HOBBS OCD			
Form 3160-3 (March 2012) AUG 1 6 2018 UNITED STATES	Irlsbad Field O OCD Hobbs	FORM OMB 1 Expires 0	APPROVED No. 1004-0137 October 31, 2014
RECENTED OF THE INT BUREAU OF LAND MANAG	CRIOK OFFR	NMNM113422 <	
APPLICATION FOR PERMIT TO DR	ILL OR REENTER	6. If Indian, Allotee	or Tribe Name
a. Type of work: DRILL REENTER		7 If Unit or CA Age	cement, Name and No.
lb. Type of Well: 🖌 Oil Well 🔲 Gas Well 🛄 Other	Single Zone Multiple Zone	8. Lease Name and DRIRELAND FED	Well No. 3222 COM 211H
2. Name of Operator MATADOR PRODUCTION COMPANY	228937	9. APÌ Wèlt No. 30-025	45144
	Phone No. (include area code) 72)371-5200	10. Field and Pool, or WOLFCAMP	Exploratory 997242
A. Location of Well (Report location clearly and in accordance with any Sta At surface LOT 4 / 511 FSL / 341 FWL / LAT 32.2842387 / L	LONG -103.4140984	11. Sec., T. R. M. or E SEC 19 / T23S / R	STR. and Survey or Area 35E / NMP
At proposed prod. zone LOT 1 / 240 FNL / 990 FWL / LAT 32.2 4. Distance in miles and direction from nearest town or post office*	29009/5/LUNG-103,4120012	12. County or Parish LEA	13. State NM
location to nearest 241 foot	57.44 157.34	ng Unit dedicated to this	
8. Distance from proposed location* to nearest well, drilling, completed, 30 feet		BIA Bond No. on file MB001079	
	Approximate date work will start* 2/01/2018	23. Estimated duratio 35 days	n
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest System Land SUPO must be filed with the appropriate Forest Service Office). 	 Bond to cover the operativities the second se		. .
25. Signature (Electronic Submission)	Name (Printed Typed) Lara Thompson / Ph: (505)254-1	115	Date 02/26/2018
itle Assistant Project Manager			
(Electronic Submission)	Name (Printed/Typed) Cody Layton / Ph: (575)234-5959		Date 07/06/2018
itle Assistant Field Manager Lands & Minerals application approval does not warrant or certify that the applicant holds leg onduct operations thereon. Conditions of approval, if any, are attached.	Office CARLSBAD gal or equitable title to those rights in the su	bject lease which would e	entitle the applicant to
	for any person knowingly and willfully to y matter within its jurisdiction.	nake to any department of	or agency of the United

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2:48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: LOT 4 / 511 FSL / 341 FWL / TWSP: 23S / RANGE: 35E / SECTION: 19 / LAT: 32.2842387 / LONG: -103.4140984 (TVD: 0 feet, MD: 0 feet) PPP: LOT 4 / 330 FSL / 990 FWL / TWSP: 23S / RANGE: 35E / SECTION: 19 / LAT: 32.2837453 / LONG: -103.41 (999 (TVD: 11720 feet, MD: 12142 feet) BHL: LOT 1 / 240 FNL / 990 FWL / TWSP: 23S / RANGE: 25E / SECTION: 19 / LAT: 32.2966975 / LONG: -103.4120012 (TVD: 11720 feet, MD: 16495 feet)

BLM Point of Contact

Name: Judith Yeager Title: Legal Instruments Examiner Phone: 5752345936 Email: jyeager@blm.gov

۰.

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior. Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Lara Thompson

Signed on: 04/25/2018

Title: Assistant Project Manager

Street Address: 5647 Jefferson Street NE

State: NM

State:

City: Albuquerque

Zip: 87109

Phone: (505)254-1115

Email address: Lara.Thompson@swca.com

Field Representative

Representative Name:

Street Address:

City:

Phone:

Email address:

Zip:

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT **Application Data Report**

07/19/2018

APD ID: 10400026236

Operator Name: MATADOR PRODUCTION COMPANY

Submission Date: 02/26/2018

WALLEINS DE RELAND FRD OOM

Well Type: OIL WELL

Nell Work Type: Drill

Well Number: 211H

Holdighied dula Telecto the most Tecnit atenioes

Show Final Text

Section 1 - General APD ID: 10400026236 **Tie to previous NOS?** Submission Date: 02/26/2018 BLM Office: CARLSBAD **User:** Lara Thompson Title: Assistant Project Manager Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED Lease Acres: 557.44 Lease number: NMNM113422 Allotted? Surface access agreement in place? **Reservation:** Federal or Indian agreement: Agreement in place? NO Agreement number: Agreement name: Keep application confidential? YES **Permitting Agent? YES** APD Operator: MATADOR PRODUCTION COMPANY **Operator letter of designation: Operator Info Operator Organization Name: MATADOR PRODUCTION COMPANY** Operator Address: 5400 LBJ Freeway, Suite 1500 Zip: 75240 **Operator PO Box:** State: TX **Operator City: Dallas** Operator Phone: (972)371-5200

Operator Internet Address: amonroe@matadorresources.com

Section 2 - Well Information

Well in Master Development Plan? NO

Well in Master SUPO? NO

Well in Master Drilling Plan? NO

MATHRATICS DR IRELAND FED COM

Field/Pool or Exploratory? Field and Pool

Field Name: WOLFCAMP F

Mater Development Plan name:

Master Drilling Plan name:

Master SUPO name:

Well Number: 211H

Pool Name:

Well API Number:

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Operator Name: MATADOR PRODUCTION COMPANY

Well Normer OF IRELAND FIED COM

Describe other minerals: Is the proposed well in a Helium production area? N Use Existing Well Pad? NO New surface disturbance? Type of Well Pad: MULTIPLE WELL Multiple Well Pad Name: DR Number: 4 **IRELAND FEDERAL** Well Class: HORIZONTAL Number of Legs: 1 Well Work Type: Drill Well Type: OIL WELL Describe Well Type: Well sub-Type: APPRAISAL **Describe sub-type:** Distance to lease line: 341 FT Distance to town: Distance to nearest well: 30 FT Reservoir well spacing assigned acres Measurement: 157.34 Acres Well plat: BO_DR_IRELAND_FED_COM_SLOT_1_SURFACE_PAD_SITE_S_20180214161045.pdf CD_DR_IRELAND_FED_COM_SLOT_1_SURFACE_PAD_PRO_S_20180214161046.pdf 1Mile_Radius_Map_20180214161211.docx DrlrelandFederal211H_signed_20180425102953.pdf Well work start Date: 12/01/2018 **Duration: 35 DAYS**

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Well Number: 211H

Survey number:

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	QW	DVT
SHL Leg #1	511	FSL	341	FWL	23S	35E	19	Lot 4	32.28423 87	- 103.4140 984	LEA		NEW MEXI CO	F	NMNM 113422		0	0
KOP Leg #1	511	FSL	341	FWL	23S	35E	19	Lot 4	32.28423 87	- 103.4140 984	LEA		NEW MEXI CO	F	NMNM 113422	243 4	950	950

Operator Name: MATADOR PRODUCTION COMPANY

Well Number: 211H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
PPP Leg #1	330	FSL	990	FWL	23S	35E	19	Lot 4	32.28374 53	- 103.4119 99	LEA	NEW MEXI CO		F	NMNM 113422	- 833 6	121 42	117 20
EXIT Leg #1	330	FNL	990	FWL	235	35E	19	Lot 1	32.29645 01	- 103.4120 011	LEA	MEXI	NEW MEXI CO	F	NMNM 113422	- 833 6	164 05	117 20
BHL Leg #1	240	FNL	990	FWL	23S	25E	19	Lot 1	32.29669 75	- 103.4120 012	LEA	NEW MEXI CO		F	NMNM 113422	- 833 6	164 95	117 20

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

APD ID: 10400026236

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FED COM

Well Number: 211H

Submission Date: 02/26/2018

rigingnas cas Riches ha most iccent dranges

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	1			Producing
L ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	RUSTLER	3384	1117	1117		USEABLE WATER	No
2	SALADO	1931	1453	1453	······································	NONE	No
3	BASE OF SALT	-543	3927	3927	· · ·	NONE	No
4	BELL CANYON	-2021	5405	5405		NATURAL GAS,OIL	No
5	BRUSHY CANYON	-4039	7423	7423	<u></u>	NATURAL GAS,OIL	No
6	BONE SPRING LIME	-5361	8745	8745		NATURAL GAS,OIL	No
7	BONE SPRING 1ST	-6093	9477	9477		NATURAL GAS,OIL	No
8	BONE SPRING 2ND	-6650	10034	10034		NATURAL GAS,OIL	Yes
9	BONE SPRING 3RD	-7323	10707	10707		NATURAL GAS,OIL	No
10	WOLFCAMP	-8237	11621	11621		NATURAL GAS,OIL	No

Section 2 - Blowout Prevention

Pressure Rating (PSI): 2M

Rating Depth: 15000

Equipment: Pressure Control Equipment: See Exhibit E-1. A BOP consisting of 3 rams with 2 pipe rams, 1 blind ram and one annular preventer. The BOP will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs. **Requesting Variance?** YES

Variance request: The operator requests a variance to have the option of running a speed head for setting the intermediate #1 and #2 strings. In the case of running a speed head with landing mandrel for 9-5/8" casing, a minimum of a 3M BOPE system will be installed after surface casing is set. Matador Resources requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached (see Exhibit E-2). The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FED COM

Well Number: 211H

be used.

Testing Procedure: BOP test pressures will be 250 psi low and 3000 psi high with the annular being tested to 250 psi low and 2500 psi high before drilling below surface shoe. A diagram of the speed head is attached.

Choke Diagram Attachment:

Choke_Manifold_20180117105939.pdf

BOP Diagram Attachment:

BOP_297_001_20180117105959.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	850	0	850			850	J-55		OTHER - BTC	1.12 5	1.12 5	BUOY	1.8	BUOY	1.8
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	5400	0	5384			5400	J-55		OTHER - BTC	1.12 5	1.12 5	BUOY	1.8	BUOY	1.8
	PRODUCTI ON	6.12 5	5.5	NEW	NON API	Y	11600	11000	11528	10966			600	P- 110		OTHER - BTC/TXP		1.12 5	BUOY	1.8	BUOY	1.8
	INTERMED IATE	8.75	7.625	NEW	NON API	Υ.	4400	11100	4388	11065			6700	P- 110		OTHER - VAM HTF- NR	1.12 5	1.12 5	BUOY	1.8	BUOY	1.8
	INTERMED IATE	8.75	7.625	NEW	API	Y	4400	11975	4388	11705			7575	P- 110		OTHER - BTC	1.12 5	1.12 5	BUOY	1.8	BUOY	1.8
	INTERMED IATE	8.75	7.0	NEW	API	Y	4400	11975	4388	11705			7575	Р- 110		OTHER - BTC	1.12 5	1.12 5	BUOY	1.8	BUOY	1.8
7	PRODUCTI ON	6.12 5	4.5	NEW	NON API	Y	11600	11649 5	11528	11720			10489 5	P- 110		OTHER - BTC/TXP	1.12 5	1.12 5	BUOY	1.8	BUOY	1.8

Casing Attachments

Well Number: 211H

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_4_string_20180214114506.pdf

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

BLM_Casing_Design_Assumptions_4_string_20180209133532.pdf

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_4_string_20180214114517.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

TenarisHydril_TenarisXP_BTC_5.500_20_20180209133850.pdf

Tapered String Spec:

BLM_Casing_Design_Assumptions_4_string_20180209133911.pdf

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_4_string_20180214114607.pdf

Well Number: 211H

Casing Attachments

Casing ID: 4 String Type:INTERMEDIATE

Inspection Document:

Spec Document:

VRCC_16_1177__CDS__7.625_in_29.70_ppf_P110_EC_VAM__HTF_NR_Rev02_20180206124340.pdf

Tapered String Spec:

BLM_Casing_Design_Assumptions_4_string_20180206124403.pdf

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_4_string_20180206124420.pdf

Casing ID: 5 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

BLM_Casing_Design_Assumptions_4_string_20180209133232.pdf

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_4_string_20180214114711.pdf

Casing ID: 6 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

BLM_Casing_Design_Assumptions_4_string_20180206123921.pdf

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_4_string_20180206124207.pdf

Casing Attachments

Casing ID: 7 String Type: PRODUCTION

Inspection Document:

Spec Document:

TenarisHydril_TenarisXP_BTC_4.500_13_20180209134429.pdf

Tapered String Spec:

BLM_Casing_Design_Assumptions_4_string_20180209134438.pdf

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_4_string_20180214114701.pdf

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	850	200	1.82	12.8	364	100	Class C	Bentonite + 2% CaCL2 + 3% NaCl + LCM
SURFACE	Tail		0	850	720	1.38	14.8	993.6	100	Class C	5% NaCl + LCM
INTERMEDIATE	Lead		4400	4400	475	2.36	11.5	1121	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		4400	4400	320	1.38	13.2	441.6	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		4400	4400	475	2.36	11.5	1121	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		4400	4400	320	1.38	13.2	441.6	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		0	5400	1020	2.13	12.6	2172. 6	100	Class C	Bentonite + 1% CaCL2 + 8% NaCl + LCM
INTERMEDIATE	Tail		0	5400	540	1.38	14.8	745.2	100	Class C	Bentonite + 1% CaCL2 + 8% NaCl + LCM
INTERMEDIATE	Lead		0	5400	1020	2.13	12.6	2172. 6	100	Class C	Bentonite + 1% CaCL2 + 8% NaCl + LCM
INTERMEDIATE	Tail		0	5400	540	1.38	14.8	745	100	Class C	5% NaCl + LCM
PRODUCTION	Lead		1160 0	1649 5	530	1.17	15.8	620.1	25	Class H	Dispersant + Retarder + LCM

Operator Name: MATADOR PRODUCTION COMPANY Well Name: DR IRELAND FED COM

Well Number: 211H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Tail		1160 0	1649 5	530	1.17	15.8	620.1	25	Class H	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Lead		1160 0	1649 5	530	1.17	15.8	620.1	25	Class H	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Tail		1160 0	1649 5	530	1.17	15.8	620.1	25	Class H	Fluid Loss + Dispersant + Retarder + LCM

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary mud products for weight addition and fluid loss control will be on location at all times. Mud program subject to change due to hole conditions.

Describe the mud monitoring system utilized: The Mud Monitoring System is an electronic Pason system satisfying requirements of Onshore Order 1. Mud Logging Program: 2 man unit from 5400 – TD.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0.	850	SPUD MUD	8.3	8.3							
4388	1170 5	OTHER : FW/Cut Brine	12.5	12.5							
0	5384	SALT SATURATED	10	10							

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FED COM

Well Number: 211H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures: See page 3 of Drilling Plan attached in Other Facets, Section 8.

List of open and cased hole logs run in the well:

CBL,GR,MUDLOG

Coring operation description for the well:

No DSTs or cores are planned at this time

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6450

Anticipated Surface Pressure: 3871.6

Anticipated Bottom Hole Temperature(F): 180

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

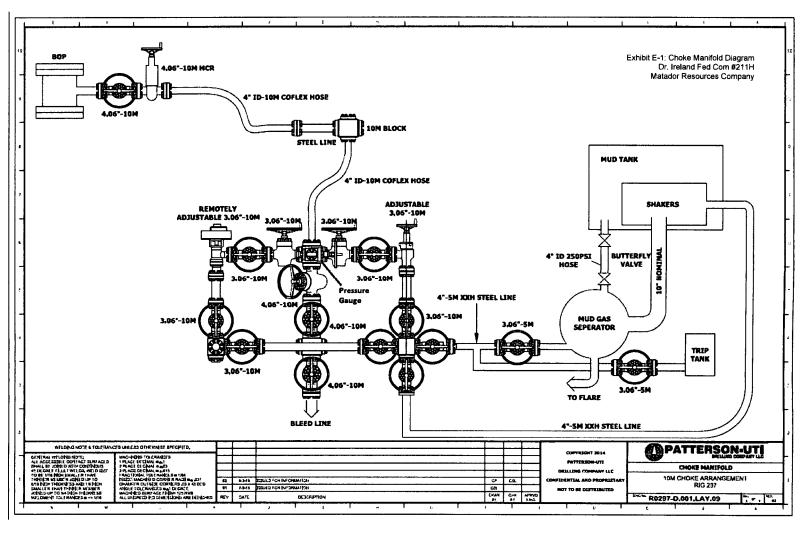
Hydrogen Sulfide drilling operations plan required? YES

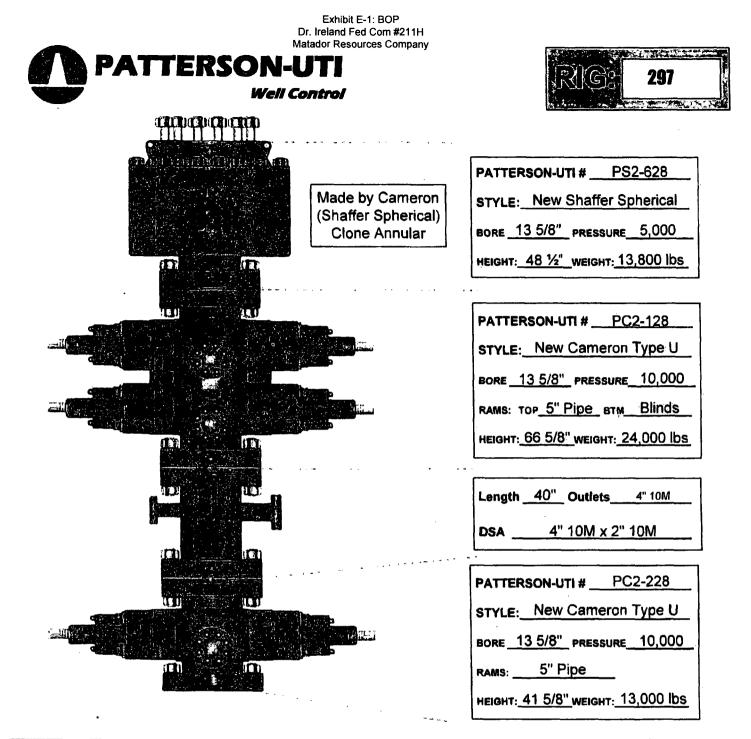
Hydrogen sulfide drilling operations plan:

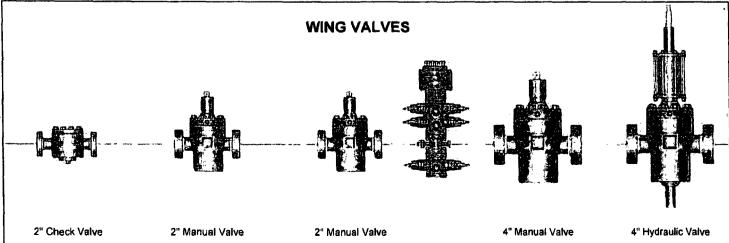
Matador_Hydrogen_Sulfide_Drilling_20180214161421.docx H2S_Emergency_Contacts_20180529152352.docx

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:


Dr._Ireland_Fed_Com__211H___Well_Plan_v1_20180118092100.pdf


Other proposed operations facets description:


Other proposed operations facets attachment:

Dr._ireland_Fed_Com__211H_MTDR_Drlg_Plan_20180118092201.docx 4_string_Speed_Head_20180118092224.pdf 297Co_Flex_Certs__Dr._ireland_Fed_Com__211H_20180118092236.pdf Close_Loop_System_20180118092248.docx Gas_Capture_Plan__Dr._ireland_211H__212H__213H__214H_20180529152424.docx

Other Variance attachment:

Issued on: 12 Janv. 2017 by T. DELBOSCO

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B

VRCC 16-1177 Rev02 for Houston Field Service

OD	Weight	Wall Th.	Grade	API Drift	Connection
05	Weight		Grade		connection
7 5/8 in.	29.70 lb/ft	0.375 in.	P110 EC	6.750 in.	VAM® HTF NR

PIPE PROPERT	IES
Nominal OD	7.625 in.
Nominal ID	6.875 in.
Nominal Cross Section Area	8.541 sqin.
Grade Type	Enhanced API
Min. Yield Strength	125 ksi
Max. Yield Strength	140 ksi
Min. Ultimate Tensile Strength	135 ksi
Tensile Yield Strength	1 068 klb
Internal Yield Pressure	10 760 psi
Collapse pressure	7 360 psi

CONNECTION PERFO	RMANCES
Tensile Yield Strength	619 klb
Compression Resistance	778 klb
Compression with Sealability	372 klb
Internal Yield Pressure	10 760 psi
External Pressure Resistance	7 360 psi
Max. Bending	44 °/100ft
Max. Bending with Sealability	17 °/100ft

CONNECTION PRO	PERTIES
Connection Type	Premium Integral Flush
Connection OD (nom)	7.701 in.
Connection ID (nom)	6.782 in.
Make-Up Loss	4.657 in.
Critical Cross Section	4.971 sqin.
Tension Efficiency	58 % of pipe
Compression Efficiency	72.7 % of pipe
Compression Efficiency with Sealability	34.8 % of pipe
Internal Pressure Efficiency	100 % of pipe
External Pressure Efficiency	100 % of pipe

TORQUE VALUES	
Min. Make-up torque	9 600 ft.lb
Opti. Make-up torque	11 300 ft.lb
Max. Make-up torque	13 000 ft.lb
Max. Torque with Sealability	58 500 ft.lb
Max. Torsional Value	73 000 ft.lb

VAM[●] HTF™ (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM® Specialists available worldwide 24/7 for Rig Site Assistance Other Connection Data Sheets are available at www.vamservices.com

For the latest performance data, always visit our website: www.tenaris.com

February 02 2017

Connection: TenarisXP® BTC Casing/Tubing: CAS Coupling Option: REGULAR

Size: 5.500 in. Wall: 0.361 in. Weight: 20.00 lbs/ft Grade: P110-IC Min. Wall Thickness: 87.5 %

		PIPE BODY	' DATA						
	GEOMETRY								
Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.				
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A				
Plain End Weight	19.83 lbs/ft								
PERFORMANCE									
Body Yield Strength	641 x 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi				
Collapse	12100 psi								
TENARISXP® BTC CONNECTION DATA									
	GEOMETRY								
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.				
Critical Section Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.				
PERFORMANCE									
Tension Efficiency	100 %	Joint Yield Strength	641 x 1000 lbs	Internal Pressure Capacity ^(<u>1</u>)	12630 psi				
Structural Compression Efficiency	100 %	Structural Compression Strength	641 x 1000 Ibs	Structural Bending ^(<u>2</u>)	92 %100 ft				
External Pressure Capacity	12100 psi								
	E	STIMATED MAKE-U	JP TORQUES	3)					
Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lb				
OPERATIONAL LIMIT TORQUES									
Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs						
		BLANKING DIN	TENSIONS						
		Blanking Din	nensions						

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per

DS-TenarisHydril TenarisXP BTC-5.500-20.000-i

section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread

compounds please contact us at licensees@oilfield.tenaris.com. Torque values may be further reviewed.

For additional information, please contact us at contact-tenarishydril@tenaris.com

•

For the latest performance data, always visit our website: www.tenaris.com

February 02 2017

Connection: TenarisXP® BTC **Casing/Tubing**: CAS **Coupling Option**: REGULAR

Size: 4.500 in. Wall: 0.290 in. Weight: 13.50 lbs/ft Grade: P110-ICY Min. Wall Thickness: 87.5 %

	PIPE BODY DATA								
		GEOMETRY							
	Nominal OD	4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.			
	Nominal ID	3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A			
J.	Plain End Weight	13.05 lbs/ft							
	PERFORMANCE								
	Body Yield Strength	479 x 1000 lbs	Internal Yield	14100 psi	SMYS	125000 psi			
	Collapse	11620 psi							
	TENARISXP® BTC CONNECTION DATA								
			GEOMET	RY					
	Connection OD	5.000 in.	Coupling Length	9.075 in.	Connection ID	3.908 in.			
	Critical Section Area	3.836 sq. in.	Threads per in.	5.00	Make-Up Loss	4.016 in.			
	PERFORMANCE								
	Tension Efficiency	100 %	Joint Yield Strength	479 x 1000 lbs	Internal Pressure Capacity ^(<u>1</u>)	14100 psi			
	Structural Compression Efficiency	100 %	Structural Compression Strength	479 x 1000 Ibs	Structural Bending ^(<u>2</u>)	127 °/100 ft			
	External Pressure Capacity	11620 psi							
	ESTIMATED MAKE-UP TORQUES ⁽³⁾								
	Minimum	6950 ft-lbs	Optimum	7720 ft-lbs	Maximum	8490 ft-lbs			
		OPERATIONAL LIMIT TORQUES							
	Operating Torque	10500 ft-lbs	Yield Torque	12200 ft-lbs					
	<u> </u>	BLANKING DIMENSIONS							
	Blanking Dimensions								

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per

DS-TenarisHydril TenarisXP BTC-4.500-13.500-P /

section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread

compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed.

For additional information, please contact us at contact-tenarishydril@tenaris.com

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cèmenting: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DFb=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt≈1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt≈1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DFb=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DFb=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DFb=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Drilling Operations Plan Dr. Ireland Fed Com #211H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM Surface Location: 511' FSL & 341' FWL, Sec. 19 Bottom Hole Location: 240' FNL & 990' FWL, Sec. 19 Elevation Above Sea Level: 3384'

Geologic Name of Surface Formation: Wolfcamp

Type of Well: Horizontal well, No Pilot Hole, Drilled with conventional rotary tools

Proposed Drilling Depth: 16,495' MD / 11,720' TVD

Estimated Tops of Geological Markers w/ Mineral Bearing Formation:

– ., .,	Est	
Formation Name	Тор	Bearing
Rustler	1117	Water
Salado	1453	Barren
Base of Salt	3927	Barren
Bell Canyon	5405	Hydrocarbo n
Brushy Canyon	7423	Hydrocarbo n
Bone Spring Lime	8745	Hydrocarbo n
First Bone Spring Carb	9477	Hydrocarbo n
First Bone Spring Sand	9848	Hydrocarbo n
Second Bone Spring Carb	10034	Hydrocarbo n
Second Bone Spring Sand	10365	Hydrocarbo n
Third Bone Spring Carb	10707	Hydrocarbo n
Third Bone Spring Sand	11200	Hydrocarbo n
Wolfcamp A	11621	Hydrocarbo n
Wolfcamp A Fat	11770	Hydrocarbo n

OSE Ground Water Estimated Depth: 280'

Drilling Operations Plan Dr. Ireland Fed Com #211H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM

•

Casing Program

•

Name	Hole Size	Casing Size	Wt/Grad e	Thread Collar	Setting Depth	Top Cement
		13-3/8"	54.5# J-			
Surface	17-1/2"	(new)	55	BTC	850	Surface
		9-5/8"				
Intermediate	12-1/4"	(new)	40# J-55	BTC	5400	Surface
	0.7/4"	7-5/8"	29.7# P-			
Intermediate 2 Top	8-3/4"	(new)	110	BTC	4400	4400
Intermediate 2	0.7/4"	7-5/8"	29.7# P-	VAM HTF-		
Middle	8-3/4"	(new)	110	NR	11100	4400
Intermediate 2	0.7/4"	7" ("	29# P-			
Bottom	8-3/4"	7" (new)	110	BTC	11975	4400
	6 1/0	5-1/2"	20# P-			
Production Top	6-1/8"	(new)	110	BTC/TXP	11000	11600
	C 1/0	4-1/2"	13.5# P-			
Production Bottom	6-1/8"	(new)	110	BTC/TXP	16495	11600

Minimum Safety Factors: Burst: 1.125

Collapse: 1.125

Tension 1.8

Cementing Program

Name	Туре	Sacks	Yield	Weight	Blend
					Class C + Bentonite + 2% CaCL2 + 3% NaCl
Surface	Lead	200	1.82	12.8	+ LCM
	Tail	700	1.38	14.8	Class C + 5% NaCl + LCM
TOC = 0'		1(00% Exce	ss	Centralizers per Onshore Order 2.III.B.1f
					Class C + Bentonite + 1% CaCL2 + 8% NaCl
Intermediate	Lead	1020	2.13	12.6	+ LCM
	Tail	540	1.38	14.8	Class C + 5% NaCl + LCM
					2 on btm jt, 1 on 2nd jt, 1 every 4th jt to
TOC = 0'		10	00% Exce	ss	surface
					TXI + Fluid Loss + Dispersant + Retarder +
Intermediate 2	Lead	475	2.36	11.5	LCM
					TXI + Fluid Loss + Dispersant + Retarder +
	Tail	320	1.38	13.2	LCM
					2 on btm jt, 1 on 2nd jt, 1 every 4th jt to top
TOC = 440	0'	7	5% Exces	s	of tail cement (500' above TOC)
Production	Tail	530	1.17	15.8	Class H + Fluid Loss + Dispersant +

Drilling Operations Plan Dr. Ireland Fed Com #211H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM

· · · · · · · · · · · · · · · · · · ·	:	Retarder + LCM
TOC = 11600'	25% Excess	2 on btm jt, 1 on 2nd jt, 1 every other jt to top of curve

Pressure Control Equipment:

See Exhibit E-1. A BOP consisting of 3 rams with 2 pipe rams, 1 blind ram and one annular preventer. The BOP will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs.

After setting surface casing and before drilling below the surface casing shoe, a minimum of a 2M BOPE system will be installed and tested to 250 psi low and 2000 psi high with the annular being tested to 250 psi low and 1000 psi high. After setting intermediate #1 casing, a minimum of a 3M system will be installed and tested to 250 psi low and 3000 psi high with the annular being tested to 250 psi low and 2500 psi high. After setting intermediate #2 casing, a minimum of a 5M system will be installed and tested to 250 psi low and 5000 psi high with the annular being tested to 250 psi low and 2500 psi high. After setting intermediate #2 casing, a minimum of a 5M system will be installed and tested to 250 psi low and 5000 psi high with the annular being tested to 250 psi low and psi high.

The operator requests a variance to have the option of running a speed head for setting the intermediate #1 and #2 strings. In the case of running a speed head with landing mandrel for 9-5/8" and 7" casing, a minimum of a 3M BOPE system will be installed after surface casing is set. BOP test pressures will be 250 psi low and 3000 psi high with the annular being tested to 250 psi low and 2500 psi high before drilling below surface shoe. After 7" casing is set in the speed head, the BOP will then be lifted to install another casing head section for the setting of the production string. We will nipple the casing head and BOP back up and a minimum of a 5M BOPE system will be installed. The pressure tests will be made to 250 psi low and 5000 psi high and the annular will be tested to 250 psi low and 2500 psi high. A diagram of the speed head is attached.

Matador Resources requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached (see Exhibit E-2). The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used.

Name	Hole Size	Mud Weight	Visc	Fluid Loss	Type Mud
Surface	17-1/2"	8.30	28	NC	FW Spud Mud

Proposed Mud System:

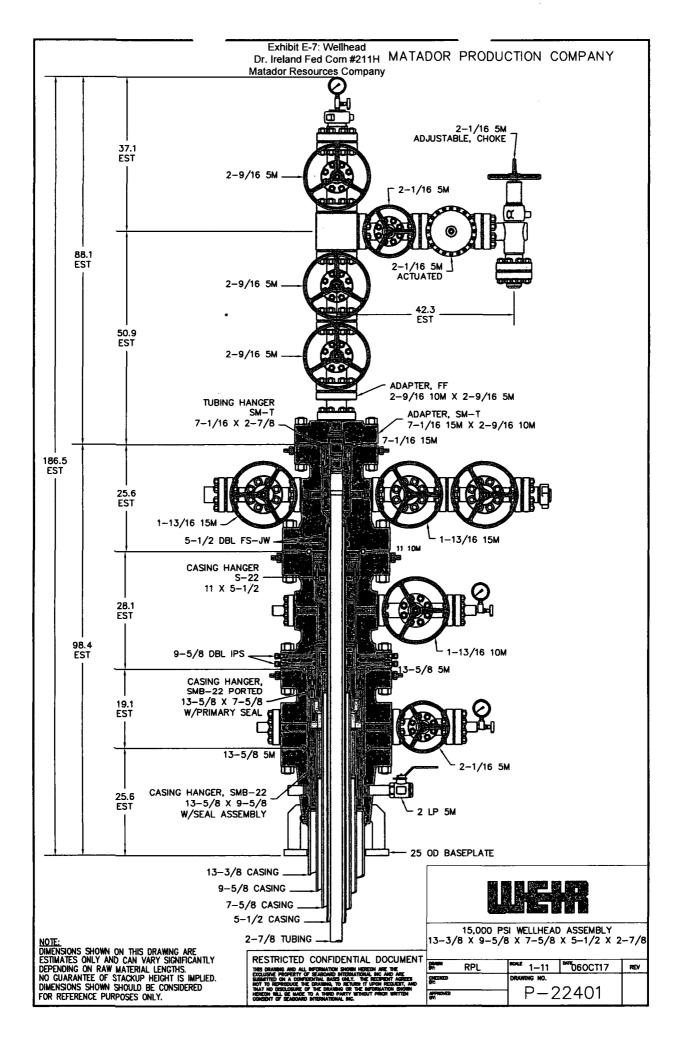
Drilling Operations Plan Dr. Ireland Fed Com #211H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM 30-32 NC Brine Water Intermediate 12-1/4" 10.00 Intermediate 8-3/4" 9.00 30-32 NC FW/Cut Brine 2 12.50 50-60 <10 Production 6-1/8" OBM

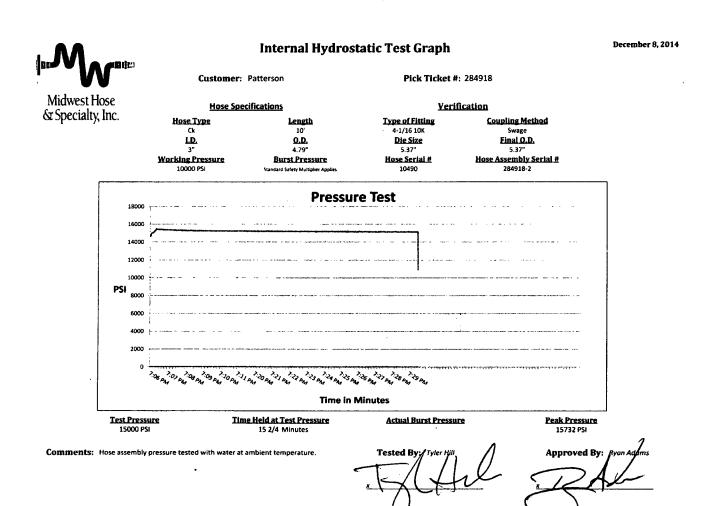
All necessary mud products for weight addition and fluid loss control will be on location at all times. Mud program subject to change due to hole conditions.

The Mud Monitoring System is an electronic Pason system satisfying requirements of Onshore Order 1.

Testing, Logging & Coring Program:

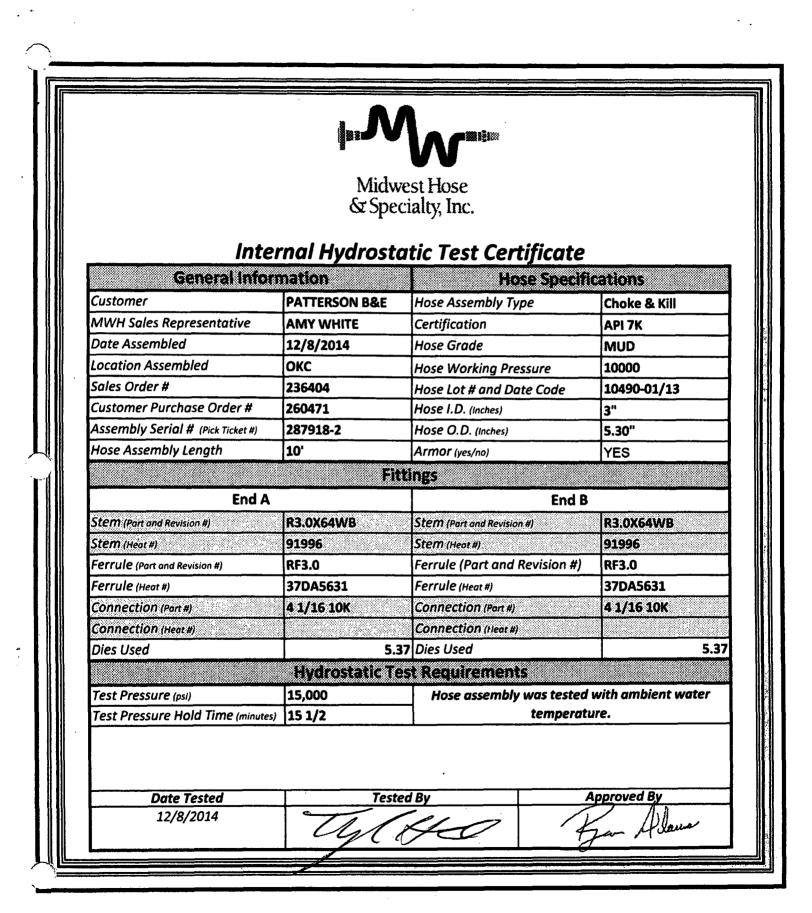
- Mud Logging Program: 2 man unit from 5400 TD
- Electric Logging Program: No electric logs are planned at this time. GR will be collected through the MWD tools from Inter. Csg to TD
- No DSTs or cores are planned at this time
- CBL w/ CCL from as far as gravity will let it fall to TOC


Potential Hazards:


No abnormal pressures or temperatures are expected. In accordance with Onshore Order 6, Matador does not anticipate that there will be enough H_2S from the surface to the Bone Spring formations to meet the BLM's minimum requirements for the submission of an " H_2S Drilling Operation Plan" or "Public Protection Plan" for the drilling and completion of this well. Since we have an H_2S safety package on all wells, attached is an " H_2S Drilling Operations Plan". Adequate flare lines will be installed off the mud/gas separator where gas may be flared safely. All personnel will be familiar with all aspects of safe operation of equipment being used

Estimated BHP: 6450 Estimated BHT: 180°

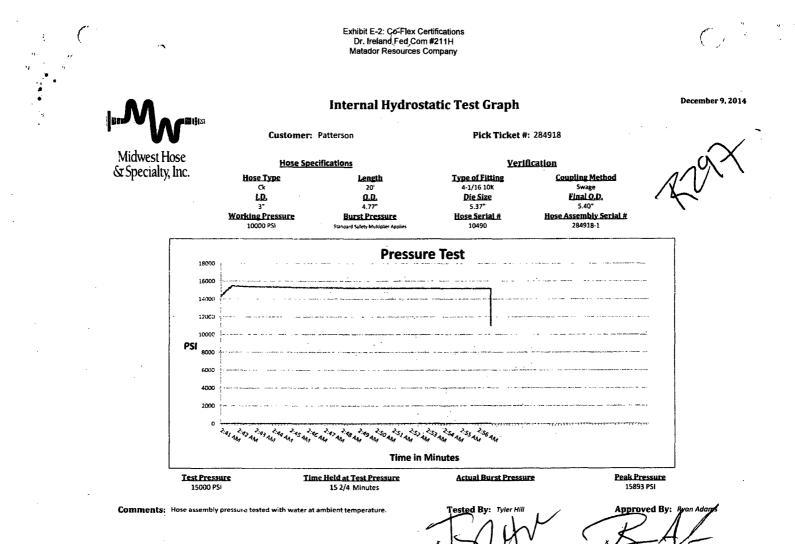
Construction and Drilling:

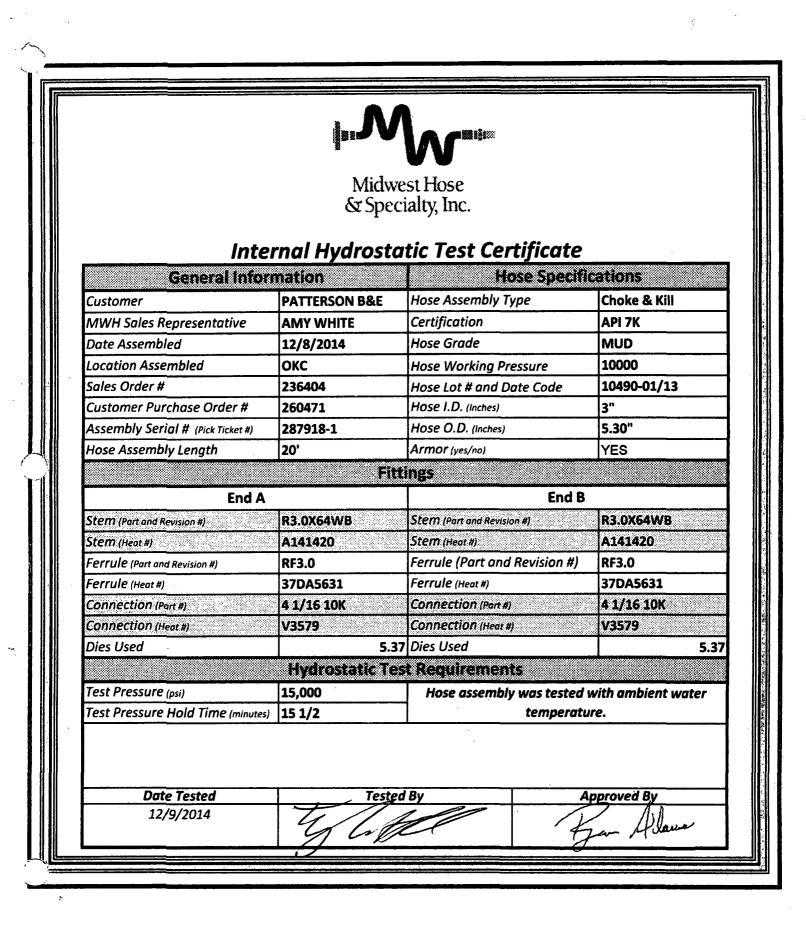

Road and location construction will begin after BLM approval of APD. Anticipated spud date as soon as approved. Drilling expected to take 35 days. If production casing is run an additional 30 days will be required to complete and construct surface facilities

(

···· (.

.


Ţ


ь.

.

.

		lwest Hose	
		pecialty, Inc.	
	Certificate	e of Conformity	
Customer: PATTERSON	3&E	Customer P.O.# 260471	
Sales Order # 236404		Date Assembled: 12/8/2014	
	Spec	cifications	
Hose Assembly Type:	Choke & Kill		
Assembly Serial #	287918-2	Hose Lot # and Date Code	10490-01/13
Hose Working Pressure (psi)	10000	Test Pressure (psi)	15000
to the requirements of the purc Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	hase order and cur	d for the referenced purchase order rent industry standards.	to be true according
to the requirements of the purc Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd	hase order and cur		to be true according
to the requirements of the purc Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	hase order and cur		•

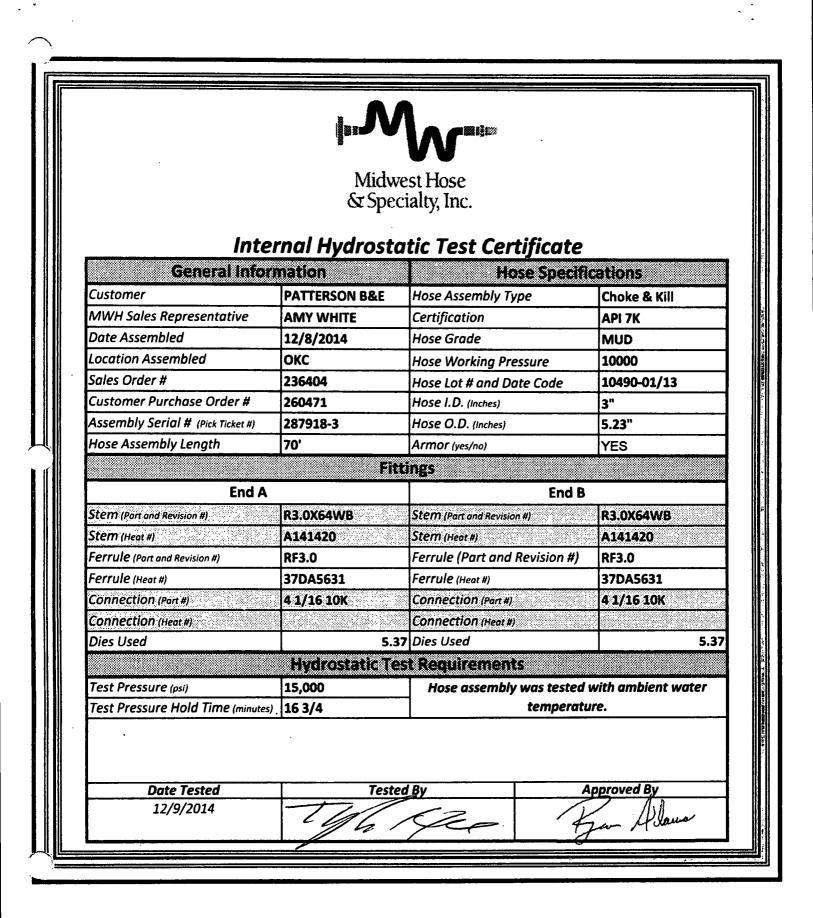
.....

-

		lwest Hose becialty, Inc.	
	-	of Conformity	
Customer: PATTERSON E		Customer P.O.# 260471	
Sales Order # 236404	· _ · · · · · · · · · · · · · · · · · ·	Date Assembled: 12/8/2014	
	Spec	ifications	
Hose Assembly Type:	Choke & Kill		
Assembly Serial #	287918-1	Hose Lot # and Date Code	10490-01/13
Hose Working Pressure (psi)	10000	Test Pressure (psi)	15000
to the requirements of the purch Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd	hase order and curr	for the referenced purchase order rent industry standards.	to be true according
to the requirements of the purc Supplier: Midwest Hose & Specialty, Inc.	hase order and curr		to be true according
to the requirements of the purc Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	hase order and curi		to be true according

Internal Hydrostatic Test Graph **21**112 Pick Ticket #: 284918 Customer: Patterson Midwest Hose **Hose Specifications** Verification & Specialty, Inc. Hose Type Type of Fitting **Coupling Method** Length Swage Final O.D. Mud 70 4 1/16 10K I.D. <u>O.D.</u> 4.79" **Die Size** 3" 5.37" 5.37 Working Pressure Hose Serial # Hose Assembly Serial # Burst Pressure 10000 PSI Standard Safety Multip 10490 284918-3 **Pressure Test** 18000 16000 14000 12030 10000 PSI 8000 5000 4000 2000 2:38p 45 PAA + 248 PAA + 25 PAA + 252 PAA + 253 PAA + 255 PAA

Time in Minutes Test Pressure 15000 PSI Time Held at Test Pressure 16 3/4 Minutes Peak Pressure 15410 PSI Actual Burst Pressure


Comments: Hose assembly pressure tested with water at ambient temperature. Tested By; Approved By: Ryan A

December 9, 2014

(

2.47

()

.

•

	Midwest Hose	
	r Specialty, Inc.	
	ate of Conformity	
Customer: PATTERSON B&E	Customer P.O.# 260471	
Sales Order # 236404	Date Assembled: 12/8/2014	
Sp	ecifications	
Hose Assembly Type: Choke & Kill		
Assembly Serial # 287918-3	Hose Lot # and Date Code	10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi)	15000
		to be true according
We hereby certify that the above material supp to the requirements of the purchase order and o Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	current industry standards.	
to the requirements of the purchase order and o Supplier: Midwest Hose & Specialty, Inc.	current industry standards.	
to the requirements of the purchase order and o Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	current industry standards.	

Closed-Loop System

Operating and Maintenance Plan:

During drilling operations, third party service companies will utilize solids control equipment to remove cuttings from the drilling fluids and collect it in haul-off bins. Equipment will be closely monitored at all times while drilling by the derrick man and the service company employees.

Closure Plan:

During drilling operations, third party service companies will haul off drill solids and fluids to an approved disposal facility. At the end of the well, all closed loop equipment will be removed from the location.

District I 1625 N. French Dr. District II 811 S. First St., Art District III 1000 Rio Brazos Ro	, Hobbs, NM 88240 esia, NM 88210 oad, Aats (1) 2007/410	CDEnergy, Minera Oil 2018 122 ENED GAS CA Operator	State of New ls and Natural Conservatio	Mexico Resources De n Division	epartment	Submit Original to Appropriate District Office
District IV 1220 S. St. Francis	Dr., Santa Fe, NM-87105	2010 122	Santa Fe, NM	4 87505		
	RECT	GAS CA	PTURE PLA	N		
	for Amendment:	Operator	& OGRID N	o.: <u>Matador P</u> Dat	roduction Com e: 11/28/17	<u>pany (228937)</u>
new completion	n (new drill, recomp	tions to be taken by th lete to new zone, re-fra and approved prior to example	ac) activity.	-		lity flaring/venting for
<u>Well(s)/Produc</u>	ction Facility – Nar					
Well Name	API	Well Location (ULSTR)		Expected MCF/D	Flared or Vented	Comments
Dr. Ireland Fed Com No. 131H	30-015-	Sec 19 T23S R35E		1 -2,000	~21 days	Flare ~21 days on flowback before turn into TB. Time est. depends on sales connect and well cleanup.
Dr. Ireland Fed Com No. 132H	30-015-	Sec 19 T23S R35E		+/- 2,000	~21 days	Flare ~21 days on flowback before turn into TB. Time est. depends on sales connect and well cleanup.
Dr. Ireland Fed Com No. 133H	30-015-	R35E Sec 19 T23S		+/- 2,000	~21 days	Flare ~21 days on flowback before turn into TB. Time est. depends on sales connect and well cleanup.
Dr. Ireland Fed Com No. 134H	30-015-	R35E Sec 19 T23S		+/-2,000	~21 days	Flare ~21 days on flowback before turn into TB. Time est. depends on sales connect and well cleanup.

Gathering System and Pipeline Notification

The wells will be connected to production facilities after flowback operations are complete so long as the gas transporter system is in place. The gas produced from the production facilities should be connected to an Energy Transfer Partners gathering system. It will require ~750' of pipeline to connect each facility to the Energy Transfer Partners gathering system. Matador Production Company periodically provides a drilling, completion and estimated first production date for

wells that are scheduled to be drille. ... ne foreseeable future to Energy Transfer Parmers. If changes occur that will affect the drilling and completion schedule, Matador Production Company will notify Energy Transfer Partners. Additionally, the gas produced from the well will be processed at a processing plant further downstream and, although unanticipated, any issues with downstream facilities could cause flaring at the wellhead. The actual flow of the gas will be based on compression operating parameters and gathering system pressures measured when the well starts producing.

Flowback Strategy

After the fracture treatment/completion operations (flowback), the well will be produced to temporary production tanks and the gas will be flared or vented. During flowback, the fluids and sand content will be monitored. If the produced fluids contain minimal sand, then the well will be turned to production facilities. The gas sales should start as soon as the well starts flowing through the production facilities, unless there are operational issues on the midstream system at that time. Based on current information, it is Matador's belief the system will be able to take the gas upon completion of the well.

Safety requirements during cleanout operations may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Operating a generator will only utilize a portion of the produced gas and the remainder of gas would still need to be flared.

6

12.55

- Power Company has to be willing to purchase gas back and if they are willing they require a 5 year commitment to supply the agreed upon amount of power back to them. With gas decline rates and unpredictability of markets it is impossible to agree to such long term demands. If the demands are not met then operator is burdened with penalty for not delivering.
- Compressed Natural Gas On lease
 - o Compressed Natural Gas is likely to be uneconomic to operate when the gas volume declines.
- NGL Removal On lease
 - NGL Removal requires a plant and is expensive on such a small scale rendering it uneconomic and still requires residue gas to be flared.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400026236

Submission Date: 02/26/2018

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FED COM

Well Type: OIL WELL

Well Number: 211H Well Work Type: Drill tellewistlicemust Geograficaemics

07/19/2018

SUPO Data Report

(19) (19)(19)(19)

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_19_S_20180214162915.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_24_S_20180214162915.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_33_S_20180214162917.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_25_S_20180214162916.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_34_S_20180214162917.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_35_S_20180214162918.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_36_S_20180214162919.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_36_S_20180214162919.PDF

ROW ID(s)

ID:

ko-Heleziki ingineeriki mésel ito ha hujónszeri kitolina köndi haprovanentelőszerini kan

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Project_Area_APD_Layout_20180226_20180403152930.jpg

ACOE Permit Number(s):	
Anny Chines Englances (ACOE) penaltrequined TWS	
AFARFICE (E.). (Neugnado (M): 1
Leughte 458	
New merid water LIDEAL	

Well Name: DR IRELAND FED COM

Well Number: 211H

Naw maatlectressignerigen gemindt gewunderf end uitskeid New maatlecterige jelen en protike graggredik NCC

New road access plan attachment:

Nasess noad chillering desking no

Access road engineering design attachment:

Assoss same showy on OTHER

in source Wisher the second source with the second s

lezess suniachgrlype des stjation realisae

Neerss chefte fapsen saves deptine t

Offsite topsoil source description:

Amstite interset in anterest grader

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New world dramagic anascing: (ThuleR -

Dirithigi Capital canunadis Na Cithrigis inistad

Read Duding to Control Standards (DOS) descal attain Duffuer on Alborston of hoad

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Project_Area_APD_Layout_20180226_20180403152930.jpg

New decid Maca	WILLIAM (ISBN
Nex (htp://ki)) Anny Conz al Siglibusers (ACOS) (seculi) regulined?	

ACOE Permit Number(s):

Well Name: DR IRELAND FED COM

Well Number: 211H

Navidael granes conclude minute Navidael granes plan or provide preparet?

New road access plan attachment:

Access way incuring the guilt

Access road engineering design attachment:

Annese Sumhundog Wyder Accesse wygeredle comman Accesses sandadwy wyderde sonladian:

Craces cursue repeating and a clarity

Offsite topsoil source description:

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

terr meid derherse erweinge Achrege-Control commenter port Derhaupe Control Strukturgs ((VCS)) (ISSZAGIO)

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Project_Area_APD_Layout_20180226_20180403152930.jpg

Nederiver Report	동네는 이 가지 않는 것이 아니는 것이 없는 것을 물었다.
Licing Han	
New etable (20): Anony Company in The as (ACCE) remails remained to	
ACOE Permit Number(s):	

New read an all and the

Well Name: DR IRELAND FED COM

Well Number: 211H

New road access grastan (eshito): New road access plan attachment: New road access plan attachment: New road access plan attachment:

Access road engineering design attachment:

Ascess emberingrizzes Ascess epsil source Access embrologrizze descritetant Access emplite l'opsoill monoco deplife:

Offsite topsoil source description:

Dustra wypsail nanasalymaussa

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

low we do in the second second second second

Refinences leading/references

Yeal Dislange Control Shustures (DCS) description

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Project_Area_APD_Layout_20180226_20180403152930.jpg

Newmell-Nype:	
Legngefflär	With Min (Garde
Max Chapp (1991)	Max grado (96):
Astroy Corp of Englishers (ACOA) petrol deputient?	
ACOE Permit Number(s):	

Page 4 of 13

Well Name: DR IRELAND FED COM

Well Number: 211H

levnerd greessienesten connet: Levnord astesspilan.or profile prejeied?

New road access plan attachment:

Access road engineering design attachment:

Alexander en de la facture de la factorie de la fac

Offsite topsoil source description:

One Manage and Manager and

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New meast of since the since

Pupellatere Clean Mell Meanannean Contest

Souri Distance Compell Succement (DeS)) descriptions

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

map_of_existing_wells_section_19_20180214121145.JPG

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description:

Well Name: DR IRELAND FED COM

Well Number: 211H

Production Facilities map:

Location_Layout_20180226172520.pdf 44924p01_Facility_Layout_S1_20180226_20180226172535.jpg

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: DUST CONTROL, INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE CASING Describe type:

Water source type: RECYCLED

Source longitude:

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: PRIVATE

Water source transport method: TRUCKING

Source transportation land ownership: PRIVATE

Water source volume (barrels): 180000

Source volume (gal): 7560000

Source volume (acre-feet): 23.200758

Water source and transportation map:

Dr._lreland_Water_Information_20180214121342.jpg

Water source comments:

New water well? NO

New Water Well Info

Well latitude: Well Longitude: Well datum: Well target aquifer: Est. depth to top of aquifer(ft): Est thickness of aquifer: **Aquifer comments:** Aquifer documentation: Well depth (ft): Well casing type: Well casing outside diameter (in.): Well casing inside diameter (in.): Used casing source: New water well casing? **Drill material: Drilling method:** Grout material: Grout depth: Casing length (ft.): Casing top depth (ft.):

Well Name: DR IRELAND FED COM

Well Number: 211H

Well Production type:

Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Caliche from BLM approved source.

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE FACILITY

Disposal type description:

Disposal location description: Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? NO

Description of cuttings location

Operator Name: MATADOR PRODUCTION COMPANY Well Name: DR IRELAND FED COM

Well Number: 211H

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Cuttings area length (ft.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

Location_Layout_20180214161824.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: DR IRELAND FEDERAL

Multiple Well Pad Number: 4

Recontouring attachment:

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance (acres): 5.72	Well pad interim reclamation (acres): 1.58	Well pad long term disturbance (acres): 4.14
Road proposed disturbance (acres): 0	Road interim reclamation (acres): 0	Road long term disturbance (acres): 0
Powerline proposed disturbance (acres): 0	Powerline interim reclamation (acres):	Powerline long term disturbance (acres): 0
Pipeline proposed disturbance (acres): 0	Pipeline interim reclamation (acres): 0	Pipeline long term disturbance (acres): 0
Other proposed disturbance (acres): 0	Other interim reclamation (acres): 0	Other long term disturbance (acres): 0
Total proposed disturbance: 5.72	Total interim reclamation: 1.58	Total long term disturbance: 4.14

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the last well on the pad. Disturbed areas will be contoured to match pre-construction grades. Once the last well is plugged, then the rest of the pad

Well Name: DR IRELAND FED COM

Well Number: 211H

will be similarly reclaimed within 6 months of plugging.

Topsoil redistribution: Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements. **Soil treatment:** None planned.

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Existing Vegetation Community at the road attachment: Existing Vegetation Community at the pipeline: Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation?

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed name:

Source name:

Source phone:

Seed cultivar:

Seed use location:

Seed source:

Source address:

Operator Name: MATADOR PRODUCTION COMPANY
Well Name: DR IRELAND FED COM

Well Number: 211H

PLS pounds per acre:

Proposed seeding season:

Seed Summary		Total pounds/Acre:
Seed Type	Pounds/Acre	

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info			
First Name:	Last Name:		
Phone:	Email:		
Seedbed prep:			
Seed BMP:			
Seed method:			
Existing invasive species? NO			
Existing invasive species treatment desc	ription:		
Existing invasive species treatment attac	:hment:		
Weed treatment plan description: To BLM	1 standards		
Weed treatment plan attachment:			
Monitoring plan description: To BLM star	dards		
Monitoring plan attachment:			
Success standards: To BLM satisfaction			
Pit closure description: No pit			
Pit closure attachment:			

Section 11 - Surface Ownership

Disturbance type: WELL PAD Describe: Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office:

Well Name: DR IRELAND FED COM

Well Number: 211H

NPS Local Office:	
-------------------	--

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: EXISTING ACCESS ROAD

Describe:

Surface Owner: PRIVATE OWNERSHIP, STATE GOVERNMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office: CARLSBAD, NM

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office: Operator Name: MATADOR PRODUCTION COMPANY Well Name: DR IRELAND FED COM

Well Number: 211H

BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: USFWS Local Office: Other Local Office: USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? NO ROW Type(s):

Use APD as ROW?

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: Onsite conducted for four slots and water tank with Vance Wolf on 10/5/2017.

Other SUPO Attachment

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

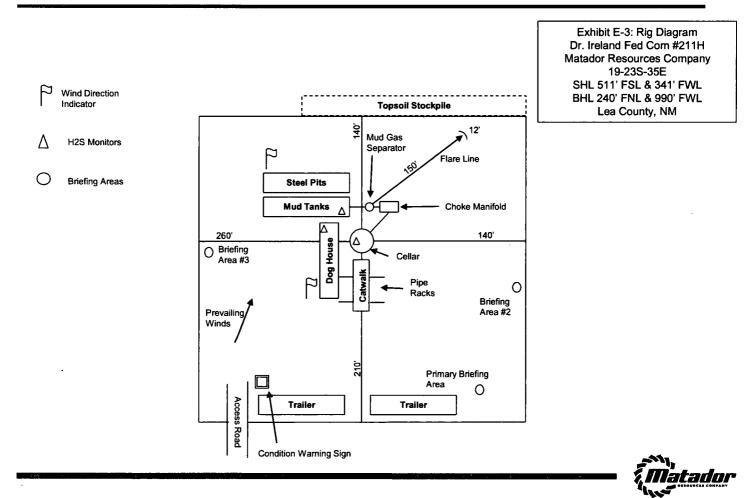
Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:


Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

Rig Diagram

ł

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001079

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Bond Info Data Report

07/19/2018

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: