Form 3160-5 (June 2015)	UNITED STATES				FORM OMB N		
B			Expires: J 5. Lease Serial No.				
	NOTICES AND REPOR			NMNM86710			
abandoned we	ll. Use form 3160-3 (APL	D) for such p	roposals.	BS OC	6. If Indian, Allottee	or Tribe	Name
SUBMIT IN	TRIPLICATE - Other inst	ructions on		·:	7. If Unit or CA/Agre	ement,]	Name and/or No.
1. Type of Well S Oil Well Gas Well Oth	ner	<u> </u>	- AUG	162019	BILBREY 34/27	CC 32PA F	ED COM 1H
2. Name of Operator MEWBOURNE OIL COMPAN	Contact:	JACKIE LAT		JEIVE	0 GHI WEISO. 30-025-45008-0	00-X1	
3a. Address P O BOX 5270 HOBBS, NM 88241		3b. Phone No Ph: 575-39	. (include area code) 3-5905		10. Field and Pool or BILBREY BASI		
4. Location of Well (Footage, Sec., 7	C, R., M., or Survey Description)				11. County or Parish,	State	· · · · · · · · · · · · · · · · · · ·
Sec 34 T21S R32E SESE 205 32.428562 N Lat, 103.658440					LEA COUNTY,	NM	
12. CHECK THE AI	PROPRIATE BOX(ES)	TO INDICA	TE NATURE O	F NOTICE,	REPORT, OR OTI	HER D	DATA
TYPE OF SUBMISSION			TYPE OF	FACTION			
Notice of Intent	Acidize	🗖 Dee	pen	Product	ion (Start/Resume)		Water Shut-Off
_	Alter Casing	🗖 Hyd	raulic Fracturing	🗖 Reclam	ation		Well Integrity
Subsequent Report	Casing Repair	🗖 Nev	Construction	🗖 Recomp	olete		Other
Final Abandonment Notice	Change Plans		and Abandon		rarily Abandon	PD	ange to Original A
13. Describe Proposed or Completed Op	Convert to Injection	🖸 Plug		U Water I			
 testing has been completed. Final At determined that the site is ready for final field of the site is ready for site is ready for field of the site is ready fo	inal inspection. Jests approval to make the 727 W2PA Fed Com #1,H. fcamp Gas (72126). fcamp @ 12,294' TVD.	e following cl	nanges:	2269)) FO	R
Please see attachments conta schematics.	iining C-102, new drilling p	olan, casing a	and cement infor	mation, and	BOP		
Please contact Klay Kirkes wit	h any questions.						
14. I hereby certify that the foregoing is	true and correct. Electronic Submission #4 For MEWBOU unitted to AFMSS for proce	28688 verifie RNE OIL COI ssing by PRI	d by the BLM Wel MPANY, sent to ti SCILLA PEREZ or	l Information he Hobbs n 07/27/2018	n System (18PP1551SE)		
Name (Printed/Typed) KLAY H K			Title ENGINE				
Signature (Electronic S	Submission)		Date 07/25/20	018			·
	THIS SPACE FO				SE	<u></u>	
		<u></u>					
Approved By ZOTA STEVENS			TitlePETROLE	UM ENGINI	EER		Date 08/09/2018
onditions of approval, if any, are attached ertify that the applicant holds legal or equ	uitable title to those rights in the						
hich would entitle the applicant to condu			Office Hobbs				
itle 18 U.S.C. Section 1001 and Title 43 States any false, fictitious or fraudulent s	U.S.C. Section 1212, make it a c statements or representations as t	crime for any pe to any matter w	rson knowingly and thin its jurisdiction.	willfully to ma	ake to any department or	agency	of the United
nstructions on page 2) ** BLM REVI	SED ** BLM REVISED	** BLM RE	EVISED ** BLN) ** BLM REVISE	D **	Kz.

1. Geologic Formations

TVD of target	12,294'	Pilot hole depth	NA
MD at TD:	22,333'	Deepest expected fresh water:	250'

Basin Formation Depth (TVD) Water/Mineral Bearing/ Hazards* from KB Target Zone? Quaternary Fill Surface Rustler 840 Top of Salt 1180 Castile Base of Salt 4360 Lamar 4770 Oil/Gas Bell Canyon Cherry Canyon Manzanita Marker Brushy Canyon Oil/Gas Bone Spring 8750 1st Bone Spring Sand 9840 Oil/Gas 2nd Bone Spring Sand 10440-Target Zone-3rd Bone Spring Sand Abo larget Zone 12,294 Wolfcamp Devonian Fusselman Ellenburger Granite Wash

*H2S, water flows, loss of circulation, abnormal pressures, etc.

Drilling Plan

11 S. First St., Artesia, NM 88210 OIL CONSERVATION DIVISIO hone: (575) 748-1283 Fax: (575) 748-9720 1220 South St. Francis Dr. 000 Rio Brazos Road, Aztec, NM 87410 Santa Fe, NM 87505 hone: (505) 334-6178 Fax: (505) 334-6170 Santa Fe, NM 87505			District Offic		
hone: (575) 748-1283 Fax: (575) 748-9720 1220 South St. Francis Dr. District III 000 Rio Brazos Road, Aztec, NM 87410 Santa Fe, NM 87505 hone: (505) 334-6178 Fax: (505) 334-6170 Santa Fe, NM 87505	IN	Submit			
hone: (575) 748-1283 Fax: (575) 748-9720 1220 South St. Francis Dr. District III 000 Rio Brazos Road, Aztec, NM 87410 Santa Fe, NM 87505 hone: (505) 334-6178 Fax: (505) 334-6170 Santa Fe, NM 87505			District Offic		
000 Rio Brazos Road, Aztec, NM 87410 hone: (505) 334-6178 Fax: (505) 334-6170 District IV			AMENDED REPOR		
istrictly			AMENDED REPOR		
220 S. St. Francis Dr., Santa Fe, NM 87505 hone: (505) 476-3460 Fax: (505) 476-3462					
WELL LOCATION AND ACREAGE DEDIC		ŗ			
API Number 2 Pool Code WC-025 \$ 72320					
<u>30-026-75008</u> 72126 BILBR	72126 BILBREY WOLFCA				
⁴ Property Code ⁵ Property Name			6 Well Number		
3222.69 BILBREY 34/27 W2PA FED COM		1H			
70GRID NO. 80perator Name			9Elevation		
14744 MEWBOURNE OIL COMPANY			3717'		
¹⁰ Surface Location					
UL or lot no. Section Township Range Lot Idn Feet from the North/South line	Feet From the	East/West line	County		
P 34 21S 32E 205 SOUTH	1311	EAST	LEA		
"Bottom Hole Location If Different Fro	om Surface				
UL or lot no. Section Township Range Lot Idn Feet from the North/South line	Feet from the	East/West line	County		
A 27 21S 32E 330 NORTH	500	EAST	LEA		
12 Dedicated Acres 13 Joint or Infill 14 Consolidation Code 15 Order No.					
640					

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

N 89	31'10" E 2644.73' (F) N 89'1	19'35" <u>E</u> 2642.19' ©		
05, Q		B.H.	<u>GEODETIC DATA</u> NAD 83 GRID NM EAST	¹⁷ OPERATOR CERTIFICATION
20.0		500'	SURFACE LOCATION	I hereby certify that the information contained herein is true and complete
2650.		56.	N 520300.7 - E 749609.8	to the best of my knowledge and belief, and that this organization either
<u>*</u>		·····	LAT: 32.4285642* N LONG: 103.6583094* W	owns a working interest or unleased mineral interest in the land including
11.2		11,6	<u>BOTTOM HOLE</u> N 530347.3 - E 750363.9	the proposed hottom hole location or has a right to drill this well at this
22.00		1.00	LAT: 32.4561653' N	location pursuant to a contract with an owner of such a mineral or working
2		S	LONG: 103.6556588" W	interest, or to a voluntary pooling agreement or a compulsory pooling
©	27	•••••	<u>CORNER DATA</u> NAD 83 GRID NM EAST	order heretofore entered by the division.
1.38		2.77	A: FOUND BRASS CAP "1916"	7-18-18
264		264	N 520058.9 - E 745639.6	Signature Date
3			B: FOUND BRASS CAP "1916"	BRADLEY BISHOP
5			N 522698.8 - E 745624.2	Printed Name
81.00		61.	C: FOUND BRASS CAP "1916" N 525339.7 – E 745608.0	BBISHOP@MEWBOURNE.COM
20 2		00 S	D: FOUND BRASS CAP "1916"	E-mail Address
©	®		N 527980.5 - E 745593.5	18 CLIDVENOD CEDTIFICATION
5		<i>68</i> , (E: FOUND BRASS CAP "1916"	¹⁸ SURVEYOR CERTIFICATION
11.5			N 530629.8 - E 745576.4	I hereby certify that the well location shown on this
26.		264	F: FOUND BRASS CAP "1916" N 530652.0 – E 748220.5	plat was plotted from field notes of actual surveys
£				made by me or under my supervision, and that the
.03		. 50,	G: FOUND BRASS CAP "1916" N 530683.1 – E 750861.9	same is true and correct to the best of my belief.
12.00		61.0	H: FOUND BRASS CAP "1916"	02-23-2018
		Õ	N 528042.1 - E 750876.7	
≥ ®	34		I: FOUND BRASS CAP "1916"	Date of Survey
	<i>7</i>	. 7	N 525394.9 - E 750891.6	Signature and Seal of Professional Styr ME
0.48		13.6	J: FOUND BRASS CAP "1916" N 522753.9 – E 750906.3	R Z S III
2640.		26		(19680) L. L.
ź		ų,	K: FOUND BRASS CAP "1916" N 520110.6 - E 750921.4	the second
20		ß,	L: FOUND BRASS CAP "1916"	19680
0,02.00		61.(N 520080.5 - E E:748278.8	
00		<u>SL 1311</u>	M: FOUND BRASS CAP "1916"	Certificate Number
2	205		N 525372.6 - E 748256.7	
(A)				

N 89'31'50" E 2639.79' 🗋 N 89'20'50" E 2643.40'

Job No.: LS1802202

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	915'	13.375"	48	H40	STC	1.80	4.04	7.33	12.32
12.25"	0'	3453'	9.625"	36	J55	LTC	1.13	1.96	2.60	4.54
12.25"	3453'	4393'	9.625"	40	J55	LTC	1.13	1.73	10.42	16.75
12.25"	4393'	4700'	9.625"	40	N80	LTC	1.26	2:35	60.05	74.63
8.75"	0'	12500'	7"	26	P110	LTC	1.28	1.63	2.01	2.55
6.125"	11773'	22333'	4.5"	13.5	P110	LTC	1.28	1.49	2.37	2.96
B	LM Mini	mum Safet	y 1.125	1	1.6 Dr	y 1.6 D)ry			
		Facto	or		1.8 We	et 1.8 V	Vet			

2. Casing Program

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	Y
If yes, are the first three strings cemented to surface?	Y
Is 2 nd string set 100' to 600' below the base of salt?	Y
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	1
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H20 gal/ sk	500# Comp. Strength (hours)	Slurry Description
Surf.	480	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM
	200	14.8	1.34	6.3	8	Tail: Class C + Retarder
Inter.	780	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM
	200	14.8	1.34	6.3	8	Tail: Class C + Retarder
Prod.	465	12.5	2.12	11	9	Lead: Class C + Gel + Retarder + Defoamer +
Stg 1						Extender
0	400	15.6	1.18	5.2	10	Tail: Class H + Retarder + Fluid Loss + Defoamer
					ECP/DV T	'ool @ 4750'
Prod.	385	12.5	2.12	11	9	Lead: Class C + Gel + Retarder + Defoamer +
Stg 2						Extender
	100	14.8	1.34	6.3	8	Tail: Class C + Retarder
Liner	425	11.2	2.97	18	16	Class C + Salt + Gel + Fluid Loss + Retarder +
						Dispersant + Defoamer + Anti-Settling Agent

A copy of cement test will be available on location at time of cement job providing pump times & compressive strengths.

Casing String	TOC	% Excess
Surface	0'	100%
Intermediate	0'	25%
Production	0'	25%
Liner	11773'	25%

4. Pressure Control Equipment

Y Variance: A variance is requested for use of a 5000 psi annular BOP with the 10,000 psi BOP stack. Please see attached description and procedure.

BOP installed and tested before drilling which hole?	Size?	System Rated WP	Туре	~	Tested to:
			Annular	X	5000#
			Blind Ram	X	
12-1/4"	13-5/8" 1	10M	Pipe Ram	X	10.000#
			Double Ram		10,000#
			Other*		

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Y	Forma	tion integrity test will be performed per Onshore Order #2.			
	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or				
	greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.				
Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.				
	Ν	Are anchors required by manufacturer?			
Y	install	tibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after ation on the surface casing which will cover testing requirements for a maximum of 75. If any seal subject to test pressure is broken the system must be tested.			
	•	Provide description here: See attached schematic.			

5. Mud Program

	TVD	Туре	Weight (ppg)	Viscosity	Water Loss	
From	То					
0	915	FW Gel	8.6-8.8	28-34	N/C	
915	4700	Saturated Brine	10.0	28-34	N/C	
4700	12,268	Cut Brine	8.6-9.5	28-34	N/C	
12,268	12,294	OBM	10.0-12.0	30-40	<10cc	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. MW up to 13.0 ppg may be required for shale control. The highest MW needed to balance formation pressure is expected to be 12.0 ppg.

What will be used to monitor the loss or gain	Visual monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.
X	Will run GR/CNL from KOP (11,773') to surface (horizontal well - vertical portion of
[hole). Stated logs run will be in the Completion Report and submitted to the BLM.
	No Logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain
	Coring? If yes, explain

Add	litional logs planned	Interval
Χ	Gamma Ray	11,773' (KOP) to TD
	Density	
	CBL	
	Mud log	
	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	7671 psi
Abnormal Temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers in surface hole.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

H2S is present X H2S Plan attached

8. Other facets of operation

Is this a walking operation? If yes, describe. Will be pre-setting casing? If yes, describe.

Attachments

Directional Plan

Other, describe

10,000 PSI Annular BOP Variance Request

Mewbourne Oil Company request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOP).

1. Component and Preventer Compatibility Tables

The tables below outline the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.

12-1/4" Intermediate Hole Section 10M psi Requirement						
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP	
Drillpipe	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M	
	4.500"			Lower 3.5"-5.5" VBR	10M	
HWDP	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M	
	4.500"			Lower 3.5"-5.5" VBR	10M	
Jars	6.500"	Annular	5M	-	-	
DCs and MWD tools	6.500"- 8.000"	Annular	5M	-	-	
Mud Motor	8.000"- 9.625"	Annular	5M	_	-	
Intermediate Casing	9.625"	Annular	5M	-	-	
Open-Hole	-	Blind Rams	10M	<u> </u>	-	

8-3/4" Production Hole Section 10M psi Requirement						
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP	
Drillpipe	5.000" or 4.500"	Annular	5M	Upper 3.5"-5.5" VBR Lower 3.5"-5.5" VBR	10M 10M	
HWDP	5.000" or 4.500"	Annular	5M	Upper 3.5"-5.5" VBR Lower 3.5"-5.5" VBR	10M 10M	
Jars	6.500"	Annular	5M	-	-	
DCs and MWD tools	6.500"- 8.000"	Annular	5M	-	-	
Mud Motor	6.750"- 8.000"	Annular	5M	-	-	
Production Casing	7"	Annular	5M	-	-	

Open-Hole	-	Blind Rams	10M	-	-

6-1/8" Lateral Hole Section 10M psi Requirement						
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP	
Drillpipe	4.500"	Annular	5M	Upper 3.5"-5.5" VBR	10M	
				Lower 3.5"-5.5" VBR	10M	
HWDP	4.500"	Annular	5M	Upper 3.5"-5.5" VBR	10M	
				Lower 3.5"-5.5" VBR	10M	
DCs and MWD tools	4.750"-	Annular	5M	Upper 3.5"-5.5" VBR	10M	
	5.500"		1	Lower 3.5"-5.5" VBR	10M	
Mud Motor	4.750"-	Annular	5M	Upper 3.5"-5.5" VBR	10M	
	5.500"			Lower 3.5"-5.5" VBR	10M	
Production Casing	4.500"	Annular	5M	Upper 3.5"-5.5" VBR	10M	
•				Upper 3.5"-5.5" VBR	10M	
Open-Hole	-	Blind Rams	10M	-	-	

VBR = Variable Bore Ram

2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the Mewbourne Oil Company drilling supervisor's office on location and on the rig floor. All BOP equipment will be tested as per Onshore O&G Order No. 2 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)

- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

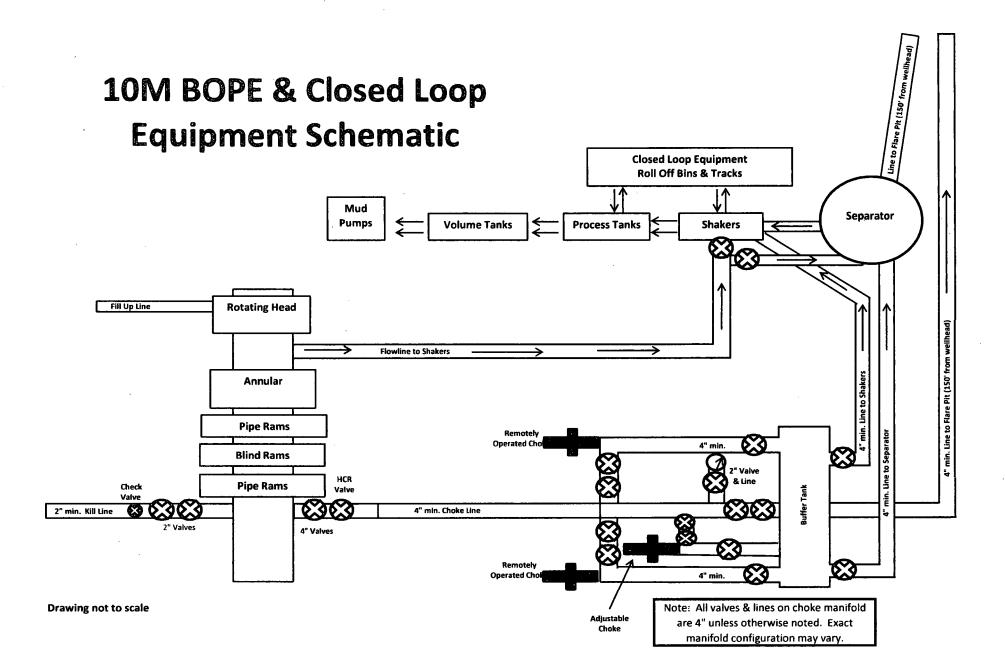
General Procedure While Tripping

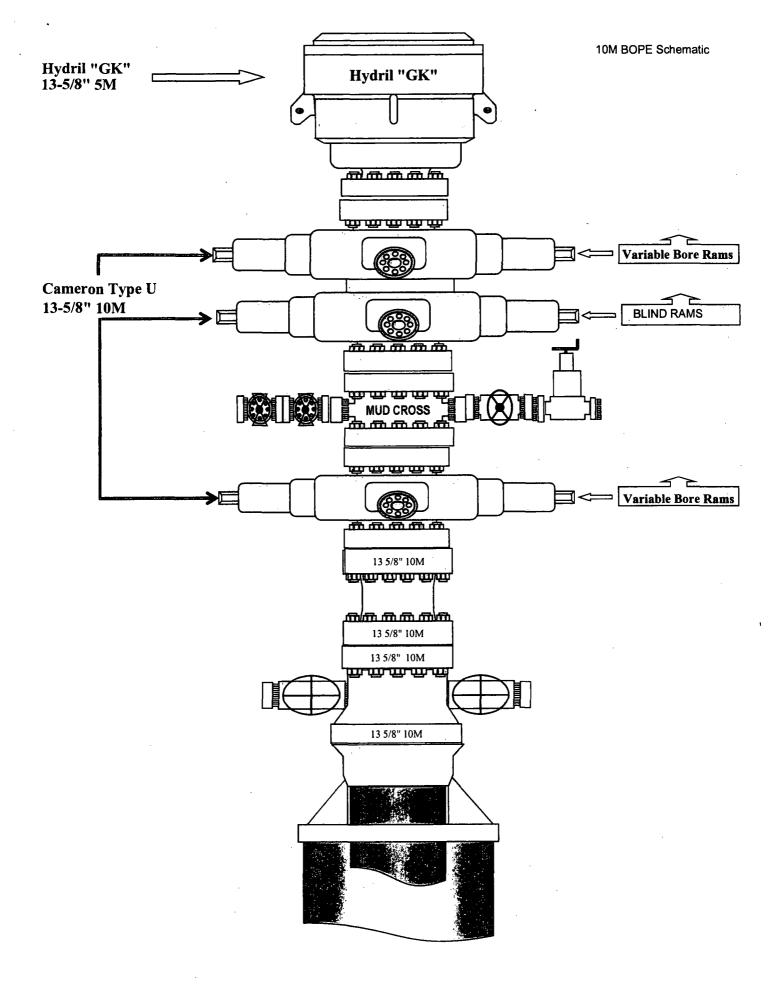
- 1. Sound alarm (alert crew)
- 2. Stab full-opening safety valve & close
- 3. Space out drill string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

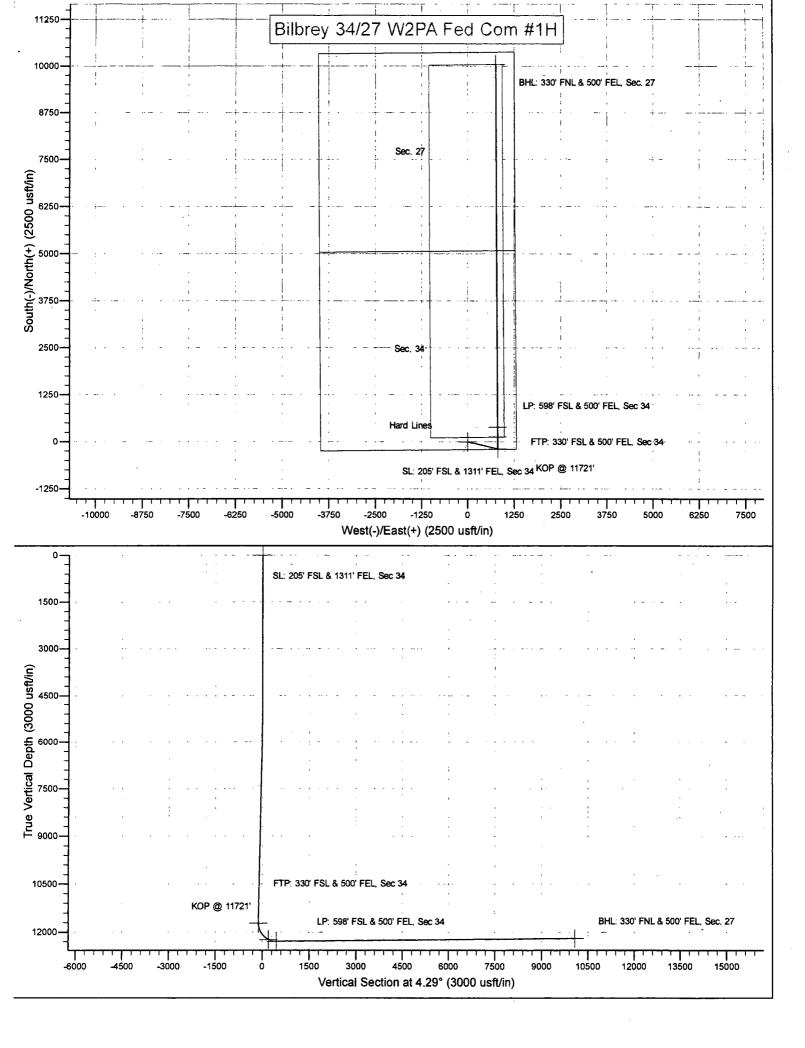
General Procedure While Running Production Casing

1. Sound alarm (alert crew)

- 2. Stab crossover and full-opening safety valve and close
- 3. Space out string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.


General Procedure With No Pipe In Hole (Open Hole)


- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams (HCR & choke will already be in the closed position)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan


General Procedures While Pulling BHA Through Stack

- 1. PRIOR to pulling last joint of drillpipe through stack:
 - a. Perform flow check. If flowing, continue to (b).
 - b. Sound alarm (alert crew)
 - c. Stab full-opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams
 - e. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full-opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams
 - d. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain

- iii. Time
- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible, pull string clear of the stack and follow "Open Hole" procedure.
 - c. If impossible to pull string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe and full-opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram
 - f. Shut-in using upper variable bore ram (HCR & choke will already be in the closed position)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

Mewbourne Oil Company

Lea County, New Mexico NAD 83 Bilbrey 34/27 W2PA Fed Com #1H Sec 34, T21S, R32E SL: 205' FSL & 1311' FEL, Sec 34 BHL: 330' FNL & 500' FEL, Sec 27

Plan: Design #1

Standard Planning Report

18 July, 2018

Database: Hobbs					Local Co-o	rdinate Refere	nce:	Site Bilbrey 34	/27 W2PA Fed	Com #1H
Company:	Mewbou	irne Oil Comp					1	NELL @ 3744	0.0usft (Origina	l Well Elev)
Project:	1	inty, New Me			MD Referen	nce:	1	NELL @ 3744	0.0usft (Origina	i Well Elev)
Site:		34/27 W2PA F	Fed Com #1H		North Refe			Grid		
Well:		T21S, R32E			Survey Cal	Iculation Metho	od: I	Minimum Curv	ature	
Wellbore:	· < _	0' FNL & 500'	FEL, Sec 27		1 1					
Design:	Design	#1			••••••••••••••••••••••••••••••••••••••			•••••		· · ·
Project	Lea Cour	nty, New Mexi	co NAD 83			laanse orde	: 14,5, 15,11		en sere	
Map System:		Plane 1983			System Datu	um:	Me	an Sea Level		
Geo Datum:	North Ame	rican Datum '	1983							
Map Zone:	New Mexic	co Eastern Zo	ne		<u>.</u>					
Site	Bilbrey 3	4/27 W2PA Fe	ed Com #1H					•		
Site Position:			Northi	na:	520.3	301.00 usft	Latitude:	- 157		32.4285
From:	Мар		Eastin	-		-	Longitude:			-103.6583
Position Uncertaint		0.0	usft Slot R	-			Grid Converg	ence:		0.3
Well		21S. R32E			·····				·	· · · · · · · · · · · · · · · · · · ·
i inter entre e		그레이에 걸 가득 수	e esta came		·.• .•= ·=•	· · · · · · · ·	na mananan an			•• . ••
Well Position	+N/-S			rthing:		520,301.00 u		tude:		32.4285
	+E/-W	0.		sting:		749,610.00 ι		gitude:		-103.65830
						3.744.0 ι	usft Gro	und Level:		3,717.0
Position Uncertaint Wellbore Magnetics	BHL: 33	0 0' FNL & 500' el Name	78-121-220-2	Pilhead Elevatio	Declinat	· · · · · · · · · · · · · · · · · · ·	Dip A	ngle		Strength
Wellbore	BHL: 33	0' FNL & 500'	FEL. Sec 27 Sample		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		ngle		
Wellbore	BHL: 33	0' FNL & 500' el Name IGRF2010	FEL. Sec 27 Sample	and the state of t	Declinat	lion	Dip A	íngle)		Strength nT)
Wellbore	BHL: 33	0' FNL & 500' el Name IGRF2010	FEL. Sec 27 Sample	and the state of t	Declinat	lion	Dip A	ngle) 60.18		Strength nT)
Wellbore Magnetics	BHL: 33	0' FNL & 500' el Name IGRF2010	FEL. Sec 27 Sample	and the state of t	Declinat	lion	Dip A (°	ngle) 60.18		Strength nT)
Wellbore Magnétics Design	BHL: 33	0' FNL & 500' el Name IGRF2010	FEL. Sec 27 Sample	Date 7/18/2018	Declinat	6.75	Dip A (°	ngle) 60.18		Strength nT)
Wellbore Magnetics Design Audit Notes: Version:	BHL: 33	0' FNL & 500' el Name IGRF2010	FEL, Sec 27 Sample	e Date 7/18/2018	Declinat (°)	6.75	Dip A (* On Depth:	ngle) 60.18		Strength nT)
Wellbore Magnetics Design Audit Notes:	BHL: 33	0' FNL & 500' el Name IGRF2010	FEL, Sec 27 Sample	e Date 7/18/2018	Declinat (°)	ion 6.75 Tie (Dip A (* On Depth:	ngle) 60.18	0.0	Strength nT)
Wellbore Magnetics Design Audit Notes: Version:	BHL: 33	0' FNL & 500' el Name IGRF2010	FEL, Sec 27 Sample Phase epth From (TV	e Date 7/18/2018	Declinat (°) ROTOTYPE +N/-S	ion 6.75 Tie (+E/	Dip A (* On Depth: 	ngle) 60.18	0.0	Strength nT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section:	BHL: 33	0' FNL & 500' el Name IGRF2010	FEL. Sec 27 Sample Phase epth From (TV (usft)	e Date 7/18/2018	Declinat (°) ROTOTYPE +N/-S (usft)	tion 6.75 Tie (+E/. (us:	Dip A (* On Depth: 	ngle) 60.18	0.0 irection	Strength nT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections	BHL: 33	0' FNL & 500' el Name IGRF2010	FEL, Sec 27 Sample Phase epth From (TV (usft) 0.0	e Date 7/18/2018	Declinat (°) ROTOTYPE +N/-S (usft)	cion 6.75 Tie (+Ej. (us: 0.0	Dip A (* On Depth: 	ngle) 60.18 Di	0.0 irection	Strength nT)
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured	BHL: 33 Mode	0' FNL & 500' el Name IGRF2010	FEL, Sec 27 Sample Phase epth From (TV (usft) 0.0	• Date 7/18/2018 :: PR (D)	Declinat (°) ROTOTYPE +N/-S (usft) 0.0	tion 6.75 Tie (+Ej. (us 0.0	Dip A (* On Depth: -W ft) 0 Builid	ngle) 60.18 Di	0.0 irection (*) 4.29	Strength nT)
Wellbore Magnetics Design Audit Notes: Vertical Section: Vertical Section: Plan Sections Measured Depth Inc	BHL: 33 Mode Design #	0' FNL & 500' el Name IGRF2010 1 1 Azimuth	FEL, Sec 27 Sample Phase epth From (TV (usft) 0.0 Vertical Depth	 Date 7/18/2018 PR PR PN/-S 	Declinat (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W	tion 6.75 Tie (+EJ. (us: 0.(Doglêg Rate,	Dip A (* On Depth: -W ft) 0 Build Rate	ngle) 60.18 Di Turn Rate	0.0 irection (*) 4.29	Strength nT) 47,771
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured	BHL: 33 Mode	0' FNL & 500' el Name IGRF2010	FEL, Sec 27 Sample Phase epth From (TV (usft) 0.0	• Date 7/18/2018 :: PR (D)	Declinat (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W	tion 6.75 Tie (+Ej. (us 0.0	Dip A (* On Depth: -W ft) 0 Builid	ngle) 60.18 Di	0.0 irection (*) 4.29	Strength nT)
Wellbore Magnetics Design Audit Notes: Vertical Section: Vertical Section: Plan Sections Measured Depth Inc	BHL: 33 Mode Design #	0' FNL & 500' el Name IGRF2010 1 1 Azimuth	FEL, Sec 27 Sample Phase epth From (TV (usft) 0.0 Vertical Depth	 Date 7/18/2018 PR PR PN/-S 	Declinat (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft)	tion 6.75 Tie (+EJ (us 0.(Doglêg Rate, (*/100usft)	Dip A (* On Depth: -W ft) 0 Build Rate	ngle) 60.18 Di Turn Rate	0.0 trection (*) 4.29 TFO (*)	Strength nT) 47,771
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Inc (usft)	BHL: 33 Mode Design #	0' FNL & 500' el Name IGRF2010 1 1 Azimuth (°)	FEL, Sec 27 Sample Phase epth From (TV (usft) 0.0 Vertical Depth (usft)	Date 7/18/2018 :: PR /D) +N/-S (usft)	Declinat (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft)	cion 6.75 Tie (+E/. (us: 0.(Doglég Rate. (*/100usft)	Dip A (* On Depth: -W ft) 0 Bullid Rate (*/100usft)	ngle) 60.18 Di Turri Rate (*/100usft)	0.0 trection (*) 4.29 TFO (*) 0.00	Strength nT) 47,771
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Inc (usft) 0.0	BHL: 33 Mode Design # Ilination (°) 0.00	0' FNL & 500' el Name IGRF2010 1 1 Azimuth (°) 0.00	FEL, Sec 27 Sample Phase epth From (TV (usft) 0.0 Vertical Depth (usft) 0.0	 Date 7/18/2018 PR PR (D) +N/-S (usft) 0.0 	Declinat (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0	cion 6.75 Tie (+E/. (us: 0.(Doglég Rate, (*/100usft) 0.00	Dip A (* On Depth: 	ngle) 60.18 Di Turn Rate (*/100usft) 0.00	0.0 trection (*) 4.29 TFO (*) 0.00 0.00	Strength nT) 47,771
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Inc (usft) 0.0 4,750.0	BHL: 33 Mode Design # Ilination (°) 0.00 0.00	0' FNL & 500' el Name IGRF2010 1 1 Azimuth (°) 0.00 0.00	FEL, Sec 27 Sample Phase epth From (TV (usft) 0.0 Vertical Depth (usft) 0.0 4,750.0	Date 7/18/2018 :: PR :: PR :: 0.0 0.0 0.0	Declinat (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0	6.75 Tie (+E/. (us: 0.(Doglég Rate, (*/100usft) 0.00 0.00	Dip A (* On Depth: 	ngle) 60.18 Di Turin Rate (*/100usft) 0.00 0.00	0.0 trection (*) 4.29 TFO (*) 0.00 0.00 102.92	Strength nT) 47,771
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Inc (usft) 0.0 4,750.0 5,237.6	BHL: 33 Mode Design # Ilination (°) 0.00 0.00 7.31	0' FNL & 500' el Name IGRF2010 1 1 Azimuth (°) 0.00 0.00 102.92	FEL, Sec 27 Sample Phase epth From (TV (usft) 0.0 Vertical Depth (usft) 0.0 4,750.0 5,236.3	 Date 7/18/2018 PR PR (D) +N/-S (usft) 0.0 0.0 -6.9 	Declinat (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 30.3	cion 6.75 Tie (+E/. (us: 0.(Doglėg Rate, (*/100usft) 0.00 0.00 1.50	Dip A (* On Depth: 	ngle) 60.18 Di Turin Rate (*/100usft) 0.00 0.00 0.00	0.0 irection (*) 4.29 TFO (*) 0.00 0.00 102.92 0.00	Strength nT) 47,771
Wellbore Magnetics Design Audit Notes: Vertical Section: Vertical Section: Plan Sections Measured Depth Inc (usft) 0.0 4,750.0 5,237.6 11,285.3	BHL: 33 Mode Design # Ination (°) 0.00 0.00 7.31 7.31	0' FNL & 500' el Name IGRF2010 1 1 Azimuth (°) 0.00 0.00 102.92 102.92	FEL, Sec 27 Sample Phase epth From (TV (usft) 0.0 Vertical Depth (usft) 0.0 4,750.0 5,236.3 11,234.7	 Date 7/18/2018 PR PR (D) +N/-S (usft) 0.0 0.0 -6.9 -179.1 	Declinat (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 30.3 780.7	cion 6.75 Tie (+Ej. (us: 0.(Doglêg Rate, (*/100usft) 0.00 0.00 1.50 0.00	Dip A (* On Depth: 	ngle) 60.18 Di Turn Rate (*/100usft) 0.00 0.00 0.00 0.00	0.0 irection (*) 4.29 TFO (*) 0.00 0.00 102.92 0.00 180.00 -0.32	Strength nT) 47,771 Target KOP @ 11721'

.

ومراجب ويترجز والمراجع	ا میں اور ایک	المنافع الميل مرتبع (1995 م	
Database:	Hobbs	Local Co-ordinate Reference:	Site Bilbrey 34/27 W2PA Fed Com #1H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 37440.0usft (Original Well Elev)
Project:	Lea County, New Mexico NAD 83	MD Reference:	WELL @ 37440.0usft (Original Well Elev)
Site:	Bilbrey 34/27 W2PA Fed Com #1H	North Reference:	Grid
Well:	Sec 34, T21S, R32E	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 330' FNL & 500' FEL, Sec 27		
Design:	Design #1		i di

Planned Survey

.

.

Measured Depth	Inclination	Awing	Vertical Depth	ANI P	1 () 1 1 1	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
Ueptn (usft)	Inclination (°)	Azimuth (°)	(usft)	+N/-S (usft)	+E/-W (usft)	Section (Usft)	(°/100usft)	(°/100usft)	Rate (*/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
	L & 1311' FEL, Se								
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0		0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500,0	0.0	.0.0	0.0	0,00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0		0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0		0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	. 0.0	0.0	0.00	0.00	0.00
1,100.0		0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	. 0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0		0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0,0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0		0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0,00	0.00
2,600.0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
2,700.0	0.00	0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
2,800.0	0.00	0.00	2,800.0	0.0	0.0	0.0	0.00	0.00	0.00
2,900.0		0.00	2,900.0	0.0	0.0	0.0	0.00	0,00	0.00
3,000.0	0.00	0.00	3,000.0	0.0	0.0	0.0	0.00	0.00	0.00
3,100.0	0.00	0.00	3,100.0	0.0	0.0	0.0	0.00	0.00	0.00
3,200.0	0.00	0.00	3,200.0	0.0	0.0	0.0	0.00	0.00	0.00
3,300.0	0.00	0.00	3,300.0	0.0	0.0	0.0	0.00	0.00	0.00
3,400.0	0.00	0.00	3,400.0	0.0	0.0	0.0	0.00	0.00	0.00
3,500.0	0.00	0.00	3,500.0	0.0	0.0	0.0	0.00	0.00	0.00
3,600.0	0.00	0.00	3,600.0	0.0	0.0	0.0	0.00	0.00	0.00
3,700.0	. 0.00	0.00	3,700.0	0.0	0.0	0.0	0.00	0.00	0.00
3,800.0	0.00 0.00	0.00 0.00	3,800.0 3,900.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00
3,900.0									
4,000.0	0.00	0.00	4,000.0	0.0	0.0	0.0	0.00	0.00	0.00
4,100.0	0.00	0.00	4,100.0	0.0	0.0	0.0	0.00	0.00	0.00
4,200.0	0.00	0.00	4,200.0	0.0	0.0	0.0	0.00	0.00	0.00
4,300.0	0.00	0.00	4,300.0	0.0	0.0	0.0	0.00	0.00	0.00
4,400.0	0.00	0.00	4,400.0	0.0	0.0	0.0	0.00	0.00	0.00
4,500.0	0.00	0.00	4,500.0	0.0	0.0	0.0	0.00	0.00	0.00
4,600.0	0.00	0.00	4,600.0	0.0	0.0	0.0	0.00	0.00	0.00
4,700.0	0.00	0.00	4,700.0	0.0	0.0	0.0	0.00	0.00	0.00
4,750.0	0.00	0.00	4,750.0	0.0	0.0	0.0	0.00	0.00	0.00
4,800.0	0.75	102.92	4,800.0	-0.1	0.3	0.0	1.50	1.50	0.00
4,900.0	2.25	102.92	4,900.0	-0.7	2.9	-0.4	1.50	1.50	0.00
5,000.0	3.75	102.92	4,999.8	-1.8	8.0	-1.2	1.50	1.50	0.00
5,100.0	5.25	102.92	5,099.5	-3.6	15.6	-2.4	1.50	1.50	0.00

£

COMPASS 5000.1 Build 72

.

Database:	Hobbs	Local Co-ordinate Reference:	Site Bilbrey 34/27 W2PA Fed Com #1H	
Company:	, Mewbourne Oil Company	TVD Reference:	WELL @ 37440.0usft (Original Well Elev)	
Project:	Lea County, New Mexico NAD 83	MD Reference:	WELL @ 37440.0usft (Original Well Elev)	;
Site:	Bilbrey 34/27 W2PA Fed Com #1H	North Reference:	Grid	
Well:	Sec 34, T21S, R32E	Survey Calculation Method:	Minimum Curvature	
Wellbore:	BHL: 330' FNL & 500' FEL, Sec 27	•		;
Design:	Design #1			÷

i	Planned Survey	sec.
ŧ		

inned Survey			······································							
. N	fleasured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (*/100usft)	Build Rate (°/100usft)	Turn Rate (*/100usft)
	5,200.0	6.75	102.92	5,199.0	-5.9	25.8	-4.0	1.50	1.50	0.00
	5,237.6	7.31	102.92	5,236.3	-6.9	30.3	-4.7	1.50	1.50	0.00
	5,300.0	7.31	102.92	5,298.2	-8.7	38.0	-5.9	0.00	0.00	0.00
	5,400.0	7.31	102.92	5,397.4	-11.6	50.4	-7.8	0.00	0.00	0.00
	5,500.0	7.31	102.92	5,496.5	-14.4	62.9	-9.7	0.00	0.00	0,00
	5,600.0	7.31	102.92	5,595.7	-17.3	75.3	-11.6	0.00	0.00	0.00
	5,700.0	7.31	102.92	5,694.9	-20.1	87.7	-13.5	0.00	0.00	0.00
	5,800.0	7,31	102.92	5,794.1	-23.0	100.1	-15.4	0.00	0.00	0.00
	5,900.0	7.31	102.92	5,893.3	-25.8	112.5	-17.3	0.00	0.00	0.00
	6,000.0	7.31	102.92	5,992.5	-28.6	124.9	-19.2	0.00	0.00	0.00
	6,100.0	7.31	102.92	6,091.7	-31.5	137.3	-21.1	0.00	0.00	0.00
	6,200.0	7.31	102.92	6,190.8	-34.3	149.7	-23.0	0.00	0.00	0.00
	6,300.0	7.31	102.92	6,290.0	-37.2	162.1	-24.9	0.00	0.00	0.00
	6,400.0	7.31	102.92	6,389.2	-40.0	174.5	-26.9	0.00	0.00	0.00
	6,500.0	7.31	102.92	6,488.4	-42.9	186.9	-28.8	0.00	0.00	0.00
	6,600.0	7.31	102.92	6,587.6	-45.7	199.3	-30.7	0.00	0.00	0.00
	6,700.0	7.31	102.92	6,686.8	-48.6	211.8	-32.6	0.00	0.00	0.00
	6,800.0	7.31	102.92	6,786.0	-51.4	224.2	-34.5	0.00	0.00	0.00
	6,900.0	7.31	102.92	6,885.2	-54.3	236.6	-36.4	0.00	0.00	0.00
	7,000.0	7.31	102.92	6,984.3	-57.1	249.0	-38.3	0.00	0.00	0.00
	7,100.0	7.31	102.92	7,083.5	-59.9	261.4	-40.2	0.00	0.00	0.00
	7,200.0	7.31	102.92	7,182.7	-62.8	273.8	-42.1	0.00	0.00	0.00
	7,300.0	7.31	102.92	7,281.9	-65.6	286.2	-44.0	0.00	0.00	0.00
	7,400.0	7.31	102.92	7,381.1	-68.5	298.6	-45.9	0.00	0.00	0.00
	7,500.0	7.31	102.92	7,480.3	-71.3	311.0	-47.9	0.00	0.00	0.00
	7,600.0	7.31	102.92	7,579.5	-74.2	323.4	-49.8	0.00	0.00	0.00
	7,700.0	7.31	102.92	7,678.6	-77.0	335.8	-51.7	0.00	0.00	0.00
	7,800.0	7.31	102.92	7,777.8	-79.9	348,2	-53.6	0.00	0.00	0.00
	7,900.0	7.31	102.92	7,877.0	-82.7	360.7	-55.5	0.00	0.00	0.00
	8,000.0	7.31	102.92	7,976.2	-85.6	373.1	-57.4	0.00	0.00	0.00
	8,100.0	7,31	102.92	8,075.4	-88.4	. 385,5	-59.3	0.00	0.00 0.00	0.00
	8,200.0	7.31	102.92	8,174.6	-91.3	397.9	-61.2	0.00		0.00
	8,300.0	7.31	102.92	8,273.8	-94.1	410.3	-63.1	0.00	0.00	0.00
	8,400.0	7.31	102.92	8,372.9	-96.9	422.7	-65.0	0.00	0.00	0.00
	8,500.0	7.31	102.92	8,472.1	-99.8	435.1	-66.9	0.00	0.00	0.00
	8,600.0 8,700.0	7.31 7.31	102.92 102.92	8,571.3 8,670.5	-102.6 -105.5	447.5 459.9	-68.9 -70.8	0.00 0.00	0.00 0.00	0.00 0.00
										-
	8,800.0 8,900.0	7.31	102.92	8,769.7	-108.3	472.3	-72.7 -74.6	0.00	0,00 0,00	0.00 0.00
	8,900.0 9,000.0	7,31 7,31	102.92 102.92	8,868.9 8,968.1	-111.2 -114.0	484.7 497.1	-74.6 -76.5	0.00 0.00	0.00	0.00
	9,100.0	7.31	102.92	9,067.3	-116.9	509.6	-78.4	0.00	0.00	0.00
	9,200.0	7.31	102.92	9,166.4	-119.7	522.0	-80.3	0.00	0.00	0.00
	9,300.0	7.31	102.92	9,265.6	-122.6	534.4	-82.2	0.00	0.00	0.00
	9,400.0	7.31	102.92	9,364.8	-125.4	546.8	-84.1	0.00	0.00	0.00
	9,500.0	7.31	102.92	9,464.0	-128.2	559.2	-86.0	0.00	0.00	0.00
	9,600.0	7.31	102.92	9,563.2	-131.1	571.6	-87.9	0.00	0.00	0.00
	9,700.0	7.31	102.92	9,662.4	-133.9	584.0	-89.9	0.00	0.00	0.00
	9,800.0	7,31	102.92	9,761.6	-136,8	596,4	-91.8	0,00	0.00	0.00
	9,900,0	7.31	102.92	9,860.7	-139.6	608.8	-93,7	0.00	0.00	0.00
	10,000.0	7.31	102.92	9,959.9	-142.5	621.2	-95.6	0.00	0,00	0.00
	10,100.0	7,31	102.92	10,059,1	-145.3	633.6	-97.5	0.00	0.00	0.00
	10,200.0	7.31	102.92	10,158.3	-148.2	646.0	-99.4	0.00	0.00	0.00
	10,300.0	7.31	102.92	10,257.5	-151.0	658.5	-101.3	0.00	0.00	0.00
	10,400,0	7.31	102.92	10,356.7	-153.9	670.9	-103.2	0.00	0.00	0.00

COMPASS 5000.1 Build 72

. -----

Database:	1.1	Hobbs	Local Co-ordinate Reference:	Site Bilbrey 34/27 W2PA Fed Com #1H
Company:		Mewbourne Oil Company	TVD Reference:	WELL @ 37440.0usft (Original Well Elev)
Project:		Lea County, New Mexico NAD 83	MD Reference:	WELL @ 37440.0usft (Original Well Elev)
Site:		Bilbrey 34/27 W2PA Fed Com #1H	North Reference:	Grid
Vell:		Sec 34, T21S, R32E	Survey Calculation Method:	Minimum Curvature
Vellbore:		BHL: 330' FNL & 500' FEL, Sec 27		Y
Design:		² Design #1	, ¹	

Planned Survey

Measured Depth	Inclination	Animath	Vertical Depth		-E/ M	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
Uepth (usft)	Inclination (°)	Azimuth (°)	(usft)	+N/-S (usft)	+E/-W (usft)	(usft)	(°/100usft)	(°/100usft)	(*/100usft)
10,500.0	7.31	102.92	10,455.9	-156.7	683,3	-105.1	0.00	0.00	0.00
10,600.0	7.31	102.92	10,555.0	-159.6	695.7	-107.0	0.00	0.00	0.00
10,700.0	7.31	102.92	10,654.2	-162.4	708.1	-108.9	0.00	0.00	0.00
10,800.0	7.31	102.92	10,753.4	-165.2	720.5	-110.9	0.00	0.00	0.00
10,900.0	7.31	102.92	10,852.6	-168.1	732.9	-112.8	0.00	0.00	0.00
11,000.0	7.31	102.92	10,951.8	-170.9	745.3	-114.7	0.00	0.00	0.00
11,100.0	7.31	102.92	11,051.0	-173.8	757.7	-116.6	0.00	0.00	0.00
11,200.0	7.31	102.92	11,150.2	-176.6	770.1	-118,5	0.00	0.00	0.00
11,285,3	7.31	102,92	11,234.7	-179,1	780,7	-120.1	0.00	0.00	0.00
11,300.0	7.09	102,92	11,249.4	-179.5	782.5	-120.4	1.50	-1,50	0.00
11,400.0	5.59	102.92	11,348.7	-181.9	793.3	-122.1	1.50	-1.50	0.00
11,500.0	4.09	102.92	11,448.4	-183.8	801.5	-123.3	1.50	-1.50	0.00
11,600.0	2.59	102.92	11,548,2	-185.1	807.2	-124.2	1.50	-1.50	0.00
11,700.0	1,09	102.92	11,648.2	-185,8	810.3	-124.7	1.50	-1.50	0.00
11,772.9	0.00	0.00	11,721.0	-186.0	811.0	-124.8	1.50	-1.50	0.00
KOP @ 117	21'								
11,800.0	2.71	359,68	11,748.1	-185.4	811.0	-124.1	10.00	10.00	0.00
11,900.0	12.71	359,68	11,847.1	-172.0	810.9	-110.8	10.00	10.00	0.00
12,000.0	22.71	359.68	11,942.2	-141.6	810.8	-80.5	10.00	10.00	0.00
12,100.0	32.71	359.68	12,030.7	-95.1	810.5	-34.2	10.00	10.00	0.00
12,200.0	42.71	359.68	12,109.7	-34.0	810.2	26.7	10.00	10.00	0.00
12,300.0	52.71	359.68	12,176.9	39.8	809,7	100,3	10.00	10.00	0.00
12,400.0	62.71	359,68	12,230.2	124.3	809.3	184.5	10.00	10.00	0.00
12,413.1	64.02	359.68	12,236.1	136.0	809.2	196.2	10.00	10.00	0.00
FTP: 330' F	SL & 500' FEL, S	ec 34							
12,500.0	72.71	359.68	12,268.1	216.7	808.8	276,6	10.00	10.00	0.00
12,600,0	82,70	359,68	12,289,4	314.3	808.2	373.9	10.00	10,00	0.00
12,678.6	90,56	359.68	12,294.0	392.7	807.8	452.1	9.99	9,99	0.00
	L & 500' FEL, See	c 34							
12,700.0	90.56	359.68	12,293.8	414.1	807.7	473.3	0.00	0.00	0.00
12,800.0	90.56	359.68	12,292.8	514.0	807.1	573.0	0.00	0.00	0.00
12,900.0	90,56	359.68	12,291,8	614.0	806.5	672.7	0.00	0.00	0.00
13,000.0	90,56	359,68	12,290.8	714.0	806.0	772.4	0.00	0,00	0.00
13,100.0	90.56	359.68	12,289.9	814.0	805.4	872.0	0.00	0.00	0.00
13,200.0	90,56	359.68	12,288.9	914.0	804.9	971.7	0.00	0.00	0.00
13,300.0	90,56	359.68	12,287.9	1,014.0	804.3	1,071.4	0.00	0.00	0.00
13,400.0	90.56	359.68	12,286.9	1,114.0	803.8	1,171.0	0.00	0.00	0.00
13,500.0	90,56	359.68	12,285.9	1,214.0	803.2	1,270.7	0.00	0.00	0.00
13,600.0	90.56	359.68	12,284.9	1,314.0	802.6	1,370.4	0.00	0.00	0.00
13,700.0	90.56	359.68	12,283,9	1,414.0	802.1	1,470.1	0.00	0.00	0.00
13,800.0	90.56	359.68	12,283.0	1,514.0	801.5	1,569.7	0.00	0.00	0.00
13,900.0	90,56	359,68	12,282,0	1,614.0	801,0	1,669.4	0.00	0.00	0.00
14,000.0	90,56	359.68	12,281.0	1,714.0	800.4	1,769,1	0.00	0.00	0.00
14,100.0	90,56	359.68	12,280.0	1,814.0	799.9	1,868.7	0.00	0.00	0.00
14,100.0	90.56	359.68	12,200.0	1,914.0	799.3	1,968.4	0.00	0.00	0.00
14,200.0	90.56	359.68	12,279.0	2,014.0	799.3	2,068.1	0.00	0.00	0.00
	90.56	359.68	12,277.1	2,113.9					
14,400.0 14,500.0	90.56	359,68	12,277.1	2,113.9	798.2 797.6	2,167.8 2,267.4	0.00 0.00	0.00 0.00	0.00 0.00
14,600.0	90.56	359.68	12,275.1	2,313.9	797.1	2,367.1	0.00	0.00	0.00
14,700.0	90.56	359.68	12,274.1	2,413.9	796.5	2,466.8	0.00	0.00	0.00
14,800.0	90.56	359.68	12,273.1	2,513.9	796.0	2,566.4	0.00	0.00	. 0.00
14,900.0	90.56	359.68	12,272.1 12,271.2	2,613.9 2,713.9	795,4 794,8	2,666.1 2,765.8	0.00 0.00	0,00 0,00	0.00
15,000.0	90,56	359.68	47 774 7						0.00

COMPASS 5000.1 Build 72

Database:	Hobbs	Local Co-ordinate Reference:	Site Bilbrey 34/27 W2PA Fed Com #1H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 37440.0usft (Original Well Elev)
Project:	Lea County, New Mexico NAD 83	MD Reference:	WELL @ 37440.0usft (Original Well Elev)
Site:	Bilbrey 34/27 W2PA Fed Com #1H	North Reference:	Grid
Vell:	Sec 34, T21S, R32E	Survey Calculation Method:	Minimum Curvature
Velibore:	BHL: 330' FNL & 500' FEL, Sec 27		:
Design:	Design #1	• ; •	

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(*/100usft)	(°/100usft)	(*/100usft)
15,100.0	90.56	359,68	12,270.2	2,813,9	794.3	2,865.5	0.00	0.00	0.00
15,200.0	90.56	359.68	12,269.2	2,913.9	793.7	2,965.1	0.00	0.00	0.00
15,300.0	90,56	359.68	12,268.2	3,013.9	793.2	3,064.8	0.00	0.00	0.00
15,400.0	90.56	359.68	12,267,2	3,113.9	792.6	3,164.5	0.00	0.00	0.00
15,500.0	90,56	359.68	12,266.2	3,213.9	792.1	3,264.1	0.00	0.00	0.00
15,600.0	90,56	359.68	12,265.3	3,313.9	791.5	3,363.8	0.00	0.00	0.00
15,700.0	90,56	359.68	12,264.3	3,413.9	790.9	3,463.5	0.00	0.00	0.00
15,800.0	90,56	359.68	12,263.3	3,513.9	790.4	3,563.2	0.00	0.00	0.00
15,900.0	90.56	359.68	12,262.3	3,613.9	789.8	3,662.8	0.00	0.00	0.00
16,000.0	90.56	359.68	12,261,3	3,713,8	789.3	3,762.5	0.00	0.00	0.00
16,100.0	90,56	359.68	12,260,3	3,813.8	788.7	3,862.2	0.00	0.00	0.00
16,200.0	90,56	359.68	12,259.3	3,913.8	788.2	3,961.8	0.00	0.00	0.00
16,300.0	90,56	359,68	12,258.4	4,013.8	787.6	4,061.5	0.00	0.00	0.00
16,400.0	90.56	359.68	12,257,4	4,113.8	787.0	4,161.2	0.00	0.00	0.00
16,400.0	90,56 90,56	359.68	12,257.4	4,113.8	787.0	4,161.2	0.00	0.00	0.00
16,600.0	90.56	359.68	12,255.4	4,313.8	785.9	4,260.5	0.00	0.00	0.00
16,700.0	90.56	359.68	12,253.4	4,413.8	785.4	4,460.2	0.00	0.00	0.00
16,800.0	90.56	359.68	12,253.4	4,513.8	784.8	4,559.9	0.00	0.00	0.00
16,900.0	90,56	359,68	12,252.5	4,613.8	784,3	4,659.5	0.00	0.00	0,00
17,000.0	90,56	359.68	12,252.5	4,013.8	784.3	4,859.5	0.00	0.00	0.00
17,100.0	90,56	359.68	12,250,5	4,813.8	783,1	4,858.9	0.00	0.00	0.00
17,200.0	90,56	359.68	12,249.5	4,913.8	782.6	4,958.6	0.00	0.00	0.00
17,300.0	90,56	359,68	12,248.5	5,013.8	782.0	5,058.2	0.00	0,00	0.00
17,400.0	90,56	359,68	12,247.5	5,113.8	781.5	5,157.9	0.00	0.00	0.0
17,500.0	90,56	359.68	12,246.6	5,213.7	780.9	5,257.6	0.00	0.00	0.00
17,600.0	90.56	359.68	12,245.6	5,313.7	780.4	5,357.2		0.00	0.0
17,700.0	90.56	359.68	12,244.6	5,413.7	779.8	5,456.9	0.00	0.00	0.00
17,800.0	90,56	359,68	12,243.6	5,513.7	779.2	5,556.6	0.00	0.00	0.00
17,900,0	90,56	359.68	12,242.6	5,613,7	778,7	5,656,3	0.00	0.00	0,0
18,000.0	90,56	359.68	12,241.6	5,713,7	778.1	5,755.9	0,00	0.00	0.00
18,100.0	90,56	359,68	12,240,7	5,813.7	777.6	5,855.6	0.00	0.00	0.00
18,200.0	90.56	359.68	12,239.7	5,913.7	777.0	5,955.3	0.00	0.00	0.00
18,300.0	90,56	359.68	12,238.7	6,013,7	776,5	6,054,9	0.00	0.00	0.00
18,400.0	90.56	359,68	12,237.7	6,113.7	775,9	6,154.6	0.00	0.00	0.00
18,500.0	90,56	359.68	12,236.7	6,213.7	775.3	6,254.3	0.00	0.00	0.00
18,600.0	90,56	359,68	12,235.7	6,313.7	774.8	6,354.0	0.00	0.00	0.00
18,700.0	90.56	359.68	12,234.7	6,413.7	774.2	6,453.6	0.00	0.00	0.00
18,800.0	90.56	359.68	12,233.8	6,513.7	773.7	6,553.3	0.00	0.00	0.00
18,900.0	90.56	359.68	12,232.8	6,613,7	773.1	6,653.0	0.00	0.00	0.00
19,000.0	90.56	359.68	12,231.8	6,713.7	772,6	6,752.6	0.00	0.00	0.00
19,100.0	90,56	359.68	12,230.8	6,813.6	772.0	6,852.3	0.00	0.00	0.0
19,200.0	90.56	359.68	12,229.8	6,913.6	771.4	6,952.0	0.00	0.00	0.00
19,300.0	90.56	359.68	12,228.8	7,013.6	770,9	7,051.7	0.00	0.00	0.00
19,400.0	90.56	359.68	12,227.9	7,113,6	770.3	7,151.3	0.00	0.00	0.00
19,500.0	90.56	359,68	12,226.9	7,213.6	769.8	7,251.0	0.00	0.00	0.00
19,600.0	90.56	359.68	12,225.9	7,313.6	769.2	7,350.7	0.00	0.00	0.00
19,700.0	90.56	359.68	12,224.9	7,413.6	768.7	7,450.3	0.00	0.00	0.00
19,800.0	90.56	359.68	12,223.9	7,513.6	768.1	7,550.0	0.00	0.00	0.00
19,900,0	90.56	359,68	12,222.9	7,613.6	767.6	7,649.7	0.00	0.00	0.00
20,000,0	90,56	359.68	12,222.0	7,713.6	767.0	7,749.4	0.00	0.00	0.00
20,000.0	90,56	359,68	12,222.0	7,813.6	766.4	7,849.0	0.00	0.00	0.00
20,100.0	90,56	359.68	12,220.0	7,913.6	765.9	7,948.7	0.00	0.00	0.00
20,200.0	90,56	359.68	12,220.0	8,013.6	765.3	8,048.4	0.00	0.00	0.00
20,000.0	00.00	230.00		0,010.0	100.0	0,040.4	0.00	0.00	0,00

COMPASS 5000.1 Build 72

Database:	Hobbs	Local Co-ordinate Reference: Site Bilbrey 34/27 W2PA Fed Com #1H
Company:	Mewbourne Oil Company	TVD Reference: WELL @ 37440.0usft (Original Well Elev)
Project:	Lea County, New Mexico NAD 83	MD Reference: WELL @ 37440.0usft (Original Well Elev)
iite:	Bilbrey 34/27 W2PA Fed Com #1H	North Reference: Grid
Vell:	Sec 34, T21S, R32E	Survey Calculation Method: Minimum Curvature
Vellbore:	BHL: 330' FNL & 500' FEL, Sec 27	
Desian:	Design #1	

Planned Survey

. 1	Measured			Vertical			Vertical	Dogleg	Build	Turn
	Depth (usft)	inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (*/100usft)	Rate (*/100usft)	Rate (*/100usft)
	20,500.0	90,56	359,68	12,217.0	8,213.6	764.2	8,247.7	0.00	0.00	0.00
	20,600.0	90,56	359.68	12,216.0	8,313.5	763.7	8,347.4	0.00	0.00	0.00
	20,700.0	90,56	359.68	12,215.1	8,413.5	763.1	8,447.1	0.00	0.00	0.00
	20,800.0	90,56	359.68	12,214.1	8,513.5	762.5	8,546.7	0.00	0.00	0.00
	20,900.0	90,56	359.68	12,213.1	8,613.5	762.0	8,646.4	0.00	0.00	0.00
	21,000.0	90,56	359,68	12,212.1	8,713.5	761.4	8,746.1	0.00	0.00	0.00
	21,100.0	90.56	359.68	12,211.1	8,813.5	760.9	8,845.7	0.00	0.00	0.00
	21,200.0	90.56	359.68	12,210.1	8,913.5	760.3	8,945.4	0.00	0.00	0.00
	21,300.0	90.56	359.68	12,209.2	9,013.5	759.8	9,045.1	0.00	0.00	0.00
	21,400.0	90,56	359.68	12,208.2	9,113,5	759.2	9,144.8	0.00	0.00	0.00
	21,500.0	90.56	359.68	12,207,2	9,213.5	758.6	9,244.4	0.00	0.00	0.00
	21,600.0	90.56	359.68	12,206.2	9,313.5	758.1	9,344.1	0.00	0.00	0.00
	21,700.0	90,56	359.68	12,205.2	9,413.5	757.5	9,443.8	0.00	0.00	0.00
	21,800.0	90.56	359.68	12,204.2	9,513.5	757.0	9,543.4	0.00	0.00	0.00
	21,900.0	90,56	359.68	12,203.3	9,613.5	756.4	9,643.1	0.00	0.00	0.00
	22,000.0	90.56	359.68	12,202.3	9,713.5	755.9	9,742.8	0.00	0.00	0.00
	22,100.0	90.56	359.68	12,201.3	9,813.5	755.3	9,842.5	0.00	0.00	0.00
	22,200.0	90.56	359.68	12,200.3	9,913.4	754.7	9,942.1	0.00	0.00	0.00
	22,300.0	90.56	359.68	12,199.3	10,013.4	754.2	10,041.8	0.00	0.00	0.00
	22,332,6	90,56	359,68	12,199,0	10,046.0	754.0	10,074,3	0.00	0.00	0.00

Design Targets				• • • • • •				· · ·	-
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SL: 205' FSL & 1311' FE - plan hits target cente - Point	0.00 er	0.00	0.0	0.0	0.0	520,301.00	749,610.00	32.4285650	-103.6583087
KOP @ 11721' - plan hits target cente - Point	0.00 ar	0.00	11,721.0	-186.0	811.0	520,115.00	750,421.00	32.4280397	-103.6556841
BHL: 330' FNL & 500' FE - plan hits target cente - Point	0.00 er	0.00	12,199.0	10,046.0	754.0	530,347.00	750,364.00	32.4561645	-103.6556585
FTP: 330' FSL & 500' FE - plan hits target cente - Point	0.00 er	0.00	12,236.1	136.0	809.2	520,437.00	750,419.20	32.4289247	-103.6556833
LP: 598' FSL & 500' FEL - plan hits target cente - Point	0.00 er	0.00	12,294.0	392.7	807.8	520,693.70	750,417.80	32.4296303	-103.6556826

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Mewbourne Oil Company
LEASE NO.:	NMNM086710
WELL NAME & NO.:	Bilbrey 34/27 W2PA Fed Com 1H
SURFACE HOLE FOOTAGE:	205'/S & 1311'/E
BOTTOM HOLE FOOTAGE	330'/N & 500'/E
LOCATION:	Section 34, T.21 S., R.32 E., NMPM
COUNTY:	Lea County, New Mexico

All previous COAs still apply expect the following:

H2S	· Yes	r No	
Potash		C Secretary	• R-111-P
Cave/Karst Potential	C Low		
Variance		Flex Hose	C Other
Wellhead	Conventional	Multibowl	C Both
Other	□ □ 4 String Area	Capitan Reef	F WIPP

A. Hydrogen Sulfide

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 915 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>24 hours in the Potash Area</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength,

whichever is greater.

- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - a. Cement to surface. If cement does not circulate see B.1.a, c-d above. Additional cement maybe required. Excess calculates to 24%.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Operator shall filled 1/3rd casing with fluid while running production casing to maintain collapse safety factor

3. The minimum required fill of cement behind the 7 inch production casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- b. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job. Additional cement maybe required. Excess calculates to 24%.
- c. Second stage above DV tool:Cement to surface. If cement does not circulate, contact the appropriate BLM office.Additional cement maybe required. Excess calculates to 22%.
- 4. The minimum required fill of cement behind the 4-1/2 inch production liner is:
 - Cement should tie-back 100' into the previous casing. Operator shall provide method of verification.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).

 Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi.
 Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi.)

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201. During office hours call (575) 627-0272. After office hours call (575)
 - Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

🔀 Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on

which the draw works are located, this does not include the dog house or stairway area.

3. The record of the drilling rate along with the GR/N well log (one log per well pad is acceptable) run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the

formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
 - g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Waste Minimization Plan (WMP)

In the interest of resource development, submission of additional well gas capture development plan information is deferred but may be required by the BLM Authorized Officer at a later date.

ZS 080918

213234O APDSUNDRY BILBREY 34 27 W2PA FED COM 1H 30025 NMNM086710 Mewbourne 12-55 428688 08082018 ZS

13 3/8	surface		17 1/2	inch hole.		<u>Design</u>	Factors	SUR	FACE
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weigh
"A"	48.00	Н	40	ST&C	7.33	1.84	0.71	915	43,920
" B "			السامية المحاصفة.				, e er y Staltun - s	0	Ő
	g mud, 30min Sfo			Tail Cmt	does not	circ to sfc.	Totals:	915	43,920
				ment Volumes			. .		
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dis
Size	Volume	Cmt Sx	*	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
17 1/2	0.6946	680	1286	690	86	8.80	1408	2M	1.56
urst Frac Gra	dient(s) for Se	gment(s) A,	B=, b All>	0.70, OK.					***
95/8	casing in	side the	13 3/8			Design I	Factors	INTERN	NEDIATE
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weigh
"A"	36.00	J	55	LT&C	2.60	1.13	0.58	3,453	124,30
"B"	40.00	J	55	LT&C	10.43	1.13	0.65	940	37,600
"C"	40.00	N	80	LT&C	60.02	1.27	0.95	307	12,280
"D"			·					0	0
	; mud, 30min Sfo						Totals:	4,700	174,18
	cement volu	me(s) are int	ended to ach	nieve a top of	0	ft from su	rface or a	915	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Çu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
12 1/4	0.3132	980	1922	1549	.24	10.00	3355	5M	0.81
<u> > 0.70, OK</u> 7	casing in	side the	9 5/8			GRADIENT IS C		PROD	UCTION
Segment	#/ft	Grade	•	Coupling	Joint	Collapse	Burst	Length	Weigh
"A"	26.00		110	LT&C	2.17	1.07	1.3	11,773	306,09
"B"	26.00	· P	110	LT&C	119.70	1.03	1.3	727	18,902
w/8.4#/g	, mud, 30min Sfa	Csg Test psig:	2,590				Totals:	12,500	325,00
В	would be:				53.85	1.03	if it were a	vertical we	ellbore.
No Pil	ot Hole Plai	ned	MTD	Max VTD	Csg VD	Curve KOP	Dogleg ^o	Severity ^e	MEOC
			12500	12268	12268	11773	73	-1	0
	cement volu				0	ft from su		4700	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
8 3/4	0.1503	look 🗸	0	. 1956		9.50	4959	5M	0.55
	ng Depths for	D V Tool(s):	4750	·			sum of sx	<u>Σ CuFt</u>	<u>Σ%exces</u>
% excess	s cmt by stage:	24	22				1350	2408	23
			WASP IS WITH	in 10% of 5000	psig, need ex	rta equip?		F IS TOO CO	NSERVATIV
				ALT. COLLAPS	E SF: 1.03 *1	.5=1.54; CURV	E COLLAPSE S		
Tail cmt	। तात्र • तात्र ० तात्र () राज्य म _् तात्र ॥ साम	n (111) e 1110 e 12 e (111) e 1110 e 1			E SF: 1.03 *1				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4 1/2	Liner W		11733			Design i	Factors		NER
4 1/2 Segment	#/ft	Grade		Coupling	Joint	<u>Design I</u> Collapse	Factors Burst	Length	Weight
4 1/2 Segment "A"	#/ft 13.50	Grade P	110	Coupling LT&C	Joint 1.93	Design I Collapse 1.31	Factors Burst 1.62	Length 946	Weight 12,771
4 1/2 Segment "A" "B"	#/ft 13.50 13.50	Grade P P	110 110	Coupling	Joint	<u>Design I</u> Collapse	Eactors Burst 1.62 1.62	Length 946 9,654	Weight 12,771 130,32 9
4 1/2 Segment "A" "B" w/8.4#/g	#/ft 13.50 13.50 mud, 30min Sfc	Grade P Csg Test psig:	110 110 2,684	Coupling LT&C	Joint 1.93 2.22	Design I Collapse 1.31 1.40	Factors Burst 1.62 1.62 Totals:	Length 946 9,654 10,600	Weight 12,771 130,32 9 143,100
4 1/2 Segment "A" "B" w/8.4#/g	#/ft 13.50 13.50	Grade P Csg Test psig:	110 110 2,684 s would be:	Coupling LT&C LT&C	Joint 1.93 2.22 2.36	Design i Collapse 1.31 1.40	Factors Burst 1.62 1.62 Totals: f it were a ve	Length 946 9,654 10,600 ertical wellb	Weight 12,771 130,329 143,100 ore
4 1/2 Segment "A" "B" w/8.4#/g	#/ft 13.50 13.50 mud, 30min Sfc	Grade P Csg Test psig:	110 110 2,684 s would be: MTD	Coupling LT&C LT&C Max VTD	Joint 1.93 2.22 2.36 Csg VD	Design i Collapse 1.31 1.40 1.4 Curve KOP	Factors Burst 1.62 1.62 Totals: f it were a vi Dogleg ^o	Length 946 9,654 10,600 ertical wellb Severity ^o	Weight 12,771 130,329 143,100 ore. MEOC
4 1/2 Segment "A" "B" w/8.4#/g A S	#/ft 13.50 13.50 mud, 30min Sfc Segment De: 0521	Grade P Csg Test psig: sign Factor:	110 110 2,684 s would be: MTD 22333	Coupling LT&C LT&C Max VTD 12294	Joint 1.93 2.22 2.36 Csg VD 12199	Design i Collapse 1.31 1.40 1.4 Curve KOP 11773	Factors Burst 1.62 1.62 Totals: f it were a vi Dogleg ^o 91	Length 946 9,654 10,600 ertical wellb Severity ^o 10	Weight 12,771 130,329 143,100 ore. MEOC 12679
4 1/2 Segment "A" "B" w/8.4#/g A S	#/ft 13.50 13.50 mud, 30min Sfc Segment De: 0521 cement volur	Grade P Csg Test psig: sign Factor ne(s) are int	110 110 2,684 s would be: MTD 22333 ended to ach	Coupling LT&C LT&C Max VTD 12294 ieve a top of	Joint 1.93 2.22 2.36 Csg VD 12199 11733	Design i Collapse 1.31 1.40 1.4 Curve KOP 11773 ft from su	Factors Burst 1.62 1.62 Totals: f it were a vi Dogleg ^o 91 rface or a	Length 946 9,654 10,600 ertical wellb Severity ^o 10 767	Weight 12,771 130,329 143,100 ore. MEOC 12679 overlap.
4 1/2 Segment "A" "B" w/8.4#/g A S	#/ft 13.50 13.50 mud, 30min Sfc Segment De: 0521 cement volur Annular	Grade P P Csg Test psig: sign Factors ne(s) are int 1 Stage	110 110 2,684 s would be: MTD 22333 ended to ach 1 Stage	Coupling LT&C LT&C Max VTD 12294 ieve a top of Min	Joint 1.93 2.22 2.36 Csg VD 12199 11733 1 Stage	Design i Collapse 1.31 1.40 1.4 Curve KOP 11773 ft from su Drilling	Factors Burst 1.62 1.62 Totals: f it were a v Dogleg ^o 91 rface or a Calc	Length 946 9,654 10,600 ertical wellb Severity ⁶ 10 767 Req'd	Weight 12,771 130,329 143,100 ore. MEOC 12679 overlap. Min Dist
4 1/2 Segment "A" "B" w/8.4#/g A S The Hole Size	#/ft 13.50 13.50 mud, 30min Sfc Segment Des 0521 cement volur Annular Volume	Grade P Csg Test psig: sign Factors ne(s) are int 1 Stage Cmt Sx	110 110 2,684 MTD 22333 ended to ach 1 Stage CuFt Cmt	Coupling LT&C LT&C Max VTD 12294 ieve a top of Min Cu Ft	Joint 1.93 2.22 2.36 Csg VD 12199 11733 1 Stage % Excess	Design i Collapse 1.31 1.40 1.4 Curve KOP 11773 ft from su Drilling Mud Wt	Factors Burst 1.62 1.62 Totals: f it were a vi Dogleg ^o 91 rface or a	Length 946 9,654 10,600 ertical wellb Severity ^o 10 767	Weight 12,771 130,329 143,100 ore. MEOC 12679 overlap. Min Dist Hole-Cpl
4 1/2 Segment "A" "B" w/8.4#/g A S The	#/ft 13.50 13.50 mud, 30min Sfc Segment Des 0521 cement volur Annular Volume 0.0942	Grade P P Csg Test psig: sign Factors ne(s) are int 1 Stage	110 110 2,684 s would be: MTD 22333 ended to ach 1 Stage	Coupling LT&C LT&C Max VTD 12294 ieve a top of Min Cu Ft 2234	Joint 1.93 2.22 2.36 Csg VD 12199 11733 1 Stage	Design i Collapse 1.31 1.40 1.4 Curve KOP 11773 ft from su Drilling	Factors Burst 1.62 1.62 Totals: fit were a v Dogleg ^o 91 rface or a Calc MASP	Length 946 9,654 10,600 ertical wellb Severity ^e 10 767 Req'd BOPE	Weight 12,771 130,329 143,100 ore. MEOC 12679 overlap. Min Dist Hole-Cpl 0.56

R111P KFC