCOPHILLIPS COMPANY (2178	77)		9. API Well No.	-44528
3a. Address 600 N. Dairy Ashford Rd Houston TX 77079	3b. Phone (281)293	No. (include area code) 3-1748		10. Field and Pool, or MALJAMAR / YES	
4. Location of Well (Report location clearly and in accordance with	any State requi	rements.*)		11. Sec., T. R. M. or B	Blk. and Survey or Area
At surface SWSE / 615 FSL / 2460 FEL / LAT 32.8436	608 / LONG	-103.788058		 SEC 8 / T17S / R3	2E / NMP
At proposed prod. zone LOT 4 / 330 FSL / 330 FWL / LA	T 32.842850	3 / LONG -103,8134	31		
14. Distance in miles and direction from nearest town or post office* 1.5 miles				12. County or Parish LEA	13. State
15. Distance from proposed* location to nearest 180 feet property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No. o 320	f acres in lease	17. Spacin 241	g Unit dedicated to this	well
18. Distance from proposed location*	19. Propo	osed Depth	20. BLM/	BIA Bond No. on file	
to nearest well, drilling, completed, 700 feet applied for, on this lease, ft.		et / 13133 feet	FED: ES	,	
21. Elevations (Show whether DF, KDB, RT, GL. etc.) 4045 feet	22. Appro 02/01/2	oximate date work will st	tart*	23. Estimated duration	on
4043 (66)				21 days	
The following, completed in accordance with the requirements of Ons		tachments	attached to th	is form:	
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office). 		4. Bond to cover Item 20 above)5. Operator certif	the operatio). Fication	ns unless covered by an	e existing bond on file (see
25. Signature		me (Printed/Typed)			Date
(Electronic Submission)	Su	san Maunder / Ph: (281)206-52 	81	01/06/2017
Title Senior Coordinator, Regulatory MCBU					•
Approved by (Signature) (Electronic Submission)		me <i>(Printed/Typed)</i> dy Layton / Ph: (575)234-5959		Date 02/23/2018
Title Supervisor Multiple Resources	Off HC	ice DBBS			
Application approval does not warrant or certify that the applicant h conduct operations thereon. Conditions of approval, if any, are attached.	olds legal or e	quitable title to those rig	this in the sub	ject lease which would o	entitle the applicant to
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a States any false, fictitious or fraudulent statements or representations	crime for any	y person knowingly and er within its jurisdiction.	willfully to n	nake to any department of	or agency of the United
(Continued on page 2) GCP 02/28/	18		210	V	tructions on page 2)
		ma candil	10/12	03/011	1/B
ADDRO	MED A	ITH CONDIT		0910.	•

approval Date: 02/23/2018

Dog ded

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Approval Date: 02/23/2018

Additional Operator Remarks

Location of Well

1. SHL: SWSE / 615 FSL / 2460 FEL / TWSP: 17S / RANGE: 32E / SECTION: 8 / LAT: 32.843608 / LONG: -103.788058 (TVD: 0 feet, MD: 0 feet)

PPP: SESW / 405 FSL / 2622 FWL / TWSP: 17S / RANGE: 32E / SECTION: 8 / LAT: 32.843034 / LONG: -103.788706 (TVD: 5460 feet, MD: 5524 feet)

BHL: LOT 4 / 330 FSL / 330 FWL / TWSP: 17S / RANGE: 32E / SECTION: 7 / LAT: 32.842853 / LONG: -103.813431 (TVD: 5485 feet, MD: 13133 feet)

BLM Point of Contact

Name: Priscilla Perez

Title: Legal Instruments Examiner

Phone: 5752345934 Email: pperez@blm.gov

(Form 3160-3, page 3)

Approval Date: 02/23/2018

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

02/26/2018

APD ID: 10400008917

Submission Date: 01/06/2017

Highlighted data reflects the most

Operator Name: CONOCOPHILLIPS COMPANY

reflects the most

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

APD ID:

10400008917

Tie to previous NOS?

Submission Date: 01/06/2017

BLM Office: HOBBS

User: Susan Maunder

Title: Senior Coordinator, Regulatory

Federal/Indian APD: FED

MCBU
Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMLC064149

Lease Acres: 320

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? NO

APD Operator: CONOCOPHILLIPS COMPANY

Operator letter of designation:

Peridot 8 Fed 1H JOA Certif Ltr 12-14-2016.pdf

Peridot 8 Fed 1H_Leases w-wellsMap_01-06-2017.pdf Peridot_8_Fed_SerialRegisterPgs_08-04-2017.pdf

Operator Info

Operator Organization Name: CONOCOPHILLIPS COMPANY

Operator Address: 600 N. Dairy Ashford Rd

Operator PO Box:

Zip: 77079

Operator City: Houston

State: TX

Operator Phone: (281)293-1748

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Mater Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: MALJAMAR

Pool Name: YESO WEST

Page 1 of 3

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Is the proposed well in an area containing other mineral resources? NONE

Describe other minerals:

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO

New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name:

Number: 1H

Well Class: HORIZONTAL

PERIDOT 8 FEDERAL Number of Legs:

Well Work Type: Drill Well Type: OIL WELL

Describe Well Type: Well sub-Type: INFILL

Describe sub-type:

Distance to town: 1.5 Miles

Distance to nearest well: 700 FT

Distance to lease line: 180 FT

Reservoir well spacing assigned acres Measurement: 241 Acres

Well plat:

PERIDOT 8 FED 1H C-102 REV 2016-11-09 _12-12-2016.pdf

Peridot 8 Fed 1H_SubSurface_01-06-2017.pdf

Well work start Date: 02/01/2018

Duration: 21 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number:

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
SHL Leg #1	615	FSL	246 0	FEL	17S	32E	8	Aliquot SWSE	32.84360 8	- 103.7880 58	LEA	NEW MEXI CO	14-44	F	NMLC0 64149	404 5	0	0
KOP Leg #1	406	FSL	246 0	FEL	17S	32E	8	Aliquot SWSE	32.84303 3	- 103.7880 63	LEA	NEW MEXI CO	.4	F	NMLC0 64149	-979	503 4	502 4
PPP Leg #1	405	FSL	262 2	FWL	17S	32E	8	Aliquot SESW	32.84303 4	- 103.7887 06	LEA	NEW MEXI CO		F	NMLC0 29406B	- 141 5	552 4	546 0

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
EXIT	330	FSL	330	FWL.	17S	32E	7	Lot	32.84285	-	LEA	NEW	NEW	F	NMLC0	-	131	548
Leg								4	3	103.8134		MEXI	MEXI		29406B	144	33	5
#1	<u> </u>									31		СО	co			0	,	
BHL	330	FSL	330	FWL	17S	32E	7	Lot	32.84285	-	LEA	NEW	NEW	F	NMLC0	_	131	548
Leg								4	3	103.8134		MEXI	MEXI		29406B	144	33	5
#1										31		СО	СО			0	_	

Susan B. Maunder Sr. Coordinator, Regulatory Phone: (281) 206-5281 ConocoPhillips Company 600 N. Dairy Ashford Road, Off EC3-10-W285 Houston, TX 77079-1175

December 13, 2016

Bureau of Land Management Carlsbad Field Office 620 East Greene Street Carlsbad, New Mexico 88220-6292

RE:

Joint Operating Agreement

Pending APD - Peridot 8 Federal 1H

Section 8, T17S, R32E

Lease Numbers - NMLC 064149, NMLC 029406B

Dear Sir or Madam,

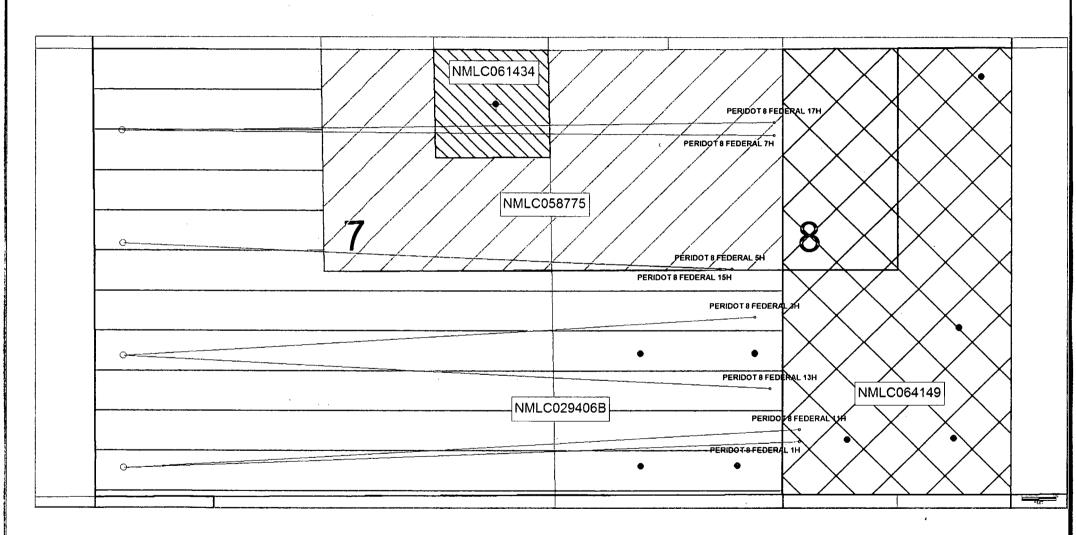
ConocoPhillips Company has negotiated a Joint Operating Agreement ("JOA") with COG Operating LLC, evidenced by the enclosed Memorandum of Operating Agreement, which covers approximately 480 acres in Township 17 South, Range 32 East. The JOA, along with an associated settlement letter, provides access to surface operated by the other party. This mutual access will allow more oil and gas resource recovery by maximizing horizontal wellbore formation contact.

Please accept this letter as certification our two companies agree on operating rights within the Peridot 8 Federal area. In regards to Peridot development, COP respectfully requests the BLM to process the referenced APD to afford the maintenance of the lease in a timely manner.

If you have questions regarding this certification, I can be reached at 281-206-5281 or via email at Susan.B.Maunder@conocophillips.com.

Sincerely,

Susan B. Maunder


Senior Coordinator, Regulatory

Jusan B Maunder

ConocoPhillips Company

Peridot Section 7 and 8 Lease Map

Peridot 8 Federal 1H

6301 DEAUVILLE

6301 DEAUVILLE

PO BOX 7500

600 W ILLINOIS AVE

600 TRAVIS ST STE 5100

8115 PRESTON RD #400

707 17TH ST STE 3600

123 ROBERT S KERR AVE

< \$ > | ⇔ | Serial Register Page ✔ Go 🌣 🖒 📅 #

Click here to see on map

DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT CASE RECORDATION

Run Time: 04:06 PM

Page 1 of ?

Run Date:

Name & Address

CHEVRON USA INC

CHEVRON USA INC

COG OPERATING LLC

CONOCOPHILLIPS CO

LINN ENERGY HOLDINGS LLC

SANDRIDGE EXPL & PROD LLC

MALJAMAR DEV PRTNSHP

SABINE OIL & GAS CORP

07/24/2017

(MASS) Serial Register Page

01 02-25-1920;041STAT0437;30USC226

Case Type 310781: O&G RENEWAL LEASE - PD

Total Acres 320.000

Serial Number

Commodity 459: OIL & GAS

OKLAHOMA CITY OK 731026406

NMLC-0 064149

OPERATING RIGHTS

0.000000000

Case Disposition: AUTHORIZED

Serial Number: NMLC-- 0 064149

Int Rei % Intere OPERATING RIGHTS MIDLAND TX 797062964 0.000000000 MIDLAND TX 797062964 LESSEE 100,0000000000 MIDLAND TX 797014882 OPERATING RIGHTS 0.000000000 BARTLESVILLE OK 740057500 OPERATING RIGHTS HOUSTON TX 770023092 OPERATING RIGHTS 0,0000000000 DALLAS TX 75225 OPERATING RIGHTS 0.000000000 DENVER CO 802023406 OPERATING RIGHTS 0.000000000

Serial Number: NMLC-0 064149

Mer Twp Rng Sec STyp SNr Suff Subdivision District/Field Office County Mgmt Agency 23 0170S 0320E 008 ALIO E2: CARLSBAD FIELD OFFICE BUREAU OF LAND MGMT

Serial Number: NMLC- 0 064149

Act Date	Code	Action	Action Remar	Pending Offic
06/08/1934	367	CASE ESTABLISHED		
06/08/1934	496	FUND CODE	05;145003	
06/08/1934	868	EFFECTIVE DATE	•	
09/14/1945	553	CASE CREATED BY ASGN	OUT OF NMLC029406-B:	
11/20/195€	102	NOTICE SENT-PROD STATUS		
11/01/1961	242	LEASE RENEWED	THRU 10/31/71;	
11/01/1961	534	RLTY RATE-SLIDING-SCH D		
11/01/1961	668	EFFECTIVE DATE	LAST RENEWAL:	
05/01/1967	232	LEASE COMMITTED TO UNIT	NMNM70988X;MALJAMAR G	
05/01/1967	651	HELD BY PROD - ALLOCATED	MALJAMAR GRAYBURG WA	
05/01/1967	660	MEMO OF 1ST PROD-ALLOC	MALJAMAR GRAYBURG UA	
04/03/1987	963	CASE MICROFILMED/SCANNED	CNUM 102,962 RW	
01/05/1989	974	AUTOMATED RECORD VERIF	AR/EC	
10/11/1990	974	AUTOMATED RECORD VERIF	GG	
06/22/1992	932	TRE OPER RGTS FILED	CHEVRON/WISER OIL CO	
06/20/1992	933	TRF OPER FGTS APPROVED	EFF 07/01/92;	
06/20/1992	974	AUTOMATED RECORD VERIF	SS9/JS	
10/01/1992	621	RLTY RED-STRIPPER WELL	2.1\;/1/8910088480	
01/15/1993	625	RITY REDUCTION APPV	/1/	
03/21/1994	976	AUTOMATED RECORD VERIF	AMI	
12/04/1995	932	TRF OPER RGTS FILED	THE WISER/MALJAMAR	
03/28/199€	933	TRE OPER AGTS APPROVED	EFF 01/01'96;	
03/28/199€	974	AUTOMATED RECORD VERIF	MV/MV	
06/01/1996	932	TRF OPER RGTS FILED	CHEVRON/CONGCO	
11/05/199€	933	TRF OPER AGTS APPROVED	EFF 09/01/96;	
11/05/1996	974	AUTOMATED RECORD VERIF	JLV	
05/22/1997	932	TRF OPER RGTS FILED	MALJAMAR/WISER OIL	
06/25/1997	933	TRE OPER RGTS APPROVED	EFF 06/01/97;	
06/25/1997	974	AUTOMATED RECORD VERIF	MV/MV	
01/16/2003	817	MERGER RECOGNIZED	CONOCO/CONOCOPHILLIPS	

NO WARRANTY IS MADE BY BLM FOR USE OF THE DATA FOR PURPOSES NOT INTENDED BY BLM

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

02/26/2018

APD ID: 10400008917

Submission Date: 01/06/2017

Highlighted data reflects the most

recent changes

Operator Name: CONOCOPHILLIPS COMPANY
Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured	-		Producing
"ID,	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	RUSTLER	3242	820	820	DOLOMITE,ANHYDRIT E	NONE	No
2	SALADO	2265	960	960	SALT,ANHYDRITE	NONE	No
3	TANSILL	1185	2040	2043	DOLOMITE,ANHYDRIT E	NONE	No
4	YATES	1050	2175	2178	DOLOMITE,ANHYDRIT E	NATURAL GAS,OIL	No
5	SEVEN RIVERS	740	2485	2489	SANDSTONE,ANHYDRI TE	NATURAL GAS,OIL	No
6	QUEEN	115	3110	3116	SANDSTONE,DOLOMIT E,ANHYDRITE	NATURAL GAS,OIL	No
7	GRAYBURG	-300	3525	3533	SANDSTONE,DOLOMIT E,ANHYDRITE	OIL	No
8	SAN ANDRES	-625	3850	3859	SANDSTONE,DOLOMIT E,ANHYDRITE	NATURAL GAS,OIL	No
9	GLORIETA	-2150	5375	5404	SANDSTONE,DOLOMIT E,SILTSTONE	NATURAL GAS,OIL	No
10	PADDOCK	-2235	5460	5524	DOLOMITE,ANHYDRIT E,SILTSTONE	NATURAL GAS,OIL	Yes

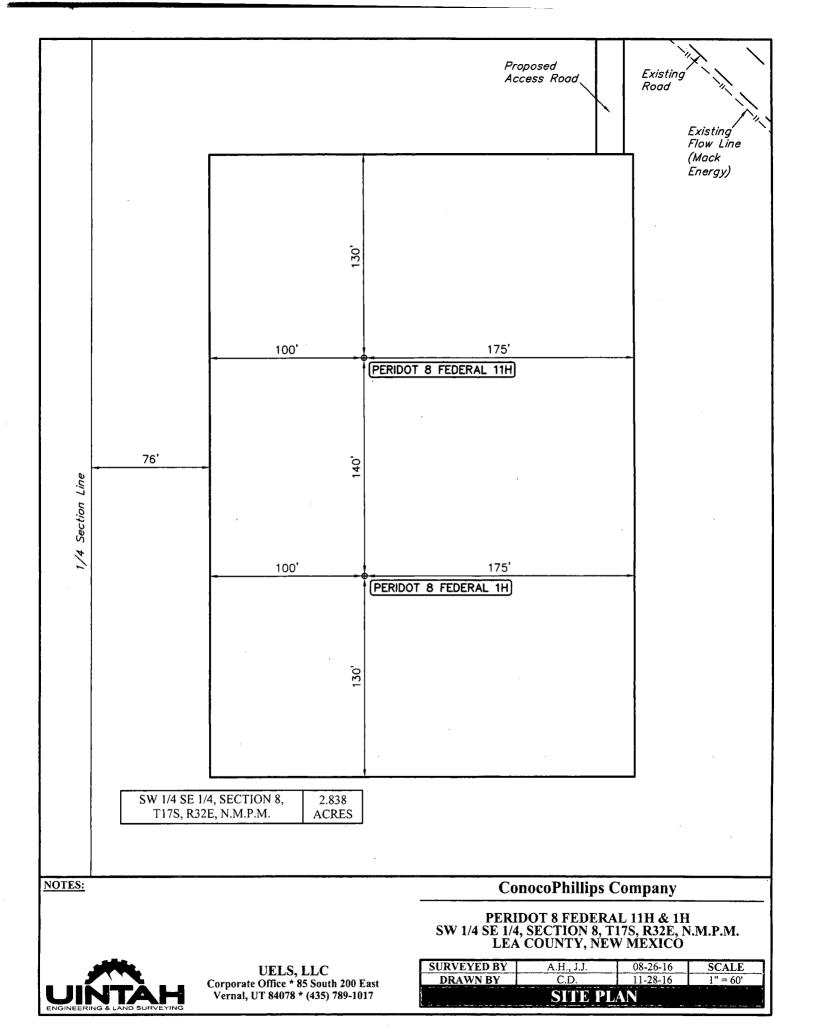
Section 2 - Blowout Prevention

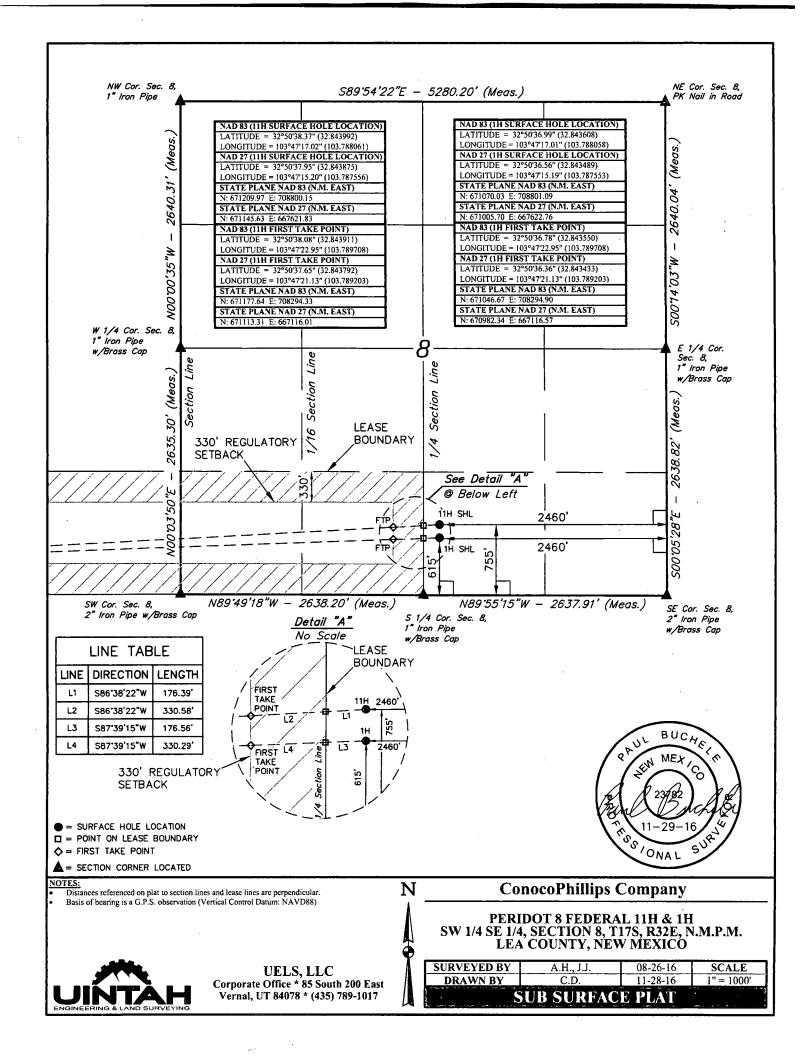
Pressure Rating (PSI): 3M

Rating Depth: 13146

Equipment: Rotating Head, Annular Preventer, Pipe/Blind Rams, Kill Lines, Choke Lines, Adapter Spool.

Requesting Variance? YES


Variance request: We request variance to use flexible choke line(s) from the BOP to Choke Manifold. We also request approval to have the option of using a 13" 3M BOP (diagram attached).


Testing Procedure: BOP/BOPE tested by independent company to 250 psi low and the high of 50% working psi, as required by Onshore Order 2. See also attached "Drill Plan".

Choke Diagram Attachment:

Peridot_8_Fed_1H_3M_ChokeDiagram_08-01-2017.pdf

Peridot_8_Fed_1H_FlexhoseVarianceData_08-01-2017.pdf

ConocoPhillips Company PERIDOT 8 FEDERAL 11H & 1H SECTION 8, T17S, R32E, N.M.P.M. LEA COUNTY, NEW MEXICO

DATE:	DESCRIPTION:	5.	
11/29/2016	DESCRIPTION: SUB SURFACE PLAT AND SITE PLAN		
			
		,	
	·		
			
			
·			
			
			

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Peridot_8_Fed_1H_3M_ChokeDiagram_08-01-2017.pdf

Peridot_8_Fed_1H_FlexhoseVarianceData_08-01-2017.pdf

BOP Diagram Attachment:

Peridot_8_Fed_1H_BOPDiagrams_08-01-2017.pdf

Peridot_8_Fed_1H_Generic5MWellhead_08-01-2017.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing tength MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	885	0	885	-1440	-2325	885	J-55	54.5	STC	2.89	6.98	DRY	10.7	DRY	17.7
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	2250	0	2250	-1440	-3640	2250	J-55	40	LTC	2.2	3.38	DRY	5.78	DRY	7
1	PRODUCTI ON	8.75	7.0	NEW	API	Y	0	5200	0	5186	-1440	-6626	5200	L-80	29	LTC	2.88	3.35	DRY	3.89	DRY	4.48
4	PRODUCTI ON	8.75	5 .5	NEW	API	Υ	5200	13146	5186	5600	-6626	-7040	7946	L-80	17	LTC	2.4	2.95	DRY	2.5	DRY	2.94

Casing Attachments

Casing ID: 1

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Peridot_8_Fed_1H_Csg_Worksheetv5_08-05-2017.pdf

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Casing	Attachi	ments
--------	---------	-------

Casing ID: 2

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Peridot_8_Fed_1H_Csg_Worksheetv5_08-05-2017.pdf

Casing ID: 3

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Peridot_8_Fed_1H_Csg_Worksheetv5_08-05-2017.pdf

Casing Design Assumptions and Worksheet(s):

Peridot_8_Fed_1H_Csg_Worksheet_08-01-2017.pdf

Casing ID: 4

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Peridot_8_Fed_1H_Csg_Worksheetv5_08-05-2017.pdf

Casing Design Assumptions and Worksheet(s):

Peridot_8_Fed_1H_Csg_Worksheetv5_08-05-2017.pdf

Section 4 - Cement

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

											,
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	585	500	1.68	13.5	840	100	Lead: Class C	4.0% Bentonite + 0.2% Anti-Foam + 2.0% CaCl2 +0.125lb/sk LCM + 0.1% Dispersant
SURFACE	Tail		585	885	400	1.35	14.8	540	100	Tail: Class C	0.2% Anti-Foam + 0.1% Lost Circ Control + 2 lbs/bbl CemNET (losses Control)
INTERMEDIATE	Lead		0	1750	450	2.29	11.5	1031	100	Lead: Class C	10.0% Bentonite + 0.2% Anti-Foam + 2.0% Expanding + 0.15% Viscosifier + 1.3% Retarder.
INTERMEDIATE	Tail		1750	2250	300	1.29	13.5	387	100	Tail: Class C	1% Extender + 3 lb/sk Extender + 0.2% Anti- Foam + 0.1% Dispersant + 13 lb/sk LCM + 0.5% Fluid Loss + 0.7% Retarder
PRODUCTION	Lead		1700	5200	650	3.2	11	2080	30	Lead: Class C	6% Extender + 10% Gas Migration Control + 2% Sodium Metasilicate (dry) + 1% Cement Bonding Agent + 3% Aluminum Silicate + 0.125 lb/sx Cello Flake + 3 lb/sx LCM-1

PRODUCTION	Lead	5200	1314	1900	1.37	14	2603	30	Class C	3lb/sk LCM + 1.5%
			6						1	Fluid Loss + 0.1% + 1%
]	Sodium Metasilicate
					'					(dry) + 1.5% Fluid Loss
										Control

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. See attached "Drill Plan" for additional information.

Describe the mud monitoring system utilized: Closed-loop mud system using steel mud containers will be on location. Mud monitoring of any changes in levels (gains or losses) will use Pressure Volume Temperature instrumentation, Pason, Visual Observations. See attached "Drill Plan" for additional information.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	885	WATER-BASED MUD	8.5	9							Please see attached "Drill Plan" for additional information.
885	2250	SALT SATURATED	10	10							Please see attached "Drill Plan" for additional information.
2250	5600	OTHER : Cut Brine	8.6	10							Please see attached "Drill Plan" for additional information.

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Production tests will be conducted multiple times per week, through a test separator, during first months following completion. Thereafter, tests will be less frequently. See attached "Drill Plan" for additional information.

List of open and cased hole logs run in the well:

CNL,GR

Coring operation description for the well:

No coring operation is planned at this time.

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 2815

Anticipated Surface Pressure: 1608.3

Anticipated Bottom Hole Temperature(F): 100

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Peridot 8 Fed 1H_H2S C Plan_01-04-2017.pdf Peridot_8_Fed_1H_RigLayoutPlat_08-02-2017.pdf

Section 8 - Other Information

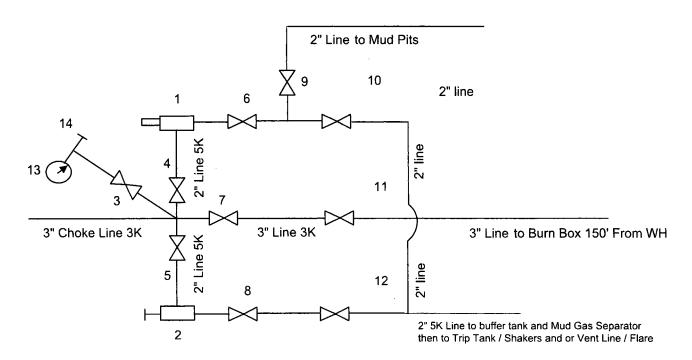
Proposed horizontal/directional/multi-lateral plan submission:

Peridot_8_Fed_1H_DirectionalPlan_08-05-2017.pdf Peridot_8_Fed_1H_WellBoreSchematic5_08-05-2017.pdf

Other proposed operations facets description:

Option to upgrade casing connection to BTC is requested, in addition to the ability to upgrade our BOP equipment. We request approval of the option to run open hole sleeve in the lateral section according to the attached plan with file title, "Peridot 8 Fed 1H OH Sleeve Option". We request variance to use multi-bowl wellhead. See also attached "Drill Plan".

Other proposed operations facets attachment:


Peridot 8 Fed 1H_Drill Waste Containment_01-04-2017.pdf
Peridot_8_Fed_1H_Drill_Planv5_08-05-2017.pdf
Peridot_8_Fed_1H_OH_Sleeve_Option_20180103085923.pdf
Peridot 8 Fed Gas Capture Plan 20180108105207.pdf

Other Variance attachment:

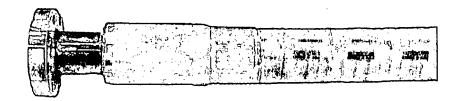
Peridot_8_Fed_5M_Wellhead_08-05-2017.pdf

CHOKE MANIFOLD ARRANGEMENT - 3M Choke

per Onshore Oil and Gas Order No. 2 utilizing 3M/5M Equipment

All Tees must be Targeted

Item	Description
1	Remote Controlled Hydraulically Operated Adjustable Choke, 2-1/16", 3M
2	Manual Adjustable Choke, 2-1/16", 3M
3	Gate Valve, 2-1/16" 5M
4	Gate Valve, 2-1/16" 5M
5	Gate Valve, 2-1/16" 5M
6	Gate Valve, 2-1/16" 5M
7	Gate Valve, 3-1/8" 3M
8	Gate Valve, 2-1/16" 5M
9	Gate Valve, 2-1/16" 5M
10	Gate Valve, 2-1/16" 5M
11	Gate Valve, 3-1/8" 3M
12	Gate Valve, 2-1/16" 5M
13	Pressure Gauge
14	2" hammer union tie-in point for BOP Tester


The 3M Choke Manifold & Valves will be tested to rated working pressure.

Wellhead / Fire Guarded System

Choke & Kill

Reliance Eliminator Choke & Kill

This hose can be used as a choke hose which connects the BOP stack to the b manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive °G6 fq706 minutes)

Nom.	ID	Non	n OD	V	Veight	Min	Bend	Radius	Max	WP
in.	mm.	in.	mm	lb/ft	kg/m	in.	mm		psi	Mpa
3	76.2	5.11	129.79	14.5	21.46	48	1219	.2	5000	34.47
3-1/2	88.9	5.79	147.06	20,14	29.80	54	1371	.6	5000	34.47

End Connections

Fittings	F	langes	Hamme	r Unions	Other
RC4X5055	R35 - 3-1	/8 5000# API	Type 6B All	Union Configurations	LP Threaded (
RC3X5055	R31 - 3-1	/8 3000# API	Type 6B		Graylock
RC4X5575				C	ustom Ends

Industrial Products USA, Ltd.

Please remit payment to: 606 - 19 Avenue, Nieku, AB Canada T9E 7W1

Grooley, CO 80631
Ph. 970-346-3751
Fax: 970-353-3168
2030E 8th Street, Suite B

Bossler City, LA 71111
Ph. 318-687-5486
Fax: 318-687-5491
1001 M&O Drive

Sen Antonio, TX 78217 Ph: 210-650-3636 Fax: 210-650-3133 4327 Centergate Street

Williston, ND 58801 Ph 701-572-7035 Fax 701-572-7030 4970 Hwy 85

Midland, TX 79706 Ph: 432-689-0102 Fax: 432-699-4898 2904 SCR 1250

Houston, TX 77388 Ph: 281-288-9720 4115 Kie nhop Rd Suite B

BAL TO		CUSTOMER	NO.	SALESMAN NO.	SHIP '	TO		custo	MER NO.			SALESM	AN NO.					
		0030	54	HSE				003	054			HS	Ε .	PO	1 OF	. 1		
						٠.				•								
	T	RINIDAD D	RILLING L	P				TRINID	AD DRI	LLING					, .			
	1	5015 VICK	ERY DR					RIGH 4	35					00	305401	3482		
	H	OUSTON, T	X 77032	•									• •	- 00	101346	ABER STATUS		
										[7	131439-	1670						
														1.5.2	EN ORD	er.		
BRANCH					Б	ÜĐ	HOX	HAG	COIL	PC	TOTAL	TAX ID	#20-017422	1		EFERENCE N	MBEA	
1	Reliance -	Midland			- 1									٠ ا	10	5-013482		
NO.	DAY YR.	1	BY YOUR OF					i	RMS			<u> </u>	SHIP V				C	146
	11/04/16	RWB	11/0	4/16 5709 PO22132				-	NET 30	DAYS			DEL	IVERY	,	RWB		1 .
ORDE	RED	SHIPPED	ORDERED	PART NUMBER AN	D DESCR	HOUTEN				COOE	Pf	IST TICE	PRICE	UNI	T :	NET AMOU	NT	
		i		*****************	*****	SHID	DTMC F	ETAIL*						· · · ·	17			
		1		11/4/16							COMPLET	TED RY						
				DELIVER TO YARD							INSTRU							
				1 .							INSTRU				.			
		: !		ATTN: IAN RIGH 435							OMER C			•	· [
				PARTS API HOSE)							2.5			J				
				************	*****	••••	*****	•••••		*****	•••••				·			
	1	1	1 100 - 1	KIT MATERIALS	M	ateri	ΛLS			7			4806.	980	EA	4806.9	0	
		<*******		! !*************. Componer	ics for	r abo	ve it	em are	listed	belov	,	*****	*****	****	•••	•		
	•	2.00		LAB RKSWAGE	Gi	RADE	C&D	SWAGE							EA.			
		1.00		LAB T-100	71	ESTIN	g Chai	RGES				·			EA			
}		1		PTC P930012	I	D TAG	2.5X	1.5 SS			J 2	С	•		ΕĄ			
1	• •	2	· }	PTC P930022	. 0	able	TIE S	S 20.50	Ն		JŻ	Ċ		44, 4	EA			
		9	;	HBD RFG500056	3	1/2	FIREG	LIARD CI	KOKE H	DSE .		-			EA S.			
		1	1 }	RSK 7K-FR35X5KRCD56	F	LOATI	NO FL	ÀNGE C	CPLIN	3 ,	M 1	E		*	EĄ	`.		
j		1	!	RSK 7K-RJSXSKRCD56	G	RADE	C/D R	35 FLAI	NGE COL	JPL	M 1	E			EA.			
		2	į	API OVERFERRULE96	6	" SS	OVERF	ERRULE			, W 3	F			EA			
}		. 15		HDW 3X116	3	" X 1	/16"	FIBERG	LASS T	APE .	9 1	C	., .	e jent. Haz	Ħ			
}		;	ļ	1 - 3.5" X 8'6" 5K F				R35 F	I XED X	FLOAT:	LNG FLA	NGE		164				
			:	TESTED TO 10000 PSI								• :						
		:		HYDRO-TEST AND NACE	CERTIF	ICATI	ONS P	ROVIDE	כ			-				, :		
Į.		: ******										*****				> .		
Ì			1	IF ORDERED TODAY BUY							- MC			5 J.	M .			
ļ				IF ORDERED LATER THAN	N ZHM	T.I. M	LLL BE	MONUA	X DETT.	VLKI		:						
				İ						٠,			٠.			•		
1				Sign:		אוו	n .							٠.				
		İ				71							•				-	
{			!	Sign:	44	a.		نت جب				•						
			Ì	1	£.,		1	/			. 1.							
				Print	Nan	ie:			1/	200				1				
		1									1. S.A.	;				• :		
1		-				11-	22	! - ,	16		15							
				Date		 ` -	-		<u> </u>			•						
			l: .								12							
PIČKED BY	ASSEMD BY	TESTED BY	TERMS	NET 30 DAYS FROM DATE O	oF GO	ODS R	ECEIVE	O BY (P	LEASE P	RINT)		T	SUB-TO	TAI		4006.5	8	
		=	INVOICE	Interest of 2% PER MONTH (24	9.0	7.1		•	٠,				FAX			0.0		
AUROSO NO	172	INSPEC. BY		NUM) charged on overdue account is of the contract between Relian					· · ·		<u>, , , , , , , , , , , , , , , , , , , </u>			111			· .	· ·
MEPEC RY	PIBPEC BY	Maret. 8Y	Industrial	Products Ltd. ("Rellance") and t	he ""	TIAL				1	1:25		TOTAL			4806.	8	4
	·	1	customer	are on the reverse of this docume	nt.								· VIAL		15 8			

2904 SCR 1250 MIDLAND, TX 79706

TEST CERTIFICATE

Customer Information

Customer:	TRINIDAD DRILLING
P.O. #:	PO22132
Rig #	RIG# 435
Cust Tracking #	

Test Information

Cert No.:	105-013482/001	H-01
Date: (YYYY-MM-DD)	#2016-11-11#	
Working Pressure:	5000 PSI	
Test Pressure:	10000 PSI	
Duration (mins):	20	

Traceability

- 1	3	NEW
	لستسا	

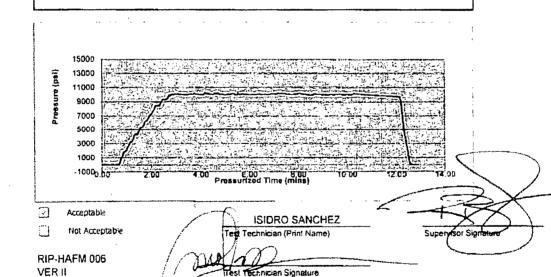
RECERT	13482	 H-01

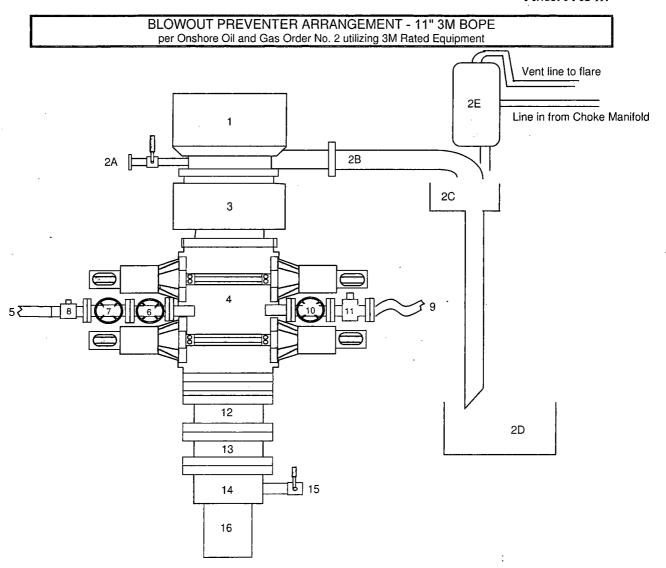
Previous Reference #

Material Information

Hose Type	3.1/2" FIREGUARD H
Hose ID	3.1/2"
Assembly Length	8'.6"
Fireguard Yes/No	YES

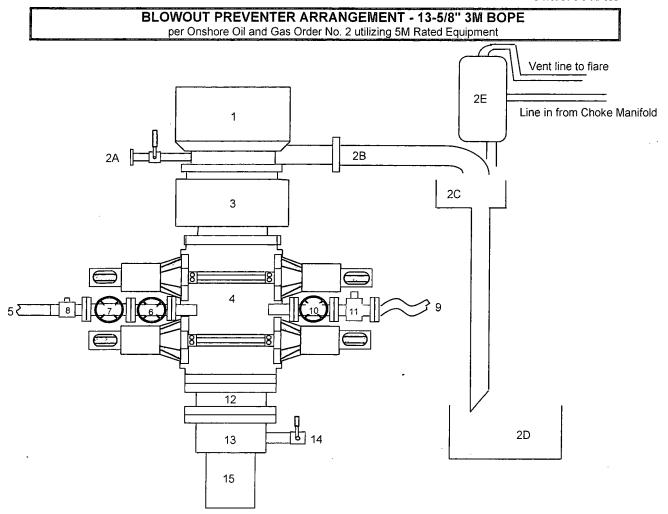
Material Tracking - Coupling #1


Coupling #1:	R35 FIXD FLANGE
MTR# - Stem	
MTR# - Shell	
NACE#	


Material Tracking - Coupling #2

Coupling #2;	R35 FLOATING FLAN
MTR# - Stem	
MTR# - Shell	
NACE#	

Comments


TESTED AND CERTIFIED @ 10000 PSI FOR 10 MINUTES CERT TAG SN# 13482-H01

tem	Description
1	Rotating Head, 11"
2A	Fill up Line and Valve
2B	Flow Line (10")
2C	Shale Shakers and Solids Settling Tank
2D	Cuttings Bins for Zero Discharge
2E	Rental Mud Gas Separator with vent line to flare and return line to mud system
3	Annular BOP (11", 3M)
4	Double Ram (11", 3M, Blind Ram top x Pipe Ram bottom)
5	Kill Line (2" flexible hose, 3M)
6	Kill Line Valve, Inner (2-1/16", 3M)
7	Kill Line Valve, Outer (2-1/16", 3M)
8	Kill Line Check Valve (2-1/16", 3M)
9	Choke Line (3-1/8" 3M Coflex Line)
10	Choke Line Valve, Inner (3-1/8", 3M)
11	Choke Line Valve, Outer, (3-1/8", Hydraulically operated, 3M)
12	Adapter Flange (11" 5M to 11" 3M)
13	Spacer Spool (11", 5M)
14	Casing Head (11" 5M)
15	Ball Valve and Threaded Nipple on Casing Head Outlet, 2" 5M
16	Surface Casing

A variance is requested to permit the use of flexible hose. The testing certificate for the specific hose will be available on the rig prior to commencing drilling operations.

tem	Description
1	Rotating Head, 13-5/8"
2A	Fill up Line and Valve
2B	Flow Line (10")

2C Shale Shakers and Solids Settling Tank

2D Cuttings Bins for Zero Discharge

2E Rental Mud Gas Separator with vent line to flare and return line to mud system

3 Annular BOP (13-5/8", 5M)

4 Double Ram (13-5/8", 5M, Blind Ram top x Pipe Ram bottom)

Kill Line (2" flexible hose, 3M)Kill Line Valve, Inner (2-1/16", 5M)

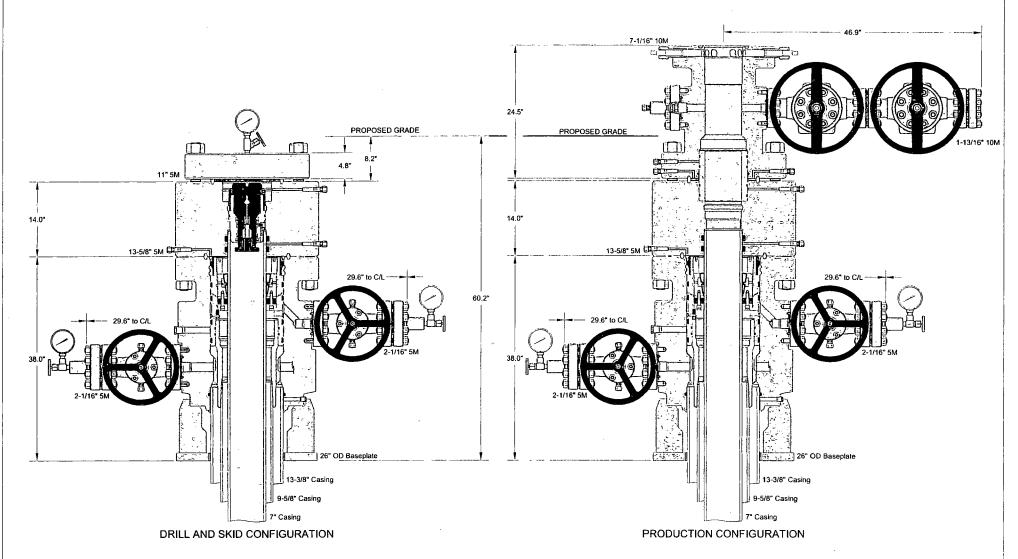
7 Kill Line Valve, Outer (2-1/16", 5M)

8 Kill Line Check Valve (2-1/16", 5M)

9 Choke Line (3-1/8", 3M Coffex Line)

10 Choke Line Valve, Inner (3-1/8", 5M)

11 Choke Line Valve, Outer (3-1/8", Hydraulically operated, 5M)


12 Spacer Spool (13-5/8", 5M)

13 Casing Head (13-5/8" 5M)

14 Ball Valve and Threaded Nipple on Casing Head Outlet, 2" 5M

15 Surface Casing

A variance is requested to permit the use of flexible hose. The testing certificate for the specific hose will be available on the rig prior to commencing drilling operations.

INFORMATION CONTAINED HEREIN IS THE PROPERTY OF CACTUS WELLHEAD, LLC. REPRODUCTION, DISCLOSURE, OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY CONTRACT OR AS EXPRESSUAUTHORIZED BY CACTUS WELLHEAD, LLC.

Peridot 8 Federal 1H

CACTUS WELLHEAD LLC

13-3/8" x 9-5/8" x 7" 5M MBU-2LR Wellhead Assembly With 13-5/8" 5M x 11" 5M DBLHPS DSPA With 6-3/4" Type LR BPV Profile and11" 5M x 7-1/16" 10M CTH-HPS-F Tubing Head

Permian Basin

DEAWR	THH	26JUL15
AF'F'R'V		
р£∧МЫС ИС	ODE000	0716

face Casing	MD 1	885 en	885 54	.5 2730	1130	853000	514000	8.5				n) ar	*	* A
ermediate 1 Casing		2250		10 3950	2570	630000	520000		· r. · · · · · ·	700	-	4		- :
duction 1 Casing	5200	5200	5200	29 8160	7020	676000	587000	9	$\{x_i, x_i\}$	7.		-	•	
duction 2 Casing	13146	5600	7946	17 7740	6290	397000	338000	9				. ţ	•	
				***		; - *	. :		\$6. To 6					1 42
್ವಾರ (೧೯೮೮) ಕ್ರಾಪ್ ಕ್ರಾಪ್ (೧೯೮೮) ೧೯೬೮ ಕ್ರಾಪ್ (೧೯೮೮)			3 Sec. 1	* * * * *						J	^	***		
									W 1					
Collapse Design (Safety		BLM Crite	<u>ria</u>							actors - BLM	<u>Criteria</u>	1 .		
Collapse Design (Safety) Facto			· .						Safety) Factor: S	iFb .		1. 1.	, .	
SFc = Pc / (MW x :052 x Ls)		57 (77)				• •	· · · · · · ·	SFb = Pi / BHF	-			1180	• •	2
Where Pc is the rate					:			Where		at along Pinan (Balais		V-1-1 0	:ada aa.	
• MW is mud				iare inch (psi)	-	1				d pipe Burst (Minis om hole pressure ir				square in
Ls is the len						46.		The Minimum						
The Minimum Acceptable Colla					, ,			i ne wananum	Acceptable burs	t Design (Salety) r	actor and -			
The Minimum Acceptable Cons	pse Design (Sai	cty) raciui 3	IFC - 1.123							100		- '}		
face Casing	i da ja f							Surface Casing						-
SFc=	1.130	$\gamma = \gamma$	391 =	2.89	**	1000			2730 - /	391	. ;≟	6.98		
		,		. 4			1.				2 1 . 1			**.
mediate 1 Casing	arian ing	ta iliyota				1.1		Intermediate 1 (Casino		* * 6.	- : [
	2570	$T_{\mathcal{F}} = 1$	170 =	2.20	· · ·		** .			1170.	.	3.38		
17.2					-	٠.	- '					. :		
					•		i i	17. Faya 1	rger i e			1111	:	
uction 1 Casing	g = (*)			.*				Production 1 Ca	sing				** . *	
SFc ≟	7020 🥫	/ 2	434 =	2.88	-					2434	i i k†	3.35		
					•		,				• • •		•	
uction 2 Casing						•		Production 2 Ca	sing	4,4	1	.+		
SFc =	6290	12	621 =	2.40				SFb =	7740 /	2621	=	2.95		
				T		:	-				-	;		
				"e		-	* *			* 1				
							•	as the second		. 2.		1		
Dina Company Days			la constant				•			álein del	DI 10 G			
Pipe Strength Design (S				;	•					Safety) Factor	s - BLM C	riteria	1.0	
Pipe Strength Design (Salety) I								Joint Strength		ractor, SFt)	:			
SFIp = Fp / Wt;	· 2-} -				. :		•	SFtj = Fj / Wt;				, -		
Where Fp is the rate	ul ninà Parti Ci-	anoth is seco	nde (lbe)			•		Where	Si je the	d pipe Joint Streng	th in pounds	(De)		
• Wt is the we										ight of the casing				
The Minimum Acceptable Pipe				dry or 1.8 human			•			Strength Design (or 1.8 bucks	nt
minimum Acceptable Pipe	Chengui Design	· (Jaioty) Fac	or (p - 1.0	ury or 1.0 buoyar				the Minurusm	Localisme iou	r onendru nesidu (Colety) Facto			·· · .
			2			100		one it is an it				- 71		
	•	100	· · · ·					Surface Casing						** *,
ace Casing			A 2	47.7							. =	10.7		
	853000	J .: 48	232.5 . =	17.7				SFi Dry = 51	14000/	48232.5				
ce Casing SFi:Dry = SFi Bouyant =				0.870) = -2	0.3	SF				х -	0.870) =	12.2
SFi Dry =) = :2	0.3	SF			48232.5 ./. (48232.5		0.870) ⁼ .	12.2
SFi Dry = SFi Bouyant =) = 2	0.3	SF		14000		**************************************	0.870) = . 	12.2
SFi Dry = SFi Bouyant = Mediate 1 Casing	853000		232.5 x) = 2	0.3	SF	i Bouyant = 51	14000		**************************************	0.870 5.78) = . :::::::::::::::::::::::::::::::::::	12.2
SFi Dry = SFi Bouyant = mediate 1 Casing SFi Dry = SFi Bouyant =	853000	- / (· 48 - / · 9(232.5 x	0.870 7.00	,	.26		i Bouyant = 51	Casing /	./. (48232.5	- x - x - x - x - x - x - x - x - x - x)	12.2 6.82
SFi Dry = SFi Bouyant = nediate 1 Casing SFi Dry = SFi Bouyant =	853000 630000	- / (· 48 - / · 9(232.5 x 0000 =	0.870 7.00	,			i Bouyant = 51 Intermediate 1 (SFi Dry = 52	Casing /	90000 90000	· · · · · · · · · · · · · · · · · · ·	5.78	resolution in	
SFi Dry = SFi Bouyant = mediate 1 Casing SFi Dry = SFi Bouyant =	853000 630000	- / (· 48 - / · 9(232.5 x 0000 =	0.870 7.00	,			i Bouyant = 51 Intermediate 1 (SFi Dry = 52	Casing /	90000 90000	· · · · · · · · · · · · · · · · · · ·	5.78	resolution in	
SFi Dry = SFi Bouyant = mediate 1 Casing SFi Dry = SFi Bouyant =	630000 630000	/ (48 / 90 / (90	232.5 x 00000 = 00000 x	0.870 7.00	,			i Bouyant = 51 Intermediate 1 C SFi Dry = 52 i Bouyant = 52 Production 1 Ca	Casing 20000 / 20000	90000 / (90000	· · · · · · · · · · · · · · · · · · ·	5.7 8 0.847	resolution in	
SFi Dry = SFi Bouyant = mediate 1 Casing SFi Dry = SFi Bouyant = uction 1 Casing	630000 630000 630000	/ (48 / 90 / (90	232.5 x 00000 = 00000 x	0.870 7.00	,			i Bouyant = 51 Intermediate 1 C SFi Dry = 52 i Bouyant = 52 Production 1 Ca	Casing 20000 / 20000	90000 / (90000 150800	· · · · · · · · · · · · · · · · · · ·	5.78 0.847	resolution in	6.82
SFi Dry = SFi Bouyant = mediate 1 Casing SFi Dry = SFi Bouyant = uction 1 Casing SFi Dry = SFi Bouyant =	630000 630000	/ (48 / 90 / (90	232.5 x 00000 = 00000 x	7.00 0.847) = 8		SF	i Bouyant = 51 Intermediate 1 · SFi Dry = 52 i Bouyant = 52 Production 1 Ca SFi Dry = 58	Casing 20000 / 20000	90000 / (90000	· · · · · · · · · · · · · · · · · · ·	5.7 8 0.847	resolution in	
SFi Dry = SFi Bouyant = mediate 1 Casing SFi Dry = SFi Bouyant = uction 1 Casing SFi Dry = SFi Bouyant =	630000 630000 630000	/ (48 / 90 / (90	232.5 x 00000 = 00000 x	0.870 7.00 0.847) = 8	.26	SF	Bouyant = 51	Casing / 20000	90000 / (90000 150800	**************************************	5.78 0.847	resolution in	6.82
SFi Dry = SFi Bouyant = The diate 1 Casing SFi Dry = SFi Bouyant = Luction 1 Casing SFi Dry = SFi Bouyant = Luction 2 Casing Luction 2 Casing	630000 630000 676000 676000	/ (48) / 90 / (90 / 15	232.5 x 0000 = 0000 x 0800 = 0800 x	0.870 7:00 0.847 4.48 0.863) = 8	.26	SF	i Bouyant = 51 Intermediate 1: 55 SFi Dry = 52 Production 1 Ca SFi Dry = 56 i Bouyant = 56 Production 2 Ca	Casing / (20000) / (20000 / (20000 / (20000) / (2000) / (2000) / (200	90000 / (90000 150800 / (150800	**************************************	5.78 0.847 3.89 0.863	resolution in	6.82
SFi Dry = SFi Bouyant = SFi Dry = SFi Bouyant = SFi Bouyant = SFi Dry = SFi Bouyant = SFi Bouyant = SFi Bouyant = SFI Bouyant = SFI Bouyant = SFI Bouyant = SFI Bouyant = SFI Bouyant = SFI Dry = SFI Dry =	630000 630000 676000 676000	/ (48) / 9(/ (9) / 15 / (15	232.5 x 0000 = 0000 x 0800 = 0800 x	0.870 7:00 0.847 4.48 0.863) = 8	.26	SF	Bouyant = 51	Casing 20000 /	90000 / (90000 / (90000 / (150800 / (150800	X X	5.78 0.847 0.863	resolution in	6.82 4.51
SFi Bouyant = mediate 1 Casing SFi Dry = SFi Bouyant = duction 1 Casing SFi Dry =	630000 630000 676000 676000	/ (48) / 90 / (90 / 15	232.5 x 0000 = 0000 x 0800 = 0800 x	0.870 7:00 0.847 4.48 0.863) = 8	.26	SF	Bouyant = 51	Casing 20000 /	90000 / (90000 150800 / (150800	X X	5.78 0.847 3.89 0.863	resolution in	6.82

																ſ	Peridot 8 Fed 1H
String:Section		epth MD	Depth TVD	Csg length ft	Wt	MIY	Co	ol	Pipe Str	Jt Str	Drill Fluid						
Surface Casing		885	885	885	54.5	5 2	730	1130	853000	514000	8.5					į	
Intermediate 1 Casing	. \square	2250	2250	2250	4(3	3950	2570	630000	520000	10		•			j	
Production 1 Casing		5200	5200	5200	29		3160	7020	676000	587000							
Production 2 Casing		13146	5600	7946	17	7 7	740	6290	397000	338000	9						
• M	fety) Factor: 52 x Ls) c is the rated W is mud we s is the length	SFc pipe Collap eight in pour n of the strin	ose Pressi nds per ga ng in feet (ure in pounds illon (ppg) (ft)		re inch (p:	si)				Burst Des SFb = Pi Where	ign (Safety) Fa BHP · Pi Is t • BHP i	ctor: SFb ne rated plp s bottom ho	prs — BLM C pe Burst (Minimu ple pressure in p sign (Safety) Fac	m Internal	square incl	ssure in pounds per square inch (ps h (psi)
Surface Casing											Surface Cas	ina				!	
- s	SFc =	1130	1	391	=	2.89					SFb =	2730	1	391	=	6.98	
Intermediate 1 Casin	1 g SFc =	2570	1	1170	=	2.20					Intermediate SFb =	1 Casing 3950		1170	=	3.38	
Production 1 Casing) SFc =	7020	/	2434	=	2.88					Production SFb =	1 Casing 8160	1	. 2434	=	3.35	
Production 2 Casing] SFc =	6290	1	2621	=	2.40					Production : SFb =	2 Casing 7740	1	2621	=	2.95	

<u>Pipe Strength Design (Safety) Factors - BLM Criteria</u> Pipe Strength Design (Safety) Factor: SFtp

SFtp ≈ Fp / Wt;

Where

- Fp is the rated pipe Body Strength in pounds (lbs)
- . Wt is the weight of the casing string in pounds (lbs)

The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant

Joint Strength Design (Safety) Factors - BLM Criteri
Joint Strength Design (Safety) Factor: SFI)
SFtj = Fj / Wt;
Where

- Fj is the rated pipe Joint Strength in pounds (lbs)
- Wt is the weight of the casing string in pounds (ibs)

The Minimum Acceptable Joint Strength Design (Safety) Factor SFT] = 1.6 dry or 1.8 buoyant

Surface Casing SFi Dry = SFi Bouyant =	853000 853000	/ (48232.5 48232.5	= x .	17.7 0.870) =	20.3	Surface Casing SFi Dry = 514000 / 48232.5 = 10.7 SFi Bouyant = 514000 / (48232.5 x 0.870) =	12.2
Intermediate 1 Casing SFi Dry = SFi Bouyant =	630000 630000	/ (90000 90000	= x	7.00 0.847) =	8.26	Intermediate 1 Casing SFi Dry = 520000 / 90000 = 5.78 SFi Bouyant = 520000 / (90000 x 0.847) =	6.82
Production 1 Casing SFi Dry = SFi Bouyant =	676000 676000	<i>!</i>	150800 150800	= x	4.48 0.863) =	5,20	Production 1 Casing SFi Dry = 587000 / 150800 = 3.89 SFi Bouyant = 587000 / (150800 x 0.863) =	4,51
Production 2 Casing SFi Dry = SFi Bouyant =	397000 39 7 000	/ (135082 135082	= x	2.94 0.863) =	3.41	Production 2 Casing SFi Dry = 338000 / 135082 = 2.50 SFi Bouyant = 338000 / (135082 x 0.863) =	2,90

string Section	Depth	Depth	•	Wt MI	Y	COI	Pipe Str	Jt Str	Drill Fluid					į		
Surface Casing	MD 885	TVD 885	length ft 885	54.5	2730	1130	853000	514000	0 8.5					4	100	
ntermediate 1 Casing	2250	2250	2250	40	3950	2570	630000						-	+		
roduction 1 Casing	5200	5200	5200	29	8160		676000			St. 6 2 3			-			
roduction 2 Casing	13146	5600	7946	17	7740	6290	397000	338000	0 9					į.	,	
	1,276					•	•	:	~							•
	. ****	-			•									***		
											J					
Collapse Design (Safe		- BLM C	Criteria							esign (Safety		- BLM Cri	teria			
Collapse Design (Safety) Fa										ign (Safety) Fact	or: SFb	•				
SFc = Pc / (MW x 052 x Ls)	r.			٠.	, .	_			SFb = Pi / Where	вир	•					
Where Pc is the	rated nine Collar	nse Pressii	ire in nounds n	er souare inc	rh (nsi)		•		venere	• Pi is the	rated nine R	urst /Minimum	n Internal 3	(ield) Pressure	in nounds or	er savare i
• MW is mu				·	J. (p.s.)				•-					quare inch (ps		
Ls is the l					· .		ž.		The Minim	ium Acceptable i			-			; -
The Minimum Acceptable Co				5												
Water Carlo		: "	'						- C	:• *						
rface Casing									Surface Cas	ing						
SFc =	1130	$\cdot \cdot r$	391	્ર≃ 2.8	B9 .				SFb =	2730	1	391	=	6.98		
and description of the	in the second second	ar ira d		_ ** **	11.5							11.	*			
ermediate 1 Casing				٠	. :				Intermediate		***			· · · <u> </u>		
:SFc = `	2570	· · · /- ·	1170~	= 2.	20				SFb =	3950	1	1170	= .	3.38		
														I		
			-					*	D							
oduction 1 Casing SFc =	7020		2434	= 2.1					Production 1	8160		2434	050	3.35	•	·
3FC-	7.7020	,	2434	2.0	00				3FU,	01002		2434	~.	, ,	•	
oduction 2 Casing				*					Production 2	Casing.				:		
SFc =	6290	1	2621	= 2.4	40				SFb =	7740	. 1	2621	=	2.95		
					:-		•									
	P. L		5.23	F 1					. 4				٠.,	. •	4.	
1. 化甲烷基基苯基甲基基				• •					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) - S	,	'N		- 1		
		٠.				٠.	*							i		
Pipe Strength Design		<u>ctors – E</u>	3LM Criteria	<u>'</u>	•					rength Desig			BLMC	<u>riteria</u>		
Pipe Strength Design (Safet	y) Factor: SFtp									ngth Design (Sal	ety) Factor: S	5Fy				
SFtp = Fp / Wt;		.	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		:				SFy = Fj7	Wt.						
Where En in the	ated pipe Body	Strongth in	n nounds (lbs)	• •					Where	• Fj is the	ested sine. I	nint Strangth i	n novembe i	The\		
Wt is the				, ,						• Wtisth						
The Minimum Acceptable Pi					1.8 human	nt				um Acceptable					v or 1.8 buova	ant
	pe one. g oc.		,,	- 1.0 0-7 0.						· · · · · · · · · · · · · · · · · · ·	oon n ou cong.	000.9 (00.	.,,	- ,		
Burton Barrier													•	1		
rface Casing				• • • • • • • • • • • • • • • • • • • •				• '	Surface Cas	ing	•					•
SFi Dry =	- 853000	1	48232.5	- = 17	.7			,	SFi Dry =	514000	-1 4	48232.5	=	10.7		
SFi Bouyant = :	853000	÷ 77 (48232.5	x '-	0.870) =	20,3	S	Fi Bouyant =	514000		18232.5	. X	0.870) =	12.2
	y figures j															
ermediate 1 Casing	- 14			, , , , , , , , , , , , , , , , , , ,					Intermediate							
SFi Dry =	630000		90000	= 7.				:	SFi Dry =	520000		.90000	=.	5.78		
SFi Bouyant =	630000	7. (90000	x .	0.847) = .	8.26	S	Fi Bouyant =	-520000	_/(90000	x	0.847) =	6.82
	13 / Tar 87 / 12					•			42 5 55 5 5	1.1			*			
oduction 1 Casing		•							Production 1	l Caeina				1		
SFi Dry =	676000	,	150800	= 4,	4R				SFi Dry =	587000	1.	150800	=	3.89		
SFi Bouyant =	676000		150800	••	0.863) =	5.20	۹.	Fi Bouyant =	587000		150800	x	0.863	') = '	4.51
3	2, 5550		.00000	- " +-	g.549	' .								1	,	
oduction 2 Casing		7						· · ·	Production 2	2 Casing			*	j :		
SFi Dry =	397000	$-\lambda$	135082	= 2.	94	F .			» SFi Dry ≂	338000	1	135082	=	2.50		
SFi Bouyant = -	397000	<i>l</i> : (,	135082	×	0.863) =	3.41	S	Fi Bouyant =	338000	1 (135082	· x	0.863) =	2.90
					-	-								:		

0.863

String Section	Depth	Depth	Csg	Wt	MIY	Col	Pipe Str	Jt Str	Drill Fluid					:				
	MD	TVD	length ft											1				
Surface Casing	88			54.										,				
Intermediate 1 Casing	225			4										i				
Production 1 Casing	520									· •								
Production 2 Casing	1314	6 560	7946	1	7 77	40 629	0 39700	0 338000	9					1				
								•										
44														,				
Collapse Design (Sa	ifetv) Factor	s – BLM	Criteria						Burst I	Design (Safe	tv) Facto	rs – BLM Ci	riteria	,				
Collapse Design (Safety) F										sign (Safety) Fa				,				
SFc = Pc / (MW x .052 x L	s)								SFb = Pi					i				
Where									Where									
			sure in pounds	per squa	are inch (psi)							e Burst (Minimu		٠,		pounds per	square inch (ps
	nud weight in p											le pressure in p			nch (psi)			
·	e length of the s	-							The Mini	mum Acceptabl	e Burst Des	ign (Salety) Fac	tor SFb = 1	1.0				-
The Minimum Acceptable	Collapse Desig	n (Sarety) F	actor SFC = 1.1	125														
Surface Casing									Surface Car	sina				i				
SFc =	: 113	0 /	391	=	2.89				SFb =	2730	1	391	=	6.9	3			
Intermediate 1 Casing									Intermediat	te 1 Casing	•			į				
SFc =	257	0 /	1170	=	2.20				SFb =	3950	1	1170	=	3.38	1.			
														,				
B									.									
Production 1 Casing SFc =	702	0 /	2434	_	2.00				Production SFb =	1 Casing 8160	,	2434	=	3:35				
3FC -	702	0 /	2434	_	2.88				SFU -	0100	. , .	2434	_	3:3:	,			
Production 2 Casing									Production	2 Casing								
SFc =	629	0 /	2621	=	2.40				SFb =	7740	1	2621	=	2.9	ز			
														i				
															1			
Di C4	(C-f-4.) F		DI M 0-11						1-1-4 6		· 10-4-	4.3 Fautaua	DI 14 C		1			
Pipe Strength Design Pipe Strength Design (Sal			BLM Criter	<u>ıa</u>						Strength Des ength Design (S			- BLINI C	riteria	!			
SFtp = Fp / Wt;	ety) ractor. Sri	μ							SFtj = Fj		alety) racio	n. Sry						
Where									Where	7 441,								
	e rated pipe Bo	dy Strength	in pounds (lbs))						• Fjistl	e rated pipe	e Joint Strength	in pounds	(lbs)				
Wt is th	e weight of the	casing strir	ng in pounds (lb	s)						• Wtis	the weight o	of the casing stri	ing in poun	ds (lbs)				
The Minimum Acceptable	Pipe Strength D	esign (Saf	ety) Factor SFT	p = 1,6 c	dry or 1.8 buc	yant			The Mini	lmum Acceptabl	e Joint Strei	ngth Design (Sa	ifety) Facto	r SFTj =	1.6 dry or	1.8 buoyar	ri .	
														1				
Surface Cooling									Surface Co.	-1								
Surface Casing SFi Dry =	· · · 85300	n /	48232.5	=	17.7				Surface Cas SFi Dry =	514000	,	48232.5	· =	10.7	,			
SFi Bouyant =				×	0.870) =	20.3	SE	i Bouyant =	:514000	- 1	· ·	×		.870) =	12.2	
	22000	• .	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	^ .	0.010	,	20.0	٥.	, bodya	01,000	, ,		.,	7		•		
Intermediate 1 Casing									Intermediat	te.1 Casing								
SFi Dry =	63000	0 /	90000	=	7.00				SFi Dry =	520000	1	90000	=	5.78	}			
SFi Bouyant =	63000	0 /	(90000	x	0.847) =	8.26	SF	i Bouyant =	520000	/ (90000	×	0	.847) =	6.82	
															ı			
D									Donato at	4.0								
Production 1 Casing SFi Dry =	67600	0 /	150800	_	4.48				Production SFi Dry =	1 Casing 587000	,	150800	=	3.89				
OF: 0				= x	0.863) =	5.20	91	SFIDTy = Fi Bouyant =	587000 587000	′/(– x		,863) =	4.51	
Sri Bouyant =	0,000	• /	(130000	^	0.603	, -	3.20	or.	i bouyani =	307000	, (130000	^	v	,000	, –		

Production 2 Casing SFi Dry = 338000 SFi Bouyant = .338000

/ (135082

 Production 2 Casing

 SFi Dry =
 397000
 /
 135082
 =
 2.94

 SFi Bouyant =
 397000
 /
 (
 135082
 x
 0.863
) =
 3.41

String Section	Depth MD	Dopth TVD	Csg longth ft	Wŧ	MIY	Col	Pipe Str	Jt Str	Drill Fluid
Surface Casing	885	885	885	54.5	2730	1130	853000	514000	8.5
Intermediate 1 Casing	2000	2000	2000	40	3950	2570	630000	520000	10
Intermediate 2 Casing	0	0	0	0	0	0	0	0	0
Production 1 Casing	5200	5200	5200	29	8160	7020	676000	587000	9
Production 2 Casing	13132	5583	7932	17	7740	6290	397000	338000	9
				-					

Collapse Design (Safety) Factors - BLM Criteria Cotapse Design (Safety) Factor: SFc SFc = Pc / (MW x .052 x Ls) Where	Burst Design (Safety) Factors — BLM Critoria Burst Design (Safety) Factor: SFb SFb = P/ BHP Where
Pc is the rated pipe Collapse Pressure in pounds per square Inch (psi)	Pr is the rated pipe Burat (Minimum Internal Yield) Pressure in pounds per square inch (psi)
MW is mud weight in pounds per gallon (ppg)	BHP is bottom hote pressure in pounds per square inch (psi)
La is the length of the string in feet (ft)	The Minimum Acceptable Burst Design (Safety) Factor SFb = 1.0
The Minimum Acceptable Collapse Dosign (Safety) Factor SFc = 1,125	The mination Acceptable built Design (Salety) Factor SFD = 1.0
The tribution according Straight Galaxy, action of C = 1,25	
Surface Casing	Surface Casing
SFc = 1130 / 391 = 2.89	SFb = 2730 / 391 = 6.98
그 본 사고, 사회 회에 하는 시험을 하는 하는 사람들이 어떻게 되어 가는 것이 되었다.	
Intermediate 1 Casing	Intermediate 1 Casing
SFc = 2570 / 1040 = 2.47	SFb = 3950 / 1040 = 3.60
Intermediate 2 Casing	Intermediate 2 Casing
, SFc = 0 / 0 = #DIV/0!	SFb = 0 / 0 = #DIV/0!
Production 1 Casing	Production 1 Casing
SFc = 7020 / 2434 = 2.88	SFb =8160 2434 = 3.35
Production 2 Casing	Production 2 Casing
SFc = 6290 / 2613 = 2.41 (SFb = 7740 / 2613 = 2.96
그는 일본 회사 사람들은 사용 시험생님이 있는 사람들이 가는 사람들이 되었다.	
化二甲酰胺 医二氏 医二甲基基酚 化二氯甲酚 医二甲基苯酚 化二甲基酚 化二氯甲基	
and a sixtual profite and a security and a sixty of the security of the securi	
Pipe Strength Design (Safety) Factors - BLM Criteria	Joint Strength Design (Safety) Factors - BLM Criteria
Pipe Strangth Design (Safaty) Factor: SFtp = SFtp = Fp / Wt;	Joint Strongth Dosign (Safety) Factor: SFti
Whare	SFij ● Fj / Wi; Where
Fp is the rated pipe Body Strength in pounds (lbs)	F) is the rated pipe Joint Strength in pounds (tbs)
Fp is the rated pipe Body Strength in pounds (lbs) Wi is the weight of the casing string in pounds (lbs)	F) is the rated pipe Joint Strength in pounds (lbs) Wt is the weight of the cosing string in pounds (lbs)
Fp is the rated pipe Body Strength in pounds (lbs)	F) is the rated pipe Joint Strength in pounds (tbs)
Fp is the rated pipe Body Strength in pounds (lbs) Wi is the weight of the casing string in pounds (lbs)	F) is the rated pipe Joint Strength in pounds (lbs) Wt is the weight of the cosing string in pounds (lbs)
Fp is the rated pipe Body Strength in pounds (lbs) Wit is the weight of the casing string in pounds (lbs) The Minimum Acceptable Pipe Strength Design (Satety) Factor SFTp • 1.6 dry or 1.8 buoyant	F) is the rated pipe Joint Strength in pounds (Ibs) Wi is the weight of the casing string in pounds (Ibs) The Minimum Acceptable Joint Strength Design (Salety) Factor SFT] = 1.6 dry or 1.8 buoyani
Fp is the rated pipe Body Strength in pounds (lbs) Wit is the weight of the casing string in pounds (lbs) The Minimum Acceptable Pipe Strength Design (Satety) Factor SFTp = 1.6 dry or 1.8 buoyant Surface Casing	F) is the rated pipe Joint Strength in pounds (tos) Wi is the weight of the casen suring in pounds (tos) The Minimum Acceptable Joint Strength Design (Safety) Factor SFT] = 1.6 dry or 1.8 buoyani Surface Casing
Fp is the rated pipe Body Strength in pounds (lbs) Wits the weight of the casing string in pounds (lbs) The Minimum Acceptable Pipe Strength Design (Satety) Factor SFTp • 1.6 dry of 1.8 buoyant Surface Casing SFI Dry = 853000 / 48232.5 = 17.7	F) is the rated pipe Joint Strength in pounds (tos) Wi is the weight of the casing sung in pounds (tos) The Minimum Acceptable Joint Strength Design (Salety) Factor SFT] = 1.6 dry or 1.8 buoyani Surface Casing SFI Dry = 514000 / 48232.5 = 10.7
Fp is the rated pipe Body Strength in pounds (lbs) Wit is the weight of the casing string in pounds (lbs) The Minimum Acceptable Pipe Strength Design (Satety) Factor SFTp • 1.6 dry or 1.8 buoyant Surface Casing SFI Dry = 853000 / 48232.5 = 17.7	F) is the rated pipe Joint Strength in pounds (bs) Wi is the weight of the casing string in pounds (bs) The Minimum Acceptable Joint Strength Design (Saloty) Factor SFT = 1.6 dry or 1.8 buoyani Surface Casing SFI Dry = 514000 / 48232.5 = 10.7 SFI Bouyant = 514000 / 48232.5 x 0.870) = 12.2
Fp is the rated pipe Body Strength in pounds (lbs) Wits the weight of the casing string in pounds (lbs) The Minimum Acceptable Pipe Strength Design (Satety) Factor SFTp • 1.6 dry of 1.8 buoyant Surface Casing SFI Dry = 853000 / 48232.5 = 17.7	F) is the rated pipe Joint Strength in pounds (tbs) Wit is the weight of the casen suring in pounds (tbs) The Minimum Acceptable Joint Strength Design (Safety) Factor SFT = 1.6 dry or 1.8 buoyani Surface Casing SFI Dry = 514000 / 48232.5 = 10.7 SFI Bouyant = 514000 / (48232.5 x 0.870) = 12.2
Fp is the rated pipe Body Strength in pounds (lbs) Wit is the weight of the casing string in pounds (lbs) The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant Surface Casing SFI Dry = 853000 / 48232.5 = 17.7 SFI Bouyant = 853000 / 48232.5 x 0.870) = 20.3	F) is the rated pipe Joint Strength in pounds (bs) Wi is the weight of the casing string in pounds (bs) The Minimum Acceptable Joint Strength Design (Saloty) Factor SFT = 1.6 dry or 1.8 buoyani Surface Casing SFI Dry = 514000 / 48232.5 = 10.7 SFI Bouyant = 514000 / 48232.5 x 0.870) = 12.2
Fp is the rated pipe Body Strength in pounds (lbs) Wit is the weight of the casing string in pounds (lbs) The Minimum Acceptable Pipe Strength Design (Satety) Factor SFTp • 1.6 dry of 1.8 buoyant Surface Casing SFI Dry = 853000 / 48232.5 = 17.7 SFI Bouyant = 853000 / 48232.5 x 0.870) = 20.3 Intermediate 1 Casing	F) is the rated pipe Joint Strength in pounds (tos) Wi is the weight of the casing suring in pounds (tos) The Minimum Acceptable Joint Strength Design (Salety) Factor SFT; = 1.6 dry or 1.8 buoyani Surface Casing SFI Dry = 514000 / 48232.5 = 10.7 SFI Bouyant = 514000 / (48232.5 x 0.870) = 12.2 Intermodiate 1 Casing
Fp is the rated pipe Body Strength in pounds (lbs)	F) is the rated pipe Joint Strength in pounds (brs) Wi is the weight of the casing string in pounds (brs) The Minimum Acceptable Joint Strength Design (Satory) Factor SFT = 1.6 dry or 1.8 buoyani Surface Casing SFI Dry = 514000 / 48232.5 = 10.7 SFI Bouyant = 514000 / (48232.5 x 0.870) = 12.2 Intermediate 1 Casing SFI Dry = 520000 / 80000 = 6.50
Fig. 18 the rated pipe Body Strength in pounds (lbs) Wit is the weight of the casing string in pounds (lbs) The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant Surface Casing SFI Dry = 853000 / 48232.5 = 17.7, SFI Bouyant = 853000 / 48232.5 x 0.870) = 20.3 Intermediate 1 Casing SFI Dry = 630000 / 80000 = 7.88 SFI Bouyant = 630000 / 600000 x 0.847) = 9.29 Intermediate 2 Casing	F) is the rated pipe Joint Strength in pounds (brs) Wi is the weight of the casing string in pounds (brs) The Minimum Acceptable Joint Strength Design (Satory) Factor SFT = 1.6 dry or 1.8 buoyani Surface Casing SFI Dry = 514000 / 48232.5 = 10.7 SFI Bouyant = 514000 / (48232.5 x 0.870) = 12.2 Intermediate 1 Casing SFI Dry = 520000 / 80000 = 6.50
Fp is the rated pipe Body Strength in pounds (lbs) Wit is the weight of the casing string repuries (lbs) The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant Surface Casing SFI Dry = 853000 / 48232.5 = 17.7 SFI Bouyant = 853000 / 48232.5 x 0.870) = 20.3 Intermediate 1 Casing SFI Dry = 630000 / 80000 = 7.88 SFI Bouyant = 630000 / 80000 x 0.847) = 9.29 Intermediate 2 Casing SFI Dry = 0 0 = #DIV/0!	F) is the rated pipe Joint Strength in pounds (tips) Wit is the weight of the casen suring in pounds (tips) The Minimum Acceptable Joint Strength Design (Safety) Factor SFTi = 1.6 dry or 1.8 buoyani Surface Casing SFI Dry = 514000 / 48232.5 = 10.7 SFI Bouyant = 514000 / (48232.5 x 0.870) = 12.2 Intermediate 1 Casing SFI Dry = 520000 / 80000 = 6.50 SFI Bouyant = 520000 / (80000 x 0.847) = 7.67 Intermediate 2 Casing SFI Dry = 0 / 0 = #DIV/0!
Fig. 18 the rated pipe Body Strength in pounds (lbs) Wit is the weight of the casing string in pounds (lbs) The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant Surface Casing SFI Dry = 853000 / 48232.5 = 17.7, SFI Bouyant = 853000 / 48232.5 x 0.870) = 20.3 Intermediate 1 Casing SFI Dry = 630000 / 80000 = 7.88 SFI Bouyant = 630000 / 600000 x 0.847) = 9.29 Intermediate 2 Casing	F) is the rated pipe Joint Strength in pounds (tbs) Wit is the weight of the casing suring in pounds (tbs) The Minimum Acceptable Joint Strength Design (Salety) Factor SFT = 1.6 dry or 1.8 buoyani Surface Casing SFI Dry = 514000 / 48232.5 = 10.7 SFI Bouyant = 514000 / (48232.5 x 0.870) = 12.2 Intermediate 1 Casing SFI Dry = 520000 / 80000 = 6.50 SFI Bouyant = 520000 / (80000 x 0.847) = 7.67
Fig. 18 the rated pipe Body Strength in pounds (lbs) Wit is the weight of the casing string in pounds (lbs) The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant Surface Casing SFI Dry = 853000 / 48232.5 = 17.7, SFI Bouyant = 853000 / 48232.5 x 0.870) = 20.3 Intermediate 1 Casing SFI Dry = 630000 / 80000 = 7.88 SFI Bouyant = 630000 / 80000 x 0.847) = 9.29 Intermediate 2 Casing SFI Dry = 0 / 0 = #DIV/0! SFI Bouyant = 0 / (0 x 1.000) = #DIV/0!	Fj is the rated pipe Joint Strength in pounds (tbs) Wi is the weight of the casen suring in pounds (tbs)
Fp is the rated pipe Body Strength in pounds (fbs) Wit is the weight of the casing string in pounds (fbs) The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant Surface Casing SFI Dry = 853000 / 48232.5 = 17.7 SFI Bouyant = 853000 / 48232.5 x 0.870) = 20.3 Intermediate 1 Casing SFI Dry = 630000 / 80000 = 7.88 SFI Bouyant = 630000 / 80000 x 0.847) = 9.29 Intermediate 2 Casing SFI Dry = 0 / 0 = #DIV/0! SFI Bouyant = 0 / { 0 x 1.000 } = #DIV/0! Production 1 Casing	F) is the rated pipe Joint Strength in pounds (tips) Wit is the weight of the casen suring in pounds (tips) The Minimum Acceptable Joint Strength Design (Safety) Factor SFT; = 1.6 dry or 1.8 buoyant Surface Casing SFI Dry = 514000 / 48232.5 = 10.7 SFI Bouyant = 514000 / (48232.5 x 0.870) = 12.2 Intermediate 1 Casing SFI Dry = 520000 / 80000 = 6.50 SFI Bouyant = 520000 / (80000 x 0.847) = 7.67 Intermediate 2 Casing SFI Dry = 0 / 0 = #DIV/0! SFI Dry = 0 / 0 = #DIV/0! Production 1 Casing
Fp is the rated pipe Body Strength in pounds (lbs) With a the weight of the casing string in pounds (lbs) The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry of 1.8 buoyant Surface Casing SFi Dry = 853000 / 48232.5 = 17.7 SFi Bouyant = 853000 / 48232.5 x 0.870) = 20.3 Intermediate 1 Casing SFi Dry = 630000 / 80000 = 7.88 SFi Bouyant = 630000 / 80000 x 0.847) = 9.29 Intermediate 2 Casing SFi Dry = 0 / 0 = #DIV/0! SFi Bouyant = 0 / (0 x 1.000) = #DIV/0! Production 1 Casing SFi Dry = 676000 / 150800 = 4.48	F) is the rated pipe Joint Strength in pounds (tips) Wit is the weight of the casing surgi in pounds (tips) The Minimum Acceptable Joint Strength Design (Safety) Factor SFT] = 1.6 dry or 1.8 buoyani Surface Casing SFi Dry = 514000 / 48232.5 = .10.7 SFi Bouyant = 514000 / (48232.5 x 0.870) = .12.2 Intermediate 1 Casing SFi Dry = 520000 / 80000 = 6.50 SFi Bouyant = 520000 / (80000 x 0.847) = .7.67 Intermediate 2 Casing SFi Dry = 0 / 0 = #/DIV/01 SFi Bouyant = 0 / (0 x 1.000) = #/DIV/01 Production 1 Casing SFi Dry = .587000 / .150800 = .3.89
Fp is the rated pipe Body Strength in pounds (lbs) Wit is the weight of the casing string nounds (lbs) The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant Surface Casing SFI Dry = 853000 / 48232.5 = 17.7 SFI Bouyant = 853000 / 48232.5 x 0.870) = 20.3 Intermediate 1 Casing SFI Dry = 630000 / 80000 = 7.88 SFI Bouyant = 630000 / 80000 x 0.847) = 9.29 Intermediate 2 Casing SFI Dry = 0 / 0 = #DIV/0! SFI Bouyant = 0 / { 0 x 1.000 } = #DIV/0! Production 1 Casing	F) is the rated pipe Joint Strength in pounds (tips) Wit is the weight of the casen suring in pounds (tips) The Minimum Acceptable Joint Strength Design (Safety) Factor SFT; = 1.6 dry or 1.8 buoyant Surface Casing SFI Dry = 514000 / 48232.5 = 10.7 SFI Bouyant = 514000 / (48232.5 x 0.870) = 12.2 Intermediate 1 Casing SFI Dry = 520000 / 80000 = 6.50 SFI Bouyant = 520000 / (80000 x 0.847) = 7.67 Intermediate 2 Casing SFI Dry = 0 / 0 = #DIV/0! SFI Dry = 0 / 0 = #DIV/0! Production 1 Casing
Fig. 18 the rated pipe Body Strength in pounds (fbs) Wit is the weight of the casing string nounds (fbs) The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry of 1.8 buoyant Surface Casing SFI Dry = 853000 / 48232.5 = 17.7 SFI Bouyant = 853000 / 48232.5 x 0.870) = 20.3 Intermediate 1 Casing SFI Dry = 630000 / 80000 = 7.88 SFI Bouyant = 630000 / 80000 x 0.847) = 9.29 Intermediate 2 Casing SFI Dry = 0 / 0 = #DIV/0! SFI Bouyant = 0 / (0 x 1.000) = #DIV/0! Production 1 Casing SFI Dry = 676000 / 150800 = 4.48 SFI Bouyant = 676000 / (150800 x 0.863) = 5.20	F) is the rated pipe Joint Strength in pounds (tips) Wit is the weight of the casen suring in pounds (tips) The Minimum Acceptable Joint Strength Design (Safety) Factor SFT] = 1.6 dry or 1.8 buoyani Surface Casing SFI Dry = 514000 / 48232.5 = 10.7 SFI Bouyant = 514000 / (48232.5 x 0.870) = 12.2 Intermediate 1 Casing SFI Dry = 520000 / 80000 = 6.50 SFI Bouyant = 520000 / (80000 x 0.847) = 7.67 Intermediate 2 Casing SFI Dry = 0 / 0 = #DIV/0! SFI Bouyant = 0 / (0 x 1.000) = #DIV/0! Production 1 Casing SFI Dry = 587000 / 150800 = 3.89 SFI Dry = 587000 / 150800 = 3.89 SFI Dry = 587000 / (150800 x 0.863) = 4.51
Fp is the rated pipe Body Strength in pounds (lbs) Wit is the weight of the casing string in pounds (lbs) The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant Surface Casing SFi Dry = 853000 / 48232.5 = 17.7 SFi Bouyant = 853000 / 48232.5 x 0.870) = 20.3 Intermediato 1 Casing SFi Dry = 630000 / 80000 = 7.88 SFi Bouyant = 630000 / (80000 x 0.847) = 9.29 Intermediato 2 Casing SFi Dry = 0 / 0 = #DIV/0! SFi Bouyant = 0 / (0 x 1.000) = #DIV/0! Production 1 Casing SFi Dry = 676000 / 150800 = 4.48 SFi Bouyant = 676000 / (150800 x 0.863) = 5.20 Production 2 Casing	F) is the rated pipe Joint Strength in pounds (tips) Wi is the weight of the casing surgin pounds (tips) The Minimum Acceptable Joint Strength Design (Salety) Factor SFT] = 1.6 dry or 1.8 buoyani Surface Casing SFI Dry = 514000 / 48232.5 = .10.7 SFI Bouyant = 514000 / (48232.5 x 0.870) = 12.2 Intermediate 1 Casing SFI Dry = 520000 / 80000 = 6.50 SFI Bouyant = 520000 / (80000 x 0.847) = 7.67 Intermediate 2 Casing SFI Dry = 0 / 0 = #IDIV/01 SFI Bouyant = 0 / (0 x 1.000) = #IDIV/01 Production 1 Casing SFI Dry = 587000 / 150800 = 3.89 SFI Dry = 587000 / (150800 x 0.863) = 4.51 Production 2 Casing
Fp is the rated pipe Body Strength in pounds (fbs) Wit is the weight of the casing string in pounds (fbs) The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant Surface Casing SFI Dry = 853000 / 48232.5 = 17.7 SFI Bouyant = 853000 / 48232.5 x 0.870) = 20.3 Intermediate 1 Casing SFI Dry = 630000 / 80000 = 7.88 SFI Bouyant = 630000 / 80000 x 0.847) = 9.29 Intermediate 2 Casing SFI Dry = 0 / 0 = #DIV/0! SFI Bouyant = 0 / (0 x 1.000) = #DIV/0! Production 1 Casing SFI Dry = 676000 / 150800 = 4.48 SFI Bouyant = 676000 / 150800 x 0.863) = 5.20 Production 2 Casing SFI Dry = 397000 / 134844 = 2.94	F) is the rated pipe Joint Strength in pounds (the) Wit is the weight of the casen suring in pounds (the) The Minimum Acceptable Joint Strength Design (Safety) Factor SFT] = 1.6 dry or 1.8 buoyant Surface Casing SFI Dry = 514000
Fp is the rated pipe Body Strength in pounds (lbs) Wit is the weight of the casing string in pounds (lbs) The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant Surface Casing SFi Dry = 853000 / 48232.5 = 17.7 SFi Bouyant = 853000 / 48232.5 x 0.870) = 20.3 Intermediato 1 Casing SFi Dry = 630000 / 80000 = 7.88 SFi Bouyant = 630000 / (80000 x 0.847) = 9.29 Intermediato 2 Casing SFi Dry = 0 / 0 = #DIV/0! SFi Bouyant = 0 / (0 x 1.000) = #DIV/0! Production 1 Casing SFi Dry = 676000 / 150800 = 4.48 SFi Bouyant = 676000 / (150800 x 0.863) = 5.20 Production 2 Casing	F) is the rated pipe Joint Strength in pounds (tips) Wi is the weight of the casing surgin pounds (tips) The Minimum Acceptable Joint Strength Design (Salety) Factor SFT] = 1.6 dry or 1.8 buoyani Surface Casing SFI Dry = 514000 / 48232.5 = .10.7 SFI Bouyant = 514000 / (48232.5 x 0.870) = 12.2 Intermediate 1 Casing SFI Dry = 520000 / 80000 = 6.50 SFI Bouyant = 520000 / (80000 x 0.847) = 7.67 Intermediate 2 Casing SFI Dry = 0 / 0 = #IDIV/01 SFI Bouyant = 0 / (0 x 1.000) = #IDIV/01 Production 1 Casing SFI Dry = 587000 / 150800 = 3.89 SFI Dry = 587000 / (150800 x 0.863) = 4.51 Production 2 Casing
Fp is the rated pipe Body Strength in pounds (fbs) Wit is the weight of the casing string in pounds (fbs) The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant Surface Casing SFI Dry = 853000 / 48232.5 = 17.7 SFI Bouyant = 853000 / 48232.5 x 0.870) = 20.3 Intermediate 1 Casing SFI Dry = 630000 / 80000 = 7.88 SFI Bouyant = 630000 / 80000 x 0.847) = 9.29 Intermediate 2 Casing SFI Dry = 0 / 0 = #DIV/0! SFI Bouyant = 0 / (0 x 1.000) = #DIV/0! Production 1 Casing SFI Dry = 676000 / 150800 = 4.48 SFI Bouyant = 676000 / 150800 x 0.863) = 5.20 Production 2 Casing SFI Dry = 397000 / 134844 = 2.94	F) is the rated pipe Joint Strength in pounds (the) Wit is the weight of the casen suring in pounds (the) The Minimum Acceptable Joint Strength Design (Safety) Factor SFT] = 1.6 dry or 1.8 buoyant Surface Casing SFI Dry = 514000

String Section	ı	Depth MD	Depth TVD	Csg Jength ft	Wt	MIY	Col	Plpe	Str	Jt Str	Drill Fluid					1			
Surface Casing		885	885	885	54.5	27	30 113	30 85	3000	514000	8.5								
Intermediate 1 Casing	, -	2250	2250		40			70 63	30000	520000	10								
Production 1 Casing		5200	5200	5200	29	81	60 702	20 67	6000	587000	9					- 1			
Production 2 Casing		13146	5600	7946	17	777	40 629	90 39	7000	338000	9					:			
																- 1			
																:			
Collapse Desig	n (Safety)	Factors	– BLM	Criteria							Burst De	esion (Saf	etv) Facto	rs – BLM C	riteria '				
Collapse Design (Sa												gn (Safety) Fa				•			
SFc = Pc / (MW x .0	• •										SFb = Pi /								
Where											Where						•		
• P	c is the rated	pipe Collag	se Press	ure in pounds p	er squa	re inch (psi)						• Piis	he rated pip	e Burst (Minimu	ım internal	Yield) Pr	essure in	pounds pe	r square inch
• M	W is mud w	eight in pour	nds per ga	ailon (ppg)								 BHP 	s bottom ho	le pressure in p	oun ds pe r	square ir	rch (psi)		
• L:	s is the lengt	h of the strir	ng in feet	(ft)							The Minim	um Acceptab	e Burst Des	ign (Safety) Fac	ctor SFb =	1.0			
The Minimum Accep	table Collap	se Design (Safety) Fa	actor SFc = 1.1	25											į			
Surface Casing											Surface Casi	na				i			
	SFc ≈	1130	1	391	=	2.89					SFb =	2730	1	391	=	6.98			
Intermediate 1 Casi											Into una di ata	4 Caalaa				:			
	ng SFc≃	2570	1	1170	=	2.20					Intermediate SFb =	3950	,	1170	=	3,38			
`	5FC -	2570	′	1170	-	2.20					3FD =	3930	′	1170	_	3,30			
																i			
Production 1 Casing		7000							-		Production 1					2.25			
`	SFc =	7020	1	2434	=	2.88					SFb = `	8160	/	2434	=	3,35			
Production 2 Casing	3										Production 2	Casing							
3	SFc=	6290	1	2621	=	2.40					SFb =	7740	1	2621	=	2.95			
Pipe Strength [Design (S:	afety) Fac	tors – l	BLM Criteri	а						Joint Str	renath De	sion (Safe	ty) Factors	– BLM (Criteria			
Pipe Strength Desig					=							gth Design (S				i		-	
SFtp = Fp / Wt;	,,										SFtj = Fj / 1		,,	,					
Where											Where	•				,			
• F	p is the rated	pipe Body	Strength i	in pounds (lbs)								• Fjist	he rated pip	e Joint Strength	in pounds	(lbs)			
• W	It is the weig	ht of the ca	sing string	in pounds (lbs	5)							 Wt is 	the weight o	of the casing str	ing in pour	nds (lbs)			
The Minimum Accep	otable Pipe S	trangth Des	ign (Safel	ty) Factor SFTp	o = 1.6 d	ry or 1.8 bud	iyant				The Minim	um Acceptab	le Joint Stre	ngth Design (Si	efety) Facto	or SFTj =	1.6 dry o	r 1.8 buoya	nt
																:-			
Surface Casing											Surface Casi					<u>i</u>			
	Dry =	853000	1	48232.5	=	17.7					SFi Dry =	514000	1	48232.5	=	10.7			
SFi Bouy	ant =	853000	1 (48232.5	X .	0.870) =	20.3		S	Fi Bouyant =	514000	/ (48232.5	×	O. :	870) =	12.2
Intermediate 1 Casi	ng										Intermediate	1 Casing				Ì			
SFi	Dry =	630000	1	90000	=	7.00					SFi Dry =	520000	1	90000	=	5.78			
SFi Bouy	•	630000	/ (90000	×	0.847) =	8.26		S	Fi Bouyant =	520000	1 (90000	×	0.	847) =	6.82
								•											
Production 1 Casing				. = 0 0 0 -							Production 1			450005					
	Dry =	676000	Ι,	150800	=	4.48		5 00		_	SFi Dry =	587000	Ι,.	150800	=	3.89		١ -	A 54
SFi Bouy	ant =	676000	/ (150800	x	0.863) =	5.20		S	Fi Bouyant ≃	587000	/ (150800	x	Q.	863) =	4.51

SFi Bouyant =

SFi Dry ≃

Production 2 Casing

397000 / 135082

397000 / (135082 x 0.863

Production 2 Casing SFi Dry = 338000 SFi Bouyant = 338000

135082

0.863

/ (135082

1. Geologic Formations

KB TVD of target	5600'	Pilot hole depth	NA
KB MD at TD:	13146'	Deepest expected fresh water:	820'

Basin

Formation	KB TVD (ft)	Elevation KB (ft) KB=17'	Water/Mineral Bearing/Target Zone	Hazards*
Rustler	820	3242	Fresh Water	
Salado	960	3102	Brackish Water	
Tansill	2040	2022	Salt	
Yates	2175	1887	Salt Water	
Seven Rivers	2480	1577	Oil/Gas	
Queen	3110	952	Oil/Gas	
Grayburg	3525	537	Oil/Gas	
San Andres	3850	212	Oil/Gas	
Glorieta	5375	-1308	Oil/Gas	,
Paddock	5460	-1398	Target	
Land Pt / TD	5600	-1538	Target	

2. Casing Program

3 strings casing design										
Hole	Casing Interval Cs				Grade Conn.		SF	SF	SF Pipe	SF Joint
Size	From	To	Size	(lbs)			Collapse	Burst	Tensile	Tensile
17.5"	0	885	13.375"	54.5	J55	STC/BTC	2.89	6.98	17.7	10.7
12.25"	0	2250	9.625"	40	J55	LTC/BTC	2.20	3.38	7.00	5.78
8.75"	0	5200	7"	29	L80	LTC/BTC	2.88	3.35	4.48	3.89
8.75"	5200	13146	5.5"	17	L80	LTC/BTC	2.40	2.95	2.94	2.50
	•	·		BLM N	Minimum	Safety Factor	1.125	1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

- Bring cement from 5-1-2" casing shoe to lap inside 9-5/8" casing shoe.
- XO from 7" to 5-1/2" in 8-3/4" OH for minimum of 0.422in clearance per Onshore Oil and Gas Order #2 III.B.
- Notify BLM if an Annulus Casing Packer and Stage Tool with 2-Stage Cement or Remediate with Bradenhead Squeeze will be necessary.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

Language and the state of the s	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	YES
Does casing meet API specifications? If no, attach casing specification sheet.	YES
Is premium or uncommon casing planned? If yes attach casing specification sheet.	YES
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	YES
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	N/A
Is well located within Capitan Reef?	NO
If yes, does production casing cement tie back a minimum of 50' above the Reef?	110
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	NO
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	NO
If yes, are the first three strings cemented to surface?	110
Is 2 nd string set 100' to 600' below the base of salt?	
and the second s	
Is well located in high Cave/Karst?	NO
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	Ç κ()· ~ ω ;
Is well located in critical Cave/Karst?	NO
If yes, are there three strings cemented to surface?	

3. Cementing Program

	J. CCIII	enung ri	51 4111				
Casing	#'Sks	Wt. lb/ gal	Yld ft3/	H ₂ 0 gal/sk	Vol ft3	500# Comp.	Slurry Description
			sack			Strength (hours)	
Surf.	500	13.5	1.68	8.94	840	7	Lead: Class C + 4.0% Bentonite + 0.2% Anti-Foam + 2.0% CaCl2 +0.125lb/sk LCM + 0.1% Dispersant
	400	14.8	1.35	6.38	540	7	Tail: Class C + 0.2% Anti-Foam + 0.1% Lost Circ Control + 2 lbs/bbl CemNET (losses Control)
Inter.	450	11.5	2.29	10.72	1031	17	Lead: Class C + 10.0% Bentonite + 0.2% Anti-Foam + 2.0% Expanding + 0.15% Viscosifier + 1.3% Retarder.
	300	13.5	1.29	4.81	387	7	Tail: Class C + 1% Extender + 3 lb/sk Extender + 0.2% Anti-Foam + 0.1% Dispersant + 13 lb/sk LCM + 0.5% Fluid Loss + 0.7% Retarder
Prod.	650	11.0	3.2	19.25	2080	17	Lead: Class C + 6% Extender + 10% Gas Migration Control + 2% Sodium Metasilicate (dry) + 1% Cement Bonding Agent + 3% Aluminum Silicate + 0.125 lb/sx Cello Flake + 3 lb/sx LCM-1
	1900	14.0	1.37	6.48	2603	7	Tail: Class C + 3lb/sk LCM + 1.5% Fluid Loss + 0.1% + 1% Sodium Metasilicate (dry) + 1.5% Fluid Loss Control

DV tool depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

Lab reports with recipe and the 500 psi compressive strength time for the cement will be onsite for review.

3 strings casing cement design					
Casing String	TOC Lead	TOC Tail	% Excess		
Surface	0'	585'	>100%		
Intermediate	0'	1750'	>100%		
Production	<1700'	5200'	·>30%		

Cement excess will be adjusted based on actual hole condition like losses or fluid caliper data if have.

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре			Tested to:
			Annı	ılar	х	50% of working pressure
			Blind	Blind Ram		1
8-3/4"	13-5/8"	3M/5M	Pipe Ram			2.000
			Double Ram		Х	3,000 psi
			Other*			

^{*}Specify if additional ram is utilized.

Note: A 13-5/8" BOPE will be utilize in the 8-3/4" hole section depending on availability and Rig Substructure Clearance.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.						
A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. If yes, specs and hydrostatic test certification will be available in the company man's trailer and on the rig floor.						
N Are anchors required by manufacturer?						
A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. See attached schematic						
	On Exploratory wells or ogreater, a pressure integri accordance with Onshore A variance is requested for Manifold. If yes, specs as man's trailer and on the rinn Are anchors requested A multibowl wellhead is installation on the surface 30 days. If any seal subjections.					

5. Mud Program

3 strings casing mud program							
De	pth	Type	Weight (ppg)	Viscosity	Water	PH	
From	To				Loss		
0	Surf. shoe	FW Gel	8.5-9.0	28-40	N/C	N.C.	
Surf. Shoe	Inter. shoe	Saturated Brine	10.0	28-32	N/C	9-10.5	
Inter. shoe	TD	Cut-Brine	8.6-10.0	28-40	N/C	9-10.5	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	PVT/Pason/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.					
X	Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated					
	logs run will be in the Completion Report and submitted to the BLM.					
	No Logs are planned based on well control or offset log information.					
	Drill stem test? If yes, explain					
	Coring? If yes, explain					

Add	litional logs planned	Interval
	Resistivity	
	Density, GR, BHC	
	CBL	
X	Mud log	
	PEX	

ConocoPhillips, Peridot 8 Federal 1H

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	2815 psi
Abnormal Temperature	No – 100°

 Mitigation measure for abnormal conditions - Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

10111	lations will be provided to the BEW.
X	H2S is present
X	H2S Plan attached

8. Other facets of operation

Is this a walking operation? If yes, describe. NO. Will be pre-setting casing? If yes, describe. NO.

Attachments:

Attachment#1: Directional Plan

Attachment#2: Wellbore Casing & Cementing Schematic

Attachment#3: Wellhead Schematic
Attachment #4: BOP Schematics
Attachment #5: Choke Schematic
Attachment #6: Rig Layout

Attachment #7: H2S Contingency Plan

ConocoPhillips, Peridot 8 Federal 1H

2. Casing Program - Openhole Sliding Sleeves Completion Option

3 strings casing design										
Hole Size	Casing From	Interval To	Csg. Size	Weight (lbs)	Grade	Conn.	SF Collapse	SF Burst	SF Pipe Tensile	SF Joint Tensile
17.5"	0	885	13.375"	54.5	J55	STC/BTC	2.89	6.98	17.7	10.7
12.25"	0	2250	9.625"	40	J55	LTC/BTC	2.20	3.38	7.00	5.78
8.75"	0	5200	7"	29	L80	LTC/BTC	2.88	3.35	4.48	3.89
8.75"-8.5"	5200	13146	5.5"	20	L80	LTC/BTC	3.37	3.51	2.93	3.30
		•		- BLM N	Minimum S	Safety Factor	1.125	1	1.6 Dry	1.6 Dry
						-			1.8 Wet	1.8 Wet

- Cement 7" production string thru a stage tool below the XO joint and leave 5-1/2" casing string below the Glorieta formation uncemented with packers & sleeves from landing point to TD.
- Notify BLM if additional unplanned stages of Cement or Remediation with Bradenhead Squeeze becomes necessary.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

the state of the s	Y or N					
Is casing new? If used, attach certification as required in Onshore Order #1	YES					
Does casing meet API specifications? If no, attach casing specification sheet.						
Is premium or uncommon casing planned? If yes attach casing specification sheet.	NO					
Does the above casing design meet or exceed BLM's minimum standards? If not provide	YES					
justification (loading assumptions, casing design criteria).						
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching	N/A					
the collapse pressure rating of the casing?						
Is well located within Capitan Reef?	NO					
If yes, does production casing cement tie back a minimum of 50' above the Reef?						
Is well within the designated 4 string boundary.						
Is well located in SOPA but not in R-111-P?	NO					
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back						
500' into previous casing?						
r Arte grown was to the first the second of						
Is well located in R-111-P and SOPA?	NO					
If yes, are the first three strings cemented to surface?	_					
Is 2 nd string set 100' to 600' below the base of salt?						
The second secon						
Is well located in high Cave/Karst?	NO					
If yes, are there two strings cemented to surface?						
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?						
Company of the second of the s	1					
Is well located in critical Cave/Karst?	NO					
If yes, are there three strings cemented to surface?						

ConocoPhillips, Peridot 8 Federal 1H

3. Cementing Program - Openhole Sliding Sleeves Completion Option

Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H ₂ 0 gal/sk	Vol ft3	500# Comp. Strength (hours)	Slurry Description
Surf.	500	13.5	1.68	8.94	840	7	Lead: Class C + 4.0% Bentonite + 0.2% Anti-Foam + 2.0% CaCl2 +0.125lb/sk LCM + 0.1% Dispersant
	400	14.8	1.35	6.38	540	7	Tail: Class C + 0.2% Anti-Foam + 0.1% Lost Circ Control + 2 lbs/bbl CemNET (losses Control)
Inter.	450	11.5	2.29	10.72	1031	17	Lead: Class C + 10.0% Bentonite + 0.2% Anti-Foam + 2.0% Expanding + 0.15% Viscosifier + 1.3% Retarder.
	300	13.5	1.29	4.81	387	7	Tail: Class C + 1% Extender + 3 lb/sk Extender + 0.2% Anti-Foam + 0.1% Dispersant + 13 lb/sk LCM + 0.5% Fluid Loss + 0.7% Retarder
Prod.	650	11.0	3.2	19.25	2080	17	Lead: Class C + 6% Extender + 10% Gas Migration Control + 2% Sodium Metasilicate (dry) + 1% Cement Bonding Agent + 3% Aluminum Silicate + 0.125 lb/sx Cello Flake + 3 lb/sx LCM-1

If additional unplanned stages of cementing are necessary, the contingency stage tool will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Stage tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

Lab reports with recipe and the 500 psi compressive strength time for the cement will be onsite for review.

3 strings casing cement design									
Casing String	TOC Lead	TOC Tail	% Excess						
Surface	0'	585'	>100%						
Intermediate	0'	1750'	>100%						
Production	<1700'	N/A	>30%						

Cement excess will be adjusted based on actual hole condition like losses or fluid caliper data if available.

Attachments:

Attachment#1: Wellbore Casing & Cementing Schematic

. Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps

6.98

3.38

3.51

BHP is bottom hole pressure in pounds per square inch (psi)

String Section	Depth	Depth	Csg	Wt	MIY		Col	Pipe Str	Jt Str	Drill Fluid
	MD	TVD	<u>length ft</u>							
Surface Casing	885	885	885	54,5		2730	1130	853000	514000	8.5
Intermediate 1 Casing	2250	2250	2250	40		3950	2570	630000	520000	10
Production 1 Casing	5200	5200	5200	29		8160	7020	676000	587000	9
Production 2 Casing	13146	5600	7946	20		9190	8830	466000	524000	9
Production 2 Casing	13146	5600	7946	20	L	9190	8830	466000	524000	9

Collapse Design (Safety) Factors - BLM Criteria

Collapse Design (Safety) Factor: SFc

SFc = Pc / (MW x .052 x Ls)

Where

- . Pc is the rated pipe Collapse Pressure in pounds per square inch (psi)
- MW is mud weight in pounds per gallon (ppg)
- . Ls is the length of the string in feet (ft)

The Minimum Acceptable Collapse Design (Safety) Factor SFc = 1.125

Surface Casing						Surface Casing
SFc =	1130	1	391	=	2.89	SFb = 2730 / 391 =
Intermediate 1 Casing SFc =	2570	1	1170	=	2.20	Intermediate 1 Casing SFb = 3950 / 1170 =
Production 1 Casing SFc =	7020	1	2434	=	2.88	Production 1 Casing SFb = 8160 / 2434 =
Production 2 Casing SFc =	8830	1	2621	=	3.37	Production 2 Casing SFb = 9190 / 2621 =

Pipe Strength Design (Safety) Factors - BLM Criteria

Pipe Strength Design (Safety) Factor: SFtp

SFtp = Fp / Wt;

Where

- Fp is the rated pipe Body Strength in pounds (lbs)
- Wt is the weight of the casing string in pounds (lbs)

The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant

Joint Strength Design (Safety) Factors - BLM Criteria

Burst Design (Safety) Factors - BLM Criteria

The Minimum Acceptable Burst Design (Safety) Factor SFb = 1.0

Burst Design (Safety) Factor: SFb

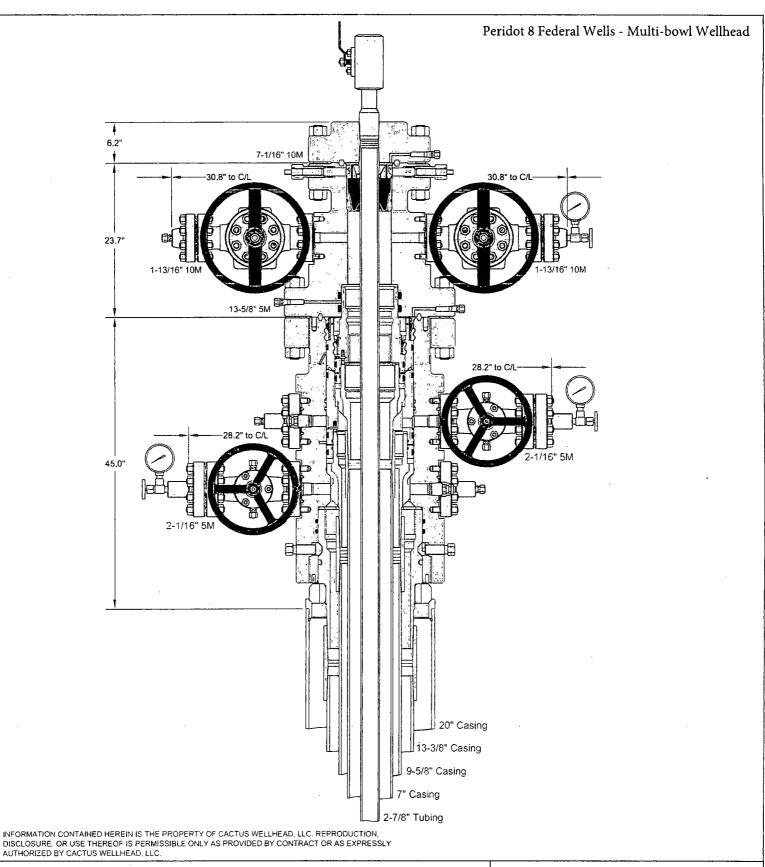
SFb = PI / BHP

Where

Joint Strength Design (Safety) Factor: SFtj

SFtj = Fj / Wt;

Where


- Fj is the rated pipe Joint Strength in pounds (lbs)
- Wt is the weight of the casing string in pounds (lbs)

The Minimum Acceptable Joint Strength Design (Safety) Factor SFTj = 1.6 dry or 1.8 buoyant

Surface Casing SFi Dry = SFi Bouyant =	853000 853000	/ (48232.5 48232.5	= x	17.7 0.870) =	20.3	Surface Casing SFi Dry = 514000 / 48232.5 = 10.7 SFi Bouyant = 514000 / (48232.5 x 0.870) = 12.2
Intermediate 1 Casing SFi Dry = SFi Bouyant =	630000 630000	/ (90000 90000	= x	7.00 0.847) =	8.26	Intermediate 1 Casing SFi Dry = 520000 / 90000 = 5.78 SFi Bouyant = 520000 / (90000 x 0.847) = 6.82
Production 1 Casing SFi Dry = SFi Bouyant =	676000 676000	/ (150800 150800	= x	4.48 0.863) =	5.20	Production 1 Casing SFi Dry = 587000 / 150800 = 3.89 SFi Bouyant = 587000 / (150800 x 0.863) = 4.51
Production 2 Casing SFi Dry = SFi Bouyant =	466000 466000	/ (158920 158920	= x	2.93 0.863) =	3.40	Production 2 Casing SFi Dry = 524000 / 158920 = 3.30 SFi Bouyant = 524000 / (158920 x 0,863) = 3.82

Gas Capture Plan Peridot 8 Federal Wells

						Peri	dot 8 Fede	al Wells-Lo	ocated in Se	ec. 8, T17S,	R32E						
Well Name:	1H	2H	3H	4H	5H	6Н	7H	8H	11H	12H	13H	14H	15H	16H	1	.7H	18H
Well Location:	615' FSL	936' FSL	2080' FSL	2237' FSL	2634' FNL	1586' FNL	1065' FNL	775' FNL	755' FSL	1035' FSL	1240' FSL	2237' FSL	2634' FN	IL 1485	' FNL 9	15' FNL	635' FNL
well cocation:	2460' FEL	2501' FEL	2350 FWL	2440' FWI	1907' FWI	2635' FEL	2540' FWI	2543' FWI	2460' FEL	2600' FEL	2480' FWL	2580' FWL	2022' F\	VI 2538	FEL 2	2540' FW	2542' FW
											·						
Production Facility Name:		Peridot 8 Federal CF1 Tank Battery															
Production Facility Location:							NV	/NE, Sectio	n 8, T17S, I	R32E							
Anticipated Completion Date: Initial Production Volumes:	I				60-120	lays after o	rilling com	pleted; de	pendent up	on comple	tion crew a	vailability	<u> </u>				T
Oil (bopd)	570	570	570	570	570	570	570	570	480	480	480	480	48	30	480	480	48
Gas (mcfd)	620		 			620	·	620						30	530	530	53
Water (bwpd)	2300	2300	2300	2300	2300	2300	2300	2300	1900	1900	1900	1900	190	00	1900	1900	190
Date of First Production:	<45 days following completion operations																
																	_
Expected Well Life Expectancy:	25 years	25 years	25 years	25 years	25 years	25 years	25 years	25 years	25 years	25 VA2rs	125 years	25 vears	25 years	125 4	are 13	5 voors	25 years

CACTUS WELLHEAD LLC

20" x 13-3/8" x 9-5/8" x 7" x 2-7/8" MBU-3T-CFL Wellhead Assembly
With 13-5/8" 5M x 7-1/16" 10M CMT-DLBHPS Tubing Head
& 7-1/16" 10M x 2-7/8" B5 Tubing Head Adapter

CONOCO PHILLIPS
WEST TEXAS

DRAWN DLE 12JAN17
APPRV

DRAWING NO. ODE0001428

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

SUPO Data Report

02/26/2018

APD ID: 10400008917

Well Type: OIL WELL

Submission Date: 01/06/2017

Highlighted data reflects the most

Operator Name: CONOCOPHILLIPS COMPANY

Well Number: 1H

recent changes

Well Name: PERIDOT 8 FEDERAL

Well Work Type: Drill

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

Peridot 8 Fed 1H AccessRoadTopoB_08-01-2017.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Peridot 8 Fed 1H AccessRoadv2 20180103143817.pdf

New road type: RESOURCE

Length: 5236

Feet

Width (ft.): 30

Max slope (%): 2

Max grade (%): 4

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 17

New road access erosion control: The inside slope of the side ditches shall be 3:1. Any topsoil removed from the access road will be conserved as appropriate and with low profile. This access road is on fairly level ground. No additional erosion control is planned.

New road access plan or profile prepared? NO

New road access plan attachment:

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: OFFSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth:

Offsite topsoil source description: Caliche will be from a BLM approved source or third-party commercial location. Material meets BLM requirements and standards. Current plans include sources: 1) Maljamar, NM, Sec. 9, T17S, R32E; 2) Hwy 529, NM, Sec. 25, T17S, R31E; and 3) Olan Caswell Ranch, Sec. 3, T17S, R32E. These are current options. However, additional sources within area may be used depending on availability at time of construction. We intend to use different source(s) if necessary.

Onsite topsoil removal process:

Access other construction information: Wider travel surface is needed to accommodate larger rig wheelbase. Road is needed to reach facility near NM Highway 82. Cattle guard to be installed between facility access road and NM Highway 82. Turnouts will be installed using dimensions recommended by BLM, standard for this area. Right of ways will be obtained for highway access and resource road access to include future Peridot wells.

Access miscellaneous information: Length of road includes about 15' for facility access and approximately 382' for Frac Pond access. About 5056' of access road to be shared by other Peridot wells. The approximately 90' of road leading to Peridot 8 Fed 3H and about 88' of road to Peridot 8 Fed 5H well locations will not be constructed until the well location is built.

Number of access turnouts: 1

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: The proposed road to the location is surveyed and staked with stations set along the centerline at specific intervals. The road will be centerline crowned with a 2% crown for appropriate drainage. The inside slope of the side ditches shall be 3:1. Any topsoil removed from the access road route will be conserved as appropriate. This access road is on fairly, level ground.

Road Drainage Control Structures (DCS) description: No additional road drainage is needed other than standard BLM requirements for this area and those discussed in the BLM "Gold Book". This access road is on level ground.

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Peridot_8_Fed_1H_Offset_Well_Map_07-06-2017.pdf

Existing Wells description:

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Peridot 8 Federal CF1 Tank Battery location NWNE. Section 8, T17S, R32E was sited during 6/26/16 onsite. Location is south of NM Highway 82. Dimensions of 400'x 250' are planned to allow for expansion as wells are drilled. A 15' access road is planned and depicted on plat. Preliminary plot plan is attached. **Production Facilities map:**

Peridot 8 Fed CF1 Tank Battery 12-20-2016.pdf

Peridot 8 Fed 1H Preliminary Plot Plan 01-05-2017.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: CAMP USE, INTERMEDIATE/PRODUCTION Water source type: GW WELL

CASING, STIMULATION, SURFACE CASING

Describe type:

Source latitude:

Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT, WATER WELL

Source land ownership: FEDERAL

Water source transport method: PIPELINE, TRUCKING

Source transportation land ownership: FEDERAL

Water source volume (barrels): 165000

Source volume (acre-feet): 21.26736

Source volume (gal): 6930000

Water source and transportation map:

Peridot 8 Fed 1H Access Road Topo A 12-20-2016.pdf Peridot 8 Fed 1H WaterSourceMap 08-02-2017.pdf

Water source comments: Current water sources include: 1) Rockhouse Ranch; Section 13, T17S, R33E; and 2) Morewest Corporation, New Mexico; Section 16 & 26, T16S, R32E. Water sources specified within this application are current options for purchase. However, additional source(s) in the vicinity may be used depending on availability at the time water is needed. We intend to use different source(s) if necessary.

New water well? NO

N	lew	W	ater	· We	Ш	Info
11	161	AA	altı	AAG	:11	HHU

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aquifer comments:

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Aguifer documentation:

Well depth (ft):

Well casing type:

Well casing outside diameter (in.):

Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method:

Drill material:

Grout material:

Grout depth:

Casing length (ft.):

Casing top depth (ft.):

Well Production type:

Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Clean caliche will be used to construct well pad, road, and facility pad. Caliche will be from a BLM approved source or third-party commercial location. Material to meet BLM requirements and standards. Current plans include sources: 1) Maljamar, NM, Sec. 9, T17S, R32E; 2) Hwy 529, NM, Sec. 25, T17S, R31E; and 3) Olan Caswell Ranch, Sec. 3, T17S, R32E. These are current options. However, additional sources within area may be used depending on availability at time of construction. We intend to use different source(s) if necessary. Trucking of source material will utilize authorized roads as per Access Road Topo A attached.

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drilling fluid, drill cuttings, and rig water

Amount of waste: 8000

barrels

Waste disposal frequency: Daily

Safe containment description: Drilling fluid and cuttings will be held in a closed-loop system and trucked to an approved disposal facility.

uisposai iacility.

Safe containmant attachment:

Peridot 8 Fed 1H_Drill Waste Containment_01-04-2017.pdf

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Permitted disposal facility off Hwy 62.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Cuttings will be held in a closed-loop system and trucked to an approved disposal facility.

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: YES

Ancillary Facilities attachment:

Peridot_8_Fed_1H_FracPondPlat_08-17-2017.pdf

Comments: ConocoPhillips Company proposes to build a 600' x 600' frac pond to support our horizontal well completions in the area. It is to be located in the NENW of Section 8, T17S, R32E. Frac pond will contain fresh water. A 382' road will provide access and is depicted on plat. Plats are attached, indicating 8.52 acres to be used. Area will be reclaimed upon completion of unit development according to BLM guidelines at the time.

Section 9 - Well Site Layout

Well Site Layout Diagram:

Peridot_8_Fed_1H_Site_Plan_08-01-2017.pdf

Peridot_8_Fed_1H_LocationLayout_08-02-2017.pdf

Peridot_8_Fed_1H__ArchBoundary_08-02-2017.pdf

Comments:

Well Name: PERIDOT 8 FEDERAL Well Number: 1H

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: PERIDOT 8 FEDERAL

Multiple Well Pad Number: 1H

Recontouring attachment:

Drainage/Erosion control construction: Topsoil will be stripped and set along designated side of the wellsite. The next layer of dirt (stockpile) is done with the cut and fill method whereby the highest portion of the wellsite is pushed to lower portion(s) to balance the pad. The access road is done in a similar manner. To the greatest extent practicable, the location is placed so that the least amount of dirt is to be cut and disturbed, and so a good balance can be maintained during project. Topsoil stockpile will have lowest practicable profile to reduce wind erosion. For more detail please see attached Surface Use Plan of Operations.

Drainage/Erosion control reclamation: Upon project completion, if this well is a producer, excess caliche is removed from the interim reclamation portion of pad. Topsoil stockpile is balanced back onto the unused portion of the well pad and recontoured as appropriate. Any drainage ditches will not be blocked with topsoil and/or organic material. Lowering the profile of the topsoil stockpile will reduce wind erosion. Erosion controls will be maintained per BLM guidelines and conditions. For more detail please see attached Surface Use Plan of Operations. Reclamation activities are planned to be accomplished within six months of project completion, contingent upon weather. A site specific "Reclamation Diagram" interim plan is attached. At such time as well is permanently abandoned, ConocoPhillips Company will contact the BLM for development of final rehabilitation plan. Upon abandonment, a dry hole marker will be installed as directed by Authorized BLM Officer at the time, in accordance with 43 CFR 3162.6. An above ground dry hole marker sealing the casing will have a weep hole which will allow pressure to dissipate and make detection of any fluid seepage easier. If below ground "well marker" is directed, ConocoPhillips Company will follow BLM requirements and standards for that method of abandonment. During final reclamation erosion is to be minimized through lower profile of any soil piles. Please see attached Surface Use Plan of Operations for more information.

Wellpad long term disturbance (acres): 1.59

Access road long term disturbance (acres): 3.61

Pipeline long term disturbance (acres): 1.1932966

Other long term disturbance (acres): 35.97

Total long term disturbance: 42.363297

Wellpad short term disturbance (acres): 1.84

Access road short term disturbance (acres): 0

Pipeline short term disturbance (acres): 0

Other short term disturbance (acres): 1.72

Total short term disturbance: 3.56

Reconstruction method: If this well is a producer site rehabilitation will be completed within six months, weather permitting. Excess caliche will be removed, as appropriate and either disposed of in a permitted facility or, if clean, stored for future use. Topsoil from the stockpile will be spread along areas to be interim reclaimed. Any drainage ditches will not be blocked with topsoil. Under normal weather conditions, the timetable for rehabilitation will allow two to three months to complete any recontouring and top-soiling necessary. At such time as well is permanently abandoned, ConocoPhillips Company will contact BLM for development of final rehabilitation plan. Upon abandonment, a dry hole marker will be installed as directed by Authorized BLM Officer at the time, in accordance with 43 CFR 3162.6. An above ground dry hole marker sealing the casing will have a weep hole which will allow pressure to dissipate and make detection of any fluid seepage easier. If below ground "well marker" is directed, ConocoPhillips Company will follow BLM requirements and standards for that method of abandonment. Excess caliche will be removed, as appropriate and either disposed of in a permitted facility. Location soil may be "flipped" with BLM concurrence, clean topsoil spread and re-contoured to blend with surrounding area. This method will be accomplished in accordance to BLM standards set forth by the Authorized Officer.

Topsoil redistribution: Areas planned for interim reclamation will be re-contoured to the extent feasible. Topsoil will be evenly re-spread and re-vegetated over the disturbed area not needed for continuing production operations. At such time as well is abandoned, disturbed areas will be re-contoured to a contour that blends with surrounding landscape. Topsoil will be redistributed evenly over the entire disturbed site to depth of 4-6 inches.

Soil treatment: The topsoil will be stripped and set along the designated perimeter of the wellsite. The next layer of dirt is moved with the cut and fill method whereby the highest point of the wellsite is cut into and then pushed to a lower side in

Weil Name: PERIDOT 8 FEDERAL Weil Number: 1H

order to balance the well pad. Upon well completion, the soil will be balanced back onto portions of the pad not needed for long-term operations. Erosion will be minimized by maintaining a lower stockpile profile. For additional information, please see attached Surface Use Plan of Operation

Existing Vegetation at the well pad: The project area is located in a region of southeast New Mexico know as the Mescalero Plain. No named tributaries, streams or wetlands are in the near vicinity. Elevation is around 4045'. It is a broad, low relief area characterized by Mescalero sand (eolian) soil. Maljamar and Palomas fine sands occur throughout the area. Soil is well drained and has low water storage potential. This determines vegetation present on location. Vegetation in the project area can be classified as transitional between the Plains-Mesa Sand Scrub and Chihuahuan Desert Scrub plant communities. The area surrounding the location is grazing grassland, which supports grasses and forbs. Frequently observed species include: honey mesquite, shinnery oak, perennial three-awn, sand bluestem, sand dropseed, giant dropseed, prince's plume, threadleaf groundsel, spectacle pod, sunflower, and plains flax. See attached Location Photos for visual example of vegetation existing onsite.

Existing Vegetation at the well pad attachment:

Peridot 8 Fed 1H LocationPhotos 01-05-2017.pdf

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed source:

Seed name:

Source name:

Source address:

Well Name: PERIDOT 8 FEDERAL

Well Number: 1H

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Seed Summary

Seed Type

Pounds/Acre

Total pounds/Acre:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Susan

Last Name: Maunder

Phone: (281)206-5281

Email: Susan.B.Maunder@conocophillips.com

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: Two Class B noxious weed species, African rue and Malta starthistle are of concern. ConocoPhillips Company will consult with BLM for acceptable weed control methods, if the need arises. Any weed control would follow USEPA and BLM requirements and standards.

Weed treatment plan attachment:

Monitoring plan description: Weeds will be controlled on disturbed areas within the exterior limits of the well pad. Monitoring will be in accordance with Best Management Practices and guidelines established by BLM. **Monitoring plan attachment:**

Success standards: Success standards will utilize BLM approved methods, such as those described in the BLM "Gold Book" and those established by the Authorized Officer.

Pit closure description: No pits will be used, a closed-loop system will be in place.

Pit closure attachment:

Section 11 - Surface Ownership

Well Name: PERIDOT 8 FEDERAL Well Number: 1H

Disturbance type: OTHER

Describe: well pad, access road, flow lines, pipelines, power lines

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? YES

Use APD as ROW? YES

ROW Type(s): 281001 ROW - ROADS,285003 ROW - POWER TRANS,288100 ROW - O&G Pipeline,288101 ROW - O&G Facility Sites,288103 ROW - Salt Water Disposal Pipeline/Facility,FLPMA (Powerline)

ROW Applications

SUPO Additional Information: For multi-well pad we request deferral of interim reclamation requirements until all wells noted on location have been drilled. Gas Sales Line ROW may be used by third-party gas processor, depending on agreements reached. Three key mitigation strategies are to be used for Peridot development; horizontal wells, interim reclamation and participation in conservation agreement. Development of these minerals could have been via vertical wells; approximately 12 wells. After re-evaluation of options, two key actions are planned horizontal wells and multi-well pads where possible. This minimizes surface use, while improving project economics and results in significant surface use reduction. Interim reclamation is a component of our surface use mitigation. COPC intends to maximize interim reclamation to the greatest extent feasible for each location drilled. Current interim reclamation plans are included in survey plat packages for individual wells. COPC is a participant in the Candidate Conservation Agreement. Among mitigation measures are observing timing stipulations for Lesser-Prairie Chickens, as indicated by BLM, at the beginning of each breeding season. Also, well locations have been moved, in consultation with BLM biologists to avoid habitat of interest.

Use a previously conducted onsite? YES

Well Name: PERIDOT 8 FEDERAL Well Number: 1H

Previous Onsite information: Onsites conducted 6/28/16 and 10/18/16. Onsite for this well pad was completed 0/18/16. Surface Use Plan of Operation was finalized during onsites with the following attendees: Mr. Ballard, Mr. Wolf, Ms. Brooks, Mr. Wasson, and Ms. Maunder, along with survey crew. Archaeological survey requirements have been met by block survey 2151, well pad survey 2262, and gas line and SWD line survey 2276. Well location is off-lease, so subsurface plat is also included. Please review this application with Peridot 8 Federal 11H, 3H, 13H, 5H, 15H, 7H and 17H well applications.

Other SUPO Attachment

Peridot 8 Fed 1H OilFlowLine 01-06-2017.pdf

Peridot 8 Fed 1H DevelopmentImage_08-01-2017.pdf

Peridot 8 Fed 1H FracPondPlat 08-17-2017.pdf

Peridot 8 Fed 1H Power Line Plat 08-17-2017.pdf

Peridot 8 Fed Gas_Sales_Line_08-17-2017.pdf

Peridot_8_Fed_1H_Reclamation_Plat_20180103110441.pdf

Peridot_8_Fed_1H_SWD_Buried_Pipeline_20180103110622.pdf

Peridot_8_Fed_1H_SWD_FlowLineToElvis_20180103144050.pdf

Peridot 8 Fed 1H SUPOviaAccess_20180108104941.pdf

Peridot_8_Fed_1H_Surf_SummaryComments_20180108104954.pdf

Peridot_8_Fed_1H_BuriedGasLinetoDCP_20180108105009.pdf

Bond Info Data Report

Bond Information

Federal/Indian APD: FED

BLM Bond number: ES0085

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Injection well type: EXISTING Injection well name: Injection well number: Assigned injection well API number? Injection well API number: Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: **Underground Injection Control (UIC) Permit?** YES **UIC Permit attachment:** Section 5 - Surface Discharge Would you like to utilize Surface Discharge PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner: PWD disturbance (acres): Surface discharge PWD discharge volume (bbl/day): **Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment:** Surface Discharge site facilities information: Surface discharge site facilities map: Section 6 - Other Would you like to utilize Other PWD options? NO Produced Water Disposal (PWD) Location: PWD disturbance (acres): PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment:

Section 3 - Unlined Pits

Injection well mineral owner: FED

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Unlined pit PWD on or off channel:	
Unlined pit PWD discharge volume (bbl/day):	
Unlined pit specifications:	
Precipitated solids disposal:	
Decribe precipitated solids disposal:	
Precipitated solids disposal permit:	
Unlined pit precipitated solids disposal schedule:	
Unlined pit precipitated solids disposal schedule attachment:	
Unlined pit reclamation description:	
Unlined pit reclamation attachment:	
Unlined pit Monitor description:	
Unlined pit Monitor attachment:	
Do you propose to put the produced water to beneficial use?	
Beneficial use user confirmation:	
Estimated depth of the shallowest aquifer (feet):	
Does the produced water have an annual average Total Dissol that of the existing water to be protected?	ved Solids (TDS) concentration equal to or less than
TDS lab results:	
Geologic and hydrologic evidence:	
State authorization:	
Unlined Produced Water Pit Estimated percolation:	
Unlined pit: do you have a reclamation bond for the pit?	
Is the reclamation bond a rider under the BLM bond?	
Unlined pit bond number:	
Unlined pit bond amount:	
Additional bond information attachment:	
Section 4 - Injection	
Would you like to utilize Injection PWD options? NO	
Produced Water Disposal (PWD) Location: OFFLEASE	
PWD surface owner: BLM	PWD disturbance (acres):
Injection PWD discharge volume (bbl/day):	

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

· () () ()	E-8/6/3 3 ** 1.5	
بالمستحية أيسودون بالايار		DIAID Date Dans 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Annage .	PWD Data Report
- 1. T. C. 1 " F.	100	
	The second second	02/26/2018
Statement of the Control of the Cont	Same and the second second second second second second second second second second second second second second	

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

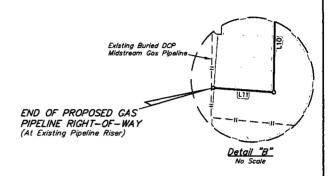
Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:


Additional bond information attachment:

PWD disturbance (acres):

GAS PIPELINE RIGHT-OF-WAY DESCRIPTION ON BLM LANDS IN SEC. 9

A 30' WIDE PERMANENT RIGHT-OF-WAY 15' ON EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE WITH A 10' WIDE TEMPORARY RIGHT-OF-WAY ON THE RIGHT SIDE OF SAID PERMANENT RIGHT-OF-WAY FOR A TOTAL WIDTH OF 40' DURING

BEGINNING AT A POINT ON THE WEST LINE OF THE NW 1/4 SW 1/4 OF SECTION 9, T17S, R32E, N.M.P.M., WHICH BEARS SOO'08'37"E 17.99' FROM THE WEST 1/4 CORNER OF SAID SECTION 9, THENCE N84"13'50"E 29.38'; THENCE S89"56'13"E SUU UB 3/ E 17.99 FRUM THE WEST 1/4 CURNER OF SAID SECTION 9, THENCE N84"13"50"E 29.38"; THENCE S89"56"13"E 301.54"; THENCE S01"44"41"E 788.81"; THENCE S89"30"59"E 162.10"; THENCE S01"09"10"W 178.94"; THENCE N85"57"24"W 17.06" TO A POINT IN THE NW 1/4 SW 1/4 OF SAID SECTION 9, WHICH BEARS \$26"47"32"E 1101.08" FROM THE WEST 1/4 CORNER OF SAID SECTION 9. THE SIDE LINES OF SAID DESCRIBED RIGHT—OF—WAY BEING SHORTENED OR ELONGATED TO MEET THE GRANTOR'S PROPERTY LINES. BASIS OF BEARINGS IS A TRANSVERSE MERCATOR PROJECTION WITH A CENTRAL MERIDIAN OF W103"53"00". PERMANENT RIGHT—OF—WAY CONTAINS 1.018 ACRES MORE OR LESS. TEMPORARY RIGHT—OF—WAY CONTAINS 0.339 ACRES MORE OR LESS.

ROUND UPON WHICH IT OR UNDER MY THIS SUI THE CT TO THE SS IONAL

FILE: 6 2 4 6 4-B2 REV: 2 01-04-18 L.K.

Sheet 2 of 2 (PIPELINE RE-ROUTE)

ConocoPhillips Company

PERIDOT GAS PIPELINE SECTION 9, T17S, R32E, N.M.P.M. LEA COUNTY, NEW MEXICO

UELS, LLC Corporate Office * 85 South 200 East Vernal, UT 84078 * (435) 789-1017

NOTES:

Basis of Bearings is a Transverse Mercator Projection with a Central Meridian of W103°53'00"

	SURVEYED BY	J.A.V., R.D.	02-02-17	SCALE				
_	DRAWN BY	B.D.H.	02-07-17	N/A				
	GAS PIPELINE R-O-W							

Serial Register Page V Go 🖾 دد د 型 課 風 点

> **DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT** CASE RECORDATION

(MASS) Serial Register Page

01 02-25-1920;041STAT0437;30USC226 Case Type 310771: O&G EXCHANGE LEASE - PD

Commodity 459: OIL & GAS Case Disposition: AUTHORIZED

07/24/2017

Run Date:

Total Acres Serial Number 1,606.800

NMLC-0 029406B

Run Time:

04:01 PM

Page 1 of ?

Serial Number: NMLC-- 0 029406B Int Rel

Name & Address % Intere CHASE FERGUSON GERENE D ARTESIA NM 88211 OPERATING RIGHTS PO BOX 693 0.000000000 CHASE OIL CORP PO BOX 1767 ARTESIA NM 882111767 OPERATING RIGHTS 0.000000000 CHASE OIL CORP ARTESIA NM 882111767 LESSEE PO BOX 1767 0.000000000 CHASE RICHARD L OPERATING RIGHTS PO BOX 359 ARTESIA NM 882110359 0.000000000 CHASE ROBERT C ARTESIA NM 882111297 PO BOX 297 COG OPERATING LLC 600 W ILLINOIS AVE MIDLAND TX 797014882 OPERATING RIGHTS CONOCOPHILLIPS CO PO BOX 7500 BARTLESVILLE OK 740057500 OPERATING RIGHTS 0.000000000 CONOCOPHILLIPS CO PO BOX 7500 BARTLESVILLE OK 740057500 LESSEE 0.000000000

Serial Number: NMLC-- 0 029406B

Mor I Wp	Kng S	ec	STYP	SNESUT	Subdivision	District/Field Office	County	mgmt Agency	
23 0170S	0320E	005	ALIQ		S2N2,SE;	CARLSBAD FIELD OFFICE	LEA	BUREAU OF LAND MGMT	
23 0170S	0320E	005	LOTS		14;	CARLSBAD FIELD OFFICE	LEA	BUREAU OF LAND MGMT	
23 01708	0320E	006	ALIQ		S2NE,SENW,E2SW;	CARLSBAD FIELD OFFICE	LEA	BUREAU OF LAND MGMT	
23 0170S	0320E	006	LOTS		1-7;	CARLSBAD FIELD OFFICE	LEA	BUREAU OF LAND MGMT	
23 01705	0320E	007	AL1Q		E2W2,SE;	CARLSBAD FIELD OFFICE	LEA	BUREAU OF LAND MGMT	
23 D170S	0320E	007	LOTS		1-4;	CARLSBAD FIELD OFFICE	LEA	BUREAU OF LAND MGMT	
23 0170S	0320E	800	ALIQ		SW;	CARLSBAD FIELD OFFICE	LEA	BUREAU OF LAND MGMT	

Relinquished/Withdrawn Lands

Serial Number: NMLC-- 0 029406B

CARLSBAD FIELD OFFICE 23 0170S 0320E 70B E2.ASGN: LEA BUREAU OF LAND MGMT

Serial Number: NMLC- 0 029406B

Act Date	Code		Action Remar	Pending Offic
11/25/1933	124	APLIT RECO		
06/08/1934	237	LEASE ISSUED		
06/08/1934	496	FUND CODE	05;145003	
06/08/1934	534	RLTY RATE-SLEDING-SCH D		
06/08/1934	868	EFFECTIVE DATE		
09/14/1945	570	CASE SEGREGATED BY ASSN	INTO NMNMO64149;	
01/06/1953	650	HELD BY PROD - ACTUAL		
01/06/1953	658	MEMO OF 1ST PROD-ACTUAL		
10/24/1979	940	NAME CHANGE RECOGNIZED	CONTL OID/CONGCO INC	
01/11/1983	140	ASGN FILED	(1) CONOCO/PETRO LEWIS	
01/11/1983	140	ASGN FILED	(1) COHOCO/PTNESHP PRO	
01/11/1983	:40	ASGN FILED	(Z)CONOCO/PETRO LEWIS	
01/11/1983	_40	ASGN FILED	(2) CONOCO PINESHE PRO	
02/11/1983	140	ASGN FILED	PETRO/PTHRSHP FROF	
01/25/1985	139	ASGN APPROVED	(1) EFF D2/01/83;	
01/25/1985	139	ASGII APPROVED	(2) EFF 02 01/83;	
01/25/1985	139	ASGN APPROVED	(3) EFF 02/01/83;	
01/25/1985	139	ASGN APPROVED	(4)EFF 02/01/83;	
01/25/1985	139	ASGII APPROVED	EFF 03/01/63;	
02/05/1985	963.	CASE MICROFILMED/SCANNED	ONUM 100,429 GLC	
11/03/1987	974	AUTOMATED RECORD VERIF	JAM/DCE	
07/26/1988	140	ASGN FILED	PINRSHP PPCF/FMP OPER	
06/16/1988	139	ASGN APPROVED	EFF 08/01/88;	

NO WARRANTY IS MADE BY BLM FOR USE OF THE DATA FOR PURPOSES NOT INTENDED BY BLM