Form 3160-5 (June 2015)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED OMB NO. 1004-0137 Expires: January 31, 2018

BUREAU OF LAND MANAGEMENT SUNDRY NOTICES AND REPORTS ON Do not use this form for proposals to drill or to re-enfe On So. If Indian, Allottee or Tribe Name abandoned well. Use form 3160-3 (APD) for such prop SUBMIT IN TRIPLICATE - Other instructions on page 2 7. If Unit or CA/Agreement, Name and/or No. 1. Type of Well Well Name and No. DIAMOND 31 FED COM 701H 🗖 Oil Well 🔲 Gas Well 🔲 Other Name of Operator Contact: STAN WAGNER 9. API Well No. EOG RESOURCES INCORPORATEDE-Mail: stan_wagner@eogresources.com 30-025-44757-00-X1 3b. Phone No. (include area code)
Ph: 432-686-3689 10. Field and Pool or Exploratory Area
WC025G09S243336I-UP WOLFCAMP 3a. Address MIDLAND, TX 79702 4. Location of Well (Footage, Sec., T., R., M., or Survey Description) 11. County or Parish, State Sec 31 T24S R34E 618FSL 625FWL LEA COUNTY, NM 32.168495 N Lat, 103.515488 W Lon 12. CHECK THE APPROPRIATE BOX(ES) TO INDICATE NATURE OF NOTICE, REPORT, OR OTHER DATA TYPE OF SUBMISSION TYPE OF ACTION ☐ Water Shut-Off ☐ Acidize □ Deepen ☐ Production (Start/Resume) ■ Notice of Intent ■ Well Integrity ☐ Alter Casing ☐ Hydraulic Fracturing □ Reclamation □ Subsequent Report □ Casing Repair ■ New Construction ☐ Recomplete Other Change to Original A ☐ Final Abandonment Notice □ Change Plans □ Plug and Abandon ☐ Temporarily Abandon Convert to Injection ☐ Plug Back ☐ Water Disposal 13. Describe Proposed or Completed Operation: Clearly state all pertinent details, including estimated starting date of any proposed work and approximate duration thereof. If the proposal is to deepen directionally or recomplete horizontally, give subsurface locations and measured and true vertical depths of all pertinent markers and zones. Attach the Bond under which the work will be performed or provide the Bond No. on file with BLM/BIA. Required subsequent reports must be filed within 30 days following completion of the involved operations. If the operation results in a multiple completion or recompletion in a new interval, a Form 3160-4 must be filed once testing has been completed. Final Abandonment Notices must be filed only after all requirements, including reclamation, have been completed and the operator has determined that the site is ready for final inspection. EOG Resources requests an amendment to our approved APD for this well to reflect a change to a 4-string casing design as attached.

14. I hereby certify th	at the foregoing is true and correct. Electronic Submission #421516 verifie For EOG RESOURCES INCOR Committed to AFMSS for processing by PRI	PORAT	ED, sent to the Hobbs
Name (Printed/Type	ed) STAN WAGNER	Title	REGULATORY ANALYST
Signature	(Electronic Submission)	Date	05/25/2018
	THIS SPACE FOR FEDERA	L OR	STATE OFFICE USE
	the same and the same and		111 1 2 2018
Approved By	/s/ Jonathon Shepard	Title	Petroleum Engineer "Tate"
	if any, are attached. Approval of this notice does not warrant or holds legal or equitable title to those rights in the subject lease		Carlsbad Field Office

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

which would entitle the applicant to conduct operations thereon.

* Revised Permit Information 5/24/18:

Well Name: Diamond 31 Fed Com No. 701H

Location:

SL: 618' FSL & 625' FWL, Section 31, T-24-S, R-34-E, Lea Co., N.M. BHL: 2409' FSL & 330' FWL, Section 30, T-24-S, R-34-E, Lea Co., N.M.

Casing Program:

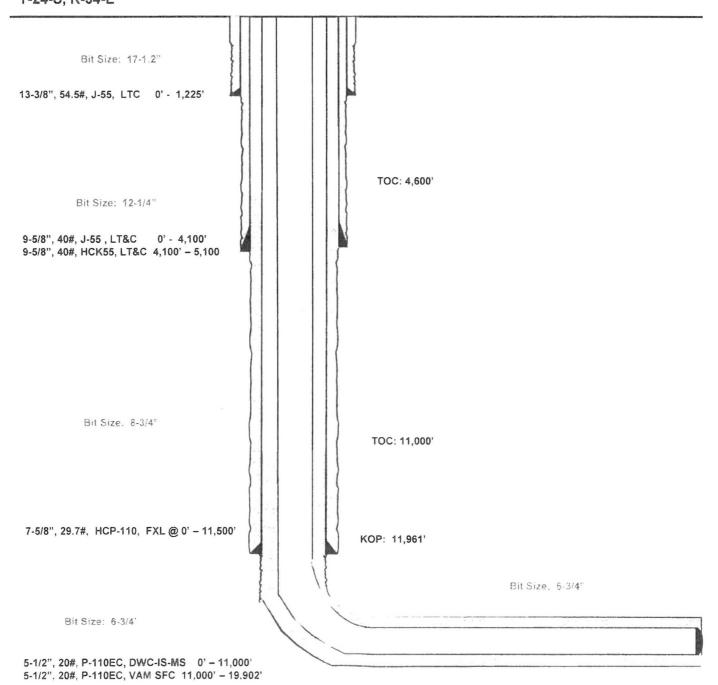
Hole Size	Interval	Csg OD	Weight	Grade	Conn	DF _{min} Collapse	DF _{min} Burst	DF _{min} Tension
17.5"	0 – 1,225	13.375"	54.5#	J55	STC	1.125	1.25	1.60
12.25"	0-4,100'	9.625"	40#	J55	LTC	1.125	1.25	1.60
12.25"	4,100' - 5,100'	9.625"	40#	HCK55	LTC	1.125	1.25	1.60
8.75"	0 – 11,500'	7.625"	29.7#	HCP110	FXL	1.125	1.25	1.60
6.75"	0 – 11,000'	5.5"	20#	P110EC	DWC CIS MS	1.125	1.25	1.60
6.75"	11,000 -19,902	5.5"	20#	P110EC	VAM SFC	1.125	1.25	1.60

Variance is requested for annular clearance of the 5-1/2" x 7-5/8" to the top of cement.

Cement Program:

	No.	Wt.	Yld	
Depth	Sacks	lb/gal	Ft ³ /ft	Slurry Description
1,225	697	13.5	1.74	Lead: Class 'C' + 4.00% Bentonite + 2.00% CaCl2
				(TOC @ Surface)
	333	14.8	1.35	Tail: Class 'C' + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2%
				Sodium Metasilicate + 2.0% KCl (1.06 lb/sk)
5,100	692	12.7	2.22	Lead: Class C + 0.15% C-20 + 11.63 pps Salt + 0.1% C-51 +
				0.75% C-41P (TOC @ Surface)
	303	14.8	1.32	Tail: Class C + 0.13% C-20
11,500'	375	10.8	3.67	Lead: Class C + 0.40% D013 + 0.20% D046 + 0.10% D065 +
				0.20% D167 (TOC @ 4,600')
	400	14.8	2.38	Tail: Class H + 94.0 pps D909 + 0.25% D065 + 0.30% D167
				+ 0.02% D208 + 0.15% D800
19,902	1000	14.8	1.31	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 +
				0.40% C-17 (TOC @ 11,000')

Mud Program:


Depth	Type	Weight (ppg)	Viscosity	Water Loss
0 – 1225	Fresh - Gel	8.6-8.8	28-34	N/c
1225' - 5,100'	Brine	10.0-10.2	28-34	N/c
5,100'-11,500'	Oil Base	8.7-9.4	58-68	N/c - 6
11,500'- 19,902'	Oil Base	10.0-11.5	58-68	3 - 6
Lateral				

Diamond 31 Fed Com #701H

618' FSL 625' FWL Section 31 T-24-S, R-34-E Lea County, New Mexico **Proposed Wellbore** Revised 5/24/18

API: 30-025-44757

KB: 3,473' GL: 3,468'

Lateral: 19,902' MD, 12,448' TVD Upper Most Perf: 330' FSL & 330' FWL Sec. 31 Lower Most Perf: 2309' FSL & 330' FWL Sec. 30 BH Location: 2409' FSL & 330' FWL

Section 30 T-24-S, R-34-E

Operator	EOG
Well Name & No.	Diamond 31 Fed 701H
County	Lea
Location (S/T/R)	31/24/34
Lease Number	NMNM028881

Name	Jonathon Shepard
Date	7/11/2018

Type of Casing	Size of Hole	Size of Casing	Weight per Foot (lbs/ft)	Grade	Yield	Thread	Top (ft)	Bottom (ft)	Setting Depth	Length (ft)	Collapse (psi)	Burst (psi)	Tension (psi)
	(11)	(111)				3: 1	(11)		110				
Surface	17.500	13.375	54.5	J	55	ST&C (46)	0	1225	1225	1225	1130	2730	854000
Intermediate 1	12.250	9.625	40.0	J	55	LT&C (21)	0	4100	4100	4100	2570	3950	630000
Intermediate 2	12.250	9.625	40.0	HCK	55	LT&C (21)	4100	5100	5100	1000	4230	3950	630000
Intermediate 3	8.750	7.625	29.7	НСР	110	LT&C (21)	0	11500	11500	11500	7150	9470	940000
Intermediate 4	6.750	5.500	20.0	Р	110	BTC (4)	0	11000	11000	11000	11080	12360	642000
Production	6.750	5.500	20.0	Р	110	BTC (4)	11000	19902	11500	8902	11080	12360	642000

Drilling Mud	Max Mud Weight		t tyri x toʻr i film		Carlotte Control	Red Medical Conference	Cement	The second second		War to the second				
	Max wind weight	Surface			Intermediate (1 & 2)		Intermediate (1,2,3 & 4)			Production				
	(ppg)	Top of Cement	0		Top of Cement	0	2.3 P. P. T. A. A.	Top of Cement	4600		Top of Cement	2000		
Surface	8.8		Sacks	Yield (ft ³ /sx)	2000年30年代本	Sacks	Yield (ft³/sx)		Sacks	Yield (ft ³ /sx)		Sacks	Yield (ft ³ /sx)	
Intermediate 1	10.2	Lead	697	1.74	Lead	692	2.22	Lead	375	3.67	Lead	1000	1.31	
Intermediate 2	10.2	Run 2	333	1.35	Run 2	303	1.32	Run 2	400	2.38	Run 2			
Intermediate 3	9.4	Run 3	-		Run 3			Run 3			Run 3			
Intermediate 4	9.4	Tail			Tail			Tail			Tail		1	
Production	11.5	Average Yield	1.61		Average Yield	1.95	45 to 55 at 5	Average Yield	* 3.00 →		Average Yield	1.31		
		Min. Sacks	671		Min. Sacks	1044		Min. Sacks	586		Min: Sacks	560		
			4		But 1997 Street British			747			11/2 11/2 11/2 11/2			

	7 77	Safety Factors	The second of th	San Halabara
Collapse	1.125	Walter Control	Tension	1.8 × /
Burst	1.0		Buoyant Tension	1.6
		1000		TO X245000000000000000000000000000000000000
	Collapse	Burst	Tension	Buoyant Tension
Surface	2.016	4.870	12.8	14.8
Intermediate 1	1 773	1.816	3.8	4.6
Intermediate 2	2.345	1.460	3.1	3.7
Intermediate 3	1.908	1.685	2.8	3.2
Intermediate 4	3.091	2.299	2.9	3.4
Production	1611	1 797	3.6	4.4

BOP Requirements							
	Intermediate		THE PARTY OF THE P	Production	3 N L		
Max. Surf. Pressure	3091 p	si di di	Max. Surf. Pressure	4347 psi			
BOP Required	5M S	vstem	BOP Required	5M System	m		