Form 3160-3 (March 2012) UNITED STATES DEPARTMENT OF THE BUREAU OF LAND MAN APPLICATION FOR PERMIT TO Ia. Type of work: DRILL REENT Ib. Type of Well: Oil Well Gas Well Other 2. Name of Operator CONOCOPHILLIPS COMPANY	S INTERI NAGEM	IOR ENT	OBBS OF	CO COB ENE	FORM OMB Expires (5. Lease Serial No. NMLC029406B	APPROVI No. 1004-01 Detober 31, 2	37 2014
APPLICATION FOR PERMIT TO	DRILL	. Or	REENT	-	6. If Indian, Allotee	or Tribe	Name
la. Type of work:	ER				7 If Unit or CA Agre	eement, Na	ame and No.
Ib. Type of Well: 🔽 Oil Well 🔲 Gas Well 🛄 Other	[✓ Sing	gle Zone 🔲 Multip	le Zone	8. Lease Name and PERIDOT 8 FEDE		(320830)
2. Name of Operator CONOCOPHILLIPS COMPANY	1781	$\overline{)}$			9. API Well No. 30-025-5	4459	7.A
3a. Address 600 N. Dairy Ashford Rd Houston TX 77079		ne No.	(include area code)		10. Field and Pool, or MALJAMAR / YES	Explorator	(44500)
4. Location of Well (Report location clearly and in accordance with a					11. Sec., T. R. M. or E	Ilk. and Su	rvey or Area
At surface NESW / 2237 FSL / 2440 FWL / LAT 32.848					SEC 8 / T17S / R3	2E / NM	P
At proposed prod. zone LOT 3 / 2310 FSL / 330 FWL / LA 14. Distance in miles and direction from nearest town or post office*	T 32.848	3294 /	LONG -103.81343	36	12. County or Parish		13. State
1.4 miles					LEA		NM
 Distance from proposed* location to nearest 200 feet property or lease line, ft. (Also to nearest drig. unit line, if any) 	16. No 1606.		res in lease	17. Spacin 241	g Unit dedicated to this	well	
 Distance from proposed location* to nearest well, drilling, completed, 140 feet 	19. Pro	oposed	Depth	20. BLM/I	BIA Bond No. on file		
applied for, on this lease, ft.	5485	feet /	12783 feet	FED: ES	80085		
21. Elevations (Show whether DF, KDB, RT, GL. etc.) 4047 feet	1 .	proxim 5/2018	ate date work will star	rt*	23. Estimated duration 21 days	n	
			ments				
The following, completed in accordance with the requirements of Onshe	ore Oil and	d Gas C	rder No.1, must be at	tached to th	is form:		
 Well plat certified by a registered surveyor. A Drilling Plan. 			 Bond to cover the Item 20 above). 	ne operatio	ns unless covered by an	existing l	bond on file (see
 A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office). 	n Lands, ti	he	5. Operator certific		ormation and/or plans a	s may be r	equired by the
25. Signature (Electronic Submission)			Printed/Typed) Maunder / Ph: (28	31)206-52	81	Date 10/09/	2017
Title Senior Coordinator, Regulatory MCBU	1		· ···	<u> </u>			
Approved by (Signature)	1	Name (Printed/Typed)			Date	
(Electronic Submission)			ayton / Ph: (575)2	34-5959		02/23/	/2018
Title Supervisor Multiple Resources		Office CARL:	SBAD				
Application approval does not warrant or certify that the applicant hol conduct operations thereon. Conditions of approval, if any, are attached.				ts in the sub	ject lease which would o	entitle the	applicant to
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a States any false, fictitious or fraudulent statements or representations as	crime for s to any ma	any per atter wi	son knowingly and w thin its jurisdiction.	villfully to n	nake to any department of	or agency	of the United
(Continued on page 2) Ect 09/09/1	8				*(Inst	truction	s on page 2)

*(Instruction) APPROVED WITH CONDITIONS APProval Date: 02/23/2018

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Approval Date: 02/23/2018

	4	2.1	-1	1	
•	1	2.5	٤.		

lale, de pontre de la realitación. COST 1940 de 1959 de la constante

Additional Operator Remarks

Review and Appenl Rights

teres An Mesule in Dista

Signer and 1010 12 .

Location of Well 1. SHL: NESW / 2237 FSL / 2440 FWL / TWSP 175 / RANGE: 32E / SECTION: 8 / LAT: 32.848067./ LONG: -103.789272 (TVD: 0 feet, MD: 0 feet) PPP: NESW / 2307 FSL / 2246 FWL / TWSP 175 / RANGE: 32E / SECTION: 8 / LAT: 32.848241 / LONG: -103.789272 (TVD: 5465 feet, MD: 5520 feet) BHL: LOT 3 / 2310 FSL / 330 FWE / TWSP 175 / RANGE: 32E / SECTION: 7 / LAT: 32.848294 / LONG: -103.813436 (TVD: 5465 feet, MD: 12783 feet) CONCAL DE CON

BLM Point of Contact of the second

Name: Judith Yeager Title: Legal Instruments Examiner The State of the

Email: jyeager@blm.gov

Chysterauner (Art 1979) Shenos (Art 1966)

Emel and a statement of the second second

等于热情 经投资计 化四十倍化比率

Copressientes Service

【第四届公共 J - 5-3

ndady Herbiter Tay.

(Four 1160.3, page 3)

Approval Date: 02/23/2018

(Form 3160-3, page 3)

FAFMSS O ROUTS IN		Application I	Data Report 02/26/2018
BUREAU OF LAND MANAGEMENT		Jan Barrow	02/20/2018
I well'i Abe: OIF MERDUUGU CE Pete	SiCOMPANY Spenioven Count Hill Work (1991) (EL Well Nun (Olt (1991) State State (1991)	iber: 4H ² Colore at the set of stranding at the provest k Type: Driller rate colore the	reflects the most recent changes <u>Show Final Text</u>
Section 1 - General	ante a managente al conservente Ante a managente al conservente	SALL IS AN LONDER HIS ED SPACE	
APD ID: 10400019653	त्राम् डे Tie to previous NOS?	Submiss	nueM dapp8 : 00000 ion Date: 10/09/2017
BLM Office: CARLSBAD	User: Susan Maunder	Title: Senior Co	ordinator. Regulatory
Federal/Indian APD: FED	Is the first lease penet	ox1 D'MCBU (شین Altor rated for production Federal کال دواند	or Indian? FED noteur Manager
Lease number: NMLC029406B	Lease Acres: 1606.8		-
Surface access agreement in place	? Allotted?	Reservation:	Personal (2841)206-52
Agreement in place? NO	Federal or Indian agre	⊭գ∜ներածին շ©րինեներ։ Հերա ement:	ang series. Sang
Agreement number:		GRANNER L	Field Repr
Agreement name:		1.0. 5 -8	Representation
Keep application confidential? NO		2011-1	•
Permitting Agent? NO	APD Operator: CONOC	COPHILLIPS COMPANY	Street Address
Operator letter of designation:	Peridot_8_Fed_4H_SerialRegiste	ುಂಕಟಿಡಿ erPgs_20171003133248.pdf	$\mathbf{C}^{(n)}$
	Peridot_8_Fed_4H_JOA_Certif_L	• =	ar og s
	Peridot_8_Fed_4H_Leases_w_w	ellsMap_20171003133320.pdf	-national light

Operator Info

Operator Organization Name: CONOCOPHILLIPS COMPANY

Operator Address: 600 N. Dairy Ashford Rd

Zip: 77079

Operator PO Box:

Operator City: Houston State: TX

Operator Phone: (281)293-1748

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO Mater Development Plan name: Well in Master SUPO? NO Master SUPO name: Well in Master Drilling Plan? NO Master Drilling Plan name: Well Name: PERIDOT 8 FEDERAL

Field/Pool or Exploratory? Field and Pool

Well Number: 4H Field Name: MALJAMAR

Well API Number:

Pool Name: YESO WEST

Page 1 of 3

Well Number: 4H

Is the proposed well in an area containing other mineral resources? NONE

Describe other minerals:

Is the proposed well in a Helium produc	tion area? N	Use Existing Well Pad?	NO	New surface disturbance?
Type of Well Pad: MULTIPLE WELL		Multiple Well Pad Name:	:	Number: 4H
Well Class: HORIZONTAL	٢	PERIDOT 8 FED Number of Legs: 1		
Well Work Type: Drill				
Well Type: OIL WELL				
Describe Well Type:				
Well sub-Type: INFILL				
Describe sub-type:				
Distance to town: 1.4 Miles	Distance to ne	arest well: 140 FT	Distance	e to lease line: 200 FT
Reservoir well spacing assigned acres I	Measurement	241 Acres		
Well plat: Peridot_8_Fed_4H_C102sig	ned_2017100	3133345.pdf		
Well work start Date: 05/15/2018		Duration: 21 DAYS		

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number:

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
SHL Leg #1	223 7	FSL	244 0	FWL	17S	32E	8	Aliquot NESW	32.84806 7	- 103.7892 72	LEA	NEW MEXI CO	NEW MEXI CO	F	NMLC0 29406B	404 7	0	0
KOP Leg #1	230 8	FSL	244 0	FWL	17S	32E	8	Aliquot NESW	32.84824	- 103.7892 72	LEA	NEW MEXI CO	NEW MEXI CO	F	NMLC0 29406B	- 100 3	505 0	505 0
PPP Leg #1	230 7	FSL	224 6	FWL	17S	32E	8	Aliquot NESW	32.84824 1	- 103.7900 1	LEA	NEW MEXI CO		F	NMLC0 29406B	- 141 8	552 0	546 5

Operator Name: CONOCOPHILLIPS COMPANY

Well Name: PERIDOT 8 FEDERAL

Well Number: 4H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	۵۷۲
EXIT	231	FSL	330	FWL	17S	32E	7	Lot	32.84829	-	LEA	NEW	NEW	F	NMLC0	-	127	548
Leg	0							3	4	103.8134		MEXI	MEXI		29406B	143	83	5
#1										36		со	co			8		
BHL	231	FSL	330	FWL	17S	32E	7	Lot	32.84829	-	LEA	NEW	NEW	F	NMLC0	-	127	548
Leg	0							3	4	103.8134		MEXI	MEXI		29406B	143	83	5
#1										36		со	со			8		

Click here to se	ee on map	BUREAU C	ENT OF THE INTERIOR OF LAND MANAGEMENT E RECORDATION	Run	n Time: 04:01 Page 1 of	
Run Date: (07/24/201	7 (MASS)	Serial Register Page			
	0771: O8 59: OI	4437;30USC226 G EXCHANGE LEASE - PD L & GAS IORIZED			Serial Number MLC– 0 029406B	i .
			Serial Num	ber: NMLC	0 029406B	
Name & Addre	ess			In	t Rel	% Intere
CHASE FERGUSO		PO BOX 693	ARTESIA NM 88211	OP	ERATING RIGHTS	0.000000000
CHASE OIL CORP		PO BOX 1767	ARTESIA NM 882111767		ERATING RIGHTS	0.000000000
CHASE OIL CORP		PO BOX 1767	ARTESIA NM 862111767	LES	SSEE	0.000000000
CHASE RICHARD I		PO BOX 359	ARTESIA NM 882110359		ERATING RIGHTS	0.000000000
CHASE ROBERT C		PO BOX 297	ARTESIA NM 882111297		ERATING RIGHTS	0.000000000
COG OPERATING		600 W ILLINOIS AVE	MIDLAND TX 797014882		ERATING RIGHTS	0.000000000
CONOCOPHILLIPS		PO BOX 7500	BARTLESVILLE OK 740057500		ERATING RIGHTS	0000000000
CONCOUPRILLIPS		PO BOX 7500	BARTLESVILLE OK 740057500	LES	SSEE	0.000000000
			Serial Numb	er: NMLC- 0	029406B	
Mer Twp Rng Sec		p SNr Suff Subdivision	District/Field Office	County	Mgmt Age	
23 0170S 0320E 0		S2N2.SE:	CARLSBAD FIELD OFFICE	LEA		F LAND MGMT
23 0170S 0320E 0		1-4;	CARLSBAD FIELD OFFICE	LEA		LAND MGMT
23 0170S 0320E 0		S2NE,SENW,E2SW;	CARLSBAD FIELD OFFICE	LEA		F LAND MGMT
23 0170S 0320E 0		1-7;	CARLSBAD FIELD OFFICE	LEA		F LAND MGMT
	07 ALIQ	E2W2,SE;	CARLSBAD FIELD OFFICE	LEA		LAND MGMT
23 0170S 0320E 0		1-4;	CARLSBAD FIELD OFFICE	LEA		LAND MGMT
23 0170S 0320E 0	OO8 ALIQ	SW;	CARLSBAD FIELD OFFICE	LEA	BUREAU OF	F LAND MGMT
Relinguished/V	Vithdrawn	Lands	Serial Numb	er: NMLC 0	029406B	
23 01705 0320E 708	FF	E2,ASGN;	CARLSBAD FIELD OFFICE	LEA	BUREAU	OF LAND MGMT
			Serial Numb	er: NMLC- 0	029406B	
			eend numb			
	Code	Action	Action Remar	Pending (
11/25/1933	124	APLN RECD	Action Remar	Penaing		
11/25/1933 06/08/1934	124 237	APLN RECD		Pending		
1172571933 0670871934 0670871934	124 237 496	APLN RECD NEASE ISSUED FUND CODE	Action Remar	Penaing		
11/25/1933 06/08/1934 06/08/1934 06/08/1934	124 237 496 534	APLN RECO HEASE ISSUED FUND CODE SLITY RATE-SLIDING-SCH D		Pending (Ņ
11/25/1533 06/08/1934 06/08/1934 06/08/1934 06/08/1934	124 237 496 534 868	APEN RECC LEASE ISSUED FUND CODE SLITY RATE-SLIDING-SCH D EFFECTIVE DATE	05;145003	Penaing		Ņ
11/25/1933 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945	124 237 496 534 668 570	APLN RECE LEASE ISSUED FUND CODE SLITY RATE-SLIDING-SCH D EFFECTIVE DATE CASE SEGREGATED BY ASGN		Penaing		`
11/25/1933 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953	124 237 496 534 668 570 650	APLH RECE LEASE ISSUED FUND CODE SLITY RATE-SLIDING-SCH D EFFECTIVE DATE CASE SEGREGATED BY ASCN HELD BY PFCD - ACTUAL	05;145003	Penaing		v
11/25/1933 06/08/1934 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953 01/06/1953	<u>124</u> 237 496 534 668 570 650 650	APLH RECS LEASE ISSUED FUND CODE SLITY RATE-SLIDING-SCH D EFFECTIVE DATE CASE SESREGATED EY ASGN HELD BY PFCD - ACTUAL MEMO OF IST PROD-ACTUAL	05;145003 INTO IMMIMO64149;	Penaing		,
11/25/1533 06/08/1934 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953 01/06/1953 10/24/1979	124 237 496 534 668 570 650 650 658 940	AFLI FECE LEASE ISSUED FUND CODE RLTY RATE-SLIDING-SCH D EFFECTIVE DATE CASE SEGREGATED EY ASGN HELD BY PFCD - ACTUAL MEMO OF IST PROD-ACTUAL NAME CHANGE RECOGNIZED	05;145003 INTO INMIMO64149; CONTL 01L/COXOCO INC	Penaing		,
11/25/1533 06/08/1934 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953 01/06/1953 01/06/1953 10/24/1979 01/12/1923	124 237 496 534 668 570 650 650 658 940 140	AFLI FECE LEASE ISSUED FUND CODE SLIY RATE-SLIDING-SCH D EFFECTIVE DATE CASE SEGREGATED EY ASCN HELD BY PFCD - ACTUAL MEMO OF IST PROD-ACTUAL NAME CHANGE SECOGNIZED ASCH FILED	05;145003 INTO INMINO64149; CONTL 011/CONOCO INC (1)CONOCO/PETRO LEMIS	Penaing (v
11/25/1933 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953 01/06/1953 01/06/1953 01/26/1953 01/21/1983	124 237 496 534 868 570 650 658 940 140 140	AFLI FECE LEASE ISSUED FUND CODE SLITY RATE-SLIDING-SCH D EFFECTIVE DATE CASE SEGREGATED BY ASGN HELD BY PFOD - ACTUAL MEMO OF IST FROD-ACTUAL NAME CHANGE RECOGNIZED ASGN FILED ASGN FILED	05;145003 ENTO INMEMOGA149; CONTL OLL/CONCCO INC (1)CONCCO/PERSO LENIS (1)CONCCO/PERSOPE PRO	Penaing		'n
11/25/1933 06/08/1934 06/08/1934 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953 01/06/1953 01/06/1953 01/26/1953 01/21/1923 01/11/1923	124 237 496 534 868 570 650 658 940 140 140	APLN FECS LEASE ISSUED FUND CODE SLITE RATE-SLIDING-SCH D EFFECTIVE DATE CASE SEGREGATED BY ASGN HELD BY PFOD - ACTUAL MEMO OF IST PROD-ACTUAL NAME CHANGE RECOGNIZED ASGN FILED ASGN FILED	05;145003 ENTO INMIMO64149; CONTL OLL/CONCCO INC (1)CONCCO/PERS LENTS (2)CONCCO/PERS LENTS	Penaing		,
11/25/1933 05/08/1934 06/08/1934 06/08/1934 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953 01/06/1953 01/21/1923 01/11/1923 01/11/1923	124 237 496 534 668 570 650 650 658 940 140 140 140 140	AFUN FECS LEASE ISSUED FUND CODE SLITY RATE-SLIDING-SCH D EFFECTIVE DATE CASE SEGREGATED EY ASGN HELD BY PFOD - ACTUAL MEMO OF IST FROD-ACTUAL NAME CHANGE RECOGNIZED ASGN FILED ASGN FILED ASGN FILED	05;145003 INTO INMINO64149; CONTL 01L/CONCCO 111C (1)CONCCO/PETRO LENIS (2)CONCCO/PETRO LENIS (2)CONCCO/PETRO LENIS (2)CONCCO/PETRO LENIS	Penaing (ν.
11/25/1933 06/08/1934 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953 01/06/1953 01/26/1953 01/21/1983 01/11/1983 01/11/1983 02/11/1983	124 237 496 534 668 570 659 659 940 140 140 140 140	AFLI FECE LEASE ISSUED FUND CODE RUTY RATE-SLIDING-SCH D EFFECTIVE DATE CASE SESREGATED EY ASCK HELD BY PFCD - ACTUAL MEMO OF IST PROD-ACTUAL NAME CHANGE RECOGNIZED ASCH FILED ASCH FILED ASCH FILED ASCH FILED ASCH FILED	05;145003 INTO INMIN064149; CONTL 01L/CONOCO INC (1)CONOCO/PETRO LEMIS (2)CONOCO/PETRO LEMIS (2)CONOCO/PETRSHE PRO 2)CONOCO/PETRSHE PROF	Penaing (Υ.
11/25/1933 05/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953 01/06/1953 01/26/1953 01/21/1983 01/11/1983 01/11/1983 01/11/1983	124 237 496 534 668 570 650 658 940 140 140 140 140 140 139	AFLI FECE LEASE ISSUED FUND CODE SLIY RATE-SLIDING-SCH D EFFECTIVE DATE CASE SEGREGATED EY ASCN HELD BY PFCD - ACTUAL MEMO OF IST PROD-ACTUAL NAME CHANGE SECOGNIZED ASGN FILED ASGN FILED ASGN FILED ASGN FILED ASGN FILED	05:145003 ENTO INMIMO64149; CONTL OLL/CONOCO INC (1)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (1)EFF 02/01/83:	Penaing (, ,
11/25/1933 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953 01/06/1953 01/21/1983 01/11/1983 01/11/1983 01/11/1983 01/21/1983 01/25/1985 01/25/1985	124 237 496 534 668 570 658 940 140 140 140 140 140 140 129	AFLI FECE LEASE ISSUED FUND CODE RUTY RATE-SLIDING-SCH D EFFECTIVE DATE CASE SESREGATED EY ASCK HELD BY PFCD - ACTUAL MEMO OF IST PROD-ACTUAL NAME CHANGE RECOGNIZED ASCH FILED ASCH FILED ASCH FILED ASCH FILED ASCH FILED	05;145003 INTO INMIN064149; CONTL 01L/CONOCO INC (1)CONOCO/PETRO LEMIS (2)CONOCO/PETRO LEMIS (2)CONOCO/PETRSHE PRO 2)CONOCO/PETRSHE PROF	Penaing (·
11/25/1933 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953 01/06/1953 01/21/1983 01/11/1983 01/11/1983 01/11/1983 01/25/1985 01/25/1985	124 227 496 534 668 570 650 654 140 140 140 140 140 140 140 139	APLN FECS LEASE ISSUED FUND CODE SLITE RATE-SLIDING-SCH D EFFECTIVE DATE CASE SEGREGATED BY ASGN HELD BY PFOD - ACTUAL MEMO OF IST PROD-ACTUAL NAME CHANGE RECOGNIZED ASGN FILED ASGN FILED ASGN FILED ASGN FILED ASGN FILED ASGN APPROVED ASGN APPROVED ASGN APPROVED	05;145003 ENTO INMIMO64149; CONTL OLL/CONOCO INC (1)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (3)EFF 02/01/03; (3)EFF 02/01/03;	Penaing (,
11/25/1933 06/08/1934 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953 01/06/1953 10/24/1979 01/11/1983 01/11/1983 01/11/1983 01/11/1983 01/21/1985 01/25/1985 01/25/1985	124 227 496 534 568 570 658 940 140 140 140 140 139 139 139	AFLI FECE LEASE ISSUED FUND CODE RLTY RATE-SLIDING-SCH D EFFECTIVE DATE CASE SEORGATED EY ASGN HELD BY PFOD - ACTUAL MEMO OF IST FROD-ACTUAL MAME CHANGE RECOGNIZED ASGN FILED ASGN FILED ASGN FILED ASGN FILED ASGN FILED ASGN APPROVED ASGN APPROVED ASGN APPROVED	05;145003 ENTO IMMIM064149; CONTL OLL/CONCCO INC (1)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO PROF PETRO/PTIRSHP PROF (1)EFF 02/01/83; (2)EFF 02/01/83;	Penaing (,
Act Date 11/25/1533 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953 01/26/1953 01/21/1983 01/11/1983 01/11/1983 01/11/1983 01/25/1985 01/25/1985 01/25/1985	124 237 496 534 668 570 650 650 140 140 140 140 140 140 129 139 139	AFLI FECE LEASE ISSUED FUND CODE SLITY RATE-SLIDING-SCH D EFFECTIVE DATE CASE SEGREGATED EY ASCN HELD BY PFOD - ACTUAL MAME CHANGE RECOGNIZED ASCH FILED ASCH FILED ASCH FILED ASCH FILED ASCH FILED ASCH APPROVED ASCH APPROVED ASCH APPROVED ASCH APPROVED ASCH APPROVED	05;145003 ENTO INMIN064149; CONTL 01L/CONCCO INC (1)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (3)EFF 02/01/83; (5)EFF 02/01/83; EFF 03/01/52;	Penaing (,
11/25/1933 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953 01/06/1953 01/26/1953 01/21/1983 01/11/1983 01/11/1983 01/11/1983 01/25/1985 01/25/1985 01/25/1985 01/25/1985 01/25/1985	124 237 496 534 568 570 650 650 650 140 140 140 140 140 140 140 140 129 139 139 139 139 239	AFLI FECE LEASE ISSUED FUND CODE RLTY RATE-SLIDING-SCH D EFFECTIVE DATE CASE SEORGATED EY ASGN HELD BY PFOD - ACTUAL MEMO OF IST FROD-ACTUAL MAME CHANGE RECOGNIZED ASGN FILED ASGN FILED ASGN FILED ASGN FILED ASGN FILED ASGN APPROVED ASGN APPROVED ASGN APPROVED	05:145003 ENTO INMIMO64149; CONTL OLL/CONOCO INC (1)CONOCO/PETRO LEMIS (2)CONOCO/PETRO LEMIS (2)CONOCO/PETRO LEMIS (2)CONOCO/PETRO LEMIS (2)CONOCO/PETRO LEMIS (2)CONOCO/PETRO LEMIS (2)CONOCO/PETRO LEMIS (2)CONOCO/PETRO LEMIS (2)CONOCO/PETRO LEMIS (2)EFF 02/01/83; (3)EFF 02/01/83; EFF 02/01/83; EFF 03/01/65; CHUM 100,429 GLC	Penaing (,
11/25/1933 06/08/1934 06/08/1934 06/08/1934 06/08/1934 06/08/1934 09/14/1945 01/06/1953 01/06/1953 10/24/1979 01/11/1983 01/11/1983 01/11/1983 01/11/1983 01/21/1985 01/25/1985 01/25/1985	124 237 496 534 668 570 650 650 140 140 140 140 140 140 129 139 139	AFLI FECE LEASE ISSUED FUND CODE SLIY RATE-SLIDING-SCH D EFFECTIVE DATE CASE SEGREGATED EY ASGN HELD BY PFOD - ACTUAL MEMO OF 1ST PROD-ACTUAL MAME CHANGE SECOGNIZED ASGN FILED ASGN FILED ASGN FILED ASGN APPROVED ASGN APPROVED ASGN APPROVED ASGN APPROVED CASE MICROFILMED/SCANNED	05;145003 ENTO INMIN064149; CONTL 01L/CONCCO INC (1)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (2)CONOCO/PETRO LENIS (3)EFF 02/01/83; (5)EFF 02/01/83; EFF 03/01/52;	Penaing (

https://epmpub.blm.gov/raframework/ihtml/OpenDoc?DocInstanceID=29&DocUUID=000... 7/24/2017

Susan B. Maunder Sr. Coordinator, Regulatory Phone: (281) 206-5281 ConocoPhillips Company 600 N. Dairy Ashford Road, Off EC3-10-W285 Houston, TX 77079-1175

October 3, 2017

Bureau of Land Management Carlsbad Field Office 620 East Greene Street Carlsbad, New Mexico 88220-6292

RE: Joint Operating Agreement Pending APD – Peridot 8 Federal 4H,14H Section 8, T17S, R32E Lease Numbers – NMLC 064149, NMLC 029406B

Dear Sir or Madam,

ConocoPhillips Company has negotiated a Joint Operating Agreement ("JOA") with COG Operating LLC, evidenced by a previously enclosed Memorandum of Operating Agreement, which covers approximately 480 acres in Township 17 South, Range 32 East. The JOA, along with an associated settlement letter, provides access to surface operated by the other party. This mutual access will allow more oil and gas resource recovery by maximizing horizontal wellbore formation contact.

Please accept this letter as certification our two companies agree on operating rights within the Peridot 8 Federal area. In regards to Peridot development, COP respectfully requests the BLM to process the referenced APD to afford maintenance of the lease in a timely manner.

If you have questions regarding this certification, I can be reached at 281-206-5281 or via email at Susan.B.Maunder@conocophillips.com.

Sincerely,

Susan B. Maunder

Susan B. Maunder Senior Coordinator, Regulatory ConocoPhillips Company

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

APD ID: 10400019653

Operator Name: CONOCOPHILLIPS COMPANY

Submission Date: 10/09/2017

Highlighted data reflects the most recent changes

Show Final Text

02/26/2018

Well Name: PERIDOT 8 FEDERAL

Well Number: 4H

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical				Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	RUSTLER	3212	835	835	DOLOMITE,ANHYDRIT E	USEABLE WATER	No
2	SALADO	2232	980	980	SALT, ANHYDRITE	NONE	No
3	TANSILL	1157	2055	2055	DOLOMITE,SALT,ANHY DRITE	NONE	No
4	YATES	1017	2195	2195	DOLOMITE,ANHYDRIT E	NONE	No
5	SEVEN RIVERS	712	2500	2500	SANDSTONE,DOLOMIT E,ANHYDRITE	NATURAL GAS,OIL	No
6	QUEEN	92	3120	3120	SANDSTONE,DOLOMIT E,ANHYDRITE	·NATURAL GAS,OIL	No
7	GRAYBURG	-333	3545	3545	SANDSTONE,DOLOMIT E,ANHYDRITE	NATURAL GAS,OIL	No
8	SAN ANDRES	-648	3860	3860	SANDSTONE,DOLOMIT E,ANHYDRITE	NATURAL GAS,OIL	No
9	GLORIETA	-2153	5365	5386	SANDSTONE,DOLOMIT E,ANHYDRITE	NATURAL GAS,OIL	No
10	PADDOCK	-2253	5465	5518	DOLOMITE, ANHYDRIT E, SILTSTONE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 12783

Equipment: Rotating Head, Annular Preventer, Pipe/Blind Rams, Kill Lines, Choke Lines, Adapter Spool. All required equipment per federal regulations to be in place prior to drilling out the surface casing. **Requesting Variance?** YES

Variance request: We request variance to use flexible choke line(s) from the BOP to Choke Manifold. Testing certificate is attached in "Flexhose Variance data" document.

Testing Procedure: BOP/BOPE tested by independent company to 250 psi low and the high of 50% working psi, as required by federal and state regulations. Testing frequency from daily to weekly. See attached "Drill Plan" document.

Choke Diagram Attachment:

Peridot_8_Fed_4H_3M_Choke_Manifold_20171003134315.pdf

Peridot_8_Fed_4H_FlexhoseVarianceData_20171003134330.pdf

Peridot_8_Fed_4H_3M_Choke_Manifold_20171003134315.pdf

Peridot_8_Fed_4H_FlexhoseVarianceData_20171003134330.pdf

BOP Diagram Attachment:

Peridot_8_Fed_4H_13in_5M_BOPE_Diagram_20171003134345.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	ΑΡΙ	N	0	885	0	885	4047	3212	885	J-55	54.5	STC	2.89	6.98	DRY	10.7	DRY	17.7
2		12.2 5	9.625	NEW	API	N	0	2250	0	2250	4047	1797	2250	J-55	40	LTC	2.2	3.38	DRY	5.78	DRY	7
	PRODUCTI ON	8.75	7.0	NEW	API	Y	0	5200	0	5200	4047	-1153	5200	L-80	29	LTC	2.88	3.35	DRY	3.89	DRY	4.48
	PRODUCTI ON	8.75	5.5	NEW	API	Y	5200	12783	5200	5486	-1153	-1439	7583	L-80	17	LTC	2.4	2.95	DRY	2.62	DRY	3.08

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Peridot_8_Fed_4H_Csg_Worksheet_20171003134407.pdf

Well Number: 4H

Casing Attachments

Casing ID: 2

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Peridot_8_Fed_4H_Csg_Worksheet_20171003134423.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Peridot_8_Fed_4H_Csg_Worksheet_20171003134437.pdf

Casing Design Assumptions and Worksheet(s):

Peridot_8_Fed_4H_Csg_Worksheet_20171003134450.pdf

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Peridot_8_Fed_4H_Csg_Worksheet_20171003134505.pdf

Casing Design Assumptions and Worksheet(s):

Peridot_8_Fed_4H_Csg_Worksheet_20171003134520.pdf

Section 4 - Cement

Operator Name: CONOCOPHILLIPS COMPANY **Well Name:** PERIDOT 8 FEDERAL

Well Number: 4H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	585	500	1.68	13.5	840	100	Class C	4.0% Bentonite + 0.2% Anti-Foam + 2.0% CaCl2 +0.125lb/sk LCM + 0.1% Dispersant
SURFACE	Tail		585	885	400	1.35	14.8	540	100	Class C	0.2% Anti-Foam + 0.1% Lost Circ Control + 2 Ibs/bbl CemNET (losses Control)
INTERMEDIATE	Lead		0	1750	450	2.29	11.5	1031	100	Class C	10.0% Bentonite + 0.2% Anti-Foam + 2.0% Expanding + 0.15% Viscosifier + 1.3% Retarder
INTERMEDIATE	Tail		1750	2250	300	1.29	13.5	387	100	Class C	1% Extender + 3 lb/sk Extender + 0.2% Anti- Foam + 0.1% Dispersant + 13 lb/sk LCM + 0.5% Fluid Loss + 0.7% Retarder
PRODUCTION	Lead		1700	5200	650	3.2	11	2080	30	Class C	6% Extender + 10% Gas Migration Control + 2% Sodium Metasilicate (dry) + 1% Cement Bonding Agent + 3% Aluminum Silicate + 0.125 lb/sx Cello Flake + 3 lb/sx LCM-1

PRODUCTION	Lead	520	00 1278	1900	1.37	14	2603	30	Class C	3lb/sk LCM + 1.5%
			3							Fluid Loss + 0.1% + 1%
										Sodium Metasilicate
										(dry) + 1.5% Fluid Loss
	Ì.		e.					1		Control

Operator Name: CONOCOPHILLIPS COMPANY

Well Name: PERIDOT 8 FEDERAL

Well Number: 4H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. See attached "Drill Plan".

Describe the mud monitoring system utilized: Closed-loop mud system using steel mud containers will be on location. Mud monitoring of any changes in levels (gains or losses) will use Pressure Volume Temperature instrumentation, Pason, Visual Observations. See attached "Drill Plan".

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	На	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics	
0	885	WATER-BASED MUD	8.5	9								
885	2250	SALT SATURATED	10	10	٣							
2250	1278 3	WATER-BASED MUD	8.6	10							· .	

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM. Production tests will be conducted multiple times per week, through a test separator, during first months following completion. Thereafter, tests will be less frequent. See attached "Drill Plan". List of open and cased hole logs run in the well:

CNL,GR,MUDLOG

Coring operation description for the well:

No coring operation is planned.

Operator Name: CONOCOPHILLIPS COMPANY

Well Name: PERIDOT 8 FEDERAL

Well Number: 4H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 2815

Anticipated Surface Pressure: 1608.3

Anticipated Bottom Hole Temperature(F): 100

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Peridot_8_Fed_4H_H2S_CPIan_20171003134852.pdf Peridot_8_Fed_4H_TypicalRigLayout_20171003134909.pdf

Section 8 - Other Information

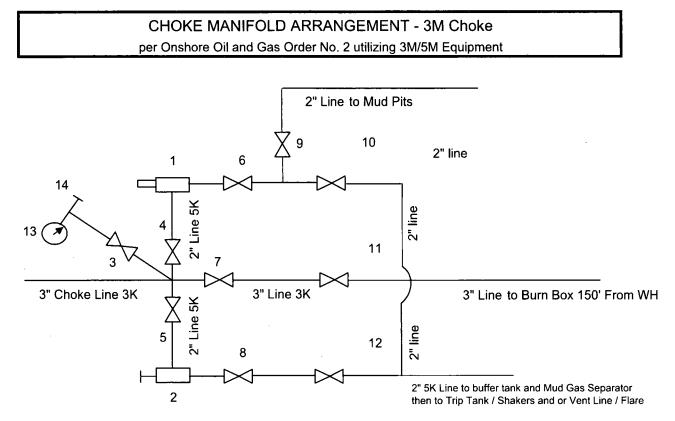
Proposed horizontal/directional/multi-lateral plan submission:

Peridot_8_Fed_4H_Directional_Plan_20171003134952.pdf

Peridot_8_Fed_4H_Wellbore_Schematic_20171003135008.pdf

Other proposed operations facets description:

Option to upgrade casing connection to BTC is requested, in addition to the ability to upgrade our BOP equipment, depending on availability. Cement volume will be adjusted based on hole conditions. We request approval of option to run open hole sliding sleeve in lateral section (option attachment is included).We request variance to use multi-bowl wellhead. See attached "Drill Plan" for additional information.


Other proposed operations facets attachment:

Peridot_8_Fed_4H_Drill_Planv5_20171003135038.pdf Peridot_8_Fed_4H_Drill_Waste_Containment_20171003135052.pdf Peridot_8_Fed_Gas_Capture_Plan_20171003135107.pdf Peridot_8_Fed_4H_OH_SleeveOption_20180111124421.pdf

Other Variance attachment:

Peridot_8_Fed_4H_Generic_Wellhead_5M_20171003135121.pdf

Peridot 8 Federal 4H

All Tees must be Targeted

Item Description

1 Remote Controlled Hydraulically Operated Adjustable Choke, 2-1/16", 3M

2 Manual Adjustable Choke, 2-1/16", 3M

- 3 Gate Valve, 2-1/16" 5M
- 4 Gate Valve, 2-1/16" 5M
- 5 Gate Valve, 2-1/16" 5M
- 6 Gate Valve, 2-1/16" 5M
- 7 Gate Valve, 3-1/8" 3M
- 8 Gate Valve, 2-1/16" 5M
- 9 Gate Valve, 2-1/16" 5M
- 10 Gate Valve, 2-1/16" 5M
- 11 Gate Valve, 3-1/8" 3M
- 12 Gate Valve, 2-1/16" 5M
- 13 Pressure Gauge
- 14 2" hammer union tie-in point for BOP Tester

The 3M Choke Manifold & Valves will be tested to rated working pressure.

Peridot 8 Federal 4H

Wellhead / Fire Guarded System

Reliance Eliminator Choke & Kill

This hose can be used as a choke hose which connects the BOP stack to the b manifold or a kill hose which connects the mud stand pipe to the BOP kill valve.

The Reliance Eliminator Choke & Kill hose contains a specially bonded compounded cover that replaces rubber covered Asbestos, Fibreglass and other fire retardant materials which are prone to damage. This high cut and gouge resistant cover overcomes costly repairs and downtime associated with older designs.

The Reliance Eliminator Choke & Kill hose has been verified by an independent engineer to meet and exceed EUB Directive °G6 fdi706 minutes)

Nom.	ID	No	m OD	V	Veight	Min	Bend Radiu	s Max	WP
in.	mm.	in.	mm	lb/ft	kg/m	in.	mm.	psi	Мра
3	76.2	5.11	129.79	14.5	21.46	48	1219.2	5000	34.47
3-1/2	88.9	5.79	147.06	20.14	29.80	54	1371.6	5000	34.47

End Connections

Fittings	Flanges	Hammer Unions	Other
RC4X5055	R35 - 3-1/8 5000# API Type	6B All Union Configurations	LP Threaded (
RC3X5055	R31 - 3-1/8 3000# API Type	6B	Graylock
RC4X5575		C	ustom Ends

02/08

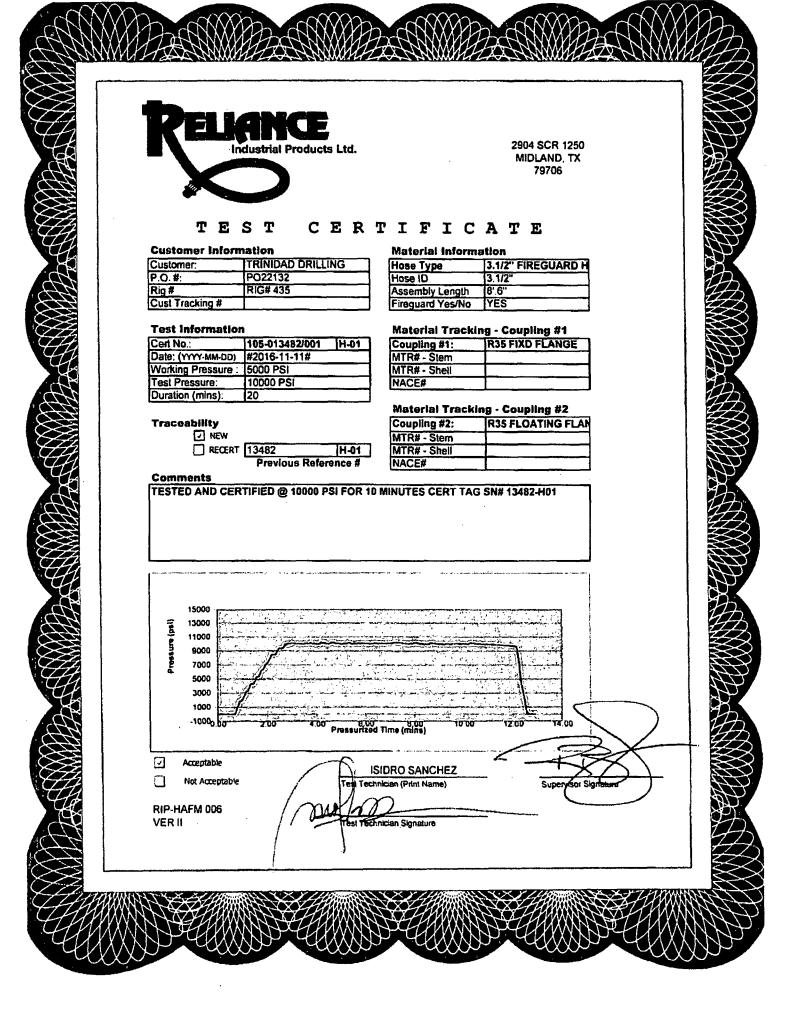
M۱۷

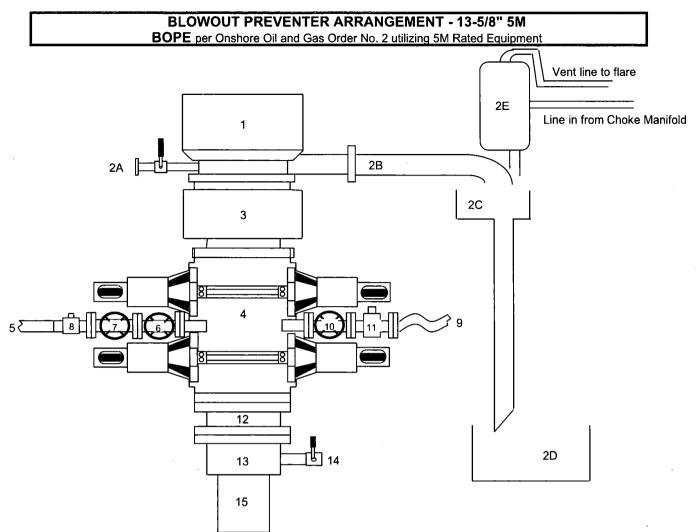
Boasier City, LA 71111 Ph: 318-687-5486 Fax: 318-687-5491 1001 M&O Drive

Please remit payment to: 606 - 19 Avenue, Nisku, AB Canada T9E 7W1

Sen Antonio, TX 78217 Ph: 210-650-3636 Fax: 210-650-3133 4327 Centergate Street Williston, ND 58801 Ph 701-572-7035 Fax 701-572-7030 4970 Hwy 85

Midland, TX 78708 Ph: 432-689-0102 Fax: 432-699-4898 2904 SCR 1250


WORK ORDER


Houston, TX 77388 Ph; 281-288-9720 4115 Kreinhop Rd Suite B

BALL TO		CUSTOMER	NO.	SALESMAN NO.	SHIP TO		CUSTO	MERINO		· · · · · · · · · · · · · · · · · · ·	SALESMAN	ND.				
		00305	54	HSE			003	054			HSE		PG 1 OF	1		
	1	RINIDAD DF 5015 VICKE DUSTON, TY	ERY DR	P		TRINIDAD DRILLING RIG# 435 										
													OPEN ORDE	R		
	aliance -								TAX ID #2	0 #28-0174231 REFERENCE NUM 105-013482			MBER			
	MY VAL 11/04/16	RWB	BY YOUH OH 11/0	IDER NO 4/16 5709 PO22132				RMS NET 30	DAYS	-	-	SHIP VIA DELIVE	RY	RWB	c	φų
ORDER	RED	SHIPPED	BACK .	PART NUMBER AND	DESCRIPTI	л	£		CODE	L	IST RICE	NET PRICE U	INIT	NET	T.	
	1	1 2.00 1.00 1 2 9 1 1 2 15		DELIVER TO YARD ATTN: LAN RIGH 435 PARTS 1) API HOSE 1 1 KIT MATERIALS LAB RKSWAGE LAB T-100 PTC P930012 PTC P930022 HBD RFGS00056 RSK 7K-FRJ5X5KRCD56 RSK 7K-FRJ5X5KRCD56 API OVERFERULE96 HDW JX116 1 - 3.5* X 8'6* 5K F/ TESTED TO 10000 PSI F HYDRO-TEST AND NACE C IF ORDERED TODAY BUY IF ORDERED LATER THAN	HYD HC MATE ta for a GRAL TESI ID 1 CABI 3 1/ FLD GRAL 6* S 3*) G CHOKE OR 10 MI ERTIFIC 2PM WE (1 2PM IT	SE[] RIALS bove it E C 6 D ING CHA AG 2.5X E TIE S 2*FIREG TING FL E C/D R S OVERF 1/16* HOSE W/ NUTES TIONS F AN HAVE	en are SWAGE RGES 1.5 SS S 20.5C LARD CH ANGE CO IDARD CH ANGE CO ROVIDED ROVIDED THIS I MONDAY	ORDER SHI	TO BE PPING ECIAL .CUST .ORDE 1 below SE JFL PLOAT TOMORRA VERY	COMPLE INSTRU INSTRU INSTRU CMER C R COMP J 2 J 2 J 2 J 2 J 2 J 2 J 2 J 2 J 2 J 2	TED BY CTIONS CTIONS ONTACT ONENTS CON	4805.980	EA EA EA EA EA	48c6 . 98		
				Date:		- [2		<u>_</u> £_								
PIČKED BY	ASSENTD BY	Æ	INVOICE.	NET 30 DAYS FROM DATE C Interest of 2% PER MONTH (24 (UM) charged on overdue account	а~ 9%- 8,	S RECEIV	ED BY (P	LEASE F	RINT)		SU TA	B-TOTAL		4806.9 0.0		
INSPEC BY	MEPEC. BY	INSPEC. BY	Industrial	s of the contract between Reliand Products Ltd. ("Reliance") and th are on the reverse of this document	ю]				1	1:25	то	TAL		4806.9	B	

Peridot 8 Federal 4H

Peridot 8 Federal 4H

Item Description

- 1 Rotating Head, 13-5/8"
- 2A Fill up Line and Valve
- 2B Flow Line (10")
- 2C Shale Shakers and Solids Settling Tank
- 2D Cuttings Bins for Zero Discharge
- 2E Rental Mud Gas Separator with vent line to flare and return line to mud system
- 3 Annular BOP (13-5/8", 5M)
- 4 Double Ram (13-5/8", 5M, Blind Ram top x Pipe Ram bottom)
- 5 Kill Line Connection
- 6 Kill Line Valve, Inner (2-1/16", 5M)
- 7 Kill Line Valve, Outer (2-1/16", 5M)
- 8 Kill Line Check Valve (2-1/16", 5M)
- 9 Choke Line (3-1/8", 5M Coflex Line)
- 10 Choke Line Valve, Inner (3-1/8", 5M)
- 11 Choke Line Valve, Outer (3-1/8", Hydraulically operated, 5M)
- 12 Spacer Spool (13-5/8", 5M)
- 13 Casing Head (13-5/8", 5M)
- 14 Casing Head Valve Outlet (2", 5M)
- 15 Surface Casing

A variance is requested to permit the use of flexible hose. The testing certificate for the specific hose will be available on the rig prior to commencing drilling operations.

		Depth MD	Depth TVD	Csg Jength ft	Wt	MIY	Col	Pipe Str	Jt Str	Drill Fluk
Surface Casing	1	885	885	885	54.5	2730	1130	853000	514000	8.
Intermediate 1 Cas	sing	2250	2250	2250	40	3950	2570	630000	520000	1
Production 1 Casi	ng	5200	5200	5200	29	8160	7020	676000	587000	
Production 2 Casi	ng	12783	5605	7583	17	7740	6290	397000	338000	
										_
		fety) Factors	- BLM (Sriteria						Bur
Collapse Design										Burs
SFc = Pc / (MW	x .052 x Ls	;)								SFb
Where	De is the	reted also Colley								Whe
•		rated pipe Collar			per squar	e Inch (psi)				
•		ud weight in pou								-
•		length of the stri								The
The Minimum Ac	cceptable C	Collapse Design (Safety) Fa	ctor SFc = 1.1	25					
Surface Casing								•		Surface
	SFc =	1130	1	391	=	2.89				SFb
Intermediate 1 Ca	asing									Intermed
	SFc =	2570	1	1170	=	2.20				SFb
Production 1 Cas	SFc =	7020	1	2434	=	2.88				Product SFb
		1020	'	2454		2.00				
Production 2 Cas		6290	1	2623	_	2.40				Producti SFb
	SFc =		7	2023	-	2.40				0.0
Pipe Strength Do SFtp = Fp / Wt;	th Desigr	n (Safety) Fac	·		_ a	2.40				<mark>Join</mark> Joint SFtj
Pipe Strength D	t <mark>h Desigr</mark> esign (Safe	n (Safety) Fac Ity) Factor: SFtp	tors – I	<u>BLM Criteri</u>		2.40				<mark>Join</mark> Joint SFtj
Pipe Strength Do SFtp = Fp / Wt;	t <mark>h Desigr</mark> esign (Safe Fp is the	n (Safety) Fac	strength in	BLM Criteri		2.40				Join Join SFtj
Pipe Strength Do SFtp = Fp / Wt; Where •	th Design esign (Safe Fp is the Wt is the	n (Safety) Fac ty) Factor: SFtp rated pipe Body	<mark>Strength in strength in stren</mark>	BLM Criteri pounds (lbs) in pounds (lbs)	s)		nt			<u>Join</u> Join SFtj Whe
Pipe Strength Du SFtp = Fp / Wt: Where The Minimum Ad	th Design esign (Safe Fp is the Wt is the	n (Safety) Fac ity) Factor: SFtp rated pipe Body weight of the ca	<mark>Strength in strength in stren</mark>	BLM Criteri pounds (lbs) in pounds (lbs)	s)		nt			<mark>Join</mark> Joint SFtj Whe
Pipe Strength Do SFtp = Fp / Wt; Where The Minimum Ad Surface Casing	th Design esign (Safe Fp is the Wt is the cceptable P	n (Safety) Fac ty) Factor: SFtp rated pipe Body weight of the ca Pipe Strength Des	strength in Strength in sing string ign (Safet	BLM Criteri n pounds (lbs) in pounds (lbi y) Factor SFT	s) p = 1.6 dr	y or 1.8 buoyar	nt			Join Joint SFij Whe The Surface
Pipe Strength Do SFIp = Fp / Wt: Where The Minimum Ad Surface Casing S	th Design esign (Safe Fp is the Wt is the ccceptable P SFi Dry =	n (Safety) Fac ty) Factor: SFlp rated pipe Body weight of the ca Pipe Strength Des 853000	strength ii Strength ii sing string ign (Safet /	BLM Criteri n pounds (lbs) in pounds (lb) y) Factor SFT 48232.5	s) p = 1.6 dr =	y or 1.8 buoyar 17.7				Join Join SFtj Whe The Surface SFi Dry
Pipe Strength Do SFIp = Fp / Wt: Where The Minimum Ad Surface Casing S	th Design esign (Safe Fp is the Wt is the cceptable P	n (Safety) Fac ty) Factor: SFtp rated pipe Body weight of the ca Pipe Strength Des	strength in Strength in sing string ign (Safet	BLM Criteri n pounds (lbs) in pounds (lb) y) Factor SFT 48232.5	s) p = 1.6 dr	y or 1.8 buoyar	nt) =	20.3	SF	Join Join SFtj Whe The Surface SFi Dry
Pipe Strength Du SFtp = Fp / Wt: Where The Minimum Ad Surface Casing SFi Bo	th Design esign (Safe Wt is the Ccceptable P SFi Dry = ouyant =	n (Safety) Fac ty) Factor: SFlp rated pipe Body weight of the ca Pipe Strength Des 853000	strength ii Strength ii sing string ign (Safet /	BLM Criteri n pounds (lbs) in pounds (lb) y) Factor SFT 48232.5	s) p = 1.6 dr =	y or 1.8 buoyar 17.7		20.3	SFI	Join Join SFtj Whe The Surface SFi Dry Bouyant
Pipe Strength Do SFtp = Fp / Wt: Where The Minimum Ad Surface Casing SFi Bo Intermediate 1 Ca	th Design esign (Safe Wt is the Ccceptable P SFi Dry = ouyant =	n (Safety) Fac ty) Factor: SFlp rated pipe Body weight of the ca Pipe Strength Des 853000	strength ii Strength ii sing string ign (Safet /	BLM Criteri n pounds (lbs) in pounds (lb) y) Factor SFT 48232.5	s) p = 1.6 dr =	y or 1.8 buoyar 17.7		20.3	SFi	Join Join SFij Whe The Surface SFi Dry Bouyant Intermed
Pipe Strength Do SFtp = Fp / Wt: Where The Minimum Ad Surface Casing SFi Bo Intermediate 1 Ca	th Design esign (Safe Wt is the Ccceptable P SFi Dry = ouyant = asing	n (Safety) Factor: SFtp rated pipe Body weight of the ca lipe Strength Des 853000 853000	Strength i sing string ign (Safet / / (BLM Criteri n pounds (lbs) in pounds (lbs y) Factor SFT 48232.5 48232.5	s) p = 1.6 dr = ` X	y or 1.8 buoyar 17.7 0.870		20.3 8.26		Join Join SFij Whe The SFi Dry Bouyant Intermee SFi Dry
Pipe Strength Do SFtp = Fp / Wt: Where The Minimum Ad Surface Casing SFi Bo Intermediate 1 Ca SFi Bo SFi Bo	th Design Fp is the Wt is the ccceptable P SFi Dry = ouyant = asing SFi Dry = ouyant =	n (Safety) Fac ty) Factor: SFtp rated pipe Body weight of the ca Pipe Strength Des 853000 853000 630000	strength i Strength i sing string ign (Safet / / / (BLM Criteri in pounds (lbs) in pounds (lb; y) Factor SFT 48232.5 48232.5 90000	s) p = 1.6 dr = ` x =	y or 1.8 buoyar 17.7 0.870 7.00) =			Join Joint SFij Whe The SFi Dry Bouyant Intermed SFi Dry Bouyant
Pipe Strength Do SFtp = Fp / Wt: Where The Minimum Ad Surface Casing SFi Bo Intermediate 1 Ca SFi Bo SFi Bo Production 1 Cas	th Design esign (Safe Wt is the Ccceptable P SFi Dry = ouyant ⇒ asing SFi Dry = ouyant =	n (Safety) Fac ty) Factor: SFtp rated pipe Body weight of the ca type Strength Des 853000 853000 630000 630000	Strength i sing string ign (Safet / / (/ / (BLM Criteri in pounds (lbs) in pounds (lbs) y) Factor SFT 48232.5 48232.5 90000 90000	s) p = 1.6 dr = x =x	y or 1.8 buoyar 17.7 0.870 7.00 0.847) =			Join Joint SFij Whe The Surface SFi Dry Bouyant Intermee SFi Dry Bouyant Product
Pipe Strength Do SFtp = Fp / Wt: Where The Minimum Ad Surface Casing SFi Bd Intermediate 1 Ca SFi Bd Production 1 Cas S	th Design esign (Safe Wt is the Ccceptable P SFi Dry = ouyant = asing SFi Dry = ouyant = sing SFi Dry =	n (Safety) Fac ty) Factor: SFtp rated pipe Body weight of the ca Pipe Strength Des 853000 853000 630000 630000 676000	Strength in sing string ign (Safet / / (/ / (BLM Criteri in pounds (lbs) in pounds (lbs) y) Factor SFT 48232.5 48232.5 90000 90000 90000 150800	s) p = 1.6 dr = X = X =	y or 1.8 buoyar 17.7 0.870 7.00 0.847 4.48) =) =	8.26	SF	Joint Joint SFij Whe The Surface SFi Dry Bouyant Intermed SFi Dry Bouyant Producti SFi Dry
Pipe Strength Do SFtp = Fp / Wt: Where The Minimum Ad Surface Casing SFi Bd Intermediate 1 Ca SFi Bd SFi Bd Production 1 Cas	th Design esign (Safe Wt is the Ccceptable P SFi Dry = ouyant ⇒ asing SFi Dry = ouyant =	n (Safety) Fac ty) Factor: SFtp rated pipe Body weight of the ca type Strength Des 853000 853000 630000 630000	Strength i sing string ign (Safet / / (/ / (BLM Criteri in pounds (lbs) in pounds (lbs) y) Factor SFT 48232.5 48232.5 90000 90000	s) p = 1.6 dr = x = x	y or 1.8 buoyar 17.7 0.870 7.00 0.847) =		SF	Joint Joint SFij Whe The Surface SFi Dry Bouyant Intermed SFi Dry Bouyant Producti SFi Dry
Pipe Strength Do SFIp = Fp / Wt: Where The Minimum Ad Surface Casing SFi Bd Intermediate 1 Ca SFi Bd SFi Bd Production 1 Cas S	th Design Fp is the Wt is the Ccceptable P SFi Dry = ouyant = asing SFi Dry = ouyant = SFi Dry = ouyant =	n (Safety) Fac ty) Factor: SFtp rated pipe Body weight of the ca Pipe Strength Des 853000 853000 630000 630000 676000	Strength in sing string ign (Safet / / (/ / (BLM Criteri in pounds (lbs) in pounds (lbs) y) Factor SFT 48232.5 48232.5 90000 90000 150800	s) p = 1.6 dr = X = X =	y or 1.8 buoyar 17.7 0.870 7.00 0.847 4.48) =) =	8.26	SF	Join Join SFitj Whe The Surface SFi Dry Bouyant SFi Dry Bouyant SFi Dry Bouyant
Pipe Strength Do SFIp = Fp / Wt: Where The Minimum Ad Surface Casing SFi Bd Intermediate 1 Cas SFi Bd Production 1 Cas SFi Bd Production 2 Cas	th Design Fp is the Wt is the Ccceptable P SFi Dry = ouyant = asing SFi Dry = ouyant = SFi Dry = ouyant =	n (Safety) Fac ty) Factor: SFtp rated pipe Body weight of the ca Pipe Strength Des 853000 853000 630000 630000 676000	Strength in sing string ign (Safet / / (/ / (BLM Criteri in pounds (lbs) in pounds (lbs) y) Factor SFT 48232.5 48232.5 90000 90000 150800	s) p = 1.6 dr = X = X =	y or 1.8 buoyar 17.7 0.870 7.00 0.847 4.48) =) =	8.26	SF	Join Joint SFtij Whe Surface SFi Dry Bouyant Intermed SFi Dry Bouyant Producti SFi Dry Bouyant Producti SFi Dry Bouyant

Design (Safety) Factors – BLM Criteria

esign (Safety) Factor: SFb

i/BHP

• Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps

BHP is bottom hole pressure in pounds per square inch (psi)

imum Acceptable Burst Design (Safety) Factor SFb = 1.0

Surface Casir SFb =	19 2730	7	391	=	6.98
Intermediate SFb =	1 Casing 3950	1	1170	=	3.38
Production 1 SFb =	Casing 8160	1	2434	=	3.35
Production 2 SFb =	Casing 7740	1	2623	=	2.95

<u> Strength Design (Safety) Factors – BLM Criteria</u>

rength Design (Safety) Factor: SFtj

- j/Wt;
 - Fj is the rated pipe Joint Strength in pounds (lbs)
 - Wt is the weight of the casing string in pounds (lbs)

imum Acceptable Joint Strength Design (Safety) Factor SFTj = 1.6 dry or 1.8 buoyant

Surface Cas	ing						
SFi Dry =	514000	1	48232.5	=	10.7		
Bouyant =	514000	/ (48232.5	x	0.870) =	12.2
Intermediate	e 1 Casing						
SFi Dry =	520000	/	90000	=	5.78		
Bouyant =	520000	/ (90000	×	0.847) =	6,82

Production SFi Dry = SFi Bouyant =	1 Casing 587000 587000	/ / (150800 150800	= x	3.89 0.863) =	4.51
Production SFi Dry = SFi Bouyant =	2 Casing 338000 338000	/ / (128911 128911	= x	2.62 0.863) =	3.04

;

...

.

	<u>MD</u> 885	885	length ft 885	54.5	5 2730	1130	853000	514000	8.5					
Surface Casing Intermediate 1 Casing	2250	2250	2250	4				520000	10					
Production 1 Casing	5200	5200	5200	29				587000	9					
Production 2 Casing	12783	5605	7583	17				338000	9					
Collapse Design (Sai Collapse Design (Safety) Fr SFc = Pc / (MW x .052 x Ls Where Pc is the MW is m	Tety) Factors actor: SFc) rated pipe Collap ud weight in pour length of the strir	– BLM se Pressunds per ga ng in feet (Criteria Jre in pounds p Illon (ppg) ft)	er squa	•			Su	Burst Des Burst Desigr SFb = Pi / Bl Where	n (Safety) Fa HP • Pi is th • BHP is m Acceptable 9 2730	ctor: SFb ne rated pip s bottom ho	ors – BLM Cr ne Burst (Minimuu ke pressure in pr ign (Safety) Fact 391 1170	n Internal bunds per	square ii
Production 1 Casing SFc =	7020	1	2434	=-	2.88			Pr	oduction 1 (SFb =	Casing 8160	1	2434	=	3.35
								Pr	oduction 2 (Casing				
Production 2 Casing SFc =	6290	/	2623	=	2.40				SFb =	7740	1	2623	=	2,95
Pipe Strength Design Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the	ty) Factor: SFtp rated pipe Body s weight of the cas	Strength in	<u>BLM Criteria</u> n pounds (lbs) in pounds (lbs))		nt			SFb = Joint Strengt SFtj = Fj / W Where	7740 ength Des th Design (S th; • Fj is th • Wt is t	ign (Safe afety) Facto ne rated pip the weight o	ety) Factors	in pounds	(lbs) (ds (lbs)
SFc = Pipe Strength Design Pipe Strength Design (Safe SFtp = Fp / WL; Where • Fp is the • WL is the	ty) Factor: SFtp rated pipe Body s weight of the cas	Strength in	<u>BLM Criteria</u> n pounds (lbs) in pounds (lbs))		nt			SFb = Joint Strengt SFtj = Fj / W Where	7740 ength Des th Design (S t; • Fj is th • Wt is t n Acceptable	ign (Safe afety) Facto ne rated pip the weight o	ety) Factors - or: SFtj e Joint Strength of the casing strii	in pounds	(lbs) (ds (lbs)
SFc = <u>Pipe Strength Design</u> Pipe Strength Design (Safe SFtp = Fp / WL: Where • Fp is the • WL is the The Minimum Acceptable F Surface Casing SFi Dry =	n (Safety) Fac y) Factor: SFtp rated pipe Body : weight of the cas ipe Strength Des 853000	Strength in sing string ign (Safet) /	BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5) = 1.6 d	ry or 1.8 buoya 17.7		20.3	Su	SFb = <u>Joint Stree</u> Joint Strengt SFtj = Fj / W Where The Minimur rface Casin Fi Dry =	7740 ength Design (S t; • Fj is th • Wt is I n Acceptable g 514000	<mark>ign (Saft</mark> afety) Facto ne rated pip he weight o e Joint Stre /	ety) Factors - pr: SFIj e Joint Strength of the casing strii ngth Design (Sai 48232.5	in pounds ng in poun fety) Facto =	(lbs) (lbs) ds (lbs) or SFTj = 10.7
SFc = <u>Pipe Strength Design</u> Pipe Strength Design (Sale SFtp = Fp / WL: Where • Fp is the • WL is the The Minimum Acceptable F Surface Casing SFi Dry = SFi Bouyant =	ty) Factor: SFtp rated pipe Body i weight of the cas ipe Strength Des	Strength in	BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5) = 1.6 d	ry or 1.8 buoya		20.3	Su S SFi Bo	SFb = Joint Strengt Joint Strengt SFtj = Fj / W Where The Minimur Fi Dry = ! Sti Dry = !	7740 ength Des th Design (S t; • Fj is th • Wt is 1 • Wt is 1 • Acceptable 514000 514000	<mark>ign (Saft</mark> afety) Facto ne rated pip he weight o e Joint Stre /	ety) Factors - or: SFtj e Joint Strength of the casing strii ngth Design (Sal	in pounds ng in poun fety) Facto	(lbs) (lbs) ds (lbs) or SFTj = 10.7
SFc = <u>Pipe Strength Design</u> Pipe Strength Design (Safe SFtp = Fp / WI: Where • Fp is the • Wt is the The Minimum Acceptable F Surface Casing SFi Dry = SFi Bouyant = Intermediate 1 Casing	ty) Factor: SFtp rated pipe Body i weight of the cas ipe Strength Des 853000 853000	Strength in sing string ign (Safet) /	BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5 48232.5) = 1.6 d = x	ry or 1.8 buoya 17.7 0.870		20.3	Su S SFi Bc	SFb = Joint Strengt Joint Strengt SFtj = Fj / W Where The Minimur rface Casin Fi Dry = 9 buyant = 9 ermediate 1	7740 ength Design (S. t; • Fj is th • Wt is t • Wt is t • Acceptable 514000 514000 Casing	ign (Safe afety) Facto ne rated pip he weight o e Joint Stre / / / (ety) Factors - or: SFtj e Joint Strength of the casing strii ngth Design (Sal 48232.5 48232.5	in pounds ng in poun iety) Facto = X	(lbs) (ds (lbs) or SFTj = 10.7 0.
SFc = <u>Pipe Strength Design</u> Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable F Surface Casing SFi Dry = SFi Bouyant = Intermediate 1 Casing SFi Dry =	t (Safety) Factor: SFtp rated pipe Body i weight of the cas ipe Strength Des 853000 853000 630000	Strength is sing string ign (Safet / / (BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5 48232.5 90000) = 1.6 d = x =	ry or 1.8 buoya 17.7 0.870 7.00) =		Su S SFiBo Int S	SFb = Joint Strengt Joint Strengt SFtj = Fj / W Where The Minimur rface Casin Fi Dry = buyant = Fi Dry = Fi Dry = Fi Dry = Strengt	7740 ength Design (S. th Design (S. t; • Fj is th • Wt is t • Wt is t • Acceptable 514000 514000 Casing 520000	ign (Safr afety) Facto ne rated pip he weight d a Joint Stre / / / /	ety) Factors - pr: SFIj e Joint Strength of the casing strii ngth Design (Sai 48232.5 48232.5 90000	in pounds ng in poun iety) Facto = X =	(lbs) (lbs) ds (lbs) or SFTj = 10.7 0. 5.78
SFc = <u>Pipe Strength Design</u> Pipe Strength Design (Safe SFtp = Fp / WL: Where • Fp is the • WL is the The Minimum Acceptable F Surface Casing SFi Dry = SFi Bouyant = Intermediate 1 Casing	ty) Factor: SFtp rated pipe Body i weight of the cas ipe Strength Des 853000 853000	Strength in sing string ign (Safet) /	BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5 48232.5) = 1.6 d = x	ry or 1.8 buoya 17.7 0.870		20.3 8.26	Su S SFiBo Int S	SFb = Joint Strengt Joint Strengt SFtj = Fj / W Where The Minimur rface Casin Fi Dry = buyant = Fi Dry = Fi Dry = Fi Dry = Strengt	7740 ength Design (S. t; • Fj is th • Wt is t • Wt is t • Acceptable 514000 514000 Casing	ign (Safe afety) Facto ne rated pip he weight o e Joint Stre / / / (ety) Factors - pr: SFIj e Joint Strength of the casing strii ngth Design (Sai 48232.5 48232.5 90000	in pounds ng in poun iety) Facto = X	(lbs) (ds (lbs) or SFTj = 10.7 0. 5.78
SFc = <u>Pipe Strength Design</u> Pipe Strength Design (Safe SFtp = Fp / Wt: Where • Fp is the • Wt is the The Minimum Acceptable F Surface Casing SFi Bouyant = Intermediate 1 Casing SFi Dry = SFi Bouyant =	t (Safety) Factor: SFtp rated pipe Body i weight of the cas ipe Strength Des 853000 853000 630000	Strength is sing string ign (Safet / / (BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5 48232.5 90000) = 1.6 d = x =	ry or 1.8 buoya 17.7 0.870 7.00) =		Su SFiBc Int SFiBc	SFb = Joint Strengt Joint Strengt SFtj = Fj / W Where The Minimur Fi Dry = ! ermediate 1 Fi Dry = ! buyant = !	7740 ength Design (S t; Fj is th Wt is to Wt is to S14000 S14000 Casing 520000 520000	ign (Safr afety) Facto ne rated pip he weight d a Joint Stre / / / /	ety) Factors - pr: SFIj e Joint Strength of the casing strii ngth Design (Sai 48232.5 48232.5 90000	in pounds ng in poun iety) Facto = X =	(lbs) (ds (lbs) or SFTj = 10.7 0. 5.78
SFc = <u>Pipe Strength Design</u> Pipe Strength Design (Safe SFtp = Fp / Wt: Where • Fp is the • Wt is the The Minimum Acceptable F Surface Casing SFi Dry = SFi Bouyant = Intermediate 1 Casing SFi Bouyant = Production 1 Casing	t (Safety) Factor: SFtp rated pipe Body i weight of the cas ipe Strength Des 853000 853000 630000	Strength is sing string ign (Safet / / (BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5 48232.5 90000) = 1.6 d = x =	ry or 1.8 buoya 17.7 0.870 7.00) =		Su SFiBc Int SFiBc	SFb = Joint Strengt Joint Strengt SFtj = Fj / W Where The Minimur rface Casin Fi Dry = ermediate 1 Fi Dry = suyant = buyant = Structure 1 Structure 1 Struct	7740 ength Design (S t; Fj is th Wt is to Wt is to S14000 S14000 Casing 520000 520000	ign (Safr afety) Facto ne rated pip he weight d a Joint Stre / / / /	ety) Factors - pr: SFIj e Joint Strength of the casing strii ngth Design (Sai 48232.5 48232.5 90000	in pounds ng in poun iety) Facto = X =	(ibs) ds (ibs) or SFTj = 10.7 0.1 5.78 0.1
SFc = <u>Pipe Strength Design</u> Pipe Strength Design (Safe SFtp = Fp / Wt: Where • Fp is the • Wt is the The Minimum Acceptable F Surface Casing SFi Bouyant = Intermediate 1 Casing SFi Dry = SFi Bouyant =	t (Safety) Factor: SFtp rated pipe Body i weight of the cas ipe Strength Des 853000 853000	Strength is sing string ign (Safet / / (BLM Criteria n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5 48232.5 90000 90000) = 1.6 d = x = x	ry or 1.8 buoya 17.7 0.870 7.00 0.847) =) =		Su S SFi Bo Int S SFi Bo Pro S	SFb = Joint Streng Joint Streng SFtj = Fj / W Where The Minimur Fi Dry = 9 Prace Casin Fi Dry = 9 Prace Casin Prace Casin	7740 ength Design (S. th Design (S. t; Fj is th Wt is t n Acceptable 514000 Casing 520000 520000 Casing Casing	ign (Safr afety) Facto ne rated pip he weight d a Joint Stre / / / / / / /	ety) Factors - pr: SFIj e Joint Strength of the casing strii ngth Design (Sai 48232.5 48232.5 90000 90000 90000	in pounds ng in poun ety) Facto = X = X	(ibs) (ibs)(
SFc = Pipe Strength Design Pipe Strength Design (Sale SFtp = Fp / WI; Where • Fp is the • WI is the The Minimum Acceptable F Surface Casing SFi Dry = SFi Bouyant = Intermediate 1 Casing SFi Bouyant = SFi Bouyant =	n (Safety) Fac y) Factor: SFtp rated pipe Body : weight of the cas ipe Strength Des 853000 853000	Strength ii iing string gn (Safet: / / (/ / (BLM Criteria in pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5 48232.5 90000 90000 150800) = 1.6 d = x = x =	ry or 1.8 buoya 17.7 0.870 7.00 0.847 4.48) =) =	8.26	Su SFiBc SFiBc SFiBc SFiBc SFiBc SFiBc	SFb = Joint Streng Joint Streng SFtj = Fj / W Where The Minimur Fi Dry = 9 Prace Casin Fi Dry = 9 Prace Casin Prace Casin	7740 ength Design (S th Design (S t; Fj is th Wt is 1 Mt is 1 S14000 S14000 Casing S20000 Casing S20000 Casing S87000 S87000	ign (Saft afety) Facto ne rated pip he weight (a Joint Stre / / / / / (ety) Factors - pr: SFIj e Joint Strength of the casing strii ngth Design (Sal 48232.5 48232.5 90000 90000 90000	in pounds ng in poun ety) Facto = X = X =	(lbs) (lbs) ds (lbs) r SFTJ = 10.7 0. 5.78 0. 3.89
SFc = <u>Pipe Strength Design</u> Pipe Strength Design (Safe SFtp = Fp / WI: Where • Fp is the • WI is the The Minimum Acceptable F Surface Casing SFi Bouyant = SFi Bouyant = SFi Bouyant = Production 1 Casing SFi Dry = SFi Bouyant = SFi Bouyant =	n (Safety) Fac y) Factor: SFtp rated pipe Body : weight of the cas ipe Strength Des 853000 853000	Strength ii iing string gn (Safet: / / (/ / (BLM Criteria in pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5 48232.5 90000 90000 150800) = 1.6 d = x = x =	ry or 1.8 buoya 17.7 0.870 7.00 0.847 4.48) =) =	8.26	Su S SFiBo SFiBo SFiBo SFiBo Pro	SFb = Joint Strengt Joint Strengt SFtj = Fj / W Where The Minimur rface Casin Fi Dry = ermediate 1 Fi Dry = buyant = Fi Dry = Coluction 1 (Fi Dry = buyant = Strip - Strip -	7740 ength Design (S th Design (S t; Fj is th Wt is 1 Mt is 1 S14000 Casing 520000 Casing 520000 Casing 587000 587000	ign (Saft afety) Facto ne rated pip he weight (a Joint Stre / / / / / (ety) Factors - pr: SFIj e Joint Strength of the casing strii ngth Design (Sal 48232.5 48232.5 90000 90000 90000	in pounds ng in poun ety) Facto = X = X =	(lbs) ds (lbs)

(Minimum Internal Yield) Pressure in pounds per square inch (ps ure in pounds per square inch (psi)

Surface Casii SFb =	19 2730	/	391	=	6.98
Intermediate SFb =	1 Casing 3950	1	1170	=	3.38
Production 1 SFb =	Casing 8160	1	2434	=	3.35
Production 2 SFb =	Casing 7740	1	2623	=	2.95

actors – BLM Criteria

- Strength in pounds (lbs)
- ising string in pounds (lbs)

sign (Safety) Factor SFTj = 1.6 dry or 1.8 buoyant

Surface Casi	ing						
SFi Dry =	514000	/	48232.5	=	10.7		
SFi Bouyant =	514000	/ (48232.5	x	0.870) =	12.2
Intermediate	1 Casing						
SFi Dry =	520000	/	90000	=	5.78		
SFi Bouyant =	520000	/ (90000	x	0.847) =	6.82
Production 1	•						
SFi Dry =	587000	/	150800	=	3.89		
SFi Bouyant =	587000	/ (150800	x	0.863) =	4.51
Production 2	Casing						
SFi Dry =	338000	/	128911	=	2.62		
SFi Bouyant =	338000	7,(128911	×	0.863) =	3.04

String Section	Depth MD	Depth TVD	Csg length ft	Wt	MIY	Col	Pipe Str	Jt Str	Drill Fluid
Surface Casing	885	885	885	54.5	2730	1130	853000	514000	8.5
Intermediate 1 Casing	2250	2250	2250	40	3950	2570	630000	520000	10
Production 1 Casing	5200	5200	5200	29					ų,
Production 2 Casing	12783	5605	7583	17	7740	6290	397000	338000	(
<u>Collapse Design (Sa</u>	afetv) Factors	- BLM (Criteria						Burs
Collapse Design (Safety)									Burst
SFc = Pc / (MW x .052 x L	_s)								SFb =
Where									When
	e rated pipe Collar			per squar	e inch (psi)				
	mud weight in pour								
	e length of the strir							1	The N
The Minimum Acceptable	Collapse Design (Safety) Fa	ctor SFc = 1.1	25					
Surface Casing SFc =	= 1130	1	391	-	2.89				Surface (SFb
5-0 -	- 130	1	391	-	2.69				SFD
Intermediate 1 Casing									Intermed
SFc =	= 2570	1	1170	=	2.20				SFb
									D 4
Production 1 Casing SFc =	7020	1	2434	_	2.88				Producti SFb
3FC -	- 7020	1	2434	-	2.00				350
Production 2 Casing									Producti
roduction z oasing									
SFc =	= 6290	1	2623	=	2.40				SFb
-	= 6290	1	2623	=	2.40				
-	= 6290	1	2623	=	2.40				
SFc =				_	2.40				SFb
SFc = <u>Pipe Strength Desic</u>	an (Safety) Fac			_	2.40				SFb Join
SFc = <u>Pipe Strength Desic</u> Pipe Strength Design (Sal	an (Safety) Fac			_	2.40				SFb Joirt
SFc = <u>Pipe Strength Desic</u>	an (Safety) Fac			_	2.40				SFb Joint SFtj :
SFc = <u>Pipe Strength Desic</u> Pipe Strength Design (Saf SF(p = Fp / Wt; Where	an (Safety) Fac	tors – E	<u>BLM Criteri</u>	a	2.40			·	SFb Joint SFtj :
SFc = <u>Pipe Strength Desic</u> Pipe Strength Design (Saf SFtp = Fp / Wt; Where • Fp is th • Wt is th	gn (Safety) Fac fety) Factor: SFtp ne rated pipe Body ne weight of the cas	stors – E Strength ir sing string	BLM Criteri	<u>a</u>					SFb Joint SFtj When
SFc = <u>Pipe Strength Desic</u> Pipe Strength Design (Saf SFlp = Fp / Wt; Where • Fp is th	gn (Safety) Fac fety) Factor: SFtp ne rated pipe Body ne weight of the cas	stors – E Strength ir sing string	BLM Criteri	<u>a</u>		nt			SFb Joint SFtj : Wher
SFc = <u>Pipe Strength Desic</u> Pipe Strength Design (Saf SFtp = Fp / Wt; Where • Fp is th • Wt is th The Minimum Acceptable Surface Casing	gn (Safety) Fac fety) Factor: SFtp ne rated pipe Body ne weight of the cas Pipe Strength Des	:tors – E Strength ir sing string ign (Safet)	BLM Criteri n pounds (lbs) in pounds (lbs r) Factor SFT	a 3) 5 = 1,6 dr	y or 1.8 buoyar	n		·	SFb Joint SFtj : Wher The f
SFc = <u>Pipe Strength Design</u> (Saf SFp = Fp / Wt; Where Pipe Strength Design (Saf SFp = Fp / Wt; Where Pp is th Wt is th The Minimum Acceptable Surface Casing SFi Dry =	gn (Safety) Fac lety) Factor: SFtp le rated pipe Body le weight of the car Pipe Strength Des = 853000	stors – E Strength ir sing string ign (Safety /	BLM Criteri n pounds (lbs) in pounds (lbs /) Factor SFTF 48232.5	<u>a</u>	y or 1.8 buoyar 17.7	n		·	SFb Joint Joint SFij : Wher The I Surface (SFi Dry
SFc = <u>Pipe Strength Desic</u> Pipe Strength Design (Saf SFtp = Fp / Wt; Where • Fp is th • Wt is th The Minimum Acceptable Surface Casing	gn (Safety) Fac lety) Factor: SFtp le rated pipe Body le weight of the car Pipe Strength Des = 853000	:tors – E Strength ir sing string ign (Safet)	BLM Criteri n pounds (lbs) in pounds (lbs /) Factor SFTF 48232.5	a 3) 5 = 1,6 dr	y or 1.8 buoyar	n) =	20.3	SF	SFb Joint Joint SFij : Wher The I Surface (SFi Dry
SFc = <u>Pipe Strength Design</u> Pipe Strength Design (Saf SFtp = Fp / Wt; Where • Fp is th • Wt is th The Minimum Acceptable Surface Casing SFi Dry = SFi Bouyant = Intermediate 1 Casing	gn (Safety) Fac fety) Factor: SFtp he rated pipe Body he weight of the car Pipe Strength Des = 853000 = 853000	stors – E Strength ir sing string ign (Safety / / (BLM Criteri in pounds (ibs) in	a b) b = 1.6 dr x	y or 1.8 buoyar 17.7 0.870		20.3	SF	SFb Joint Joint SFij When The I Surface SFi Dry Bouyant Intermec
SFc = <u>Pipe Strength Design</u> Pipe Strength Design (Saf SFtp = Fp / Wt; Where • Fp is th • Wt is th The Minimum Acceptable Surface Casing SFi Bouyant = Intermediate 1 Casing SFi Dry =	gn (Safety) Fac fety) Factor: SFtp he rated pipe Body he weight of the cas Pipe Strength Des = 853000 = 853000 = 630000	strength ir Strength ir sing string ign (Safet; / / / (BLM Criteri n pounds (lbs) in pounds (lbs /) Factor SFTF 48232.5 48232.5 90000	a s) s = 1.6 dr x =	y or 1.8 buoyar 17.7 0.870 7.00) =			SFb Joint Joint SFij When The I SFi Dry Bouyant Intermec SFi Dry
SFc = <u>Pipe Strength Design</u> Pipe Strength Design (Saf SFtp = Fp / Wt; Where • Fp is th • Wt is th The Minimum Acceptable Surface Casing SFi Dry = SFi Bouyant = Intermediate 1 Casing	gn (Safety) Fac fety) Factor: SFtp he rated pipe Body he weight of the cas Pipe Strength Des = 853000 = 853000 = 630000	stors – E Strength ir sing string ign (Safety / / (BLM Criteri in pounds (ibs) in	a b) b = 1.6 dr x	y or 1.8 buoyar 17.7 0.870		20.3 8.26		
SFc = Pipe Strength Design (Saf Pipe Strength Design (Saf SFtp = Fp / Wt; Where • Fp is th • Wt is th The Minimum Acceptable Surface Casing SFi Bouyant = SFi Bouyant = SFi Bouyant =	gn (Safety) Fac fety) Factor: SFtp he rated pipe Body he weight of the cas Pipe Strength Des = 853000 = 853000 = 630000	strength ir Strength ir sing string ign (Safet; / / / (BLM Criteri n pounds (lbs) in pounds (lbs /) Factor SFTF 48232.5 48232.5 90000	a s) s = 1.6 dr x =	y or 1.8 buoyar 17.7 0.870 7.00) =			SFb Joint Joint SFij : Wher The I Surface (SFi Dry Bouyant Intermed SFi Dry
SFc = Pipe Strength Design (Saf Pipe Strength Design (Saf SFlp = Fp / Wt; Where • Fp is th • Wt is uh The Minimum Acceptable Surface Casing SFi Bouyant = Intermediate 1 Casing SFi Bouyant = SFi Bouyant = Production 1 Casing	gn (Safety) Fac fety) Factor: SFtp he rated pipe Body he weight of the cas Pipe Strength Des = 853000 = 853000 = 630000 = 630000	strength ir Strength ir sing string ign (Safet; / / / (BLM Criteri n pounds (ibs) in pounds (ibs /) Factor SFT 48232.5 48232.5 90000 90000	a s) s = 1.6 dr x =	y or 1.8 buoyar 17.7 0.870 7.00) =			SFb Joint Joint SFij : Wher The I Surface (SFi Dry Bouyant Intermed SFi Dry Bouyant
SFc = Pipe Strength Design (Saf Pipe Strength Design (Saf SFtp = Fp / Wt; Where • Fp is th • Wt is th The Minimum Acceptable Surface Casing SFi Bouyant = SFi Bouyant = SFi Bouyant =	gn (Safety) Fac fety) Factor: SFtp fety) Factor: SFtp he rated pipe Body he weight of the car Pipe Strength Des = 853000 = 630000 = 630000 = 630000 = 630000	strength ir sing string ign (Safet / / (/ / (BLM Criteri n pounds (lbs) in pounds (lbs /) Factor SFTF 48232.5 48232.5 90000	a b = 1,6 dm x = x	y or 1.8 buoyar 17.7 0.870 7.00 0.847) =		SF	SFb Joint Joint SFij When The I Surface SFi Dry Bouyant Intermec SFi Dry Bouyant Intermec SFi Dry Bouyant
SFc = Pipe Strength Design (Saf SFtp = Fp / Wt; Where • Fp is th • Wt is th The Minimum Acceptable Surface Casing SFi Bouyant = SFi Bouyant =	gn (Safety) Fac fety) Factor: SFtp fety) Factor: SFtp he rated pipe Body he weight of the car Pipe Strength Des = 853000 = 630000 = 630000 = 630000 = 630000	strength ir sing string ign (Safet / / (/ / (BLM Criteri n pounds (lbs) in pounds (lbs /) Factor SFTF 48232.5 48232.5 90000 90000 150800	a b) b = 1.6 dr x = x = x	y or 1.8 buoyar 17.7 0.870 7.00 0.847 4.48) =) =	8.26	SF	SFb Joint Joint SFij Whe The I Surface SFi Dry Bouyant Intermed SFi Dry Bouyant SFi Dry Bouyant
SFc = Pipe Strength Design Pipe Strength Design (Sal SFip = Fp / Wt; Where • Fp is th • Wt is th The Minimum Acceptable Surface Casing SFi Bouyant =	gn (Safety) Fac fety) Factor: SFtp re rated pipe Body re weight of the cas Pipe Strength Des = 853000 = 630000 = 630000 = 630000 = 676000	strength ir sing string ign (Safet / / (/ / (BLM Criteri n pounds (lbs) in pounds (lbs /) Factor SFTF 48232.5 48232.5 90000 90000 150800	a b) b = 1.6 dr x = x = x	y or 1.8 buoyar 17.7 0.870 7.00 0.847 4.48) =) =	8.26	SF	SFb Joint Joint SFi J Whe The I Surface SFi Dry Bouyant Intermect SFi Dry Bouyant

Design (Safety) Factors – BLM Criteria

esign (Safety) Factor: SFb i / BHP

- - Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps
 - BHP is bottom hole pressure in pounds per square inch (psi)

imum Acceptable Burst Design (Safety) Factor SFb = 1.0

Surface Casir SFb =	1 g 2730	1	391	=	6.98
Intermediate SFb =	1 Casing 3950	1	1170	=	3.38
Production 1 SFb =	Casing 8160	1	2434	=	3.35
Production 2 SFb =	Casing 7740	1	2623	=	2.95

Joint Stre	ngth Design (Safety) Factors – BLM Criteria
Joint Strengt	h Design (Safety) Factor: SFtj
SFtj = Fj / W	k;
Where	
	 Fj is the rated pipe Joint Strength in pounds (lbs)
	And the second

 Wt is the weight of the casing string in pounds (lbs) imum Acceptable Joint Strength Design (Safety) Factor SFTj = 1.6 dry or 1.8 buoyant

Surface Cas SFi Dry = SFi Bouyant =	ing 514000 514000	/ (48232.5 48232.5	= x	10.7 0.870) =	12.2
Intermediate SFi Dry = SFi Bouyant =	e 1 Casing 520000 520000	/ (90000 90000	= x	5.78 0.847) =	6.82
Production * SFi Dry = SFi Bouyant =	1 Casing 587000 587000	/	150800 150800	= X	3.89 0.863) =	4.51
Production 3 SFi Dry = SFi Bouyant =	2 Casing 338000 338000	/ (128911 128911	= x	2.62 0.863) =	3.04

1

_ _

urface Casing	MD 885	TVD 885	length ft 885	54.	5 2730	113	853000	514000	8.5							
termediate 1 Casing	2250	2250	2250	4		2570		520000	10							
roduction 1 Casing	5200	5200	5200	2		7020		587000	9							
roduction 2 Casing	12783	5605	7583	1	7 7740	6290	397000	338000	9							
<u>Collapse Design (Sa</u>	fety) Factors	- BIM (Criteria						Burst D	lesign (Safe	tv) Facto	rs – BIM Ci	riteria			
Collapse Design (Safety) F SFc = Pc / (MW x .052 x L:	actor: SFc		oncent							ign (Safety) Fa			nena			
Where		_							Where							
 MW is m 	rated pipe Collap and weight in pour length of the strin	nds per ga	illon (ppg)	er squa	re inch (psi)				The Minin		bottom hol	e pressure in p	ounds per	Yield) Pressure in square inch (psi) 1.0	n pounds pe	er square in
The Minimum Acceptable (-	-		25								g (,// ·				
urface Casing								S	urface Cas							
SFc =	1130	/	391	=	2.89				SFb =	2730	/	391	=	6.98		
ntermediate 1 Casing SFc =	2570	1	1170	=	2.20			In	termediate SFb =	e 1 Casing 3950	1	1170	=	3,38		
roduction 1 Casing SFc =	7020	1	2434	=	2.88			Pi	SFb =	1 Casing 8160	1	2434	=	3,35		
roduction 2 Casing SFc =	6290	1	2623	=	2.40			Pi	roduction a SFb =	2 Casing 7740	1	2623	=	2.95		
Pipe Strenath Desig	n (Safetv) Fac	tors – I	3LM Criteria	9					Joint Si	trength Des	iqn (Safe	ty) Factors	– BLM C	Criteria		
Pipe Strength Desig Pipe Strength Design (Safe SFtp = Fp / Wt; Where		tors – I	<u>BLM Criteria</u>	1					Joint Stre SFtj = Fj /	trength_Des ngth Design (Si Wt;			<u>– BLM (</u>	Criteria		
Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the • Wt is the	ty) Factor: SFtp rated pipe Body S weight of the cas	Strength in	n pounds (Ibs) in pounds (Ibs)	ry or 1.8 buoya	N			Joint Stre SFtj = Fj / Where	ngth Design (Sa Wt; • Fjis th • Wt is t	afety) Factor le rated pipe he weight of	r: SFtj - Joint Strength f the casing stri	in pounds ng in poun	(lbs) ds (lbs)	or 1.8 buoya	nt
Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the	ty) Factor: SFtp rated pipe Body S weight of the cas	Strength in	n pounds (Ibs) in pounds (Ibs)	ry or 1.8 buoyar	ł			Joint Stre SFtj = Fj / Where	ngth Design (Sa Wt; • Fjis th • Wt is t	afety) Factor le rated pipe he weight of	r: SFtj - Joint Strength f the casing stri	in pounds ng in poun	(lbs)	or 1.8 buoya	nt
Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable f	ty) Factor: SFtp rated pipe Body S weight of the cas	Strength in	n pounds (Ibs) in pounds (Ibs)	ry or 1.8 buoyar	ıt		SI	Joint Stre SFtj = Fj / Where	ngth Design (Sa Wt; Fj is th Wt is t num Acceptable	afety) Factor le rated pipe he weight of	r: SFtj - Joint Strength f the casing stri	in pounds ng in poun	(lbs) ds (lbs)	or 1.8 buoya	nt
Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable f	ty) Factor: SFtp rated pipe Body S weight of the cas	Strength in	n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5)	ry or 1.8 buoyar 17.7 0.870	1 ¹) =	20.3	5	Joint Stre SFtj = Fj / Where The Minin	ngth Design (Sa Wt; Fj is th Wt is t num Acceptable	afety) Factor le rated pipe he weight of a Joint Stren /	r: SFtj - Joint Strength f the casing stri	in pounds ng in poun	(lbs) ds (lbs)	or 1.8 buoya) =	nt 12.2
Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable f urface Casing SFi Dry = SFi Bouyant = termediate 1 Casing	ity) Factor: SFtp rated pipe Body S weight of the cas Pipe Strength Desi 853000 853000	Strength in sing string ign (Safet /	n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5 48232.5	- = 1.6 d = X	17.7 0.870		20.3	s SFiB In	Joint Stre SFtj = Fj / Where The Minin urface Cas SFi Dry = ouyant = termediate	ngth Design (Si Wt: Fj is th Wt is t num Acceptable ing 514000 514000 6 1 Casing	afety) Factor le rated pipe he weight of a Joint Stren /	: SFIj : Joint Strength f the casing stri gth Design (Sa 48232.5 48232.5	in pounds ng in poun fety) Facto = X	(lbs) ds (lbs) or SFTj = 1.6 dry o 10.7 0.870		
Pipe Strength Design (Safe SFtp = Fp / Wt; Where Wt is the The Minimum Acceptable f Inface Casing SFi Dry = SFi Bouyant =	ity) Factor: SFtp rated pipe Body 5 weight of the cas Pipe Strength Desi 853000 853000 630000	Strength in sing string ign (Safet /	n pounds (lbs) in pounds (lbs y) Factor SFTp 48232.5 48232.5 90000) = 1.6 d =	17.7		20.3	s SFi B In	Joint Stre SFtj = Fj / Where The Minin urface Cas SFi Dry = ouyant =	ngth Design (Si Wt: Wt is t Wt is t Num Acceptable ing 514000 514000	afety) Factor le rated pipe he weight of a Joint Stren /	SFtj Joint Strength (the casing stri gth Design (Sa 48232.5	in pounds ng in poun fety) Facto ≕	(lbs) ids (lbs) or SFTj = 1.6 dry o 10.7		
Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable f urface Casing SFi Dry = SFi Bouyant = • SFi Bouyant = • SFi Bouyant =	ity) Factor: SFtp rated pipe Body S weight of the cas Pipe Strength Desi 853000 853000 630000 630000	Strength ii sing string ign (Safet / / (n pounds (lbs) in pounds (lbs) y) Factor SFTp 48232.5 48232.5 90000 90000) = 1.6 d = x = x	17.7 0.870 7.00 0.847) =		SFi B In SFi B SFi B	Joint Stre SFtj = Fj / Where The Minim urface Cas SFi Dry = ouyant = termediate SFi Dry = ouyant =	ngth Design (Si Wt: Vt: st Wt is t num Acceptable 514000 514000 514000 5120000 520000 520000 520000	afety) Factor le rated pipe he weight of a Joint Stren / / / (: SFIj : Joint Strength f the casing stri gth Design (Sa 48232.5 48232.5 90000 90000	in pounds ng in poun (fety) Facto = X = X	(lbs) ds (lbs) rr SFTj = 1.6 dry o 10.7 0.870 5.78 0.847) =	12.2
Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable f urface Casing SFi Dry = SFi Bouyant = termediate 1 Casing SFi Bouyant = SFi Bouyant =	ity) Factor: SFtp rated pipe Body 5 weight of the cas Pipe Strength Desi 853000 853000 630000	Strength ii sing string ign (Safet / / (n pounds (lbs) in pounds (lbs) y) Factor SFTp 48232.5 48232.5 90000 90000 150800	- = 1.6 d = 	17.7 0.870 7.00) =	8.26	s SFi B SFi B SFi B SFi B	Joint Stre SFtj = Fj / Where The Minim Urface Cas SFi Dry = ouyant = termediate SFi Dry = ouyant =	ngth Design (Si Wt: Wt is t wt is t num Acceptable 514000 514000 514000 520000 520000	afety) Factor le rated pipe he weight of a Joint Stren / / / / (/	SFtj : Joint Strength f the casing stri gth Design (Sa 48232.5 48232.5 90000	in pounds ng in poun fety) Facto = X =	(lbs) ds (lbs) or SFTj = 1.6 dry o 10.7 0.870 5.78) =	12.2
Pipe Strength Design (Safe SFtp = Fp / Wt; Where • Fp is the • Wt is the The Minimum Acceptable f urface Casing SFi Bouyant = termediate 1 Casing SFi Bouyant = sFi Bouyant = roduction 1 Casing SFi Dry =	ity) Factor: SFtp rated pipe Body 5 weight of the cas pipe Strength Desi 853000 853000 630000	Strength in sing string ign (Safet / / (/ / (n pounds (lbs) in pounds (lbs) y) Factor SFTp 48232.5 48232.5 90000 90000 150800) = 1.6 d = x = x =	17.7 0.870 7.00 0.847 4.48) =) =	8.26	s SFi B SFi B SFi B SFi B SFi B	Joint Stre SFtj = Fj / Where The Minin urface Cas SFi Dry = ouyant = termediate SFi Dry = ouyant = SFi Dry = ouyant =	ngth Design (Si Wt: • Fj is th • Wt is t num Acceptable 514000 514000 • 1 Casing 520000 520000 1 Casing 587000 587000	afety) Factor le rated pipe he weight of a Joint Stren / / / / (/	5 SFij : Joint Strength f the casing stri ggth Design (Sa 48232.5 48232.5 90000 90000 150800	in pounds ng in poun (fety) Facto = X = X =	(lbs) ds (lbs) or SFTj = 1.6 dry o 10.7 0.870 5.78 0.847 3.89) =	12.2 6.82

.

String Section		Depth	Depth	Csg	Wt	MIY	Col	Pipe Str	Jt Str	Drill Fluid
		MD	TVD	length ft					<u>.</u>	
Surface Casing		885	885	885						
Intermediate 1 Casi		2250	2250	2250						
Production 1 Casing		5200	5200	5200					587000	
Production 2 Casing	9 L	12783	5605	7583	17	7740	6290	397000	338000	9
<u>Collapse Desi</u>	on (Saf	etv) Factors	- BLM	Criteria						Burs
Collapse Design (onteria						Burst [
SFc = Pc / (MW x	• •									SFb =
Where	.002 x L3	,								Where
	Pc is the	rated pipe Colla	nse Pressi	ure in nounds	ner squar	e inch (osi)				Where
		ud weight in pou			per aquar	e mon (por)				
		length of the stri								The Mi
The Minimum Acc		•	-	• •	25					
Surface Casing										Surface C
ounder ournig	SFc =	1130	1	391	=	2.89				SFb =
Intermediate 1 Cas	sina									Intermedia
	SFc =	2570	1	1170	=	2.20				SFb =
Production 1 Casi	na									Productio
	SFc =	7020	1	2434	=	2.88				SFb =
Production 2 Casi	ng									Productio
	SFc =	6290	1	2623	= '	2.40				SFb =
Pipe Strength			ctors – I	BLM Criter	a					<u>Joint</u>
Pipe Strength Des	ign (Safet	ly) Factor: SFtp								Joint S
										SFtj =

Where

• Fp is the rated pipe Body Strength in pounds (lbs)

• Wt is the weight of the casing string in pounds (lbs)

The Minimum Acceptable Pipe Strength Design (Safety) Factor SFTp = 1.6 dry or 1.8 buoyant

Surface Casing

SFi Dry =	853000	1	48232.5	÷	17.7		
SFi Bouyant =	853000	/ (48232.5	x	0.870) =	20.3
Intermediate 1 Casing							
SFi Dry =	630000	1	90000	=	7.00		
SFi Bouyant =	630000	`/(90000	x	0.847) =	8.26
Production 1 Casing							
SFi Dry =	676000	1	150800	=	4.48		
SFi Bouyant =	676000	/ (150800	x	0.863) =	5.20
Production 2 Casing							
SFiDry =	397000	1	128911	=	3.08		
SFi Bouyant =	397000	1 (128911	x	0.863) =	3.57

rst Design (Safety) Factors – BLM Criteria

t Design (Safety) Factor: SFb = Pi / BHP

• Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps

BHP is bottom hole pressure in pounds per square inch (psi)

Minimum Acceptable Burst Design (Safety) Factor SFb = 1.0

Surface Casin SFb =	9 2730	1	391	=	6.98
Intermediate 1 SFb =	I Casing 3950	1	1170	=	3,38
Production 1 SFb =	Casing 8160	1	2434	=	3.35
Production 2 SFb =	Casing 7740	1	2623	=	2.95

nt Strength Design (Safety) Factors - BLM Criteria

t Strength Design (Safety) Factor: SFtj

SFtj = Fj / Wt;

Where

Fj is the rated pipe Joint Strength in pounds (lbs)

• Wt is the weight of the casing string in pounds (lbs)

The Minimum Acceptable Joint Strength Design (Safety) Factor SFTj = 1.6 dry or 1.8 buoyant

Surface Casing SFi Dry = 514000 SFi Bouyant = 514000	/ 48232.5 / (48232.5	= 10.7 x 0.8	70) =	12.2
Intermediate 1 Casing SFi Dry = 520000 SFi Bouyant = 520000	/ 90000 / (90000	= 5.78 x 0.8	47) =	6.82
Production 1 Casing SFi Dry = 587000 SFi Bouyant = 587000	/ 150800 / (150800	= 3.89 x 0.8	63)=	4.51
Production 2 Casing SFi Dry = 338000 SFi Bouyant = 338000	/ 128911 / (128911	= 2.62 × 0.8	63)=	3.04

1. Geologic Formations

KB TVD of target	5605'	Pilot hole depth	NA
KB MD at TD:	12783'	Deepest expected fresh water:	835'

The second secon	•
Кa	sin
1.0	OF REAL

Formation	KB TVD (ft)	Elevation KB (ft)	Water/Mineral Bearing/Target Zone	Hazards*
Rustler	835	3229	Fresh Water	
Salado	980	3084	Brackish Water	
Tansill	2055	2009	Salt	
Yates	2195	1869	Salt Water	
Seven Rivers	2500	1564	Oil/Gas	
Queen	3120	944	Oil/Gas	
Grayburg	3545	519	Oil/Gas	
San Andres	3860	204	Oil/Gas	
Glorieta	5365	-1301	Oil/Gas	
Paddock	5465	-1401	Target	
Land Pt / TD	5605	-1541	Target	

2. Casing Program

	3 strings casing design									
Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Pipe	SF Joint
Size	From	To	Size	(lbs)			Collapse	Burst	Tensile	Tensile
17.5"	0	885	13.375"	54.5	J55	STC/BTC	2.89	6.98	17.7	10.7
12.25"	0	2250	9.625"	40	J55	LTC/BTC	2.20	3.38	7.00	5.78
8.75"	0	5200	7"	29	L80	LTC/BTC	2.88	3.35	4.48	3.89
8.75"	5200	12783	5.5"	17	L80	LTC/BTC	2.40	2.95	3.08	2.62
		•		BLM N	Minimum	Safety Factor	1.125	1	1.6 Dry	1.6 Dry
						-			1.8 Wet	1.8 Wet

- Bring cement from 5-1-2" casing shoe to lap inside 9-5/8" casing shoe.
- XO from 7" to 5-1/2" in 8-3/4" OH for minimum of 0.422in clearance per Onshore Oil and Gas Order #2 III.B.
- Notify BLM if an Annulus Casing Packer and Stage Tool with 2-Stage Cement or Remediate with Bradenhead Squeeze will be necessary.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	YES
Does casing meet API specifications? If no, attach casing specification sheet.	YES
Is premium or uncommon casing planned? If yes attach casing specification sheet.	YES
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	YES
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	N/A
Is well located within Capitan Reef?	NO
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	NO
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	NO
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	NO
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	NO
If yes, are there three strings cemented to surface?	

3. Cementing Program

			<u> </u>				
Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H20 gal/sk	Vol ft3	500# Comp. Strength (hours)	Slurry Description
Surf.	500	13.5	1.68	8.94	840	7	Lead: Class C + 4.0% Bentonite + 0.2% Anti-Foam + 2.0% CaCl2 +0.125lb/sk LCM + 0.1% Dispersant
	400	14.8	1.35	6.38	540	7	Tail: Class C + 0.2% Anti-Foam + 0.1% Lost Circ Control + 2 lbs/bbl CemNET (losses Control)
Inter.	450	11.5	2.29	10.72	1031	17	Lead: Class C + 10.0% Bentonite + 0.2% Anti-Foam + 2.0% Expanding + 0.15% Viscosifier + 1.3% Retarder.
	300	13.5	1.29	4.81	387	7	Tail: Class C + 1% Extender + 3 lb/sk Extender + 0.2% Anti-Foam + 0.1% Dispersant + 13 lb/sk LCM + 0.5% Fluid Loss + 0.7% Retarder
Prod.	650	11.0	3.2	19.25	2080	17	Lead: Class C + 6% Extender + 10% Gas Migration Control + 2% Sodium Metasilicate (dry) + 1% Cement Bonding Agent + 3% Aluminum Silicate + 0.125 lb/sx Cello Flake + 3 lb/sx LCM-1
	1900	14.0	1.37	6.48	2603	7	Tail: Class C + 3lb/sk LCM + 1.5% Fluid Loss + 0.1% + 1% Sodium Metasilicate (dry) + 1.5% Fluid Loss Control

DV tool depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

Lab reports with recipe and the 500 psi compressive strength time for the cement will be onsite for review.

3 strings casing cement design							
Casing String TOC Lead TOC Tail % Excess							
Surface	0'	585'	>100%				
Intermediate	0'	1750'	>100%				
Production	<1700'	5200'	>30%				

Cement excess will be adjusted based on actual hole condition like losses or fluid caliper data if have.

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		•	Tested to:
			Annular		x	50% of working pressure
	13-5/8"	3M/5M	Blind Ram			
8-3/4"			Pipe Ram			2 000
			Double Ram		x	3,000 psi
			Other*			

*Specify if additional ram is utilized.

Note: A 13-5/8" BOPE will be utilize in the 8-3/4" hole section depending on availability and Rig Substructure Clearance.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

X	On Exp greater	ion integrity test will be performed per Onshore Order #2. bloratory wells or on that portion of any well approved for a 5M BOPE system or , a pressure integrity test of each casing shoe shall be performed. Will be tested in ance with Onshore Oil and Gas Order #2 III.B.1.i.
X	Manifo	Ince is requested for the use of a flexible choke line from the BOP to Choke and. If yes, specs and hydrostatic test certification will be available in the company trailer and on the rig floor.
	N	Are anchors required by manufacturer?
X	installa	ibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after tion on the surface casing which will cover testing requirements for a maximum of s. If any seal subject to test pressure is broken the system must be tested.
	See atta	ached schematic.

5. Mud Program

3 strings casing mud program								
De	pth	Туре	Weight (ppg)	Viscosity	Water	PH		
From	То				Loss			
0	Surf. shoe	FW Gel	8.5-9.0	28-40	N/C	N.C.		
Surf. Shoe	Inter. shoe	Saturated Brine	10.0	28-32	N/C	9-10.5		
Inter. shoe	TD	Cut-Brine	8.6-10.0	28-40	N/C	9-10.5		

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	PVT/Pason/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.
X	Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated
	logs run will be in the Completion Report and submitted to the BLM.
	No Logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain
	Coring? If yes, explain

Add	litional logs planned	Interval
	Resistivity	
	Density, GR, BHC	
	CBL	
X	Mud log	
	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	2815 psi
Abnormal Temperature	No – 100°

• Mitigation measure for abnormal conditions - Loss of circulation is a possibility in the horizons below the Top of Grayburg. We expect that normal Loss of Circulation Material will be successful in healing any such loss of circulation events.

Gas detection equipment and pit level flow monitoring equipment will be on location. A flow paddle will be installed in the flow line to monitor relative amount of mud flowing in the non-pressurized return line. Mud probes will be installed in the individual tanks to monitor pit volumes of the drilling fluid with a pit volume totalizer. Gas detecting equipment and H2S monitor alarm will be installed in the mud return system and will be monitored. A mud gas separator will be installed and operable before drilling out from the Surface Casing. The gases shall be piped into the flare system. Drilling mud containing H2S shall be degassed in accordance with API RP-49, item 5.14. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

X	H2S is present		•	
Χ	H2S Plan attached	-		

8. Other facets of operation

Is this a walking operation? If yes, describe. NO. Will be pre-setting casing? If yes, describe. NO.

Attachments:

Attachment#1: Directional Plan
Attachment#2: Wellbore Casing & Cementing Schematic
Attachment#3: Wellhead Schematic
Attachment #4: BOP Schematics
Attachment #5: Choke Schematic
Attachment #6: Rig Layout
Attachment #7: H2S Contingency Plan

5 Drilling Plan

SPECIFICATIONS

FLOOR: 3/16" PL one piece CROSS MEMBER: 3 x 4.1 channel 16" on

center

WALLS: 3/16" PL solid welded with tubing top, insi de liner hooks

DOOR: 3/16" PL with tubing frame FRONT: 3/16" PL slant formed

PICK U P: Standard cable with 2" x 6" x 1/4" rails, gu sset at each crossmember WHEELS: 10 DIA x 9 long with rease fittings

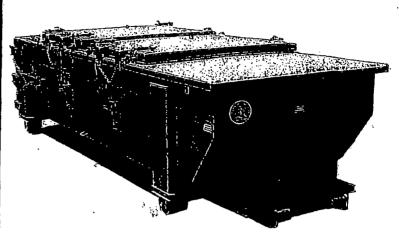
DOOR LATCH: 3 Independent ratchet binders with chains, vertical second latch GASKE TS: Extruded rubber seal with metal retainer s

WELDS: All welds continuous except substructure crossmembers

FINISH: Coated inside and out with direct to metal, rust inhibiting acrylic enamel color coat HYDROTESTING: Full capacity static test DIMEN SIONS: 22-11' long (21'-8" inside), 99" wide (88" inside), see drawing for height OPTIONS: Steel grit blast and special paint, Ampliroll, Heil and Dino pickup

ROOF: 3/16" PL roof panels with tubing and channel support frame

LIDS: (2) 68" x 90" metal rolling lids spring loaded. self raising

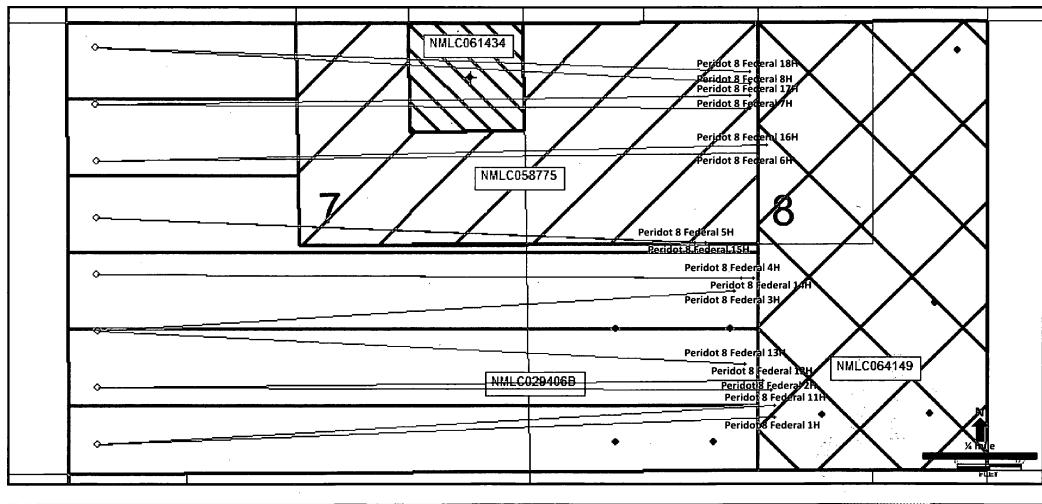

ROLLERS: 4" V-groove rollers with delrin bearings and grease fittings OPENING: (2) 60" x 82" openings

with 8" divider centered on contain er


LATCH :(2) independent ratchet binders with chains per lid

GASKETS: Extruded rubber seal with metal retainers

Heavy Duty Split Metal Rolling Lid



CONT.	A	B	
20 YD	41	53	
25 YD	53	65	
30 YD	65	77	

31

Peridot Section 7 and 8 Lease Map

ConocoPhillips

.

.

	3 strings casing design														
Hole	Casing Interval		Casing Interval		Casing Interval		Casing I	Csg.	Weight	Grade	Conn.	SF	SF	SF Pipe	SF Joint
Size	From	То	Size	(lbs)			Collapse	Burst	Tensile	Tensile					
17.5"	0	885	13.375"	54.5	J55	STC/BTC	2.89	6.98	17.7	10.7					
12.25"	0	2250	9.625"	40	J55	LTC/BTC	2.20	3.38	7.00	5.78					
8.75"	0	5200	7"	29	L80	LTC/BTC	2.88	3.35	4.48	3.89					
8.75"-8.5"	5200	12783	5.5"	20	L80	LTC/BTC	3.37	3.50	3.07	3.46					
			BLM N	Minimum	Safety Factor	1.125	1	1.6 Dry	1.6 Dry						
l						-			1.8 Wet	1.8 Wet					

2. Casing Program – Openhole Sliding Sleeves Completion Option

1

- Cement 7" production string thru a stage tool below the XO joint and leave 5-1/2" casing string below the Glorieta formation uncemented with packers & sleeves from landing point to TD.
- Notify BLM if additional unplanned stages of Cement or Remediate with Bradenhead Squeeze becomes necessary.

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	YES
Does casing meet API specifications? If no, attach casing specification sheet.	YES
Is premium or uncommon casing planned? If yes attach casing specification sheet.	NO
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	YES
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	N/A
Is well located within Capitan Reef?	NO
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	NO
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	NO
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	NO
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	NO
If yes, are there three strings cemented to surface?	

scription
nite + 0.2% Anti-Foam + M + 0.1% Dispersant
oam + 0.1% Lost Circ (losses Control)
onite + 0.2% Anti-Foam + scosifier + 1.3% Retarder.
+ 3 lb/sk Extender + 0.2% t + 13 lb/sk LCM + 0.5%
r + 10% Gas Migration licate (dry) + 1% Cement um Silicate + 0.125 lb/sx
i

3. Cementing Program – Openhole Sliding Sleeves Completion Option

If additional unplanned stages of cementing are necessary, the contingency stage tool will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Stage tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

Lab reports with recipe and the 500 psi compressive strength time for the cement will be onsite for review.

3 strings casing cement design								
Casing String	TOC Lead	TOC Tail	% Excess					
Surface	0'	585'	>100%					
Intermediate	0'	1750'	>100%					
Production	<1700'	N/A	>30%					

Cement excess will be adjusted based on actual hole condition like losses or fluid caliper data if have.

Attachments:

Attachment#1: Wellbore Casing & Cementing Schematic

String Section		Depth	Depth	Csg	Wt	MIY	Col	Pipe Str	Jt Str	Drill Fluid
Surface Casing	Г	MD 885	TVD 885	length ft 885	54.5	2730	1130	853000	514000	8.5
Intermediate 1 Casir		2250	2250	2250	40	3950				
		5200	5200		29					
Production 1 Casing Production 2 Casing		12783	5605	5200 7583	29	8160				
roduction 2 casing		12700	0000			1140	0230			
Collapse Desi	gn (Safe	ety) Factors	- BLM (<u>Criteria</u>						Burst
Collapse Design (S	afety) Fac	ctor: SFc								Burst D
SFc = Pc / (MW x .	052 × Ls)									SFb = F
Where										Where
•	Pc is the r	ated pipe Collar	ose Pressu	re in pounds p	oer squar	e inch (psi)				
•	MW is mu	d weight in pou	nds per ga	llon (ppg)						
		ength of the stri								The Mir
The Minimum Acce	eptable Co	allapse Design (Safety) Fa	ctor SFc = 1.1	25					
Surface Casing	05	1120	,	204	_	2.00				Surface Ca
	SFc =	1130	/	391	=	2,89				SFb =
Intermediate 1 Cas	ina									Intermedia
interneulate i Cas	SFc =	2570	1	1170	=	2.20				SFb =
	3FC -	2570	'	1170	-	2.20				3F0 -
Production 1 Casin	g									Production
	SFc =	7020	1	2434	=	2.88				SFb =
Production 2 Casin	g									Production
	SFc =	6290	1	2623	=	2,40				SFb =
Pipe Strength	Design	(Safety) Fac	ctors – E	BLM Criteri	a					Joint
Pipe Strength Desi	gn (Safety) Factor: SFtp								Joint S
SFtp = Fp / Wt;										SFtj = I
Where										Where
•	Fp is the r	ated pipe Body	Strength in	n pounds (lbs)						
		weight of the ca	-							
The Minimum Acce	eptable Pij	pe Strength Des	ign (Safet) Factor SFT	o = 1.6 dr	y or 1.8 buoya	nt			The Mi
Surface Casin-										Curfage C
Surface Casing	D	050000	,	40000 5		47 7				Surface C
SFi SFi Bou	i Dry =	853000	1, .	48232.5	= '	17.7	,			SFi Dry =
		853000	/ (48232.5	x	0.870) =	20.3		i Bouyant =

Intermediate 1 Casing SFi Dry = 630000 / 90000 = 7.00 SFi Bouyant = 630000 / (90000 х 0.847) = 8.26 Production 1 Casing SFi Dry = 676000 150800 = 4.48 1 SFi Bouyant = / (150800) = 5.20 676000 х 0.863 Production 2 Casing 397000 128911 SFi Dry = 1 = 3.08 SFi Bouyant = 397000 / (128911 х 0.863) = 3.57

esign (Safety) Factors – BLM Criteria

gn (Safety) Factor: SFb

- BHP

• Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps

BHP is bottom hole pressure in pounds per square inch (psi)

um Acceptable Burst Design (Safety) Factor SFb = 1.0

Surface Casing SFb = 273	0 /	391	=	6.98
Intermediate 1 Casin SFb = 395	•	1170	=	3.38
Production 1 Casing SFb = 816	•	2434	=	3.35
Production 2 Casing SFb = 774	-	2623	=	2.95

rength Design (Safety) Factors – BLM Criteria

gth Design (Safety) Factor: SFtj Nt;

- - Fj is the rated pipe Joint Strength in pounds (lbs)
 - Wt is the weight of the casing string in pounds (lbs)

um Acceptable Joint Strength Design (Safety) Factor SFTj = 1,6 dry or 1.8 buoyant

Surface Cas	sing							
SFi Dry =	514000	1	48232.5	=	10.7			
SFi Bouyant =	514000	/ (48232.5	x	0.870) =	12.2	
Intermediate	e 1 Casing							
SFi Dry =	520000	1	90000	=	5.78			
SFi Bouyant =	520000	/ (90000	x	0.847) =	6.82	
Durahustian								
Production	-							
SFi Dry =	587000	/	150800	=	3.89			
SFi Bouyant =	587000	/ (150800	x	0.863) =	4.51	
Production	2 Casing							

Production.	z Casing						
SFi Dry =	338000	1	128911	=	2.62		
SFi Bouyant =	338000	/ (128911	x	0.863) =	3.04

Peridot 8 Federal 4H

1

• MW • Ls is The Minimum Acceptat Surface Casing SFi Intermediate 1 Casing	(Safety) If y) Factor: S x Ls) : the rated p is mud weig the length ole Collapse	Fc bipe Collaps ght in pound of the string	885 2250 5200 5605 - BLM C se Pressu ds per gai g in feet (i	2250 5200 7583 Criteria	54.5 40 29 20	2730 3950 8160 9190) 2570) 7020	853000 630000 676000 466000	514000 520000 587000 524000	8.5 10 9 9 9 9 8 Burst Desig SFb = Pi / f
Production 1 Casing Production 2 Casing Collapse Design (Cafet SFc = Pc / (MW x .052 Where Pc is MW Ls is The Minimum Acceptat Surface Casing SFr ntermediate 1 Casing	y) Factor: S x Ls) is the rated p is mud weig the length ole Collapse	5200 12783 Factors - Fc SFc ght in pound of the string	5200 5605 - BLM C se Pressu ds per gai g in feet (i	5200 7583 Criteria	29 20	8160	7020	676000	587000	9 9 <u>Burst De</u> Burst Desig
Production 2 Casing Collapse Design (Safet SFc = Pc / (MW x .052 Where Pc is MW Ls is The Minimum Acceptat Surface Casing SFr ntermediate 1 Casing	y) Factor: S x Ls) is the rated p is mud weig the length ole Collapse	12783 Factors - SFc bipe Collaps ght in pound of the string	5605 - BLM C se Pressu ds per gal g in feet (i	7583 Criteria	20					9 <u>Burst De</u> Burst Desig
Collapse Design (Collapse Design (Safet SFc = Pc / (MW x .052 Where Pc is MW Ls is The Minimum Acceptat Surface Casing SFr ntermediate 1 Casing	y) Factor: S x Ls) is the rated p is mud weig the length ole Collapse	Factors - Fc Dipe Collaps ght in pound of the string	- BLM C se Pressu ds per gai g in feet (i	Criteria Irre in pounds p		9190) 8830	466000	524000	<mark>Burst De</mark> Burst Desig
Collapse Design (Safet SFc = Pc / (MW x .052 Where Pc is MW Ls is The Minimum Acceptat Surface Casing SFr ntermediate 1 Casing	y) Factor: S x Ls) is the rated p is mud weig the length ole Collapse	Fc bipe Collaps ght in pound of the string	se Pressu ds per gai g in feet (i	ire in pounds p	et square					Burst Desig
Collapse Design (Safet SFc = Pc / (MW x .052 Where Pc is MW Ls is The Minimum Acceptat Surface Casing SFr ntermediate 1 Casing	y) Factor: S x Ls) is the rated p is mud weig the length ole Collapse	Fc bipe Collaps ght in pound of the string	se Pressu ds per gai g in feet (i	ire in pounds p	et square					Burst Desig
SFc = Pc / (MW x .052 Where Pc is MW Ls is The Minimum Acceptat Surface Casing SFr ntermediate 1 Casing	x Ls) is the rated p is mud weig the length ble Collapse	pipe Collaps ght in pound of the string	ds per gai g in feet (i		er souare					
Where Pc is MW Ls is The Minimum Acceptat Surface Casing SFr ntermediate 1 Casing	the rated r is mud weig the length ble Collapse	ght in pound of the string	ds per gai g in feet (i		er souare					SFD - P171
• Pc is • MW • Ls is The Minimum Acceptat Surface Casing SFo ntermediate 1 Casing	is mud weig the length ble Collapse	ght in pound of the string	ds per gai g in feet (i		er souare					Where
• MW • Ls is The Minimum Acceptat surface Casing SFo ntermediate 1 Casing	is mud weig the length ble Collapse	ght in pound of the string	ds per gai g in feet (i			inch (nsi)				where
• Ls is The Minimum Acceptat Surface Casing SFr ntermediate 1 Casing	the length ble Collapse	of the string	g in feet (o, square	men (pai)				
The Minimum Acceptat Surface Casing SFi Ntermediate 1 Casing	ble Collapse									The Minimu
SFe	c =		alety) rat		25					
ntermediate 1 Casing	c =								s	Surface Casi
		1130	1	391	=	2.89				SFb =
		0530	,	4470	_	• ••			I	ntermediate
55	C ≠	2570	1	1170	=	2.20				SFb =
roduction 1 Casing									F	Production 1
SF	c =	7020	1	2434	= .	2.88				SFb =
roduction 2 Casing									F	Production 2
SF	c =	8830	1	2623	=	3.37				SFb =
Pipe Strength Des Pipe Strength Design (S SFtp = Fp / Wt; Where	Safety) Fact	tor: SFtp		BLM Criteria	ž					<u>Joint Str</u> Joint Streng SFtj = Fj / V Where
		•	-	in pounds (lbs))					
The Minimum Acceptat	-					or 1,8 buoya	nl			The Minim
urfaco Casino										Rudooc Co-l
urface Casing SFi Dr	v = (853000	1	48232.5	=	17.7				Surface Casii SFi Dry =
SFi Bouyan		853000	<i>'</i> / (48232.5	×	0.870) =	20.3		Bouyant =
,			· (~	0.070	,			,
termediate 1 Casing				00000						ntermediate
		630000	1, ,	90000		7.00	,			SFi Dry =
SFi Dr	τ= (630000	/ (90000	x	0.847) =	8.26	SFil	Bouyant =
SFi Dr SFi Bouyan									ŀ	roduction 1
SFi Dr SFi Bouyan	/= (676000	1	150800	= .	4.48				Production 1 SFi Dry =
SFi Dn SFi Bouyan Production 1 Casing		676000 676000	/ / (150800 150800	= ×	4.48 0.863) =	5.20		
SFi Do SFi Bouyan roduction 1 Casing SFi Do SFi Bouyan) =	5.20	SFi I	SFi Dry = Bouyant =
SFi Dn SFi Bouyan Production 1 Casing SFi Dn	t = (×) =	5.20	SFi I	

- -

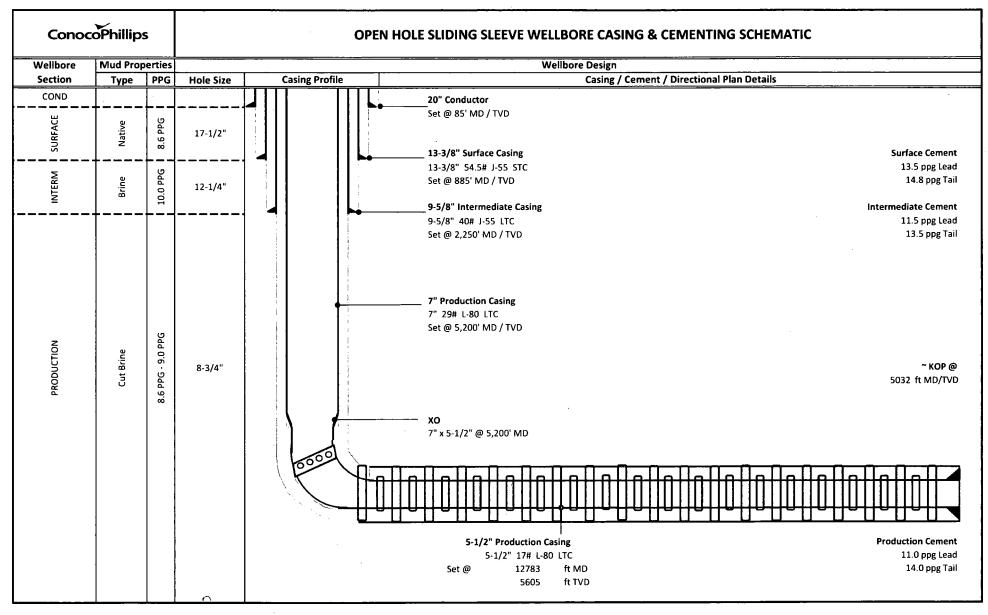
urst Design (Safety) Factors – BLM Criteria	
rst Design (Safety) Factor: SFb	
b = Pi / BHP	

Pi is the rated pipe Burst (Minimum Internal Yield) Pressure in pounds per square inch (ps BHP is bottom hole pressure in pounds per square inch (psi)

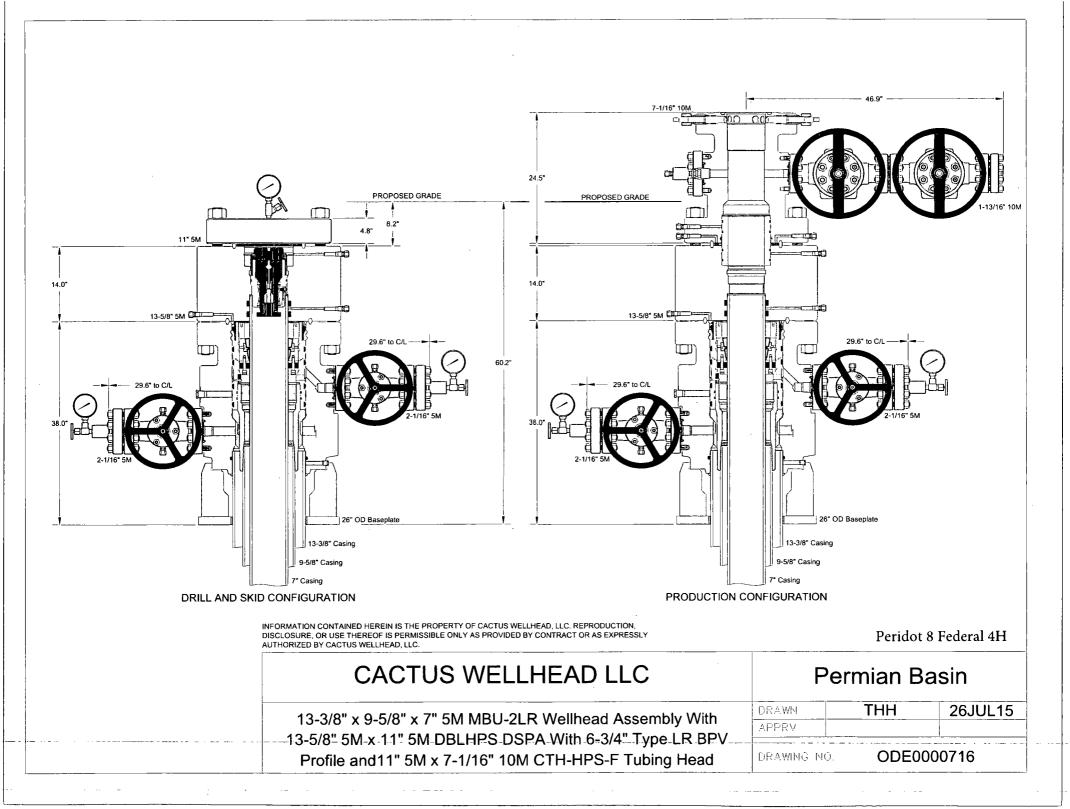
Acceptable Burst Design (Safety) Factor SFb = 1.0

Surface Casing SFb =	2 730	1	391	=	6.98	
Intermediate 1 SFb =	Casing 3950	1	1170	=	3.38	
Production 1 C SFb =	asing 8160	1	2434	=	3.35	
Production 2 C SFb =	asing 9190	1	2623	=	3.50	

ath Design (Safety) Factors – BLM Criteria


Design (Safety) Factor: SFtj

- - Fj is the rated pipe Joint Strength in pounds (lbs)
 - Wt is the weight of the casing string in pounds (lbs)


Acceptable Joint Strength Design (Safety) Factor SFTj = 1.6 dry or 1.8 buoyant

Surface Casi SFi Dry =	ng 514000	,	48232.5	=	10.7		
		1					
SFi Bouyant =	514000	/ (48232.5	x	0.870) =	12.2
Intermediate	1 Casing						
SFi Dry =	520000	1	90000	=	5.78		
SFi Bouyant =	520000	/ (90000	x	0.847) =	6.82
Burd Man 4	0						
Production 1	-						
SFi Dry =	587000	/	150800	=	3.89		
SFi Bouyant =	587000	/ (150800	x	0.863) =	4.51
Production 2	Casing						
SFi Dry =	524000	1	151660	=	3.46		
SFi Bouyant =	524000	/ (151660	x	0.863) =	4.01

Peridot 8 Federal 4H

.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT SUPO Data Report

02/26/2018

APD ID: 10400019653

Operator Name: CONOCOPHILLIPS COMPANY

Well Name: PERIDOT 8 FEDERAL

Well Type: OIL WELL

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

Peridot_8_Fed_4H_AccessRoadTopoA_20171003135148.pdf

Existing Road Purpose: ACCESS

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Peridot 8 Fed 4H AccessRoadTopoB_20171003135213.pdf

Peridot_8_Fed_4H_AccessRoadv2_20180111124520.pdf

New road type: RESOURCE

Length: 5236 Feet Wid

Max slope (%): 2

Width (ft.): 30

Max grade (%): 4

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 17

New road access erosion control: The inside slope of the side ditches shall be 3:1. Any topsoil removed from the access road will be conserved as appropriate and with low profile. This access road is on fairly, level ground. No additional erosion control is planned.

New road access plan or profile prepared? NO

New road access plan attachment:

Submission Date: 10/09/2017

Well Number: 4H Well Work Type: Drill Highlighted data reflects the most recent changes

Show Final Text

Row(s) Exist? NO

Well Name: PERIDOT 8 FEDERAL

Well Number: 4H

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: OFFSITE

Access surfacing type description: clean caliche

Access onsite topsoil source depth:

Offsite topsoil source description: Caliche will be from a BLM approved source or third-party commercial location. Material meets BLM requirements and standards. Current plans include sources: 1) Maljamar, NM, Sec. 9, T17S, R32E; 2) Hwy 529, NM, Sec. 25, T17S, R31E; and 3) Olan Caswell Ranch, Sec. 3, T17S, R32E. These are current options. However, additional sources within area may be used depending on availability at time of construction. We intend to use different source(s) if necessary.

Onsite topsoil removal process:

Access other construction information: Wider travel surface is needed to accommodate larger rig wheelbase. Road is needed to reach facility near NM Highway 82. Cattle guard to be installed between facility access road and NM Highway 82. Turnouts will be installed using dimensions recommended by BLM, standard for this area. Right of ways will be obtained for highway access and resource road access to include future Peridot wells.

Access miscellaneous information: About 5056' of access road to be shared by other Peridot wells and new facility. Access to this well location will be via an adjacent well pad, currently the Peridot 8 Fed 3H location. No new access road specific to this well location is needed. The approximately 90' of road leading to Peridot 8 Fed 3H and Peridot 8 Fed 5H well locations will be constructed with the well location.

Number of access turnouts: 1

Access turnout map:

Drainage Control

New road drainage crossing: CULVERT, OTHER

Drainage Control comments: The proposed road to the location is surveyed and staked with stations set along the centerline at specific intervals. The road will be centerline crowned with a 2% crown for appropriate drainage. The inside slope of the side ditches shall be 3:1. Any topsoil removed from the access road will be conserved as appropriate. This access road is on fairly level ground.

Road Drainage Control Structures (DCS) description: No additional road drainage is needed other than standard BLM requirements for this area and those discussed in the BLM "Gold Book". This access road is on level ground. **Road Drainage Control Structures (DCS) attachment:**

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Peridot_8_Fed_4H_OneMileRadiusMap_20171003135303.pdf

Existing Wells description:

Well Name: PERIDOT 8 FEDERAL

Well Number: 4H

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Peridot 8 Federal CF1 Tank Battery location NWNE, Section 8, T17S, R32E was sited during 6/26/16 onsite. Location is south of NM Highway 82. Dimensions of 400'x 250' are planned to allow for expansion as wells are drilled. Preliminary plot plan is attached. **Production Facilities map:**

Peridot_8_Fed_CF1_Tank_Battery_20171003135339.pdf Peridot_8_Fed_Preliminary_Plot_Plan_20171003135359.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: CAMP USE, INTERMEDIATE/PRODUCTION Water source type: GW WELL CASING, SURFACE CASING Describe type:

Source latitude:

Source longitude:

Source datum:

Water source permit type: PRIVATE CONTRACT, WATER WELL

Source land ownership: FEDERAL

Water source transport method: TRUCKING

Source transportation land ownership: FEDERAL

Water source volume (barrels): 165000

Source volume (gal): 6930000

Water source and transportation map:

Peridot_8_Fed_4H_WaterSourceMap_20171003135624.pdf

Water source comments: Current water sources include: 1) Rockhouse Ranch (two sources); Section 13, T17S, R33E; and 2) Morewest Corporation, New Mexico; Section 16 & 26, T16S, R32E. Water sources specified within this application are current options for purchase. However, additional source(s) in the vicinity may be used depending on availability at the time water is needed. We intend to use different source(s) if necessary.

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Source volume (acre-feet): 21.26736

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aquifer comments:

Well Name: PERIDOT 8 FEDERAL

Well Number: 4H

Aquifer documentation:

Well depth (ft):	Well casing type:
Well casing outside diameter (in.):	Well casing inside diameter (in.):
New water well casing?	Used casing source:
Drilling method:	Drill material:
Grout material:	Grout depth:
Casing length (ft.):	Casing top depth (ft.):
Well Production type:	Completion Method:
Water well additional information:	
State appropriation permit:	

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Clean caliche will be used to construct well pad, road, and facility pad. Caliche will be from a BLM approved source or third-party commercial location. Material to meet BLM requirements and standards. Current plans include sources: 1) Maljamar, NM, Sec. 9, T17S, R32E; 2) Hwy 529, NM, Sec. 25, T17S, R31E; and 3) Olan Caswell Ranch, Sec. 3, T17S, R32E. These are current options. However, additional sources within area may be used depending on availability at time of construction. We intend to use different source(s) if necessary. Trucking of source material will utilize authorized roads as per Access Road Topo B attached.

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drilling fluid, drill cuttings, and rig water

Amount of waste: 8000 barrels

Waste disposal frequency : Daily

Safe containment description: Drilling fluid and cuttings will be held in a closed-loop system and trucked to an approved disposal facility.

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE FACILITY

Disposal type description:

Disposal location description: Permitted disposal facility off Hwy 62.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Operator Name: CONOCOPHILLIPS COMPANY Well Name: PERIDOT 8 FEDERAL

Well Number: 4H

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Cuttings will be held in a closed-loop system and trucked to an approved disposal facility.

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: YES

Ancillary Facilities attachment:

Peridot_8_Fed_FracPondPlat_20171003140202.pdf

Comments: ConocoPhillips Company anticipates needing a 600'x600' freshwater frac pond to aid in completion operations. It is to be located in the NENW of Sec. 8, 17S, 32E. Access provided by a 382' road. The disturbance is included in overall disturbance calculations. We plan on reclaiming the frac pond surface upon completion of the full Peridot Unit development. Reclamation activities will be conducted in accordance with BLM standards at the time of reclamation.

Section 9 - Well Site Layout

Well Site Layout Diagram:

Peridot_8_Fed_4H_LocationLayout_20171003140456.pdf Peridot_8_Fed_4H_SitePlanArchBound_20171003140518.pdf Comments:

Well Name: PERIDOT 8 FEDERAL

Well Number: 4H

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: PERIDOT 8 FED

Multiple Well Pad Number: 4H

Recontouring attachment:

Drainage/Erosion control construction: Topsoil will be stripped and set along designated side of the wellsite. The next layer of dirt (stockpile) is done with the cut and fill method whereby the highest portion of the wellsite is pushed to lower portion(s) to balance the pad. The access road is done in a similar manner. To the greatest extent practicable, the location is placed so that the least amount of dirt is to be cut and disturbed, and so a good balance can be maintained during project. Topsoil stockpile will have lowest practicable profile to reduce wind erosion. For more detail please see attached Surface Use Plan of Operations.

Drainage/Erosion control reclamation: Upon project completion, if this well is a producer, excess caliche is removed from the interim reclamation portion of pad. Topsoil stockpile is balanced back onto the unused portion of the well pad and recontoured as appropriate. Any drainage ditches will not be blocked with topsoil and/or organic material. Lowering the profile of the topsoil stockpile will reduce wind erosion. Erosion controls will be maintained per BLM guidelines and conditions. For more detail please see attached Surface Use Plan of Operations. Reclamation activities are planned to be accomplished within six months of project completion, contingent upon weather. A site specific "Reclamation Diagram" interim plan is attached.

Wellpad long term disturbance (acres): 1.54 Access road long term disturbance (acres): 3.61 Pipeline long term disturbance (acres): 0.76469237 Other long term disturbance (acres): 35.97 Total long term disturbance: 41.884693 Wellpad short term disturbance (acres): 1.89 Access road short term disturbance (acres): 0 Pipeline short term disturbance (acres): 0 Other short term disturbance (acres): 1.72 · Total short term disturbance: 3.61

Reconstruction method: If this well is a producer site rehabilitation will be completed within six months, weather permitting. Excess caliche will be removed, as appropriate and either disposed of in a permitted facility or, if clean, stored for future use. Topsoil from the stockpile will be spread along areas to be interim reclaimed. Any drainage ditches will not be blocked with topsoil. Under normal weather conditions, the timetable for rehabilitation will allow two to three months to complete any recontouring and top-soiling necessary

Topsoil redistribution: Areas planned for interim reclamation will be re-contoured to the extent feasible. Topsoil will be evenly re-spread and re-vegetated over the disturbed area not needed for continuing production operations. At such time, as well is abandoned, disturbed areas will be re-contoured to a contour that blends with surrounding landscape. Topsoil will be redistributed evenly over the entire disturbed site to depth of 4-6 inches.

Soil treatment: The topsoil will be stripped and set along the designated perimeter of the wellsite. The next layer of dirt is moved with the cut and fill method whereby the highest point of the wellsite is cut into and then pushed to a lower side in order to balance the well pad. Upon well completion, the soil will be balanced back onto portions of the pad not needed for long-term operations. Erosion will be minimized by maintaining a lower stockpile profile. For additional information, please see attached Surface Use Plan of Operation.

Existing Vegetation at the well pad: The project area is located in a region of southeast New Mexico known as the Mescalero Plain. No named tributaries, streams or wetlands are in the near vicinity. Elevation is around 4045'. It is a broad, low relief area characterized by Mescalero sand (eolian) soil. Maljamar and Palomas fine sands occur throughout the area. Soil is well drained and has low water storage potential. This determines vegetation present on location. Vegetation in the project area can be classified as transitional between the Plains-Mesa Sand Scrub and Chihuahuan Desert Scrub plant communities. The area surrounding the location is grazing grassland, which supports grasses and forbs. Frequently observed species include: honey mesquite, shinnery oak, perennial three-awn, sand bluestem, sand dropseed, giant dropseed, prince's plume, threadleaf groundsel, spectacle pod, sunflower, and plains flax. See attached Location Photos for visual example of vegetation existing onsite.

Existing Vegetation at the well pad attachment:

Peridot_8_Fed_4H_LocationPhotos_20171003141922.pdf

Existing Vegetation Community at the road: Existing Vegetation Community at the road attachment: Existing Vegetation Community at the pipeline: Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed name:

Source name:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Seed Summary	
Seed Type	Pounds/Acre

Seed source:

Source address:

Total pounds/Acre:

Proposed seeding season:

Page 7 of 11

Well Name: PERIDOT 8 FEDERAL

Well Number: 4H

Seed reclamation attachment:

First Name:

Last Name:

Email:

Seedbed prep:

Phone:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: Two Class B noxious weed species, African rue and Malta starthistle are of concern. ConocoPhillips Company will consult with BLM for acceptable weed control methods, if the need arises. Any weed control would follow USEPA and BLM requirements and standards.

Weed treatment plan attachment:

Monitoring plan description: Weeds will be controlled on disturbed areas within the exterior limits of the well pad. Monitoring will be in accordance with Best Management Practices and guidelines established by BLM. **Monitoring plan attachment:**

Success standards: Success standards will utilize BLM approved methods, such as those described in the BLM "Gold Book" and those established by the Authorized Officer.

Pit closure description: No pits will be used, a closed-loop system will be in place.

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Operator Name: CONOCOPHILLIPS COMPANY **Well Name:** PERIDOT 8 FEDERAL

Well Number: 4H

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: PIPELINE Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office:

Page 9 of 11

Well Name: PERIDOT 8 FEDERAL

Well Number: 4H

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? YES

Use APD as ROW? YES

ROW Type(s): 281001 ROW - ROADS,288100 ROW - O&G Pipeline,288101 ROW - O&G Facility Sites,288103 ROW - Salt Water Disposal Pipeline/Facility,289001 ROW- O&G Well Pad,FLPMA (Powerline)

ROW Applications

SUPO Additional Information: Please review this APD with other Peridot 8 Federal wells; 1H, 2H, 3H, 4H, 5H, 7H, 11H, 12H, 13H, 14H, 15H, and 17H. Peridot 8 Federal CF1 Tank Battery will be constructed concurrent with the first well(s) drilled for this development. Long term disturbance for the facility pad will use 2.52 acres. 5766' of electric line to be installed adjacent to access road and utilize 1.32 acres. 1397' of buried gas sales line to the Frontier connection point is planned. We request approval of the option to install a buried gas line to DCP connection, depending on agreement reached. Gas Sales Line ROW may be used by third-party gas processor, depending on agreements reached. Up to four side by side produced water surface lines will be installed from Peridot 8 Federal CF1 Tank Battery to Elvis SWD well (16695'). These lines will remain in place until a buried 8" pipeline is approved and installed. The buried line is planned to be about 15,676' long utilizing 10.75 acres (included in calculation for other long-term disturbance). For multi-well pad we request deferral of interim reclamation requirements until all wells noted on location have been drilled. **Use a previously conducted onsite?** YES

Previous Onsite information: Onsite for this well was completed 6/20/17. Surface Use Plan of Operation was finalized during onsite with the following attendees: Ms. Cepero-Rios, Ms. Brooks, Mr. Wasson, Mr. Kauser, Mr. Mathis, and Ms. Maunder, along with survey crew. Archaeological survey requirements have been met by block survey 2151, well pad survey 2262, and gas line and SWD line survey 2276.

Other SUPO Attachment

Peridot_8_Fed_4H_FlowLineMapROW_20171003142414.pdf Peridot_8_Fed_SWD_BuriedPipelineV2_20171003142512.pdf Peridot_8_Fed_Gas_Sales_Line_20171003142530.pdf Peridot_8_Fed_Power_Line_Plat_20171003142547.pdf Peridot_8_Fed_4H_DevelopmentImage_20171003142603.pdf Peridot_8_Fed_4H_SWD_FlowLineToElvis_20180111130136.pdf Peridot_8_Fed_4H_SWD_FlowLineToElvis_20180111130216.pdf

Well Number: 4H

Peridot_8_Fed_4H_ReclamationDiagram_20180111130336.pdf Peridot_8_Fed_4H_BuriedGasLinetoDCP_20180115091730.pdf Peridot_8_Fed_4H_SUPOviaAccessv2_20180115091750.pdf

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment: Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: ES0085

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Bond Info Data Report

1.1.1

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location: **PWD** surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):