· ·	HOBBS	•				MIN
	AUG 1 6 2018	Carl	Sho .			MIN BURF
Form 3160-3 (March 2012)	RECEIVED		Sbad Fiel DCD HOB OR ENT OR REENTER		FORM A OMB No. Expires Oct	APPROVED 1004-0137 tober 31, 2014
	DEPARTMENT O	STATES F THE INTERI	OR UTOD	bs	5. Bease Serial No.	
A	BUREAU OF LAN PPLICATION FOR PERN	ND MANAGEMI Nit to drill	OR REENTER		6. If Indian, Allotee o	rTribe Name
la. Type of work:	ØRILL [REENTER			7 If Unit or CA Agree	ment, Name and No.
lb. Type of Well:	Oil Well Gas Well	uther 🔽	Single Zone 🔲 Mult	ple Zone	8. Lease Name and W. DRIRELAND FEDE	ell No. 322263 RAL 111H
2. Name of Operator	MATADOR PRODUCTION C	OMPANY (22	8937)		9. APÍ Weit-No.	-44116
3a. Address 5400 L	BJ Freeway, Suite 1500 Dallas	TV 750	e No. (include area code) 71-5200		10. Field and Pool, or Ex BONESPRING	iploratory (2200)
4. Location of Well	Report location clearly and in accord	ance with any State req	uirements.*)	$\overline{\langle}$	11. Sec. T. R. M. or Blk	and Survey or Area
	4 / 513 FSL / 311 FWL / LAT 3				SEC 19 / T23S / R3	5E / NMP
	zone LOT 1 / 240 FNL / 330 FV nd direction from nearest town or pos		914 / LONG - 103,414	37	2. County or Parish	13. State
 Distance from prop location to nearest property or lease li (Also to nearest dri 	311 feet ne, ft.	16. No. 557.44	of acres in lease	17. Spacing 157.34	LEA 3 Unit dedicated to this we	NM
8. Distance from prop	osed location* ling, completed, 30 feet		posed Depth eet / 14642 feet		BIA Bond No. on file 1B001079	· · · · · · · · · · · · · · · · · · ·
I. Elevations (Show 3384 feet	whether DF, KDB, RT, GL, etc.)		roximate date work will st (2018	l art*	23. Estimated duration 25 days	
	//		Attachments		L	<u> </u>
he following, complete	ed in accordance with the requiremen	ts of Onshore Oil and	Gas Order No.1. must be	attached to thi	s form:	· · · · · · · · · · · · · · · · · · ·
. A Drilling Plan.	y a registered surveyor.		Item 20 above)		is unless covered by an e	xisting bond on file (see
 A Surface Use Plan SUPO must be filed 	(if the location is on National For with the appropriate Forest Service)	est System Lands, th Office).			rmation and/or plans as n	nav be required by the
25. Signature			ame (Printed Typed)	05)054.444	1	Date
ïtle /	ronic Submission)	L	ara Thompson / Ph: (\$	05)254-11	15	02/26/2018
Assistant Proje			ame (Printed Typed)	004 5050		Date
itle	nager Lands & Minerals	0	ody Layton / Ph: (575) ffice ARLSBAD	234-3939		07/06/2018
1.7	oes not warrant or certify that the append			hts in the subj	ect lease which would en	title the applicant to
itle 18 U.S.C. Section 1	001 and Title 43 U.S.C. Section 1212, 1 is or fraudulent statements or represe	make it a crime for a intations as to any mat	ny person knowingly and tter within its jurisdiction.	willfully to m	ake to any department or	agency of the United
(Continued on pa	nge 2) DS/16/18			-	*(Instru	uctions on page 2)
-		DOVEN N	TITH CONDIT	IONS	55/10/	it d
	Al	PROVED T	te: 07/06/2018		V	

V	12	, y
S.	12 60	y/

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

The Privacy Act of 1974 and regulation in 43 CFR 2:48(d) provide that you be furnished the following information in connection with information required by this application.

NOTIČES

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 31,60

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities:

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: LOT 4 / 513 FSL / 311 FWL / TWSP: 23S / RANGE: 35E / SECTION: 19 / LAT: 32.284245 / LONG: -103.4141952 (TVD: 0 feet, MD: 0 feet) PPP: LOT 4 / 330 FSL / 330 FWL / TWSP: 23S / RANGE: 35E / SECTION: 19 / LAT: 32.2837424 / LONG: -103.4141345 (TVD: 9868 feet, MD: 10250 feet) BHL: LOT 1 / 240 FNL / 330 FWL / TWSP: 23S / RANGE: 35E / SECTION: 19 / LAT: 32.2966914 / LONG: -103.414137 (TVD: 9868 feet, MD: 14642 feet)

BLM Point of Contact

Name: Judith Yeager Title: Legal Instruments Examiner Phone: 5752345936 Email: jyeager@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Submission Date: 02/26/2018

Highlighted data rollects the mest meant changes

07/18/2018

App...ation Data Report

Show Final Text

APD ID: 10400026077

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FEDERAL

Well Type: OIL WELL

Well Number: 111H **Well Work Type:** Drill

Section 1 - General 10400026077 APD ID: Tie to previous NOS? Submission Date: 02/26/2018 BLM Office: CARLSBAD User: Lara Thompson Title: Assistant Project Manager Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED Lease number: NMNM113422 Lease Acres: 557.44 Allotted? Surface access agreement in place? **Reservation:** Agreement in place? NO Federal or Indian agreement: Agreement number: Agreement name: Keep application confidential? YES Permitting Agent? YES **APD Operator: MATADOR PRODUCTION COMPANY Operator letter of designation: Operator Info Operator Organization Name: MATADOR PRODUCTION COMPANY** Operator Address: 5400 LBJ Freeway, Suite 1500 Zip: 75240 **Operator PO Box: Operator City: Dallas** State: TX Operator Phone: (972)371-5200

Operator Internet Address: amonroe@matadorresources.com

Section 2 - Well Information

Well in Master Development Plan? NO	Mater Development Plan name:	
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name:	
Well Name: DR IRELAND FEDERAL	Well Number: 111H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: BONESPRING	Pool Name:

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

TION COMPANY

Well Name: DR IRELAND FEDERAL

Well Number: 111H

Describe oth	ner minerals:				
Is the propo	sed well in a Helium produc	ction area? N	Use Existing Well Pad?	NO	New surface disturbance?
Type of Well	I Pad: MULTIPLE WELL		Multiple Well Pad Name	: DR	Number: 1
Well Class:	HORIZONTAL		IRELAND FEDERAL Number of Legs: 1		
Well Work T	ype: Drill				
Well Type: C	DIL WELL				
Describe We	ell Type:				
Well sub-Ty	pe: APPRAISAL				
Describe su	b-type:				
Distance to	town:	Distance to ne	arest well: 30 FT	Distanc	e to lease line: 311 FT
Reservoir w	ell spacing assigned acres	Measurement:	157.34 Acres		
Well plat:	1Mile_Radius_Map_201802	14142439.docx	(
	BO_DR_IRELAND_FED_CO	OM_SLOT_1_S	URFACE_PAD_SITE_S_	2018021	4142722.pdf
	CD_DR_IRELAND_FED_CO	OM_SLOT_1_S	URFACE_PAD_PRO_S_	2018021	4142722.pdf
	DrIrelandFederal111H_sign	ed_201805081	53800.pdf		
Well work st	art Date: 12/01/2018		Duration: 25 DAYS		
Secti	on 3 - Well Location	Гable			

Survey Type: RECTANGULAR

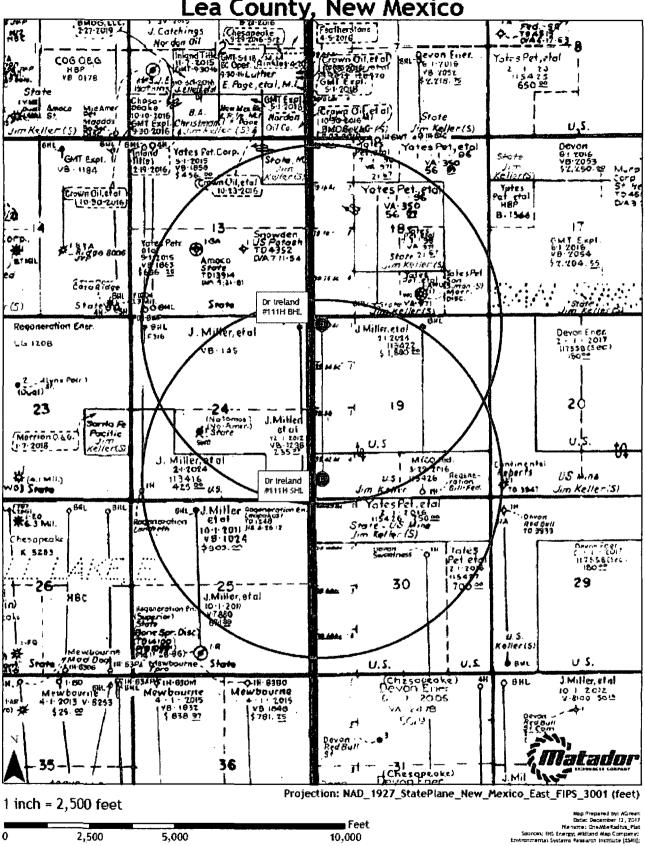
Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number:

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
SHL	513	FSL	311	FWL	235	35E	19	Lot	32.28424 5	- 103.4141	LEA	NEW MEXI	NEW MEXI	F	NMNM 113422		0	0
Leg #1								4	5	952		CO	CO		113422	4		
KOP	513	FSL	311	FWL	23S	35E	19	Lot	32.28424	-	LEA	NEW	NEW	F	NMNM	243	950	950
Leg								4	5	103.4141		1	MEXI		113422	4		
#1										952		co	со					


Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FEDERAL

Well Number: 111H

.

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	QM	TVD
PPP	330	FSL	330	FWL	23S	35E	19	Lot	32.28374	-	LEA	NEW	NEW	F	NMNM	-	102	986
Leg								4	24	103.4141		MEXI			113422	648	50	8
#1										345		co	со			4		
EXIT	330	FNL	330	FWL	23S	35E	19	Lot	32.29644	-	LEA	NEW	NEW	F	NMNM	-	145	986
Leg								1	4	103.4141		MEXI	MEXI		113422	648	52	8
#1										369		co	со			4		1
BHL	240	FNL	330	FWL	23S	35E	19	Lot	32.29669	-	LEA	NEW	NEW	F	NMNM	-	146	986
Leg								1	14	103.4141		MEXI	MEXI		113422	648	42	8
#1										37		co	со			4		

10,000

n

2,500

5,000

Lea County, New Mexico

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400026077

Submission Date: 02/26/2018

Highlightod-data wiking the most wight changes

Show Final Text

07/18/2018

Drillin, Plan Data Report

Well Name: DR IRELAND FEDERAL

Well Number: 111H

Well Type: OIL WELL

Well Work Type: Drill

Type. Dim

Section 1 - Geologic Formations

Operator Name: MATADOR PRODUCTION COMPANY

Formation			True Vertical	Measured	· · · ·		Producing
: ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	RUSTLER	3384	1117	1117		USEABLE WATER	No
2	SALADO	1931	1453	1453	, 31	NONE	No
3	BASE OF SALT	-543	3927	3927	<u></u>	NONE	No
4	BELL CANYON	-2021	5405	5405		NATURAL GAS,OIL	No
5	BRUSHY CANYON	-4039	7423	7423		NATURAL GAS,OIL	No
6	BONE SPRING LIME	-5361	8745	8745		NATURAL GAS,OIL	No
7	BONE SPRING 1ST	-6093	9477	9477	:	NATURAL GAS,OIL	No
8	BONE SPRING 2ND	-6650	10034	10034		NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI): 2M

Rating Depth: 15000

Equipment: See Exhibit E-1. A BOP consisting of 3 rams with 2 pipe rams, 1 blind ram and one annular preventer. The BOP will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs.

Requesting Variance? YES

Variance request: The operator requests a variance to have the option of running a speed head for setting the intermediate strings. In the case of running a speed head with landing mandrel for 9-5/8" casing, a minimum of a 3M BOPE system will be installed after surface casing is set. Matador Resources requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached (see Exhibit E-2). The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. **Testing Procedure:** After setting surface casing and before drilling below the surface casing shoe, a minimum of a 2M BOPE system will be installed and tested to 250 psi low and 2000 psi high with the annular being tested to 250 psi low and 3000 psi high with the annular being tested to 250 psi low and 2500 psi high.

