_	HOBBS O							
		Car	°lsha	- 011				
Form 3160 -3	AUG 1 6 2018		$\widehat{\mathbf{M}}$	d Field D Hob	l Oß	FORM	4 APPROVE	
(March 2012)	RECEIVED	TED STATES	OC.	D Hob	bs	OMB Expires	No. 1004-012 October 31, 2	37 2014
	• DELAKTMEN	NT OF THE INT F LAND MANAG	DRIOR			5. Lease Serial No. NMNM115426		
	APPLICATION FOR P			REENTER		6. If Indian, Allote	e or Tribe !	Name
la. Type of work:	DRILL	REENTER				7 If Unit or CA Age	reement, Na	me and No.
lb. Type of Well:	✓ Oil Well Gas Well	Other	✓ Singi		ple Zone 🏒	(8. Lease Name and DR IRELAND FEI		322263)
2. Name of Opera			2289	37)		9. API Well-No.		147
3a. Address 5400	0 LBJ Freeway, Suite 1500 I		Phone No. (1 72)371-520	include area code)		10. Field and Pool, or BONE SPRING		(2200)
4. Location of We	ell (Report location clearly and in	accordance with any Sta	ate requirement	is.*)		11. Sec., T. R. M. or 1	Blk. and Sur	vey or Area
	ESE / 257 FSL / 399 FEL / L					SEC 19 / T23S / F	R35E / NM	1P
	od. zone NENE / 240 FNL / 3 s and direction from nearest town		90/11/LC	MG - 103.39926	/0	12. County or Parish		13. State
15 Distance from p	ronosed*		No of acre		lig enair	LEA		NM
location to neare property or lease	est 570 feet		79.45		319.89	ng Unit dedicated to this	well	
18. Distance from pr to nearest well, d applied for, on th	Irilling, completed, 30 feet		Proposed D	hepth 16496 feet		BIA Bond No. on file MB001079		
21. Elevations (Sho 3394 feet	ow whether DF, KDB, RT, GL, e	~ 7 ~ 10	Approxima 2/01/2018	te date work will sta	l rt*	23. Estimated duration 25 days	on	
		7/ 2	4. Attachi	ments				
The following, compl	leted in accordance with the requi	rements of Onshore Oi	il and Gas Or	der No.1, must be a	ttached to th	is form:		
 Well plat certified A Drilling Plan. 	d by a registered surveyor.	\sim	1	 Bond to cover the liter 20 above). 	he operatio	ns unless covered by a	n existing b	ond on file (see
3. A Surface Use Pl	lan (if the location is on Nation; iled with the appropriate Forest Se	al Forest System Land rvice Office).				ormation and/or plans a	s may be re	equired by the
25. Signature			Name (P	BLM. rinted/Typed)			Date	
(Ele	ectronic Submission)			ompson / Ph: (5	05)254-11	15	03/30/2	2018
Title Assistant Pro	oject Manager							
Approved by <i>(Signatu</i> (Elec	re ctronic Submission)		'	rinted/Typed) Iyton / Ph: (575)2	234-5959		Date 07/06/2	2018
Title Assistant Field M	Manager Lands & Minerals		Office CARLS	BAD				
Application approval conduct operations the	I does not warrant or certify that	the applicant holds leg			its in the sub	oject lease which would	entitle the a	pplicant to
Title 18 U.S.C. Section	n 1001 and Title 43 U.S.C. Section tious or fraudulent statements or i	1212, make it a crime representations as to an	for any pers	on knowingly and v in its jurisdiction.	willfully to n	nake to any department	or agency (of the United
(Continued on	······					, *(Ins	tructions	on page 2)
herrie	The GCP 08	RITIE				1/1		/
51.6	after 08 08	27/18		I CONDITI	IONS	P	1/2	5
001		PROVIN	n WITH			98/1	:[]]	
		APPKUVE				V		
		Approval	Date: 0	7/06/2018				C
				•			-	111
							-	$\sum n'^{n}$

Doubled

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM 1: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the well, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionally drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

The Privacy Act of 1974 and regulation in 43 CFR 2:48(d) provide that you be furnished the following information in connection with information required by this application.

NOTICES

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service well or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts. ROUTINE USE: Information from the record and/or the record will be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM collects this information to allow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Collection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: SESE / 257 FSL / 399 FEL / TWSP: 23S / RANGE: 35E / SECTION: 19 / LAT: 32.2835925 / LONG: -103.3994762 (TVD: 0 feet, MD: 0 feet) PPP: SESE / 330 FSL / 330 FEL / TWSP: 23S / RANGE: 35E / SECTION: 19 / LAT: 32.2837947 / LONG: -103.399252 (TVD: 11750 feet, MD: 12240 feet) BHL: NENE / 240 FNL / 330 FEL / TWSP: 23S / RANGE: 35E / SECTION: 19 / LAT: 32.296711 / LONG: -103.3992676 (TVD: 11750 feet, MD: 16496 feet)

BLM Point of Contact

Name: Judith Yeager Title: Legal Instruments Examiner Phone: 5752345936 Email: jyeager@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Vell Nemes DR IRELAND RED ICOM

APD ID: 10400028893

Operator Name: MATADOR PRODUCTION COMPANY

Submission Date: 03/30/2018

and a second and a second and a second a second

Relationated deter diseis he mes

07/19/2018

Application Data Report

Show Final Text

Well Type: OIL WELL

accate data a

Well Work Type: Drill

Well Number: 214H

1000

Section 1 - General		
APD ID: 10400028893	Tie to previous NOS?	Submission Date: 03/30/2018
BLM Office: CARLSBAD	User: Lara Thompson	Title: Assistant Project Manager
Federal/Indian APD: FED	Is the first lease penetra	ated for production Federal or Indian? FED
Lease number: NMNM115426	Lease Acres: 279.45	
Surface access agreement in place?	Allotted?	Reservation:
Agreement in place? NO	Federal or Indian agree	ment:
Agreement number:		
Agreement name:		
Keep application confidential? YES		
Permitting Agent? YES	APD Operator: MATADO	DR PRODUCTION COMPANY
Operator letter of designation:		
Operator Info		
Operator Organization Name: MATADOR	R PRODUCTION COMPANY	
Operator Address: 5400 LBJ Freeway, S	uite 1500	Zip: 75240
Operator PO Box:		Lip. 10240
Operator City: Dallas Stat	e: TX	
Operator Phone: (972)371-5200		

Operator Internet Address: amonroe@matadorresources.com

Section 2 - Well Information Well in Master Development Plan? NO Mater Development Plan name: Well in Master SUPO? NO **Master SUPO name:** Well in Master Drilling Plan? NO Master Drilling Plan name: Well API Number: Well Reims DR IRELAND PED COM Well Number: 214H Field/Pool or Exploratory? Field and Pool Field Name: BONE SPRING **Pool Name:**

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Operator Name: MATADOR PRODUCTION COMPANY

Well Nature DR IRELAND FED COM

Well Number: 214H

Describe ot	her minerals:		
Is the propo	osed well in a Helium production area? N	Use Existing Well Pad? N	O New surface disturbance?
Type of Wel	I Pad: MULTIPLE WELL	Multiple Well Pad Name:	DR Number: 4
Well Class:	HORIZONTAL	IRELAND FEDERAL Number of Legs: 1	
Well Work T	'ype : Drill		
Well Type: (DIL WELL		
Describe W	ell Type:		
Well sub-Ty	pe: APPRAISAL		
Describe su	ıb-type:		
Distance to	town: Distance to ne	arest well: 30 FT D	istance to lease line: 570 FT
Reservoir w	ell spacing assigned acres Measurement:	319.89 Acres	
Well plat:	BO_DR_IRELAND_FED_COM_SLOT_4_S	SURFACE_PAD_SITE_S_20	180329095352.pdf
	CD_DR_IRELAND_FED_COM_SLOT_4_S	SURFACE_PAD_PRO_S_20	180329095352.pdf
	1Mile_Radius_Map_20180329095411.doc	ĸ	
	DrlrelandFederal214H_signed_201804250	81437.pdf	
Well work s	tart Date: 12/01/2018	Duration: 25 DAYS	
Secti	ion 3 - Well Location Table		

Section 3 - Well Location Table

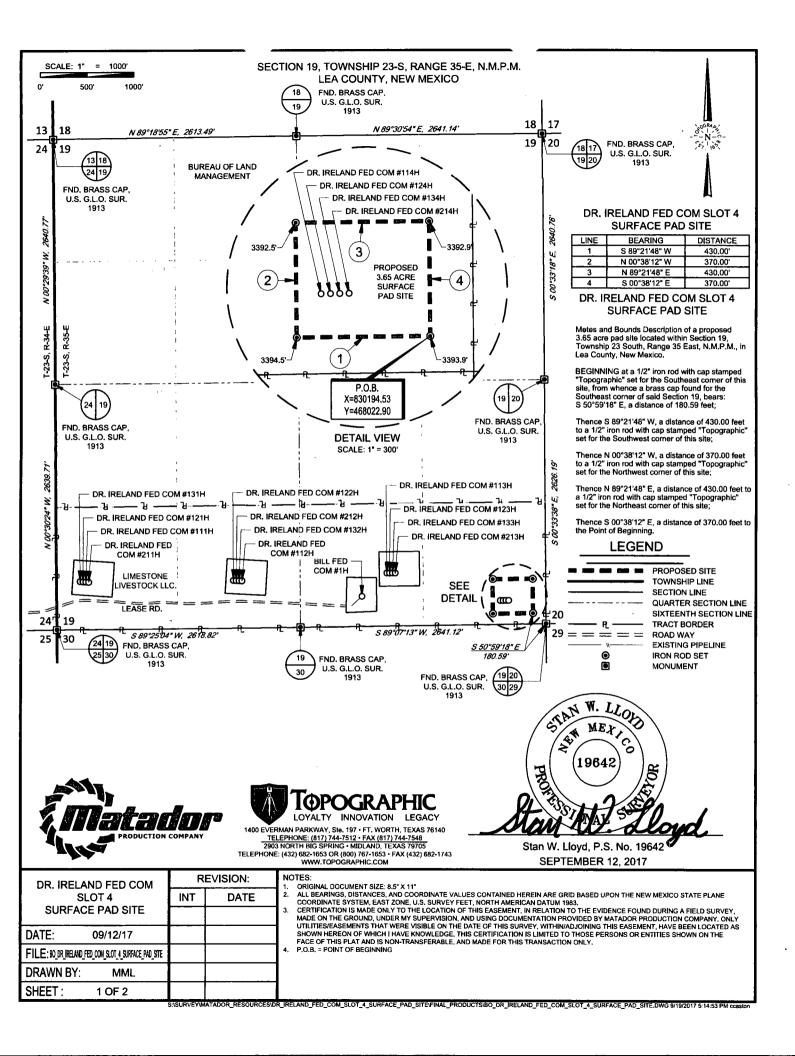
Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number:


	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	DM	DVT
SHL Leg #1	257	FSL	399	FEL	235	35E	19	Aliquot SESE	32.28359 25	- 103.3994 762	LEA	NEW MEXI CO	NEW MEXI CO	F		339 4	0	0
KOP Leg #1	257	FSL	399	FEL	23S	35E	19	Aliquot SESE	32.28359 25	- 103.3994 762	LEA		NEW MEXI CO	F		239 4	100 0	100 0

Operator Name: MATADOR PRODUCTION COMPANY

WED NAME DE INSLAND RED GOM .

Well Number: 214H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	QIM	TVD
PPP Leg #1	330	FSL	330	FEL	235	35E	19	Aliquot SESE	32.28379 47	- 103.3992 52	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 115426	- 835 6	122 40	117 50
EXIT Leg #1	330	FNL	330	FEL	23S	35E	19	Aliquot NENE	32.29646 37	- 103.3992 673	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 113422	- 835 6	164 06	117 50
BHL Leg #1	240	FNL	330	FEL	235	35E	19	Aliquot NENE	32.29671 1	- 103.3992 676	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 113422	- 835 6	164 96	117 50

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

07/19/2018

APD ID: 10400028893

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FED COM

Well Number: 214H

Submission Date: 03/30/2018

Show Final Text

的复数形式

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	(I			Producing
ID .	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	
1	ASUSTIL BR	3394	1414	1414		USEABLE WATER	No
2	SALADO	1594	1800	1800		NONE	No
3		-735	4129	4129		NONE	No
4	ETHIL CANAPON	-2173	5567	5567		NATURAL GAS,OIL	No
5		-4113	7507	7507	<u> </u>	NATURAL GAS,OIL	No
6	eene sankon me	-5419	8813	8813		NATURAL GAS,OIL	No
.7	ROME SPENNIG IST	-6144	9538	9538		NATURAL GAS,OIL	No
8	CONFERENCE AND	-6592	9986	9986		NATURAL GAS,OIL	No
9	COMES PENNESSED	-7332	10726	10726		NATURAL GAS,OIL	No
10		-8268	11662	11662		NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI): 2M

Rating Depth: 15000

Equipment: See Exhibit E-1. A BOP consisting of 3 rams with 2 pipe rams, 1 blind ram and one annular preventer. The BOP will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs.

Requesting Variance? YES

Variance request: The operator requests a variance to have the option of running a speed head for setting the intermediate strings. In the case of running a speed head with landing mandrel for 9-5/8" casing, a minimum of a 3M BOPE system will be installed after surface casing is set. Matador Resources requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached (see Exhibit E-2). The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used.

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FED COM

Well Number: 214H

Testing Procedure: After setting surface casing and before drilling below the surface casing shoe, a minimum of a 2M BOPE system will be installed and tested to 250 psi low and 2000 psi high with the annular being tested to 250 psi low and 1000 psi high. After setting intermediate casing, a minimum of a 3M system will be installed and tested to 250 psi low and 3000 psi high with the annular being tested to 250 psi low and 2500 psi high.

Choke Diagram Attachment:

Choke_Manifold_20180329105718.pdf

BOP Diagram Attachment:

BOP_297_001_20180329105727.pdf

Section	3 - (Casing
---------	-------	--------

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	850	0	850			850	J-55			1.12 5	1.12 5	BUOY	1.8	BUOY	1.8
2	INTERMED IATE	8.75	7.625	NEW	API	N	4400	4400	4400	4400			17	P- 110		OTHER - BTC	1.12 5	1.12 5	BUOY	1.8	BUOY	1.8
3		12.2 5	9.625	NEW	API	N	0	5400 ·	0	5400			5400	J-55			1.12 5	1.12 5	BUOY	1.8	BUOY	1.8
4	PRODUCTI ON	6.12 5	5.5	NEW	NON API	N	10600	11000	10600	11000				P- 110			1.12 5	1.12 5	BUOY	1.8	BUOY	1.8
5	INTERMED IATE	8.75	7.625	NEW	NON API	N	4400	11100	4400	11100				P- 110				1.12 5	BUOY	1.8	BUOY	1.8
6	INTERMED IATE	8.75	7.0	NEW	API	N	4400	11977	4400	11977				₽- 110			_	1.12 5	BUOY	1.8	BUOY	1.8
7	PRODUCTI ON	6.12 5	4.5	NEW	NON API	N	11600	16496	11600	16496				P- 110				1.12 5	BUOY	1.8	BUOY	1.8

Casing Attachments

.

Well Number: 214H

Casing Attachments

Casing ID: 1

String Type:SURFACE

Inspection Document:

Spec Document:

TenarisHydril_TenarisXP_BTC_5.500_20_20180213122618.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_4_string_20180326165800.pdf

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

VRCC_16_1177__CDS__7.625_in_29.70_ppf_P110_EC_VAM__HTF_NR_Rev02_20180327134756.pdf Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_4_string_20180327135201.pdf

Casing ID: 3 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_4_string_20180326165808.pdf

Casing Attachments

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

TenarisHydril_TenarisXP_BTC_5.500_20_20180306142420.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_4_string_20180326165825.pdf

Casing ID: 5 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

VRCC_16_1177__CDS__7.625_in_29.70_ppf_P110_EC_VAM___HTF_NR_Rev02_20180329111208.pdf Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_4_string_20180327135152.pdf

Casing ID: 6 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

TenarisHydril_TenarisXP_BTC_4.500_13_20180327134139.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_4_string_20180327134258.pdf

Well Number: 214H

Casing Attachments

Casing ID: 7

String Type: PRODUCTION

Inspection Document:

Spec Document:

TenarisHydril_TenarisXP_BTC_4.500_13_20180329111427.pdf

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BLM_Casing_Design_Assumptions_4_string_20180327135215.pdf

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	850	200	1.82	12.8	364	100	Class C	Bentonite + 2% CaCL2 + 3% NaCl + LCM
SURFACE	Tail		0	850	700	1.38	14.8	966	100	Class C	5% NaCl + LCM
INTERMEDIATE	Lead		4400	4400	475	2.36	11.5	1121	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		4400	4400	320	1.38	13.2	442	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		0	5400	1020	2.13	12.6	2173	100	Class C	Bentonite + 1% CaCL2 + 8% NaCl + LCM
INTERMEDIATE	Tail		0	5400	540	1.38	14.8	745	100	Class C	5% NaCl + LCM
PRODUCTION	Lead		1060 0	1100 0	530	1.17	15.8	620	25	Class H	Fluid Loss + Dispersant + Retarder + LCM

INTERMEDIATE	Lead	4400	1110 0	475	2.36	11.5	1121	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail	4400	1110 0	320	1.38	13.2	442	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead	4400	1197 7	475	2.36	11.5	1121	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM

Operator Name: MATADOR PRODUCTION COMPANY Well Name: DR IRELAND FED COM

Well Number: 214H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Tail		4400	1197 7	320	1.38	13.2	442	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Lead		1160 0	1649 6	530	1.17	15.8	620	25.	Class H ·	Fluid Loss + Dispersant + Retarder + LCM

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: See Exhibit E-1. A BOP consisting of 3 rams with 2 pipe rams, 1 blind ram and one annular preventer. The BOP will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs.

Describe the mud monitoring system utilized: The Mud Monitoring System is an electronic Pason system satisfying requirements of Onshore Order 1. Mud Logging Program: 2 man unit from 5400 – TD.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	850	SPUD MUD	8.3	8.3							
0	5400	SALT SATURATED	10	10							
4400	1197 7	OTHER : FW/ Cut Brine	9	9							
1060 0	1649 6	OIL-BASED MUD	12.5	12.5							

Operator Name: MATADOR PRODUCTION COMPANY Well Name: DR IRELAND FED COM

Well Number: 214H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

See page 3 of Drilling Plan attached in Other Facets, Section 8.

List of open and cased hole logs run in the well:

CBL,GR,MUDLOG

Coring operation description for the well:

No DSTs or cores are planned at this time.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6450

Anticipated Surface Pressure: 3865

Anticipated Bottom Hole Temperature(F): 180

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Matador_Hydrogen_Sulfide_Drilling_Leslie__024_20180315151636.docx H2S_Emergency_Contacts_20180529151657.docx

Section 8 - Other Information

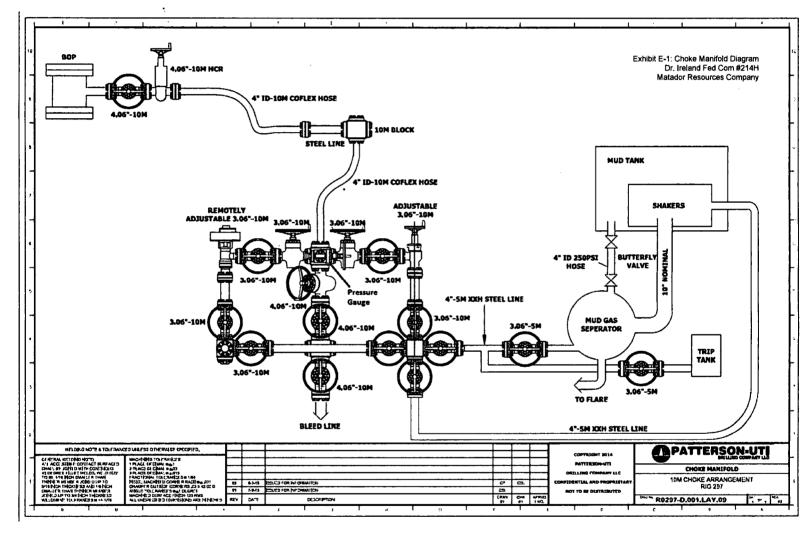
Proposed horizontal/directional/multi-lateral plan submission:

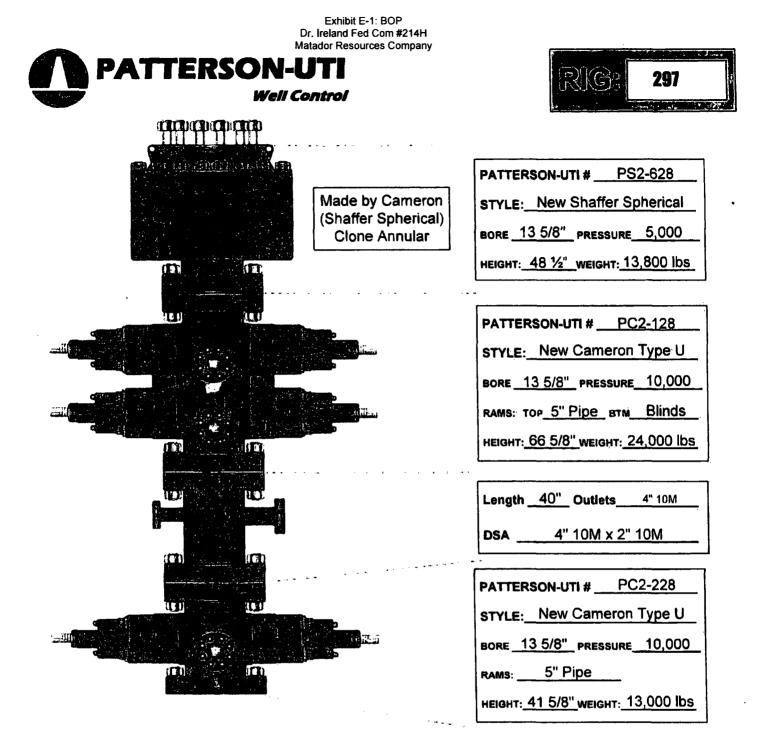
Dr._Ireland_Fed_Com__214H___Well_Plan_v1_20180329105248.pdf

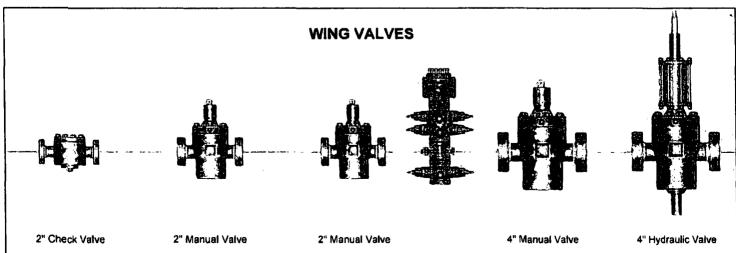
Other proposed operations facets description:

Other proposed operations facets attachment:

BLM_Casing_Design_Assumptions_4_string_20180329105318.pdf


Close_Loop_System_20180329105339.docx


Dr._Ireland_Fed_Com__214H_MTDR_Drlg_Plan_20180329105340.docx


297Co_Flex_Certs_Dr._Ireland_Fed_Com__213H_20180329105359.pdf

Gas_Capture_Plan___Dr._lreland_211H__212H__213H__214H_20180529151738.docx

Other Variance attachment:

For the latest performance data, always visit our website: www.tenaris.com

February 02 2017

Connection: TenarisXP® BTC **Casing/Tubing**: CAS **Coupling Option**: REGULAR

Size: 5.500 in. Wall: 0.361 in. Weight: 20.00 lbs/ft Grade: P110-IC Min. Wall Thickness: 87.5 %

	PIPE BODY DATA							
j,			GEOME	ſRY				
	Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.		
	Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A		
	Plain End Weight	19.83 lbs/ft						
4			PERFORM	ANCE				
an strategy	Body Yield Strength	641 x 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi		
	Collapse	12100 psi						
	TENARISXP® BTC CONNECTION DATA							
	GEOMETRY							
	Connection OD	6.100 in.	Coupling Length	9.450 in,	Connection ID	4.766 in.		
	Critical Section Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.		
, , , , , , , ,			PERFORM	ANCE				
	Tension Efficiency	100 %	Joint Yield Strength	641 x 1000 lbs	Internal Pressure Capacity ^(<u>1</u>)	12630 psi		
	Structural Compression Efficiency	100 %	Structural Compression Strength	641 x 1000 Ibs	Structural Bending ^(<u>2</u>)	92 °/100 ft		
C	External Pressure Capacity	12100 psi						
	ESTIMATED MAKE-UP TORQUES ⁽³⁾							
	Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lbs		
			OPERATIONAL LI	MIT TORQUES	6			
	Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs				
		BLANKING DIMENSIONS						
			Blanking Dir	nensions				

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per

DS-TenarisHydril TenarisXP BTC-5.500-20.000-P

section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed. For additional information, please contact us at <u>contact-tenarishydril@tenaris.com</u>

۰

For the latest performance data, always visit our website: www.tenarjs.com

February 02 2017

Connection: TenarisXP® BTC Casing/Tubing: CAS Coupling Option: REGULAR

Size: 5.500 in. Wall: 0.361 in. Weight: 20.00 lbs/ft Grade: P110-IC Min. Wall Thickness: 87.5 %

PIPE BODY DATA								
		GEOMET	rry					
Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.			
Nominal ID	4,778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A			
Plain End Weight	19.83 lbs/ft							
		PERFORM	ANCE		· · · · ·			
Body Yield Strength	641 × 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi			
Collapse	12100 psi							
	TENARISXP® BTC CONNECTION DATA							
	GEOMETRY							
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.			
Critical Section Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.			
		PERFORM	ANCE		· · · · · · · · · ·			
Tension Efficiency	100 %	Joint Yield Strength	641 x 1000 lbs	Internal Pressure Capacity $^{(\underline{1})}$	12630 psi			
Structural Compression Efficiency	100 %	Structural Compression Strength	641 x 1000 Ibs	Structural Bending ^(<u>2</u>)	92 °/100 ft			
External Pressure Capacity	12100 psi							
ESTIMATED MAKE-UP TORQUES ⁽³⁾								
Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lbs			
		OPERATIONAL LI	MIT TORQUES					
Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs					
		BLANKING DI	MENSIONS					
		Blanking Dir	nensions					

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per

DS-TenarisHydril TenarisXP BTC-5.500-20.000-P1

section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed. For additional information, please contact us at <u>contact-tenarishydril@tenaris.com</u>

For the latest performance data, always visit our website: www.tenaris.com

February 02 2017

Connection: TenarisXP® BTC **Casing/Tubing**: CAS **Coupling Option**: REGULAR

Size: 4.500 in. Wall: 0.290 in. Weight: 13.50 lbs/ft Grade: P110-ICY Min. Wall Thickness: 87.5 %

Y

PIPE BODY DATA							
	GEOMET	RY					
4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.			
3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A			
13.05 lbs/ft							
PERFORMANCE							
479 x 1000 lbs	Internal Yield	14100 psi	SMYS	125000 psi			
11620 psi							
TENARISXP® BTC CONNECTION DATA							
	T	КΥ	1				
5.000 in.	Coupling Length	9.075 in.	Connection ID	3.908 in.			
3.836 sq. in.	Threads per in.	5.00	Make-Up Loss	4.016 in.			
PERFORMANCE							
100 %	Joint Yield Strength	479 x 1000 Ibs	Internal Pressure Capacity $(\underline{1})$	14100 psi			
100 %	Structural Compression Strength	479 x 1000 Ibs	Structural Bending ^(<u>2</u>)	127 °/100 ft			
• 11620 psi							
ESTIMATED MAKE-UP TORQUES ⁽³⁾							
6950 ft-lbs	Optimum	7720 ft-lbs	Maximum	8490 ft-lbs			
OPERATIONAL LIMIT TORQUES							
10500 ft-lbs	Yield Torque	12200 ft-lbs					
	BLANKING DIN	IENSIONS					
	Blanking Din	nensions					
	3.920 in. 13.05 lbs/ft 479 x 1000 lbs 11620 psi 5.000 in. 3.836 sq. in. 100 % 100 % 11620 psi E 6950 ft-lbs	GEOMET4.500 in.Nominal Weight3.920 in.Wall Thickness13.05 lbs/ftPERFORM.479 x 1000 lbsInternal Yield11620 psiInternal YieldFERFORM.5.000 in.Coupling Length3.836 sq. in.Threads per in.100 %Structural100 %Structural100 %Structural100 %Structural100 %Structural6950 ft-lbsOptimum11620 psiEXTIMATED MAKE-U6950 ft-lbsYield Torque10500 ft-lbsYield Torque	GEOMETRY 4.500 in. Nominal Weight 13.50 lbs/ft 3.920 in. Wall Thickness 0.290 in. 13.05 lbs/ft PERFORMANCE 479 x 1000 lbs Internal Yield 14100 psi 11620 psi Internal Yield 14100 psi 5.000 in. Coupling Length 9.075 in. 3.836 sq. in. Threads per in. 5.000 100 % Structural Compression Strength 479 x 1000 lbs 100 % Structural Compression Strength 479 x 1000 lbs 11620 psi Structural Compression Strength 479 x 1000 lbs 11620 psi Structural Compression Strength 779 x 1000 lbs	GEOMETRY4.500 in.Nominal Weight13.50 lbs/ftStandard Drift Diameter3.920 in.Wall Thickness0.290 in.Special Drift Diameter13.05 lbs/ftPERFORMANCESpecial Drift479 x 1000 lbsInternal Yield14100 psiSMYS11620 psiInternal Yield14100 psiSMYSGEOMETRYTENARISXP® BTC CONNECTION DATAGEOMETRY5.000 in.Coupling Length9.075 in.Connection IDAdvector VEFORMANCEPERFORMANCEDint Yield Strength479 x 1000 lbs100 %Structural Compression Strength479 x 1000 lbsInternal Pressure Capacity(12)11620 psiStructural Compression Strength479 x 1000 lbsStructural Bending(2)11620 psiStructural Compression Strength479 x 1000 lbsStructural Bending(2)11620 psiVIENTED MAKE-VFORQUES(JUENE)Bending(2)IDISOO ft-lbsQptimum7720 ft-lbsMaximum			

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per

section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed.

For additional information, please contact us at contact-tenarishydril@tenaris.com

.

For the latest performance data, always visit our website: www.tenaris.com

February 02 2017

Connection: TenarisXP® BTC **Casing/Tubing**: CAS **Coupling Option**: REGULAR

Size: 4.500 in. Wall: 0.290 in. Weight: 13.50 lbs/ft Grade: P110-ICY Min. Wall Thickness: 87.5 %

Y

PIPE BODY DATA								
		GEOME	TRY					
Nominal OD	4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.			
Nominal ID	3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A			
Plain End Weight	t 13.05 lbs/ft							
<u>.</u> .		PERFORM	ANCE					
Body Yield Strength	479 × 1000 lbs	Internal Yield	14100 psi	SMYS	125000 psi			
Collapse	11620 psi							
	TENARISXP® BTC CONNECTION DATA GEOMETRY							
Connection OD	5.000 in.	Coupling Length	9.075 in.	Connection ID	3.908 in.			
Critical Section Area	3.836 sq. in.	Threads per in.	5.00	Make-Up Loss	4.016 in.			
	· · · · · · · · · · · · · · · · · · ·	PERFORM	ANCE					
Tension Efficience	y 100 %	Joint Yield Strength	479 x 1000 lbs	Internal Pressure Capacity ^(<u>1</u>)	14100 psi			
Structural Compression Efficiency	100 %	Structural Compression Strength	479 x 1000 Ibs	Structural Bending ^(<u>2</u>)	127 °/100 fi			
External Pressure Capacity	e 11620 psi							
	ESTIMATED MAKE-UP TORQUES ⁽³⁾							
Minimum	6950 ft-lbs	Optimum	7720 ft-lbs	Maximum	8490 ft-lbs			
		OPERATIONAL LI	VIT TORQUES					
Operating Torque	e 10500 ft-lbs	Yield Torque	12200 ft-lbs					
		BLANKING DI	AENSIONS					
		Blanking Din	nensions					

(1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per

DS-TenarisHydril TenarisXP BTC-4.500-13.500-P1

section 10.3 API 5C3 / ISO 10400 - 2007.

(2) Structural rating, pure bending to yield (i.e no other loads applied)

(3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread

compounds please contact us at licensees@oilfield.tenaris.com. Torque values may be further reviewed.

For additional information, please contact us at contact-tenarishydril@tenaris.com

Issued on: 12 Janv. 2017 by T. DELBOSCO

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B VRCC 16-1177 Rev02 for Houston Field Service

Connection Data Sheet

OD		Wall Th.	Grade	API Drift	Connection
7 5/8 in.	Weight 29.70 lb/ft	0,375 in.	P110 EC	6,750 in.	VAM® HTF NR
Р	IPE PROPERTI	ES	et reas CC	NNECTION PR	OPERTIES
	IPE PROPERTI	ES 7.625 in.	Connection Type	NNECTION PR	OPERTIES Premium Integral Flush
P Nominal OD Nominal ID	IPE PROPERTI				

Nominal Cross Section Area	8.541 sqin.
Grade Type	Enhanced API
Min, Yield Strength	125 ksi
Max. Yield Strength	140 ksi
Min. Ultimate Tensile Strength	135 ksi
Tensile Yield Strength	1 068 klb
Internal Yield Pressure	10 760 psi
Collapse pressure	7 360 psi

CONNECTION PERF		
Tensile Yield Strength	619	klb
Compression Resistance	778	klb
Compression with Sealability	372	klb
Internal Yield Pressure	10 760	psi
External Pressure Resistance	7 360	psi
Max. Bending	44	°/100ft
Max. Bending with Sealability	17	°/100ft

Connection Type	Premium Integral Flush
Connection OD (nom)	7.701 in.
Connection ID (nom)	6.782 in.
Make-Up Loss	4,657 in,
Critical Cross Section	4.971 sqin.
Tension Efficiency	58 % of pipe
Compression Efficiency	72.7 % of pipe
Compression Efficiency with Sealability	34.8 % of pipe
Internal Pressure Efficiency	100 % of pipe
External Pressure Efficiency	100 % of pipe

TORQUE VALUES	
Min. Make-up torque	9 600 ft.lb
Opti. Make-up torque	11 300 ft.lb
Max. Make-up torque	13 000 ft.lb
Max. Torque with Sealability	58 500 ft.lb
Max. Torsional Value	73 000 ft.lb

VAM[●] HTF[™] (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM® Specialists available worldwide 24/7 for Rig Site Assistance Other Connection Data Sheets are available at www.vamservices.com

Max. Bending

Max. Bending with Sealability

Issued on: 12 Janv. 2017 by T. DELBOSCO

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B

VRCC 16-1177 Rev02 for Houston Field Service

ANT HITF-NIR"

Connection Data Sheet

OD	Weight	Wall Th.	Grade	API Drift	Connection
7 5/8 in.	29.70 lb/ft	0.375 in.	P110 EC	6.750 in.	VAM® HTF NR

PIPE PROPE	RTIES
Nominal OD	7.625 in.
Nominal ID	6.875 in.
Nominal Cross Section Area	8.541 sqin.
Grade Type	Enhanced API
Min, Yield Strength	125 ksi
Max. Yield Strength	140 ksi
Min. Ultimate Tensile Strength	135 ksi
Tensile Yield Strength	1 068 klb
Internal Yield Pressure	10 760 psi
Collapse pressure	7 360 psi

Max. Yield Strength	140 ksi	Tension Efficience
Min. Ultimate Tensile Strength	135 ksi	Compression Eff
Tensile Yield Strength	1 068 klb	Compression Eff
Internal Yield Pressure	10 760 psi	Internal Pressur
Collapse pressure	7 360 psi	External Pressur
Tensile Yield Strength	619 klb	Min. Make-up to
CONNECTION PERFO	DRMANCES	
Compression Resistance	778 klb	Opti. Make-up to
Compression with Sealability	372 klb	Max. Make-up to
Internal Yield Pressure	10 760 psi	Max. Torque wit
	po.	

44 º/100ft

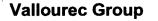
17 º/100ft

CONNECTION PROPERTIES		
Connection Type	Premium Int	egral Flush
Connection OD (nom)	7.701	in.
Connection ID (nom)	6.782	in.
Make-Up Loss	4.657	in.
Critical Cross Section	4.971	sqin.
Tension Efficiency	58	% of pipe
Compression Efficiency	72.7	% of pipe
Compression Efficiency with Sealability	34.8	% of pipe
Internal Pressure Efficiency	100	% of pipe
External Pressure Efficiency	100	% of pipe

TORQUE VALUES		
Min. Make-up torque	9 600 ft.lb	
Opti. Make-up torque	11 300 ft.lb	
Max. Make-up torque	13 000 ft.lb	
Max. Torque with Sealability	58 500 ft.lb	
Max. Torsional Value	73 000 ft.lb	

VAM[●] HTF™ (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.


Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM[®] Specialists available worldwide 24/7 for Rig Site Assistance Other Connection Data Sheets are available at www.vamservices.com

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

ł.

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an
- internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b≈1.125

 Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF₀≈1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

1 (C)

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Closed-Loop System

Operating and Maintenance Plan:

During drilling operations, third party service companies will utilize solids control equipment to remove cuttings from the drilling fluids and collect it in haul-off bins. Equipment will be closely monitored at all times while drilling by the derrick man and the service company employees.

Closure Plan:

During drilling operations, third party service companies will haul off drill solids and fluids to an approved disposal facility. At the end of the well, all closed loop equipment will be removed from the location.

Drilling Operations Plan Dr. Ireland Fed Com #214H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM Surface Location: 257' FSL & 399' FEL, Sec. 19 Bottom Hole Location: 240' FNL & 330' FEL, Sec. 19 Elevation Above Sea Level: 3394'

Geologic Name of Surface Formation: Wolfcamp

Type of Well: Horizontal well, No Pilot Hole, Drilled with conventional rotary tools

Proposed Drilling Depth: 16,495' MD / 11,750' TVD

Estimated Tops of Geological Markers w/ Mineral Bearing Formation:

Formation Name	Est Top	Bearing
Rustler	1414	Water
Salado	1800	Barren
Base of Salt	4129	Barren
Bell Canyon	5567	Hydrocarbo n
Brushy Canyon	7507	Hydrocarbo n
Bone Spring Lime	8813	Hydrocarbo n
First Bone Spring Carb	9538	Hydrocarbo n
First Bone Spring Sand	9844	Hydrocarbo n
Second Bone Spring Carb	9986	Hydrocarbo n
Second Bone Spring Sand	10393	Hydrocarbo n
Third Bone Spring Carb	10726	Hydrocarbo n
Third Bone Spring Sand	11391	Hydrocarbo n
Wolfcamp A	11662	Hydrocarbo n
Wolfcamp A Fat	11846	Hydrocarbo n

OSE Ground Water Estimated Depth: 280'

Drilling Operations Plan Dr. Ireland Fed Com #214H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM

Casing Program

.

Name	Hole Size	Casing Size	Wt/Grade	Thread Collar	Setting Depth	Top Cement
Surface	17-1/2"	13-3/8" (new)	54.5# J-55	BTC	850	Surface
Intermediate	12-1/4"	9-5/8" (new)	40# J-55	BTC	5400	Surface
Intermediate 2 Top	8-3/4"	7-5/8" (new)	29.7# P- 110	BTC	4400	4400
Intermediate 2 Middle	8-3/4"	7-5/8" (new)	29.7# P- 110	VAM HTF- NR	11100	4400
Intermediate 2 Bottom	8-3/4"	7" (new)	29# P-110	BTC	11977	4400
Production Top	6-1/8"	5-1/2" (new)	20# P-110	BTC/TXP	11000	11600
Production Bottom	6-1/8"	4-1/2" (new)	13.5# P- 110	BTC/TXP	16496	11600

Minimum Safety Factors: Bu

Burst: 1.125 Collapse: 1.125

Tension 1.8

Cementing Program

Name	Туре	Sacks	Yield	Weight	Blend
					Class C + Bentonite + 2% CaCL2 + 3% NaCl
Surface	Lead	200	1.82	12.8	+ LCM
:	Tail	700	1.38	14.8	Class C + 5% NaCl + LCM
TOC = 0'		10	0% Exce	ss	Centralizers per Onshore Order 2.III.B.1f
					Class C + Bentonite + 1% CaCL2 + 8% NaCl
Intermediate	Lead	1020	2.13	12.6	+ LCM
	Tail	540	1.38	14.8	Class C + 5% NaCl + LCM
					2 on btm jt, 1 on 2nd jt, 1 every 4th jt to
TOC = 0'		1(00% Exce	SS	surface
					TXI + Fluid Loss + Dispersant + Retarder +
Intermediate 2	Lead	475	2.36	11.5	LCM
					TXI + Fluid Loss + Dispersant + Retarder +
	Tail	320	1.38	13.2	LCM
					2 on btm it, 1 on 2nd it, 1 every 4th it to top
TOC = 440	0'	7	5% Exces	s	of tail cement (500' above TOC)
					Class H + Fluid Loss + Dispersant +
Production	Tail	530	1.17	15.8	Retarder + LCM

Drilling Operations Plan Dr. Ireland Fed Com #214H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM

		2 on btm jt, 1 on 2nd jt, 1 every other jt to top
TOC = 11600'	25% Excess	of curve

Pressure Control Equipment:

See Exhibit E-1. A BOP consisting of 3 rams with 2 pipe rams, 1 blind ram and one annular preventer. The BOP will be utilized below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs.

After setting surface casing and before drilling below the surface casing shoe, a minimum of a 2M BOPE system will be installed and tested to 250 psi low and 2000 psi high with the annular being tested to 250 psi low and 1000 psi high. After setting intermediate #1 casing, a minimum of a 5M system will be installed and tested to 250 psi low and 5000 psi high with the annular being tested to 250 psi low and 2500 psi high. After setting intermediate #2 casing, a minimum of a 5M system will be installed and tested to 250 psi low and 5000 psi high with the annular being tested to 250 psi low and 2500 psi high. After setting intermediate #2 casing, a minimum of a 5M system will be installed and tested to 250 psi low and 5000 psi high with the annular being tested to 250 psi low and psi high.

The operator requests a variance to have the option of running a speed head for setting the intermediate #1 and #2 strings. In the case of running a speed head with landing mandrel for 9-5/8" and 7" casing, a minimum of a 5M BOPE system will be installed after surface casing is set. BOP test pressures will be 250 psi low and 5000 psi high with the annular being tested to 250 psi low and 2500 psi high before drilling below surface shoe. After 7" casing is set in the speed head, the BOP will then be lifted to install another casing head section for the setting of the production string. We will nipple the casing head and BOP back up and a minimum of a 5M BOPE system will be installed. The pressure tests will be made to 250 psi low and 5000 psi high and the annular will be tested to 250 psi low and 2500 psi high. A diagram of the speed head is attached.

Matador Resources requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached (see Exhibit E-2). The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used.

	Hole	Mud		Fluid	
Name	Size	Weight	Visc	Loss	Type Mud
					FW Spud
Surface	17-1/2"	8.30	28	NC	Mud
Intermediate	12-1/4"	10.00	30-32	NC	Brine Water
Intermediate					FW/Cut
2	8-3/4"	9.00	30-32	NC	Brine
Production	6-1/8"	12.50	50-60	<10	OBM

Proposed Mud System:

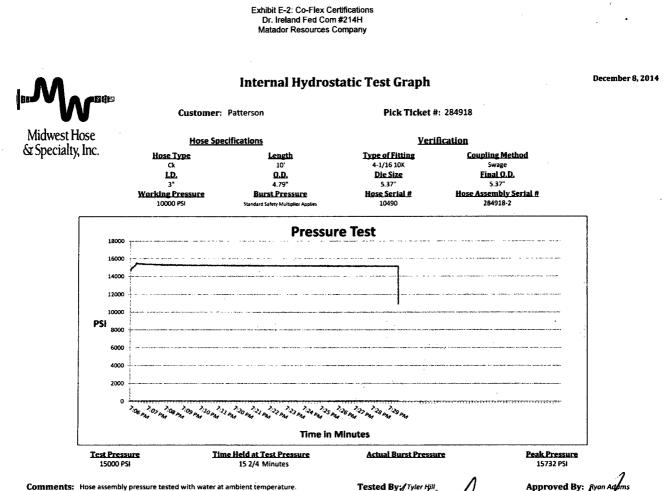
Drilling Operations Plan Dr. Ireland Fed Com #214H Matador Resources Company Sec. 19, 23S, 35E Lea County, NM

All necessary mud products for weight addition and fluid loss control will be on location at all times. Mud program subject to change due to hole conditions.

The Mud Monitoring System is an electronic Pason system satisfying requirements of Onshore Order 1.

Testing, Logging & Coring Program:

- Mud Logging Program: 2 man unit from 5400 TD
- Electric Logging Program: No electric logs are planned at this time. GR will be collected through the MWD tools from Inter. Csg to TD
- No DSTs or cores are planned at this time
- CBL w/ CCL from as far as gravity will let it fall to TOC


Potential Hazards:

No abnormal pressures or temperatures are expected. In accordance with Onshore Order 6, Matador does not anticipate that there will be enough H_2S from the surface to the Bone Spring formations to meet the BLM's minimum requirements for the submission of an " H_2S Drilling Operation Plan" or "Public Protection Plan" for the drilling and completion of this well. Since we have an H_2S safety package on all wells, attached is an " H_2S Drilling Operations Plan". Adequate flare lines will be installed off the mud/gas separator where gas may be flared safely. All personnel will be familiar with all aspects of safe operation of equipment being used

Estimated BHP: 6450 Estimated BHT: 180°

Construction and Drilling:

Road and location construction will begin after BLM approval of APD. Anticipated spud date as soon as approved. Drilling expected to take 35 days. If production casing is run an additional 30 days will be required to complete and construct surface facilities

* CAN

Approved By:

(

·•• ()

••• ••

Exhibit E-2: Co-Flex Certifications Dr. Ireland Fed Com #214H Matador Resources Company

۰ ؛

•

• •

	& Spec	est Hose cialty, Inc.	
10000000000000000000000000000000000000		tic Test Certificate	
General Inform		Hose Specific	ations
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K
Date Assembled	12/8/2014	Hose Grade	MUD
Location Assembled	ОКС	Hose Working Pressure	10000
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13
Customer Purchase Order #	260471	Hose I.D. (Inches)	3"
Assembly Serial # (Pick Ticket #)	287918-2	Hose O.D. (Inches)	5.30"
Hose Assembly Length	10'	Armor (yes/no)	YES
	Fit	tings	
End A		End B	
Stem (Part and Revision #)	R3.0X64W8	Stem (Part and Revision #)	R3.0X64WB
Stem (Heat #)	91996	Stem (Heat #)	91996
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
Connection (Part #)	4 1/16 10K	Connection (Part #)	4 1/16 10K
Connection (Heat #)		Connection (Heat #)	
Dies Used	5.3	7 Dies Used	5.3
	Hydrostatic Te	st Requirements	
Test Pressure (psi)	15,000	Hose assembly was tested w	vith ambient water
	15 1/2	temperature.	

.

. •

,

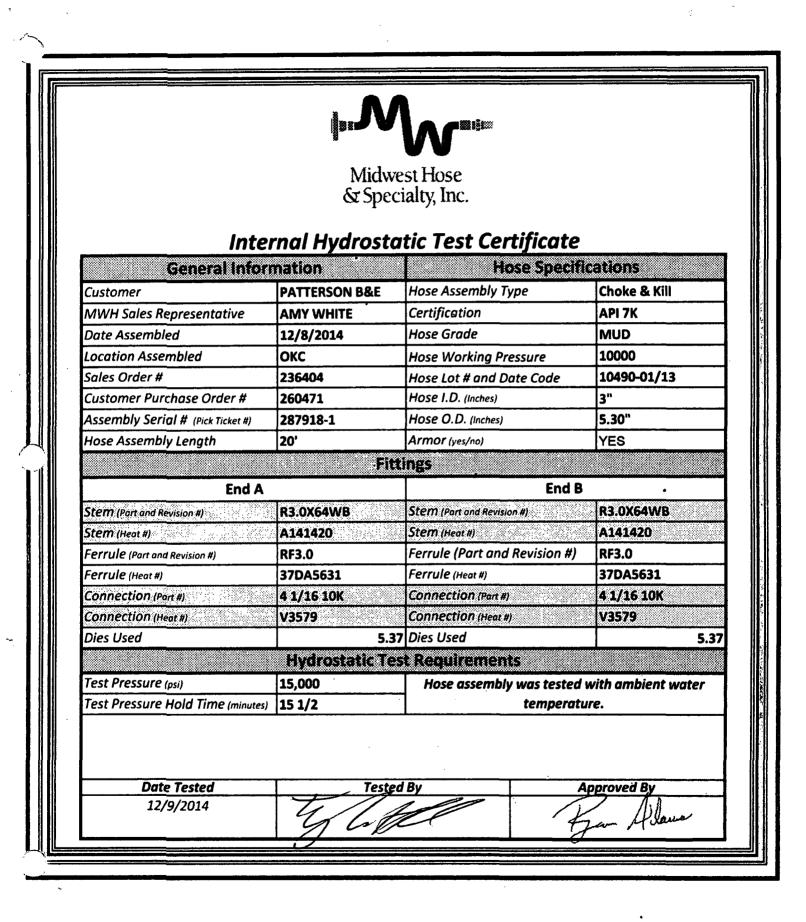
ī

•

۰.

.

	lidwest Hose	
&S	Specialty, Inc.	
Certificat	te of Conformity	
Customer: PATTERSON B&E	Customer P.O.# 260471	
Sales Order # 236404	Date Assembled: 12/8/2014	
Spe	ecifications	
Hose Assembly Type: Choke & Kill		
Assembly Serial # 287918-2	Hose Lot # and Date Code	10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi)	15000
We hereby certify that the above material suppli to the requirements of the purchase order and cu Supplier:		to be true according
Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	· · · · · · · · · · · · · · · · · · ·	
3312 S I-35 Service Rd		
3312 S I-35 Service Rd Oklahoma City, OK 73129	Date 12/9/201	


Exhibit E-2: Co²Flex Certifications Dr. Ireland, Fed, Com #214H Matador Resources Company ÷ December 9, 2014 **Internal Hydrostatic Test Graph 1**1123 Pick Ticket #: 284918 Customer: Patterson Midwest Hose & Specialty, Inc. <u>Verification</u> **Hose Specifications** • Type of Fitting 4-1/16 10K Hose Type Ck I.D. Length 20' **Coupling Method** Swage Final O.D. Q.D. Die Size 3" 4.77" 5.37" 5.40" Hose Assembly Serial # Working Pressure 10000 PSI Hose Serial # 10490 **Burst Pressure** . 284918-1 Standard Safety Multiplier Applie **Pressure Test** 18000 ----16000 14000 12000 14000 PSI 8000 6000 4000 2000 a 2.47 50 AND 2.51 42.57 42.53 AND 2.54 AND 2.55 AND 2.56 AND 13 **Time in Minutes** Peak Pressure 15893 PSI Test Pressure Actual Burst Pressure Time Held at Test Pressure 15000 PSI 15 2/4 Minutes

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By: Tyler Hill

Approved By: B Adr

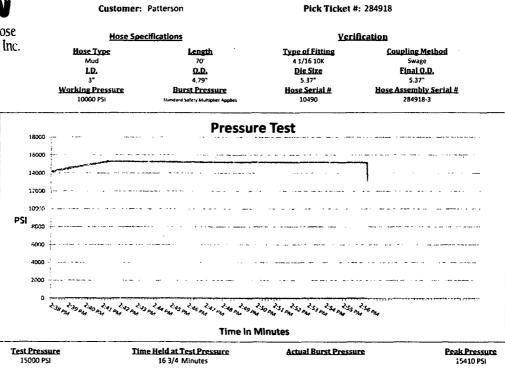
Exhibit E-2: Co-Flex Certifications Dr. Ireland Fed Com #214H Matador Resources Company

•

.

	fidwest Hose Specialty, Inc.
	•
Customer: PATTERSON B&E	te of Conformity Customer P.O.# 260471
Sales Order # 236404	Date Assembled: 12/8/2014
Sp	ecifications
Hose Assembly Type: Choke & Kill	
Assembly Serial # 287918-1	Hose Lot # and Date Code 10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
to the requirements of the purchase order and c Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd	ied for the referenced purchase order to be true according urrent industry standards.
Oklahoma City, OK 73129 Comments:	
	Date

Exhibit E-2: Co-Flex Certifications Dr. Ireland Fed Com #214H Matador Resources Company



· . ()

Internal Hydrostatic Test Graph

December 9, 201

)

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By Approved By: Ryan A

(

Exhibit E-2: Co-Flex Certifications Dr. Ireland Fed Com #214H Matador Resources Company

•

•

-

. -

•

•

	Midwe	est Hose	
	& Spec	ialty, Inc.	
Int	ernal Hydrosta	tic Test Certificate	
General Info	prmation	Hose Specif	ications
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K
Date Assembled	12/8/2014	Hose Grade	MUD
Location Assembled	ОКС	Hose Working Pressure	10000
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13
Customer Purchase Order #	260471	Hose I.D. (Inches)	3"
Assembly Serial # (Pick Ticket #)	287918-3	Hose O.D. (Inches)	5.23"
Hose Assembly Length	70'	Armor (yes/no)	YES
	Fitt	ings	
End /	4	End B	
Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
Stem (Heat #)	A141420	Stem (Heat #)	A141420
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
Connection (Pan #)	4 1/16 10K	Connection (Pan #)	4 1/16 10K
Connection (Heat #)		Connection (Heat #)	
Dies Used	5.37	Dies Used	5.3
	Hydrostatic Tes	t Requirements	
Test Pressure (psi)	15,000	Hose assembly was tested	with ambient water
Test Pressure Hold Time (manute	es) 16 3/4	temperat	ure.
Date Tested	Testec	I By	Approved By
12/9/2014			Jan Alama

•

.

.

0

. . 5

·. ' •

(B)	
	Midwest Hose
	Se Specialty, Inc.
Certific	ate of Conformity
Customer: PATTERSON B&E	Customer P.O.# 260471
Sales Order # 236404	Date Assembled: 12/8/2014
S	pecifications
Hose Assembly Type: Choke & Kill	
Assembly Serial # 287918-3	Hose Lot # and Date Code 10490-01/13
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000
to the requirements of the purchase order and Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	plied for the referenced purchase order to be true according current industry standards.
to the requirements of the purchase order and Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	
to the requirements of the purchase order and Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd	

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT SUPO Data Report

07/19/2018

រ៉ាតែ? ណាចនៃ

APD ID: 10400028893

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: DR IRELAND FED COM

Well Number: 214H Well Work Type: Drill

Submission Date: 03/30/2018

Show Final Text

Well Type: OIL WELL

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_34_S_20180214143930.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_33_S_20180214143929.PDF EP DR IRELAND FED COM ROAD EASEMENT 36 S 20180214143932.PDF EP DR IRELAND FED COM ROAD EASEMENT 24 S 20180214143927.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_25_S_20180214143928.PDF EP DR IRELAND FED COM ROAD EASEMENT 19 S 20180214155448.PDF EP_DR_IRELAND_FED_COM_ROAD_EASEMENT_35_S_20180214143930.PDF Existing Road Purpose: ACCESS, FLUID TRANSPORT

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? YES Existing Road Improvement Description: Caliche cap

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads	
Will new roads be needed? YES	
New Road Map:	
Project_Area_APD_Layout_20180226_20180226113622.jpg	
New road type: LOCAL	

Length: 1395

Width (ft.): 30

Max slope (%): 0

Max grade (%): 1

Army Corp of Engineers (ACOE) permit required? NO

Feet

ACOE Permit Number(s):

New road travel width: 14

Well Name: DR IRELAND FED COM

Well Number: 214H

New road access erosion control: Crowned and ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control
New road drainage crossing: OTHER

Drainage Control comments: No drainages present

Road Drainage Control Structures (DCS) description: Ditches on either side of road

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Existing_Well_Map_Slot_4_20180329095822.JPG

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description:

Well Name: DR IRELAND FED COM

Production Facilities map:

Location_Layout_20180329095846.pdf

44924p01_Facility_Layout_S4_20180329_20180329162542.jpg

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: DUST CONTROL, INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE CASING Describe type:

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: PRIVATE

Water source transport method: TRUCKING

Source transportation land ownership: PRIVATE

Water source volume (barrels): 180000

Source volume (gal): 7560000

Water source and transportation map:

Dr._Ireland_Water_Information_20180213161731.jpg

Water source comments:

New water well? NO

New Water Well Info

Well latitude: Well Longitude: Well datum: Well target aquifer: Est. depth to top of aquifer(ft): Est thickness of aquifer: Aquifer comments: Aquifer documentation: Well depth (ft): Well casing type: Well casing inside diameter (in.): Well casing outside diameter (in.): New water well casing? Used casing source: Drill material: Drilling method: Grout depth: Grout material: Casing length (ft.): Casing top depth (ft.):

Water source type: RECYCLED

Source longitude:

Well Number: 214H

Source volume (acre-feet): 23.200758

Well Name: DR IRELAND FED COM

Well Number: 214H

Well Production type:

Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Caliche from BLM approved source.

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY Disposal type description:

Disposal location description: Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? NO

Description of cuttings location

Well Number: 214H

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Cuttings area length (ft.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

Location_Layout_20180329105208.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: DR IRELAND FEDERAL

Multiple Well Pad Number: 4

Recontouring attachment:

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance (acres): 5.72	Well pad interim reclamation (acres): 1.58	Well pad long term disturbance (acres): 4.14
Road proposed disturbance (acres): 0	Road interim reclamation (acres): 0	Road long term disturbance (acres): 0
Powerline proposed disturbance (acres): 0	Powerline interim reclamation (acres): 0	Powerline long term disturbance (acres): 0
Pipeline proposed disturbance	Pipeline interim reclamation (acres): 0	
(acres): 0 Other proposed disturbance (acres): (Other interim reclamation (acres): 0	(acres): 0 Other long term disturbance (acres): 0
Total proposed disturbance: 5.72	Total interim reclamation: 1.58	Total long term disturbance: 4.14

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the last well on the pad. Disturbed areas will be contoured to match pre-construction grades. Once the last well is plugged, then the rest of the pad

Well Name: DR IRELAND FED COM

Well Number: 214H

will be similarly reclaimed within 6 months of plugging.

Topsoil redistribution: Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements. **Soil treatment:** None planned.

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Existing Vegetation Community at the road attachment: Existing Vegetation Community at the pipeline: Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed type: Seed name:

Source name:

Source phone:

Seed cultivar:

Seed use location:

Seed source:

Source address:

Well Number: 214H

PLS pounds per acre:

Proposed seeding season:

Seed Summary		Total pounds/Acre:
Seed Type	Pounds/Acre	

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name:

Phone:

Email:

Last Name:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Pit closure description: No pit

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD Describe: Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office:

Disturbance type: EXISTING ACCESS ROAD

Well Number: 214H

NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Describe:	
Surface Owner: PRIVATE OWNERSHIP,STATE GOVERNMENT	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office: CARLSBAD, NM	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland: USFS	R

USFS Ranger District:

•

Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office:

Well Number: 214H

BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USI S Region.	
USFS Forest/Grassland:	USFS Ranger District:

Section 12 - Other Information

Right of Way needed? NO

ROW Type(s):

Use APD as ROW?

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

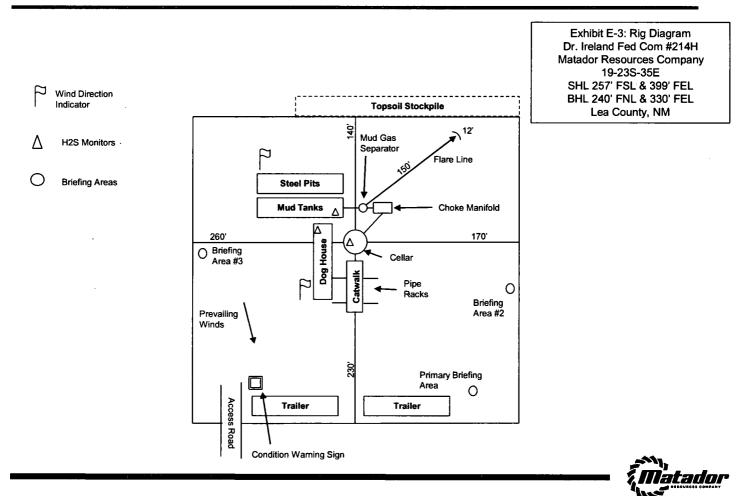
Previous Onsite information: Onsite conducted for four slots and water tank with Vance Wolf on 10/5/2017.

Other SUPO Attachment

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO


Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

PWD disturbance (acres):

19 <u>-</u> 19 - 19

Rig Diagram

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type: Injection well number: Assigned injection well API number? Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: Underground Injection Control (UIC) Permit? UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001079

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Bond Info Data Report

07/19/2018

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

.

ø

Reclamation bond rider amount:

Additional reclamation bond information attachment: