|                                                                                                                                                                                        |                                   | Coch                                               |                    |                                       |                                          | F1+               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|--------------------|---------------------------------------|------------------------------------------|-------------------|
| Form 3160 -3<br>(March 2012)                                                                                                                                                           | e Pr                              | OBBS OCT                                           | 6<br>.cD           | FORM<br>OMB N<br>Expires C            | APPROVE<br>to. 1004-012<br>October 31, 2 | 37                |
| UNITED STATE<br>DEPARTMENT OF THE                                                                                                                                                      | S<br>INTERIOR                     | MAN                                                | NE.                | 5. Lease Serial No.<br>NMLC029406B    |                                          |                   |
| BUREAU OF LAND MA                                                                                                                                                                      | DRILL O                           | R REENTER                                          |                    | 6. If Indian, Allotee                 | or Tribe                                 | Name              |
| la. Type of work: DRILL REENT                                                                                                                                                          |                                   |                                                    |                    | 7. If Unit or CA Agre                 | ement, Na                                | ime and No.       |
| lb. Type of Well: 🔽 Oil Well 🔲 Gas Well 🗍 Other 🦯                                                                                                                                      | ۲s                                | ingle Zone 🔲 Multip                                | ole Zone           | 8. Lease Name and PERIDOT 8 FEDE      |                                          | 320830            |
| 2. Name of Operator CONOCOPHILLIPS COMPANY (2                                                                                                                                          | .1787)                            |                                                    |                    | 9. API Well No.<br><b>30-025-</b>     | 442                                      | W.                |
| 3a. Address<br>600 N. Dairy Ashford Rd Houston TX 77079                                                                                                                                | 3b. Phone N<br>(281)293-          | 0. (include area code)<br>•1748                    |                    | 10. Field and Pool, or MALJAMAR / YES |                                          | 1                 |
| 4. Location of Well (Report location clearly and in accordance with a                                                                                                                  |                                   |                                                    |                    | 11. Sec., T. R. M. or B               | lk.and Su                                | rvey or Area      |
| At surface NESW / 2237 FSL / 2580 FWL / LAT 32.848<br>At proposed prod. zone LOT 3 / 2310 FSL / 330 FWL / LA                                                                           |                                   |                                                    | 36                 | SEC 8 / T17S / R3                     | 2E / NM                                  | P                 |
| <ul> <li>14. Distance in miles and direction from nearest town or post office*</li> <li>1.4 miles</li> </ul>                                                                           |                                   |                                                    |                    | 12. County or Parish<br>LEA           |                                          | 13. State<br>NM   |
| <ul> <li>15. Distance from proposed*</li> <li>location to nearest</li> <li>for feet</li> <li>property or lease line, ft.</li> <li>(Also to nearest drig. unit line, if any)</li> </ul> | 16. No. of<br>1606.8              | acres in lease                                     | 17. Spacii<br>241  | ng Unit dedicated to this             | well                                     | <b></b>           |
| <ol> <li>Distance from proposed location*<br/>to nearest well, drilling, completed, 140 feet<br/>applied for, on this lease, ft.</li> </ol>                                            | 19. Propos                        | ed Depth<br>t / 13433 feet                         | 20. BLM/<br>FED: E | BIA Bond No. on file                  |                                          |                   |
| 21. Elevations (Show whether DF, KDB, RT, GL. etc.)                                                                                                                                    |                                   | timate date work will sta                          |                    | 23. Estimated duratio                 | n                                        |                   |
| 4048 feet                                                                                                                                                                              | 07/01/20                          | 18                                                 |                    | 21 days                               |                                          |                   |
| TH CH                                                                                                                                                                                  |                                   | achments                                           |                    |                                       |                                          | <u> </u>          |
| <ul><li>The following, completed in accordance with the requirements of Onsh</li><li>1. Well plat certified by a registered surveyor.</li><li>2. A Drilling Plan.</li></ul>            | iore Uil and Ga                   |                                                    |                    | nis torm:<br>ons unless covered by an | existing l                               | oond on file (see |
| <ol> <li>A Surface Use Plan (if the location is on National Forest Syster<br/>SUPO must be filed with the appropriate Forest Service Office).</li> </ol>                               | n Lands, the                      | 5. Operator certifie<br>6. Such other site<br>BLM. |                    | formation and/or plans as             | s may be r                               | equired by the    |
| 25. Signature<br>(Electronic Submission)                                                                                                                                               |                                   | e <i>(Printed/Typed)</i><br>an Maunder / Ph: (2    | 81)206-52          | 281                                   | Date<br>10/16/                           | 2017              |
| Title<br>Senior Coordinator, Regulatory MCBU                                                                                                                                           |                                   |                                                    |                    |                                       |                                          | 1                 |
| Approved by (Signature)<br>(Electronic Submission)                                                                                                                                     |                                   | e (Printed/Typed)<br>y Layton / Ph: (575)2         | 234-5959           |                                       | Date<br>02/23/                           | 2018              |
| Title<br>Supervisor Multiple Resources                                                                                                                                                 | Offic<br>CAF                      | e<br>RLSBAD                                        |                    | ,                                     |                                          |                   |
| Application approval does not warrant or certify that the applicant ho conduct operations thereon. Conditions of approval, if any, are attached.                                       | lds legal or equ                  | uitable title to those righ                        | its in the su      | bject lease which would e             | entitle the                              | applicant to      |
| Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a States any false, fictitious or fraudulent statements or representations a                                    | crime for any<br>is to any matter | person knowingly and within its jurisdiction.      | willfully to 1     | make to any department of             | or agency                                | of the United     |
| (Continued on page 2) GCA 03/08/                                                                                                                                                       | VED WI                            | TH CONDIT                                          | ONS                | V                                     |                                          | s on page 2)      |
|                                                                                                                                                                                        |                                   | : 02/23/2018                                       |                    |                                       |                                          | ا<br>۱۸           |

John Bould

#### INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

#### NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

**BURDEN HOURS STATEMENT:** Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

**Approval Date: 02/23/2018** 

## Additional Operator Remarks

#### **Location of Well**

SHL: NESW / 2237 FSL / 2580 FWL / TWSP: 175 / RANGE: 32E / SECTION: 8 / LAT: 32.848067 / LONG: -103.788817 (TVD: 0 feet, MD: 0 feet)
 PPP: NESW / 2308 FSL / 2580 FWL / TWSP: 175 / RANGE: 32E / SECTION: 8 / LAT: 32.848238 / LONG: -103.788817 (TVD: 5470 feet, MD: 5470 feet)
 BHL: LOT 3 / 2310 FSL / 330 FWL / TWSP: 175 / RANGE: 32E / SECTION: 7 / LAT: 32.848294 / LONG: -103.813436 (TVD: 5993 feet, MD: 13433 feet )

## **BLM Point of Contact**

Name: Judith Yeager Title: Legal Instruments Examiner Phone: 5752345936 Email: jyeager@blm.gov

(Form 3160-3, page 3)

## **Review and Appeal Rights**

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Approval Date: 02/23/2018

(Form 3160-3, page 4)



U.S. Department of the Interior BUREAU OF LAND MANAGEMENT



## **Operator Certification**

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Susan Maunder

Signed on: 10/16/2017

Title: Senior Coordinator, Regulatory MCBU

Street Address: 600 N. Dairy Ashford Rd

City: Houston

Zip: 77079

Phone: (281)206-5281

Email address: Susan.B.Maunder@conocophillips.com

State: TX

State:

Field Representative

**Representative Name:** 

Street Address:

City:

Phone:

Email address:

Zip:

# 

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Application Data Report

<u>02/</u>27/2018

#### APD ID: 10400022350

**Operator Name: CONOCOPHILLIPS COMPANY** 

Well Name: PERIDOT 8 FEDERAL

Well Type: OIL WELL

Submission Date: 10/16/2017

Well Number: 14H Well Work Type: Drill Highlighted data reflects the most recent changes

Show Final Text

| Section 1 - Genera                |                                |                                                    |
|-----------------------------------|--------------------------------|----------------------------------------------------|
| <b>APD ID:</b> 10400022350        | Tie to previous NOS?           | Submission Date: 10/16/201                         |
| BLM Office: CARLSBAD              | User: Susan Maunder            | Title: Senior Coordinator, Regulator               |
| Federal/Indian APD: FED           | Is the first lease penetra     | MCBU<br>Ited for production Federal or Indian? FED |
| Lease number: NMLC029406B         | Lease Acres: 1606.8            |                                                    |
| Surface access agreement in place | e? Allotted?                   | Reservation:                                       |
| Agreement in place? NO            | Federal or Indian agreer       | nent:                                              |
| Agreement number:                 |                                |                                                    |
| Agreement name:                   |                                |                                                    |
| Keep application confidential? NO |                                |                                                    |
| Permitting Agent? NO              | APD Operator: CONOCO           | DPHILLIPS COMPANY                                  |
| Operator letter of designation:   | Peridot_8_Fed_14H_JOA_Certif_L | tr_20171010123652.pdf                              |
|                                   | Peridot_8_Fed_14H_Leases_w_we  | ellsMap_20171010123703.pdf                         |

Peridot\_8\_Fed\_14H\_SerialRegisterPgs\_20171010123835.pdf

Zip: 77079

| _   |        |      |
|-----|--------|------|
| One | erator | Info |
|     | παινι  |      |

Operator Organization Name: CONOCOPHILLIPS COMPANY

Operator Address: 600 N. Dairy Ashford Rd

**Operator PO Box:** 

Operator City: Houston State: TX

**Operator Phone:** (281)293-1748

**Operator Internet Address:** 

## Section 2 - Well Information

Well in Master Development Plan? NOMater Development Plan name:Well in Master SUPO? NOMaster SUPO name:Well in Master Drilling Plan? NOMaster Drilling Plan name:Well Name: PERIDOT 8 FEDERALWell Number: 14HWell API Number:Field/Pool or Exploratory? Field and PoolField Name: MALJAMARPool Name: YESO WEST

Name: YESU WES

Page 1 of 3

**Operator Name: CONOCOPHILLIPS COMPANY** 

Well Name: PERIDOT 8 FEDERAL

KOP

Leg 8

#1 PPP

Leg

#1

230

230

8

FSL 258

FSL

0

258

0

FWL 17S

FWL 17S

32E 8

32E 8

Aliquot

Aliquot

NESW 8

NESW 8

32.84823

32.84823

-

17

-

17

103.7888

103.7888

LEA

LEA

NEW

со

NEW

со

MEXI MEXI

MEXI MEXI

co

co

NEW F

NEW F

NMLC0

NMLC0

29406B 150

2

-29406B 142

2

Well Number: 14H

| ls the           | e prop                                  | osed         | well i       | n an a       | area c | ontai  | ning         | other m           | ineral res    | ources? N               | IONE    |              |                   |            |                 |           |       |     |
|------------------|-----------------------------------------|--------------|--------------|--------------|--------|--------|--------------|-------------------|---------------|-------------------------|---------|--------------|-------------------|------------|-----------------|-----------|-------|-----|
| Desc             | ribe c                                  | ther r       | niner        | als:         |        |        |              |                   |               |                         |         |              |                   |            |                 |           |       |     |
| Is the           | e prop                                  | osed         | well i       | n a He       | elium  | prod   | uctio        | n area?           | N Use E       | Existing W              | ell Pac | <b>!?</b> NO | Ne                | w s        | surface d       | listurl   | bance | ?   |
| Туре             | of W                                    | ell Pa       | <b>d:</b> MU | LTIPL        | E WE   | LL     |              |                   | •             | ple Well Pa             |         | ne:          | Nu                | ımb        | er: 4H          |           |       |     |
| Well             | Class                                   | : HOF        | RIZON        | TAL          |        |        |              |                   |               | DOT 8 FEE<br>per of Leg |         |              |                   |            |                 |           |       |     |
| Well             | Work                                    | Туре         | : Drill      |              |        |        |              |                   |               |                         |         |              |                   |            |                 |           |       |     |
| Well             | Type:                                   | OIL V        | VELL         |              |        |        |              |                   |               |                         |         |              |                   |            |                 |           |       |     |
| Desc             | ribe V                                  | Vell T       | ype:         |              |        |        |              |                   |               |                         |         |              |                   |            |                 |           |       |     |
| Well             | ell sub-Type: INFILL                    |              |              |              |        |        |              |                   |               |                         |         |              |                   |            |                 |           |       |     |
| Desc             | ribe s                                  | ub-ty        | pe:          |              |        |        |              |                   |               |                         |         |              |                   |            |                 |           |       |     |
| Dista            | Distance to town: 1.4 Miles Distance to |              |              |              |        |        |              |                   | nearest v     | <b>vell:</b> 140 F      | т       | Dist         | ance t            | o le       | ase line:       | 60 F      | Г     |     |
| Rese             | rvoir                                   | well s       | pacin        | g ass        | igned  | l acre | s Mea        | asurem            | ent: 241 A    | cres                    |         |              |                   |            |                 |           |       |     |
| Well             | plat:                                   | Pe           | ridot_       | 8_Fed        | _14H   | _C10   | 2signe       | ed_2017           | 10101248      | 34.pdf                  |         |              |                   |            |                 |           |       |     |
| Well             | work                                    | start        | Date:        | 07/01        | /2018  |        |              |                   | Durat         | t <b>ion:</b> 21 DA     | AYS     |              |                   |            |                 |           |       |     |
|                  | 0                                       | 4            | 2 14         |              |        | 4!     | <b>T</b> - 1 |                   |               |                         |         |              |                   |            |                 |           |       |     |
|                  | Sec                                     | tion         | 3 - V        | veii         | LOCa   | ition  | lac          | DIE               |               |                         |         |              |                   |            |                 |           |       |     |
| Surve            | ey Tyj                                  | pe: RE       | ECTA         | NGUL         | AR     |        |              |                   |               |                         |         |              |                   |            |                 |           |       |     |
| Desc             | ribe S                                  | Survey       | / Туре       | <b>:</b> :   |        |        |              |                   |               |                         |         |              |                   |            |                 |           |       |     |
| Datu             | m: NA                                   | D83          |              |              |        |        |              |                   | Vertic        | al Datum:               | NAVC    | 88           |                   |            |                 |           |       |     |
| Survey number:   |                                         |              |              |              |        |        |              |                   |               |                         |         |              |                   |            |                 |           |       |     |
|                  | NS-Foot                                 | NS Indicator | EW-Foot      | EW Indicator | Twsp   | Range  | Section      | Aliquot/Lot/Tract | Latitude      | Longitude               | County  | State        | Meridian          | Lease Type | Lease Number    | Elevation | MD    | TVD |
| SHL<br>Leg<br>#1 | 223<br>7                                | FSL          | 258<br>0     | FWL          | 175    | 32E    |              | Aliquot<br>NESW   | 32.84806<br>7 | -<br>103.7888<br>17     | LEA     | NEW          | NEW<br>MEXI<br>CO | F          | NMLC0<br>29406B | 404<br>8  | 0     | 0   |

555

547

0

0

555

547

0

0

## Operator Name: CONOCOPHILLIPS COMPANY

#### Well Number: 14H

Well Name: PERIDOT 8 FEDERAL

|      | NS-Foot | NS Indicator | EW-Foot | EW Indicator | Twsp | Range | Section | Aliquot/Lot/Tract | Latitude | Longitude | County | State | Meridian | Lease Type | Lease Number | Elevation | MD  | TVD |
|------|---------|--------------|---------|--------------|------|-------|---------|-------------------|----------|-----------|--------|-------|----------|------------|--------------|-----------|-----|-----|
| EXIT | 231     | FSL          | 330     | FWL          | 17S  | 32E   | 7       | Lot               | 32.84829 | -         | LEA    | NEW   | NEW      | F          | NMLC0        | -         | 134 | 599 |
| Leg  | 0       | ł            |         |              |      |       |         | 3                 | 4        | 103.8134  |        | 1     | MEXI     |            | 29406B       | 194       | 33  | 3   |
| #1   |         | {            |         | [            |      |       |         |                   |          | 36        |        | со    | co       |            |              | 5         | ľ   |     |
| BHL  | 231     | FSL          | 330     | FWL          | 17S  | 32E   | 7       | Lot               | 32.84829 | -         | LEA    | NEW   | NEW      | F          | NMLC0        | -         | 134 | 599 |
| Leg  | 0       | ĺ            |         |              |      |       |         | 3                 | 4        | 103.8134  |        | MEXI  | MEXI     |            | 29406B       | 194       | 33  | 3   |
| #1   |         |              |         |              |      |       |         |                   |          | 36        |        | со    | со       |            |              | 5         |     |     |



Susan B. Maunder Sr. Coordinator, Regulatory Phone: (281) 206-5281 ConocoPhillips Company 600 N. Dairy Ashford Road, Off EC3-10-W285 Houston, TX 77079-1175

October 3, 2017

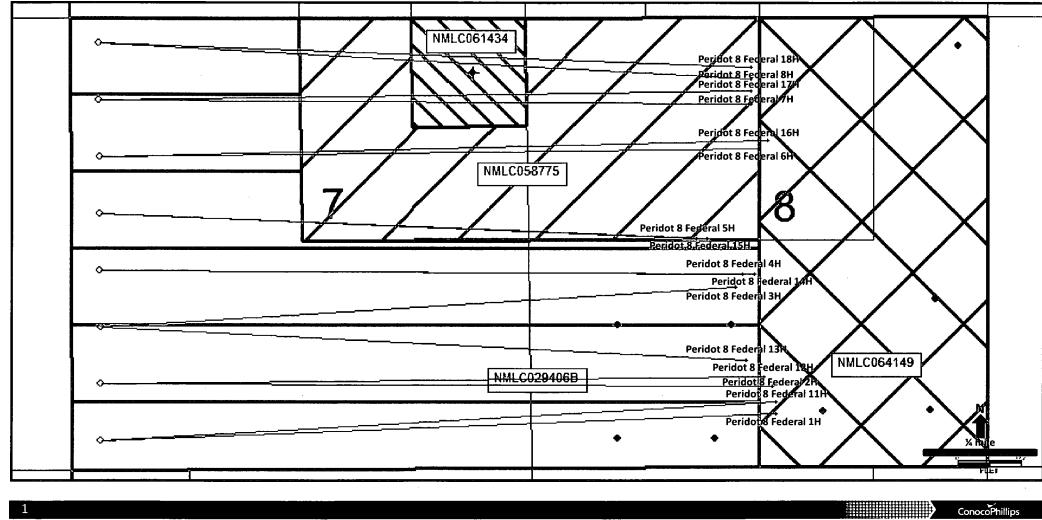
Bureau of Land Management Carlsbad Field Office 620 East Greene Street Carlsbad, New Mexico 88220-6292

RE: Joint Operating Agreement Pending APD – Peridot 8 Federal 4H,14H Section 8, T17S, R32E Lease Numbers – NMLC 064149, NMLC 029406B

Dear Sir or Madam,

ConocoPhillips Company has negotiated a Joint Operating Agreement ("JOA") with COG Operating LLC, evidenced by a previously enclosed Memorandum of Operating Agreement, which covers approximately 480 acres in Township 17 South, Range 32 East. The JOA, along with an associated settlement letter, provides access to surface operated by the other party. This mutual access will allow more oil and gas resource recovery by maximizing horizontal wellbore formation contact.

Please accept this letter as certification our two companies agree on operating rights within the Peridot 8 Federal area. In regards to Peridot development, COP respectfully requests the BLM to process the referenced APD to afford maintenance of the lease in a timely manner.


If you have questions regarding this certification, I can be reached at 281-206-5281 or via email at Susan.B.Maunder@conocophillips.com.

Sincerely,

Susan B. Maunder

Susan B. Maunder Senior Coordinator, Regulatory ConocoPhillips Company

# Peridot Section 7 and 8 Lease Map



# **FAFMSS**

#### U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

# Drilling Plan Data Report

02/27/2018

APD ID: 10400022350

**Operator Name: CONOCOPHILLIPS COMPANY** 

Submission Date: 10/16/2017

Highlighted data reflects the most recent changes

Well Name: PERIDOT 8 FEDERAL

Well Number: 14H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

## **Section 1 - Geologic Formations**

| Formation |                |           | True Vertical | Measured |                                  |                   | Producing |
|-----------|----------------|-----------|---------------|----------|----------------------------------|-------------------|-----------|
| ID        | Formation Name | Elevation | Depth         | Depth    | Lithologies                      | Mineral Resources | Formation |
| 1         | RUSTLER        | 3213      | 835           | 835      | DOLOMITE,ANHYDRIT<br>E           | USEABLE WATER     | No        |
| 2         | SALADO         | 2233      | 980           | 980      | SALT, ANHYDRITE                  | NONE              | No        |
| 3         | TANSILL        | 1158      | 2055          | 2055     | DOLOMITE,SALT,ANHY<br>DRITE      | NONE              | No        |
| 4         | YATES          | 1018      | 2195          | 2195     | SANDSTONE,DOLOMIT<br>E,ANHYDRITE | NONE              | No        |
| 5         | SEVEN RIVERS   | 713       | 2500          | 2500     | SANDSTONE,DOLOMIT<br>E,ANHYDRITE | NATURAL GAS,OIL   | No        |
| 6         | QUEEN          | 93        | 3120          | 3120     | SANDSTONE, ANHYDRI<br>TE         | NATURAL GAS,OIL   | No        |
| 7         | GRAYBURG       | -332      | 3545          | 3545     | SANDSTONE,DOLOMIT<br>E,ANHYDRITE | NATURAL GAS,OIL   | No        |
| 8         | SAN ANDRES     | -647      | 3860          | 3860     | SANDSTONE,DOLOMIT<br>E,ANHYDRITE | NATURAL GAS,OIL   | No        |
| 9         | GLORIETA       | -2157     | 5370          | 5370     | SANDSTONE,DOLOMIT<br>E,SILTSTONE | NATURAL GAS,OIL   | No        |
| 10        | PADDOCK        | -2257     | 5470          | 5470     | DOLOMITE,ANHYDRIT<br>E,SILTSTONE | NATURAL GAS,OIL   | No        |
| 11        | BLINEBRY       | -2577     | 5790          | 5798     | DOLOMITE,ANHYDRIT<br>E           | NATURAL GAS,OIL   | Yes       |

## **Section 2 - Blowout Prevention**

Pressure Rating (PSI): 5M

Rating Depth: 13433

Equipment: Rotating Head, Annular Preventer, Pipe/Blind Rams, Kill Lines, Choke Lines, Adapter Spool. All required equipment per federal regulations to be in place prior to drilling out the surface casing Requesting Variance? YES

Variance request: We request variance to use flexible choke line(s) from the BOP to Choke Manifold. Testing certificate is attached in "Flexhose Variance data" document.

Testing Procedure: BOP/BOPE tested by independent company to 250 psi low and the high of 50% working psi, as required by federal and state regulations. Testing frequency from daily to weekly. See attached "Drill Plan" document.

**Choke Diagram Attachment:** 

Peridot\_8\_Fed\_14H\_3M\_Choke\_Manifold\_20171012114121.pdf

Peridot\_8\_Fed\_14H\_FlexhoseVarianceData\_20171012114142.pdf

#### **BOP Diagram Attachment:**

Peridot\_8\_Fed\_14H\_13in\_5M\_BOPE\_Diagram\_20171012114152.pdf

## **Section 3 - Casing**

| Casing ID | String Type    | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing<br>length MD | Grade | Weight | Joint Type | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF |
|-----------|----------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|--------------------------------|-------|--------|------------|-------------|----------|---------------|----------|--------------|---------|
| 1         | SURFACE        | 17.5      | 13.375   | NEW       | API      | N              | 0          | 885           | 0           | 885            | 4048        |                | 885                            | J-55  | 54.5   | STC        | 2.89        | 6.98     | DRY           | 10.7     | DRY          | 17.7    |
|           | 1              | 12.2<br>5 | 9.625    | NEW       | API      | N              | 0          | 2250          | <u>0</u>    | 2250           | 4048        |                | 2250                           | J-55  | 40     | LTC        | 2.2         | 3.38     | DRY           | 5.78     | DRY          | 7       |
|           | PRODUCTI<br>ON | 8,75      | 7.0      | NEW       | API      | Y              | 0          | 5200          | 0           | 5200           |             |                | 5200                           | L-80  | 29     | LTC        | 2.88        | 3.35     | DRY           | 3.89     | DRY          | 4.48    |
|           | PRODUCTI<br>ON | 8.75      | 5.5      | NEW       | API      | Y              | 5200       | 13433         | 5200        | 5993           |             |                | 8233                           | L-80  | 17     | LTC        | 2.2         | 2.7      | DRY           | 2.41     | DRY          | 2.84    |

#### **Casing Attachments**

Casing ID: 1 String Type: SURFACE

**Inspection Document:** 

**Spec Document:** 

**Tapered String Spec:** 

Casing Design Assumptions and Worksheet(s):

Peridot\_8\_Fed\_14H\_Csg\_Worksheet\_20171012115153.pdf

Well Number: 14H

#### **Casing Attachments**

Casing ID: 2 String Type: INTERMEDIATE

**Inspection Document:** 

Spec Document:

**Tapered String Spec:** 

#### Casing Design Assumptions and Worksheet(s):

Peridot\_8\_Fed\_14H\_Csg\_Worksheet\_20171012115207.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

**Spec Document:** 

**Tapered String Spec:** 

Peridot\_8\_Fed\_14H\_Csg\_Worksheet\_20171016144807.pdf

Casing Design Assumptions and Worksheet(s):

Peridot\_8\_Fed\_14H\_Csg\_Worksheet\_20171012115500.pdf

Casing ID: 4 String Type: PRODUCTION

**Inspection Document:** 

**Spec Document:** 

**Tapered String Spec:** 

Peridot\_8\_Fed\_14H\_Csg\_Worksheet\_20171012120247.pdf

Casing Design Assumptions and Worksheet(s):

Peridot\_8\_Fed\_14H\_Csg\_Worksheet\_20171012120112.pdf

**Section 4 - Cement** 

## Operator Name: CONOCOPHILLIPS COMPANY Well Name: PERIDOT 8 FEDERAL

Well Number: 14H

| String Type  | Lead/Tail | Stage Tool<br>Depth | Top MD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type | Additives                                                                                                                                                                                |
|--------------|-----------|---------------------|--------|-----------|--------------|-------|---------|-------|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SURFACE      | Lead      |                     | 0      | 585       | 500          | 1.68  | 13.5    | 840   | 100     | Class C     | 4.0% Bentonite + 0.2%<br>Anti-Foam + 2.0%<br>CaCl2 +0.125lb/sk LCM<br>+ 0.1% Dispersant                                                                                                  |
| SURFACE      | Tail      |                     | 585    | 885       | 400          | 1.35  | 14.8    | 540   | 100     | Class C     | 0.2% Anti-Foam + 0.1%<br>Lost Circ Control + 2<br>Ibs/bbl CemNET (losses<br>Control)                                                                                                     |
| INTERMEDIATE | Lead      |                     | 0      | 1750      | 450          | 2.29  | 11.5    | 1031  | 100     | Class C     | 10.0% Bentonite + 0.2%<br>Anti-Foam + 2.0%<br>Expanding + 0.15%<br>Viscosifier + 1.3%<br>Retarder.                                                                                       |
| INTERMEDIATE | Tail      |                     | 1750   | 2250      | 300          | 1.29  | 13.5    | 387   | 100     | Class C     | 1% Extender + 3 lb/sk<br>Extender + 0.2% Anti-<br>Foam + 0.1%<br>Dispersant + 13 lb/sk<br>LCM + 0.5% Fluid Loss<br>+ 0.7% Retarder                                                       |
| PRODUCTION   | Lead      |                     | 1700   | 5200      | 650          | 3.2   | 11      | 2080  | 30      | Class C     | + 6% Extender + 10%<br>Gas Migration Control +<br>2% Sodium Metasilicate<br>(dry) + 1% Cement<br>Bonding Agent + 3%<br>Aluminum Silicate +<br>0.125 lb/sx Cello Flake<br>+ 3 lb/sx LCM-1 |

| PRODUCTION | Lead | 5200 | 1343 | 1900 | 1.37 | 14 | 2603 | 30 | Class C | 3lb/sk LCM + 1.5%       |
|------------|------|------|------|------|------|----|------|----|---------|-------------------------|
|            |      |      | 3    |      |      |    |      |    |         | Fluid Loss + 0.1% + 1%  |
|            |      |      |      |      |      |    |      |    |         | Sodium Metasilicate     |
|            |      |      |      |      |      |    |      |    |         | (dry) + 1.5% Fluid Loss |
|            |      |      |      |      |      |    |      |    |         | Control                 |

#### **Operator Name: CONOCOPHILLIPS COMPANY**

Well Name: PERIDOT 8 FEDERAL

Well Number: 14H

## Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

**Describe what will be on location to control well or mitigate other conditions:** Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. See attached "Drill Plan" for discussion.

**Describe the mud monitoring system utilized:** Closed-loop mud system using steel mud containers will be on location. Mud monitoring of any changes in levels (gains or losses) will use Pressure Volume Temperature instrumentation, Pason, Visual Observations. See attached "Drill Plan" for discussion.

#### **Circulating Medium Table**

| Top Depth | Bottom Depth | Mud Type           | Min Weight (Ibs/gal) | Max Weight (Ibs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | Н | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics |
|-----------|--------------|--------------------|----------------------|----------------------|---------------------|-----------------------------|---|----------------|----------------|-----------------|----------------------------|
| 0         | 885          | WATER-BASED<br>MUD | 8.5                  | 9                    |                     |                             |   |                |                |                 |                            |
| 2250      | 6115         | WATER-BASED<br>MUD | 8.6                  | 10                   |                     |                             |   |                |                |                 |                            |
| 885       | 2250         | SALT<br>SATURATED  | 10                   | 10                   |                     |                             |   |                |                |                 |                            |

## Section 6 - Test, Logging, Coring

#### List of production tests including testing procedures, equipment and safety measures:

Production tests will be conducted multiple times per week, through a test separator, during first months following completion. Thereafter, tests will be less frequently.

List of open and cased hole logs run in the well:

CNL,GR,MUDLOG

#### Coring operation description for the well:

No coring is planned.

Operator Name: CONOCOPHILLIPS COMPANY Well Name: PERIDOT 8 FEDERAL

#### **Section 7 - Pressure**

Anticipated Bottom Hole Pressure: 2815

Anticipated Surface Pressure: 1496.54

Anticipated Bottom Hole Temperature(F): 100

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

**Contingency Plans geohazards attachment:** 

#### Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Peridot\_8\_Fed\_14H\_H2S\_CPlan\_20171012123724.pdf Peridot\_8\_Fed\_14H\_TypicalRigLayout\_20171012123817.pdf

## Section 8 - Other Information

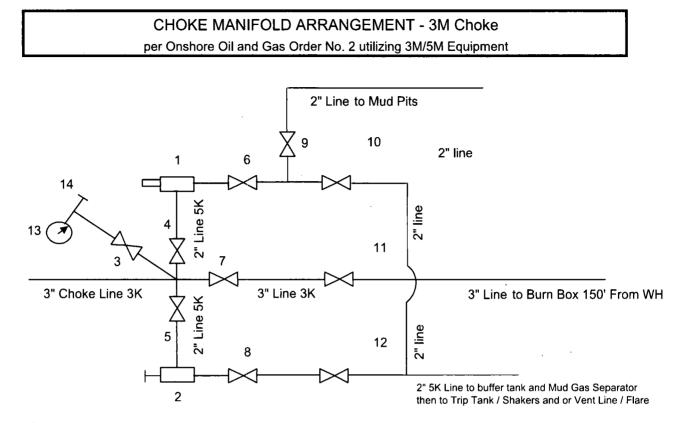
#### Proposed horizontal/directional/multi-lateral plan submission:

Peridot\_8\_Fed\_14H\_DirectionalPlan\_20171012124019.pdf

Peridot\_8\_Fed\_14H\_WellboreSchematic\_20171012124038.pdf

#### Other proposed operations facets description:

Option to upgrade casing connection to BTC is requested, in addition to the ability to upgrade our BOP equipment. This is dependent upon equipment availability. Cement volumes will be adjusted based on hole conditions in given section. We request approval of the option to run open hole sliding sleeve in lateral section (option attachment is included). We request variance to use multi-bowl wellhead.


#### Other proposed operations facets attachment:

Peridot\_8\_Fed\_14H\_Drill\_Planv5\_20171012124203.pdf Peridot\_8\_Fed\_14H\_Drill\_Waste\_Containment\_20171012124214.pdf Peridot\_8\_Fed\_Gas\_Capture\_Plan\_20171012124303.pdf Peridot\_8\_Fed\_14H\_OH\_Sleeve\_Option\_20180122140948.pdf

#### Other Variance attachment:

Peridot\_8\_Fed\_14H\_Generic\_Wellhead\_5M\_20171012124246.pdf

Peridot 8 Federal 14H



All Tees must be Targeted

Item Description

- 1 Remote Controlled Hydraulically Operated Adjustable Choke, 2-1/16", 3M
- 2 Manual Adjustable Choke, 2-1/16", 3M
- 3 Gate Valve, 2-1/16" 5M
- 4 Gate Valve, 2-1/16" 5M
- 5 Gate Valve, 2-1/16" 5M
- 6 Gate Valve, 2-1/16" 5M
- 7 Gate Valve, 3-1/8" 3M
- 8 Gate Valve, 2-1/16" 5M
- 9 Gate Valve, 2-1/16" 5M
- 10 Gate Valve, 2-1/16" 5M
- 11 Gate Valve, 3-1/8" 3M
- 12 Gate Valve, 2-1/16" 5M
- 13 Pressure Gauge
- 14 2" hammer union tie-in point for BOP Tester

The 3M Choke Manifold & Valves will be tested to rated working pressure.

Peridot 8 Federal 14H



Wellhead / Fire Guarded System







## **Reliance Eliminator Choke & Kill**

This hose can be used as a choke hose which connects the BOP stack to the b manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive °G6 fdi708 minutes)

| Nom.  | ID   | No   | m OD   | v     | Veight | Min | Bend Radiu | s Max | WP    |
|-------|------|------|--------|-------|--------|-----|------------|-------|-------|
| in.   | mm.  | in.  | mm     | lb/ft | kg/m   | in. | mm.        | psi   | Мра   |
| 3     | 76.2 | 5.11 | 129.79 | 14.5  | 21.46  | 48  | 1219.2     | 5000  | 34.47 |
| 3-1/2 | 88.9 | 5.79 | 147.06 | 20.14 | 29.80  | 54  | 1371.6     | 5000  | 34.47 |

# **End Connections**

| Fittings | Flanges                    | Hammer Unions               | Other         |
|----------|----------------------------|-----------------------------|---------------|
| RC4X5055 | R35 - 3-1/8 5000# API Type | 6B All Union Configurations | LP Threaded ( |
| RC3X5055 | R31 - 3-1/8 3000# API Type | 6B                          | Graylock      |
| RC4X5575 |                            | C                           | ustom Ends    |



. . . . . . .

•• ••

Industrial Products USA, Ltd.

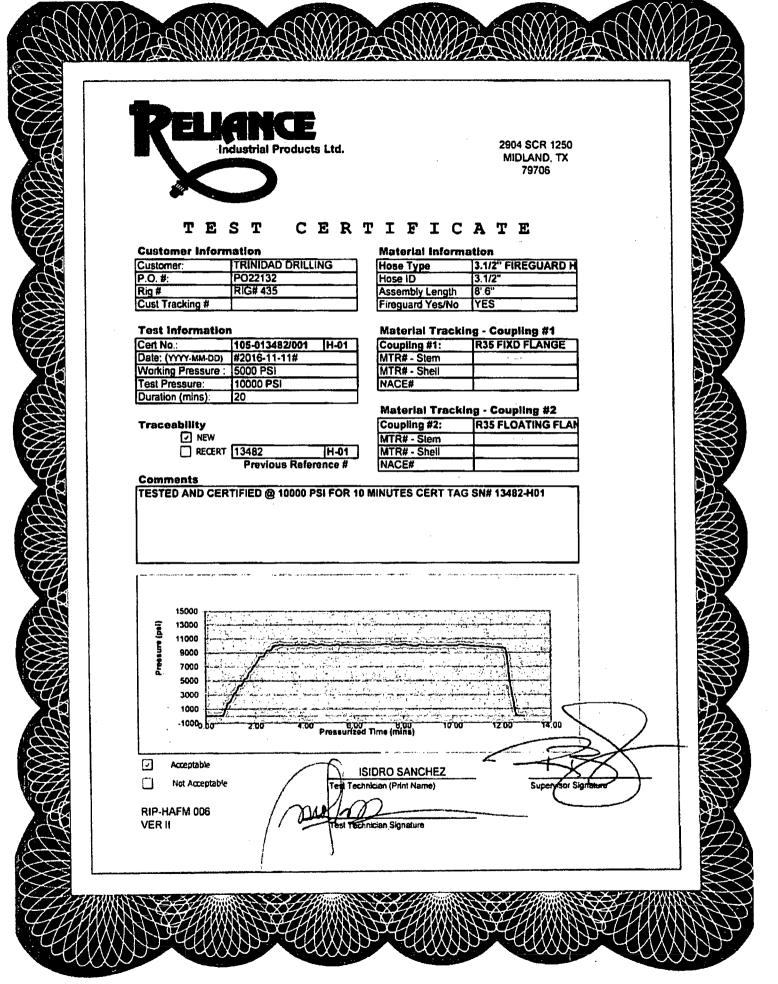
Please remit payment to: 606 - 19 Avenue, Nisku, AB Canado T9E 7W1 Peridot 8 Federal 14H WORK ORDER

Bossler City, LA 71111 Ph: 318-687-5486 Fax. 318-687-5491 1001 M&O Drive

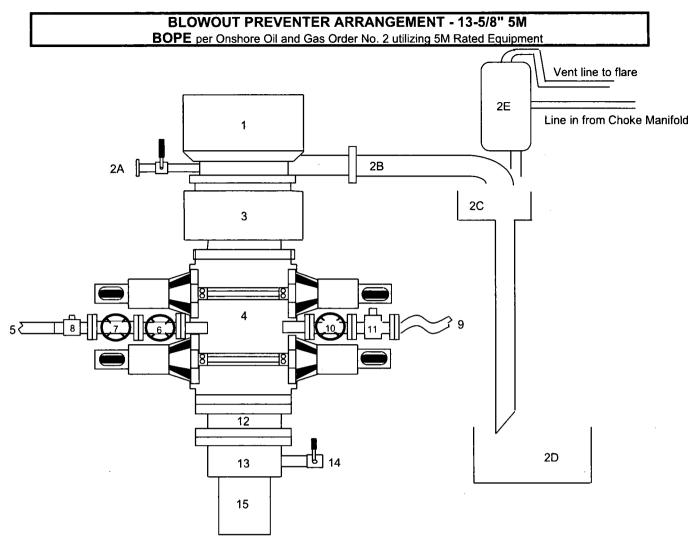
**Sen Antonio, TX 78217** Ph: 210-650-3636 Fax: 210-650-3133 4327 Centergate Street 
 Williston, ND 58801
 Mil

 Ph. 701-572-7035
 Ph.

 Fax. 701-572-7030
 Fai


 4970
 Hwy 85
 290

Midland, TX 79706 Ph: 432-689-0102 Fex: 432-699-4898 2904 SCR 1250


Houston, TX 77388 Ph; 281-288-9720 4115 Kreinhop Rd Suite B

| BILL TO   |                     | CUSTOMER                                              | NO.                                           | SALESMAN NO.                                                                                                                                                                                                                                                                          | SHIP TO                                                                                                |                                                                                                                                                   | CUS                                                                                                  | TOM                                                                                         | ER NO.                    |                                                             |                                                                                                     | SALESMAN                                                                                     | NO.              |                                                                                                  |                        |      |    |
|-----------|---------------------|-------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------|------------------------|------|----|
| ,         |                     | 0035                                                  |                                               | HSE                                                                                                                                                                                                                                                                                   |                                                                                                        |                                                                                                                                                   |                                                                                                      | 0305                                                                                        | -                         |                                                             |                                                                                                     | HSE                                                                                          |                  | PG                                                                                               | 1 OF 1                 |      |    |
|           | 1                   | RINIDAD D<br>S015 VICK<br>OUSTON, T                   | ERY DR                                        | P                                                                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                                                   | TRIN<br>RIG                                                                                          |                                                                                             | ) DRII<br>G               | LING                                                        |                                                                                                     |                                                                                              |                  | 1                                                                                                | 054013482              | Us   |    |
|           |                     |                                                       |                                               |                                                                                                                                                                                                                                                                                       | (713) 439-1670                                                                                         |                                                                                                                                                   |                                                                                                      |                                                                                             |                           |                                                             |                                                                                                     |                                                                                              | 1                |                                                                                                  |                        |      |    |
| BRANCH    | ·                   |                                                       |                                               |                                                                                                                                                                                                                                                                                       |                                                                                                        |                                                                                                                                                   |                                                                                                      |                                                                                             |                           |                                                             |                                                                                                     |                                                                                              |                  | OPE                                                                                              | N ORDER                |      |    |
| F         | Reliance -          |                                                       |                                               | · ·                                                                                                                                                                                                                                                                                   | 6140                                                                                                   | BOX                                                                                                                                               | BAQ                                                                                                  |                                                                                             | COL                       | PC                                                          | TOTAL                                                                                               | TAX ID P2                                                                                    | 8-0174221        |                                                                                                  | REFERENCE<br>105-01348 |      |    |
|           | DAY YHL<br>11/04/16 | RWB                                                   | 1                                             | 1/16 5709 PO22132                                                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                                                   |                                                                                                      | TERI                                                                                        | MS<br>ST 30               | DAYS                                                        |                                                                                                     |                                                                                              | SHIP VIA<br>DELT |                                                                                                  | RW                     | в    | 94 |
| ORDE      | RED                 | SHIPPED                                               | ORDERED                                       | PART NUMBER AND                                                                                                                                                                                                                                                                       | DESCRIPT                                                                                               | <b>ON</b>                                                                                                                                         |                                                                                                      |                                                                                             | ***                       | CODE                                                        | L<br>Př                                                                                             | ST<br>NCE                                                                                    | PRICE            | UNIT                                                                                             | AM                     | ET   |    |
|           | .1                  | 1<br>2.00<br>1.00<br>1<br>2<br>9<br>1<br>1<br>2<br>15 |                                               | DELIVER TO YARD                                                                                                                                                                                                                                                                       | HYD H<br>MATT<br>CB for GRA<br>TES<br>ID<br>CAB<br>J 1<br>FLO<br>GRA<br>6"<br>J"<br>S CHOKE<br>DR 10 M | ASE ( )<br>ERIALS<br>above ()<br>DE C &<br>TING C<br>TAG 2.5<br>LE TIE<br>(2=FIR)<br>ATING ()<br>DE C/D<br>SS OVER<br>( 1/16<br>HOSE ()<br>INUTES | IND 1<br>D SWA<br>ARGES<br>SX1.5 S<br>SS 20<br>EQUARD<br>FLANGE<br>R35 F<br>RFERRU<br>FIBE<br>W/ R35 | Oi<br><br>COSE<br><br>SS<br><br>CHO<br>CHO<br>CHO<br>COU<br><br>ANG<br><br>E<br>RGLA<br>FIX | RDER (<br>SHII)<br>SP<br> | NO BE<br>PPINS<br>ECIAL<br>CUST<br>ORDE<br>T<br>below<br>SE | COMPLE<br>INSTRUC<br>INSTRUC<br>OMER CO<br>R COMPA<br>J 2<br>J 2<br>J 2<br>M 1<br>M 1<br>M 2<br>O 1 | TED BY<br>TTIONS<br>TTIONS<br>TTIONS<br>NATACT<br>DNENTS<br>CONCENTS<br>CONCENTS<br>CONCENTS | 4806.9           | 2<br>2<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |                        |      |    |
| PICKED BY | ASSEMID BY          | TESTED BY                                             | INVOICE.<br>PER ANN<br>The term<br>Industrial | IF ORDERED TODAY BUY<br>IF ORDERED LATER THAN<br>Sign:<br>Print<br>Dete:<br>NET 30 DAYS FROM DATE O<br>Interest of 2% PER MONTH (24<br>UM) charged on overdue accounts<br>a d the contract between Reliance<br>a d the contract between Reliance<br>Froducts Ltd. ("Reliance") and th |                                                                                                        | WILL I                                                                                                                                            | BE MON                                                                                               | YAC                                                                                         | DELIV<br>Lo               | ERY<br>Ze                                                   |                                                                                                     | TA                                                                                           |                  | <u>AL</u>                                                                                        | 4806<br>0<br>4806      | . 00 |    |
| ,         |                     |                                                       |                                               | are on the reverse of this documen                                                                                                                                                                                                                                                    |                                                                                                        |                                                                                                                                                   |                                                                                                      |                                                                                             |                           | ±.                                                          |                                                                                                     | то                                                                                           | TAL              |                                                                                                  | -506                   |      |    |

Peridot 8 Federal 14H



Peridot 8 Fed 14H



- Item Description
  - 1 Rotating Head, 13-5/8"
  - 2A Fill up Line and Valve
  - 2B Flow Line (10")
  - 2C Shale Shakers and Solids Settling Tank
  - 2D Cuttings Bins for Zero Discharge
  - 2E Rental Mud Gas Separator with vent line to flare and return line to mud system
  - 3 Annular BOP (13-5/8", 5M)
  - 4 Double Ram (13-5/8", 5M, Blind Ram top x Pipe Ram bottom)
  - 5 Kill Line Connection
  - 6 Kill Line Valve, Inner (2-1/16", 5M)
  - 7 Kill Line Valve, Outer (2-1/16", 5M)
  - 8 Kill Line Check Valve (2-1/16", 5M)
  - 9 Choke Line (3-1/8", 5M Coflex Line)
  - 10 Choke Line Valve, Inner (3-1/8", 5M)
  - 11 Choke Line Valve, Outer (3-1/8", Hydraulically operated, 5M)
  - 12 Spacer Spool (13-5/8", 5M)
  - 13 Casing Head (13-5/8", 5M)
  - 14 Casing Head Valve Outlet (2", 5M)
  - 15 Surface Casing

A variance is requested to permit the use of flexible hose. The testing certificate for the specific hose will be available on the rig prior to commencing drilling operations.

| -                                                                                                                                                                                                                                                                              | Depth<br>MD                                                                                                                                                          | Depth<br>TVD                                                         | Csg<br>length ft                                                                                                    | Wt                                      | MIY                                                       | Col        | Pipe Str | Jt Str | Drill Fluid                                                                                                                                                                                             |                                                                                                                                                                       |                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------|------------|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Surface Casing                                                                                                                                                                                                                                                                 | 885                                                                                                                                                                  | 885                                                                  | 885                                                                                                                 | 54.5                                    | 5 2730                                                    | 1130       | 853000   | 514000 | 8.5                                                                                                                                                                                                     |                                                                                                                                                                       |                                                       |
| Intermediate 1 Casing                                                                                                                                                                                                                                                          | 2250                                                                                                                                                                 | 2250                                                                 | 2250                                                                                                                | 40                                      |                                                           |            |          | 520000 |                                                                                                                                                                                                         |                                                                                                                                                                       |                                                       |
| Production 1 Casing                                                                                                                                                                                                                                                            | 5200                                                                                                                                                                 | 5200                                                                 | 5200                                                                                                                | 29                                      |                                                           |            |          | 587000 |                                                                                                                                                                                                         |                                                                                                                                                                       |                                                       |
| Production 2 Casing                                                                                                                                                                                                                                                            | 13433                                                                                                                                                                | 6115                                                                 | 8233                                                                                                                | 17                                      | 7740                                                      | 6290       | 397000   | 338000 | 9                                                                                                                                                                                                       |                                                                                                                                                                       |                                                       |
|                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                      |                                                                                                                     |                                         |                                                           |            |          |        |                                                                                                                                                                                                         |                                                                                                                                                                       |                                                       |
| <u>Collapse Design (Sa</u>                                                                                                                                                                                                                                                     |                                                                                                                                                                      | - BLM (                                                              | Criteria                                                                                                            |                                         |                                                           |            |          |        |                                                                                                                                                                                                         | esign (Safe                                                                                                                                                           |                                                       |
| Collapse Design (Safety) f<br>SFc = Pc / (MW x .052 x L                                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                      |                                                                                                                     |                                         |                                                           |            |          |        |                                                                                                                                                                                                         | gn (Safety) Fa                                                                                                                                                        | ctor: 8                                               |
| Where                                                                                                                                                                                                                                                                          | .5)                                                                                                                                                                  |                                                                      |                                                                                                                     |                                         |                                                           |            |          |        | SFb = Pi /<br>Where                                                                                                                                                                                     | впр                                                                                                                                                                   |                                                       |
|                                                                                                                                                                                                                                                                                | e rated pipe Collap                                                                                                                                                  | se Pressu                                                            | re in pounds r                                                                                                      | oer squa                                | re inch (psi)                                             |            |          |        | VIIEIE                                                                                                                                                                                                  | <ul> <li>Pi is th</li> </ul>                                                                                                                                          | ie rate                                               |
|                                                                                                                                                                                                                                                                                | nud weight in pour                                                                                                                                                   |                                                                      |                                                                                                                     |                                         | (F)                                                       |            |          |        |                                                                                                                                                                                                         | <ul> <li>BHP is</li> </ul>                                                                                                                                            |                                                       |
|                                                                                                                                                                                                                                                                                | e length of the strin                                                                                                                                                |                                                                      |                                                                                                                     |                                         |                                                           |            |          |        | The Minim                                                                                                                                                                                               | um Acceptable                                                                                                                                                         |                                                       |
| The Minimum Acceptable                                                                                                                                                                                                                                                         | Collapse Design (S                                                                                                                                                   | Safety) Fa                                                           | ctor SFc = 1.1                                                                                                      | 25                                      |                                                           |            |          |        |                                                                                                                                                                                                         |                                                                                                                                                                       |                                                       |
| Surface Casing                                                                                                                                                                                                                                                                 |                                                                                                                                                                      |                                                                      |                                                                                                                     |                                         |                                                           |            |          |        | Surface Casi                                                                                                                                                                                            | ng                                                                                                                                                                    |                                                       |
| SFc =                                                                                                                                                                                                                                                                          | 1130                                                                                                                                                                 | 1                                                                    | 391                                                                                                                 | =                                       | 2.89                                                      |            |          |        | SFb =                                                                                                                                                                                                   | 2730                                                                                                                                                                  | /                                                     |
| Intermediate 1 Casing                                                                                                                                                                                                                                                          |                                                                                                                                                                      |                                                                      |                                                                                                                     |                                         |                                                           |            |          |        | Intermediate                                                                                                                                                                                            | 1 Casing                                                                                                                                                              |                                                       |
| SFc =                                                                                                                                                                                                                                                                          | = 2570                                                                                                                                                               | 1                                                                    | 1170                                                                                                                | =                                       | 2.20                                                      |            |          |        | SFb =                                                                                                                                                                                                   | 3950                                                                                                                                                                  | /                                                     |
|                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                      |                                                                                                                     |                                         |                                                           |            |          |        |                                                                                                                                                                                                         |                                                                                                                                                                       |                                                       |
| Production 1 Casing                                                                                                                                                                                                                                                            | 7000                                                                                                                                                                 | ,                                                                    |                                                                                                                     |                                         |                                                           |            |          |        | Production 1                                                                                                                                                                                            |                                                                                                                                                                       |                                                       |
| SFc =                                                                                                                                                                                                                                                                          | 7020                                                                                                                                                                 | /                                                                    | 2434                                                                                                                | =                                       | 2.88                                                      |            |          |        | SFb =                                                                                                                                                                                                   | 8160                                                                                                                                                                  | /                                                     |
| Production 2 Casing                                                                                                                                                                                                                                                            |                                                                                                                                                                      |                                                                      |                                                                                                                     |                                         |                                                           |            |          |        | Production 2                                                                                                                                                                                            | Casing                                                                                                                                                                |                                                       |
|                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                      |                                                                                                                     |                                         |                                                           |            |          |        |                                                                                                                                                                                                         |                                                                                                                                                                       |                                                       |
| SFc =                                                                                                                                                                                                                                                                          | 6290                                                                                                                                                                 | 1.                                                                   | 2862                                                                                                                | =                                       | 2.20                                                      |            |          |        | SFb =                                                                                                                                                                                                   | 7740                                                                                                                                                                  | 1                                                     |
|                                                                                                                                                                                                                                                                                | : 6290                                                                                                                                                               | · <b>]</b>                                                           | 2862                                                                                                                | =                                       | 2.20                                                      |            |          |        |                                                                                                                                                                                                         |                                                                                                                                                                       | 1                                                     |
|                                                                                                                                                                                                                                                                                |                                                                                                                                                                      |                                                                      |                                                                                                                     | =                                       | 2.20                                                      |            |          |        | SFb =                                                                                                                                                                                                   |                                                                                                                                                                       |                                                       |
| SFc =                                                                                                                                                                                                                                                                          | ın (Safety) Fac                                                                                                                                                      |                                                                      |                                                                                                                     | =<br><u>a</u>                           | 2.20                                                      |            |          |        | SFb =<br><u>Joint St</u> r                                                                                                                                                                              | 7740                                                                                                                                                                  | ign (                                                 |
| SFc =<br><u>Pipe Strength Desig</u>                                                                                                                                                                                                                                            | ın (Safety) Fac                                                                                                                                                      |                                                                      |                                                                                                                     | =<br><u>a</u>                           | 2.20                                                      |            |          |        | SFb =<br><u>Joint St</u> r                                                                                                                                                                              | 7740<br>rength Des<br>gth Design (Sa                                                                                                                                  | <u>ign (</u>                                          |
| SFc =<br>Pipe Strength Desig<br>Pipe Strength Design (Saf<br>SFtp = Fp / Wt;<br>Where                                                                                                                                                                                          | ın (Safety) Fac                                                                                                                                                      | tors – E                                                             | BLM Criteri                                                                                                         | =<br><u>a</u>                           | 2.20                                                      |            |          |        | SFb =<br>Joint Stra<br>Joint Stran<br>SFtj = Fj / J                                                                                                                                                     | 7740<br>rength Des<br>gth Design (Sa                                                                                                                                  | <b>ign (</b><br>afety)                                |
| SFc =<br>Pipe Strength Design<br>Pipe Strength Design (Saf<br>SFtp = Fp / Wt;<br>Where<br>• Fp is th<br>• Wt is th                                                                                                                                                             | <b>In (Safety) Fac</b><br>ety) Factor: SFtp<br>e rated pipe Body 5<br>e weight of the cas                                                                            | strength ir                                                          | <u>BLM Criteri</u><br>pounds (lbs)<br>in pounds (lbs)                                                               | ;)                                      |                                                           |            |          |        | SFb =<br>Joint Stra<br>Joint Stran<br>SFtj = Fj / J                                                                                                                                                     | 7740<br>rength Des<br>glh Design (Si<br>Wt;                                                                                                                           | i <b>gn (</b><br>afety)  <br>ne rate                  |
| SFc =<br><u>Pipe Strength Design</u><br>Pipe Strength Design (Saf<br>SFtp = Fp / Wt;<br>Where<br>• Fp is th                                                                                                                                                                    | <b>In (Safety) Fac</b><br>ety) Factor: SFtp<br>e rated pipe Body 5<br>e weight of the cas                                                                            | strength ir                                                          | <u>BLM Criteri</u><br>pounds (lbs)<br>in pounds (lbs)                                                               | ;)                                      |                                                           | nt         |          |        | SFb =<br>Joint Sten<br>Joint Stren<br>SFtj = Fj /<br>Where                                                                                                                                              | 7740<br>rength Des<br>gth Design (Si<br>Wt;<br>• Fj is th                                                                                                             | <b>ign (</b><br>afety)<br>ne rate<br>he we            |
| SFc =<br>Pipe Strength Design<br>Pipe Strength Design (Saf<br>SFtp = Fp / Wt;<br>Where<br>• Fp is th<br>• Wt is th<br>The Minimum Acceptable                                                                                                                                   | <b>In (Safety) Fac</b><br>ety) Factor: SFtp<br>e rated pipe Body 5<br>e weight of the cas                                                                            | strength ir                                                          | <u>BLM Criteri</u><br>pounds (lbs)<br>in pounds (lbs)                                                               | ;)                                      |                                                           | nt         |          |        | SFb =<br>Joint Stra<br>Joint Stra<br>SFtj = Fj / M<br>Where<br>The Minima                                                                                                                               | 7740<br>rength Des<br>gth Design (Si<br>Wt;<br>• Fj is th<br>• Wt is t<br>um Acceptable                                                                               | <b>ign (</b><br>afety)<br>ne rate<br>he we            |
| SFc =<br><u>Pipe Strength Design</u><br>Pipe Strength Design (Saf<br>SFtp = Fp / Wt;<br>Where<br>• Fp is th<br>• Wt is th<br>The Minimum Acceptable<br>Surface Casing                                                                                                          | In (Safety) Fac<br>ety) Factor: SFtp<br>e rated pipe Body 5<br>e weight of the cas<br>Pipe Strength Desi                                                             | strength ir                                                          | BLM Criteri<br>n pounds (lbs)<br>in pounds (lbs<br><sub>/</sub> ) Factor SFTp                                       | i)<br>b = 1.6 d                         | ry or 1.8 buoya                                           | nt         |          |        | SFb =<br>Joint Stren<br>SFtj = Fj //<br>Where<br>The Minimu<br>Surface Casi                                                                                                                             | 7740<br>rength Des<br>gth Design (Sa<br>Wt;<br>• Fj is th<br>• Wt is t<br>um Acceptable<br>ng                                                                         | <b>ign (</b><br>afety)<br>ne rate<br>he we<br>e Joint |
| SFc =<br><u>Pipe Strength Design</u><br>Pipe Strength Design (Saf<br>SFtp = Fp / Wt;<br>Where<br>• Fp is th<br>• Wt is th<br>The Minimum Acceptable                                                                                                                            | In (Safety) Fac<br>ety) Factor: SFtp<br>e rated pipe Body 9<br>e weight of the cas<br>Pipe Strength Desi<br>: 853000                                                 | strength ir                                                          | <u>BLM Criteri</u><br>pounds (lbs)<br>in pounds (lbs)                                                               | ;)                                      |                                                           | nt ) =     | 20.3     | SF     | SFb =<br>Joint Stra<br>Joint Stra<br>SFtj = Fj / M<br>Where<br>The Minima                                                                                                                               | 7740<br>rength Des<br>gth Design (Si<br>Wt;<br>• Fj is th<br>• Wt is t<br>um Acceptable                                                                               | <b>ign (</b><br>afety)<br>ne rate<br>he we            |
| SFc =<br><u>Pipe Strength Design</u><br>Pipe Strength Design (Saf<br>SFtp = Fp / Wt;<br>Where<br>• Fp is th<br>• Wt is th<br>The Minimum Acceptable<br>Surface Casing<br>SFi Dry =<br>SFi Bouyant =                                                                            | In (Safety) Fac<br>ety) Factor: SFtp<br>e rated pipe Body 9<br>e weight of the cas<br>Pipe Strength Desi<br>: 853000                                                 | ttors – E<br>Strength ir<br>sing string<br>ign (Safety<br>/          | BLM Criteri<br>n pounds (lbs)<br>in pounds (lbs<br>r) Factor SFTp<br>48232.5                                        | s)<br>b = 1.6 d                         | ry or 1.8 buoya<br><b>17.7</b>                            |            | 20.3     | SF     | SFb =<br><u>Joint Stra</u><br>Joint Stren<br>SFij = Fj / 1<br>Where<br>The Minimu<br>Surface Casi<br>SFi Dry =<br>i Bouyant =                                                                           | 7740<br>rength Des<br>gth Design (S:<br>Wt;<br>Fj is th<br>Wt is t<br>Wt is t<br>um Acceptable<br>514000<br>514000                                                    | <b>ign (</b><br>afety)<br>ne rate<br>he we<br>e Joint |
| SFc =<br><u>Pipe Strength Design</u><br>Pipe Strength Design (Saf<br>SFtp = Fp / Wt;<br>Where<br>• Fp is th<br>• Wt is th<br>The Minimum Acceptable<br>Surface Casing<br>SFi Dry =<br>SFi Bouyant =<br>Intermediate 1 Casing                                                   | In (Safety) Fac<br>ety) Factor: SFtp<br>e rated pipe Body 5<br>e weight of the cas<br>Pipe Strength Desi<br>= 853000<br>= 853000                                     | ttors – E<br>Strength ir<br>sing string<br>ign (Safety<br>/          | BLM Criteri<br>n pounds (lbs)<br>in pounds (lbs<br>r) Factor SFTp<br>48232.5                                        | s)<br>b = 1.6 d                         | ry or 1.8 buoya<br><b>17.7</b>                            |            | 20.3     | SF     | SFb =<br><u>Joint Stren</u><br>Joint Stren<br>SFtj = Fj //<br>Where<br>The Minimu<br>Surface Casi<br>SFi Dry =<br>i Bouyant =<br>Intermediate                                                           | 7740<br>rength Des<br>gth Design (Si<br>Wt;<br>Fj is th<br>Wt is t<br>um Acceptable<br>514000<br>514000<br>514000<br>1 Casing                                         | <u>ign (</u><br>afety)<br>ne rate<br>e Joint<br>/     |
| SFc =<br><u>Pipe Strength Design</u><br>Pipe Strength Design (Saf<br>SFtp = Fp / Wt;<br>Where<br>• Fp is th<br>• Wt is th<br>The Minimum Acceptable<br>Surface Casing<br>SFi Dry =<br>SFi Bouyant =                                                                            | In (Safety) Fac<br>ety) Factor: SFtp<br>e rated pipe Body S<br>e weight of the cas<br>Pipe Strength Desi<br>= 853000<br>= 853000<br>= 630000                         | strength ir<br>Strength ir<br>sing string<br>ign (Safety<br>/<br>/ ( | BLM Criteri<br>n pounds (lbs)<br>in pounds (lbs<br>r) Factor SFTp<br>48232.5<br>48232.5                             | s)<br>= 1.6 d<br>=<br>X                 | ry or 1.8 buoya<br><b>17.7</b><br>0.870                   |            | 20.3     |        | SFb =<br><u>Joint Stra</u><br>Joint Stren<br>SFij = Fj / 1<br>Where<br>The Minimu<br>Surface Casi<br>SFi Dry =<br>i Bouyant =                                                                           | 7740<br>rength Des<br>gth Design (S:<br>Wt;<br>Fj is th<br>Wt is t<br>Wt is t<br>um Acceptable<br>514000<br>514000                                                    | <b>ign (</b><br>afety)<br>he rate<br>he we<br>e Joint |
| SFc =<br><u>Pipe Strength Design</u><br>Pipe Strength Design (Saf<br>SFtp = Fp / Wt;<br>Where<br>• Fp is th<br>• Wt is th<br>The Minimum Acceptable<br>Surface Casing<br>SFi Bouyant =<br>Intermediate 1 Casing<br>SFi Dry =                                                   | In (Safety) Fac<br>ety) Factor: SFtp<br>e rated pipe Body S<br>e weight of the cas<br>Pipe Strength Desi<br>= 853000<br>= 853000<br>= 630000                         | Strength ir<br>sing string<br>ign (Safety<br>/<br>/ (                | BLM Criteri<br>n pounds (lbs)<br>in pounds (lbs<br>y) Factor SFTF<br>48232.5<br>48232.5<br>90000                    | s)<br>= 1.6 d<br>=<br>X<br>=            | ry or 1.8 buoya<br>17.7<br>0.870<br>7.00                  | ) =        |          |        | SFb =<br><u>Joint Stren</u><br>Joint Stren<br>SFtj = Fj / 1<br>Where<br>The Minimu<br>Surface Casi<br>SFi Dry =<br>i Bouyant =<br>Intermediate<br>SFi Dry =                                             | 7740<br>rength Design (Si<br>Wt;<br>Fj is th<br>Wt is t<br>um Acceptable<br>514000<br>514000<br>1 Casing<br>520000                                                    | i <b>gn (</b><br>afety) ⊨<br>he we<br>e Joint<br>/    |
| SFc =<br><u>Pipe Strength Design</u><br>Pipe Strength Design (Saf<br>SFtp = Fp / Wt;<br>Where<br>• Fp is th<br>• Wt is th<br>The Minimum Acceptable<br>Surface Casing<br>SFi Bouyant =<br>Intermediate 1 Casing<br>SFi Bouyant =                                               | In (Safety) Fac<br>ety) Factor: SFtp<br>e rated pipe Body S<br>e weight of the cas<br>Pipe Strength Desi<br>= 853000<br>= 853000<br>= 630000                         | strength ir<br>Strength ir<br>sing string<br>ign (Safety<br>/<br>/ ( | BLM Criteri<br>n pounds (lbs)<br>in pounds (lbs<br>y) Factor SFTF<br>48232.5<br>48232.5<br>90000                    | s)<br>= 1.6 d<br>=<br>X<br>=            | ry or 1.8 buoya<br>17.7<br>0.870<br>7.00                  | ) =        |          |        | SFb =<br><u>Joint Stren</u><br>Joint Stren<br>SFtj = Fj / 1<br>Where<br>The Minimu<br>Surface Casi<br>SFi Dry =<br>i Bouyant =<br>Intermediate<br>SFi Dry =                                             | 7740<br>rength Des<br>gth Design (Si<br>Wt;<br>Fj is th<br>Wt is t<br>um Acceptable<br>514000<br>514000<br>1 Casing<br>520000<br>520000                               | <u>ign (</u><br>afety)<br>ne rate<br>e Joint<br>/     |
| SFc =<br><u>Pipe Strength Design</u><br>Pipe Strength Design (Saf<br>SFtp = Fp / Wt;<br>Where<br>• Fp is th<br>• Wt is th<br>The Minimum Acceptable<br>Surface Casing<br>SFi Bouyant =<br>Intermediate 1 Casing<br>SFi Bouyant =                                               | In (Safety) Fac<br>ety) Factor: SFtp<br>e rated pipe Body 5<br>e weight of the cas<br>Pipe Strength Desi<br>= 853000<br>= 853000<br>= 630000                         | strength ir<br>Strength ir<br>sing string<br>ign (Safety<br>/<br>/ ( | BLM Criteri<br>n pounds (lbs)<br>in pounds (lbs<br>y) Factor SFTF<br>48232.5<br>48232.5<br>90000                    | s)<br>= 1.6 d<br>=<br>X<br>=            | ry or 1.8 buoya<br>17.7<br>0.870<br>7.00                  | ) =        |          |        | SFb =<br><u>Joint Stren</u><br>SFij = Fj / N<br>Where<br>The Minimu<br>Surface Casi<br>SFi Dry =<br>i Bouyant =<br>Intermediate<br>SFi Dry =<br>i Bouyant =                                             | 7740<br>rength Des<br>gth Design (Si<br>Wt;<br>Fj is th<br>Wt is t<br>um Acceptable<br>514000<br>514000<br>1 Casing<br>520000<br>520000                               | i <b>gn (</b><br>afety) ⊨<br>he we<br>e Joint<br>/    |
| SFc =<br>Pipe Strength Design<br>Pipe Strength Design (Saf<br>SFtp = Fp / Wt;<br>Where<br>Pipe Strength<br>Fp is th<br>Wt is th<br>The Minimum Acceptable<br>Surface Casing<br>SFi Bouyant =<br>Intermediate 1 Casing<br>SFi Bouyant =<br>Production 1 Casing                  | In (Safety) Fac<br>ety) Factor: SFtp<br>e rated pipe Body S<br>e weight of the cas<br>Pipe Strength Desi<br>= 853000<br>= 853000<br>= 630000<br>= 630000<br>= 676000 | Strength ir<br>sing string<br>ign (Safety<br>/<br>/ (<br>/<br>/ (    | BLM Criteri<br>n pounds (lbs)<br>in pounds (lbs<br>y) Factor SFTp<br>48232.5<br>48232.5<br>90000<br>90000           | s)<br>= 1.6 di<br>=<br>X<br>=<br>X      | ry or 1.8 buoya<br>17.7<br>0.870<br>7.00<br>0.847         | ) =        |          | SF     | SFb =<br><u>Joint Stren</u><br>Joint Stren<br>SFij = Fj //<br>Where<br>The Minimu<br>Surface Casi<br>SFi Dry =<br>i Bouyant =<br>Intermediate<br>SFi Dry =<br>i Bouyant =<br>Production 1               | 7740<br>rength Design (Sa<br>Wt;<br>Fj is th<br>Wt is t<br>um Acceptable<br>514000<br>514000<br>514000<br>1 Casing<br>520000<br>520000<br>Casing                      | i <b>gn (</b><br>afety) ⊨<br>he we<br>e Joint<br>/    |
| SFc =<br>Pipe Strength Desig<br>Pipe Strength Design (Saf<br>SFip = Fp / Wt;<br>Where<br>• Fp is th<br>• Wt is th<br>The Minimum Acceptable<br>Surface Casing<br>SFi Bouyant =<br>Intermediate 1 Casing<br>SFi Bouyant =<br>Production 1 Casing<br>SFi Dry =                   | In (Safety) Fac<br>ety) Factor: SFtp<br>e rated pipe Body S<br>e weight of the cas<br>Pipe Strength Desi<br>= 853000<br>= 853000<br>= 630000<br>= 630000<br>= 676000 | Strength ir<br>sing string<br>ign (Safety<br>/<br>/ (<br>/<br>/ (    | BLM Criteri<br>n pounds (lbs)<br>in pounds (lbs<br>y) Factor SFTp<br>48232.5<br>48232.5<br>90000<br>90000<br>150800 | ;)<br>= 1.6 di<br>=<br>X<br>=<br>X<br>= | ry or 1.8 buoya<br>17.7<br>0.870<br>7.00<br>0.847<br>4.48 | ) =<br>) = | 8.26     | SF     | SFb =<br><u>Joint Stren</u><br>Joint Stren<br>SFtj = Fj / 1<br>Where<br>The Minimu<br>Surface Casi<br>SFi Dry =<br>i Bouyant =<br>Intermediate<br>SFi Dry =<br>i Bouyant =<br>Production 1<br>SFi Dry = | 7740<br>rength Des<br>gth Design (Si<br>Wt;<br>Fj is th<br>Wt is t<br>um Acceptable<br>514000<br>514000<br>1 Casing<br>520000<br>520000<br>Casing<br>587000<br>587000 | i <b>gn (</b><br>afety) ⊨<br>he we<br>e Joint<br>/    |
| SFc =<br>Pipe Strength Design<br>Pipe Strength Design (Saf<br>SFtp = Fp / Wt;<br>Where<br>• Fp is th<br>• Wt is th<br>The Minimum Acceptable<br>Surface Casing<br>SFi Bouyant =<br>Intermediate 1 Casing<br>SFi Bouyant =<br>Production 1 Casing<br>SFi Dry =<br>SFi Bouyant = | In (Safety) Fac<br>ety) Factor: SFtp<br>e rated pipe Body 5<br>e weight of the cas<br>Pipe Strength Desi<br>853000<br>630000<br>630000<br>630000<br>676000           | Strength ir<br>sing string<br>ign (Safety<br>/<br>/ (<br>/<br>/ (    | BLM Criteri<br>n pounds (lbs)<br>in pounds (lbs<br>y) Factor SFTp<br>48232.5<br>48232.5<br>90000<br>90000<br>150800 | ;)<br>= 1.6 di<br>=<br>X<br>=<br>X<br>= | ry or 1.8 buoya<br>17.7<br>0.870<br>7.00<br>0.847<br>4.48 | ) =<br>) = | 8.26     | SF     | SFb =<br>Joint Stren<br>SFij = Fj / 1<br>Where<br>The Minima<br>SFi Dry =<br>i Bouyant =<br>Intermediate<br>SFi Dry =<br>i Bouyant =<br>Production 1<br>SFi Dry =<br>j Bouyant =                        | 7740<br>rength Des<br>gth Design (Si<br>Wt;<br>Fj is th<br>Wt is t<br>um Acceptable<br>514000<br>514000<br>1 Casing<br>520000<br>520000<br>Casing<br>587000<br>587000 | i <b>gn (</b><br>afety) ⊨<br>he we<br>e Joint<br>/    |

.....

#### Factors - BLM Criteria

: SFb

- ated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps
- tom hole pressure in pounds per square inch (psi)
- urst Design (Safety) Factor SFb = 1.0

| Surface Casir | ng       |   |      |    |      |
|---------------|----------|---|------|----|------|
| SFb =         | 2730     | / | 391  | =  | 6.98 |
| Intermediate  | 1 Casing |   |      |    |      |
| SFb =         | 3950     | 1 | 1170 | =  | 3.38 |
|               |          |   |      |    |      |
| Production 1  |          |   |      |    |      |
| SFb =         | 8160     | 1 | 2434 | =  | 3,35 |
| Production 2  | Casing   |   |      |    |      |
| SFb =         | 7740     | 1 | 2862 | ≏. | 2.70 |

## n <u>(Safety) Factors – BLM Criteria</u> ly) Factor: SFlj

. .

- ated pipe Joint Strength in pounds (lbs)
- weight of the casing string in pounds (lbs)

int Strength Design (Safety) Factor SFTj = 1,6 dry or 1,8 buoyant

| Surface Casi  | ng .     |     |         |   |       |     |      |
|---------------|----------|-----|---------|---|-------|-----|------|
| SFi Dry =     | 514000   | 1   | 48232.5 | = | 10.7  |     |      |
| SFi Bouyant = | 514000   | / ( | 48232.5 | x | 0.870 | ) = | 12.2 |
| Intermediate  | 1 Casing |     |         |   |       |     |      |
| SFi Dry =     | 520000   | 1   | 90000   | = | 5.78  |     |      |
| SFi Bouyant = | 520000   | / ( | 90000   | × | 0.847 | ) = | 6.82 |
| Production 1  | Casing   |     |         |   |       |     |      |
| SFi Dry =     | 587000   | 1   | 150800  | = | 3.89  |     |      |
| SFi Bouyant = | 587000   | / ( | 150800  | x | 0.863 | ) = | 4.51 |
| Production 2  | Casing   |     |         |   |       |     |      |
| SEi Dovie     | 220000   | 1   | 120061  | _ | 2.44  |     |      |

| SFi Dry =     | 338000 | /   | 139961 | = | 2.41  |     |      |
|---------------|--------|-----|--------|---|-------|-----|------|
| SFi Bouyant = | 338000 | / ( | 139961 | x | 0.863 | ) = | 2.80 |

----

### Peridot 8 Fed 14H

|                                                                                                                                                                                                                                                                                                                                                                                             | Depth<br>MD                                                                                                                                                      | Depth<br>TVD                                                                       | Csg<br>length ft                                                                                                                        | Wt                                           | MIY                                                                | Col        | Pipe Str     | Jt Str | Drill Fluid                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|------------|--------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surface Casing                                                                                                                                                                                                                                                                                                                                                                              | 885                                                                                                                                                              | 885                                                                                | 885                                                                                                                                     | 54.5                                         | 2730                                                               | 1130       | 853000       | 514000 | 8.5                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Intermediate 1 Casing                                                                                                                                                                                                                                                                                                                                                                       | 2250                                                                                                                                                             | 2250                                                                               | 2250                                                                                                                                    | 40                                           | 3950                                                               | 2570       | 630000       | 520000 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Production 1 Casing                                                                                                                                                                                                                                                                                                                                                                         | 5200                                                                                                                                                             | 5200                                                                               | 5200                                                                                                                                    | 29                                           | 8160                                                               | 7020       | 676000       | 587000 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Production 2 Casing                                                                                                                                                                                                                                                                                                                                                                         | 13433                                                                                                                                                            | 6115                                                                               | 8233                                                                                                                                    | 17                                           | 7740                                                               | 6290       | 397000       | 338000 | 9                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>Collapse Design (Sa</u>                                                                                                                                                                                                                                                                                                                                                                  | fotu) Eastors                                                                                                                                                    |                                                                                    | <b>Seitosia</b>                                                                                                                         |                                              |                                                                    |            |              |        | Burst De                                                                                                                                                                                                                                            | cian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Collapse Design (Safety) F                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                  |                                                                                    | Sintenia                                                                                                                                |                                              |                                                                    |            |              |        | Burst Desig                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SFc = Pc / (MW x .052 x L<br>Where                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                  |                                                                                    |                                                                                                                                         |                                              |                                                                    |            |              |        | SFb = Pi / B<br>Where                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>Pc is the</li> </ul>                                                                                                                                                                                                                                                                                                                                                               | e rated pipe Colla                                                                                                                                               | ose Pressu                                                                         | are in pounds                                                                                                                           | per squar                                    | e inch (psi)                                                       |            |              |        |                                                                                                                                                                                                                                                     | • '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>MW is manual</li> </ul>                                                                                                                                                                                                                                                                                                                                                            | nud weight in pou                                                                                                                                                | nds per ga                                                                         | llon (ppg)                                                                                                                              |                                              |                                                                    |            |              |        |                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>Ls is the</li> </ul>                                                                                                                                                                                                                                                                                                                                                               | e length of the stri                                                                                                                                             | ng in feet (                                                                       | ft)                                                                                                                                     |                                              |                                                                    |            |              |        | The Minimu                                                                                                                                                                                                                                          | m Acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The Minimum Acceptable (                                                                                                                                                                                                                                                                                                                                                                    | Collapse Design (                                                                                                                                                | Safety) Fa                                                                         | ctor SFc = 1.1                                                                                                                          | 25                                           |                                                                    |            |              |        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Surface Casing<br>SFc =                                                                                                                                                                                                                                                                                                                                                                     | 1130                                                                                                                                                             | 1                                                                                  | 391                                                                                                                                     | = .                                          | 2.89                                                               |            |              |        | Surface Casin<br>SFb =                                                                                                                                                                                                                              | 9<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                    |                                                                                                                                         |                                              |                                                                    |            |              |        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Intermediate 1 Casing<br>SFc =                                                                                                                                                                                                                                                                                                                                                              | 2570                                                                                                                                                             | 1                                                                                  | 1170                                                                                                                                    | =                                            | 2.20                                                               |            |              |        | Intermediate 1<br>SFb =                                                                                                                                                                                                                             | 39 I Cas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                    |                                                                                                                                         |                                              |                                                                    |            |              |        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Production 1 Casing                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                  |                                                                                    |                                                                                                                                         |                                              |                                                                    |            |              |        | Production 1                                                                                                                                                                                                                                        | Casir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SFc =                                                                                                                                                                                                                                                                                                                                                                                       | 7020                                                                                                                                                             | 1                                                                                  | 2434                                                                                                                                    | =                                            | 2.88                                                               |            |              |        | SFb =                                                                                                                                                                                                                                               | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Production 2 Casing                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                  |                                                                                    |                                                                                                                                         |                                              |                                                                    |            |              |        | Production 2                                                                                                                                                                                                                                        | Casi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                  |                                                                                    |                                                                                                                                         |                                              |                                                                    |            |              |        |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SFc =                                                                                                                                                                                                                                                                                                                                                                                       | 6290                                                                                                                                                             | 1                                                                                  | 2862                                                                                                                                    | =                                            | 2.20                                                               |            |              |        | SFb =                                                                                                                                                                                                                                               | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SFc =<br><u>Pipe Strength Desig</u><br>Pipe Strength Design (Safe<br>SFtp = Fp / Wt;<br>Where                                                                                                                                                                                                                                                                                               | n (Safety) Fac                                                                                                                                                   | ctors – E                                                                          | BLM Criteri                                                                                                                             | <u>a</u> .                                   | 2.20                                                               |            |              |        |                                                                                                                                                                                                                                                     | engti<br>th Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SFc =         Pipe Strength Design         Pipe Strength Design (Safe         SFtp = Fp / Wt;         Where         • Fp is the         • Wt is the                                                                                                                                                                                                                                         | n (Safety) Fac<br>ety) Factor: SFtp<br>e rated pipe Body<br>e weight of the ca                                                                                   | <b>∶tors – E</b><br>Strength ir<br>sing string                                     | BLM Criteri                                                                                                                             | <u>a</u>                                     |                                                                    |            |              |        | SFb =<br>Joint Streng<br>SFtj = Fj / W<br>Where                                                                                                                                                                                                     | ength<br>th Des<br>/t;<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SFc =         Pipe Strength Design         Pipe Strength Design (Safe         SFtp = Fp / Wt;         Where         • Fp is the                                                                                                                                                                                                                                                             | n (Safety) Fac<br>ety) Factor: SFtp<br>e rated pipe Body<br>e weight of the ca                                                                                   | <b>∶tors – E</b><br>Strength ir<br>sing string                                     | BLM Criteri                                                                                                                             | <u>a</u>                                     |                                                                    | t          |              |        | SFb =<br><u>Joint Stra</u><br>Joint Strang<br>SFtj = Fj / W                                                                                                                                                                                         | ength<br>th Des<br>/t;<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SFc =<br><u>Pipe Strength Desig</u><br>Pipe Strength Design (Safe<br>SFtp = Fp / Wt;<br>Where<br>• Fp is the<br>• Wt is the<br>The Minimum Acceptable F<br>Surface Casing                                                                                                                                                                                                                   | n (Safety) Fac<br>sty) Factor: SFtp<br>e rated pipe Body<br>e weight of the ca<br>Pipe Strength Des                                                              | <mark>Strength ir</mark><br>Strength ir<br>sing string<br>ign (Safet <u>)</u>      | BLM Criteri<br>pounds (lbs)<br>in pounds (lb:<br>y) Factor SFT                                                                          | <b>a</b><br>s)<br>p = 1.6 dr                 | y or 1.8 buoyar                                                    | t          |              |        | SFb =<br>Joint Streng<br>SFtj = Fj / W<br>Where<br>The Minimu<br>Surface Casin                                                                                                                                                                      | ength<br>th Des<br>/t;<br>•<br>m Acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SFc =<br><u>Pipe Strength Design</u><br>Pipe Strength Design (Safe<br>SFtp = Fp / Wt;<br>Where<br>• Fp is the<br>• Wt is the<br>The Minimum Acceptable F<br>Surface Casing<br>SFi Dry =                                                                                                                                                                                                     | n (Safety) Factor: SFtp<br>arted pipe Body<br>weight of the ca<br>Pipe Strength Des<br>853000                                                                    | <mark>Strength ir</mark><br>Strength ir<br>sing string<br>ign (Safet <u>y</u><br>/ | BLM Criteri<br>pounds (lbs)<br>in pounds (lbs<br>y) Factor SFT<br>48232.5                                                               | aa .<br>s)<br>p = 1.6 drņ<br>≑               | y or 1.8 buoyar<br><b>17.7</b>                                     |            |              |        | SFb =<br>Joint Streng<br>SFtj = Fj / W<br>Where<br>The Minimu<br>Surface Casin<br>SFi Dry =                                                                                                                                                         | engti<br>th Des<br>/t;<br>•<br>m Acc<br>99<br>5140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SFc =<br><u>Pipe Strength Desig</u><br>Pipe Strength Design (Safe<br>SFtp = Fp / Wt;<br>Where<br>• Fp is the<br>• Wt is the<br>The Minimum Acceptable F<br>Surface Casing                                                                                                                                                                                                                   | n (Safety) Factor: SFtp<br>and the stated pipe Body<br>a weight of the ca<br>Pripe Strength Des<br>853000                                                        | <mark>Strength ir</mark><br>Strength ir<br>sing string<br>ign (Safet <u>)</u>      | BLM Criteri<br>pounds (lbs)<br>in pounds (lb:<br>y) Factor SFT                                                                          | <b>a</b><br>s)<br>p = 1.6 dr                 | y or 1.8 buoyar                                                    | t<br>) =   | 20.3         | SF     | SFb =<br>Joint Streng<br>SFtj = Fj / W<br>Where<br>The Minimu<br>Surface Casin<br>SFi Dry =                                                                                                                                                         | engti<br>th Des<br>/t;<br>•<br>m Acc<br>99<br>5140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SFc =<br><u>Pipe Strength Desig</u><br>Pipe Strength Design (Safe<br>SFtp = Fp / Wt;<br>Where<br>• Fp is the<br>• Wt is the<br>The Minimum Acceptable F<br>Surface Casing<br>SFi Bouyant =<br>Intermediate 1 Casing                                                                                                                                                                         | n (Safety) Factor: SFtp<br>aty) Factor: SFtp<br>e rated pipe Body<br>e weight of the ca<br>Pipe Strength Des<br>853000<br>853000                                 | Strength ir<br>sing string<br>ign (Safet <u>;</u><br>/<br>/ (                      | BLM Criteri<br>n pounds (lbs)<br>in pounds (lbs<br>y) Factor SFT<br>48232.5<br>48232.5                                                  | a)<br>b = 1.6 dr<br>±<br>x                   | y or 1.8 buoyar<br>17.7<br>0.870                                   |            | 20.3         | SF     | SFb =<br>Joint Streng<br>SFij = Fj / W<br>Where<br>The Minimu<br>SFi Dry =<br>i Bouyant =<br>Intermediate 1                                                                                                                                         | engtl<br>th Des<br>th Des<br>th<br>eng<br>5140<br>5140<br>5140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SFc =         Pipe Strength Design         Pipe Strength Design (Safe         SFtp = Fp / Wt;         Where         • Fp is the         • Wt is the         The Minimum Acceptable F         Surface Casing         SFi Dry =         SFi Bouyant =         Intermediate 1 Casing         SFi Dry =                                                                                         | n (Safety) Fac<br>aly) Factor: SFtp<br>e rated pipe Body<br>e weight of the ca<br>Pipe Strength Des<br>853000<br>853000<br>630000                                | Strength ir<br>sing string<br>ign (Safet)<br>/<br>/ (<br>/                         | BLM Criteri<br>n pounds (lbs)<br>in pounds (lbs<br>y) Factor SFT<br>48232.5<br>48232.5<br>90000                                         | a                                            | y or 1.8 buoyar<br>17.7<br>0.870<br>7.00                           | ) =        |              |        | SFb =<br><u>Joint Streng</u><br>SFij = Fj / W<br>Where<br>The Minimu<br>SFi Dry =<br>i Bouyant =<br>Intermediate 1<br>SFi Dry =                                                                                                                     | ength<br>th Des<br>th Des<br>th<br>eng<br>5140<br>5140<br>5140<br>5140<br>5140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SFc =<br><u>Pipe Strength Desig</u><br>Pipe Strength Design (Safe<br>SFtp = Fp / Wt;<br>Where<br>• Fp is the<br>• Wt is the<br>The Minimum Acceptable F<br>Surface Casing<br>SFi Bouyant =<br>Intermediate 1 Casing                                                                                                                                                                         | n (Safety) Fac<br>aly) Factor: SFtp<br>e rated pipe Body<br>e weight of the ca<br>Pipe Strength Des<br>853000<br>853000<br>630000                                | Strength ir<br>sing string<br>ign (Safet <u>;</u><br>/<br>/ (                      | BLM Criteri<br>n pounds (lbs)<br>in pounds (lbs<br>y) Factor SFT<br>48232.5<br>48232.5                                                  | a)<br>b = 1.6 dr<br>±<br>x                   | y or 1.8 buoyar<br>17.7<br>0.870                                   |            | 20.3<br>8.26 |        | SFb =<br><u>Joint Streng</u><br>SFij = Fj / W<br>Where<br>The Minimu<br>SFi Dry =<br>i Bouyant =<br>Intermediate 1<br>SFi Dry =                                                                                                                     | ength<br>th Des<br>th Des<br>th<br>eng<br>5140<br>5140<br>5140<br>5140<br>5140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SFc =         Pipe Strength Design         Pipe Strength Design (Safe         SFtp = Fp / Wt;         Where         • Fp is the         • Wt is the         The Minimum Acceptable F         Surface Casing         SFi Bouyant =         Intermediate 1 Casing         SFi Bouyant =         SFi Bouyant =         Production 1 Casing                                                     | n (Safety) Fac<br>aly) Factor: SFtp<br>e rated pipe Body<br>e weight of the ca<br>Pipe Strength Des<br>853000<br>853000<br>630000<br>630000                      | Strength ir<br>sing string<br>ign (Safet)<br>/<br>/ (<br>/                         | BLM Criteri<br>in pounds (lbs)<br>in pounds (lbs)<br>y) Factor SFT<br>48232.5<br>48232.5<br>90000<br>90000                              | a                                            | or 1.8 buoyar<br>1 <b>7.7</b><br>0.870<br><b>7.00</b><br>0.847     | ) =        |              |        | SFb =<br>Joint Streng<br>SFij = Fj / W<br>Where<br>The Minimu<br>Surface Casin<br>SFi Dry =<br>i Bouyant =<br>Intermediate 1<br>SFi Dry =<br>i Bouyant =<br>Production 1                                                                            | engti<br>th Des<br>/t:<br>•<br>•<br>5140<br>5140<br>5200<br>5200<br>5200<br>Casil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SFc =<br><u>Pipe Strength Design</u><br>Pipe Strength Design (Safe<br>Srtp = Fp / Wt;<br>Where<br>• Fp is the<br>• Wt is the<br>The Minimum Acceptable F<br>Surface Casing<br>SFi Bouyant =<br>Intermediate 1 Casing<br>SFi Bouyant =<br>Production 1 Casing<br>SFi Dry =                                                                                                                   | n (Safety) Factor: SFtp<br>arated pipe Body<br>e weight of the ca<br>Pipe Strength Des<br>853000<br>853000<br>630000<br>630000<br>676000                         | Strength ir<br>sing string<br>ign (Safet;<br>/<br>/ (<br>/<br>/ (                  | BLM Criteri<br>pounds (lbs)<br>in pounds (lbs)<br>y) Factor SFT<br>48232.5<br>48232.5<br>90000<br>90000<br>150800                       | a                                            | y or 1.8 buoyar<br>17.7<br>0.870<br>7.00                           | ) =        | 8.26         | SF     | SFb =<br>Joint Stru<br>Joint Strug<br>SFij = Fj / W<br>Where<br>The Minimu<br>Surface Casin<br>SFi Dry =<br>i Bouyant =<br>Intermediate 1<br>SFi Dry =<br>i Bouyant =<br>Production 1 (<br>SFi Dry =                                                | engti<br>th Des<br>//:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SFc =         Pipe Strength Design         Pipe Strength Design (Safe         SFtp = Fp / Wt;         Where         • Fp is the         • Wt is the         The Minimum Acceptable F         Surface Casing         SFi Dry =         SFi Bouyant =         Intermediate 1 Casing         SFi Bouyant =         Production 1 Casing                                                         | n (Safety) Factor: SFtp<br>arated pipe Body<br>e weight of the ca<br>Pipe Strength Des<br>853000<br>853000<br>630000<br>630000<br>676000                         | Strength ir<br>sing string<br>ign (Safet)<br>/<br>/ (<br>/<br>/ (                  | BLM Criteri<br>in pounds (lbs)<br>in pounds (lbs)<br>y) Factor SFT<br>48232.5<br>48232.5<br>90000<br>90000                              | a<br>s)<br>p = 1.6 dry<br>±<br>x<br>=<br>x   | or 1.8 buoyar<br>1 <b>7.7</b><br>0.870<br><b>7.00</b><br>0.847     | ) =        |              | SF     | SFb =<br>Joint Stru<br>Joint Strug<br>SFij = Fj / W<br>Where<br>The Minimu<br>Surface Casin<br>SFi Dry =<br>i Bouyant =<br>Intermediate 1<br>SFi Dry =<br>i Bouyant =<br>Production 1 (<br>SFi Dry =                                                | ength<br>th Des<br>/t:<br>•<br>•<br>5140<br>5140<br>5140<br>1 Cas<br>5200<br>5200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SFc =         Pipe Strength Design         Pipe Strength Design (Safe         SFtp = Fp / Wt;         Where         • Fp is the         • Wt is the         The Minimum Acceptable F         Surface Casing         SFi Bouyant =         Intermediate 1 Casing         SFi Bouyant =         Production 1 Casing         SFi Bouyant =         Production 2 Casing                         | n (Safety) Fac<br>sty) Factor: SFtp<br>e rated pipe Body<br>e weight of the ca<br>Pipe Strength Des<br>853000<br>630000<br>630000<br>630000<br>676000<br>676000  | Strength ir<br>sing string<br>ign (Safet;<br>/<br>/ (<br>/<br>/ (                  | BLM Criteri<br>in pounds (lbs)<br>in pounds (lbs)<br>y) Factor SFT<br>48232.5<br>48232.5<br>90000<br>90000<br>90000<br>150800<br>150800 | aa .<br>s)<br>c = 1.6 dr<br>x<br>x<br>=<br>x | r or 1.8 buoyar<br>17.7<br>0.870<br>7.00<br>0.847<br>4.48<br>0.863 | ) =<br>) = | 8.26         | SF     | SFb =<br>Joint Streng<br>SFtj = Fj / W<br>Where<br>The Minimu<br>Surface Casim<br>SFi Dry =<br>i Bouyant =<br>Intermediate 1<br>SFi Dry =<br>i Bouyant =<br>Production 1 0<br>SFi Dry =<br>i Bouyant =<br>Production 2 0                            | engtli<br>th Dess<br>//:<br>•<br>•<br>5140<br>5140<br>5200<br>5200<br>Casin<br>5870<br>5870<br>Casin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SFc =         Pipe Strength Design         Pipe Strength Design (Safe         SFtp = Fp / Wt;         Where         • Fp is the         • Wt is the         The Minimum Acceptable F         Surface Casing         SFi Bouyant =         SFi Bouyant = | n (Safety) Fac<br>alty) Factor: SFtp<br>e rated pipe Body<br>e weight of the ca<br>Pipe Strength Des<br>853000<br>630000<br>630000<br>676000<br>676000<br>397000 | Strength ir<br>sing string<br>ign (Safet;<br>/<br>/ (<br>/<br>/ (                  | BLM Criteri<br>pounds (lbs)<br>in pounds (lbs)<br>y) Factor SFT<br>48232.5<br>48232.5<br>90000<br>90000<br>150800                       | aa .<br>s)<br>c = 1.6 dr<br>x<br>x<br>=<br>x | y or 1.8 buoyar<br>17.7<br>0.870<br>7.00<br>0.847<br>4.48          | ) =<br>) = | 8.26         | SF     | SFb =<br>Joint Stru<br>Joint Streng<br>SFij = Fj / W<br>Where<br>The Minimu<br>Surface Casin<br>SFi Dry =<br>i Bouyant =<br>Intermediate 1<br>SFi Dry =<br>i Bouyant =<br>Production 1 (<br>SFi Dry =<br>i Bouyant =<br>Production 2 (<br>SFi Dry = | engti<br>ith Des<br>th Des<br>the<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state<br>state |

#### (Safety) Factors – BLM Criteria

fety) Factor: SFb

Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps BHP is bottom hole pressure in pounds per square inch (psi)

ceptable Burst Design (Safety) Factor SFb = 1.0

| Surface Casing<br>SFb = 2    | 730                | / | 391  | = | 6.98 |
|------------------------------|--------------------|---|------|---|------|
| Intermediate 1 Ca<br>SFb = 3 | asing<br>1950      | / | 1170 | = | 3.38 |
| Production 1 Cas<br>SFb = 8  | i <b>ng</b><br>160 | 1 | 2434 | = | 3.35 |
| Production 2 Cas<br>SFb = 7  | i <b>ng</b><br>740 | / | 2862 | = | 2.70 |

#### <u>h Design (Safety) Factors – BLM Criteria</u>

sign (Safety) Factor: SFtj

- Fj is the rated pipe Joint Strength in pounds (lbs)
- Wt is the weight of the casing string in pounds (lbs)

ceptable Joint Strength Design (Safety) Factor SFTj = 1.6 dry or 1.8 buoyant

| Surface Cas   | ing        |     |         |   |       |     |      |
|---------------|------------|-----|---------|---|-------|-----|------|
| SFi Dry =     | 514000     | 1   | 48232.5 | = | 10.7  |     |      |
| SFi Bouyant = | 514000     | / ( | 48232.5 | x | 0.870 | ) = | 12.2 |
| Intermediate  | e 1 Casing |     |         |   |       |     |      |
| SFi Dry =     | 520000     | 1   | 90000   | = | 5.78  |     |      |
| SFi Bouyant = | 520000     | / ( | 90000   | x | 0.847 | ) = | 6.82 |
| Production *  | 1 Casing   |     |         |   |       |     |      |
| SFi Dry =     | 587000     | 1   | 150800  | = | 3.89  |     |      |
| SFi Bouyant = | 587000     | / ( | 150800  | × | 0.863 | ) = | 4.51 |
| Production 2  | 2 Casing   |     |         |   |       |     |      |
| SFi Dry =     | 338000     | 1   | 139961  | = | 2.41  |     |      |
| SFi Bouyant = | 338000     | 1 ( | 139961  | x | 0.863 | ) = | 2.80 |

| String Section       |                 | Depth<br>MD       | Depth<br>TVD   | Csg<br>length ft | Wt        | MIY          | Col  | Pipe Str | Jt Str | Drill Fluid    |
|----------------------|-----------------|-------------------|----------------|------------------|-----------|--------------|------|----------|--------|----------------|
| Surface Casing       |                 | 885               | 885            |                  | 54.5      | 2730         | 1130 | 853000   | 514000 | 8.5            |
| Intermediate 1 Casir | ng 🗌            | 2250              | 2250           | 2250             | 40        | 3950         | 2570 | 630000   | 520000 | 10             |
| Production 1 Casing  |                 | 5200              | 5200           | 5200             | 29        | 8160         | 7020 | 676000   | 587000 |                |
| Production 2 Casing  |                 | 13433             | 6115           | 8233             | 17        | 7740         | 6290 | 397000   | 338000 | 9              |
| <u>Collapse Desi</u> | <u>gn (Safe</u> | ty) Factors       | <u>- BLM (</u> | <u>Criteria</u>  |           |              |      |          |        | Burst Des      |
| Collapse Design (S   | Safety) Fact    | tor: SFc          |                |                  |           |              |      |          |        | Burst Desigr   |
| SFc = Pc / (MW x .   | 052 x Ls)       |                   |                |                  |           |              |      |          |        | SFb = Pi / Bl  |
| Where                |                 |                   |                |                  |           |              |      |          |        | Where          |
| • 1                  | Pc is the ra    | ited pipe Colla   | pse Pressu     | ire in pounds    | per squar | e inch (psi) |      |          |        |                |
|                      |                 | l weight in pou   |                |                  |           |              |      |          |        |                |
| • 1                  | Ls is the le    | ngth of the stri  | ng in feet (   | ft)              |           |              |      |          |        | The Minimur    |
| The Minimum Acce     | eptable Col     | lapse Design (    | Safety) Fa     | ctor SFc = 1.1   | 25        |              |      |          |        |                |
| Surface Casing       |                 |                   |                |                  |           |              |      |          |        | Surface Casin  |
|                      | SFc =           | 1130              | 1              | 391              | = .       | 2.89         |      |          |        | SFb =          |
| Intermediate 1 Casi  | ing             |                   |                |                  |           |              |      |          |        | Intermediate 1 |
|                      | SFc =           | 2570              | 1              | 1170             | =         | 2.20         |      |          |        | SFb =          |
| Production 1 Casin   | a               |                   |                |                  |           |              |      |          |        | Production 1   |
|                      | SFc =           | 7020              | 1              | 2434             | =         | 2.88         |      |          |        | SFb =          |
| Production 2 Casin   | •               |                   |                |                  |           |              |      |          |        | Production 2   |
|                      | SFc =           | 62 <del>9</del> 0 | 1              | 2862             | =         | 2.20         |      |          |        | SFb =          |

#### Pipe Strength Design (Safety) Factors - BLM Criteria

Pipe Strength Design (Safety) Factor: SFtp

SFtp = Fp / Wt; Where

• Fp is the rated pipe Body Strength in pounds (lbs)

• Wt is the weight of the casing string in pounds (lbs)

The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant

#### Surface Casing

| SFi Dry ≃             | 853000 | 1   | 48232.5 | = | 17.7  |     |      |  |
|-----------------------|--------|-----|---------|---|-------|-----|------|--|
| SFi Bouyant =         | 853000 | 1 ( | 48232.5 | x | 0.870 | ) = | 20.3 |  |
| Intermediate 1 Casing |        |     |         |   |       |     |      |  |
| SFi Dry =             | 630000 | 1   | 90000   | = | 7.00  |     | •    |  |
| SFi Bouyant =         | 630000 | / ( | 90000   | x | 0.847 | ) = | 8.26 |  |
|                       |        |     |         |   |       |     |      |  |

| Production | n 1 Casing    |        |     |        |   |       |     |      |
|------------|---------------|--------|-----|--------|---|-------|-----|------|
|            | SFi Dry =     | 676000 | 1   | 150800 | = | 4.48  |     |      |
|            | SFi Bouyant = | 676000 | / ( | 150800 | x | 0.863 | ) = | 5.20 |
| Production | n 2 Casing    |        |     |        |   |       |     |      |
|            | SFi Dry =     | 397000 | 1   | 139961 | = | 2.84  |     |      |
|            | SFi Bouyant = | 397000 | / ( | 139961 | x | 0.863 | ) = | 3.29 |

#### esign (Safety) Factors – BLM Criteria

ign (Safety) Factor: SFb

BHP

• Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps

BHP is bottom hole pressure in pounds per square inch (psi)

um Acceptable Burst Design (Safety) Factor SFb = 1.0

| SFb = 2                      | 730 /                | 391    | = | 6.98 |
|------------------------------|----------------------|--------|---|------|
| Intermediate 1 Ca<br>SFb = 3 | <b>sing</b><br>950 / | 1170   | = | 3.38 |
| Production 1 Cas<br>SFb = 8  | i <b>ng</b><br>160 / | · 2434 | = | 3.35 |
| Production 2 Cas<br>SFb = 7  | i <b>ng</b><br>740 / | 2862   | = | 2.70 |

#### Joint Strength Design (Safety) Factors - BLM Criteria Joint Strength Design (Safety) Factor: SFtj

SFtj = Fj / Wt;

Where

Fj is the rated pipe Joint Strength in pounds (lbs)

• Wt is the weight of the casing string in pounds (lbs)

The Minimum Acceptable Joint Strength Design (Safety) Factor SFTj = 1.6 dry or 1.8 buoyant

| Surface Cas   | ing      |     |         |   |       |     |      |
|---------------|----------|-----|---------|---|-------|-----|------|
| SFi Dry =     | 514000   | 1   | 48232.5 | = | 10.7  |     |      |
| SFi Bouyant = | 514000   | / ( | 48232.5 | x | 0.870 | ) = | 12.2 |
| Intermediate  | 1 Casing |     |         |   |       |     |      |
| SFi Dry =     | 520000   | 1   | 90000   | = | 5.78  |     |      |
| SFi Bouyant = | 520000   | / ( | 90000   | x | 0.847 | ) = | 6.82 |
| Production 1  | l Casing |     |         |   |       |     |      |
| SFi Dry =     | 587000   | 1   | 150800  | = | 3.89  |     |      |
| SFi Bouyant = | 587000   | / ( | 150800  | x | 0.863 | ) = | 4.51 |

| Production    | 2 Casing |     |        |   |       |     |      |
|---------------|----------|-----|--------|---|-------|-----|------|
| SFi Dry =     | 338000   | /   | 139961 | = | 2.41  |     |      |
| SFi Bouyant = | 338000   | / ( | 139961 | x | 0.863 | ) = | 2.80 |

#### Peridot 8 Fed 14H

Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps

|                                                              | <b>_</b>                               |                  | _                | :        |            |        |      |          |        |             |                           |             |                    |           | Peride                                     | ot 8 Fe     |
|--------------------------------------------------------------|----------------------------------------|------------------|------------------|----------|------------|--------|------|----------|--------|-------------|---------------------------|-------------|--------------------|-----------|--------------------------------------------|-------------|
| String Section                                               | Depth                                  | Depth            | Csg              | Wt       | MIY        |        | Col  | Pipe Str | Jt Str | Drill Fluid |                           |             |                    |           |                                            |             |
| Surface Casing                                               | MD<br>885                              | TVD<br>885       | length ft<br>885 | 54.      | 5          | 2730   | 1130 | 853000   | 514000 | 8.5         |                           |             |                    |           |                                            |             |
| Intermediate 1 Casing                                        | 2250                                   | 2250             | 2250             |          |            | 3950   | 2570 | 630000   |        |             |                           |             |                    |           |                                            |             |
| Production 1 Casing                                          | 5200                                   | 5200             | 5200             |          | 9          | 8160   | 7020 | 676000   |        |             |                           |             |                    |           |                                            |             |
| Production 2 Casing                                          | 13433                                  | 6115             |                  |          | 7          | 7740   | 6290 | 397000   |        |             |                           |             |                    |           |                                            |             |
|                                                              |                                        |                  |                  |          |            |        |      |          | •      | ,,          |                           |             |                    |           |                                            |             |
| Collapse Design (Saf                                         |                                        | - BLM (          | Criteria         |          |            |        |      |          |        |             |                           |             | tors – BLM C       | riteria   |                                            |             |
| Collapse Design (Safety) Fa                                  |                                        |                  |                  |          |            |        |      |          |        |             | sign (Safety) Fa          | actor: SFb  |                    |           |                                            |             |
| SFc = Pc / (MW x .052 x Ls)                                  | I                                      |                  |                  |          |            |        |      |          |        | SFb = Pi    | / BHP                     |             |                    |           |                                            |             |
| Where                                                        |                                        |                  |                  |          |            |        |      |          |        | Where       |                           |             | D. Maria           |           | N. 1.0 B                                   |             |
| MW is mu                                                     | rated pipe Collar<br>Id weight in pour | nds per ga       | llon (ppg)       | per squ  | are inch ( | psi)   |      |          |        |             | <ul> <li>BHP i</li> </ul> | is bottom h | iole pressure in p | ounds per | Yield) Pressure in po<br>square inch (psi) | unus per sq |
|                                                              | ength of the stri                      |                  |                  |          |            |        |      |          |        | The Mini    | num Acceptabl             | e Burst De  | esign (Safety) Fac | tor SFb = | 1.0                                        |             |
| The Minimum Acceptable Co                                    | ollapse Design (                       | Safety) Fa       | ctor SFc = 1.1   | 25       |            |        |      |          |        |             |                           |             |                    |           |                                            |             |
| Surface Casing                                               |                                        |                  |                  |          |            |        |      |          |        | Surface Cas | ino                       |             |                    |           |                                            |             |
| SFc =                                                        | 1130                                   | 1                | 391              | =        | 2.89       |        |      |          |        | SFb =       | 2730                      | /           | 391                | =         | 6.98                                       |             |
| Intermediate 1 Casing                                        |                                        |                  |                  |          |            |        |      |          |        | Intermediat | e 1 Casing                |             |                    |           |                                            |             |
| SFc =                                                        | 2570                                   | 1                | 1170             | =        | 2.20       |        |      |          |        | SFb =       | 3950                      | 1           | 1170               | =         | 3.38                                       |             |
| Production 1 Casing                                          |                                        |                  |                  |          |            |        |      |          |        | Production  | 1 Casing                  |             |                    |           |                                            |             |
| SFc =                                                        | 7020                                   | 1                | 2434             | =        | 2.88       |        |      |          |        | SFb =       | 8160                      | /           | 2434               | =         | 3.35                                       |             |
| Production 2 Casing                                          |                                        |                  |                  |          |            |        |      |          |        | Production  |                           |             |                    |           |                                            |             |
| SFc =                                                        | 6290                                   | 1                | 2862             | =        | 2,20       |        |      |          |        | SFb =       | 7740                      | /           | 2862               | =         | 2.70                                       |             |
|                                                              |                                        |                  |                  |          |            |        |      |          |        |             |                           |             |                    |           |                                            |             |
| Pipe Strength Design                                         |                                        | <u>ctors – E</u> | BLM Criter       | ia       |            |        |      |          |        |             |                           |             | fety) Factors      | - BLM (   | C <u>riteria</u>                           |             |
| Pipe Strength Design (Safet                                  | y) Factor: SFtp                        |                  |                  |          | •          |        |      |          |        |             | ngth Design (S            | Safety) Fac | tor: SFlj          |           |                                            |             |
| SFtp = Fp / Wt;                                              |                                        |                  |                  |          |            |        |      |          |        | SFtj = Fj   | /Wt;                      |             |                    |           |                                            |             |
| Where                                                        |                                        |                  |                  |          |            |        |      |          |        | Where       |                           |             |                    |           | <i></i>                                    |             |
|                                                              | rated pipe Body                        | -                |                  |          |            |        |      |          |        |             | -                         |             | pe Joint Strength  |           |                                            |             |
| <ul> <li>vvt is the<br/>The Minimum Acceptable Pi</li> </ul> | weight of the ca                       |                  |                  |          | dru or 1 º | huound |      |          |        | The Minis   |                           | -           | of the casing stri | -         | nos(ios)<br>or SFTj≏ 1.6 dry or 1          | 8 huovant   |
|                                                              | pe orrengin Des                        | iidii (asieti    | y) racior of i   | µ = 1,01 | ury 01 1,8 | ouoyan | ι    |          |        | i ne Mimi   | num Auceptabl             | e Joint Str | engin Design (3a   | ety) racu | or or ij = 1,0 dry 01 i                    | o ouoyant   |
| Surface Casing                                               |                                        |                  |                  |          |            |        |      |          |        | Surface Cas | ing                       |             |                    |           |                                            |             |
| SFi Dry =                                                    | 853000                                 | 1                | 48232.5          | =        | 17.7       |        |      |          |        | SFi Dry =   | 514000                    | 1           | 48232.5            | =         | 10.7                                       |             |
| SFi Bouyant =                                                | 853000                                 | 1 (              | 48232.5          | x        | 0.0        | 370    | ) =  | 20.3     | SF     | i Bouyant = | 514000                    | 1           | ( 48232.5          | x         | 0.870                                      | ) = 1       |

Intermediate 1 Casing

**Production 1 Casing** 

Production 2 Casing

SFi Dry =

SFi Dry =

SFi Dry =

SFi Bouyant =

SFi Bouyant =

SFi Bouyant =

630000

630000

676000

676000

397000

397000

1

1

1

90000

150800

139961

/ ( 90000

/ ( 150800

/ ( 139961

7.00

0.847

0.863

0.863

) = 8.26

) = 5.20

) = 3.29

=

х

= 4.48

x

= 2.84

х

#### ing 514000 48232.5 10.7 1 = SFi Bouyant = 514000 / ( 48232.5 12.2 0.870 ) = х Intermediate 1 Casing SFi Dry = 520000 90000 5.78 1 Ξ SFi Bouyant = 520000 1 ( 90000 х 0.847 ) = 6.82 **Production 1 Casing** SFi Dry = 587000 1 150800 3.89 = / ( 150800 ) = SFi Bouyant = 587000 0.863 4.51 x **Production 2 Casing** SFi Dry = 338000 1 139961 = 2.41 SFi Bouyant = 338000 / ( 139961 ) = 2.80 0.863

х

#### Peridot 8 Fed 14H

.

.

| String Section                                  | Depth<br>MD          | Depth<br>TVD | Csg<br>length ft | Wt         | MIY            | Col  | Pipe Str | Jt Str | Drill Fluid           |
|-------------------------------------------------|----------------------|--------------|------------------|------------|----------------|------|----------|--------|-----------------------|
| Surface Casing                                  | 885                  | 885          | 885              | 54.5       | 2730           | 1130 | 853000   | 514000 | 8.5                   |
| Intermediate 1 Casing                           | 2250                 | 2250         | 2250             | 40         | 3950           | 2570 | 630000   | 520000 |                       |
| Production 1 Casing                             | 5200                 | 5200         | 5200             | 29         | 8160           | 7020 | 676000   |        |                       |
| Production 2 Casing                             | 13433                | 6115         | 8233             | 17         | 7740           | 6290 | 397000   |        |                       |
|                                                 |                      |              |                  |            |                |      |          |        |                       |
| Collapse Design (Sa<br>Collapse Design (Safety) |                      | – BLM (      | <u>Criteria</u>  |            |                |      |          |        | Burst De              |
| SFc = Pc / (MW x .052 x t                       |                      |              |                  |            |                |      |          |        | Burst Desig           |
| Where                                           | -5/                  |              |                  |            |                |      |          |        | SFb = Pi / E<br>Where |
|                                                 | e rated pipe Colla   |              | re in pounde     | nor cause  | a inch (nri)   |      |          |        | where                 |
|                                                 | mud weight in pou    |              |                  | per squar  | e inch (psi)   |      |          |        |                       |
|                                                 | e length of the stri |              |                  |            |                |      |          |        | The Affects           |
| The Minimum Acceptable                          | -                    | -            | • •              | 25         |                |      |          |        | The Minimu            |
| Surface Casing                                  |                      |              |                  |            |                |      |          |        | Surface Casir         |
| SFc =                                           | = 1130               | 1            | 391              | =          | 2.89           |      |          |        | SFb =                 |
| Intermediate 1 Casing                           |                      |              |                  | •          |                |      |          |        | Intermediate          |
| SFc =                                           | = 2570               | 1            | 1170             | =          | 2.20           |      |          |        | SFb =                 |
| Production 1 Casing                             |                      |              |                  |            |                |      |          |        | Production 1          |
| SFc =                                           | 7020                 | 1            | 2434             | =          | 2.88           |      |          |        | SFb =                 |
| Production 2 Casing                             |                      |              |                  |            |                |      |          |        | Production 2          |
| SFc =                                           | 6290                 | 1            | 2862             | =          | 2.20           |      |          |        | SFb =                 |
|                                                 |                      |              |                  |            |                |      |          |        |                       |
| Pipe Strength Desig                             |                      | ctors – I    | BLM Criter       | ia         |                |      |          |        | Joint Str             |
| Pipe Strength Design (Sat                       | ety) Factor: SFtp    |              |                  |            |                |      |          |        | Joint Streng          |
| SFtp = Fp / Wt;                                 |                      |              |                  |            |                |      |          |        | SFtj = Fj / V         |
| Where                                           |                      | _            |                  |            |                |      |          |        | Where                 |
|                                                 | e rated pipe Body    | -            |                  |            |                |      |          |        |                       |
|                                                 | e weight of the ca   |              | • •              |            |                |      |          |        |                       |
| The Minimum Acceptable                          | Pipe Strength Des    | sign (Satet  | y) Factor SFT    | p = 1.6 dr | y or 1,8 buoya | nt   |          |        | The Minimu            |
| Surface Casing                                  |                      |              |                  |            |                |      |          |        | Surface Casir         |
| SFi Dry =                                       | 853000               | 1            | 48232.5          | =          | 17.7           |      |          |        | SFi Dry =             |
| SFi Bouyant =                                   | 853000               | / (          | 48232.5          | x          | 0.870          | ) =  | 20.3     | SF     | i Bouyant =           |
| Intermediate 1 Casing                           |                      |              |                  |            |                |      |          |        | Intermediate          |
| SFi Dry =                                       |                      | 1            | 90000            | =          | 7.00           |      |          |        | SFi Dry =             |
| SFi Bouyant =                                   | 630000               | / (          | 90000            | x          | 0.847          | ) =  | 8.26     | SF     | i Bouyant =           |
| Production 1 Casing                             |                      |              |                  |            |                |      |          |        | Production 1          |
| SFi Dry =                                       | 676000               | 1            | 150800           | =          | 4.48           |      |          |        | SFi Dry =             |
| CE: Daymant a                                   |                      |              |                  |            |                | -    |          |        |                       |

| SFi Bouyant =       | 676000 | / ( | 150800 | x | 0.863 | ) = | 5.20 |
|---------------------|--------|-----|--------|---|-------|-----|------|
| Production 2 Casing | 007000 | •   |        |   |       |     |      |
| SFi Dry =           | 397000 | /   | 139961 | = | 2.84  |     |      |
| SFi Bouyant =       | 397000 | 1 ( | 139961 | х | 0.863 | ) = | 3.29 |

#### sign (Safety) Factors - BLM Criteria

n (Salety) Factor: SFb

BHP

• Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps

 $\overline{\}$ 

- BHP is bottom hole pressure in pounds per square inch (psi)
- m Acceptable Burst Design (Safety) Factor SFb = 1.0

| Surface Casing<br>SFb = 2730        | 1 | 391  | = | 6.98 |
|-------------------------------------|---|------|---|------|
| Intermediate 1 Casing<br>SFb = 3950 | 1 | 1170 | = | 3.38 |
| Production 1 Casing<br>SFb = 8160   | 1 | 2434 | = | 3.35 |
| Production 2 Casing<br>SFb = 7740   | 1 | 2862 | = | 2.70 |

#### ength Design (Safety) Factors – BLM Criteria

oth Design (Safety) Factor: SFtj

Nt;

 Fj is the rated pipe Joint Strength in pounds (lbs) • Wt is the weight of the casing string in pounds (lbs)

5 m Acceptable Joint Strength Design (Safety) Factor SFTj = 1.6 dry or 1.8 buoyant

| Surface Cas   | sing       |     |         |   |       |     |      |
|---------------|------------|-----|---------|---|-------|-----|------|
| SFi Dry =     | 514000     | 1   | 48232.5 | = | 10.7  |     |      |
| SFi Bouyant = | 514000     | / ( | 48232.5 | x | 0.870 | ) = | 12.2 |
| Intermediate  | e 1 Casing |     |         |   |       |     |      |
| SFi Dry =     | 520000     | 1   | 90000   | = | 5.78  |     |      |
| SFi Bouyant = | 520000     | / ( | 90000   | x | 0.847 | ) = | 6.82 |
| Production    | 1 Casing   |     |         |   |       |     |      |
| SFi Dry =     | 587000     | 1   | 150800  | = | 3.89  |     |      |
| SFi Bouyant = | 587000     | / ( | 150800  | x | 0.863 | ) = | 4.51 |
| Production    | 2 Casing   |     |         |   |       |     |      |

| SFi Dry =     | 338000 | 1   | 139961 | = | 2.41  |     |      |
|---------------|--------|-----|--------|---|-------|-----|------|
| SFi Bouyant = | 338000 | / ( | 139961 | x | 0.863 | ) = | 2.80 |

## **ConocoPhillips, Peridot 8 Federal 14H**

## 1. Geologic Formations

| KB TVD of target | 5993'  | Pilot hole depth              | NA   |
|------------------|--------|-------------------------------|------|
| KB MD at TD:     | 13433' | Deepest expected fresh water: | 835' |

| Basin        |                |                      | · · · · · · · · · · · · · · · · · · ·   |          |
|--------------|----------------|----------------------|-----------------------------------------|----------|
| Formation    | KB TVD<br>(ft) | Elevation<br>KB (ft) | Water/Mineral<br>Bearing/Target<br>Zone | Hazards* |
| Rustler      | 835            | 3230                 | Fresh Water                             |          |
| Salado       | 980            | 3085                 | Brackish Water                          |          |
| Tansill      | 2055           | 2010                 | Salt                                    |          |
| Yates        | 2195           | 1870                 | Salt Water                              |          |
| Seven Rivers | 2500           | 1565                 | Oil/Gas                                 |          |
| Queen        | 3120           | 945                  | Oil/Gas                                 |          |
| Grayburg     | 3545           | 520                  | Oil/Gas                                 | ۲        |
| San Andres   | 3860           | 205                  | Oil/Gas                                 |          |
| Glorieta     | 5370           | -1305                | Oil/Gas                                 |          |
| Paddock      | 5470           | -1405                | Oil/Gas                                 |          |
| Blinebry     | 5790           | -1725                | Target                                  |          |
| Land Pt / TD | 6115           | -2050                |                                         |          |

## 2. Casing Program

|        |        |          |         | 3 st   | trings cas | ing design    |          |       |         |          |
|--------|--------|----------|---------|--------|------------|---------------|----------|-------|---------|----------|
| Hole   | Casing | Interval | Csg.    | Weight | Grade      | Conn.         | SF       | SF    | SF Pipe | SF Joint |
| Size   | From   | To       | Size    | (lbs)  |            |               | Collapse | Burst | Tensile | Tensile  |
| 17.5"  | 0      | 885      | 13.375" | 54.5   | J55        | STC/BTC       | 2.89     | 6.98  | 17.7    | 10.7     |
| 12.25" | 0      | 2250     | 9.625"  | 40     | J55        | LTC/BTC       | 2.20     | 3.38  | 7.00    | 5.78     |
| 8.75"  | 0      | 5200     | 7"      | 29     | L80        | LTC/BTC       | 2.88     | 3.35  | 4.48    | 3.89     |
| 8.75"  | 5200   | 13433    | 5.5"    | 17     | L80        | LTC/BTC       | 2.20     | 2.70  | 2.84    | 2.41     |
|        | •      | •        | ·       | BLM N  | Ainimum    | Safety Factor | 1.125    | 1     | 1.6 Dry | 1.6 Dry  |
|        |        |          |         | 1      |            | -             |          |       | 1.8 Wet | 1.8 Wet  |

- Bring cement from 5-1-2" casing shoe to lap inside 9-5/8" casing shoe.
- XO from 7" to 5-1/2" in 8-3/4" OH for minimum of 0.422in clearance per Onshore Oil and Gas Order #2 III.B.
- Notify BLM if an Annulus Casing Packer and Stage Tool with 2-Stage Cement or Remediate with Bradenhead Squeeze will be necessary.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

|                                                                                                                                                  | Y or N |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Is casing new? If used, attach certification as required in Onshore Order #1                                                                     | YES    |
| Does casing meet API specifications? If no, attach casing specification sheet.                                                                   | YES    |
| Is premium or uncommon casing planned? If yes attach casing specification sheet.                                                                 | YES    |
| Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria). | YES    |
| Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?                | N/A    |
| Is well located within Capitan Reef?                                                                                                             | NO     |
| If yes, does production casing cement tie back a minimum of 50' above the Reef?                                                                  |        |
| Is well within the designated 4 string boundary.                                                                                                 |        |
| Is well located in SOPA but not in R-111-P?                                                                                                      | NO     |
| If yes, are the first 2 strings cemented to surface and 3 <sup>rd</sup> string cement tied back 500' into previous casing?                       |        |
| Is well located in R-111-P and SOPA?                                                                                                             | NO     |
| If yes, are the first three strings cemented to surface?                                                                                         |        |
| Is 2 <sup>nd</sup> string set 100' to 600' below the base of salt?                                                                               |        |
| Is well located in high Cave/Karst?                                                                                                              | NO     |
| If yes, are there two strings cemented to surface?                                                                                               |        |
| (For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?                                                           |        |
| Is well located in critical Cave/Karst?                                                                                                          | NO     |
| If yes, are there three strings cemented to surface?                                                                                             |        |

## 3. Cementing Program

| Casing | # Sks | Wt. lb/<br>gal | Yld<br>ft3/<br>sack | H20<br>gal/sk | Vol ft3 | 500#<br>Comp.<br>Strength<br>(hours) | Slurry Description                                                                                                                                                                         |
|--------|-------|----------------|---------------------|---------------|---------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surf.  | 500   | 13.5           | 1.68                | 8.94          | 840     | 7                                    | Lead: Class C + 4.0% Bentonite + 0.2% Anti-Foam + 2.0% CaCl2 + 0.125lb/sk LCM + 0.1% Dispersant                                                                                            |
|        | 400   | 14.8           | 1.35                | 6.38          | 540     | 7                                    | Tail: Class C + 0.2% Anti-Foam + 0.1% Lost Circ<br>Control + 2 lbs/bbl CemNET (losses Control)                                                                                             |
| Inter. | 450   | 11.5           | 2.29                | 10.72         | 1031    | 17                                   | Lead: Class C + 10.0% Bentonite + 0.2% Anti-Foam + 2.0% Expanding + 0.15% Viscosifier + 1.3% Retarder.                                                                                     |
|        | 300   | 13.5           | 1.29                | 4.81          | 387     | 7                                    | Tail: Class C + 1% Extender + 3 lb/sk Extender + 0.2%<br>Anti-Foam + 0.1% Dispersant + 13 lb/sk LCM + 0.5%<br>Fluid Loss + 0.7% Retarder                                                   |
| Prod.  | 650   | 11.0           | 3.2                 | 19.25         | 2080    | 17                                   | Lead: Class C + 6% Extender + 10% Gas Migration<br>Control + 2% Sodium Metasilicate (dry) + 1% Cement<br>Bonding Agent + 3% Aluminum Silicate + 0.125 lb/sx<br>Cello Flake + 3 lb/sx LCM-1 |
|        | 1900  | 14.0           | 1.37                | 6.48          | 2603    | 7                                    | Tail: Class C + 3lb/sk LCM + 1.5% Fluid Loss + 0.1%<br>+ 1% Sodium Metasilicate (dry) + 1.5% Fluid Loss<br>Control                                                                         |

## ConocoPhillips, Peridot 8 Federal 14H

DV tool depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

Lab reports with recipe and the 500 psi compressive strength time for the cement will be onsite for review.

| 3 strings casing cement design           |        |       |       |  |  |  |  |  |
|------------------------------------------|--------|-------|-------|--|--|--|--|--|
| Casing String TOC Lead TOC Tail % Excess |        |       |       |  |  |  |  |  |
| Surface                                  | 0'     | 585'  | >100% |  |  |  |  |  |
| Intermediate                             | 0'     | 1750' | >100% |  |  |  |  |  |
| Production                               | <1700' | 5200' | >30%  |  |  |  |  |  |

Cement excess will be adjusted based on actual hole condition like losses or fluid caliper data if have.

## 4. Pressure Control Equipment

| BOP installed<br>and tested<br>before drilling<br>which hole? | Size?   | Min.<br>Required<br>WP | Туре                 |     | ~        | Tested to:              |  |
|---------------------------------------------------------------|---------|------------------------|----------------------|-----|----------|-------------------------|--|
|                                                               |         |                        | Annular              |     | x        | 50% of working pressure |  |
|                                                               |         | 3M/5M                  | Blind                | Ram |          |                         |  |
| 8-3/4"                                                        | 13-5/8" |                        | Pipe Ram             |     | Pipe Ram |                         |  |
|                                                               |         |                        | Double Ram<br>Other* |     | x        | 3,000 psi               |  |
|                                                               |         |                        |                      |     |          |                         |  |

\*Specify if additional ram is utilized.

Note: A 13-5/8" BOPE will be utilize in the 8-3/4" hole section depending on availability and Rig Substructure Clearance.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

| X | Formation integrity test will be performed per Onshore Order #2.<br>On Exploratory wells or on that portion of any well approved for a 5M BOPE system or<br>greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in<br>accordance with Onshore Oil and Gas Order #2 III.B.1.i. |  |  |  |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| X | A variance is requested for the use of a flexible choke line from the BOP to Choke                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|   | Manifold. If yes, specs and hydrostatic test certification will be available in the company                                                                                                                                                                                                                         |  |  |  |  |  |  |
|   | man's trailer and on the rig floor.                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|   | N Are anchors required by manufacturer?                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| X | A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.                                                  |  |  |  |  |  |  |
|   | See attached schematic.                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |

## 5. Mud Program

| 3 strings casing mud program               |             |                 |          |       |      |        |  |  |
|--------------------------------------------|-------------|-----------------|----------|-------|------|--------|--|--|
| Depth Type Weight (ppg) Viscosity Water PH |             |                 |          |       |      |        |  |  |
| From                                       | То          |                 |          |       | Loss |        |  |  |
| 0                                          | Surf. shoe  | FW Gel          | 8.5-9.0  | 28-40 | N/C  | N.C.   |  |  |
| Surf. Shoe                                 | Inter. shoe | Saturated Brine | 10.0     | 28-32 | N/C  | 9-10.5 |  |  |
| Inter. shoe                                | TD          | Cut-Brine       | 8.6-10.0 | 28-40 | N/C  | 9-10.5 |  |  |

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

| What will be used to monitor the loss or gain | PVT/Pason/Visual Monitoring |
|-----------------------------------------------|-----------------------------|
| of fluid?                                     |                             |

## 6. Logging and Testing Procedures

| Logg | Logging, Coring and Testing.                                                            |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| X    | Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated |  |  |  |  |  |  |
|      | logs run will be in the Completion Report and submitted to the BLM.                     |  |  |  |  |  |  |
|      | No Logs are planned based on well control or offset log information.                    |  |  |  |  |  |  |
|      | Drill stem test? If yes, explain                                                        |  |  |  |  |  |  |
|      | Coring? If yes, explain                                                                 |  |  |  |  |  |  |

| Add | litional logs planned | Interval |
|-----|-----------------------|----------|
|     | Resistivity           |          |
|     | Density, GR, BHC      |          |
|     | CBL                   |          |
| X   | Mud log               |          |
|     | PEX                   |          |

4 Drilling Plan

#### **ConocoPhillips, Peridot 8 Federal 14H**

#### 7. Drilling Conditions

| Condition                  | Specify what type and where? |
|----------------------------|------------------------------|
| BH Pressure at deepest TVD | 2815 psi                     |
| Abnormal Temperature       | No – 100°                    |

• Mitigation measure for abnormal conditions - Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

X H2S is present

X H2S Plan attached

#### 8. Other facets of operation

Is this a walking operation? If yes, describe. NO. Will be pre-setting casing? If yes, describe. NO.

#### Attachments:

| Attachment#1:  | Directional Plan                      |
|----------------|---------------------------------------|
| Attachment#2:  | Wellbore Casing & Cementing Schematic |
| Attachment#3:  | Wellhead Schematic                    |
| Attachment #4: | BOP Schematics                        |
| Attachment #5: | Choke Schematic                       |
| Attachment #6: | Rig Layout                            |
| Attachment #7: | H2S Contingency Plan                  |

# SPECIFICATIONS

FLOOR: 3/16" PL one piece CROSS MEMBER: 3 x 4.1 channel 16" on center

۰. .

WALLS: 3/16" PL solid welded with tubing top, insi de liner hooks

DOOR: 3/16" PL with tubing frame FRONT: 3/16" PL slant formed

PICK U P: Standard cable with 2" x 6" x 1/4" rails, gu sset at each crossmember WHEELS: 10 DIA x 9 long with rease fittings

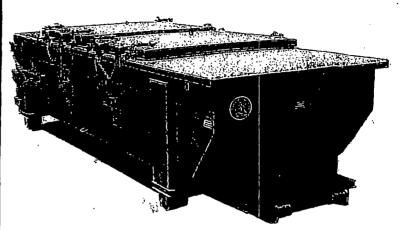
DOOR LATCH: 3 Independent ratchet binders with chains, vertical second latch GASKE TS: Extruded rubber seal with metal retainers

WELDS: All welds continuous except substructur e crossmembers

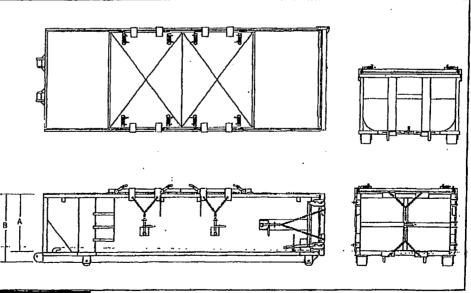
FINISH: Coated inside and out with direct to metal, rust inhibiting acrylic enamel color coat HYDROTESTING: Full capacity static test DIMEN SIONS: 22-11' long (21'-8" inside), 99" wid e (88" inside), see drawing for height OPTIONS: Steel grit blast and special paint, Ampliroll, Heil and Dino pickup

ROOF: 3/16" PL roof panels with tubing and channel support frame

LIDS: (2) 68" x 90" metal rolling lids spring loaded, self raising


ROLLERS: 4" V-groove rollers with delrin bearings and grease fittings OPENING: (2) 60" x 82" openings

with 8" divider centered on contain er


LATCH :(2) independent ratchet binders with chains per lid

GASKETS: Extruded rubber seal with metal retainers

## Heavy Duty Split Metal Rolling Lid



| CONT. | Ā  | В  |
|-------|----|----|
| 20 YD | 41 | 53 |
| 25 YD | 53 | 65 |
| 30 YD | 65 | 77 |



31

## ConocoPhillips, Peridot 8 Federal 14H

| 3 strings casing design |                 |       |         |        |         |               |          |       |         |          |
|-------------------------|-----------------|-------|---------|--------|---------|---------------|----------|-------|---------|----------|
| Hole                    | Casing Interval |       | Csg.    | Weight | Grade   | Conn.         | SF       | SF    | SF Pipe | SF Joint |
| Size                    | From            | То    | Size    | (lbs)  |         |               | Collapse | Burst | Tensile | Tensile  |
| 17.5"                   | 0               | 885   | 13.375" | 54.5   | J55     | STC/BTC       | 2.89     | 6.98  | 17.7    | 10.7     |
| 12.25"                  | 0               | 2250  | 9.625"  | 40     | J55     | LTC/BTC       | 2.20     | 3.38  | 7.00    | 5.78     |
| 8.75"                   | 0               | 5200  | 7"      | 29     | L80     | LTC/BTC       | 2.88     | 3.35  | 4.48    | 3.89     |
| 8.75"-8.5"              | 5200            | 13433 | 5.5"    | 20     | L80     | LTC/BTC       | 3.15     | 3.28  | 2.83    | 3.18     |
|                         |                 |       |         | BLM N  | Minimum | Safety Factor | 1.125    | 1     | 1.6 Dry | 1.6 Dry  |
|                         |                 |       |         |        |         | -             |          |       | 1.8 Wet | 1.8 Wet  |

## 2. Casing Program – Openhole Sliding Sleeves Completion Option

- Cement 7" production string thru a stage tool below the XO joint and leave 5-1/2" casing string below the Glorieta formation uncemented with packers & sleeves from landing point to TD.
- Notify BLM if additional unplanned stages of Cement or Remediate with Bradenhead Squeeze becomes necessary.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

|                                                                                                                                                  | Y or N |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Is casing new? If used, attach certification as required in Onshore Order #1                                                                     | YES    |
| Does casing meet API specifications? If no, attach casing specification sheet.                                                                   | YES    |
| Is premium or uncommon casing planned? If yes attach casing specification sheet.                                                                 | NO     |
| Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria). | YES    |
| Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?                | N/A    |
| Is well located within Capitan Reef?                                                                                                             | NO     |
| If yes, does production casing cement tie back a minimum of 50' above the Reef?                                                                  |        |
| Is well within the designated 4 string boundary.                                                                                                 |        |
| Is well located in SOPA but not in R-111-P?                                                                                                      | NO     |
| If yes, are the first 2 strings cemented to surface and 3 <sup>rd</sup> string cement tied back 500' into previous casing?                       |        |
| Is well located in R-111-P and SOPA?                                                                                                             | NO     |
| If yes, are the first three strings cemented to surface?                                                                                         | •      |
| Is 2 <sup>nd</sup> string set 100' to 600' below the base of salt?                                                                               |        |
| Is well located in high Cave/Karst?                                                                                                              | NO     |
| If yes, are there two strings cemented to surface?                                                                                               |        |
| (For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?                                                           |        |
| Is well located in critical Cave/Karst?                                                                                                          | NO     |
| If yes, are there three strings cemented to surface?                                                                                             |        |

## **ConocoPhillips, Peridot 8 Federal 14H**

| # Sks | Wt. lb/<br>gal           | Yld<br>ft3/<br>sack                                                                                             | H20<br>gal/sk                                                                                                                                                                            | Vol ft3                                                                            | 500#<br>Comp.<br>Strength<br>(hours)                                                            | Slurry Description                                                                                                                                                                                                                                                                                                                                                                          |
|-------|--------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 500   | 13.5                     | 1.68                                                                                                            | 8.94                                                                                                                                                                                     | 840                                                                                | 7                                                                                               | Lead: Class C + 4.0% Bentonite + 0.2% Anti-Foam +<br>2.0% CaCl2 +0.125lb/sk LCM + 0.1% Dispersant                                                                                                                                                                                                                                                                                           |
| 400   | 14.8                     | 1.35                                                                                                            | 6.38                                                                                                                                                                                     | 540                                                                                | 7                                                                                               | Tail: Class C + 0.2% Anti-Foam + 0.1% Lost Circ<br>Control + 2 lbs/bbl CemNET (losses Control)                                                                                                                                                                                                                                                                                              |
| 450   | 11.5                     | 2.29                                                                                                            | 10.72                                                                                                                                                                                    | 1031                                                                               | 17                                                                                              | Lead: Class C + 10.0% Bentonite + 0.2% Anti-Foam + 2.0% Expanding + 0.15% Viscosifier + 1.3% Retarder.                                                                                                                                                                                                                                                                                      |
| 300   | 13.5                     | 1.29                                                                                                            | 4.81                                                                                                                                                                                     | 387                                                                                | 7                                                                                               | Tail: Class C + 1% Extender + 3 lb/sk Extender + 0.2%<br>Anti-Foam + 0.1% Dispersant + 13 lb/sk LCM + 0.5%<br>Fluid Loss + 0.7% Retarder                                                                                                                                                                                                                                                    |
| 650   | 11.0                     | 3.2                                                                                                             | 19:25                                                                                                                                                                                    | 2080                                                                               | 17                                                                                              | Lead: Class C + 6% Extender + 10% Gas Migration<br>Control + 2% Sodium Metasilicate (dry) + 1% Cement<br>Bonding Agent + 3% Aluminum Silicate + 0.125 lb/sx<br>Cello Flake + 3 lb/sx LCM-1                                                                                                                                                                                                  |
|       | 500<br>400<br>450<br>300 | gal           500         13.5           400         14.8           450         11.5           300         13.5 | gal         ft3/<br>sack           500         13.5         1.68           400         14.8         1.35           450         11.5         2.29           300         13.5         1.29 | galft3/<br>sackgal/sk50013.51.688.9440014.81.356.3845011.52.2910.7230013.51.294.81 | galft3/<br>sackgal/sk50013.51.688.9484040014.81.356.3854045011.52.2910.72103130013.51.294.81387 | gal         ft3/<br>sack         gal/sk         Comp.<br>Strength<br>(hours)           500         13.5         1.68         8.94         840         7           400         14.8         1.35         6.38         540         7           450         11.5         2.29         10.72         1031         17           300         13.5         1.29         4.81         387         7 |

### 3. Cementing Program – Openhole Sliding Sleeves Completion Option

If additional unplanned stages of cementing are necessary, the contingency stage tool will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Stage tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

Lab reports with recipe and the 500 psi compressive strength time for the cement will be onsite for review.

| 3 strings casing cement design |          |          |          |  |  |  |
|--------------------------------|----------|----------|----------|--|--|--|
| Casing String                  | TOC Lead | TOC Tail | % Excess |  |  |  |
| Surface                        | 0'       | 585'     | >100%    |  |  |  |
| Intermediate                   | 0'       | 1750'    | >100%    |  |  |  |
| Production                     | <1700'   | N/A      | >30%     |  |  |  |

Cement excess will be adjusted based on actual hole condition like losses or fluid caliper data if have.

## Attachments:

Attachment#1: Wellbore Casing & Cementing Schematic

#### Peridot 8 Fed 14H

| String Section                                                        | Depth<br>MD        | Depth<br>TVD | Csg<br>length ft   | Wt        | MIY            | Col      | Pipe Str | Jt Str | Drill Fluid                             |
|-----------------------------------------------------------------------|--------------------|--------------|--------------------|-----------|----------------|----------|----------|--------|-----------------------------------------|
| Surface Casing                                                        | 885                | 885          | 885                |           |                |          |          |        |                                         |
| ntermediate 1 Casing                                                  | 2250               | 2250         | 2250               |           |                |          |          |        |                                         |
| Production 1 Casing                                                   | 5200               | 5200         | 5200               |           |                |          |          |        |                                         |
| Production 2 Casing                                                   | 13433              | 5993         | 8233               | 20        | 9190           | 8830     | 466000   | 524000 | 9                                       |
|                                                                       |                    |              |                    |           |                |          |          |        |                                         |
| Collapse Design (Saf                                                  | ety) Factors       | - BLM        | <u>Criteria</u>    |           |                |          |          |        | Burst                                   |
| Collapse Design (Safety) Fa                                           |                    |              |                    |           |                |          |          |        | Burst De                                |
| SFc = Pc / (MW x .052 x Ls                                            | )                  |              |                    |           |                |          |          |        | SFb = P                                 |
| Where                                                                 |                    |              |                    |           |                |          |          |        | Where                                   |
|                                                                       | rated pipe Colla   |              |                    | per squar | e inch (psi)   |          |          |        |                                         |
| <ul> <li>MW is more</li> </ul>                                        | ud weight in pou   | nds per ga   | illon (ppg)        |           |                |          |          |        |                                         |
| <ul> <li>Ls is the</li> </ul>                                         | length of the stri | ng in feet ( | (ft)               |           |                |          |          |        | The Min                                 |
| The Minimum Acceptable C                                              | ollapse Design (   | Safety) Fa   | ctor SFc = 1.      | 125       |                |          |          |        |                                         |
| Surface Casing                                                        |                    |              |                    |           |                |          |          |        | Surface Ca                              |
| SFc =                                                                 | 1130               | 1            | 391                | =         | 2.89           |          |          |        | SFb =                                   |
| ntermediate 1 Casing                                                  |                    |              |                    |           |                |          |          |        | Intermedia                              |
| SFc =                                                                 | 2570               | 1            | 1170               | =         | 2.20           |          |          |        | SFb =                                   |
| Production 1 Casing                                                   |                    |              |                    |           |                |          |          |        | Production                              |
| SFc =                                                                 | 7020               | 1            | 2434               | =         | 2.88           |          |          |        | SFb =                                   |
| Production 2 Casing                                                   |                    |              |                    |           |                |          |          |        | Production                              |
| SFc =                                                                 | 8830               | 1            | 2805               | = .       | 3.15           |          |          |        | SFb =                                   |
| Pipe Strength Desigr<br>Pipe Strength Design (Safe<br>SFtp = Fp / Wt; |                    | ctors – I    | BLM Criter         | ia        |                | ·        |          |        | <u>Joint S</u><br>Joint Sti<br>SFtj = F |
| Where                                                                 |                    |              |                    |           |                |          |          |        | Where                                   |
|                                                                       | rated pipe Body    |              |                    |           |                |          |          |        |                                         |
| <ul> <li>Wt is the<br/>The Minimum Acceptable P</li> </ul>            | weight of the ca   |              |                    |           | vor 18 buov    | ant      |          |        | The Min                                 |
|                                                                       | ipe strength Des   | sign (Salet  | y) racior sr i     | p = 1.0 u | y 01 1.5 D00ya | 2114     |          |        | 116 100                                 |
| Surface Casing                                                        | 050000             |              | 10000 <del>-</del> |           |                |          |          |        | Surface Ca                              |
| SFi Dry =                                                             | 853000             | 1, ,         | 48232.5            | =         | 17.7           | <b>\</b> |          | ~-     | SFi Dry =                               |
| SFi Bouyant =                                                         | 853000             | / (          | 48232.5            | X         | 0.870          | ) =      | 20.3     | SF     | i Bouyant =                             |
| ntermediate 1 Casing                                                  | 000000             | ,            | 00000              | _         |                |          |          |        | Intermedia                              |
| SFi Dry =                                                             | 630000             | 1, .         | 90000              | =         | 7.00           | ,        |          |        | SFi Dry =                               |
| SFi Bouyant =                                                         | 630000             | / (          | 90000              | x         | 0.847          | ) =      | 8.26     | SF     | i Bouyant =                             |
| Production 1 Casing                                                   |                    |              |                    |           |                |          |          |        | Production                              |
| SFi Dry =                                                             | 676000             | 1            | 150800             | =         | 4.48           |          |          |        | SFi Dry =                               |
| SFi Bouyant =                                                         | 676000             | , í          |                    | x         | 0.863          | ) =      | 5.20     | SF     | i Bouyant =                             |
| Production 2 Casing                                                   |                    |              |                    |           |                |          |          |        | Production                              |
| SFi Dry =                                                             | 466000             | 1            | 164660             | =         | 2.83           |          |          |        | SFi Dry =                               |
|                                                                       |                    |              |                    |           |                |          |          |        |                                         |
| SFi Bouvant =                                                         | 466000             | 11           | 164660             | x         | 0.863          | ) =      | 3.28     | SF     |                                         |
| SFi Bouyant =                                                         | 466000             | ./ (         | 164660             | x         | 0.863          | ) =      | 3.28     | SF     | i Bouyant =                             |

#### ign (Safety) Factors – BLM Criteria

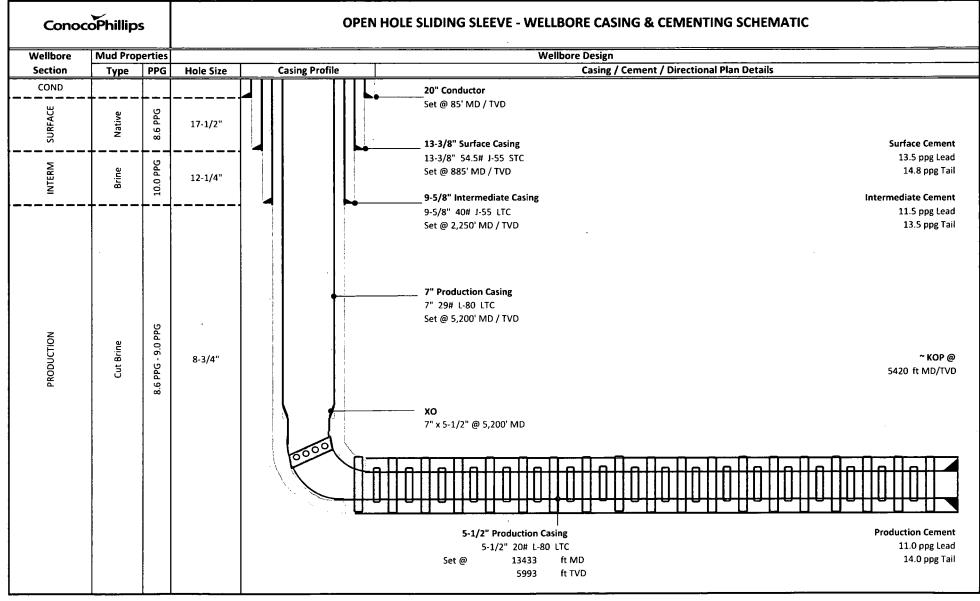
(Safety) Factor: SFb ΗP

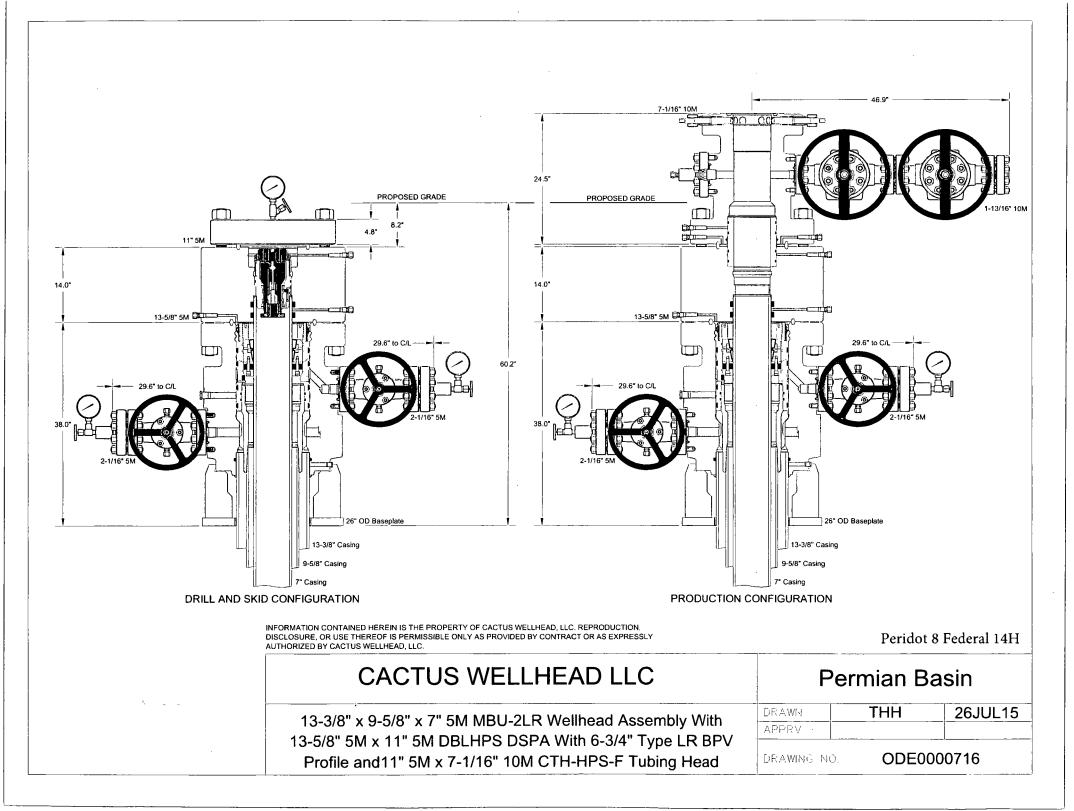
- - Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps
  - BHP is bottom hole pressure in pounds per square inch (psi)

Acceptable Burst Design (Safety) Factor SFb = 1.0

| Surface Casing<br>SFb = 2730       | 1 | 391  | = | 6.98 |
|------------------------------------|---|------|---|------|
| Intermediate 1 Casin<br>SFb = 3950 | • | 1170 | = | 3.38 |
| Production 1 Casing<br>SFb = 8160  | 1 | 2434 | = | 3.35 |
| Production 2 Casing<br>SFb = 9190  | 1 | 2805 | = | 3.28 |

#### ngth Design (Safety) Factors – BLM Criteria


h Design (Safety) Factor: SFtj


- . Fj is the rated pipe Joint Strength in pounds (lbs)
- Wt is the weight of the casing string in pounds (lbs)

n Acceptable Joint Strength Design (Safety) Factor SFTj ≈ 1.6 dry or 1.8 buoyant

| Surface Cas<br>SFi Dry =<br>SFi Bouyant = | <b>ing</b><br>514000<br>514000 | / ( | 48232.5<br>48232.5 | =<br>x | <b>10.7</b><br>0.870 | ) = | 12.2 |
|-------------------------------------------|--------------------------------|-----|--------------------|--------|----------------------|-----|------|
| Intermediate                              |                                |     |                    |        |                      |     |      |
| SFi Dry =                                 | 520000                         | 1   | 90000              | =      | 5.78                 |     |      |
| SFi Bouyant =                             | 520000                         | / ( | 90000              | ×      | 0.847                | ) = | 6.82 |
| Production <sup>-</sup>                   | 1 Casing                       |     |                    |        |                      |     |      |
| SFi Dry =                                 | 587000                         | 1   | 150800             | =      | 3.89                 |     |      |
| SFi Bouyant =                             | 587000                         | / ( | 150800             | x      | 0.863                | ) = | 4.51 |
| Production 3                              | 2 Casing                       |     |                    |        |                      |     |      |
| SFi Dry =                                 | 524000                         | 1   | 164660             | =      | 3.18                 |     |      |
| SFi Bouyant =                             | 524000                         | 1 ( | 164660             | x      | 0.863                | ) = | 3.69 |

#### Peridot 8 Fed 14H





# #AFMSS

APD ID: 10400022350

Well Type: OIL WELL

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT** 

Well Name: PERIDOT 8 FEDERAL

Submission Date: 10/16/2017

Well Number: 14H

Highlighted data reflects the most recent changes

02/27/2018

SUPO Data Report

Show Final Text

Well Work Type: Drill

## Section 1 - Existing Roads

**Operator Name: CONOCOPHILLIPS COMPANY** 

Will existing roads be used? YES

Existing Road Map:

Peridot 8 Fed\_14H\_AccessRoadTopoA\_20171012124755.pdf

Existing Road Purpose: ACCESS

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

**Existing Road Improvement Description:** 

**Existing Road Improvement Attachment:** 

### Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Peridot\_8\_Fed\_14H\_AccessRoadTopoB\_20171012130526.pdf

Peridot 8 Fed\_14H AccessRoadv2\_20180122125528.pdf

New road type: RESOURCE

Length: 5236 Feet Width (ft.): 30

Max slope (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 17

New road access erosion control: The inside slope of the side ditches shall be 3:1. Any topsoil removed from the access road will be conserved as appropriate and with low profile. This access road is on fairly, level ground. No additional erosion control is planned.

Max grade (%): 4

New road access plan or profile prepared? NO

New road access plan attachment:

Row(s) Exist? NO

1997

Well Name: PERIDOT 8 FEDERAL

Well Number: 14H

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: OFFSITE

Access surfacing type description: clean caliche

#### Access onsite topsoil source depth:

**Offsite topsoil source description:** Caliche will be from a BLM approved source or third-party commercial location. Material meets BLM requirements and standards. Current plans include sources: 1) Maljamar, NM, Sec. 9, T17S, R32E; 2) Hwy 529, NM, Sec. 25, T17S, R31E; and 3) Olan Caswell Ranch, Sec. 3, T17S, R32E. These are current options. However, additional sources within area may be used depending on availability at time of construction. We intend to use different source(s) if necessary.

**Onsite topsoil removal process:** 

Access other construction information: Wider travel surface is needed to accommodate larger rig wheelbase. Road is needed to reach facility near NM Highway 82. Cattle guard to be installed between facility access road and NM Highway 82. Turnouts will be installed using dimensions recommended by BLM, standard for this area. Right of ways will be obtained for highway access and resource road access to include future Peridot wells.

Access miscellaneous information: The majority of access road to be shared by other Peridot wells and new facility. Access to this well location is via adjacent well pad and road, currently Peridot 8 Fed 3H, 4H. No new access road specific to this well is needed. The shorter side roads leading to well locations will not be constructed until the well location is built. Number of access turnouts: 1 Access turnout map:

### **Drainage Control**

New road drainage crossing: CULVERT, OTHER

**Drainage Control comments:** The proposed road to the location is surveyed and staked with stations set along the centerline at specific intervals. The road will be centerline crowned with a 2% crown for appropriate drainage. The inside slope of the side ditches shall be 3:1. Any topsoil removed from the access road route will be conserved as appropriate. This access road is on fairly, level ground.

**Road Drainage Control Structures (DCS) description:** No additional road drainage is needed other than standard BLM requirements for this area and those discussed in the BLM "Gold Book". This access road is on level ground. **Road Drainage Control Structures (DCS) attachment:** 

### Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Peridot\_8\_Fed\_14H\_OneMileRadiusMap\_20171012130605.pdf

Existing Wells description:

Well Name: PERIDOT 8 FEDERAL

Well Number: 14H

### Section 4 - Location of Existing and/or Proposed Production Facilities

#### Submit or defer a Proposed Production Facilities plan? SUBMIT

**Production Facilities description:** Peridot 8 Federal CF1 Tank Battery location NWNE, Section 8, T17S, R32E was sited during 6/26/16 onsite. Location is south of NM Highway 82. Dimensions of 400'x 250' are planned to allow for expansion as wells are drilled. 15' road will provide facility access and is included in access road calculation. Preliminary plot plan is attached.

#### **Production Facilities map:**

Peridot\_8\_Fed\_CF1\_Tank\_Battery\_20171012130630.pdf Peridot\_8\_Fed\_Preliminary\_Plot\_Plan\_20171012130645.pdf

### Section 5 - Location and Types of Water Supply

### Water Source Table

Water source use type: CAMP USE, INTERMEDIATE/PRODUCTION Water source type: GW WELL CASING, STIMULATION, SURFACE CASING Describe type:

Source latitude:

Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT, WATER WELL

Source land ownership: FEDERAL

Water source transport method: PIPELINE, TRUCKING

Source transportation land ownership: FEDERAL

Water source volume (barrels): 165000

Source volume (gal): 6930000

#### Water source and transportation map:

Peridot\_8\_Fed\_14H\_WaterSourceMap\_20171012133518.pdf

**Water source comments:** Current water sources include: 1) Rockhouse Ranch (two sources); Section 13, T17S, R33E; and 2) Morewest Corporation, New Mexico; Section 16 & 26, T16S, R32E. Water sources specified within this application are current options for purchase. However, additional source(s) in the vicinity may be used depending on availability at the time water is needed. We intend to use different source(s) if necessary. New water well? NO

Est thickness of aquifer:

New Water Well Info

0

Well latitude:

Well Longitude:

Well datum:

Source volume (acre-feet): 21.26736

Well target aquifer:

Est. depth to top of aquifer(ft):

Aquifer comments:

Well Number: 14H

| Δ. | nuifor | docum | entation: |
|----|--------|-------|-----------|
|    |        |       |           |

| Well depth (ft):                    | Well casing type:                  |
|-------------------------------------|------------------------------------|
| Well casing outside diameter (in.): | Well casing inside diameter (in.): |
| New water well casing?              | Used casing source:                |
| Drilling method:                    | Drill material:                    |
| Grout material:                     | Grout depth:                       |
| Casing length (ft.):                | Casing top depth (ft.):            |
| Well Production type:               | Completion Method:                 |
| Water well additional information:  |                                    |
| State appropriation permit:         |                                    |
|                                     |                                    |

Additional information attachment:

#### Section 6 - Construction Materials

**Construction Materials description:** Clean caliche will be used to construct well pad, road, and facility pad. Caliche will be from a BLM approved source or third-party commercial location. Material to meet BLM requirements and standards. Current plans include sources: 1) Maljamar, NM, Sec. 9, T17S, R32E; 2) Hwy 529, NM, Sec. 25, T17S, R31E; and 3) Olan Caswell Ranch, Sec. 3, T17S, R32E. These are current options. However, additional sources within area may be used depending on availability at time of construction. We intend to use different source(s) if necessary. Trucking of source material will utilize authorized roads as per Access Road Topo B attached.

**Construction Materials source location attachment:** 

### Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drilling fluid, drill cuttings, and rig water

Amount of waste: 8000 barrels

Waste disposal frequency : Daily

Safe containment description: Drilling fluid and cuttings will be held in a closed-loop system and trucked to an approved disposal facility.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE FACILITY

Disposal type description:

Disposal location description: Permitted disposal facility off Hwy 62

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Well Number: 14H

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

**Reserve pit liner** 

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Cuttings will be held in a closed-loop system and trucked to an approved disposal facility.

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

### **Section 8 - Ancillary Facilities**

Are you requesting any Ancillary Facilities?: YES

Ancillary Facilities attachment:

Peridot\_8\_Fed\_FracPondPlat\_20171012135228.pdf

**Comments:** ConocoPhillips Company anticipates needing a 600' x 600' freshwater frac pond to aid in completion operations. It is to be located in the NENW of Sec. 8, 17S, 32E. Access will be via 382' road which is included in the access road calculation. The disturbance is included in overall disturbance calculations. We plan on reclaiming the frac pond surface upon completion of the full Peridot Unit development. Reclamation activities will be conducted in accordance with BLM standards at the time of reclamation.

### Section 9 - Well Site Layout

### Well Site Layout Diagram:

Peridot\_8\_Fed\_14H\_LocationLayout\_20171012135320.pdf Peridot\_8\_Fed\_14H\_SitePlanArchBound\_20171012135336.pdf Comments:

Well Name: PERIDOT 8 FEDERAL

Well Number: 14H

### Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: PERIDOT 8 FEDERAL

Multiple Well Pad Number: 4H

#### **Recontouring attachment:**

**Drainage/Erosion control construction:** Topsoil will be stripped and set along designated side of the wellsite. The next layer of dirt (stockpile) is done with the cut and fill method whereby the highest portion of the wellsite is pushed to lower portion(s) to balance the pad. The access road is done in a similar manner. To the greatest extent practicable, the location is placed so that the least amount of dirt is to be cut and disturbed, and so a good balance can be maintained during project. Topsoil stockpile will have lowest practicable profile to reduce wind erosion. For more detail please see attached Surface Use Plan of Operations.

**Drainage/Erosion control reclamation:** Upon project completion, if this well is a producer, excess caliche is removed from the interim reclamation portion of pad. Topsoil stockpile is balanced back onto the unused portion of the well pad and recontoured as appropriate. Any drainage ditches will not be blocked with topsoil and/or organic material. Lowering the profile of the topsoil stockpile will reduce wind erosion. Erosion controls will be maintained per BLM guidelines and conditions. For more detail please see attached Surface Use Plan of Operations. Reclamation activities are planned to be accomplished within six months of project completion, contingent upon weather. A site specific "Reclamation Diagram" interim plan is attached

| Wellpad long term disturbance (acres): 1.54        | Wellpad short term disturbance (acres): 1.89  |
|----------------------------------------------------|-----------------------------------------------|
| Access road long term disturbance (acres): 3.61    | Access road short term disturbance (acres): 0 |
| Pipeline long term disturbance (acres): 0.76469237 | Pipeline short term disturbance (acres): 0    |
| Other long term disturbance (acres): 35.97         | Other short term disturbance (acres): 1.72    |
| Total long term disturbance: 41.884693             | Total short term disturbance: 3.61            |

**Reconstruction method:** If this well is a producer site rehabilitation will be completed within six months, weather permitting. Excess caliche will be removed, as appropriate and either disposed of in a permitted facility or, if clean, stored for future use. Topsoil from the stockpile will be spread along areas to be interim reclaimed. Any drainage ditches will not be blocked with topsoil. Under normal weather conditions, the timetable for rehabilitation will allow two to three months to complete any recontouring and top-soiling necessary. At such time, as well is permanently abandoned, ConocoPhillips Company will contact the BLM for development of final rehabilitation plan. Upon abandonment, a dry hole marker will be installed as directed by Authorized BLM Officer at the time, in accordance with 43 CFR 3162.6. An above ground dry hole marker sealing the casing will have a weep hole which will allow pressure to dissipate and make detection of any fluid seepage easier. If below ground "well marker" is directed, ConocoPhillips Company will follow BLM requirements and standards for that method of abandonment. During final reclamation erosion is to be minimized through lower profile of any soil piles. Please see attached Surface Use Plan of Operations for more information.

**Topsoil redistribution:** Areas planned for interim reclamation will be re-contoured to the extent feasible. Topsoil will be evenly re-spread and re-vegetated over the disturbed area not needed for continuing production operations. At such time, as well is abandoned, disturbed areas will be re-contoured to a contour that blends with surrounding landscape. Topsoil will be redistributed evenly over the entire disturbed site to depth of 4-6 inches.

**Soil treatment:** The topsoil will be stripped and set along the designated perimeter of the wellsite. The next layer of dirt is moved with the cut and fill method whereby the highest point of the wellsite is cut into and then pushed to a lower side in order to balance the well pad. Upon well completion, the soil will be balanced back onto portions of the pad not needed for long-term operations. Erosion will be minimized by maintaining a lower stockpile profile. For additional information, please see attached Surface Use Plan of Operation.

**Existing Vegetation at the well pad:** The project area is located in a region of southeast New Mexico known as the Mescalero Plain. No named tributaries, streams or wetlands are in the near vicinity. Elevation is around 4045'. It is a broad, low relief area characterized by Mescalero sand (eolian) soil. Maljamar and Palomas fine sands occur throughout the area. Soil is well drained and has low water storage potential. This determines vegetation present on location. Vegetation in the

Well Name: PERIDOT 8 FEDERAL

Well Number: 14H

project area can be classified as transitional between the Plains-Mesa Sand Scrub and Chihuahuan Desert Scrub plant communities. The area surrounding the location is grazing grassland, which supports grasses and forbs. Frequently observed species include: honey mesquite, shinnery oak, perennial three-awn, sand bluestem, sand dropseed, giant dropseed, prince's plume, threadleaf groundsel, spectacle pod, sunflower, and plains flax. See attached Location Photos for visual example of vegetation existing onsite.

Existing Vegetation at the well pad attachment:

Peridot\_8\_Fed\_14H\_LocationPhotos\_20171012135945.pdf

Existing Vegetation Community at the road:

**Existing Vegetation Community at the road attachment:** 

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

**Existing Vegetation Community at other disturbances:** 

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

### Seed Management

#### Seed Table

· · · · · · ·

Seed type: Seed name:

eccu nume.

Source name:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

### Seed source:

Source address:

Proposed seeding season:

Well Name: PERIDOT 8 FEDERAL

Well Number: 14H

**Total pounds/Acre:** 

| Seed Summary |             |  |  |  |  |
|--------------|-------------|--|--|--|--|
| Seed Type    | Pounds/Acre |  |  |  |  |

Seed reclamation attachment:

### **Operator Contact/Responsible Official Contact Info**

First Name:

Last Name: Email:

Phone:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: Two Class B noxious weed species, African rue and Malta starthistle are of concern. ConocoPhillips Company will consult with BLM for acceptable weed control methods, if the need arises. Any weed control would follow USEPA and BLM requirements and standards.

Weed treatment plan attachment:

**Monitoring plan description:** Weeds will be controlled on disturbed areas within the exterior limits of the well pad. Monitoring will be in accordance with Best Management Practices and guidelines established by BLM. **Monitoring plan attachment:** 

**Success standards:** Success standards will utilize BLM approved methods, such as those described in the BLM "Gold Book" and those established by the Authorized Officer.

Pit closure description: No pits will be used, a closed-loop system will be in place.

Pit closure attachment:

### Section 11 - Surface Ownership

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

**BIA Local Office:** 

**BOR Local Office:** 

COE Local Office:

DOD Local Office:

NPS Local Office:

Well Number: 14H

| State Local Office:    |                       |
|------------------------|-----------------------|
| Military Local Office: |                       |
| USFWS Local Office:    |                       |
| Other Local Office:    |                       |
| USFS Region:           |                       |
| USFS Forest/Grassland: | USFS Ranger District: |

Disturbance type: WELL PAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: **BIA Local Office:** BOR Local Office: COE Local Office: **DOD Local Office:** NPS Local Office: State Local Office: Military Local Office: **USFWS Local Office: Other Local Office:** USFS Region: USFS Forest/Grassland: **USFS Ranger District:** 

Disturbance type: PIPELINE Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office:

COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: USFWS Local Office: Other Local Office: USFS Region:

USFS Forest/Grassland:

Disturbance type: OTHER

Describe: power line

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

**BIA Local Office:** 

**BOR Local Office:** 

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

**USFS Region:** 

USFS Forest/Grassland:

Well Number: 14H

USFS Ranger District:

• •

.

#### USFS Ranger District:

Well Name: PERIDOT 8 FEDERAL

Well Number: 14H

### Section 12 - Other Information

Right of Way needed? YES

#### Use APD as ROW? YES

**ROW Type(s):** 281001 ROW - ROADS,288100 ROW - O&G Pipeline,288101 ROW - O&G Facility Sites,288103 ROW - Salt Water Disposal Pipeline/Facility,289001 ROW- O&G Well Pad,FLPMA (Powerline)

**ROW Applications** 

SUPO Additional Information: For multi-well pad we request deferral of interim reclamation requirements until all wells noted on location have been drilled. Please review this APD with other Peridot 8 Federal wells; 1H, 2H, 3H, 4H, 5H, 7H, 11H, 12H, 13H, 14H, 15H, and 17H, Peridot 8 Federal CF1 Tank Battery will be constructed concurrent with the first well(s) drilled for this development. Long term disturbance for the facility pad will use 2.52 acres. 5766' of electric line to be installed adjacent to access road and utilize 1.32 acres. 1397' of buried gas sales line to be installed to Frontier connection will utilize 0.321 temporary acres and 0.962 permanent acres. If a gas sales line connection to DCP is installed, it will be about 6138'. utilize 4.23 permanent acres and 1.4 temporary acres. Gas Sales Line ROW may be used by third-party gas processor, depending on agreements reached. Up to four side by side produced water surface lines will be installed from Peridot 8 Federal CF1 Tank Battery to Elvis SWD well (16695'). These lines will be installed in 2 side by side ROWs requiring 7.67 (3.833 acres each). These lines will remain in place until a buried 8" pipeline is approved and installed. The buried SWD line will be 15676' and utilize about 10.8 permanent acres. Please see attached Surface Use Plan of Operations. Three key mitigation strategies are to be used for Peridot development; horizontal wells, interim reclamation and participation in conservation agreement. Development of these minerals could have been via vertical wells; approximately 12 wells. After reevaluation of options, two key actions are planned horizontal wells and multi-well pads where possible. This minimizes surface use, while improving project economics and results in significant surface use reduction. Interim reclamation is a component of our surface use mitigation. COPC intends to maximize interim reclamation to the greatest extent feasible for each location drilled. Current interim reclamation plans are included in survey plat packages for individual wells. COPC is a participant in the Candidate Conservation Agreement. Among mitigation measures are observing timing stipulations for Lesser-Prairie Chickens, as indicated by BLM, at the beginning of each breeding season. Also, well locations have been moved, in consultation with BLM biologists to avoid habitat of interest. Use a previously conducted onsite? YES

**Previous Onsite information:** Onsite for this well pad was completed 06/20/17. Surface Use Plan of Operation was finalized during onsites with the following attendees: Ms. Cepero-Rios, Ms. Brooks, Mr. Kauser, Mr. Mathis, Mr. Wasson, and Ms. Maunder, along with survey crew. Archaeological survey requirements have been met by block survey 2151, well pad survey 2262, and gas line and SWD line survey 2276. Well pad location is partially off-lease. Please review this application with Peridot 8 Federal 11H, 3H, 13H, 5H, 15H, 7H and 17H well applications.

### **Other SUPO Attachment**

Peridot\_8\_Fed\_14H\_FlowLineMapROW\_20171012143952.pdf Peridot\_8\_Fed\_14H\_ReclamationDiagram\_20171012144006.pdf Peridot\_8\_Fed\_SWD\_BuriedPipelineV2\_20171012144053.pdf Peridot\_8\_Fed\_Gas\_Sales\_Line\_20171012144113.pdf Peridot\_8\_Fed\_Power\_Line\_Plat\_20171012145733.pdf Peridot\_8\_Fed\_14H\_DevelopmentImage\_20171012145754.pdf Peridot\_8\_Fed\_14H\_SWD\_FlowLineToElvis\_20180122135554.pdf Peridot\_8\_Fed\_14H\_BuriedGasLinetoDCP\_20180122135629.pdf Peridot\_8\_Fed\_14H\_SUPOviaAccessV2\_20180122135756.pdf Peridot\_8\_Fed\_14H\_SUPOviaAccessV2\_20180122135756.pdf

# 

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

### **Section 1 - General**

Would you like to address long-term produced water disposal? NO

### Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO **Produced Water Disposal (PWD) Location: PWD** surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

**PWD disturbance (acres):** 

PWD Data Report

a farmer

02/27/2018

### Section 3 - Unlined Pits

#### Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

**Unlined pit Monitor attachment:** 

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

**Unlined Produced Water Pit Estimated percolation:** 

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

#### Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

**PWD surface owner:** 

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

**Underground Injection Control (UIC) Permit?** 

UIC Permit attachment:

### Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map:

### Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment: Injection well name:

#### Injection well API number:

PWD disturbance (acres):

**PWD** disturbance (acres):

| al Register Page                       | <u>≥</u> <b>∨</b> [Go | ) 🎝 😅 🔚 🗍 👘                               | く () >   今   型                                                              |                            | X                              | · · ·                                   |      |
|----------------------------------------|-----------------------|-------------------------------------------|-----------------------------------------------------------------------------|----------------------------|--------------------------------|-----------------------------------------|------|
|                                        |                       |                                           |                                                                             | •                          |                                |                                         |      |
|                                        |                       |                                           | IENT OF THE INTERIOF                                                        | <b>)</b> Due Ti            |                                |                                         |      |
| Click here to see                      | e on man              |                                           | OF LAND MANAGEMEN                                                           |                            | •                              | I                                       |      |
|                                        | - out toul.           |                                           | E RECORDATION                                                               | •                          | Page 1 of ?                    |                                         |      |
| Run Date: 0                            | 7/24/201              |                                           | Serial Register Page                                                        |                            |                                |                                         |      |
| 01 02-25-1920;0                        | -                     |                                           |                                                                             | tal Acres Se               | rial Number                    |                                         |      |
|                                        |                       | G EXCHANGE LEASE - PD                     |                                                                             |                            | C-0 029406B                    |                                         |      |
| Commodity 45                           |                       | L& GAS                                    |                                                                             |                            |                                | 1                                       |      |
| Case Dispositio                        | on: AUTH              | IORIZED                                   |                                                                             |                            |                                |                                         |      |
|                                        |                       |                                           | Serial Nu                                                                   | umber: NMLC 0 0            | 29406B                         |                                         | ·. • |
| Name & Addre                           | SS                    |                                           |                                                                             | Int R                      | el                             | % Intere                                |      |
| CHASE FERGUSON                         | GERENE                | 10 50/ 000                                | ARTESIA NM 88211                                                            |                            | FING RIGHTS                    | 0.000000000                             |      |
| CHASE OIL CORP<br>CHASE OIL CORP       |                       | PO BOX 1767                               | ARTESIA NM 882111767<br>ARTESIA NM 882111767                                | OPERAT                     | TING RIGHTS                    | 0.000000000000.000000000000000000000000 |      |
| CHASE RICHARD L                        |                       | PO BOX 1767<br>PO BOX 359                 | ARTESIA NM 882111767<br>ARTESIA NM 882110359                                |                            | ING RIGHTS                     | 0.000000000                             |      |
| CHASE ROBERT C                         |                       | PO BOX 297                                | ARTESIA NM 882111297                                                        | OPERAT                     | TING RIGHTS                    | 0.000000000                             |      |
| COG OPERATING L                        |                       | 600 W ILLINOIS AVE                        | MIDLAND TX 797014882                                                        |                            | ING RIGHTS                     | 0.00000000                              |      |
| CONOCOPHILLIPS                         |                       | PO BOX 7500<br>PO BOX 7500                | BARTLESVILLE OK 740057500<br>BARTLESVILLE OK 740057500                      | LESSEE                     | TING RIGHTS                    | 0.0000000000000000000000000000000000000 |      |
|                                        |                       |                                           |                                                                             |                            |                                |                                         |      |
| Mor Twp Rng Sec                        | е <b>т</b> .,         | p SNr Suff_Subdivision                    | Serial Nur District/Field Office                                            | nber: NMLC- 0 02<br>County |                                |                                         |      |
| 23 0170S 0320E 00                      |                       | S2N2,SE;                                  | CARLSBAD FIELD OFFICE                                                       | LEA                        | Mgmt Agency<br>BUREAU OF LAN   |                                         |      |
| 23 01705 0320E 00                      | 5 LOTS                | 1-4;                                      | CARLSBAD FIELD OFFICE                                                       | LEA                        | BUREAU OF LAN                  | D MGMT                                  |      |
| 23 0170S 0320E 00                      |                       | S2NE,SENW,E2SW;                           | CARLSBAD FIELD OFFICE                                                       | LEA                        | BUREAU OF LAN                  |                                         |      |
| 23 0170S 0320E 00                      |                       | 1-7;                                      | CARLSBAD FIELD OFFICE                                                       | LEA                        | BUREAU OF LAN                  |                                         |      |
| 23 01705 0320E 00<br>23 01705 0320E 00 |                       | E2W2,SE;<br>1-4;                          | CARLSBAD FIELD OFFICE<br>CARLSBAD FIELD OFFICE                              | LEA<br>LEA                 | BUREAU OF LAN<br>BUREAU OF LAN |                                         |      |
| 23 0170S 0320E 00                      |                       | SW;                                       | CARLSBAD FIELD OFFICE                                                       | LEA                        | BUREAU OF LAN                  |                                         |      |
|                                        |                       |                                           | 0                                                                           |                            |                                |                                         |      |
| Relinguished/W                         |                       |                                           |                                                                             | nber: NMLC- 0 02           |                                |                                         |      |
| 23 0170S 0320E 708                     | FF                    | E2,ASGN;                                  | CARLSBAD FIELD OFFICE                                                       | LEA                        | BUREAU OF L                    | AND MGMT                                |      |
|                                        |                       |                                           |                                                                             |                            |                                |                                         |      |
|                                        |                       |                                           |                                                                             | mber: NMLC- 0 02           |                                |                                         |      |
| Act Date<br>11/25/1933                 | Code<br>              | Action<br>APLU RECD                       | Action Remar                                                                | Pending Offi               |                                |                                         |      |
| 06/08/1934                             | 237                   | LEASE ISSUED                              |                                                                             |                            |                                |                                         |      |
| 06/08/1934                             | 496                   | FUND CODE                                 | 05;145003                                                                   |                            |                                |                                         |      |
| 06/08/1934<br>06/08/1934               | 534<br>868            | RLTY RATE-SLIDING-SCH D<br>EFFECTIVE DATE |                                                                             |                            |                                |                                         |      |
| 09/14/1945                             | 570                   | CASE SEGREGATED BY ASGN                   | INTO NMEMO64149;                                                            |                            |                                |                                         |      |
| 01/06/1953                             | 650                   | HELD BY PROD - ACTUAL                     |                                                                             |                            |                                |                                         |      |
| 01/06/1953                             | 65 B                  | MEMO OF IST PROD-ACTUAL                   |                                                                             |                            |                                |                                         |      |
| 10/24/1979                             | 940                   | NAME CHANGE RECOGNIZED                    | CONTL OIL/CONOCO INC                                                        |                            |                                |                                         |      |
| 01/11/1983                             | 140                   | ASGN FILED                                | (1) CONOCO/PETRO LEWIS                                                      |                            |                                |                                         |      |
| 01/11/1983<br>01/11/1983               | -140<br>140           | ASGN FILED<br>ASGN FILED                  | <ul><li>(1) CONOCO / PENRSHP PRO</li><li>(2) CONOCO / PETRO LEWIS</li></ul> |                            |                                |                                         |      |
| 01/11/1983                             | 140                   | ASGN FILED                                | (2) CONOCO/PINESHP PRO                                                      |                            |                                |                                         |      |
| 02/11/1983                             | 140                   | ASGN FILED                                | PETRO/PINRSHP PROF                                                          |                            |                                |                                         |      |
| 01/25/1985                             | 139                   | ASGII APPROVED                            | (1) EFF 02/01/83;                                                           |                            |                                |                                         |      |
| 01/25/1985                             | 139                   | ASGN APPROVED                             | (2) EFF 02/01/83;                                                           |                            |                                |                                         |      |
| 01/25/1985                             | 139                   | ASGN APPROVED                             | (3)EIT 02/01/83;<br>(4)EEE 02/01/83;                                        |                            |                                |                                         |      |
| 01/25/1985<br>01/25/1985               | 139<br>139            | ASCN APPROVED<br>ASGN APPROVED            | (4)EFF 02/01/83;<br>EFF 03/01/63;                                           |                            |                                |                                         |      |
| 02/05/1985                             | 963                   | CASÉ MICROFILMED/SCANNED                  | CNUM 100,429 GLC                                                            |                            |                                |                                         |      |
| 11/03/1987                             | 974                   | AUTOMATED RECORD VERIF                    | JAM/DCE                                                                     |                            |                                |                                         |      |
| 07/26/1988                             | 140                   | ASGN FILED                                | PTURSHP PPCP/FMP OPER                                                       |                            |                                |                                         |      |
|                                        |                       |                                           | EFF 02/01/96;                                                               |                            |                                |                                         |      |

https://epmpub.blm.gov/raframework/ihtml/OpenDoc?DocInstanceID=29 & DocUUID=000...~7/24/2017

#### Peridot 8 Fed 14H

| String Section        | Depth<br>MD | Depth<br>TVD | Csg<br>length ft | Wt   | MIY |      | Col  | Pipe Str | Jt Str | Drill Fluid |
|-----------------------|-------------|--------------|------------------|------|-----|------|------|----------|--------|-------------|
| Surface Casing        | 885         | 885          | 885              | 54.5 |     | 2730 | 1130 | 853000   | 514000 | 8.5         |
| Intermediate 1 Casing | 2250        | 2250         | 2250             | 40   |     | 3950 | 2570 | 630000   | 520000 | 10          |
| Production 1 Casing   | 5200        | 5200         | 5200             | 29   |     | 8160 | 7020 | 676000   | 587000 | 9           |
| Production 2 Casing   | 13433       | 6115         | 8233             | 17   |     | 7740 | 6290 | 397000   | 338000 | 9           |
|                       |             |              |                  |      |     |      |      |          |        |             |
|                       |             |              |                  |      |     |      |      |          |        |             |

#### Collapse Design (Safety) Factors – BLM Criteria

Collapse Design (Safety) Factor: SFc

SFc = Pc / (MW x .052 x Ls)

Where

• Pc is the rated pipe Collapse Pressure in pounds per square inch (psi)

391

= 2.89

- MW is mud weight in pounds per gallon (ppg)
- Ls is the length of the string in feet (ft)

The Minimum Acceptable Collapse Design (Safety) Factor SFc = 1,125

### Surface Casing

| 510-                           | 1150 | ' | 331  | _ | 2.03 |
|--------------------------------|------|---|------|---|------|
| Intermediate 1 Casing<br>SFc = | 2570 | 1 | 1170 | = | 2.20 |
| Production 1 Casing<br>SFc =   | 7020 | 1 | 2434 | = | 2.88 |
| Production 2 Casing<br>SFc =   | 6290 | 1 | 2862 | = | 2.20 |

1130 /

#### Pipe Strength Design (Safety) Factors - BLM Criteria

Pipe Strength Design (Safety) Factor: SFtp SFtp = Fp / Wt;

Where

Fp is the rated pipe Body Strength in pounds (Ibs)

• Wt is the weight of the casing string in pounds (lbs)

The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant

#### Surface Casing

| SFi Dry =<br>SFi Bouyant =                               | 853000<br>853000 | /<br>/ ( | 48232.5<br>48232.5 | =<br>x | 1 <b>7.7</b><br>0.870 | ) = | 20.3 |
|----------------------------------------------------------|------------------|----------|--------------------|--------|-----------------------|-----|------|
| Intermediate 1 Casing<br>SFi Dry =<br>SFi Bouyant =      | 630000<br>630000 | /<br>/ ( | 90000<br>90000     | =<br>× | <b>7.00</b><br>0.847  | ) = | 8.26 |
| Production 1 Casing<br>SFi Dry =<br>SFi Bouyant =        | 676000<br>676000 | /<br>/ ( | 150800<br>150800   | =<br>x | <b>4.48</b><br>0.863  | ) = | 5.20 |
| <b>Production 2 Casing</b><br>SFi Dry =<br>SFi Bouyant = | 397000<br>397000 | /<br>/ ( | 139961<br>139961   | =<br>x | <b>2.84</b><br>0.863  | ) = | 3.29 |

#### Burst Design (Safety) Factors – BLM Criteria

Burst Design (Safety) Factor: SFb

SFb = Pi / BHP

- Where
  - Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps
  - BHP is bottom hole pressure in pounds per square inch (psi)
- The Minimum Acceptable Burst Design (Safety) Factor SFb = 1.0

| Surface Casi | ng       |   |      |   |      |
|--------------|----------|---|------|---|------|
| SFb =        | 2730     | / | 391  | = | 6.98 |
| Intermediate | 1 Casing |   |      |   |      |
| SFb =        | ·3950    | 1 | 1170 | = | 3.38 |
| Production 1 | Casina   |   |      |   |      |
| SFb =        | 8160     | 1 | 2434 | = | 3.35 |
|              |          | , | 2404 |   | 0.00 |
| Production 2 | -        |   |      |   |      |
| SFb =        | 7740     | / | 2862 | = | 2.70 |

#### Joint Strength Design (Safety) Factors - BLM Criteria

Joint Strength Design (Safety) Factor: SFtj SFtj = Fj / Wt;

Where

• Fj is the rated pipe Joint Strength in pounds (lbs)

• Wt is the weight of the casing string in pounds (lbs)

The Minimum Acceptable Joint Strength Design (Safety) Factor SFTj = 1.6 dry or 1.8 buoyant

| Surface Cas   | sing       |     |         |   |       |     |      |
|---------------|------------|-----|---------|---|-------|-----|------|
| SFi Dry =     | 514000     | 1   | 48232.5 | = | 10.7  |     |      |
| SFi Bouyant = | 514000     | / ( | 48232.5 | × | 0.870 | ) = | 12.2 |
| Intermediat   | e 1 Casing |     |         |   |       |     |      |
| SFi Dry =     | 520000     | 1   | 90000   | = | 5.78  |     |      |
| SFi Bouyant = | 520000     | / ( | 90000   | × | 0.847 | ) = | 6.82 |
| Production    | 1 Casing   |     |         |   |       |     |      |
| SFi Dry ≈     | 587000     | 1   | 150800  | = | 3.89  |     |      |
| SFi Bouvant = | 587000     | 11  | 150800  | x | 0,863 | ) = | 4.51 |

| Production    | 2 Casing |     |        |   |       |     |      |
|---------------|----------|-----|--------|---|-------|-----|------|
| SFi Dry =     | 338000   | 1   | 139961 | = | 2.41  |     |      |
| SFi Bouyant = | 338000   | / ( | 139961 | x | 0.863 | ) = | 2.80 |

# **WAFMSS**

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

### **Bond Information**

Federal/Indian APD: FED

BLM Bond number: ES0085

**BIA Bond number:** 

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Bond Info Data Report

Is the reclamation bond BLM or Forest Service?

**BLM reclamation bond number:** 

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

**Reclamation bond number:** 

**Reclamation bond amount:** 

**Reclamation bond rider amount:** 

Additional reclamation bond information attachment: