Form 3160-3 (March 2012)

HOBBS OCD
FEB 28 2018
RECEIVED

UNITED STATES

FORM APPROVED OMB No. 1004-0137 Expires October 31, 2014

5. Lease Serial No. NMNM135247

DEPARTMENT OF THE I BUREAU OF LAND MAN		REC		5. Lease Serial No. NMNM135247	
APPLICATION FOR PERMIT TO				6. If Indian, Allotee or	Tribe Name
la. Type of work: DRILL REENTE	ER	· · · · · · · · · · · · · · · · · · ·		7. If Unit or CA Agreem	nent, Name and No.
lb. Type of Well: Oil Well Gas Well Other	Sin	gle Zone Multip	ole Zone	8. Lease Name and We NINA CORTELL FED	
2. Name of Operator MATADOR PRODUCTION COMPANY		3937)		9. API Well No.	44 355
3a. Address 5400 LBJ Freeway, Suite 1500 Dallas TX 7524	36. Phone No. (972)371-5	(include area code) 200		10. Field and Pool, or Exp WILDCAT / WOLFCA	
4. Location of Well (Report location clearly and in accordance with an	y State requireme	ents.*)		11. Sec., T. R. M. or Blk.	and Survey or Area -
At surface SESW / 150 FSL / 1876 FWL / LAT 32.41389 At proposed prod. zone LOT 3 / 240 FNL / 2309 FWL / LAT			6948	SEC 3 / T22S / R32E	/ NMP
14. Distance in miles and direction from nearest town or post office* 27 miles	02.72.020	77 20110 100,000	00.10	12. County or Parish LEA	13. State NM
15. Distance from proposed* location to nearest 150 feet property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No. of ac	cres in lease	17. Spacin 319.84	g Unit dedicated to this wel	1
 Distance from proposed location* to nearest well, drilling, completed, 29 feet applied for, on this lease, ft. 	19. Proposed 12077 feet	Depth / 16823 feet		BIA Bond No. on file MB001079	
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3808 feet	22 Approxin 01/02/2018	nate date work will star B	rt*	23. Estimated duration 90 days	·
	24. Attac	hments			
The following, completed in accordance with the requirements of Onshor	re Oil and Gas (Order No.1, must be a	ttached to thi	s form:	
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office). 	Lands, the	Item 20 above). 5. Operator certific	cation	ns unless covered by an ex ormation and/or plans as m	· ·
25. Signature (Electronic Submission)	1	(Printed/Typed) Wood / Ph: (505)4	66-8120		ate 2/01/2017
Fitle President					
Approved by (Signature) (Electronic Submission)		(Printed/Typed) _ayton / Ph: (575)2	34-5959		ate 02/16/2018
Title Supervisor Multiple Resources	Office CARL	SBAD			
Application approval does not warrant or certify that the applicant hold conduct operations thereon. Conditions of approval, if any, are attached.	s legal or equit	able title to those righ	ts in the sub	ject lease which would enti	tle the applicant to
Fitle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a cr States any false, fictitious or fraudulent statements or representations as	rime for any pe to any matter w	rson knowingly and vithin its jurisdiction.	villfully to m	ake to any department or a	gency of the United
(Continued on page 2) GCA 2/28/1	8			*(Instru	ctions on page 2)

Sequences NSL Approval Date: 02/16/2018

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities:

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Approval Date: 02/16/2018

3-15

Additional Operator Remarks

Location of Well

1. SHL: SESW / 150 FSL / 1876 FWL / TWSP: 22S / RANGE: 32E / SECTION: 3 / LAT: 32.4138936 / LONG: -103.6650606 (TVD: 0 feet, MD: 0 feet)

PPP: SENW / 2640 FSL / 2300 FWL / TWSP: 22S / RANGE: 32E / SECTION: 3 / LAT: 32.420744 / LONG: -103.663673 (TVD: 12077 feet, MD: 14438 feet)

PPP: SESW / 150 FSL / 1876 FWL / TWSP: 22S / RANGE: 32E / SECTION: 3 / LAT: 32.4138936 / LONG: -103.6650606 (TVD: 0 feet, MD: 0 feet)

BHL: LOT 3 / 240 FNL / 2309 FWL / TWSP: 22S / RANGE: 32E / SECTION: 3 / LAT: 32.4273206 / LONG: -103.6636948 (TVD: 12077 feet, MD: 16823 feet)

BLM Point of Contact

Name: Tenille Ortiz

Title: Legal Instruments Examiner

Phone: 5752342224 Email: tortiz@blm.gov

(Form 3160-3, page 3)

Approval Date: 02/16/2018

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

Approval Date: 02/16/2018

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification Data Report 02/20/2018

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Brian Wood Signed on: 12/01/2017

Title: President

Street Address: 37 Verano Loop

City: Santa Fe State: NM Zip: 87508

Phone: (505)466-8120

Email address:

Email address: afmss@permitswest.com

Field Representative

Representative Name:		
Street Address:		
City:	State:	Zip:
Phone:	·	

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT**

Application Data Repor

Submission Date: 12/01/2017

Highlighted data reflects the most

recent changes

Well Number: 202H

Well Name: NINA CORTELL FED COM

Show Final Text

Well Type: OIL WELL

APD ID: 10400025172

Well Work Type: Drill

Section 1 - General

Operator Name: MATADOR PRODUCTION COMPANY

APD ID:

10400025172

Tie to previous NOS?

Submission Date: 12/01/2017

BLM Office: CARLSBAD.

User: Brian Wood

Title: President

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM135247

Lease Acres: 439.68

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? YES

APD Operator: MATADOR PRODUCTION COMPANY

Operator letter of designation:

Operator Info

Operator Organization Name: MATADOR PRODUCTION COMPANY

Operator Address: 5400 LBJ Freeway, Suite 1500

Operator PO Box:

Zip: 75240

Operator City: Dallas

State: TX

Operator Phone: (972)371-5200

Operator Internet Address: amonroe@matadorresources.com

Section 2 - Well Information

Well in Master Development Plan? NO

Mater Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: NINA CORTELL FED COM

Well Number: 202H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: WILDCAT

Pool Name: WOLFCAMP

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, CO2, OIL

Well Name: NINA CORTELL FED COM

Well Number: 202H

Describe other minerals:

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO

New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name: SLOT Number: 2

Well Class: HORIZONTAL

Number of Legs: 1

Well Work Type: Drill

Well Type: OIL WELL

Describe Well Type:

Well sub-Type: INFILL

Describe sub-type:

Distance to town: 27 Miles

Distance to nearest well: 29 FT

Distance to lease line: 150 FT

Reservoir well spacing assigned acres Measurement: 319.84 Acres

NC_202H_Plat_20171201142559.pdf

Well work start Date: 01/02/2018

Duration: 90 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number: 18329

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
SHL Leg #1	150	FSL	187 6	FWL	228	32E	3	Aliquot SESW	32.41389 36	- 103.6650 606	LEA	NEW MEXI CO		S	STATE	380 8	0	0
KOP Leg #1	150	FSL	187 6	FWL	22\$	32E	3	Aliquot SESW	32.41389 36	- 103.6650 606	LEA	NEW MEXI CO	• • – • •	S	STATE	- 768 5	115 12	114 93
PPP Leg #1	150	FSL	187 6	FWL	228	32E	3	Aliquot SESW	32.41389 36	- 103.6650 606	LEA	1	NEW MEXI CO	S	STATE	380 8	0	0

Well Name: NINA CORTELL FED COM

Well Number: 202H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
PPP Leg #1	264 0	FSL	230 0	FWL	228	32E	3	Aliquot SENW	32.42074 4	- 103.6636 73	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 135247	- 826 9	144 38	120 77
EXIT Leg #1	240	FNL	230 9	FWL	228	32E	3	Lot 3	32.42732 06	- 103.6636 948	LEA	NEW MEXI CO	IALAA	F	NMNM 135247	- 826 9	168 23	120 77
BHL Leg #1	240	FNL	230 9	FWL	228	32E	3	Lot 3	32.42732 06	- 103.6636 948	LEA		NEW MEXI CO	F	NMNM 135247	- 826 9	168 23	120 77

- \circ . Compressed Natural Gas is likely to be uneconomic to operate when the gas volume declines. NGL Removal On lease
- - o NGL Removal requires a plant and is expensive on such a small scale rendering it uneconomic and still requires residue gas to be flared.

100

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

02/20/2018

APD ID: 10400025172

Submission Date: 12/01/2017

Highlighted data

Operator Name: MATADOR PRODUCTION COMPANY

reflects the most recent changes

Well Name: NINA CORTELL FED COM

Well Number: 202H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation		(****	True Vertical	Measured.		- C. J. C.	Producing
ID .	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	
1		3808	0	0	OTHER : Quaternary	USEABLE WATER	No
2	DEWEY LAKE	3458	350	361	SANDSTONE	USEABLE WATER	No
3	RUSTLER ANHYDRITE	2877	931	931		NONE	No
4	TOP SALT	2499	1309	1309		NONE	No
5	CASTILE	325	3483	3589	ANHYDRITE	NONE	No
6	BASE OF SALT	-1053	4861	4870		NONE	No
7	BELL CANYON	-1103	4911	4920	SANDSTONE	NATURAL GAS,CO2,OIL	No .
8	CHERRY CANYON	-2107	5915	5924	SANDSTONE	NATURAL GAS,CO2,OIL	No
9	BRUSHY CANYON	-3071	6879	6888	SANDSTONE	NATURAL GAS,CO2,OIL	No
10	BONE SPRING	-5060	8868	8877	LIMESTONE	NATURAL GAS,CO2,OIL	No
11	BONE SPRING 1ST	-5765	9573	9582	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
12	BONE SPRING 1ST	-6087	9895	9904	SANDSTONE	NATURAL GAS,CO2,OIL	No
13	BONE SPRING 2ND	-6386	10194	10203	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
14	BONE SPRING 2ND	-6679	10487	10496	SANDSTONE	NATURAL GAS,CO2,OIL	No
15	BONE SPRING 3RD	-7747	11555	11568	SANDSTONE	NATURAL GAS,CO2,OIL	Yes

Section 2 - Blowout Prevention

Well Name: NINA CORTELL FED COM Well Number: 202H

Pressure Rating (PSI): 5M

Rating Depth: 12000

Equipment: A 12,000' 5000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attached BOP, choke manifold, co-flex hose, and speed head diagrams. An accumulator complying with Onshore Order 2 requirements for the BOP stack pressure rating will be present. Rotating head will be installed as needed.

Requesting Variance? YES

Variance request: Matador requests a variance to have the option of running a speed head for setting the intermediate 1 and 2 strings. In the case of running a speed head with landing mandrel for 9.625" and 7" casing, a minimum 3M BOPE system will be installed after surface casing is set. BOP test pressures will be 250 psi low and 3000 psi high. Annular will be tested to 250 psi low and 250 psi high before drilling below the surface shoe. After 7" casing is set in the speed head, the BOP will then be lifted to install another casing head section for setting the production casing. Matador will nipple up the casing head and BOP and a minimum 5M BOPE system will be installed. Pressure tests will be made to 250 psi low and 5000 psi high. Annular will be tested to 250 psi low and 2500 psi high. A diagram of the speed head is attached. Matador requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. Manufacturer does not require the hose to be anchored. If the specific hose is not available, then one of equal or higher rating will be used.

Testing Procedure: Pressure tests will be conducted before drilling out from under all casing strings. BOP will be inspected and operated as required in Onshore Order 2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs. After setting the surface casing, and before drilling the surface casing shoe, a minimum 2M BOPE system will be installed. It will be tested to 250 psi low and 2000 psi high. Annular will be tested to 250 psi low and 1000 psi high. After setting intermediate 1 casing, a minimum 3M BOPE system will be installed and tested to 250 psi low and 3000 psi high. Annular will be tested to 250 psi low and 5000 psi high. Annular will be tested to 250 psi low and 5000 psi high. Annular will be tested to 250 psi low and 2500 psi high. Annular will be tested to 250 psi low and 2500 psi high.

Choke Diagram Attachment:

NC 202H Choke 2017 1201145231.pdf

BOP Diagram Attachment:

NC_202_BOP_20171201145247.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1200	0	1200	3808		1200	J-55		OTHER - BTC	1.12 5	1.12 5	DRY "	1.8	DRY	1.8
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	5000	0	4991	3808		5000	J-55			1.12 5	1.12 5	DRY	1.8	DRY	1.8
1	INTERMED IATE	8.75	7.0	NEW	API	N	0	12313	0	12058	3808		12313	P- 110		OTHER - BTC	_	1.12 5	DRY	1.8	DRY	1.8
1	PRODUCTI ON	6.12 5	4.5	NEW	API	N	0	16824	0	12077	3808		16824	P- 110			l	1.12 5	DRY	1.8	DRY	1.8

Casing Attachments Casing ID: 1 String Type: SURFACE. **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): NC_202H_Casing_Design_Assumptions_20171201150815.pdf Casing ID: 2 String Type: INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): NC_202H_Casing_Design_Assumptions_20171201150829.pdf Casing ID: 3 String Type: INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): $NC_202H_Casing_Design_Assumptions_20171201150840.pdf$

Well Number: 202H

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: NINA CORTELL FED COM

Well Name: NINA CORTELL FED COM

Well Number: 202H

Casing Attachments

Casing ID: 4

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

NC_202H_Casing_Design_Assumptions_20171201150849.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1200	240	1.82	12.8	443	100	Class C	bentonite + 2% CaCl2 + 3% NaCl + LCM
SURFACE	Tail		0	1200	839	1.38	14.8	1157	100	Class C	5% NaCl + LCM
INTERMEDIATE	Lead		0	5000	909	2.13	12.6	1936	100	Class C	Bentonite + 1% CaCl2 + 8% NaCl + LCM
INTERMEDIATE	Tail		0	5000	482	1.38	14.8	665	100	Class C	5% NaCl + LCM
INTERMEDIATE	Lead		0	1231 3	562	2.36	11.5	1326	35	TXI	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		0	1231 3	327	1.38	13.2	451	35	TXI	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Lead		0	1682 4	598	1.17	15.8	699	25	Class H	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Tail		0.	1682 4	598	1.17	15.8	699	25	Class H	Fluid Loss + Dispersant + Retarder + LCM

Well Name: NINA CORTELL FED COM

Well Number: 202H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions.

Describe the mud monitoring system utilized: An electronic Pason mud monitoring system complying with Onshore Order 1 will be used.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1200	OTHER : Fresh water spud	8.3	8.3							
5000	1231 3	OTHER : Fresh water & cut brine	9	9							
1200	5000	OTHER : Brine water	10	10							
1231 3	1682 4	OIL-BASED MUD	12.5	12.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A 2-person mud logging program will be used from 5000' to TD.

No electric logs are planned at this time. GR will be collected through the MWD tools from intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to TOC.

List of open and cased hole logs run in the well:

CBL,GR

Well Name: NINA CORTELL FED COM Well Number: 202H

Coring operation description for the well:

No core or drill stem test is planned.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8000

Anticipated Surface Pressure: 5343.06

Anticipated Bottom Hole Temperature(F): 170

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

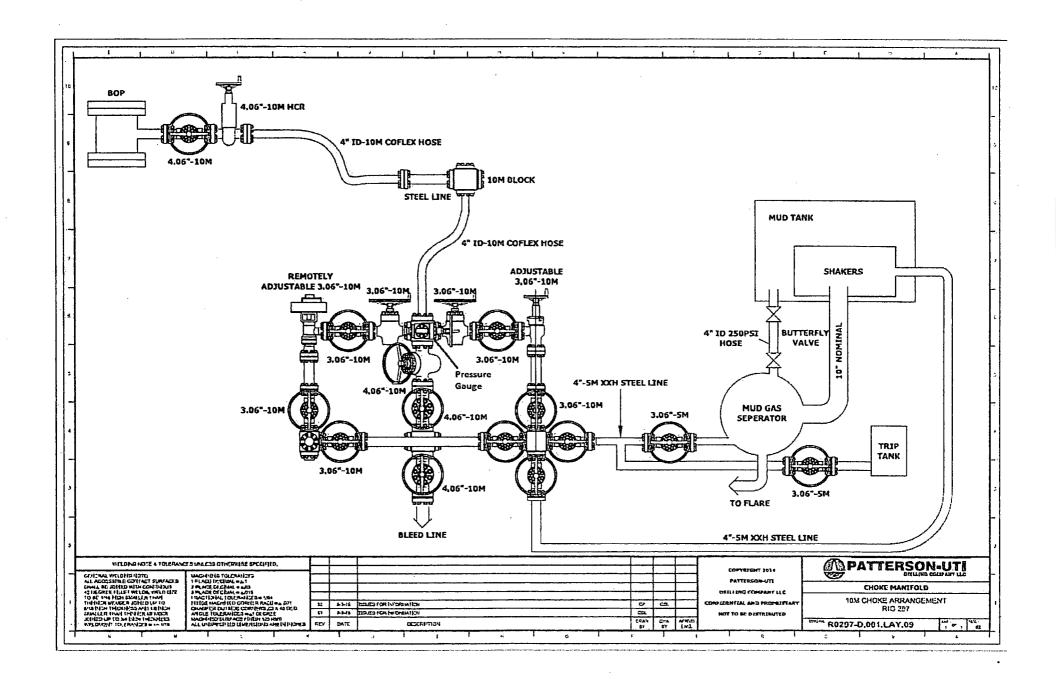
Hydrogen sulfide drilling operations plan:

NC_202H_H2S Plan 20171201151412.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

NC_202H_Horizontal_Drill_Plan_20171201151501.pdf

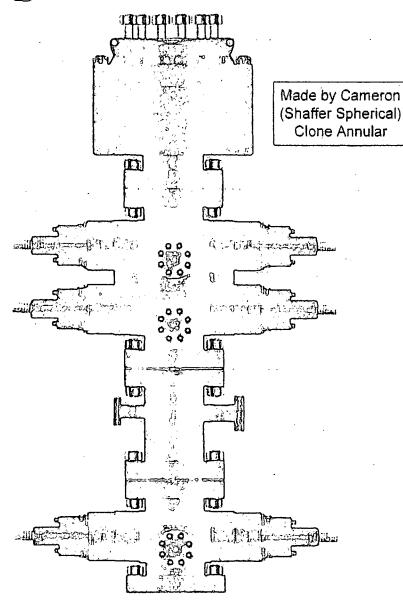

Other proposed operations facets description:

Other proposed operations facets attachment:

NC_202H_General_Drill_Plan_20171201151511.pdf

NC 202H Speedhead Specs 20171201151520.pdf

Other Variance attachment:



PATTERSON-UTI

Well Control

PATTERSON-UTI # PS2-628

STYLE: New Shaffer Spherical

BORE 13 5/8" PRESSURE 5,000

HEIGHT: 48 ½" WEIGHT: 13,800 lbs

PATTERSON-UTI # PC2-128

STYLE: New Cameron Type U

BORE 13 5/8" PRESSURE 10,000

RAMS: TOP 5" Pipe BTM Blinds

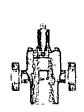
HEIGHT: 66 5/8" WEIGHT: 24,000 lbs

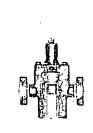
Length 40" Outlets 4" 10M

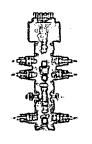
DSA 4" 10M x 2" 10M

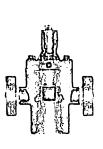
PATTERSON-UTI # PC2-228

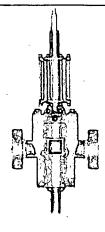
STYLE: New Cameron Type U


BORE 13 5/8" PRESSURE 10,000


RAMS: 5" Pipe


HEIGHT: 41 5/8" WEIGHT: 13,000 lbs


WING VALVES



2" Check Valve

2" Manual Valve

2" Manual Valve

4" Manual Valve

4" Hydraulic Valve

Midwest Hose & Specialty, Inc.

Internal Hydrostatic Test Graph

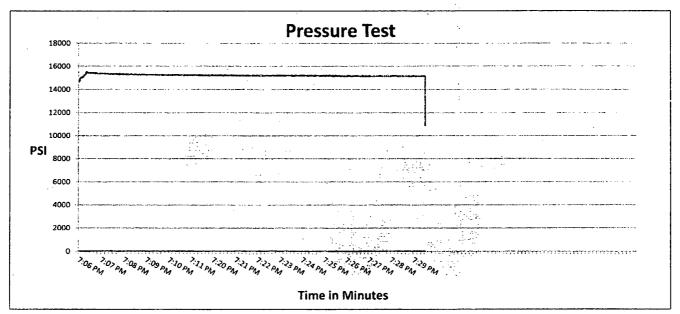
December 8, 2014

Customer: Patterson

Pick Ticket #: 284918

Hose Specifications

Hose Type Length Ck 10' I.D. 0.0. 4.79" **Working Pressure Burst Pressure** 10000 PSI


Standard Safety Multiplier Applies

Verification

Type of Fitting 4-1/16 10K Die Size 5.37" Hose Serial # 10490

Coupling Method Swage Final O.D. 5.37"

Hose Assembly Serial # 284918-2

Test Pressure 15000 PSI

Time Held at Test Pressure 15 2/4 Minutes

Actual Burst Pressure

Peak Pressure 15732 PSI

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By:/Tyler Hi

Approved By: Ryan Adams

Midwest Hose & Specialty, Inc.

General Inform	nation	Hose Specifi	cations
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K
Date Assembled	12/8/2014	Hose Grade	MUD
Location Assembled	окс	Hose Working Pressure	10000
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13
Customer Purchase Order #	260471	Hose I.D. (Inches)	3"
Assembly Serial # (Pick Ticket #)	287918-2	Hose O.D. (Inches)	5.30"
Hose Assembly Length	10'	Armor (yes/no)	YES
	Fit	tings	
End A		End B	
Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
Stem (Heat #)	91996	Stem (Heat #)	91996
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
Connection (Part #)	4 1/16 10K	Connection (Part #)	4 1/16 10K
Connection (Heat #)		Connection (Heat #)	
Dies Used	5.3	7 Dies Used	5.3
	Hydrostatic Te	st Requirements	
Test Pressure (psi)	15,000	Hose assembly was tested	with ambient water
	.,	temperatu	

Midwest Hose & Specialty, Inc.

		Certificate	of Conformity	
Customer:	PATTERSON E	3&E	Customer P.O.# 260471	
Sales Order#	236404		Date Assembled: 12/8/2014	
		Spec	ifications	
Hose Asser	nbly Type:	Choke & Kill		
Assembly	/ Serial #	287918-2	Hose Lot # and Date Code	10490-01/13
Hose Working	Pressure (psi)	10000	Test Pressure (psi)	15000

We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards.

Supplier:

Midwest Hose & Specialty, Inc.

3312 S I-35 Service Rd

Oklahoma City, OK 73129

Comments:

Approved By	Date
Far Alama	12/9/2014

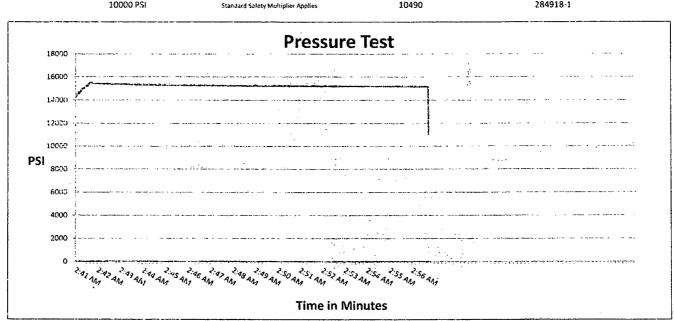
& Specialty, Inc.

Internal Hydrostatic Test Graph

December 9, 2014

Customer: Patterson

Pick Ticket #: 284918


Hose Specifications

Verification

Type of Fitting
4-1/16 10K
Die Size
5.37"
Hose Serial #
10490

Coupling Method
Swage
Final O.D.
5.40"
Hose Assembly Serial #

e Assembly Serial # 284918-1

Test Pressure 15000 PSI <u>Time Held at Test Pressure</u> 15 2/4 Minutes **Actual Burst Pressure**

Peak Pressure 15893 PSI

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By: Tyler Hill

Approved By: Ryan Adanys

Midwest Hose & Specialty, Inc.

General Infor	rnal Hydrosta mation	Hose Specific	ations
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K
Date Assembled	 	Hose Grade	MUD
Location Assembled	12/8/2014		
	ОКС	Hose Working Pressure	10000
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13
Customer Purchase Order #	260471	Hose I.D. (Inches)	3"
Assembly Serial # (Pick Ticket #)	287918-1	Hose O.D. (Inches)	5.30"
Hose Assembly Length	20'	Armor (yes/no)	YES
	Fitt	ings	
End A		End B	
Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
Stem (Heat #)	A141420	Stem (Heat.#)	A141420
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
Connection (Part #)	4 1/16 10K	Connection (Part #)	4 1/16 10K
Connection (Heat #)	V3579	Connection (Heat #)	V3579
Dies Used	5.37	Dies Used	5.37
	Hydrostatic Tes	t Requirements	
	45.000	Hose assembly was tested v	with ambiant water
Test Pressure (psi)	15,000	nose assembly was tested v	vitn ambient water

Midwest Hose & Specialty, Inc.

Customer: PATTERSON	B&E	Customer P.O.# 260471		
Cales Order # 236404		Date Assembled: 12/8/2014		
	Spe	cifications	-	
Hose Assembly Type:	Choke & Kill			
Assembly Serial #	287918-1	Hose Lot # and Date Code	10490-01/13	

We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards.

Supplier:

Midwest Hose & Specialty, Inc.

3312 S I-35 Service Rd

Oklahoma City, OK 73129

Comments:

Approved By	Date
Bar Alaus	12/9/2014

December 9, 2014

Internal Hydrostatic Test Graph

Customer: Patterson

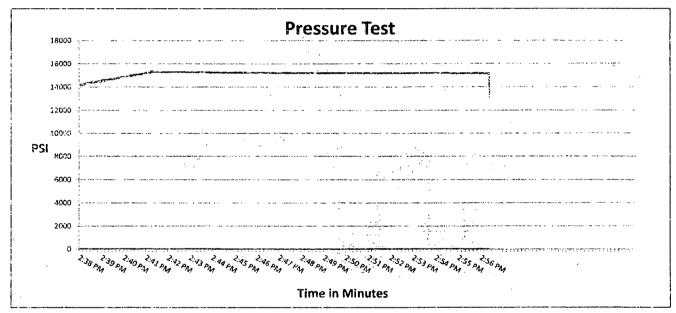
Pick Ticket #: 284918

Verification

Hose Specifications

Hose Type
Mud
<u>l,D.</u>
3"
Vorking Pressure

10000 PSI


Length
70'
O.D.
4.79"
Burst Pressure

Standard Safety Multiplier Applies

Type of Fitting
4 1/16 10K
Die Size
5.37"
Hose Serial #
10490

Coupling Method
Swage
Final O.D.
5.37"
Hose Assembly Serial #

284918-3

'<u>Fest Pressure</u> 15000 PSI Time Held at Test Pressure 16 3/4 Minutes **Actual Burst Pressure**

Peak Pressure 15410 PSI

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By: Tyler Hill

Approved By: Ryan Agams

Midwest Hose & Specialty, Inc.

	mation	Hose Specif	ications
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K
Date Assembled	12/8/2014	Hose Grade	MUD
ocation Assembled	окс	Hose Working Pressure	10000
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13
Customer Purchase Order#	260471	Hose I.D. (Inches)	3"
Assembly Serial # (Pick Ticket #)	287918-3	Hose O.D. (Inches)	5.23"
lose Assembly Length	70'	Armor (yes/no)	YES
	Fitt	ings	
End A		End B	3
tem (Port and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
Stem (Heat #)	A141420	Stem (Heat:#)	A141420
errule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0
errule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
Connection (Part #)	4 1/16 10K	Connection (Part #)	4 1/16 10K
Connection (Heat #)		Connection (Heat #)	
Dies Used	5.37	Dies Used	5.3
	Hydrostatic Tes	t Requirements	
Test Pressure (psi)	15,000	Hose assembly was tested	l with ambient water
Test Pressure Hold Time (minutes)	16 3/4	temperat	rure.

Midwest Hose & Specialty, Inc.

	Certificate	e of Conformity	
Customer: PATTERSON	B&E	Customer P.O.# 260471	
Sales Order # 236404		Date Assembled: 12/8/2014	
	Spe	cifications	
Hose Assembly Type:	Choke & Kill		
Assembly Serial #	287918-3	Hose Lot # and Date Code	10490-01/13
Hose Working Pressure (psi)	10000	Test Pressure (psi)	15000

We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards.

Supplier:

Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd

Oklahoma City, OK 73129

Comments:

Approved By	Date
D Warra	12/9/2014
Fran Alama	

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1,125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at
 setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force
 will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative
 backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

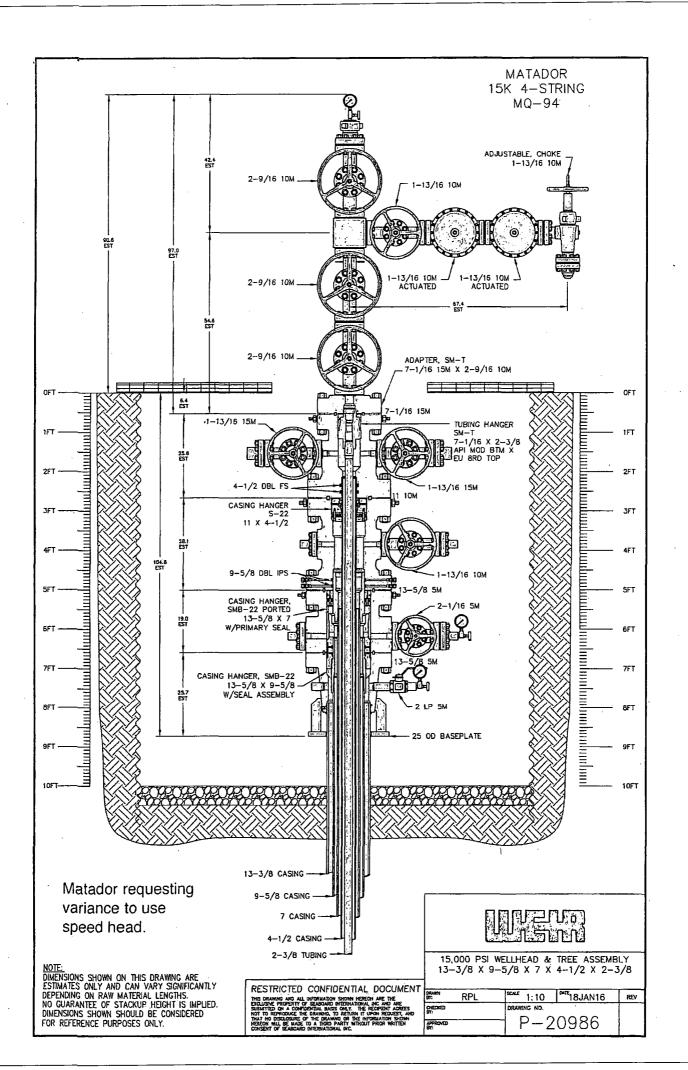
- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125


- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

December 31 2015

Size: 4.500 in.

Wall: 0.290 in.

Weight: 13.50 lbs/ft

Grade: P110-ICY

Min. Wall Thickness: 87.5 %

Connection: TenarisXP® BTC

Casing/Tubing: CAS

Coupling Option: REGULAR

	4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.
Nominal ID	3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A
Plain End Weight	13.05 (bs/ft				 ;
Body Yield Strength	479 x 1000 lbs	Internal Yield	14100 psi	SMYS	125000 psi
Collapse	11620 psi			 - -	
Connection OD	5.000 in.	Coupling Length	9.075 in.	Connection ID	3.908 in.
Critical Section Area	3.836 sq. in.	Threads per in.	5.00	Make-Up Loss	4.016 in.
		1		1	
Tension Efficiency	100 %	Joint Yield Strength	479 x 1000 lbs	Internal Pressure Capacity(1)	14100 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	479 x 1000 lbs	Structural Bending ⁽²⁾	127 °/ 100
Compression	100 % 11620 psi	1	479 x 1000 lbs		127 ° /100
Compression Efficiency External Pressure		1	479 x 1000 lbs		127 °/100

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

SUPO Data Report oznozos

APD ID: 10400025172

Submission Date: 12/01/2017

Highlighted data reflects the most

recent changes

Well Name: NINA CORTELL FED COM

Well Number: 202H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Existing Roads

Operator Name: MATADOR PRODUCTION COMPANY

Will existing roads be used? YES

Existing Road Map:

NC 202H Road Map 20171201151539.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

NC_202H_New_Road_Map_20171201151603.pdf

New road type: RESOURCE

Length: 83.13

Feet

Width (ft.): 30

Max slope (%): 0

Max grade (%): 5

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Crowned and ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Well Name: NINA CORTELL FED COM

Well Number: 202H

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information: Upgrading will consist of draining and/or patching ten potholes with caliche. The potholes are located (from east to west and in NAD 83) at: 32.41494, -103.67654 32.41504, -103.67879 32.41512, -103.68060 32.41702, -103.68328 32.41873, -103.68333 32.42312, -103.68326 32.42402, -103.68326 32.42804, -103.68354 32.43641, -103.68974 32.43644, -103.69497

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crowned and ditched

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

NC_202H_Well_Map_20171201151621.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? DEFER

Estimated Production Facilities description: No pipeline or power line plans have been finalized at this time. Production equipment will be located on the south side of the pad.

Section 5 - Location and Types of Water Supply

Water Source Table

Well Name: NINA CORTELL FED COM

Well Number: 202H

Water source use type: DUST CONTROL,

Water source type: GW WELL

INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE

CASING

Describe type:

Source longitude:

Source latitude:

Source datum:

Water source permit type: WATER WELL

Source land ownership: PRIVATE

Water source transport method: PIPELINE

Source transportation land ownership: STATE

Water source volume (barrels): 20000

Source volume (acre-feet): 2.577862

Source volume (gal): 840000

Water source and transportation map:

NC_202H_Water_Source_Map_20171201151636.pdf

Water source comments:

New water well? NO

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well depth (ft):

Well casing type:

Well casing outside diameter (in.):

Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method:

Drill material:

Grout material:

Grout depth:

Casing length (ft.):

Casing top depth (ft.):

Well Production type:

Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Well Name: NINA CORTELL FED COM

Well Number: 202H

Section 6 - Construction Materials

Construction Materials description: NM One Call (811) will be notified before construction starts. Top 6" of soil and brush will be stockpiled west of the pad. V-door will face south. Closed loop drilling system will be used. Caliche will be hauled from an existing caliche pit on private (Mills) land in E2NE4 3-22s-32e.

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000

barrels

Waste disposal frequency: Daily

Safe containment description: Steel tanks

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: R360's state approved (NM-01-0006) disposal site at Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

Well Name: NINA CORTELL FED COM Well Number: 202H

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

NC 202H Well Site Layout 20171201151706.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: SLOT

Multiple Well Pad Number: 2

Recontouring attachment:

NC 202H Interim Reclamation Diagram 20171201151723.pdf

NC_202H_Recontour_Plat_20171201151733.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance

(acres): 3.65

Road proposed disturbance (acres):

0.06

Powerline proposed disturbance

(acres): 0

Pipeline proposed disturbance

(acres): 0

Other proposed disturbance (acres): 0

Total proposed disturbance: 3.71

Well pad interim reclamation (acres):

0.91

Road interim reclamation (acres): 0

Powerline interim reclamation (acres):

0

Pipeline interim reclamation (acres): 0

Other interim reclamation (acres): 0

Total interim reclamation: 0.91

Well pad long term disturbance

(acres): 2.74

Road long term disturbance (acres):

0.06

Powerline long term disturbance

(acres): 0

Pipeline long term disturbance

(acres): 0

Other long term disturbance (acres): 0

Total long term disturbance: 2.8

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 25% (0.91 acre) by removing caliche and reclaiming a 120' x 330' area in the northwest part of the pad. This will leave 2.74 acres for the production equipment (e. g., tank battery, heater-treaters, separators, flare/CBU), pump jacks, and tractor-trailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance

Well Name: NINA CORTELL FED COM

Well Number: 202H

with the State Land Office's requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. Once the last well is plugged, then the rest of the pad and 83.13' of new road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled.

Soil treatment: None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed source:

Seed name:

Source name:

Source address:

Source phone:

Seed cultivar:

Seed use location:

Well Name: NINA CORTELL FED COM

Well Number: 202H

PLS pounds per acre:

Proposed seeding season:

Seed Summary

Total pounds/Acre:

Seed Type

Pounds/Acre

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name:

Last Name:

Phone:

Email:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To State Land Office/BLM satisfaction

Weed treatment plan attachment:

Monitoring plan description: To State Land Office/BLM standards

Monitoring plan attachment:

Success standards: To State Land Office/BLM satisfaction

Pit closure description: No pit

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: STATE GOVERNMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

Well Name: NINA CORTELL FED COM Well Number: 202H **NPS Local Office:** State Local Office: NM STATE LAND OFFICE, PO BOX 1148, SANTA FE NM 87504 **Military Local Office: USFWS Local Office:** Other Local Office: **USFS** Region: **USFS** Forest/Grassland: **USFS Ranger District:** Disturbance type: EXISTING ACCESS ROAD Describe: Surface Owner: STATE GOVERNMENT Other surface owner description: **BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office:** State Local Office: NM STATE LAND OFFICE, PO BOX 1148, SANTA FE NM 87504 **Military Local Office: USFWS Local Office:** Other Local Office: **USFS** Region: **USFS Forest/Grassland: USFS Ranger District:**

Operator Name: MATADOR PRODUCTION COMPANY

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: STATE GOVERNMENT

Other surface owner description:

BIA Local Office:

Well Name: NINA CORTELL FED COM

Well Number: 202H

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office: NM STATE LAND OFFICE, PO BOX 1148, SANTA FE NM 87504

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: On site inspection was held with Vance Wolf (BLM) on June 2, 2017. Lone Mountain will inspect and file an archaeology report.

Other SUPO Attachment

NC_202H_General_SUPO_20171201151822.pdf

Section 3 - Unlined Pits

PWD surface owner:

Injection well mineral owner:

Injection PWD discharge volume (bbl/day):

Produced Water Disposal (PWD) Location:

Would you like to utilize Unlined Pit PWD options? NO

PWD surface owner: PWD disturbance (acres): Unlined pit PWD on or off channel: Unlined pit PWD discharge volume (bbl/day): Unlined pit specifications: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Unlined pit precipitated solids disposal schedule: Unlined pit precipitated solids disposal schedule attachment: Unlined pit reclamation description: Unlined pit reclamation attachment: Unlined pit Monitor description: **Unlined pit Monitor attachment:** Do you propose to put the produced water to beneficial use? Beneficial use user confirmation: Estimated depth of the shallowest aquifer (feet): Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected? TDS lab results: Geologic and hydrologic evidence: State authorization: **Unlined Produced Water Pit Estimated percolation:** Unlined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Unlined pit bond number: Unlined pit bond amount: Additional bond information attachment: Section 4 - Injection Would you like to utilize Injection PWD options? NO Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

Injection well number:	Injection well name:				
Assigned injection well API number?	Injection well API number:				
Injection well new surface disturbance (acres):	injection would in a manager.				
Minerals protection information:					
Mineral protection attachment:	·				
Underground Injection Control (UIC) Permit?					
UIC Permit attachment:					
Section 5 - Surface Discharge					
Would you like to utilize Surface Discharge PWD options	? NO				
Produced Water Disposal (PWD) Location:					
PWD surface owner:	PWD disturbance (acres):				
Surface discharge PWD discharge volume (bbl/day):					
Surface Discharge NPDES Permit?					
Surface Discharge NPDES Permit attachment:					
Surface Discharge site facilities information:	·				
Surface discharge site facilities map:					
Section 6 - Other					
Would you like to utilize Other PWD options? NO					
Produced Water Disposal (PWD) Location:					
PWD surface owner:	PWD disturbance (acres):				
Other PWD discharge volume (bbl/day):					
Other PWD type description:					
Other PWD type attachment:					
Have other regulatory requirements been met?					
Other regulatory requirements attachment:					

J ...

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001079

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Engineer Worksheet

Carlsbad Field Office

620 E. Greene St.

Carlsbad, NM 88220-6292

Tracking Number:	ATS-1	FS-17-445 atador Operating Co.			County: - Well Name and Number:		Lea NINA CORTELL FED COM-202H		
Company:	Matado								
Surface Hole Location:	150'/S.	S.& 1876'/W. SEC003 T022S, R032E			Bottom Hole Location:		240'/N.& 2309'/W. SEC003 T022S, R032E		
Lease Number:	NMNN	1135247	Prod Status:	Assessment		an i marke Parameter Street and and design and the first conditions	Effective:		
Bond:	Statewi	de	Bond #:		NMB001079		Potash:	SEC	
NOS Received:	YES		APD Receiv	/ed:	12-1-2017 Yes		Sent:	1-3-2018	
Acreage:			Orthodox:					Yes	
Deficiencies Note	ed:		anglines in communication and construction in the last	n erystlyria albina international remain in international for	to Photo has been the same	epitekenia diartekenia etako benikuadi aura-			
Form 3160	,	Survey Plat	Drilling Plan	n Surfac	e Plan	Bonding	Original S	Signature Operator Cert Statement	
Other Deficiencie	s:								
Adjudication Comments:									
GEO Report	2-9-2018	· · · · · · · · · · · · · · · · · · ·							
Completed									
Technical Checklist									
Plat:	ok		Elevation: 3	808					
Proposed Depth:	TVD:	12077	MD: 1	6823			Targeted Formation:	Wolfcamp	
Anticipated Wate Gas, Etc.:	r-Oil,	Fresh water above 36	0 feet. Oil/Ga	s: Bell Canyon, C	Cherry Ca	nyon, Brushy Cany	•	g, and Wolfcamp	
Casing/Cement Pr	rogram:	Okay / Okay				·			
Bottom Hole Mud Weight	12.5		BHP: 7	850.05	MASP:	5193.11			
			(B) Horize	ontal Directi	ional 🕕	Vertical Re	-entry		
Well Control Prog(BOP, ETC) 2M BOP after surface c intermediate casing, and intermediate casing. Va first intermediate casing		nd 10M BOP /ariance: 10M	after second	Mud Pro	ogram:	Ok			
Test-Log-Cores P	rogram:	Required: See COA. I		d log from 5000'	to TD, G	R from intermediate	e casing to TD.	-	
H2S or Other Haz	zards:	H2S no. Secretary's P Possible lost circulation						Spring and subsequent formations. Salado, and Castile.	
Water Basin:	Carlsbac	l							
Casings to Witness:			y s	urface [Inte	rmediate	y's Production	CIT Requ	uired	
		Other Witness	S						
Comments:	Witness	surface and intermedia	te casing.			· · · · ·			
Mustafa Ha	aque	2-10-2018							
Engineer		Data	C	iganture		Adjudication Dat	-	Adjudicator Initials	