Click here to see on map	DEPARTME BUREAU OI	ENT OF THE INTERIOR LAND MANAGEMENT RECORDATION	Run Time	: 04:06 PM Page 1 of ?
Run Date: 07/24/2017	(MASS)	Serial Register Page		
01 02-25-1920;041STAT0437; Case Type 310781: O&G Ri Commodity 459: OIL & C Case Disposition: AUTHORIZ	30USC226 ENEWAL LEASE - PD GAS ZED	Total A 320	Acres Seria 0.000 NMLC	l Number – 0 064149
		Serial Numb	er: NMLC 0 064	149
Name & Address			Int Rei	% Intere
CHEVRON USA INC	6301 DEAUVILLE	MIDLAND TX 797062964	OPERATING	RIGHTS 0 0000000
CHEVRON USA INC	6301 DEAUVILLE	MIDLAND TX 797062964	LESSEE	100.0000000
COG OPERATING LLC	600 W ILLINOIS AVE	MIDLAND TX 797014882	OPERATING	RIGHTS 0.0000000
CONOCOPHILLIPS CO	PO BOX 7500	BARTLESVILLE OK 740057500	OPERATING	RIGHTS 0.0000000
LINN ENERGY HOLDINGS LLC	600 TRAVIS ST STE 5100	HOUSTON TX 770023092	OPERATING	RIGHTS 0.0000000
MALJAMAR DEV PRTNSHP	8115 PRESTON RD #400	DALLAS TX 75225	OPERATING	RIGHTS 0.0000000
SABINE OIL & GAS CORP	707 17TH ST STE 3600	DENVER CO 802023406	OPERATING	RIGHTS 0.0000000
SANDRIDGE EXPL & PROD LLC	123 ROBERT S KERR AVE	OKLAHOMA CITY OK 731026406	OPERATING	RIGHTS 0.0000000
		Serial Number	: NMLC- 0 0641	49
Mer Two Rog Sec STvo St	Nr Suff Subdivision	District/Field Office	County	Mgmt Agency

Act Date	Code	Action	Action Remar	Pending Offic
1 0670271934	387	CASE ESTABLISHED		
06/08/1934	496	FUND CODE	05;145003	
06/08/1934	868	EFFECTIVE DATE		
09/14/1945	553	CASE CREATED BY ASON	OUT OF NMLC029406-B;	
11/20/1950	102	NOTICE SENT-PROD STATUS		
11/01/1961	242	LEASE RENEWED		
11/01/1961	534	RETY RATE-SLIDENG-SCH D		
11/01/1961	868	EFFECTIVE DATE	LAST RENEWAL;	
05/01/1967	232	LEASE COMMITTED TO UNIT	NMNMY0988X;MALJAMAR G	
05/01/1967	651	HELD BY PROD - ALLOCATED	MALJAMAR GRAYBURG UA	
05/01/19€7	660	MEMO OF 1ST PROD-ALLOC	MALJAMAR GRAVEURG UA	
04/03/1987	963	CASE MICROFILMED/SCANNED	UNUM 102,960 RW	
01/05/:989	971	AUTOMATED RECORD VERIE	AR/EC	
10/11/1990	974	AUTOMATED RECORD VERIF	55	
06/22/1992	932	TRE OPER RGIS FILED	CHEVRON/WISER COL CO	
06/20/1992	933	TRE OPER PGTS APPROVED	EFF 07/01/92;	
08/20/1992	974	AUTOMATED RECORD VERIF	SSP CE	
10/01/1992	621	SLTY RED-STRIPPER WELL	2.13;/1/8910088480	
01/15/1993	621	RECY REDUCTION APPV	/1/	
03/21/1994	977	AUTOMATED RECORD VERIF	ANI	
12/04/1995	93;	TRF OPER RGTS FILED	THE WISER/MALJAMAR	
03/28/1996	93	TRE OPER RGIS APPROVED	EFF C1 C1 96;	
03/28/1996	977	AUTOMATED RECORD VERIE	YV/MV	
06/01/1996	932	TRE OPER RGTS FILED	CHEVRON/CONDCC	
11/05/1996	933	TRE OPER RGTS APPROVED	EFF 09/01/96;	
11/05/1996	974	AUTOMATUD RECORD VERIE	JIV	
05/22/1997	932	TRE GPER RGTS FILED	MALJAMAR WISEN OIL	
06/25/1997	933	TRE OPEN AGTS APPROVED	EDD 66/01/97/	· · · · · · · · · · · · · · · · · · ·
06/25/1997	974	AUTOMATED RECORD VERIF	MA VMA	
01/16/2003	817	MERGER RECOGNIZED	CONOCO/CONOCOFHILLIPS	
				,

Serial Number: NMLC-- 0 064149

NO WARRANTY IS MADE BY BLM FOR USE OF THE DATA FOR PURPOSES NOT INTENDED BY BLM

https://epmpub.blm.gov/raframework/ihtml/OpenDoc?DocInstanceID=31&DocUUID=000... 7/24/2017

		DEPARTM		. Rı	un Time: 04:01	PM
Click here to s	æe on map	BUREAU	F LAND MANAGEMENT		Page 1 of	?
Run Date:	07/24/201	7 (MASS)	Serial Register Page			
01 02-25-1920	041STAT	0437;30USC226	Tot	al Acres	Serial Number	
Case Type 3	10771: 08	G EXCHANGE LEASE - PD	1,	606.800	NMLC-0 029406B	
Commodity 4 Case Disposit	ion: AUTH	ICRIZED				
			1 .			•
Nome 8 Adds			Serial Nu	nber: NMLC· I	0 029406B Int Rei	% Intere
CHASE FERGUS	ON GERENE		ARTESIA NM 88211	· r	PERATING RIGHTS	g 00000000
CHASE OIL CORP)	PO BOX 1767	ARTESIA NM 882111767	c	PERATING RIGHTS	0.000000000
CHASE OIL CORP	>	PO BOX 1767	ARTESIA NM 882111767	L	ESSEE	0.000000000
CHASE RICHARD		PO BOX 359	ARTESIA NM 882110359	c -	PERATING RIGHTS	0.00000000
COG OPERATING			AR LESIA NM 882111297 MIDLAND TX 797014892	C 7	PERATING RIGHTS	0.000000000
CONOCOPHILLIP	s co	PO BOX 7500	BARTLESVILLE OK 740057500	c	PERATING RIGHTS	0.000000000
CONOCOPHILLIP	s co	PO BOX 7500	BARTLESVILLE OK 740057500	ι	ESSEE	0.0000000000
			Serial Num	ber: NMLC-	0 029406B	
Mer Twp Rng Se	C STy	p SNr Suff Subdivision	District/Field Office	County	Mgmt Ag	
23 01705 0320E	005 ALIO 005 LOTS	52N2,5E; 1-4	CARLSBAD FIELD OFFICE	LEA	BUREAU O	FLAND MGMT
23 01705 0320E	006 ALIQ	S2NE,SENW,E2SW;	CARLSBAD FIELD OFFICE	LEA	BUREAU O	F LAND MGMT
23 0170S 0320E	006 LOTS	1-7;	CARLSBAD FIELD OFFICE	LEA	BUREAU O	F LAND MGMT
23 0170S 0320E	007 ALIQ	E2W2,SE;	CARLSBAD FIELD OFFICE	LEA	BUREAU O	F LAND MGMT
23 0170S 0320E	D07 LOTS	1-4;	CARLSBAD FIELD OFFICE	LEA	BUREAU O	F LAND MGMT
23 0170S 0320E	008 ALIQ	SW;	CARLSBAD FIELD OFFICE	LEA	BUREAU O	F LAND MGMT
Relinquished/	Withdrawr	Lands	Serial Num	ber: NMLC-	0 029406B	
23 0170S 0320E 708	FF	E2,ASGN;	CARLSBAD FIELD OFFICE	LEA	BUREAU	J OF LAND MGMT
			Serial Num	ber: NMLC-	0 029406B	
Act Date	Code	Action	Action Remar	Pending) Offic	
06/08/1934	237	LEASE ISSUED				·
06/08/1934	496	FUND CODE	05;145003			
06/08/1934	534	RLTY RATE-SLIDING-SCH D				
06/08/1934	568	EFFECTIVE DATE	THEO HIMPHOSALLO			
01/06/1953	570 650	HELD BY PROD - RCTUAL	LULO INTURO ON LADI			
01/06/1953	658	MEMO OF 1ST PROD-ACTUAL				
10/24/1979	540	NAME CHANGE RECOGNIZED	CONTL 011/CONDCO INC			
01/11/1983	140	ASGN FILED	(1)CONOCO/PETRO LEWIS			
01/11/1983	140	ASGN FILED	(1)CONOCO/PINRSHE PRO			
01/11/1983	140	ASEN FLEE	(2) CONOCO/ PETRO LEWIS			
02/11/1983	140	ASGN FILED	PETRO/PINRSHP PROF			
01/25/1985	: 39	ASGI APPROVED	(1)EFF 02/01/83;			
01/25/1985	139	ASGN APPROVED	(2)EFF 02 01/63;			
	29	ASGN APPROVED	(3) EFF: 02/01/83;			
01/25/1985	: 29	ASON APPROVED	(4)EFF 02/01/83;			
01/25/1985 01/25/1985	239	ASGN APPROVED	EFF C3/C1/63;			
01/25/1985 01/25/1985 01/25/1985	36.2	CASE MICROF. LMED/SCANNED	UNUM 100,429 GLC			
01/25/1985 01/25/1985 01/25/1985 02/05/1985	003	ATTOMATES RECORD VERTE	TAM COPP			
01/25/1985 01/25/1985 01/25/1985 02/05/1985 11/03/1987 07/26/1988	974 140	AUTOMATED RECORD VERIF	JAM 'DOE POURSHP_PROP/EMP_OPER			

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Drilling Plan Data Report

APD ID: 10400008915

Operator Name: CONOCOPHILLIPS COMPANY

Well Name: PERIDOT 8 FEDERAL

Well Type: OIL WELL

Submission Date: 02/09/2017

Highlighted data reflects the most recent changes

Well Number: 11H

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical	Measured		· ····	Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	RUSTLER	3244	820	820	DOLOMITE,ANHYDRIT E	USEABLE WATER	No
2	SALADO	-960	960	960	SALT, ANHYDRITE	NONE	No
3	TANSILL	1204	2040	2040	DOLOMITE,ANHYDRIT E	NONE	No
4	YATES	-2180	2180	2180	DOLOMITE,ANHYDRIT E	NONE	No
5	SEVEN RIVERS	-2485	2485	2485	SANDSTONE,ANHYDRI TE	NATURAL GAS,OIL	No
6	QUEEN	-3110	3110	3110	SANDSTONE,ANHYDRI TE	NATURAL GAS,OIL	No
7	GRAYBURG	-3530	3530	3530	SANDSTONE,DOLOMIT E	NATURAL GAS,OIL	No
8	SAN ANDRES	-3850	3850	3850	DOLOMITE	NATURAL GAS,OIL	No
9	GLORIETA	-5375	5375	5375	SANDSTONE	NATURAL GAS,OIL	No
10	PADDOCK	-5465	5465	5475	DOLOMITE,ANHYDRIT E	NATURAL GAS,OIL	Yes
11	BLINEBRY	-2531	5775	5775	DOLOMITE,ANHYDRIT E	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI): 3M

Rating Depth: 13652

Equipment: Rotating head, annular preventer, pipe/blind rams, kill lines, choke lines, adapter spool

Requesting Variance? YES

Variance request: We request variance to use flexible choke line(s) from the BOP to Choke Manifold. Testing certificate is attached in "Flexhose Variance data" document. We also request approval to have the option of using a 13" 5M BOP as represented on attached BOP diagram.

Testing Procedure: BOP/BOPE tested by independent company to 250 psi low and the high of 50% working psi, as required by Onshore Order 2. See attached "Drill Plan" document.

Choke Diagram Attachment:

Peridot 8 Fed 11H_3M Choke Manifold_12-20-2016.pdf

Peridot 8 Fed 11H FlexhoseVarianceData_02-06-2017.pdf

BOP Diagram Attachment:

Peridot_8_Fed_11H_BOPDiagrams_08-21-2017.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	885	0	885	-1955	-2840	885	J-55	54.5	STC	2.89	6.98	DRY	10.7	DRY	17.7
2	INTERMED	12.2 5	9.625	NEW	API	N	0	2250	0	2250	-1955	-3955	2250	J-55	40	LTC	2.2	3.38	DRY	5.78	DRY	7
3	PRODUCTI ON	8.75	7.0	NEW	API	Y	0	5200	0	5200	-1955	-8075	5200	L-80	29	LTC	2.88	3.35	DRY	3.89	DRY	4.48
4	PRODUCTI ON	8.75	5.5	NEW	API	Y	5200	13652	5200	6000			8452	L-80	17	LTC	2.2	2.7	DRY	2.35	DRY	2.76

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Peridot_8_Fed_11H_Csg_Worksheetv5_08-18-2017.pdf

Operator Name: CONOCOPHILLIPS COMPANY Well Name: PERIDOT 8 FEDERAL

Well Number: 11H

Casing Attachments

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Peridot_8_Fed_11H_Csg_Worksheetv5_08-18-2017.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Peridot_8_Fed_11H_Csg_Worksheetv5_08-18-2017.pdf

Casing Design Assumptions and Worksheet(s):

Peridot_8_Fed_11H_Csg_Worksheetv5_08-18-2017.pdf

Casing ID: 4 Str

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Peridot_8_Fed_11H_Csg_Worksheetv5_08-18-2017.pdf

Casing Design Assumptions and Worksheet(s):

Peridot_8_Fed_11H_Csg_Worksheetv5_08-18-2017.pdf

Section 4 - Cement

Well Name: PERIDOT 8 FEDERAL

.

Well Number: 11H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	585	500	1.68	13.5	840	100	Lead: Class C	4.0% Bentonite + 0.2% Anti-Foam + 2.0% CaCl2 +0.125lb/sk LCM + 0.1% Dispersant
SURFACE	Tail		585	885	400	1.35	14.8	540	100	Tail: Class C	0.2% Anti-Foam + 0.1% Lost Circ Control + 2 Ibs/bbl CemNET (losses Control)
INTERMEDIATE	Lead		0	1750	450	2.29	11.5	1031	100	Lead: Class C	10.0% Bentonite + 0.2% Anti-Foam + 2.0% Expanding + 0.15% Viscosifier + 1.3% Retarder.
INTERMEDIATE	Tail		1750	2250	300	1.29	13.5	387	100	Tail: Class C	1% Extender + 3 lb/sk Extender + 0.2% Anti- Foam + 0.1% Dispersant + 13 lb/sk LCM + 0.5% Fluid Loss + 0.7% Retarder
PRODUCTION	Lead		1500	5200	650	3.2	11.5	2080	30	Lead: Class C	6% Extender + 10% Gas Migration Control + 2% Sodium Metasilicate (dry) + 1% Cement Bonding Agent + 3% Aluminum Silicate + 0.125 lb/sx Cello Flake + 3 lb/sx LCM-1

PRODUCTION	Lead	5200	1365	2000	1.37	14	2740	30	Class C	+ 3lb/sk LCM + 1.5%
			2							Fluid Loss + 0.1% + 1%
										Sodium Metasilicate
										(dry) + 1.5% Fluid Loss
										Control

Well Name: PERIDOT 8 FEDERAL

Well Number: 11H

Section 5 - Circulating Medium

Circulating Medium Table

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. See attached "Drill Plan" for additional information.

Describe the mud monitoring system utilized: Closed-loop mud system using steel mud containers will be on location. Mud monitoring of any changes in levels (gains or losses) will use Pressure Volume Temperature, Pason, Visual Observations. See attached "Drill Plan" for additional information.

Strength (Ibs/100 sqft) Additional Characteristics **Density** (lbs/cu ft) Vax Weight (Ibs/gal) Vin Weight (Ibs/gal) /iscosity (CP) Bottom Depth Salinity (ppm) Filtration (cc) Top Depth Mud Type Н 90 0 885 8.5 9 Fresh water w/gel=surface WATER-BASED mud MUD 0 2250 SALT 10 10 SATURATED 0 1365 OTHER : Cut-8.6 10 2 Brine

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM. Production tests will be conducted multiple times per week, through a test separator, during first months following completion. Thereafter, tests will be less frequently. See attached "Drill Plan" for additional information.

List of open and cased hole logs run in the well:

CNL,GR

Coring operation description for the well:

No coring program is planned, at this time.

Operator Name: CONOCOPHILLIPS COMPANY Well Name: PERIDOT 8 FEDERAL

Well Number: 11H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 2815

Anticipated Surface Pressure: 1468.6

Anticipated Bottom Hole Temperature(F): 110

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Peridot 8 Fed 11H H2S C Plan_02-06-2017.pdf Peridot_8_Fed_11H_RigLayoutPlat_08-18-2017.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Peridot 8 Fed 11H_DirectionalPlan_08-18-2017.pdf

Peridot_8_Fed_11H_WellBoreSchematicv5_08-18-2017.pdf

Other proposed operations facets description:

Depending on equipment availability, BOP may be upgraded. BTC casing may be used, depending on availability. Cement volumes will be adjusted based on drilling conditions in given hole section. We request approval of option to run open hole, sliding sleeve in lateral section (option attachment included). We request variance to use multi-bowl wellhead. See attached "Drill Plan" for additional information.

Other proposed operations facets attachment:

Peridot 8 Fed 11H Drill Waste Containment_02-06-2017.pdf

Peridot_8_Fed_11H_Drill_Planv5_08-18-2017.pdf

Peridot_8_Fed_Gas_Capture_Plan_08-21-2017.pdf

Peridot_8_Fed_11H_OH_Sleeve_Option_20180108113455.pdf

Other Variance attachment:

Peridot_8_Fed_5M_Wellhead_08-18-2017.pdf

All Tees must be Targeted

Item Description

- 1 Remote Controlled Hydraulically Operated Adjustable Choke, 2-1/16", 3M
- 2 Manual Adjustable Choke, 2-1/16", 3M
- 3 Gate Valve, 2-1/16" 5M
- 4 Gate Valve, 2-1/16" 5M
- 5 Gate Valve, 2-1/16" 5M
- 6 Gate Valve, 2-1/16" 5M
- 7 Gate Valve, 3-1/8" 3M
- 8 Gate Valve, 2-1/16" 5M
- 9 Gate Valve, 2-1/16" 5M
- 10 Gate Valve, 2-1/16" 5M
- 11 Gate Valve, 3-1/8" 3M
- 12 Gate Valve, 2-1/16" 5M
- 13 Pressure Gauge
- 14 2" hammer union tie-in point for BOP Tester

The 3M Choke Manifold & Valves will be tested to rated working pressure.

Wellhead / Fire Guarded System

Choke & Kill

Reliance Eliminator Choke & Kill

This hose can be used as a choke hose which connects the BOP stack to the b manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive °G6 fdir 06 minutes)

Nom.	ID	No	om OD	v	Veight	Min	Bend	Radius	Max	WP
in.	mm.	in.	mm	lb/ft	kg/m	in.	mm	I.	psi	Мра
3	76.2	5.11	129.79	14.5	21.46	48	1219	.2	5000	34.47
3-1/2	88.9	5.79	147.06	20.14	29.80	54	1371	.6	5000	34.47

End Connections

Fittings			Fla	nges			ŀ	łamme	r Un	ions	Ot	her	
RC4X5055	R35	-	3-1/8	5000#	API	Туре	6B	All	Union	Configurations	LP	Threaded	(
RC3X5055	R31	-	3-1/8	3000#	API	Туре	6B				Graylo	ock	
RC4X5575										С	ustom	Ends	

14

ļ

Industrial Products USA, Ltd.

Please remit payment to: 606 - 19 Avenue, Nisku, AB Canada T9E 7W1

Peridot 8 Federal 11H WORK ORDER

.

 Grooley, CO 89631
 Bossler City, LA 71111

 Ph 970-346-3751
 Ph 318-687-5486

 Fax: 970-353-3168
 Fax: 318-687-5491

 2030E 8th Street, Suite B
 1001 M&O Drive

San Antonio, TX 78217 Ph: 210-650-3636 Fax: 210-650-3133 4327 Contergale Stroot

.

Williston, ND 58801 Ph: 701-572-7035 Fax 701-572-7030 4970 Hwy 85

A. ...

.....

 Midland, TX 79705
 Houston, TX 77388

 Ph: 432-689-0102
 Ph: 281-288-9720

 Fax: 432-699-4898
 4115 Kreinhop Rd Suite B

 2904 SCR 1250
 415 Kreinhop Rd Suite B
 . .

BALL TO	<u>د:</u> ار	CUSTOMER N	Ю,	SALESMAN ND.	SHIP TO	CUST	OMER NO.		5	ALESMAN	NO			
	·····	003054	4	KSE		. 0	3054		:	HSE	<u> </u>	PG 1 OF	1	
	TT 1! 1K	RINIDAD DR: 5015 VICKEJ DUSTON, TX	ILLING LI Ry Dr 77032	, , , , , , , , , , , , , , , , , , ,	- -	TRIN RIG#	IDAD DRI	lling	·			0036540134	182 DER STATUB	
						· .		(71	3) 439-3	1670			_	•
RANCH				1	6 ₅₄ D	THOX THAG	TCOL	TPC 1	TOTAL	TAX ID #2	N-0174221	OPEN ORDE	R	
R	Reliance -	Midland								·		105	-013482	
140. i	DAY VA. 11/04/16	RWB	11/0	DER NO 4/16 5709 PO22132	•		NET 30	DAYS		·.	DELIVE	RY	RWB	94
ORDER	AED	SHIPPED	BACK ORDERED	PART NUMBER AND	DESCRIPTION		· · · ·	COOR	PRI	ST CE	NET PRICE	INIT .	AMOUNT	
	1	1 2.00 1.00		11/4/16 DELIVER TO YARD ATTN: LAN RIGH 435 PARTS () API HOSE () KIT MATERIALS Component LAB RKSWAGE LAB T-100	HYD HOSE MATERI G for abc GRADE TESTD	PING DETAI () IND H ALS ve item ar C & D SWAG KG CHARGES	CORDER SHI SFI OSE() e listed E	TO BE (PPING 1 ECIAL 1 CUSTC ORDEI T I below	COMPLET INSTRUC INSTRUC MER CO R COMPO	ED BY TIONS TIONS NTACT NENTS	4806.980	EA EA EA	48c6.90	
• • • •		1 2 9 1		PTC P930012 PTC P930022 HBD RFG500056 RSK 7K-FR35X5KRCD56	ID TAC CABLE 3 1/2 FLOAT	2.5X1.5 S TIE SS 20. FIREQUARD ING FLANGE	s 50l Choke HK Coupling	dse 1	J 20 J 20 M 16	т. 1 т.	с 11 С.	EA EA EA		
		1 2 15		RSK 7K-RJ5X5KRCD56 API OVERFERRULE96 HDW 3X116 '1 - 3.5° X 8'6° 5K F/C TESTED TO 10000 PSI FC HYDRO-TEST AND NACE C	GRADE 6"SS J"X G CHOKE H OR 10 MINI ERTIFICAT	C/D R35 FI OVERFERRUI 1/16* FIBER DSE W/ R35 JTES IONS PROVIS	ANGE CON E GLASS T/ FIXED X	JPL VPE FLOATI	M 18 M 27 Q 10 NG FLAN	ige Ige		EA FT		·
		~		IF ORDERED TODAY BUY IF ORDERED LATER THAN	2PM:WE CA 2PM IT W	N HAVE THIS	BUILT	iomorro Very	W				- -	
·				Sign: Print	Name:	El		770	1	•				
 	.1 .			Date:		22-	16							
PIČKED BY	ASSEMD BY	TESTED BY	TERMS: INVOICE. PER ANN	NET 30 DAYS FROM DATE OF Interest of 2% PER MONTH (245 UM) charged on overflue accounts	GOODSI	ECEIVED BY	PLEASE P	RINT)		SU	IB-TOTAL	•	4805.98	
INSPEC OF	INSPEC DY	INSPEC. BY	The terms Industrial customer	a of the contract between Reliance Products Ltd. ("Reliance") and the are on the reverse of this document				11	:25	то	TAL		4806.98	

- Item Description
 - 1 Rotating Head, 11"
 - 2A Fill up Line and Valve
 - 2B Flow Line (10")
 - 2C Shale Shakers and Solids Settling Tank
 - 2D Cuttings Bins for Zero Discharge
 - 2E Rental Mud Gas Separator with vent line to flare and return line to mud system
 - 3 Annular BOP (11", 3M)
 - 4 Double Ram (11", 3M, Blind Ram top x Pipe Ram bottom)
 - 5 Kill Line (2" flexible hose, 3M)
 - 6 Kill Line Valve, Inner (2-1/16", 3M)
 - 7 Kill Line Valve, Outer (2-1/16", 3M)
 - 8 Kill Line Check Valve (2-1/16", 3M)
 - 9 Choke Line (3-1/8" 3M Coflex Line)
 - 10 Choke Line Valve, Inner (3-1/8", 3M)
 - 11 Choke Line Valve, Outer, (3-1/8", Hydraulically operated, 3M)
 - 12 Adapter Flange (11" 5M to 11" 3M)
 - 13 Spacer Spool (11", 5M)
 - 14 Casing Head (11" 5M)
 - 15 Ball Valve and Threaded Nipple on Casing Head Outlet, 2" 5M
 - 16 Surface Casing

A variance is requested to permit the use of flexible hose. The testing certificate for the specific hose will be available on the rig prior to commencing drilling operations.

Item Description

- 1 Rotating Head, 13-5/8"
- 2A Fill up Line and Valve
- 2B Flow Line (10")
- 2C Shale Shakers and Solids Settling Tank
- 2D Cuttings Bins for Zero Discharge
- 2E Rental Mud Gas Separator with vent line to flare and return line to mud system
- 3 Annular BOP (13-5/8", 5M)
- 4 Double Ram (13-5/8", 5M, Blind Ram top x Pipe Ram bottom)
- 5 Kill Line (2" flexible hose, 3M)
- 6 Kill Line Valve, Inner (2-1/16", 5M)
- 7 Kill Line Valve, Outer (2-1/16", 5M)
- 8 Kill Line Check Valve (2-1/16", 5M)
- 9 Choke Line (3-1/8", 3M Coflex Line)
- 10 Choke Line Valve, Inner (3-1/8", 5M)
- 11 Choke Line Valve, Outer (3-1/8", Hydraulically operated, 5M)
- 12 Spacer Spool (13-5/8", 5M)
- 13 Casing Head (13-5/8" 5M)
- 14 Ball Valve and Threaded Nipple on Casing Head Outlet, 2" 5M
- 15 Surface Casing

A variance is requested to permit the use of flexible hose. The testing certificate for the specific hose will be available on the rig prior to commencing drilling operations.

String Section	Depth	Depth	Csg	Wt N	NY (Col i	Pipe Str	Jt Str	Drill Fluid							
	MD	TVD	length ft													
Surface Casing	885	885	885	54.5	2730	1130	853000	51400	0 8.5	. '				:		
Intermediate 1 Casing	2250	2250	2250	40	3950	2570	630000	52000	0 10							
Production 1 Casing	5200	5200	5200	29	8160	7020	676000	58700	0 9						•	
Production 2 Casing	13652	6115	8452	17	7740	6290		33800	0 9							
	1					• '	- '			-						
Collanse Design (Saf	atu) Eactore		ritoria						Buret D	locian (Safe			toria			
Collapse Design (Safety) Fa	CION SEC		sinteria						Burst Dec	ion (Safety) Ea	actor: SEb		terra			
SEc = Pc / (MW × 052 × 1 ×)	Ci01. 3FC					• .			SFb = Pi	igii (Salety) Fa / BHD	32101. 350					
Where									Where	, or m				-		
Pc is the	rated pipe Colla	ose Pressu	re in pounds p	er square i	nch (psi)		<i>.</i> .			• Piist	he rated pipe I	Burst (Minimum	n Internal	Yield) Pressure i	n pounds per	r square inch (ps
 MW is mu 	d weight in pou	unds per gal	llon (ppg)							• BHP i	is bottom hole	pressure in pol	unds per s	square inch (psi)		
Ls is the I	ength of the str	ing in feet (ft)						The Minin	num Acceptabl	le Burst Design	(Safety) Facto	or SFb = 1	1,0		••
The Minimum Acceptable Co	ollapse Design	(Safety) Fac	ctor SFc = 1.12	5					· · · · · ·	1.1	•					
	· · ·														•	
Surface Casing									Surface Cas	ing						
SFc =		1 1	391	= 2	.89		: '		SFb =	2730	./ . '	391	=	6.98	•	
	• • •		· · · · ·						- · ·			· . `		. * •		
Intermediate 1 Casing									 Intermediate 	a 1 Casing		· · ·				
SFc ==	∴ 2570	ut In t	1170	= 2	.20				SFb =	3950		1170	=	3.38		
										÷		· .				
	· · · ·			,				200 - S				· ·				
Production 1 Casing		÷							Production	1 Casing			_	2.25		
SFC =	. 7020		2434	= .4	.88				5FD =	6160	/.	2434	-	3.35		
Production 2 Casing							· · ·		Production	2 Casina						
SFc =	6290	· · ·	7862	- 2	20				SFh =	7740	,	2862	=	2 70		
510-1	0,200		2002							1140	. '	2002		2		
					••				1.2			· .				
	5 4 ·		• *		•			· · ·			•					
							÷		• •							
Pipe Strength Design	(Safety) Fa	ictors – E	BLM Criteria	1 - 1	. •		- 1		Joint S	trength Des	sign (Safety	y) Factors -	BLM_C	riteria		
Pipe Strength Design (Safet	y) Factor: SFtp	· ·							Joint Stre	ngth Design (S	Salety) Factor:	SFij				
SFtp = Fp / Wt;			·				· ·		SFtj = Fj /	WG						
Where		• •							Where		-			•		
• Fp is the	rated pipe Body	Strength in	n pounds (lbs)	14 J. 14					1.1	• Fjist	he rated pipe .	Joint Strength in	n pounds	(lbs)		
• Wt is the	weight of the c	asing string	in pounds (lbs), ,						• Wt is	the weight of I	the casing strin	g in poun	ds (ibs)		
The Minimum Acceptable Pi	pe Strength De	isign (Safet)	y) Factor SFTp	= 1.6 dry c	or 1.8 buoyant		•		the Minin	num Acceptab	le Joint Streng	th Design (Sale	ety) Facto	r SF (j = 1,6 ary (x 1.8 buoyar	n1
				- 1 . Î					1 1 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4		•					
Surface Casing	•								Surface Cas	ina				-		
SFi Dry =	853000	1	48232.5	= 1	7.7 .		•		SFi Dry =	514000	· / ·	48232.5	=	10.7		
SFi Bouvant =	853000	1-1-1	48232.5	· X ·	0.870) = '	20.3	S	Fi.Bouvant =	514000		48232.5	- x	0.870) =	12.2
	· · · · ·		a sal t		-					÷ 1			· .			
Intermediate 1 Casing		· • • •	3 M.A.	1 - D					Intermediate	1 Casing						
SFi Dry =	630000	<i> </i>	90000	= 7	.00		1	· .	SFi Dry =	520000	1.	90000	=	5.78		
SFi Bouyant =	- 630000) - J. (90000	x	0.847) :=	8.26	. S	Fi Bouyant =	520000	/ (90000	x	0.847	·) =	6.82
a standard and a fair and a standard and a standard a standard a standard a standard a standard a standard a s									1		1 A.	•				
		· ·	-								· • •	· • •				
Production 1 Casing	676000	. ,	150000		40				Production	1 Casing	,	150900	_	2 80		
SFI Dry =	- 6/6000		150800	= 4	0.900	N	E 20		SFIDry =	587000	· · · ·	150800	=. •	3.69	<u>،</u> –	A 51
SFI BOUYANI =	0,0000		120000	×	0.003	, ~ .	5.20		Fi Bouyant =	10100	_ / (10000	x	0.003	, -	4.01
Production 2 Casing	gan linga	·· · ·				· •			Production	2 Casino	- 2					
SFi Drv =	397000	î î	143684	= 2	.76	•	- 1 - - 1 - 1		SFi Dry =	338000	7 .	143684	=	2.35		
SFi Bouvant =	397000	1-1	143684	x	0.863) =	3.20	S	Fi Bouyant.=	338000	· / (143684	x	0.863). =	2.73
, in Bodyani						,			,						,	
	21															

String Section	Depth	Depth	Csg	Wt	MIY		Col	Pipe Str	Jt Str	Drill Fluid
	MD	TVD	length ft							
Surface Casing	885	885	885	54.5		2730	1130	853000	514000	8.5
Intermediate 1 Casing	2250	2250	2250	40		3950	2570	630000	520000	10
Production 1 Casing	5200	5200	5200	29	-	8160	7020	676000	587000	9
Production 2 Casing	13652	6115	8452	17		7740	6290	397000	338000	9

Collapse Design (Safety) Factors - BLM Criteria

Collapse Design (Safety) Factor: SFc

SFc = Pc / (MW x :052 x Ls)

- Where
 - Pc is the rated pipe Collapse Pressure in pounds per square inch (psi)
 - MW is mud weight in pounds per gallon (ppg)
 - Ls is the length of the string in feet (ft)
- The Minimum Acceptable Collapse Design (Safety) Factor SFc = 1.125

Surface Casing

	SFc =	1130	1	391	=	2.89	
Intermediate 1 Ca	sing SFc =	2570	1	1170	=	2.20	
Production 1 Casl	ng SFc =	7020	1	2434	=	2.88	
Broduction 2 Cool							

SFc =	6290	1	2862	=	2.20	

5	Pipe Strength Design (Safety) Factors – BLM Criteria
	Pipe Strength Design (Safety) Factor: SFtp

- · · · · -SFtp = Fp / Wt; Where
 - Fp is the rated pipe Body Strength in pounds (ibs) · · Wt is the weight of the casing string in pounds (lbs)

 - The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant

Surface Casing

SFi Dry =	853000	1	48232.5	=	17.7		
SFi Bouyant =	853000	/ (48232.5	x	0.870) =	20.3
Intermediate 1 Casing							
SFiDry ≈	630000	1	90000	=	7.00		
SFi Bouyant =	630000	/ (90000	x	0.847) =	8.26

Production 1 Casing

	SFi Dry =	676000	1	150800	=	4.48		
	SFi Bouyant =	676000	/ (150800	x	0.863) =	5.20
Product	tion 2 Casing			,				
	SFi Dry =	397000	1	143684	=	2.76		
·· `	SFi Bouyant =	397000	/ (143684	x	0.863) =	3.20

Burst Design (Safety) Factors - BLM Criteria

Burst Design (Safety) Factor: SFb

SFb = PI / BHP

- Where
 - Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps
- BHP is bottom hole pressure in pounds per square inch (psi)

The Minimum Acceptable Burst Design (Safety) Factor SFb = 1.0

Surface Casi	ng				
SFb =	2730	1	391	=	6.98
Intermediate	1 Casing				
SFb =	3950	1	1170	=	3.38
Production 1	Casing				
SFb =	8160 (1	2434	=	3.35
Production 2	Casing				
SFb =	7740	1	2862	=	2.70

Joint Strength Design (Safety) Factors - BLM Criteria

Joint Strength Design (Safety) Factor: SFIJ

- SFtj = Fj / Wt;
- Where

Fj is the rated pipe Joint Strength in pounds (lbs)

- Wt is the weight of the casing string in pounds (lbs)
- The Minimum Acceptable Joint Strength Design (Safety) Factor SFT(= 1.6 dry or 1.8 buoyant

Surface Cas	ing					•	
SFi Dry =	514000	1	48232.5	=	10.7		
SFi Bouyant =	514000	/ (48232.5	×	0.870) =	12.2
Intermediate	a 1 Casing				•		
SFi Dry =	520000	1	90000	Ξ	5.78		
SFi Bouyant =	520000	/ (90000	X	• 0.847) =	6.82
Production	1 Casing						
SFi Dry =	587000	1	150800	=	3.89		
SFi Bouyant =	587000	/ (150800	x	0,863) =	4.51
Production	2 Casing						
SFi Dry =	338000	1	143684	=	2.35		
SFi Bouyant =	338000	/ (143684	x	0.863) =	2.73

String Section	Depth	Depth	Csg	Wt I	MIY	Col	Pipe Str	Jt Str	Drill Fluid							
	MD	TVD	length ft							·						
Surface Casing	885	885	885	54.5	2730	1130	853000	514000	0 8.5				,			
Intermediate 1 Casing	2250	2250	2250	40	3950	2570	630000	520000	0 10							
Production 1 Casing	5200	5200	5200	29	8160	7020	676000	587000	0 9	· · · ·						
Production 2 Casing	13652	6115	8452	17	7740	6290	397000	338000	0 9							
	-			· · · · ·												
	1944 (M			•												
									a tipta	- •						
Collapse Design (Safe	ty) Factors	- BLM (Criteria						<u>Burst D</u>	<u>)esign (Safet</u>	y) Factor	rs – BLM C	<u>riteria</u>			
Collapse Design (Safety) Fact	or: SFc								Burst Des	sign (Safety) Fact	or: SFb					
SFc = Pc / (MW x .052 x Ls)									SFb = Pi	/ BHP						
Where	••••								Where	,						
• Pc is the ra	led pipe Colla	pse Pressi	ire in pounds p	er square	inch (psi)				. 1	 Pi is the 	rated pipe	Burst (Minimu	m Internal	Yield) Pressure in	pounds per	square inch (ps
• MW is mud	weight in pou	inds per ga	llon (ppg)	·				•		 BHP is 	bottom hole	e pressure in p	ounds per s	square inch (psi)		
· . Ls is the let	ngth of the str	ing in leet (ft)		• .•		•		The Minin	num Acceptable	Burst Desig	gn (Safety) Fac	ctor SFb = 1	. 0.		
The Minimum Acceptable Coll	lapse Design	(Salety) Fa	ctor SFc = 1.12	25	÷				1.1	· •						
Surface Casing	4400		-				-		Surface Cas	sing						
SFC =	-1130	/	391	=	2.89				SFD =	.2730	! .	391	=	6.98		
													· · ·	• *		
Intermediate 1 Casing								•	Intermediate	e i Casing	· , ·	4470	_			•
SFC =	2570	· /	1170	= .	2.20				560 =	3950	'	1170	-	3.30		
										•				•		
Production 1 Cacina			•••						Broduction	1 Cooling						
SEC -	7020	~	2434	<u> </u>	2 8 8				SEb =	1 Casing 8160	· · ·	2434	=:*	2 25		
Sic-	2-1 7020	'	2434		2.00				010-	0100 2.2	<i>.</i>	2-3-		0.00		
Production 2 Casing		•							Production	2 Casing		-				
SFc =	6290	1	2862	= -:	2 20				SEh =	7740	1	2862	=	2.70		
5	0200	•	2002						0.0			2002				
	• -		·		$(k, j) \in \mathbb{R}^{n \times n}$,	í	· ·						
	· · ·										-					
					+				**							
Pipe Strength Design (Safety) Fa	<u>ctors – É</u>	BLM Criteri	a . J	- 1				Joint S	trength Desig	n (Safel	ty) Factors	- BLM C	riteria		
Pipe Strength Design (Safety)	Factor: SFtp						-	12	Joint Stre	ngth Design (Sat	ety) Factor	: SFtj	1.1			
SFtp = Fp / Wt		•		. •				•	SFtj = Fj /	/Wc						
Where									Where							
Fp is the ra	ted pipe Body	Strength i	n pounds (lbs)					-		 Fj is the 	rated pipe	Joint Strength	in pounds	(lbs) _		
Wt is the w	eight of the ca	asing string	in pounds (lbs) `		•				 Wt is th 	e weight of	the casing str	ing in poun	ds (lbs)		-
The Minimum Acceptable Pip	e Strength De	sign (Safet	y) Factor SFTp	= 1.6 dry	or 1.8 buoya	nt			The Minir	num Acceptable	Joint Stren	igth Design (Sa	afety) Facto	r SFTj = 1.6 dry o	r 1.8 buoyan	n
					м. С				1. F			1		÷.		
					•					같은 국가 문		·				
Surface Casing				-				· · ·	Surface Cas	sing				·		
SFi Dry =	853000	1.	48232.5	=	17.7				SFi Dry =	514000		48232.5	=	10.7		
SFi Bouyant =	853000	(48232.5	, ×_	0,870) =	20.3	S	Fi Bouyant =	514000	/ (48232.5	× .	0.870) =	12.2
Internetical A Contine	- -			t i s	•			• • •						· · ·		
Intermediate 1 Casing	. 630000	, '							Intermediate	e i Casing	• • •	00000	1 . 	E 70		
	630000	·	90000		7.00	۰	0.00		SFIDIY -	520000	·	90000	-	0.047	<u>ا</u> –	6 02
SPI Bouyant =	630000	1 (. 90000	x	0.847) =	6.20	5	Fi Bouyani =	520000		90000	×	0.647) -	0.02
	·												1.2			
Production 1 Casing			-						Production	1 Casino	,	•				
SEi Dry =	676000	· ./	150800	= .	4 48				SEi Drv =	587000	1	150800	=	3.89		
SEi Bouvant =	676000	<i></i>	150800	¥	0.863) =	5 20		Fi Bouvant =	587000	111	150800	¥	0.863) =	4.51
	2.0000	- 1		· ·	0.000	/ -		. 0							,	
Production 2 Casing					· · .			· • • •	Production	2 Casing						
- SFi Drv =	397000	1	143684	= :	2.76	•	•	1- ₁	SFi Dry =	338000	.7	143684	. =	2.35		
SFi Bouyant =	397000	1.1	143684	x	0.863	·) = .	3.20	- S	Fi Bouyant =	338000	1.6	143684	x	0.863) =	2.73
	· · ·	· · ·	• .		-			•			. ``					
T 2 +1	1.1	11.00			· ·		-	· .·								

String Section	Depth MD	Depth TVD	Csg length fi	Wt	МΙΥ	Col	Pipe Str	Jt Str	Drill Fluid
Surface Casing	885	885	885	54.5	273	30 1130	853000	514000	8.5
Intermediate 1 Casing	2250	2250	2250	40	395	50 2570	630000	520000	10
Production 1 Casing	5200	5200	5200	29	816	50 7020	676000	587000	9
Production 2 Casing	13652	6115	8452	17	774	40 6290	397000	338000	9
Collanse Design (S	Safety) Factors	- BLM	Criteria						Burst
Collapse Design (Safety)) Factor: SFc		<u>ernena</u>						Burst D
SFc = Pc / (MW x .052 x	Ls)								SFb ≠ P
Where									Where
 Pc is 	the rated pipe Colla	pse Press	ure in pounds	per squar	e inch (psi)				
MW is	s mud weight in pou	inds per ga	allon (ppg)						
 Ls is t 	he length of the stri	ing in feet	(ft)						The Min
The Minimum Acceptabl	e Collapse Design ((Safety) Fa	ctor SFc = 1.1	25					
Surface Casing	= 1130	,	391	=	2 89				Surface Ca
	- 1150	,	551		2.03				510-
Intermediate 1 Casing	- 2570	,	4470	_					Intermedia
SFC	= 2570	'	1170	=	2.20				580 =
Production 1 Casing									Production
SFc	= 7020	1	2434	=	2.88				SFb =
Production 2 Casing									Production
SFc	= 6290	1	2862	=	2.20				SFb =
Pipe Strength Des	Ign (Safety) Fa	<u>ctors – l</u>	BLM Criteri	ia					Joint S
Pipe Strength Design (S	afety) Factor: SFtp								Joint Str
SFtp = Fp / Wt;									SFtj = Fj
Where									Where
• Fpist	the rated pipe Body	Strength i	n pounds (lbs)						
• Wis	the weight of the ca	ising string	in pounds (lb	s) ·					
The Minimum Acceptabl	e Pipe Strength De	sign (Satel	y) Factor SF (p = 1.6 dr	y or 1,8 buo	yanı			i ne Min
Surface Casing									Surface Ca
SFi Dry	= 853000	1	48232.5	=	17.7				SFi Dry =
SFi Bouyant	= 853000	/ (48232.5	x	0.870) =	20.3	SF	i Bouyant =
Intermediate 1 Casing									Intermedia
SFi Dry	= 630000	1	90000	=	7.00				SFi Dry =
SFi Bouyant	= 630000	/ (90000	x	0.847) =	8.26	SF	i Bouyant =
Production 1 Casi									D andwott
FIVUUCTION I Casing	- 676000	,	150900	_	4 49				SEi Dor -
SFi Bouwant	- 070000	· ', ,	150800	-	4.40	<u>ا -</u>	5 20	65	i Bouvant =
ori puuyant	- 0/0000	1 (100000	x	0.003	1 =	J.ZU	35	i bouyant =

Production 2 Casing							
SFi Dry =	397000	1	143684	=	2.76		
SFi Bouyant =	397000	1 (143684	x	0.863) =	3.20

<u> Design (Safety) Factors – BLM Criteria</u>

. sign (Safety) Factor: SFb

BHP

- - Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps
- BHP is bottom hole pressure in pounds per square inch (psi)
- num Acceptable Burst Design (Safety) Factor SFb = 1.0

Surface Casing SFb =	2730	1	391	=	6.98
Intermediate 1 (SFb =	Casing 3950	1	1170	=	3.38
Production 1 Ca SFb =	asing 8160	1	2434	=	3.35
Production 2 Ca SFb =	asing 7740	1	2862	=	2.70

trength Design (Safety) Factors - BLM Criteria

ength Design (Safety) Factor: SFtj

- / Wt;

• . Fj is the rated pipe Joint Strength in pounds (lbs)

- Wt is the weight of the casing string in pounds (lbs)
- mum Acceptable Joint Strength Design (Safety) Factor SFT] = 1.6 dry or 1.8 buoyant

Surface Casi	ina							
SFi Dry =	514000	1		48232.5	=	10.7		
SFi Bouyant =	514000	1	(48232.5	x	0.870) =	12.2
Intermediate	1 Casing							
SFi Dry =	520000	1		90000	=	5.78		
SFi Bouyant =	520000	. 7	(90000	x	0.847) =	6.82
Production 1	l Casing							
SFi Dry =	587000	1		150800	=	3.89		
SFi Bouyant =	587000	1	(150800	X	0.863) =	4.51
Production 2	2 Casing							
SFi Dry =	338000	1		143684	=	2.35		
SFi Bouvant =	338000	1	(143684	x	0.863) =	2,73

String Section	Depth	Depth	Çsg	Wt	MIY	Col	Pipe Str	Jt St	r	Drill Fluid							
Surface Casing	ND 	1VD -	length ft	54.5	2720	- 1120	1 95200	00 51	14000	95							
Intermediate 1 Casing	2250	2250	2250	- 34.5	2150	2570	6200	00 51	20000	10	·				· .	•	
Production 1: Casing	5200	5200	5200	20	8160	7020	6760	00 52	20000				•			· · · ·	
Production 2 Casing	13652	6115	8452	17	7740	6290	3970		38000	9	•						
	10002		0432			02.50	<u></u>	001 00	0000	<u>_</u>							
· · · · · · · · · · · · · · · · · · ·		•	_* ·								-						• •
	۰.				3												
Collapse Design (Saf	etv) Eactors	– BLM C	riteria							Burst D	esion (Safe	tv) Facto	rs – BLM Cri	teria		· .	
Collapse Design (Safety) Fa	ctor: SFc			•						Burst Des	ion (Safety) Fac	tor: SFb					
SFc = Pc / (MW x .052 x Ls)	1.1.1		$\{x_{i,j},\ldots,x_{i-1}\}$		4				÷.,	SFb = Pi /	BHP						:
Where	· · · · ·	•								Where			1.1		•	-	
•Pc is the	rated pipe Colla	ose Pressu	re in pounds p	er square	inch (psi)						 Pils th 	e rated pipe	Burst (Minimum	Internal \	(ield) Pressure i	in pounds pe	r square inch (p
 MW is mu 	id weight in pou	nds per gal	lon (ppg)	· · .							 BHP is 	bottom hole	e pressure in poi	unds per s	quare inch (psi))	
• Ls is the l	ength of the stri	ng in feet (f	1) · · · · · ·							👷 🕢 The Minim	num Acceptable	Burst Desi	gn (Safety) Facto	or SFb = 1	.0		
The Minimum Acceptable C	ollapse Design (Safety) Fac	tor SFc = 1.12	25 .	• •						· · · ·	•			· · .		
	•		· ·				-			1	1 A.						
Surface Casing				· .						Surface Cas	ing						
SFc =	1130	1	391	= .	2.89					SFb =	2730	1.	391	= .	6.98		
	··. ·		· · ·									•• •			500 - E	•	
Intermediate 1 Casing				-						Intermediate	1 Casing			-			
SFC =	2570	$\sim T_{\rm c}$	√ 1 170 ⊴,	=	2.20					SFD =	3950 -	1 .	1170	= .	. 3.38		
												-			۰.		
Braduction 1 Cooler					-					Bandination 1	· C						
Froduction i Cashig	7020			_ ·	2 00			۰.		CEP	o 160		2424		2.75		
Lass St. Sarc -	- /020	• • • • •	2404	-	2.00			۰.		560-	.0100	. <u>r</u>	24.34		3.33		
Production 2 Casing										Production	Casing						
SFc =	6290	1.	2862	=	2 20			-		SFb =	7740	·. 1	2862	= .	2 70		
	0200	•	EGGE		2.20					0.0			LOOL				
al lan	i sa ng it				•		· ·				:				2		
			9 i		•						•				- 1		
· · · · · · · · · · · · · · · · · · ·	: .									• • •							
Pipe Strength Design	(Safety) Fac	tors – B	LM Criteria	a						Joint St	trength Desi	ign (Safe	ty) Factors -	BLM C	riteria		
Pipe Strength Design (Safet	y) Factor: SFtp		÷ •							Joint Stree	ngth Design (Sa	ifely) Factor	: SFIj				
SFtp = Fp / Wt										SFtj = Fj /	WI;						
Where	-									Where					-		
 Fp is the 	rated pipe Body	Strength in	pounds (lbs)								 Fjisth 	e rated pipe	Joint Strength i	n pounds (lbs)	•	
Wt is the	weight of the ca	sing string i	in pounds (lbs) .			•			· · · / · ·	• Wt is t	he weight of	the casing strin	g in pound	is (lbs)	. ,	
The Minimum Acceptable Pi	pe Strength Des	sign (Safety) Factor SFTp	o = 1.6 dry	or 1.8 buoyan	t ·			• •	The Minin	num Acceptable	Joint Stren	igth Design (Safe	ety) Factor	SFTj = 1.6 dry	or 1.8 buoya	nt
	· - ·		· ·								-		•				
	· .		: <u> </u>			-								· ·			
Surface Casing										Surface Cas	ing				·		
SFi Dry =	- 853000	·	48232.5	Ξ.	17.7	,				SEiDry=	514000		48232.5	± :	10.7	۰.	40.0
SFi Bouyant =	. 853000	<u></u>	48232.5	x	0.870) =	20.3		_ SF	i Bouyant =	514000.	- 7 C	48232.5	x	0.870) =	12.2
Hitter and the a Country in									-	1		• * ·• •					
Intermediate 1 Casing	620000	- · · ·	00000		7 00					SEi Dou -	520000	· · · ·	00000	· _	5 79		
SFI Dry =	630000		90000	-	0.947	١-	0.00		C E	SFIDIY =	520000	· · · ·	90000	-	5.70	۰ -	6.97
SFIBOUyant =	630000	, P. (.	90000	Χ.	0.647) =	0.20		· Sr	i bouyant =	- 520000	. / (90000	*	0.047) -	0.02
	-	·						- 1 J - 1	• •								
Production 1 Casing	•	1.1						•		Production	1 Casino						
SFi Dry =	676000	· 1	150800	=	4 48	-				SFi Drv =	587000	1	-150800	=	3.89		
SFi Bouvant =	676000	14	150800	 	0.863) =	5 20	• .	SF	i Bouvant =	587000	1.0	150800	x	0.863) =	4.51
the second se	2,0000	a di Se			0.000	· / _ ·		· ~ ,.						.,		1	
Production 2 Casing				•	2		·			Production 2	2 Casing						
SFi Drv =	397000	1	143684	··· =· ··	2.76				i e	SFi Drv =	338000	1	143684	=	2.35		
SFi Bouyant =	397000	1.4	143684	x î	0.863) =	3.20	i i	··SF	i Bouyant =	338000	11	143684	x	0.863) =	2.73
	• • • •					• •		•		•		``				,	
· · · ·	•					•	•										

String Section	Depth MD	Depth TVD	Csg length ft	Wt	MIY	Col	Pipe Str	Jt Str	Drill Fluid	
Surface Casing	885	885	885	54.5	2730	1130	853000	514000	8.5	
Intermediate 1 Casing	2250	2250	2250	40	3950	2570	630000	520000	10	
Production 1 Casing	5200	5200	5200	29	8160	7020	676000	587000	9	
Production 2 Casing	13652	6115	8452	17	7740	6290	397000	338000	9	
Collanse Design (Saf	atu) Factore	_ 81 M (Critoria						Buret D	oelan (Saf
Collapse Design (Safety) Fa	etyr Factors	- DLINI	Silleria						Burst Des	ion (Safety) Fa
SFc = Pc / (MW x .052 x Ls)								SFb = Pi /	BHP
Pc is the	rated nine Collar	se Press	ire in nounds	oer sauar	e inch (nsi)				venere	• Plist
• MW is m	ud weight in pour	nds per na	llos (nna)	hei adnai	e nich (pai)					 BHP i
• Lsisthe	length of the stri	ng in feet i	(ft)						The Minin	um Accentabl
The Minimum Acceptable C	ollapse Design (Safety) Fa	ctor SFc = 1.1	25						
Surface Casing									Surface Cas	ing
SFc =	1130	/	391	=	2.89				SFb =	2730
Intermediate 1 Casing	2570	,	1170	_	2 20				Intermediate	1 Casing
360-	2570	'	1170	-	2.20				3-0 =	3950
Production 1 Casing									Production '	t Casing
SFc =	7020	1	2434	=	2.88				SFb =	8160
Production 2 Casing SFc =	6290	1	2862	Ŧ	2.20				Production 2 SFb =	2 Casing 7740
Pipe Strength Desigr Pipe Strength Design (Safer SFip = Fp / Wt; Whore	n <mark>(Safety) Fac</mark> ly) Factor: SFtp	tors – I	BLM Criter	<u>ia</u> .					Joint Stree Joint Stree SFtj = F} /	trength Des ngth Design (S Wt;
Fp is the	rated pipe Body	Strenath i	n pounds (lbs))						• Fiist
 Wt is the 	weight of the ca	sing string	in pounds (lb	s)						.• Wtis
The Minimum Acceptable P	ipe Strength Des	ign (Safet	y) Factor SFT	p = 1.6 dr	y or 1.8 buoya	int			The Minin	num Acceptab
Surface Casing									Surface Cas	ing
SFi Dry =	853000	1	48232.5	=	17.7				SFi Dry =	514000
SFi Bouyant =	853000	/ (48232.5	x	0.870) =	20.3	SF	⁻ i Bouyant =	514000
Intermediate 1 Casing									Intermediate	1 Casing
SFi Dry =	630000	<u> </u>	90000	=	7.00			~-	SFI Dry =	520000
SFi Bouyant =	630000	/ (90000	x	0.847) =	8.26	SF	•i Bouyant =	520000
Production 1 Casing									Production *	1 Casing
SFi Dry =	676000	1	150800	=	4.48				SFi Dry =	587000
SFi Bouyant =	676000	1 (150800	x	0.863) =	5.20	SF	Fi Bouyant =	587000

Production 2 Casing

SFi Dry =

SFi Bouyant =

							Production	2 Casing		
397000	1	143684	=	2.76			SFiDry =	338000	1	143684
397000	1 (143684	x	0.863) =	3.20	SFi Bouyant =	338000	1 (143684

(Safety) Factors - BLM Criteria

ety) Factor: SFb

Pl is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps BHP is bottom hole pressure in pounds per square inch (psi)

ceptable Burst Design (Safety) Factor SFb = 1.0

Surface Casil SFb =	ng 2730	1	391	=	6.98
Intermediate SFb =	1 Casing 3950	1	1170	=	3.38
Production 1 SFb =	Casing 8160	1	2434	=	3.35
Production 2 SFb =	Casing 7740	1	2862	=	2.70

h Design (Safety) Factors – BLM Criteria sign (Safety) Factor: SFI)

1

1

1

Fj is the rated pipe Joint Strength in pounds (lbs)

Wt is the weight of the casing string in pounds (lbs)

ceptable Joint Strength Design (Safety) Factor SFTj = 1.6 dry or 1.8 buoyant

10.7

5.78

3.89

2.35

0.870

0.847

0,863

0.863

) = 12.2

) = 6.82

) = 4.51

) = 2.73

=

x

=

х

=

х

=

x

48232.5

90000

150800

/ (48232.5

/ (90000

/ (150800

SPECIFICATIONS

FLOOR: 3/16" PL one piece CROSS MEMBER: 3 x 4.1 channel 16" on center

WALLS: 3/16" PL solid welded with tubing top, insi de liner hooks

DOOR: 3/16" PL with tubing frame FRONT: 3/16" PL slant formed PICK U P: Standard cable with 2" x 6" x 1/4" rails, gu sset at each crossmember WHEELS: 10 DIA x 9 long with rease fittings DOOR LATCH: 3 Independent ratchet binders with chains, vertical second latch GASKE TS: Extruded rubber seal with metal retainers

WELDS: All welds continuous except substructur e crossmembers

FINISH: Coated inside and out with direct to metal, rust inhibiting acrylic enamel color coat HYDROTESTING: Full capacity static test DIMEN SIONS: 22-11' long (21'-8" inside), 99" wide (88" inside), see drawing for height OPTIONS: Steel grit blast and special paint, Ampliroll, Heil and Dino pickup

ROOF: 3/16" PL roof panels with tubing and channel support frame

LIDS: (2) 68" x 90" metal rolling lids spring loaded. self raising

ROLLERS: 4" V-groove rollers with delrin bearings and grease fittings

OPENING: (2) 60" x 82" openings with 8" divider centered on

contain er LATCH :(2) independent ratchet binders with chains

per lid GASKETS: Extruded rubber

seal with metal retainers

Heavy Duty Split Metal Rolling Lid

CONT.	A	В
20 YD	41	53
25 YD	53	65
30 YD	65	77

31

1. Geologic Formations

KB TVD of target	6115'	Pilot hole depth	NA
KB MD at TD:	13652'	Deepest expected fresh water:	820'

Basin				
Formation	KB TVD (ft)	Elevation KB (ft)	Water/Mineral Bearing/Target Zone	Hazards*
Rustler	820	3244	Fresh Water	
Salado	960	3104	Brackish Water	_
Tansill	2040	2024	Salt	
Yates	2180	1884	Salt Water	
Seven Rivers	2485	1579	Oil/Gas	
Queen	3110	954	Oil/Gas	
Grayburg	3530	534	Oil/Gas	
San Andres	3850	214	Oil/Gas	
Glorieta	5375	-1312	Oil/Gas	
Paddock	5465	-1402	Oil/Gas	
Blinebry	5775	-1712	Target	
Land Pt / TD	6115	-2052		

2. Casing Program

	3 strings casing design												
Hole	Casing Interval		Csg.	Weight	Grade	Conn.	SF	SF	SF Pipe	SF Joint			
Size	From	То	Size	(lbs)			Collapse	Burst	Tensile	Tensile			
17.5"	0	885	13.375"	54.5	J55	STC/BTC	2.89	6.98	17.7	10.7			
12.25"	0	2250	9.625"	40	J55	LTC/BTC	2.20	3.38	7.00	5.78			
8.75"	0	5200	7"	29	L80	LTC/BTC	2.88	3.35	4.48	3.89			
8.75"	5200	13652	5.5"	17	L80	LTC/BTC	2.20	2.70	2.76	2.35			
				BLM N	Minimum	Safety Factor	1.125	1	1.6 Dry	1.6 Dry			
						-		1	1.8 Wet	1.8 Wet			

- Bring cement from 5-1-2" casing shoe to lap inside 9-5/8" casing shoe.
- XO from 7" to 5-1/2" in 8-3/4" OH for minimum of 0.422in clearance per Onshore Oil and Gas Order #2 III.B.
- Notify BLM if an Annulus Casing Packer and Stage Tool with 2-Stage Cement or Remediate with Bradenhead Squeeze will be necessary.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	YES
Does casing meet API specifications? If no, attach casing specification sheet.	YES
Is premium or uncommon casing planned? If yes attach casing specification sheet.	YES
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	YES
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	N/A
Is well located within Capitan Reef?	NO
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	NO
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	NO
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	NO
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	NO
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H20 gal/sk	Vol ft3	500# Comp. Strength (hours)	Slurry Description
Surf.	500	13.5	1.68	8.94	840	7	Lead: Class C + 4.0% Bentonite + 0.2% Anti-Foam + 2.0% CaCl2 +0.125lb/sk LCM + 0.1% Dispersant
	400	14.8	1.35	6.38	540	7	Tail: Class C + 0.2% Anti-Foam + 0.1% Lost Circ Control + 2 lbs/bbl CemNET (losses Control)
Inter.	450	11.5	2.29	10.72	1031	17	Lead: Class C + 10.0% Bentonite + 0.2% Anti-Foam + 2.0% Expanding + 0.15% Viscosifier + 1.3% Retarder.
	300	13.5	1.29	4.81	387	7	Tail: Class C + 1% Extender + 3 lb/sk Extender + 0.2% Anti-Foam + 0.1% Dispersant + 13 lb/sk LCM + 0.5% Fluid Loss + 0.7% Retarder
Prod.	650	11.0	3.2	19.25	2080	17	Lead: Class C + 6% Extender + 10% Gas Migration Control + 2% Sodium Metasilicate (dry) + 1% Cement Bonding Agent + 3% Aluminum Silicate + 0.125 lb/sx Cello Flake + 3 lb/sx LCM-1
	2000	14.0	1.37	6.48	2740	7	Tail: Class C + 3lb/sk LCM + 1.5% Fluid Loss + 0.1% + 1% Sodium Metasilicate (dry) + 1.5% Fluid Loss Control

DV tool depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

Lab reports with recipe and the 500 psi compressive strength time for the cement will be onsite for review.

3 strings casing cement design									
Casing String	TOC Lead	TOC Tail	% Excess						
Surface	0,	585'	>100%						
Intermediate	0,	1750'	>100%						
Production	1500'	5200'	>30%						

Cement excess will be adjusted based on actual hole condition like losses or fluid caliper data if have.

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Тур	Туре		Tested to:
	13-5/8"		Annular		x	50% of working pressure
			Blind Ram			
8-3/4"		3M	Pipe Ram			2,000 mai
			Double Ram		x	3,000 psi
			Other*			

*Specify if additional ram is utilized.

Note: A 13-5/8" BOPE will be utilize in the 8-3/4" hole section depending on availability and Rig Substructure Clearance.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

X	Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
X	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. If yes, specs and hydrostatic test certification will be available in the company man's trailer and on the rig floor
	N Are anchors required by manufacturer?
X	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.
	See attached schematic.

5. Mud Program

		3 strings	casing mud pro	gram		· · · ·
3 strings casing mud programDepthTypeWeight (ppg)ViscosityWater LossPH LossFromTo0Surf. shoeFW Gel8.5-9.028-40N/CN.CSurf. ShoeInter. shoeSaturated Brine10.028-32N/C9-10		PH				
From	То				Loss	
0	Surf. shoe	FW Gel	8.5-9.0	28-40	N/C	N.C.
Surf. Shoe	Inter. shoe	Saturated Brine	10.0	28-32	N/C	9-10.5
Inter. shoe	TD	Cut-Brine	8.6-10.0	28-40	N/C	9-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	PVT/Pason/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.
X	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated
	logs run will be in the Completion Report and submitted to the BLM.
	No Logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain
	Coring? If yes, explain

Add	litional logs planned	Interval
	Resistivity	
	Density, GR, BHC	
	CBL	
Х	Mud log	
	PEX	

4 Drilling Plan

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	2815 psi
Abnormal Temperature	No – 110°

• Mitigation measure for abnormal conditions - Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

X H2S is present

X H2S Plan attached

8. Other facets of operation

Is this a walking operation? If yes, describe. NO. Will be pre-setting casing? If yes, describe. NO.

Attachments:

Attachment#1:	Directional Plan
Attachment#2:	Wellbore Casing & Cementing Schematic
Attachment#3:	Wellhead Schematic
Attachment #4:	BOP Schematics
Attachment #5:	Choke Schematic
Attachment #6:	Rig Layout
Attachment #7:	H2S Contingency Plan

ConocoPhillips, Peridot 8 Federal 11H

	3 strings casing design										
Hole	Casing Interva		Csg.	Weight	Grade	Conn.	SF	SF	SF Pipe	SF Joint	
Size	From	То	Size	(lbs)			Collapse	Burst	Tensile	Tensile	
17.5"	0	885	13.375"	54.5	J55	STC/BTC	2.89	6.98	17.7	10.7	
12.25"	0	2250	9.625"	40	J55	LTC/BTC	2.20	3.38	7.00	5.78	
8.75"	0	5200	7"	29	L80	LTC/BTC	2.88	3.35	4.48	3.89	
8.75"-8.5"	5200	13652	5.5"	20	L80	LTC/BTC	3.09	3.21	2.76	3.10	
				BLM Minimum Safety Factor			1.125	1	1.6 Dry	1.6 Dry	
						•			1.8 Wet	1.8 Wet	

2. Casing Program – Openhole Sliding Sleeves Completion Option

- Cement 7" production string thru a stage tool below the XO joint and leave 5-1/2" casing string below the Glorieta formation uncemented with packers & sleeves from landing point to TD.
- Notify BLM if additional unplanned stages of Cement or Remediate with Bradenhead Squeeze become necessary.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	YES
Does casing meet API specifications? If no, attach casing specification sheet.	YES
Is premium or uncommon casing planned? If yes attach casing specification sheet.	NO
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	YES
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	N/A
Is well located within Capitan Reef?	NO
If yes, does production casing cement tie back a minimum of 50' above the Reef?	1
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	NO
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	NO
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	NO
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	NO
If yes, are there three strings cemented to surface?	

ConocoPhillips, Peridot 8 Federal 11H

Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H20 gal/sk	Vol ft3	500# Comp. Strength (hours)	Slurry Description
Surf.	500	13.5	1.68	8.94	840	7	Lead: Class C + 4.0% Bentonite + 0.2% Anti-Foam + 2.0% CaCl2 + 0.125lb/sk LCM + 0.1% Dispersant
	400	14.8	1.35	6.38	540	7	Tail: Class C + 0.2% Anti-Foam + 0.1% Lost Circ Control + 2 lbs/bbl CemNET (losses Control)
Inter.	450	11.5	2.29	10.72	1031	17	Lead: Class C + 10.0% Bentonite + 0.2% Anti-Foam + 2.0% Expanding + 0.15% Viscosifier + 1.3% Retarder.
	300	13.5	1.29	4.81	387	7	Tail: Class.C + 1% Extender + 3 lb/sk Extender + 0.2% Anti-Foam + 0.1% Dispersant + 13 lb/sk LCM + 0.5% Fluid Loss + 0.7% Retarder
Prod.	650	11.0	3.2	19.25	2080	17	Lead: Class C + 6% Extender + 10% Gas Migration Control + 2% Sodium Metasilicate (dry) + 1% Cement Bonding Agent + 3% Aluminum Silicate + 0.125 lb/sx Cello Flake + 3 lb/sx LCM-1

3. Cementing Program – Openhole Sliding Sleeves Completion Option

If additional unplanned stages of cementing are necessary, the contingency stage tool will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Stage tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

Lab reports with recipe and the 500 psi compressive strength time for the cement will be onsite for review.

	3 strings casing cement designsing StringTOC LeadTOC Tail% Excessface0'585'>100%ermediate0'1750'>100%						
Casing String	TOC Lead	TOC Tail	% Excess				
Surface	0'	585'	>100%				
Intermediate	0'	1750'	>100%				
Production	<1700'	N/A	>30%				

Cement excess will be adjusted based on actual hole condition like losses or fluid caliper data if have.

Attachments:

Attachment#1: Wellbore Casing & Cementing Schematic

String Section		Depth MD	Depth TVD	Csg lenath ft	Wt	MIY	Col	Pipe Str	Jt Str	Drill Flui
Surface Casing	Г	885	885	885	54.5	27	30 1130	853000	514000	8.
Intermediate 1 Cas	ing [2250	2250	2250	40	39	50 2570	630000	520000	1
Production 1 Casin	g	5200	5200	5200	29	81	60 7020	676000	587000	
Production 2 Casin	g [13652	6115	8452	20	91	90 8830	466000	524000	I
Collapse Des Collapse Design	i gn <u>(Safe</u> (Safety) Fac	ty) Factors	- BLM	Criteria						<u>Bur</u> Burs
SFc = Pc / (MW)	(.052 x Ls)									SFb
Where										When
•	Pc is the ra	ated pipe Colla	pse Press	ure in pounds	per squa	re inch (psi)				
•	MW is mu	d weight in pou	nds per ga	llon (ppg)						
•	Ls is the le	ngth of the stri	ng in feet	(ft)						The M
The Minimum Ac	ceptable Co	llapse Design (Saletv) Fa	clor SFc = 1.1	125					
Surface Casing										Surface
	SFc =	1130	1	391	=	2.89				SFb
Intermediate 1 Ca	sing									Intermed
	SFc =	2570	1	1170	=	2.20				SFb
Production 1 Casi	ing									Producti
	SFc =	7020	1	2434	=	2.88				SFb
Production 2 Casi	ing									Producti
	SFc =	8830	1	2862	=	3.09				SFb
Pipe Strengtl	n Design	(Safety) Fa	ctors – I	BLM Criteri	ia					Joir
Pipe Strength De	sign (Safety) Factor: SFtp								Joint
SFtp = Fp / Wt;										SFIJ
Where										Whe
•	Fp is the ra	ated pipe Body	Strength i	n pounds (lbs))					
•	Wt is the v	eight of the ca	sing string	in pounds (lb	s)					
The Minimum Ac	ceptable Pip	e Strength Des	sign (Safe	y) Factor SFT	p = 1.6 d	ry or 1.8 bud	yant			The I
										Surface
Surface Casing										
Surface Casing	Fi Dry =	853000	1	48232.5	=	17.7				SFi Dry

SFI Bouyant =	655000	1 (40232.5	x	0.870) =	20.3	SFI Bouyant = 514	4000
Intermediate 1 Casing								Intermediate 1 C	asing
SFi Dry =	630000	1	90000	=	7.00			SFi Dry = 52	0000
SFi Bouyant =	630000	/ (90000	x	0.847) =	8.26	SFi Bouyant = 52	0000
Production 1 Casing								Production 1 Ca	sing
SFi Dry =	676000	1	150800	=	4.48			SFi Dry = 58	7000
SFi Bouyant =	676000	/ (150800	×	0.863) =	5.20	SFi Bouyant = 58	7000
Production 2 Casing								Production 2 Ca	sing
SFi Dry =	466000	1	169040	=	2.76			SFi Dry = 524	4000
SFi Bouyant =	466000	/ (169040	x	0.863) =	3.20	SFi Bouyant = 524	4000

st Design (Safety) Factors - BLM Criteria

Design (Safety) Factor: SFb

= Pi/BHP

· Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps

BHP is bottom hole pressure in pounds per square inch (psi)

Minimum Acceptable Burst Design (Safety) Factor SFb = 1.0

Surface Casin SFb =	ng 2730	1	391	=	6.98
Intermediate SFb =	1 Casing 3950	1	1170	=	3.38
Production 1 SFb =	Casing 8160	1	2434	=	3.35
Production 2 SFb =	Casing 9190	7	2862	=	3.21

t Strength Design (Safety) Factors – BLM Criteria

Strength Design (Safety) Factor: SFtj

= F| / Wt;

Fj is the rated pipe Joint Strength in pounds (lbs)

Wt is the weight of the casing string in pounds (lbs)

Minimum Acceptable Joint Strength Design (Safety) Factor SFTj = 1.6 dry or 1.8 buoyant

Surface Cas	ing						
SFiDry ≕	514000	1	48232.5	=	10.7		
SFi Bouyant =	514000	- 1- (:	48232:5	x	0.870) =	12.2
Intermediate	e 1 Casing						
SFi Dry =	520000	1	90000	=	5.78		
SFi Bouyant =	520000	/ (90000	x	0.847) =	6.82
Production	1 Casing						
SFi Dry =	587000	1	150800	=	3.89		
SFi Bouyant =	587000	/ (150800	x	0.863) =	4.51
Production :	2 Casing						
SFi Dry =	524000	1	169040	=	3.10		
SFi Bouyant =	524000	/ (169040	x	0.863) =	3.59

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Y.

Row(s) Exist? NO

APD ID: 10400008915

Operator Name: CONOCOPHILLIPS COMPANY

Well Name: PERIDOT 8 FEDERAL

Well Type: OIL WELL

Submission Date: 02/09/2017

Well Number: 11H Well Work Type: Drill Highlighted data reflects the most recent changes

02/26/2018

SUPO Data Report

Show Final Text

Will existing roads be used? YES

Section 1 - Existing Roads

Existing Road Map:

Peridot_8_Fed_11H_Access_Road_TopoA_08-18-2017.pdf

Existing Road Purpose: ACCESS

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Peridot_8_Fed_11H_AccessRoadTopoB_08-18-2017.pdf Peridot_8_Fed_11H_AccessRoadv2_20180108113804.pdf New road type: RESOURCE

Length: 5236 Feet Width (ft.): 30

Max slope (%): 2

Max grade (%): 4

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 17

New road access erosion control: The inside slope of the side ditches shall be 3:1. Any topsoil removed from the access road will be conserved as appropriate and with low profile. This access road is on fairly level ground. No additional erosion control is planned.

New road access plan or profile prepared? NO

New road access plan attachment:

Well Name: PERIDOT 8 FEDERAL

Well Number: 11H

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: OFFSITE

Access surfacing type description: Clean caliche will be used for lease access roads.

Access onsite topsoil source depth:

Offsite topsoil source description: Caliche will be from a BLM approved source or third-party commercial location. Material meets BLM requirements and standards. 1) Maljamar, New Mexico; Section 9, T17S, R32E; off Maljamar Road, 2) Hwy 529, New Mexico; Section 25, T17S, R31E, 3) Olane Caswell Ranch; Section 3, T17S, R32E **Onsite topsoil removal process:**

Access other construction information: Wider travel surface may be needed to accommodate larger rig wheelbase. Caliche sources specified within this application are current options for mineral purchase. However, additional source(s) in the vicinity may be used depending on availability at the time of location construction. We intend to use different source(s) if necessary.

Access miscellaneous information: Current plans are to drill 11H after 1H, and no new access road would be needed. If plans change the new access road depicted in plats will be constructed includes 15' road for facility access and 382' road for frac pond access. Access road to be shared with other Peridot wells (about 5056'). Road is needed to reach Peridot facility near NM Highway 82. Cattle guard to be installed between facility access road and NM Highway 82. Any needed culverts would be installed in accordance with BLM guidance. Turnouts will be installed using dimensions recommended by BLM, standard for this area. Right of ways will be obtained for highway access and lease road access to include future Peridot wells.

Number of access turnouts: 1

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: The proposed road to the location is surveyed and staked with stations set along the centerline at specific intervals. The road will be centerline crowned with a 2% crown for appropriate drainage. The inside slope of the side ditches shall be 3:1. Any topsoil removed from the access road will be conserved as appropriate. This access road is on fairly level ground.

Road Drainage Control Structures (DCS) description: No additional road drainage is needed other than standard BLM requirements for this area and those discussed in the BLM "Gold Book". This access road is on level ground. **Road Drainage Control Structures (DCS) attachment:**

Access Additional Attachments

Additional Attachment(s):

Peridot 8 Fed 11H AccessRdsROW 02-08-2017.pdf

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Peridot_8_Fed_11H_OffsetWellMap_08-18-2017.pdf

Well Name: PERIDOT 8 FEDERAL

Well Number: 11H

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Peridot 8 Federal CF1 Tank Battery location NWNE, Section 8, T17S, R32E was sited during 6/26/16 onsite. Location is south of NM Highway 82. Dimensions are planned 400'x 250' to allow for expansion as wells are drilled. 15' access road is depicted on plats. Preliminary Plot Plan is attached. **Production Facilities map:**

PERIDOT 8 FEDERAL CF1 TANK BATTERY - FINAL_02-08-2017.pdf Peridot 8 Fed 11H Preliminary Plot Plan 02-08-2017.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: CAMP USE, INTERMEDIATE/PRODUCTION Water source type: GW WELL CASING, STIMULATION, SURFACE CASING Describe type:

Source latitude:

Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: COMMERCIAL

Water source transport method: PIPELINE, TRUCKING

Source transportation land ownership: FEDERAL

Water source volume (barrels): 165000

Source volume (gal): 6930000

Water source and transportation map:

Peridot_8_Fed_11H_Access_Road_TopoA_08-18-2017.pdf

Peridot_8_Fed_11H_WaterSourceMap_08-18-2017.pdf

Water source comments: -Two water sources are currently planned; 1) Morewest Corporation, New Mexico; Section 16 & 26, T16S, R32E; 2) Rockhouse Ranch; Section 13, T17S, R33E. Water sources specified within this application are current options for purchase. However, additional source(s) in the vicinity may be used depending on availability at the time of location construction. We intend to use different source(s) if necessary. **New water well?** NO

New	Water	Well	Info	
	τταισι	****	nnv	

Well latitude:

Well Longitude:

Well datum:

Source volume (acre-feet): 21.26736

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Well Name: PERIDOT 8 FEDERAL

Well Number: 11H

Aquifer comments:

Aquifer documentation:	
Well depth (ft):	Well casing type:
Well casing outside diameter (in.):	Well casing inside diameter (in.):
New water well casing?	Used casing source:
Drilling method:	Drill material:
Grout material:	Grout depth:
Casing length (ft.):	Casing top depth (ft.):
Well Production type:	Completion Method:
Water well additional information:	

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Clean caliche will be used to construct well pad, road, and facility pad. Caliche will be from a BLM approved source or third-party commercial location, such as: 1) Maljamar, New Mexico; Section 9, T17S, R32E; off Maljamar Road 2) Hwy 529, New Mexico; Section 25, T17S, R31E 3) Olane Caswell Ranch; Section 3, T17S, R32E. Material to meet BLM requirements and standards. Trucking of source material will utilize authorized roads as per Access Road Topo A attached. Caliche sources specified within this application are current options for mineral purchase. However, additional source(s) in the vicinity may be used depending on availability at the time of location construction. We intend to use different source(s) if necessary.

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drilling fluid, drill cuttings, and rig water

Amount of waste: 8000 barrels

Waste disposal frequency : Daily

Safe containment description: Drilling fluid and cuttings will be held in closed-loop system and trucked to an approved disposal facility.

Safe containmant attachment:

Peridot_8_Fed_11H_Drill_Waste_Containment_08-21-2017.pdf

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY Disposal type description:

Disposal location description: Permitted disposal facility off Hwy 62.

(-
	Reserve Pit	1
L		. 1

Well Name: PERIDOT 8 FEDERAL

Well Number: 11H

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

 Reserve Pit being used? NO

 Temporary disposal of produced water into reserve pit?

 Reserve pit length (ft.)
 Reserve pit width (ft.)

 Reserve pit depth (ft.)
 Reserve pit volume (cu. yd.)

 Is at least 50% of the reserve pit in cut?

 Reserve pit liner

 Reserve pit liner

 Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Cuttings will be held in closed-loop system and trucked to approved disposal facility.

Cuttings area length (ft.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: YES

Ancillary Facilities attachment:

Peridot_8_Fed_11H_FracPondPlat_08-18-2017.pdf

Comments: ConocoPhillips Company anticipates needing a 600'x 600' frac pond for completion activities for horizontal wells drilled in this area. It is to be located in the NENW of Sec. 8, 17S, 32E. Access to be provided by a 382' road. Surface use for freshwater frac pond and road is 8.52 acres. Area will be reclaimed according to BLM guidelines after completion of unit development.

Section 9 - Well Site Layout

Well Site Layout Diagram:

Peridot_8_Fed_11H_Site_Plan_08-18-2017.pdf Peridot_8_Fed_11H_ArchBoundary_08-18-2017.pdf Peridot_8_Fed_11H_LocationLayout_08-18-2017.pdf **Comments:** Onsite meetings finalized this location as acceptable. Archaeological Survey has been completed.

Well Name: PERIDOT 8 FEDERAL

Well Number: 11H

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: PERIDOT 8 FEDERAL

Multiple Well Pad Number: 1H

Recontouring attachment:

Drainage/Erosion control construction: Topsoil will be stripped and set along designated side of the wellsite. The next layer of dirt (stockpile) is done with the cut and fill method whereby the highest portion of the wellsite is pushed to lower portion(s) to balance the pad. The access road is done in a similar manner. To the greatest extent practicable, the location is placed so that the least amount of dirt is to be cut and disturbed, and so a good balance can be maintained during project. Topsoil stockpile will have lowest practicable profile to reduce wind erosion. For more detail please see attached Surface Use Plan of Operations.

Drainage/Erosion control reclamation: Upon project completion, if this well is a producer, excess caliche is removed from the interim reclamation portion of pad. Topsoil stockpile is balanced back onto the unused portion of the well pad and recontoured as appropriate. Any drainage ditches will not be blocked with topsoil and/or organic material. Lowering the profile of the topsoil stockpile will reduce wind erosion. Erosion controls will be maintained per BLM guidelines and conditions. For more detail please see attached Surface Use Plan of Operations. Reclamation activities are planned to be accomplished within six months of project completion, contingent upon weather. A site specific "Reclamation Diagram" interim plan is attached. At such time as well is permanently abandoned, ConocoPhillips Company will contact the BLM for development of final rehabilitation plan. Upon abandonment, a dry hole marker will be installed as directed by Authorized BLM Officer at the time, in accordance with 43 CFR 3162.6. An above ground dry hole marker sealing the casing will have a weep hole which will allow pressure to dissipate and make detection of any fluid seepage easier. If below ground "well marker" is directed, ConocoPhillips Company will follow BLM requirements and standards for that method of abandonment. During final reclamation erosion is to be minimized through lower profile of any soil piles. Please see attached Surface Use Plan of Operations for more information.

Wellpad long term disturbance (acres): 1.59	Wellpad short term disturbance (acres): 1.84
Access road long term disturbance (acres): 3.61	Access road short term disturbance (acres): 3.33
Pipeline long term disturbance (acres): 1.1932966	Pipeline short term disturbance (acres): 0
Other long term disturbance (acres): 35.97	Other short term disturbance (acres): 1.72
Total long term disturbance: 42.363297	Total short term disturbance: 6.89

Reconstruction method: If this well is a producer site rehabilitation will be completed within six months, weather permitting. Excess caliche will be removed, as appropriate and either disposed of in a permitted facility or, if clean, stored for future use. Topsoil from the stockpile will be spread along areas to be interim reclaimed. Any drainage ditches will not be blocked with topsoil. Under normal weather conditions, the timetable for rehabilitation will allow two to three months to complete any recontouring and top-soiling necessary. At such time as well is permanently abandoned, ConocoPhillips Company will contact BLM for development of final rehabilitation plan. Upon abandonment, a dry hole marker will be installed as directed by Authorized BLM Officer at the time, in accordance with 43 CFR 3162.6. An above ground dry hole marker sealing the casing will have a weep hole which will allow pressure to dissipate and make detection of any fluid seepage easier. If below ground "well marker" is directed, ConocoPhillips Company will follow BLM requirements and standards for that method of abandonment. Excess caliche will be removed, as appropriate and either disposed of in a permitted facility. Location soil may be "flipped" with BLM concurrence, clean topsoil spread and re-contoured to blend with surrounding area. This method will be accomplished in accordance to BLM standards set forth by the Authorized Officer.

Topsoil redistribution: Areas planned for interim reclamation will be recontoured to the extent feasible. Topsoil will be evenly re-spread and revegetated over the disturbed area not needed for continuing production operations. At such time as well is abandoned, disturbed areas will be re-contoured to a contour that blends with surrounding landscape. Topsoil will be redistributed evenly over the entire disturbed site to depth of 4-6 inches.

Soil treatment: The topsoil will be stripped and set along the designated perimeter of the wellsite. The next layer of dirt is moved with the cut and fill method whereby the highest point of the wellsite is cut into and then pushed to a lower side in

Well Name: PERIDOT 8 FEDERAL

Well Number: 11H

order to balance the well pad. Upon well completion, the soil will be balanced back onto portions of the pad not needed for long-term operations. Erosion will be minimized by maintaining a lower stockpile profile. For additional information, please see attached Surface Use Plan of Operation.

Existing Vegetation at the well pad: The project area is located in a region of southeast New Mexico know as the Mescalero Plain. No named tributaries, streams or wetlands are in the near vicinity. Elevation is around 4045'. It is a broad, low relief area characterized by Mescalero sand (eolian) soil. Maljamar and Palomas fine sands occur throughout the area. Soil is well drained and has low water storage potential. This determines vegetation present on location. Vegetation in the project area can be classified as transitional between the Plains-Mesa Sand Scrub and Chihuahuan Desert Scrub plant communities. The area surrounding the location is grazing grassland, which supports grasses and forbs. Frequently observed species include: honey mesquite, shinnery oak, perennial three-awn, sand bluestem, sand dropseed, giant dropseed, prince's plume, threadleaf groundsel, spectacle pod, sunflower, and plains flax. See attached Location Photos for visual example of vegetation existing onsite.

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Peridot 8 Fed 11H_LocationPhotos_02-08-2017.pdf

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Operator Name: CONOCOPHILLIPS COMP	YANY
Well Name: PERIDOT 8 FEDERAL	Well Number: 11H
Seed type:	Seed source:
Seed name:	
Source name:	Source address:
Source phone:	
Seed cultivar:	
Seed use location:	
PLS pounds per acre:	Proposed seeding season:
Seed Summary	Total pounds/Acre:
Seed Type Pounds/	Acre
Seed reclamation attachment:	
Operator Contact/Responsible	e Official Contact Info
First Name:	
Phone:	Email:
Seedbed prep:	
Seed BMP:	
Seed method:	
Existing invasive species? NO	
Existing invasive species treatment descri	ption:
Existing invasive species treatment attach	ment:
Weed treatment plan description: Two Clas ConocoPhillips Company will consult with BLN vould follow USEPA and BLM requirements a Need treatment plan attachment:	IS B noxious weed species, African rue and Malta starthistle are of concern. If for acceptable weed control methods, if the need arises. Any weed control and standards.
Monitoring plan description: Weeds will be Monitoring will be in accordance with Best Ma Monitoring plan attachment:	controlled on disturbed areas within the exterior limits of the well pad. inagement Practices and guidelines established by BLM.
Success standards: Success standards will Book" and those established by the Authorize Pit closure description: No pits will be used,	utilize BLM approved methods, such as those described in the BLM "Gold d Officer. , a closed-loop system will be in place.

Pit closure attachment:

Section 11 - Surface Ownership

Well Name: PERIDOT 8 FEDERAL

Disturbance type: OTHER	
Describe: Well Pad, Access Road, Electric Line, Pipeline	
Surface Owner: BUREAU OF LAND MANAGEMENT	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Section 12 - Other Information

Right of Way needed? YES

Use APD as ROW? YES

ROW Type(s): 281001 ROW - ROADS, 288100 ROW - O&G Pipeline, 288101 ROW - O&G Facility Sites, 288103 ROW -Salt Water Disposal Pipeline/Facility,289001 ROW- O&G Well Pad,FLPMA (Powerline)

ROW Applications

SUPO Additional Information: For multi-well pad we request deferral of interim reclamation requirements until all wells noted on location have been drilled. Gas Sales Line ROW may be used by third-party gas processor, depending on agreements reached. Three key mitigation strategies are to be used for Peridot development; horizontal wells, interim reclamation and participation in conservation agreement. Development of these minerals could have been via vertical wells; approximately 12 wells. After re-evaluation of options, two key actions are planned horizontal wells and multi-well pads where possible. This minimizes surface use, while improving project economics and results in significant surface use reduction. Interim reclamation is a component of our surface use mitigation. COPC intends to maximize interim reclamation to the greatest extent feasible for each location drilled. Current interim reclamation plans are included in survey plat packages for individual wells. COPC is a participant in the Candidate Conservation Agreement. Among mitigation measures are observing timing stipulations for Lesser-Prairie Chickens, as indicated by BLM, at the beginning of each breeding season. Also, well locations have been moved, in consultation with BLM biologists to avoid habitat of interest. Use a previously conducted onsite? YES

Page 9 of 10

Well Number: 11H

Well Name: PERIDOT 8 FEDERAL

Well Number: 11H

Previous Onsite information: Onsites conducted 6/28/16, 10/18/16, and 6/20/17. Onsite for this well pad was completed 10/18/16. Surface Use Plan of Operation was finalized during onsites with the following attendees: Mr. Ballard, Mr. Wolf, Ms. Brooks, and Ms. Cepero Rios, and Mr. Wasson, and Ms. Maunder, along with survey crew. Archaeological survey requirements have been met by block survey 2151, well pad survey 2262, and gas line and SWD line survey 2276. Well location is off-lease, so subsurface plat is also included. Please review this application with Peridot 8 Federal 11H, 3H, 13H, 5H, 15H, 7H and 17H well applications.

Other SUPO Attachment

Peridot_8_Fed_11H_OilFlowLine_08-18-2017.pdf Peridot_8_Fed_1H_DevelopmentImage_08-18-2017.pdf Peridot_8_Fed_11H_Power_Line_Plat_08-18-2017.pdf Peridot_8_Fed_Gas_Sales_Line_08-18-2017.pdf Peridot_8_Fed_11H_FracPondPlat_08-21-2017.pdf Peridot_8_Fed_11H_Reclamation_Plat_20180108115424.pdf Peridot_8_Fed_11H_SWD_FlowLineToElvis_20180108115715.pdf Peridot_8_Fed_SWD_BuriedPipeline_20180108150453.pdf Peridot_8_Fed_11H_BuriedGasLinetoDCP_20180108150657.pdf Peridot_8_Fed_11H_Surf_SummaryComments_20180108150719.pdf Peridot_8_Fed_11H_SUPOviaAccessv3_20180108150738.pdf

GAS PIPELINE RIGHT-OF-WAY DESCRIPTION ON BLM LANDS IN SEC. 9

A 30' WIDE PERMANENT RIGHT-OF-WAY 15' ON EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE WITH A 10' WIDE TEMPORARY RIGHT-OF-WAY ON THE RIGHT SIDE OF SAID PERMANENT RIGHT-OF-WAY FOR A TOTAL WIDTH OF 40' DURING CONSTRUCTION.

BEGINNING AT A POINT ON THE WEST LINE OF THE NW 1/4 SW 1/4 OF SECTION 9, T17S, R32E, N.M.P.M., WHICH BEARS S00'08'37"E 17.99' FROM THE WEST 1/4 CORNER OF SAID SECTION 9, THENCE N84'13'50"E 29.38'; THENCE S89'56'13"E 301.54'; THENCE S01'44'41"E 788.81'; THENCE S89'30'59"E 162.10'; THENCE S01'09'10"W 178.94'; THENCE N85'57'24"W 17.06' TO A POINT IN THE NW 1/4 SW 1/4 OF SAID SECTION 9, WHICH BEARS S26'47'32"E 1101.08' FROM THE WEST 1/4 CORNER OF SAID SECTION 9, WHICH BEARS S26'47'32"E 1101.08' FROM THE WEST 1/4 CORNER OF SAID SECTION 9. WHICH BEARS S26'47'32"E 1101.08' FROM THE WEST 1/4 CORNER OF SAID SECTION 9. THE SIDE LINES OF SAID DESCRIBED RIGHT-OF-WAY BEING SHORTENED OR ELONGATED TO MEET THE GRANTOR'S PROPERTY LINES. BASIS OF BEARINGS IS A TRANSVERSE MERCATOR PROJECTION WITH A CENTRAL MERIDIAN OF W103'53'00". PERMANENT RIGHT-OF-WAY CONTAINS 1.018 ACRES MORE OR LESS. TEMPORARY RIGHT-OF-WAY CONTAINS 0.339 ACRES MORE OR LESS.

Surface Disturbance Summary and Comments

Peridot 8 Federal 11H

Disturbance Description	Disturbance (Feet)	Permanent Disturbance (Acres)	Temporary Disturbance (Acres)	Total Acres
Well Site Disturbance	NA	1.54	1.84 acres	3.38
30' wide new access road ROW*	5236'	3.61	none	3.61
10' wide flow line ROW	5198'	1.19	none	1.19
Power Line ROW*	5766'	1.32	none	1.32
Peridot 8 CF1 Tank Battery	400'x250'	2.52	none	2.52
Gas Sales Line ROW to Frontier*	1397'	0.96	0.32	1.28
Gas Sales Line ROW to DCP*	6138'	4.23	1.4	5.63
Saltwater Disposal Lines (surface)*	16695'	7.67	none	7.67
Saltwater Disposal Line (buried)*	15,676'	10.75	none	10.75
Freshwater Frac Pond*	600'x600'	8.52	none	8.52

Summary Table of Surface Disturbance

*Note: majority of new access road, power line, tank battery, gas sales line, and salt water disposal line are shared with other Peridot wells. Total amount of road to be built is about 5236' and includes 15' road for facility access and 382' road to frac pond for access.

Disturbance Comments:

Please review this APD with other Peridot 8 Federal wells; 1H, 2H, 3H, 4H, 5H, 7H, 11H, 12H, 13H, 14H, 15H, and 17H. Peridot 8 Federal CF1 Tank Battery will be constructed concurrent with the first well(s) drilled for this development. Long term disturbance for the facility pad will use 2.52 acres. 5766' of electric line to be installed adjacent to access road and utilize 1.32 acres. 1397' of buried gas sales line to be installed to Frontier connection will utilize 0.321 temporary acres and 0.962 permanent acres. If a gas sales line connection to DCP is installed, it will be about 6138', utilize 4.23 permanent acres and 1.4 temporary acres. Gas Sales Line ROW may be used by third-party gas processor, depending on agreements reached. Up to four side by side produced water surface lines will be installed from Peridot 8 Federal CF1 Tank Battery to Elvis SWD well (16695'). These lines will be installed in 2 side by side ROWs requiring 7.67 (3.833 acres each). These lines will remain in place until a buried 8" pipeline is approved and installed. The buried SWD line will be 15676' and utilize about 10.8 permanent acres. Please see attached Summary of Surface Use and Surface Use Plan of Operations.

ConocoPhillips anticipates needing a freshwater frac pond to aid in completion operations. We plan on reclaiming the frac pond surface upon completion of the full Peridot Unit development. Reclamation activities will be conducted in accordance to BLM standards at the time of reclamation.

Additional wording; Mitigation:

Three key mitigation strategies are to be used for Peridot development; horizontal wells, interim reclamation and participation in conservation agreement. Development of these minerals could have been via vertical wells; approximately 12 wells. After re-evaluation of options, two key actions are planned horizontal wells and multi-well pads where possible. This minimizes surface use, while improving project economics and results in significant surface use reduction.

Interim reclamation is a component of our surface use mitigation. COPC intends to maximize interim reclamation to the greatest extent feasible for each location drilled. Current interim reclamation plans are included in survey plat packages for individual wells.

COPC is a participant in the Candidate Conservation Agreement. Among mitigation measures re observing timing stipulations for Lesser-Prairie Chickens, as indicated by BLM, at the beginning of each breeding season. Also, well locations have been moved, in consultation with BLM biologists to avoid habitat of interest.

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO **Produced Water Disposal (PWD) Location: PWD** surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

PWD Data Repor

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type: Injection well number: Assigned injection well API number? Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: Underground Injection Control (UIC) Permit? UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment: Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: ES0085

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Bond Info Data Report

12.

02/26/2018

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Gas Capture Plan Peridot 8 Federal Wells

		Peridot 8 Federal Wells-Located in Sec. 8, T17S, R32E														
Well Name:	1H	2H	ЗН	4H	5H	6H	7H	8H	11H	12H	13H	14H	15H	16H	17H	18H
Wall Location:	615' FSL	936' FSL	2080' FSL	2237' FSL	2634' FNL	1586' FNL	1065' FNL	775' FNL	755' FSL	1035' FSL	1240' FSL	2237' FSL	2634' FNL	1485' FNL	915' FNL	635' FNL
Well Location:	2460' FEL	2501' FEL	2350 FWL	2440' FWL	1907' FWI	2635' FEL	2540' FWI	2543' FW	2460' FEL	2600' FEL	2480' FWI	2580' FWI	2022' FWL	2538' FEL	2540' FW	2542' FWL
															· · · · · · · · · · · · · · · · · · ·	•
Production Facility Name:		Peridot 8 Federal CF1 Tank Battery														
Production Facility Location:							NW	VNE, Sectio	on 8, T17S, I	R32E	·					
		•			·											
Anticipated Completion Date:				· · · · · · · · · · · · · · · · ·	60-120	days after o	drilling com	pleted; de	pendent up	oon comple	tion crew a	vailability				
			•													
Initial Production Volumes:																
Oil (bopd)	570	570	570	570	570	570	570	570	480	480	480	480	480	480	480	480
Gas (mcfd)	620	620	620	620	620	620	620	620	530	530	530	530	530	530	530	530
Water (bwpd)	2300	2300	2300	2300	2300	2300	2300	2300	1900	1900	1900	1900	1900	1900	1900	1900
Date of First Production:						•	<45 days	following o	ompletion	operations	5			*		
	•															
Expected Well Life Expectancy:	25 years	25 years	25 years	25 years	25 years	25 years	25 years	25 years	25 years	25 years	25 years	25 years	25 years	25 years	25 years	25 years