Well Name: DR IRELAND FEDERAL

Well Number: 111H

ť

Choke Diagram Attachment:

Choke_Manifold_20180122155035.pdf

BOP Diagram Attachment:

BOP_297_001_20180122155024.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	850	0	850			850	J-55		OTHER - BTC	1.12 5	1.12 5	BUOY	1.8	BUOY	1.8
	INTERMED IATE	12.2 5	9.625	NEW	API	N .	0	5400	0	5384			5400	J- 55	40	OTHER - BTC	1.12 5	1.12 5	BUOY	1.8	BUOY	1.8
	PRODUCTI ON	8.75	5.5	NEW	NON API	N	4400	14642	4388	9868			10242	P- 110		OTHER - BTC/TXP	1.12 5	1.12 5	BUOY	1.8	BUOY	1.8

Casing Attachments

Casing ID: 1

String Type:SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_3_string_20180213122944.pdf

Operator Name: MATADOR PRODUC
Well Name: DR IRELAND FEDERAL

Well Number: 111H

Casing Attachments

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_3_string_20180213122951.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

TenarisHydril_TenarisXP_BTC_5.500_20_20180213122618.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_3_string_20180213123000.pdf

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	850	580	2.35	11.5	1363	35	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
SURFACE	Tail		0	850	1500	1.39	13.2	2085	35	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		0	5400	1170	2.13	12.6	2492. 1	100	Class C	Bentonite + 1% CaCL2 + 8% NaCl + LCM
INTERMEDIATE	Tail		0	5400	600	1.38	11.5	828	100	Class C	5% NaCl + LCM
PRODUCTION	Lead		4600	1464 2	210	1.82	12.8	382.2	100	Class C	Bentonite + 2% CaCL2 + 3% NaCl + LCM

Operator Name: MATADOR PROD

JN COMPANY

Well Number: 111H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Tail		4600	1464 2	720	1.38	14.8	993.6	100	Class C	5% NaCl + LCM

Section 5 - Circulating Medium

Circulating Medium Table

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: See Exhibit E-1. A BOP consisting of 3 rams with 2 pipe rams, 1 blind ram and one annular preventer. The BOP will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs.

Describe the mud monitoring system utilized: The Mud Monitoring System is an electronic Pason system satisfying requirements of Onshore Order 1. Mud Logging Program: 2 man unit from 5400 – TD.

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (Ibs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	850	SPUD MUD	8.3	8.3							
0	5385	SALT SATURATED	10	10							
4388	9868	OTHER : FW/ Cut Brine	9	9							

Operator Name: MATADOR PRODUC

Well Name: DR IRELAND FEDERAL

Well Number: 111H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

See page 3 of Drilling Plan attached in Other Facets, Section 8.

List of open and cased hole logs run in the well:

CBL,GR,MUDLOG

Coring operation description for the well:

No DSTs or cores are planned at this time.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4500 Anticipated Surface Pressure: 2329.04

Anticipated Bottom Hole Temperature(F): 150

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

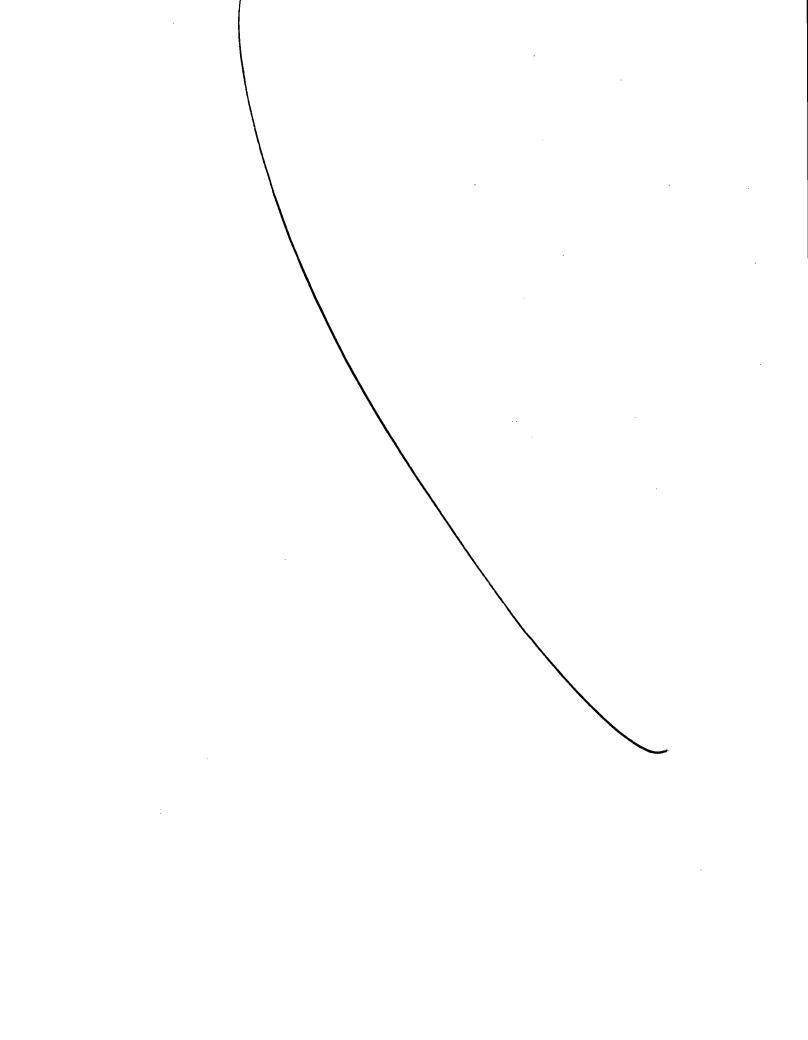
Hydrogen Sulfide drilling operations plan required? YES

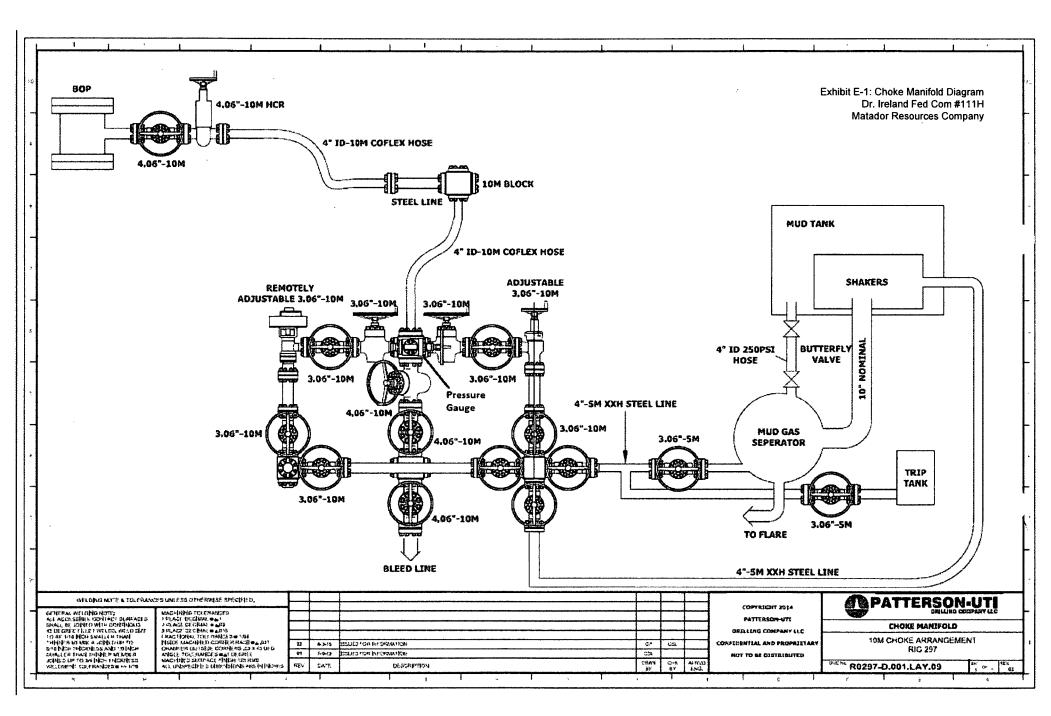
Hydrogen sulfide drilling operations plan:

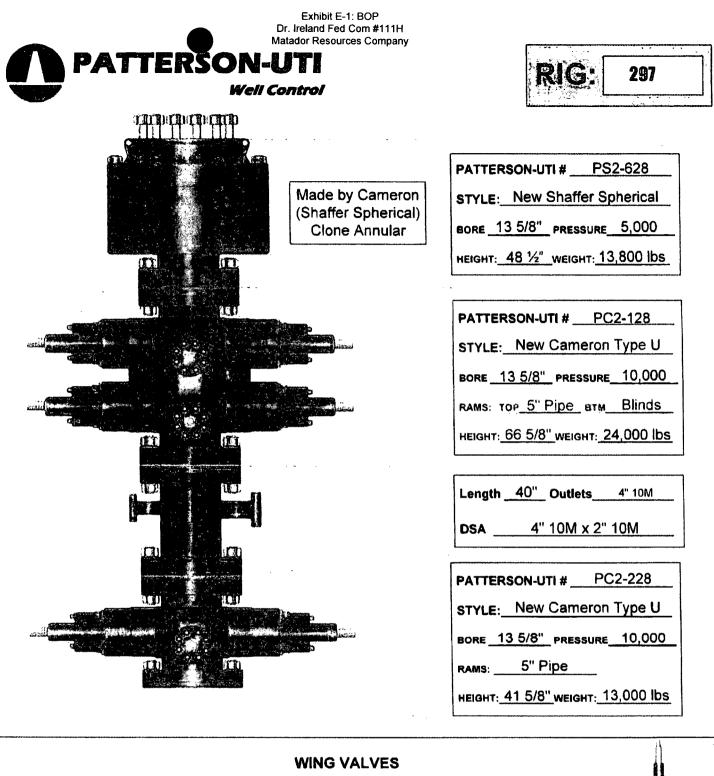
Matador_Hydrogen_Sulfide_Drilling_Leslie__024_20180214143236.docx

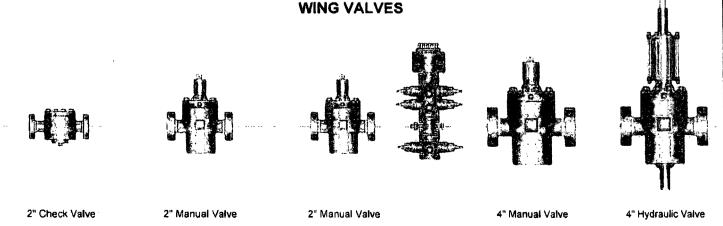
Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:


Dr._Ireland_Fed_Com__111H___Well_Plan_v1_20180213132634.pdf


Other proposed operations facets description:


Other proposed operations facets attachment:


3_String_Speed_Head_20180213132735.pdf 297Co_Flex_Certs__Dr._Ireland_Fed_Com__111H_20180213132737.pdf Close_Loop_System_20180213132738.docx Dr._Ireland_Fed_Com__111H_MTDR_Drill_Plan_20180213132739.docx Dr_111H_Geoprog_V1_20180214143507.xlsx

Other Variance attachment:

For the latest performance data, always visit our website: www.tenaris.com

February 02 2017

Connection: TenarisXP® BTC **Casing/Tubing**: CAS **Coupling Option**: REGULAR

Size: 5.500 in. Wall: 0.361 in. Weight: 20.00 lbs/ft Grade: P110-IC Min. Wall Thickness: 87.5 %

~

		PIPE BODY	' DATA		
		GEOMET	ſRY		
Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
Plain End Weight	19.83 lbs/ft				
		PERFORM	ANCE		·
Body Yield Strength	. 641 x 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi
Collapse	12100 psi				
	TE	NARISXP® BTC CO	NNECTION D	ΑΤΑ	
		GEOMET	rry		
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.
Critical Section Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
		PERFORM	ANCE		
Tension Efficiency	100 %	Joint Yield Strength	641 × 1000 lbs	Internal Pressure Capacity ^(<u>1</u>)	12630 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	641 x 1000 Ibs	Structural Bending ^(<u>2</u>)	92 °/100 ft
External Pressure Capacity	12100 psi				
	E	STIMATED MAKE-L	IP TORQUES	(3)	
Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lbs
		OPERATIONAL LI	AIT TORQUES	5	
Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs		
		BLANKING DI	TENSIONS		
		Blanking Din	nensions		

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per

DS-TenarisHydril TenarisXP BTC-5.500-20.000-.

section 10.3 API 5Cp , ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed.

For additional information, please contact us at contact-tenarishydril@tenaris.com

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

.

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

.

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2.with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

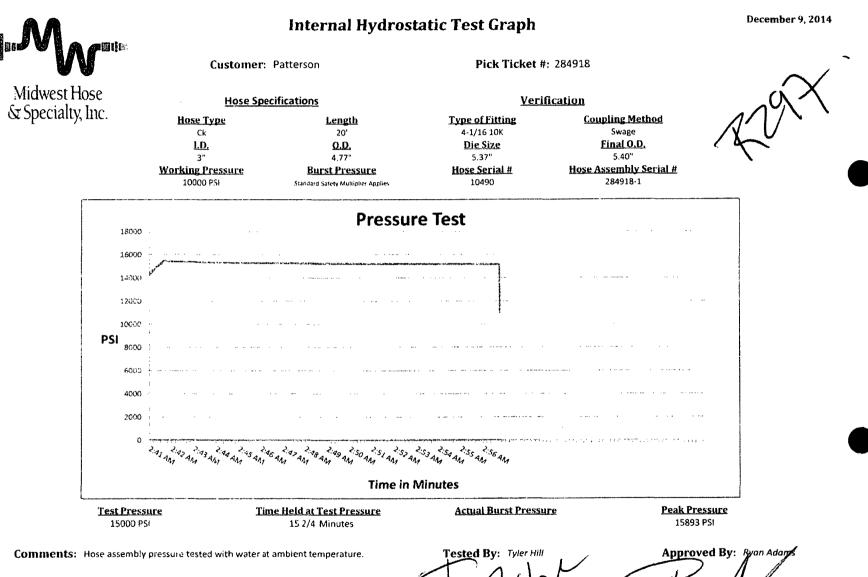
- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

-

.


-

.

.

88	VV	
	fidwest Hose Specialty, Inc.	
Certifica	te of Conformity	
Customer: PATTERSON B&E	Customer P.O.# 260471	
Sales Order # 236404	Date Assembled: 12/8/2014	
Spi	ecifications	
Hose Assembly Type: Choke & Kill		
Assembly Serial # 287918-2	Hose Lot # and Date Code	10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi)	15000
We hereby certify that the above material supplies to the requirements of the purchase order and consections of the supplier:		to be true according
Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129		
3312 S I-35 Service Rd		
3312 S I-35 Service Rd Oklahoma City, OK 73129	Date	

Exhibit E-2: Co-Flex Certifications Dr. Ireland Fed Com #111H Matador Resources Company

Approved By: Tyler Hill Approved By: Ryan Adams

Inte		vest Hose cialty, Inc.	
Inte			
Inte			
Inte			
	ernal Hydroste	atic Test Certificate	
General Info		Hose Specifi	cations
ustomer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
IWH Sales Representative		Certification	API 7K
ate Assembled	12/8/2014	Hose Grade	MUD
ocation Assembled	окс	Hose Working Pressure	10000
ales Order #	236404	Hose Lot # and Date Code	10490-01/13
ustomer Purchase Order #	260471	Hose I.D. (Inches)	3"
ssembly Serial # (Pick Ticket #)	287918-1	Hose O.D. (Inches)	5.30"
ose Assembly Length	20'	Armor (yes/no)	YES
	Fit	tings	
End A		End B	
em (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
em (Heat #)	A141420	Stem (Heot #)	A141420
errule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0
e rrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
onnection (Part #)	4 1/16 10K	Connection (Port #)	4 1/16 10K
onnection (Heat #)	V3579	Connection (Heat #)	V3579
JIIIELUOII (Heal #)	NAL AND		
ies Used	5.3	7 Dies Used	5.3
		7 Dies Used st Requirements	5.3

.

.

-

	» <i>\ Ai -}</i>	VV		
		est Hose ialty, Inc.		
	Certificate c	of Conformity		
Customer: PATTERSON B&E		Customer P.O.# 260471		
Sales Order # 236404		Date Assembled: 12/8/2014		
	Specif	ications		
Hose Assembly Type: C	hoke & Kill			
	87918-1	Hose Lot # and Date Code	10490-01/13	
	0000	Test Pressure (psi)	15000	
We hereby certify that the above m to the requirements of the purchas			to be true according	
		· · · · · · · · · · · · · · · · · · ·		
Supplier:				
Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd				
Oklahoma City, OK 73129				
Comments:				
		Date		
Approved Bv		Date 12/9/2014		
Approved By Han Al	1	12/9/201	.4	

Exhibit E-2: Co-Flex Certifications Dr. Ireland Fed Com #111H Matador Resources Company

Internal Hydrostatic Test Graph

December 9, 2014

Customer: Patterson Pick Ticket #: 284918 Midwest Hose **Hose Specifications** Verification & Specialty, Inc. Hose Type **Type of Fitting Coupling Method** Length Mud 70' 4 1/16 10K Swage 1.D. <u>O.D.</u> Final O.D. Die Size 3" 4.79" 5.37" 5.37" Working Pressure **Burst Pressure** Hose Assembly Serial # Hose Serial # 10000 PSI 284918-3 10490 Standard Safery Multiplier Applies **Pressure Test** 18000 16000 14000 12000 10000 52 8000 5000 4000 2000 Ø 111.1754 2:38 PM 2.30 2.40 2.41 PM 2.42 PM 3 PM 4 PM 2.45 PM 6 PM 2.45 PM 5 PM 2.40 PM 2.40 PM 2.50 PM 5 PM 2.52 PM 2.53 PM 2.55 PM 2.5 **Time in Minutes Test Pressure Time Held at Test Pressure Actual Burst Pressure** Peak Pressure 15000 PSI 15410 PSI 16 3/4 Minutes

Aler Hill Approved By: Ryan Agams **Tested By:**

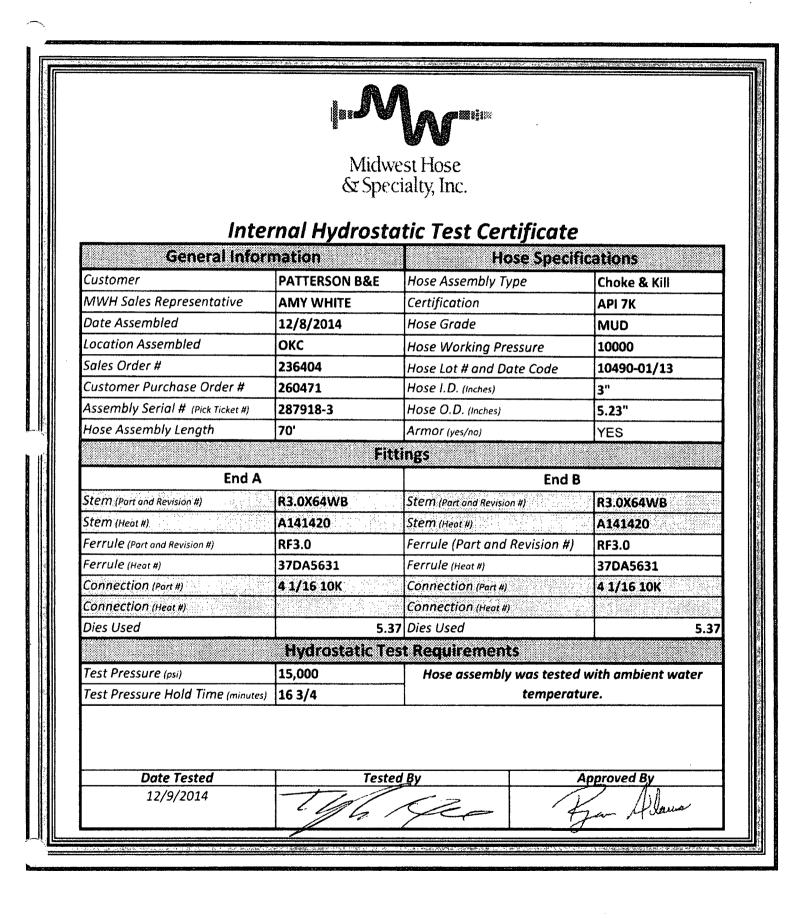


Exhibit E-2: Co-Flex Certifications Dr. Ireland Fed Com #111H Matador Resources Company

	Midwest Hose & Specialty, Inc.
	Cospecially, Inc.
Certi	ficate of Conformity
Customer: PATTERSON B&E	Customer P.O.# 260471
Sales Order # 236404	Date Assembled: 12/8/2014
	Specifications
Hose Assembly Type: Choke &	
Assembly Serial # 287918-3	Hose Lot # and Date Code 10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
	supplied for the referenced purchase order to be true according
to the requirements of the purchase order Supplier: Midwest Hose & Specialty, Inc.	ana current inaustry stanaaras.
to the requirements of the purchase order Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	ana current inaustry stanaaras.
to the requirements of the purchase order Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd	ana current inaustry stanaaras.
to the requirements of the purchase order Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	Date

Closed-Loop System

Operating and Maintenance Plan:

During drilling operations, third party service companies will utilize solids control equipment to remove cuttings from the drilling fluids and collect it in haul-off bins. Equipment will be closely monitored at all times while drilling by the derrick man and the service company employees.

Closure Plan:

During drilling operations, third party service companies will haul off drill solids and fluids to an approved disposal facility. At the end of the well, all closed loop equipment will be removed from the location.

Drilling Operations Plan Dr. Ireland Fed Com #111H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM Surface Location: 513' FSL & 311' FWL, Sec. 19 Bottom Hole Location: 240' FNL & 330' FWL, Sec. 19 Elevation Above Sea Level: 3384'

Geologic Name of Surface Formation: First Bone Spring

Type of Well: Horizontal well, No Pilot Hole, Drilled with conventional rotary tools

Proposed Drilling Depth: 14,642' MD / 9868' TVD

Estimated Tops of Geological Markers w/ Mineral Bearing Formation:

	Est	
Formation Name	Тор	Bearing
Rustler	1117	Water
Salado	1453	Barren
Base of Salt	3927	Barren
Bell Canyon	5405	Hydrocarbo n
Brushy Canyon	7423	Hydrocarbo n
Bone Spring Lime	8745	Hydrocarbo n
First Bone Spring Carb	9477	Hydrocarbo n
First Bone Spring Sand	9848	Hydrocarbo n
Second Bone Spring Carb	10034	Hydrocarbo n

OSE Ground Water Estimated Depth: 280'

Casing Program

Name	Hole Size	Casing Size	Wt/Grad e	Thread Collar	Setting Depth	Top Cement
		13-3/8"	54.5# J-			
Surface	17-1/2"	(new)	55	BTC	850	Surface
Intermediat						
e	12-1/4"	9-5/8" (new)	40# J-55	BTC	5400	Surface
			20# P-			
Production	8-3/4"	5-1/2" (new)	110	BTC/TXP	14642	4400

Minimum Safety Factors: Burst: 1.125 Collapse: 1.125 Tension 1.8

Drilling Operations Plan Dr. Ireland Fed Com #111H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM

Name	Туре	Sacks	Yield	Weight	Blend
Surface	Lead	210	1.82	12.8	Class C + Bentonite + 2% CaCL2 + 3% NaCl + LCM
	Tail	720	1.38	14.8	Class C + 5% NaCl + LCM
TOC =	0'	1(00% Exce	ss	Centralizers per Onshore Order 2.III.B.1f
Intermediat e	Lead	1170	2.13	12.6	Class C + Bentonite + 1% CaCL2 + 8% NaCl + LCM
	Tail	620	1.38	14.8	Class C + 5% NaCl + LCM
TOC =	0'	1(0% Exce	SS	2 on btm jt, 1 on 2nd jt, 1 every 4th jt to surface
Production	Lead	580	2.35	11.5	TXI + Fluid Loss + Dispersant + Retarder + LCM
	Tail	1500	1.39	13.2	TXI + Fluid Loss + Dispersant + Retarder + LCM
TOC = 46	500'	3	5% Exces	S	2 on btm jt, 1 on 2nd jt, 1 every other jt to top of tail cement (500' above TOC)

Cementing Program

Pressure Control Equipment:

See Exhibit E-1. A BOP consisting of 3 rams with 2 pipe rams, 1 blind ram and one annular preventer. The BOP will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs.

After setting surface casing and before drilling below the surface casing shoe, a minimum of a 2M BOPE system will be installed and tested to 250 psi low and 2000 psi high with the annular being tested to 250 psi low and 1000 psi high. After setting intermediate casing, a minimum of a 3M system will be installed and tested to 250 psi low and 3000 psi high with the annular being tested to 250 psi low and 2500 psi high.

The operator requests a variance to have the option of running a speed head for setting the intermediate strings. In the case of running a speed head with landing mandrel for 9-5/8" casing, a minimum of a 3M BOPE system will be installed after surface casing is set. BOP test pressures will be 250 psi low and 3000 psi high with the annular being tested to 250 psi low and 2500 psi high before drilling below surface shoe. A diagram of the speed head is attached.

Drilling Operations Plan Dr. Ireland Fed Com #111H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM

Matador Resources requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached (see Exhibit E-2). The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used.

Proposed Mud System:

Name	Hole Size	Mud Weight	Visc	Fluid Loss	Type Mud
Surface	17-1/2"	8.30	28	NC	FW Spud Mud
Intermediat e	12-1/4"	10.00	30-32	NC	Brine Water
Production	8-3/4"	9.00	30-32	NC	FW/Cut Brine

All necessary mud products for weight addition and fluid loss control will be on location at all times. Mud program subject to change due to hole conditions.

The Mud Monitoring System is an electronic Pason system satisfying requirements of Onshore Order 1.

Testing, Logging & Coring Program:

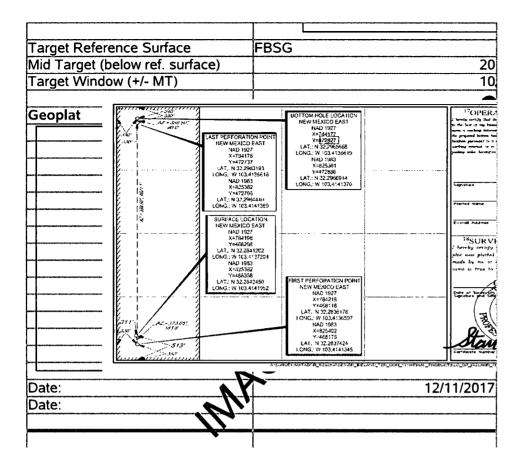
- Mud Logging Program: 2 man unit from 5400 TD
- Electric Logging Program: No electric logs are planned at this time. GR will be collected through the MWD tools from Inter. Csg to TD
- No DSTs or cores are planned at this time
- CBL w/ CCL from as far as gravity will let it fall to TOC

Potential Hazards:

No abnormal pressures or temperatures are expected. In accordance with Onshore Order 6, Matador does not anticipate that there will be enough H_2S from the surface to the Bone Spring formations to meet the BLM's minimum requirements for the submission of an " H_2S Drilling Operation Plan" or "Public Protection Plan" for the drilling and completion of this well. Since we have an H_2S safety package on all wells, attached is an " H_2S Drilling Operations Plan". Adequate flare lines will be installed off the mud/gas separator where gas may be flared safely. All personnel will be familiar with all aspects of safe operation of equipment being used

Estimated BHP: 4500 Estimated BHT: 150°

Construction and Drilling:


Road and location construction will begin after BLM approval of APD. Anticipated spud date as soon as approved. Drilling expected to take 25 days. If production casing is run an additional 30 days will be required to complete and construct surface facilities

	MATAD	OR PRODUC
General		
	Operator	MRC
	Lease	Dr. Ireland
	Well Name	Dr. Ireland Fed (
	PTD (MT + Δ TVD from SHL - BHL)	
	Formation at TD	FBSG
Location		
	SHL	X/Y
······································		Lat/Long
	PP/FTP	X/Y
		Lat/Long
	BHL	X/Y
		Lat/Long
N:		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Rig/KB Elevation - GL	2204	29
levation - KB	3384	
ievalion - ND	3413	
Prognosis		
Toghosis		
ormation Name	SSTVD*	TVD
Z (Rustler)		
Top Salt: Z (Salado)		
Base Salt: Z (G30:CS14-CSB)		
Z(G26: Bell Canyon)		
Z (G7: Brushy Cyn.)	-4010.57	7423
Z(G4: BSGL (CS9))	-5332.28	
Z(L5.3: FBSC)		
Z (L5.1: FBSG)		
Z (L4.3: SBSC)	-6621.75	
Z (L4.1: SBSG)		
Z (L3.3: TBSC)		10707
Z (L3.1: TBSG)		
Z (L2: WFMP A)		11621
Z (X Sand (T))		
Z (X Sand (B))	-8254.12	11667
Z (Y Sand (T))	-8299.91	11712
Z (Y Sand (B))		
Z (WFMP A Fat)		
· · · · · · · · · · · · · · · · · · ·	* values derived from Petre	l Surfaces
Preliminary Targeting		
ormation Name	FBSG	

Top Target	9858	
Mid Target (@ 0 VS)	9868	
Bottom Target	9878	dan and a second s
Reservoir Characteristics		
	Rock Type	Sand
	Gross Thickness	20'
	Est. res. Temp	
	Est. res. pressure	
Well Design		
1st intermediate casing	4000)
2nd intermediate casing	60-70 degrees	
Evaluation		
Mud logs	Yes	
MWD logs	Yes	
Prepared by:	Dan Brugioni	
Approved by:		
		ļ

TION CO. FEDERAL APD	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
om #111H	
Permit Depth (TVD)	
Ferrit Deptir (1VD)	/
784198	468298
784218	468116
784177	472827
	VS AZM
	VS
	Z SAN SIMON UNIT 1 (S STVD) Operator 1 ATES PETROLEUM CORPORATION UNIT 1 (S STVD)
	TD (TVDSS) 10832 0 (t Spud date 06/30/1995
Example Type Log>	CAL NECT A AND A A
	CG1577C12
Bearing/Hazards	
Water/Salt/Washout	
Salt/Washout	
Barren	G5 L Brushy Cyn 1:
Hydrocarbon/Loss Circ	04 B5GL (CS9) (CS9
Hydrocarbon/Loss Circ	L San Andres (CSSMF5) B2 U Avalon Shale L Sa Andres (CSSMF5) B2 U Avalon Shale B2 U Avalon Shale B2 U Avalon Shale D D D D D D D D D D D D D D D D D D D
Hydrocarbon	LG 2' L. Avalon Shale] - 9168 . 9168
Hydrocarbon	
Hydrocarbon	
Hydrocarbon Hydrocarbon	LS.1. F5SG J J LS.1. F5SG Upper
Hydrocarbon	
Hydrocarbon	L2. WHMP A 1 X Sand (1) + 11369 11369 11369 11369 11369
	Y Sand (I)
Hydrocarbon	
Hydrocarbon	
Hydrocarbon	Virtual B C Virtua
Hydrocarbon	

TION Co. FEDERAL APD WELL PROGNOSIS

100 50	
180.50 4529.01	
Image: Space data 05/001995 491	
	;
	, er & all & date -
	, , ,
→ → → → → → → → → → → → → → → → → → →	
Human Hard Human H	
The second secon	

.

K				
TOR CERTIFICATION				
e optimization contracted density is true and complete regio and brief, and that this organization other a concerned organizations in the land variables				
incutions or have a right to detil the wall of then				
e industary grading apresident or a competitory external by the distance				
Ditte				

YOR CERTIFICATION that the well focation theorem on that				
from field notes of actual surveys under my supervision, and that the	*************************			
the best of my belief.				
19×07/3917				
AN OF LIGHT				
(19642))5				
LIJSPA				
W. aloyd	**************************************			
5_COM_11111,00% 016/017 4 15 52 PM scatar				
<u> </u>				
ver. 1				

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Submission Date: 02/26/2018

II g

APD ID: 10400026077

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FEDERAL

Well Type: OIL WELL

Well Number: 111H Well Work Type: Drill Highlighted data Edosia da most Lacari elemente

SUPO Data Report

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_24_S_20180214143927.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_25_S_20180214143928.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_34_S_20180214143930.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_36_S_20180214143932.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_33_S_20180214143929.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_35_S_20180214143930.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_35_S_20180214143930.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_35_S_20180214155448.PDF Project_Area_APD_Layout_20180226_20180226113553.jpg **Existing Road Purpose:** ACCESS,FLUID TRANSPORT **Ro**

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? YES Existing Road Improvement Description: Caliche cap Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Project_Area_APD_Layout_20180226_20180226113622.jpg

Feet

New road type: LOCAL

Length: 458.23

Max slope (%): 0

Width (ft.): 30 Max grade (%): 1

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 14

Operator Name: MATADOR PRODe _ ION COMPANY

Well Name: DR IRELAND FEDERAL

Well Number: 111H

New road access erosion control: Crowned and ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: No drainages present

Road Drainage Control Structures (DCS) description: Ditches on either side of road

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

map_of_existing_wells_section_19_20180213161634.JPG

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description:

FION COMPANY Operator Name: MATADOR PRC. Well Name: DR IRELAND FEDERAL Well Number: 111H **Production Facilities map:** Location Layout 20180226171042.pdf 44924p01_Facility_Layout_S1_20180226_20180226171232.jpg Section 5 - Location and Types of Water Supply Water Source Table Water source use type: DUST CONTROL, Water source type: RECYCLED INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE CASING **Describe type:** Source longitude: Source latitude: Source datum: Water source permit type: PRIVATE CONTRACT Source land ownership: PRIVATE Water source transport method: TRUCKING Source transportation land ownership: PRIVATE Water source volume (barrels): 180000 Source volume (acre-feet): 23.200758 Source volume (gal): 7560000 Water source and transportation map: Dr._Ireland_Water_Information_20180213161731.jpg Water source comments: New water well? NO New Water Well Info Well latitude: Well Longitude: Well datum: Well target aquifer: Est. depth to top of aquifer(ft): Est thickness of aquifer: Aquifer comments: Aquifer documentation: Well depth (ft): Well casing type: Well casing outside diameter (in.): Well casing inside diameter (in.): New water well casing? Used casing source: **Drilling method: Drill material:** Grout material: Grout depth: Casing length (ft.): Casing top depth (ft.):

Operator Name: MATADOR PROD. _ . ION COMPANY

Well Name: DR IRELAND FEDERAL

Well Number: 111H

Well Production type:

Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Caliche from BLM approved source.

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY Disposal type description:

Disposal location description: Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? NO

Description of cuttings location

Well Name: DR IRELAND FEDERAL

Well Number: 111H

Cuttings area length (ft.)

Cuttings area depth (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Cuttings area depth (n.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

Location_Layout_20180214145129.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: DR IRELAND FEDERAL

Multiple Well Pad Number: 1

Recontouring attachment:

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance (acres): 5.72	Well pad interim reclamation (acres): 1.58	Well pad long term disturbance (acres): 4.14
Road proposed disturbance (acres): 0.32	Road interim reclamation (acres): 0.17	Road long term disturbance (acres):
Powerline proposed disturbance	Powerline interim reclamation (acres):	Powerline long term disturbance
(acres): 0 Pipeline proposed disturbance	Pipeline interim reclamation (acres): 0	(acres): 0 Pipeline long term disturbance
(acres): 0 Other proposed disturbance (acres): (Other interim reclamation (acres): 0	(acres): 0 Other long term disturbance (acres): 0
Total proposed disturbance: 6.04	Total interim reclamation: 1.75	Total long term disturbance: 4.29

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the last well on the pad. Disturbed areas will be contoured to match pre-construction grades. Once the last well is plugged, then the rest of the pad

Well Name: DR IRELAND FEDERAL

will be similarly reclaimed within 6 months of plugging.

Topsoil redistribution: Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements. **Soil treatment:** None planned.

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Existing Vegetation Community at the road attachment: Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed	Table	ļ

 Seed type:
 Seed source:

 Seed name:
 Source name:

 Source name:
 Source address:

 Source phone:
 Seed cultivar:

 Seed use location:
 Seed cultivar:

<i>(</i>	
Operator Name: MATADOR PRC	(ION COMPANY

Well Number: 111H

Well Name: DR IRELAND FEDERAL

PLS pounds per acre:

 \checkmark

Proposed seeding season:

Seed Summary	Total pounds/Acre:
Seed Type Pounds/Acre	

Seed reclamation attachment:

Operator Contact/Responsible Offic	ial Contact Info
First Name:	Last Name:
Phone:	Email:
Seedbed prep:	
Seed BMP:	
Seed method:	
Existing invasive species? NO	
Existing invasive species treatment description:	
Existing invasive species treatment attachment:	
Weed treatment plan description: To BLM standards	3
Weed treatment plan attachment:	
Monitoring plan description: To BLM standards	
Monitoring plan attachment:	
Success standards: To BLM satisfaction	
Pit closure description: No pit	
Pit closure attachment:	

Section 11 - Surface Ownership

Disturbance type: WELL PAD Describe: Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: Operator Name: MATADOR PRODUCTION COMPANY Well Name: DR IRELAND FEDERAL

Well Number: 111H

NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Disturbance type: EXISTING ACCESS ROAD **Describe:** Surface Owner: PRIVATE OWNERSHIP, STATE GOVERNMENT Other surface owner description: **BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office:** State Local Office: CARLSBAD, NM **Military Local Office: USFWS Local Office: Other Local Office: USFS Region: USFS Forest/Grassland:**

USFS Ranger District:

Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: PRIVATE OWNERSHIP Other surface owner description: **BIA Local Office:**

Operator Name: MATADOR PRC Well Name: DR IRELAND FEDERAL	, FION COMPANY	Well Number: 111H	
BOR Local Office:			
COE Local Office:			
DOD Local Office:			
NPS Local Office:			
State Local Office:			
Military Local Office:			
USFWS Local Office:			
Other Local Office:			
USFS Region:			
USFS Forest/Grassland:		USFS Ranger District:	

Section	12 - Oth	er Inforn	nation
	• <u> </u>		

Right of Way needed? NO ROW Type(s):

Use APD as ROW?

ROW Applications

SUPO Additional Information:

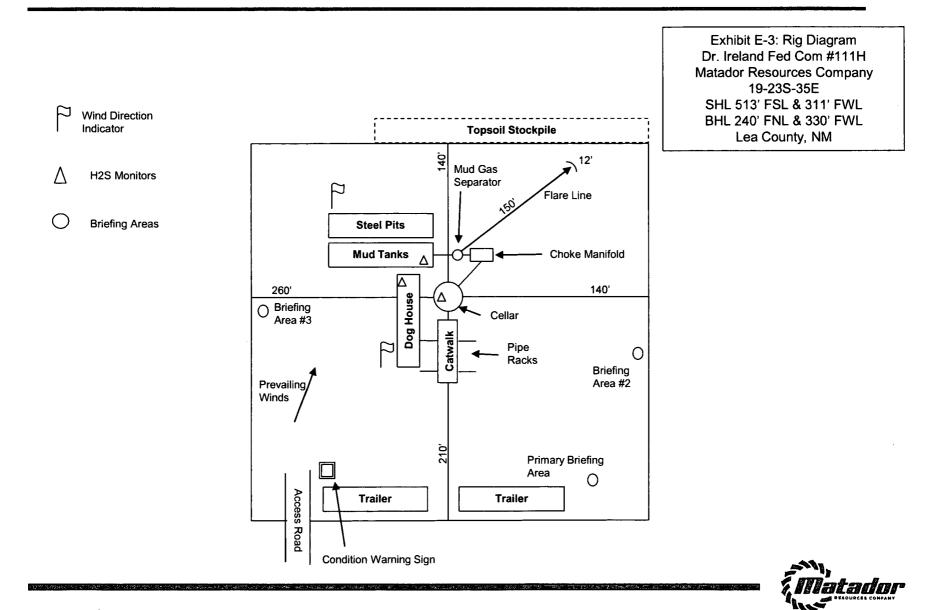
Use a previously conducted onsite? YES

Previous Onsite information: Onsite conducted for four slots and water tank with Vance Wolf on 10/5/2017.

Other SUPO Attachment

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General


Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO **Produced Water Disposal (PWD) Location: PWD surface owner:** Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

PWD disturbance (acres):

Rig Diagram

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type: Injection well number: Assigned injection well API number? Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: Underground Injection Control (UIC) Permit? UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Injection well name:

Injection well API number:

.

.

PWD disturbance (acres):

PWD disturbance (acres):

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001079

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Bc...d Info Data Report

.

/18/2018

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: