(June 2015)

Carlsbad Field Office

FORM APPROVED Form 3160-3 OMB No. 1004-0137 Expires: January 31, 2018 UNITED STATES DEPARTMENT OF THE INTERIOR 5. Lease Serial No. NMNM086150 **BUREAU OF LAND MANAGEMENT** CEIVED If Indian, Allotee or Tribe Name APPLICATION FOR PERMIT TO DRILL OR REENTE 7. If Unit or CA Agreement, Name and No. **✓** DRILL REENTER Ia. Type of work: 1b. Type of Well: Oil Well Gas Well Other 8. Lease Name and Well No. Hydraulic Fracturing Ic. Type of Completion: ✓ Single Zone Multiple Zone BRAD DYER FEDERAL 226H 2. Name of Operator 9 API Well No MATADOR PRODUCTION COMPANY Phone No (include area code) 3a. Address (972)371-5200 WILDCAT / WOLFCAMP 5400 LBJ Freeway, Suite 1500 Dallas TX 75240 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and SEC 35 / T22S / R32E / NMP At surface | SESW / 330 FSL / 2189 FWL / LAT 32.3418693 / LONG -103.6468955 At proposed prod. zone NENW / 240 FNL / 2310 FWL / LAT 32.3548235 / LONG -103.6465087 12. County or Parish 13 State 14. Distance in miles and direction from nearest town or post office* 15. Distance from proposed* 16 No of acres in lease 17. Spacing Unit dedicated to this well 330 feet location to nearest 320 320 property or lease line. ft (Also to nearest drig, unit line, if any) 18. Distance from proposed location* 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed. 2298 feet 12590 feet / 17334 feet FED: NMB001079 applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 3732 feet 06/01/2018 90 days 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see Item 20 above). 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the BLM. Name (Printed Typed) 25. Signature (Electronic Submission) Brian Wood / Ph: (505)466-8120 04/11/2018 Title President Date Approved by (Signature) Name (Printed/Typed) Cody Layton / Ph: (575)234-5959 08/23/2018 (Electronic Submission) Title Office CARLSBAD Assistant Field Manager Lands & Minerals

Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.

Conditions of approval, if any, are attached

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

proval Date: 08/23/2018

501 Rec 09/12

*(Instructions on page 2)

(Continued on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137). Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

1. SHL: SESW / 330 FSL / 2189 FWL / TWSP: 22S / RANGE: 32E / SECTION: 35 / LAT: 32.3418693 / LONG: -103.6468955 (TVD: 0 feet, MD: 0 feet) PPP: SESW / 330 FSL / 2189 FWL / TWSP: 22S / RANGE: 32E / SECTION: 35 / LAT: 32.3418693 / LONG: -103.6468955 (TVD: 0 feet, MD: 0 feet) BHL: NENW / 240 FNL / 2310 FWL / TWSP: 225 / RANGE: 32E / SECTION: 35 / LAT: 32.3548235 / LONG: -103.6465087 (TVD: 12590 feet, MD: 17334 feet)

BLM Point of Contact

Name: Sipra Dahal

Title: Legal Instruments Examiner

Phone: 5752345983 Email: sdahal@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

(Partification Data Report 08/24/2018

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Brian Wood		Signed on: 04/11/2018
Title: President		
Street Address: 37 Verano Loop		
City: Santa Fe	State: NM	Zip : 87508
Phone: (505)466-8120		
Email address: afmss@permitswes	st.com	
Field Representative		
Representative Name:		
Street Address:		
City:	State:	Zip:
Phone:		
Email address:		

APD ID: 10400029353

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Repor

Submission Date: 04/11/2018

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: BRAD DYER FEDERAL

Well Type: CONVENTIONAL GAS WELL

Well Number: 226H

Well Work Type: Drill

Show Final Text

Section 1 - General

APD ID:

10400029353

Tie to previous NOS?

Submission Date: 04/11/2018

BLM Office: CARLSBAD

User: Brian Wood

Title: President

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM086150

Lease Acres: 320

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? YES

APD Operator: MATADOR PRODUCTION COMPANY

Operator letter of designation:

Operator Info

Operator Organization Name: MATADOR PRODUCTION COMPANY

Operator Address: 5400 LBJ Freeway, Suite 1500

Operator PO Box:

Zip: 75240

Operator City: Dallas

State: TX

Operator Phone: (972)371-5200

Operator Internet Address: amonroe@matadorresources.com

Section 2 - Well Information

Well in Master Development Plan? NO

Mater Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: BRAD DYER FEDERAL

Well Number: 226H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: WILDCAT

Pool Name: WOLFCAMP

Is the proposed well in an area containing other mineral resources? NATURAL GAS, CO2, OIL

Well Name: BRAD DYER FEDERAL

Well Number: 226H

Describe other minerals:

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name: BRAD Number: 202H

DYER

Number of Legs: 1

Well Class: HORIZONTAL
Well Work Type: Drill

Well Type: CONVENTIONAL GAS WELL

Describe Well Type: Well sub-Type: INFILL

Describe sub-type:

Distance to town: 29 Miles

Distance to nearest well: 2298 FT

Distance to lease line: 330 FT

Reservoir well spacing assigned acres Measurement: 320 Acres

Well plat:

BD 226H Plat 20180411143447.pdf

Well work start Date: 06/01/2018

Duration: 90 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number: 19642

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
SHL Leg #1	330	FSL	218 9	FWL	228	32E	35	Aliquot SESW	32.34186 93	- 103.6468 955	LEA		MEXI CO	F	NMNM 086150	373 2	0	0
KOP Leg #1	330	FSL	218 9	FWL	228	32E	35	Aliquot SESW	32.34186 93	- 103.6468 955	LEA	NEW MEXI CO	145	1	NMNM 086150	- 826 2	120 03	119 94
PPP Leg #1	330	FSL	218 9	FWL	228	32E	35	Aliquot SESW	32.34186 93	- 103.6468 955	LEA		NEW MEXI CO	!	NMNM 086150	373 2	0	0

Well Name: BRAD DYER FEDERAL Well Number: 226H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
EXIT Leg #1	240	FNL	231 0	FWL	228	32E	35	Aliquot NENW	32.35482 35	- 103.6465 087	LEA	ľ	NEW MEXI CO			- 885 8	173 34	125 90
BHL Leg #1	240	FNL	231 0	FWL	228	32E	35	Aliquot NENW		- 103.6465 087	LEA	l	NEW MEXI CO		NMNM 086150	- 885 8	173 34	125 90

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

APD ID: 10400029353 Submission Date: 04/11/2018

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: BRAD DYER FEDERAL Well Number: 226H

Well Type: CONVENTIONAL GAS WELL Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

ormation		}	True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1		3732	Ö	Ö	OTHER : Quaternary	USEABLE WATER	No
2	RUSTLER ANHYDRITE	2542	1189	1189		NONE	No
3	SALADO	2064	1668	1668	SALT	NONE	No
4	BASE OF SALT	-1201	4933	4942		NONE	No
5	BELL CANYON	-1215	4947	4956	SANDSTONE	NATURAL GAS,CO2,OIL	No
6	BRUSHY CANYON	-3401	7133	7142	SANDSTONE	NATURAL GAS,CO2,OIL	No
7	BONE SPRING	-4973	8705	8714	LIMESTONE	NATURAL GAS,CO2,OIL	No
8	BONE SPRING 1ST -6076		9808	9817	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
9	BONE SPRING 1ST	-6097	9829	9838	SANDSTONE	NATURAL GAS,CO2,OIL	No
10	BONE SPRING 2ND	-6431	10163	10172	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
11	BONE SPRING 2ND	-6788	10520	10530	SANDSTONE	NATURAL GAS,CO2,OIL	No
12	BONE SPRING 3RD	-7237	10969	10978	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
13	BONE SPRING 3RD	-8022	11754	11764	SANDSTONE	NATURAL GAS,CO2,OIL	No
14	WOLFCAMP	-8311	12043	12052	OTHER : A Carbonate	NATURAL GAS,CO2,OIL	No
15	WOLFCAMP	-8462	12194	12207	OTHER : A Fat	NATURAL GAS,CO2,OIL	No
16	WOLFCAMP	-8758	12490	12603	OTHER : B	NATURAL GAS,CO2,OIL	Yes

Section 2 - Blowout Prevention

Brad Dyer Fed Com	30-015-	UL-N Sec 35 T22S	330' FSL	+/- 2,000	~30 days	Flare ~30 days on
#222H	****	R32E	2189' FWL			flowback before turn
						into TB. Time est.
						depends on sales
						connect and well
						cleanup.

Gathering System and Pipeline Notification

The wells will be connected to production facilities after flowback operations are complete so long as the gas transporter system is in place. The gas produced from the production facilities should be connected to a Lucid Energy Delaware, LLC gathering system. It will require ~6,000' of pipeline to connect each facility to the Lucid Energy Delaware, LLC gathering system. Matador Production Company periodically provides a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future to Lucid Energy Delaware, LLC. If changes occur that will affect the drilling and completion schedule, Matador Production Company will notify Lucid Energy Delaware, LLC. Additionally, the gas produced from the well will be processed at a processing plant further downstream and, although unanticipated, any issues with downstream facilities could cause flaring at the wellhead. The actual flow of the gas will be based on compression operating parameters and gathering system pressures measured when the well starts producing.

Flowback Strategy

After the fracture treatment/completion operations (flowback), the well will be produced to temporary production tanks and the gas will be flared or vented. During flowback, the fluids and sand content will be monitored. If the produced fluids contain minimal sand, then the well will be turned to production facilities. The gas sales should start as soon as the well starts flowing through the production facilities, unless there are operational issues on the midstream system at that time. Based on current information, it is Matador's belief the system will be able to take the gas upon completion of the well.

Safety requirements during cleanout operations may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Operating a generator will only utilize a portion of the produced gas and the remainder of gas would still need to be flared.
 - O Power Company has to be willing to purchase gas back and if they are willing they require a 5 year commitment to supply the agreed upon amount of power back to them. With gas decline rates and unpredictability of markets it is impossible to agree to such long term demands. If the demands are not met then operator is burdened with penalty for not delivering.
- Compressed Natural Gas On lease
 - o Compressed Natural Gas is likely to be uneconomic to operate when the gas volume declines.
- NGL Removal On Jease
 - o NGL Removal requires a plant and is expensive on such a small scale rendering it uneconomic and still requires residue gas to be flared.

Well Name: BRAD DYER FEDERAL

Well Number: 226H

Requesting Variance? YES

Variance isquest Alasderrequese a valence in duit inswell using a noder the baptern the ESP and chake meninfol Confidence for proposed codex has is anglied. Manuscruter decement equicular has no les anchored. At he ensuita Less bander of the a factore of equal or higher rangesting a variance to media escal head for sound his laterned are (2) est to 250 per lev and 5000 per hyp. Mendor is requesting a variance to media escal head for sound his laterned are (2) 35°) escap, the cost of number a post of the level of the second to 250 permit and permits bande dalling school descap will be 250 per lev and 2000 per high. Annular will be bested to 250 permit and permits bande dalling eponted. Adiogram of the speed licent is sticked. Esting Procedure: Pressure tests will be conducted before dilling our from under all resing stings. BUP will be inspected nd opciald as required in Ondrie Onder 2. Kely code and sub-coupped with end opening value sized to districtuil pipe and calcus will be available on the ig ther in the open postion. A datel poly company will accuse DOFs, where some author cating, a minimum GM BOPE system will be usualled. Tost pressures will be 250 pouled and 5000 particle with the author being isoset to 250 poulow and 2500 pouligh before diffing below suitered on the event fire the rig dates itulipie wels to the put did the BOPs for ione welth are string inclined suit from , a full BOP left will be parknived When the did fourne full the Smilloff Coystamils is installed. When earling Z-548° x, 7° Casing, pressure tests will be model to in pei kov sad 410 000 pei histi. Asmulier will littici in 250 pei kove spil inder inde

Choke Diagram Attachment:

BD 226H Choke 10M 20180712144339.pdf

BOP Diagram Attachment:

BD_226H_BOP_20180411145349.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1235	0	1235	3732		1235	J-55	l .	i .	1.12 5	1.12 5	DRY	1.8	DRY	1.8
	INTERMED IATE	8.75	7.625	NEW	API	Y	0	4710	0	4562	3732		4710	P- 110			1.12 5	1.12 5	DRY	1.8	DRY	1.8
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	5010	0	4870	3732		5010	J-55		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
4	PRODUCTI ON	6.12 5	5.5	NEW	API	Y	0	11800	0	11791	3732		11800	P- 110			1.12 5	1.12 5	DRY	1.8	DRY	1.8

Well Name: BRAD DYER FEDERAL

Well Number: 226H

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
	INTERMED IATE	8.75	7.625	NEW	API	Y	4710	11900	4562	11895			7190	P- 110		OTHER - VAM HTF- NR	1.12 5	1.12 5	DRY	1.8	DRY	1.8
	INTERMED IATE	8.75	7.0	NEW	API	Y	11900	12703	11895	12387			803	P- 110		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
	PRODUCTI ON	6.12 5	4.5	NEW	API	Y	11800	17334	11791	12590			5534	P- 110				1.12 5	DRY	1.8	DRY	1.8

Casing Attachments

Casing ID: 1

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BD_226H_Casing_Design_Assumptions_20180411150506.pdf

Casing ID: 2

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

 $BD_226H_Casing_Design_Assumptions_20180411150706.pdf$

Casing Design Assumptions and Worksheet(s):

BD_226H_Casing_Design_Assumptions_20180411150721.pdf

Well Name: BRAD DYER FEDERAL

Well Number: 226H

Casing Attachments

Casing ID: 3

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

BD_226H_Casing_Design_Assumptions_20180411150614.pdf

Casing ID: 4

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

5.5in_TXP_Casing_Spec_20180411151135.pdf

Casing Design Assumptions and Worksheet(s):

BD_226H_Casing_Design_Assumptions_20180411151305.pdf

Casing ID: 5

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

7.625in_VAM_Casing_Spec_20180411150902.pdf

Casing Design Assumptions and Worksheet(s):

BD_226H_Casing_Design_Assumptions_20180411151254.pdf

Well Name: BRAD DYER FEDERAL Well Number: 226H

Casing Attachments

Casing ID: 6

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

BD_226H_Casing_Design_Assumptions_20180411151027.pdf

Casing Design Assumptions and Worksheet(s):

BD_226H_Casing_Design_Assumptions_20180411151041.pdf

Casing ID: 7

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

4.5in_P110_ICY_Casing_Spec_20180411151805.pdf

Casing Design Assumptions and Worksheet(s):

BD_226H_Casing_Design_Assumptions_20180411151241.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1235	700	1.82	12.8	1274	100	Class C	Bentonite + 2% CaCl2 + 3% NaCl + LCM
SURFACE	Tail		0	1235	400	1.38	14.8	552	100	Class C	5% NaCl + LCM
INTERMEDIATE	Lead		0	4710	617	2.36	11.5	1456	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		0	4710	232	1.38	13.2	320	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		0	5010	1070	2.13	12.6	2279	100	Class C	+ Bentonite + 1% CaCl2 + 8% NaCl + LCM

Well Name: BRAD DYER FEDERAL

Well Number: 226H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Tail		0	5010	500	1.38	14.8	690	100	Class C	5% NaCl + LCM
PRODUCTION	Lead		0	1180 0	0	0	0	0	0	None	None
PRODUCTION	Tail		0	1180 0	540	1.17	15.8	632	25	Class H	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		4710	1190 0	617	2.36	11.5	1456	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		4710	1170 0	232	1.38	13.2	320	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		1190 0	1270 3	617	2.36	11.5	1456	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		1170 0	1262 4	232	1.38	13.2	320	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Lead		1180 0	1733 4	0	0	0	0	0	None	None
PRODUCTION	Tail		1180 0	1773 4	540	1.17	15.8	632	25	Class H	Fluid Loss + Dispersant + Retarder + LCM

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions.

Describe the mud monitoring system utilized: An electronic Pason mud monitoring system complying with Onshore Order 1 will be used.

Circulating Medium Table

	op Depth	ottom Depth	hud Type	lin Weight (Ibs/gal)	lax Weight (lbs/gal)	ensity (lbs/cu ft)	iel Strength (lbs/100 sqft)	Į.	riscosity (CP)	Salinity (ppm)	iltration (cc)	dditional Characteristics
1	မ	B	ı́ ₹	Ξ	E .	ے ا	Gel	古	Ë	Se	運	Pγ

Well Name: BRAD DYER FEDERAL

Well Number: 226H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1235	OTHER : Fresh water spud	8.3	8.3							
1235	5010	OTHER : Brine water	10	10							
5010	1207 3	OTHER : Fresh water & cut brine	9	9							
1207 3	1733 4	OIL-BASED MUD	12.5	12.5						· -	

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A 2-person mud logging program will be used from 12,703' to TD. No electric logs are planned at this time. GR will be collected through the MWD tools from intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to TOC.

List of open and cased hole logs run in the well:

CBL,GR

Coring operation description for the well:

No core or drill stem test is planned.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7600

Anticipated Surface Pressure: 4830.2

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

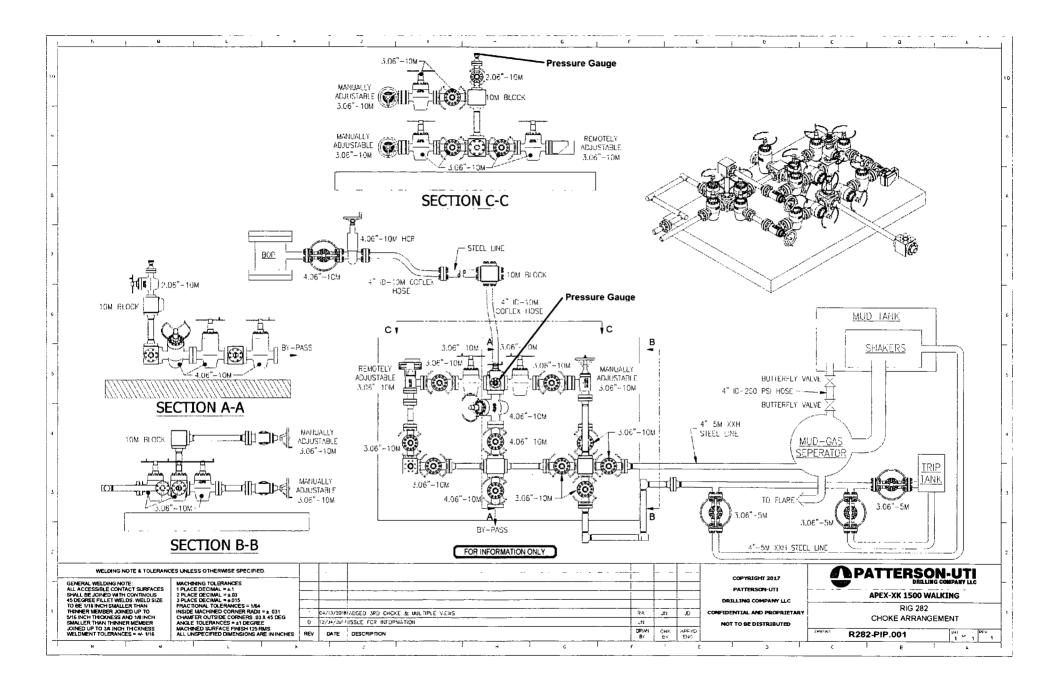
Hydrogen sulfide drilling operations plan:

BD_226H_H2S_Plan_20180411152353.pdf

Well Name: BRAD DYER FEDERAL Well Number: 226H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:


BD_226H_Horizontal_Drill_Plan_20180411145301.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

BD_226H_Speedhead_Specs_20180411152413.pdf
BD_226H_General_Drill_Plan_Revised_10MChoke_20180712144359.pdf
10M_Well_Control_Plan_20180712144411.pdf

Other Variance attachment:

PATTERSON-UTI # PS2-628

STYLE: New Shaffer Spherical

BORE 13 5/8" PRESSURE 5,000

HEIGHT: 48 ½" WEIGHT: 13,800 lbs

PATTERSON-UTI # PC2-128

STYLE: New Cameron Type U

BORE 13 5/8" PRESSURE 10,000

RAMS: TOP 5" Pipe BTM Blinds

HEIGHT: 66 5/8" WEIGHT: 24,000 lbs

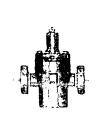
Length 40" Outlets 4" 10M

DSA 4" 10M x 2" 10M

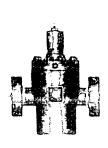
PATTERSON-UTI # PC2-228

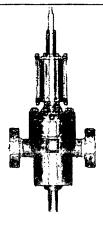
STYLE: New Cameron Type U

BORE 13 5/8" PRESSURE 10,000


RAMS: 5" Pipe

HEIGHT: 41 5/8" WEIGHT: 13,000 lbs


WING VALVES



2" Check Valve

2" Manual Valve

2" Manual Valve

4" Manual Valve

4" Hydraulic Valve

December 8, 2014

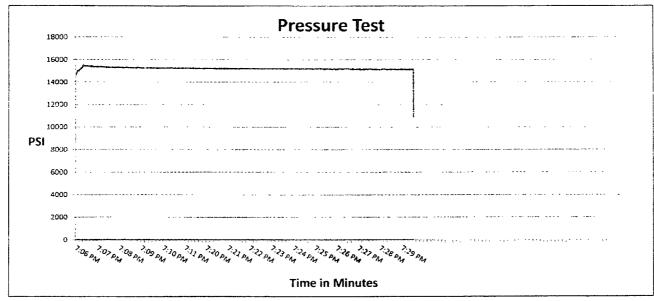
Internal Hydrostatic Test Graph

Customer: Patterson

Pick Ticket #: 284918

Hose Specifications

Hose Type
Ck
LD.
3"
Working Pressure


10000 PSI

Length
10'
Q.D.
4.79"
Burst Pressure
Standard Safety Multiplier Applies

<u>Verification</u>

Type of Fitting 4-1/16 10K Die Size 5.37" Hose Serial # 10490 Coupling Method
Swage
Final O.D.
5.37"
Hose Assembly Serial #

284918-2

Test Pressure 15000 PSI Time Held at Test Pressure 15 2/4 Minutes Actual Burst Pressure

Peak Pressure 15732 PSI

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By:/ Tyler Hil

Approved By: Ryan Adams

Midwest Hose & Specialty, Inc.

General Inford	nation	Hose Specific	ations
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K
Date Assembled	12/8/2014	Hose Grade	MUD
Location Assembled	ОКС	Hose Working Pressure	10000
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13
Customer Purchase Order #	260471	Hose I.D. (Inches)	3"
Assembly Serial # (Pick Ticket #)	287918-2	Hose O.D. (Inches)	5.30"
Hose Assembly Length	10'	Armor (yes/no)	YES
	Fitt	ngs	
End A		End B	
Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
Stem (Heat #)	91996	Stem (Heat #)	91996
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
Connection (Part #)	4 1/16 10K	Connection (Port #)	4 1/16 10K
Connection (Heat#)		Connection (Heat #)	
Dies Used		Dies Used	5.3
	Hydrostatic Tes	t Requirements	
Test Pressure (psi)	15,000	Hose assembly was tested w	vith ambient water
	15 1/2	temperatur	e.

Midwest Hose & Specialty, Inc.

		Certificate	of Conformity	
Customer:	PATTERSON E	s&E	Customer P.O.# 260471	
Sales Order#	236404		Date Assembled: 12/8/2014	
		Spec	ifications	
Hose Assen	nbly Type:	Choke & Kill		
Assembly	Serial #	287918-2	Hose Lot # and Date Code	10490-01/13
Hose Working	Pressure (psi)	10000	Test Pressure (psi)	15000

We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards.

Supplier:

Midwest Hose & Specialty, Inc.

3312 S I-35 Service Rd

Oklahoma City, OK 73129

Comments:

Approved By	Date	
Fran Alama	12/9/2014	

December 9, 2014

Internal Hydrostatic Test Graph

Customer: Patterson

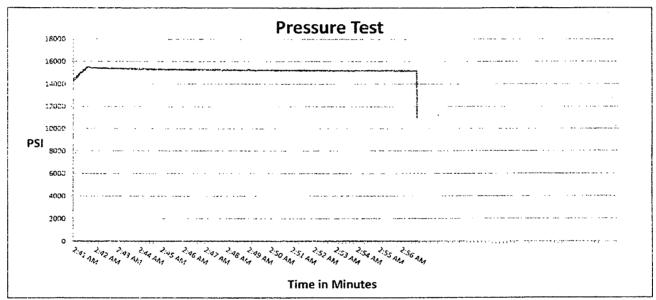
Pick Ticket #: 284918

Hose Specifications

Hose Type Ck LD. Working Pressure

10000 PSI

Length O.D. 4.77" **Burst Pressure** Standard Safety Multiplier Applier


Type of Fitting 4-1/16 10K Die Size 5.37"

Hose Serial #

Verification

Coupling Method Swage Final O.D. 5.40"

Hose Assembly Serial # 284918-1

Test Pressure 15000 PSI

Time Held at Test Pressure 15 2/4 Minutes

Actual Burst Pressure

Peak Pressure 15893 PSI

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By: Tyler Hill

Approved By: Ryan Adams

Midwest Hose & Specialty, Inc.

Internal Hydrostatic Test Certificate

and the state of t	Hose Specifications			
PATTERSON B&E	Hose Assembly Tyj		Choke & Kill	
AMY WHITE	Certification	<u> </u>	API 7K	
12/8/2014	Hose Grade		MUD	
ОКС	Hose Working Pressure		10000	
236404			10490-01/13	
260471	Hose I.D. (Inches)		3"	
287918-1	Hose O.D. (Inches)		5.30"	
20'	Armor (yes/no)		YES	
Fitti	ngs	1000		
	End B			
R3.0X64WB	Stem (Part and Revision #)		R3.0X64WB	
A141420			A141420	
RF3.0	Ferrule (Part and F	Revision #)	RF3.0	
37DA5631	Ferrule (Heat #)	······································	37DA5631	
4 1/16 10K	Connection (Part #)		4 1/16 10K	
V3579	Connection (Heat #)		V3579	
5.37	Dies Used		5.37	
Hydrostatic Tes	Requirements			
15,000	Hose assembly	was tested w	ith ambient water	
15 1/2	•	temperature	2.	
	12/8/2014 OKC 236404 260471 287918-1 20' Fitti R3.0X64WB A141420 RF3.0 37DA5631 41/1610K V3579 5.37 Hydrostatic Tesi	12/8/2014 Hose Grade OKC Hose Working Pres 236404 Hose Lot # and Da 260471 Hose I.D. (Inches) 287918-1 Hose O.D. (Inches) 20' Armor (yes/no) Fittings R3.0X64WB Stem (Part and Revision A141420 Stem (Heat #) RF3.0 Ferrule (Part and F 37DA5631 Ferrule (Heat #) 41/1610K Connection (Part #) V3579 Connection (Heat #) 5.37 Dies Used Hydrostatic Test Requirements	12/8/2014 Hose Grade OKC Hose Working Pressure 236404 Hose Lot # and Date Code 260471 Hose I.D. (Inches) 287918-1 Hose O.D. (Inches) 20' Armor (yes/no) Fittings End B R3.0X64WB Stem (Part and Revision #) A141420 Stem (Heat #) RF3.0 Ferrule (Part and Revision #) 37DA5631 Ferrule (Heat #) 41/16 10K Connection (Pan #) V3579 Connection (Heat #) 5.37 Dies Used Hydrostatic Test Requirements 15,000 Hose assembly was tested w	

Midwest Hose & Specialty, Inc.

Customer: PATTERSON	ustomer: PATTERSON B&E		Customer P.O.# 260471 Date Assembled: 12/8/2014		
Sales Order # 236404		Date Assembled: 12/8/2014			
	Spe	eifications = = = =			
Hose Assembly Type:	Choke & Kill				
Assembly Serial #	287918-1	Hose Lot # and Date Code	10490-01/13		
Hose Working Pressure (psi)	10000	Test Pressure (psi)	15000		

We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards.

Supplier:

Midwest Hose & Specialty, Inc.

经验的企业的证据,如此正式编制的企业

3312 S I-35 Service Rd

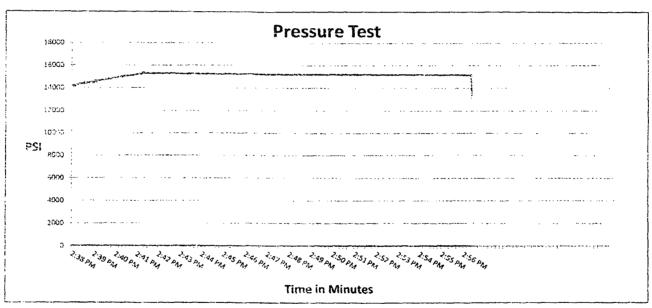
Oklahoma City, OK 73129

Comments:

Date
12/9/2014

1

Internal Hydrostatic Test Graph Customer: Patterson


Pick Ticket #: 284918

Hose Specifications

Hose Type	Length
Mud	70'
<u>I.D.</u>	Q.D ,
3"	4.79"
Working Pressure	Burst Pressure
10000 PSI	Standard Salub: 15 Johnston Louis

Verification

Type of Fitting	Coupling Method
4 1/16 10K	Swage
Die Size	Final O.D.
5.37"	5.37"
Hose Serial #	Hose Assembly Serial #
10490	284918-3

Test Pressure 15000 PSI

Midwest Hose

& Specialty, Inc.

Time Held at Test Pressure 16 3/4 Minutes

Actual Burst Pressure

Peak Pressure 15410 PSI

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By:

Approved By: Ryan Adams

Midwest Hose & Specialty, Inc.

General Inford	nation	Hose Specific	ations	
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill	
MWH Sales Representative	AMY WHITE	Certification	API 7K	
Date Assembled	12/8/2014	Hose Grade	MUD	
Location Assembled	ОКС	Hose Working Pressure	10000	
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13	
Customer Purchase Order #	260471	Hose I.D. (Inches)	3"	
Assembly Serial # (Pick Ticket #)	287918-3	Hose O.D. (Inches)	5.23"	
Hose Assembly Length	70'	Armor (yes/no)	YES	
	Fitt	ings		
End A		End B		
Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB	
Stem (Heol #)	A141420	Stem (Heo! #)	A141420	
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0	
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631	
Connection (Part #)	4 1/16 10K	Connection (Part #)	4 1/16 10K	
Connection (Heat #)		Connection (Heat #)		
Dies Used	5.37	Dies Used	5.3	
	Hydrostatic Tes	t Requirements		
Test Pressure (psi)	15,000	Hose assembly was tested w	ith ambient water	
reat ricabure (psi)	1 4			

Midwest Hose & Specialty, Inc.

Customer: PATTERSON E	3&E	Customer P.O.# 260471	
Sales Order # 236404		Date Assembled: 12/8/2014	
	Spe	cifications	
Hose Assembly Type:	Choke & Kill		
Hose Assembly Type: Assembly Serial #	Choke & Kill 287918-3	Hose Lot # and Date Code	10490-01/13

We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards.

Supplier:

Midwest Hose & Specialty, Inc.

3312 S I-35 Service Rd

Oklahoma City, OK 73129

Comments:

Approved By	Date
Fran Alaus	12/9/2014

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft
 with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a
 more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF₁=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

December 31 2015

Size: 4.500 in. **Wall**: 0.290 in.

Weight: 13.50 lbs/ft

Grade: P110-ICY Min. Wall Thickness: 87.5 %

Connection: TenarisXP® BTC

Casing/Tubing: CAS

Coupling Option: REGULAR

Nominal OD	4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.
Nominal ID	3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A
Plain End Weight	13.05 lbs/ft				
Body Yield Strength	479 x 1000 lbs	Internal Yield	14100 psi	SMYS	125000 psi
Collapse	11620 psi		1		
Chilical Section Area	3.636 Sq. In.	inreads per in.	5.00	wake-op Loss	4.010 III.
Connection OD	5.000 in.	Coupling Length	9.075 in.	Connection ID	3.908 in.
Critical Section Area	3.836 sq. in.	Threads per in.	5.00	Make-Up Loss	4.016 in.
Tension Efficiency	100 %	Joint Yield Strength	479 x 1000 lbs	Internal Pressure Capacity ⁽¹⁾	14100 psi
Tension Efficiency Structural Compression Efficiency	100 %	Joint Yield Strength Structural Compression Strength	479 x 1000 lbs 479 x 1000 lbs		·
Structural Compression		Structural		Capacity ⁽¹⁾ Structural	14100 psi 127 °/100 f
Structural Compression Efficiency External Pressure	100 %	Structural		Capacity ⁽¹⁾ Structural	·

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B

1	2.516.3	F ∮	1 %		1	CP.
	OD 🐫	Weight	Wall Tha	Grade	API Drift	Connection
	7 5/8 in.	29.70 lb/ft	0.375 in.	P110 EC	6.750 in.	VAM® HTF NR
1,		\$4. 图 运 算经济的			J	

PIPE PROPE	RTIES	
Nortinal OD	Ž.625. lg.	
Nominat ID	6.875 in.	
Nominal Gross Section Area	8.54½ sqin	
Grade Type	Enhanced API	
Min: Yield Strength	125 ksj:	
Max. Yield Strength	140 ksi	
Mm Ultimate Tensile Strength:	135; ksi	
Tensile Yield Strength	1 068 klb	
Internal Yield Pressure	10) 760) <u>ps</u> i	
Collapse pressure	7 360 psi	

CONNECTION PRO	
Connection Type	Premium Integral Flus
Connection OD (nom)	7.701 in.
Gongeoffon (Dikingon)	6,782 in.
Make-Up Loss	4.657 in.
Gritical Gross Section	4.97⁄1 sqin.
Tension Efficiency	58 % of pipe
Gomptession-Efficiency	72.7 % of pipe
Compression Efficiency with Sealability	34.8 % of pipe
Înternal Pressure/Efficiency	100) % of pige
External Pressure Efficiency	100 % of plps

CONNECTION PER	ORMANCES
Tensile, Yield Strength	619 Kib
Compression Resistance	778 klb
Gompression with Stalability	37/24 k(b)
Internal Yield Pressure	10 760 psi
external Pressure Resistance	7 360 ⁾ psj)
Max. Bending	44 º/100ft
Max Bending with Sealability	17 %100ft

TORQUE VALUES	
Mini, Makerupitorque	9 600) rt.1b
Opti. Make-up torque	11 300 ft.lb
Max. Make up torque	13,000 (talb
Max. Torque with Sealability	58 500 ft.lb
Mas. Torsional/Value:	73\000; ft-Jb

VAM® HTF^{**} (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

Other Connection Data Sheets are available at www.vamservices.com

Vallourec Group

For the latest performance data, always visit our website: www.tenaris.com

July 15-2015

Size: 5.500 in. **Wall**: 0.361 in.

Weight: 20.00 lbs/ft

Grade: P110-IC

Min. Wall Thickness: 87.5 %

Connection:	TenarisXP™	втс

Casing/Tubing: CAS
Coupling Option: REGULAR

		GEOMET	RY		
Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
Plain End Weight	19.83 lbs/ft				
		PERFORM	ANCE		
Body Yield Strength	641 × 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi
Collapse	12100 psi				
					
	TEI	NARISXP™ BTC CO		ATA	
		GEOMET			
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.
Critical Section Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
		PERFORM	ANCE		
Tension Efficiency	100 %	Joint Yield Strength	641 x 1000	Internal Pressure Capacity ⁽¹⁾	12630 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	641 x 1000	Structural Bending ^(Ž)	92 °/100 fi
External Pressure Capacity	12100 psi				
	E	STIMATED MAKE-I	JP TORQUES ⁽	3)	
Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-Il
		OPERATIONAL LIP	IT TORQUES		
Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs		

BLANKING DIMENSIONS

Blanking Dimensions

- (1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 2007.
- (2) Structural rating, pure bending to yield (i.e no other loads applied)
- (3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed. For additional information, please contact us at <u>contact-tenarishydril@tenaris.com</u>

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing
 will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at
 setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force
 will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative
 backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF,=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DFb=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure

Tensile: DF₁=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing
 will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF,=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF₁=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an
 internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at
 setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force
 will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative
 backup force than pore pressure.

Tensile: DF,=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B

OD	Weight	Wall Th.	Grade	API Drift	Connection
7 5/8 in.	29.70 lb/ft	0.375 in.	P110 EC	6.750 in.	VAM® HTF NR

PIPE PROPE	RTIES
Nonlinal OB	7.625 in.
Nominal ID	6.875 in.
Nominal Gross Section Area	8.541 sqin.
Grade Type	Enhanced API
Min. Yield Strength)	1/25; ksj.
Max. Yield Strength	140 ksi
Min. Ultimate Tensile Strength	135° ksi
Tensile Yield Strength	1 068 klb
Internal Yield Pressure	10 Z60 psi
Collapse pressure	7 360 psi

CONNECTION PRO	PERTIES	
Connection Type	Premium Int	egrali Flush
Connection OD (nom)	7.701	in.
Connection, ID (inorm)	5.782	iņ.
Make-Up Loss	4.657	in.
Gritical Gross Section	4.970	şqin.
Tension Efficiency	58	% of pipe
Gompression Efficiency	12,7	% of pipe
Compression Efficiency with Sealability	34.8	% of pipe
Internal Pressure Efficiency	100	% of pige
External Pressure Efficiency	100	% of pipe

CONNECTION PERFO	DRMANCES
Jensile Weld/Strength	619 KIU
Compression Resistance	778 klb
Compression, with Sealability	3721 RT6,
Internal Yield Pressure	10 760 psi
External Pressure Resistance	7 3(60) psj
Max. Bending	44 º/100ft
Max. Bending: With Sealability	17' %100ft

TORQUE VALU	IES
Mini Nakerup torque	9 500 A lb
Opti. Make-up torque	11 300 ft.lb
Max. Make-up torque	13,000 (telb
Max. Torque with Sealability	58 500 ft.lb
Max, Torsional Value	73k000 ft4b

VAM® HTF** (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

Other Connection Data Sheets are available at www.vamservices.com

Vallourec Group

For the latest performance data, always visit our website: www.tenaris.com

July 15 2015

Size: 5:500 in.

Wall: 0.361 in.

Weight: 20.00 lbs/ft

Grade: P110-IC Min. Wall Thickness: 87.5 %

Casing/Tubing: CAS

Connection: TenarisXP™ BTC

Coupling Option: REGULAR

		. 1. 2 505.	DATA		
		GEOMET	RY		
Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
Plain End Weight	19.83 lbs/ft				
		PERFORM	ANCE		
Body Yield Strength	641 × 1000 lbs	Internal Yield	12630 psi	SMYS	110000 psi
Collapse	12100 psi				
		LA DICKNIK DIG CO			
	161	NARISXP" BTC CO		ATA	
		GEOMET			
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.
Critical Section Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
		PERFORM	ANCE		
Tension Efficiency	/ 100 %	Joint Yield Strength	641 x 1000	Internal Pressure Capacity ⁽¹⁾	12630 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	641 x 1000 lbs	Structural Bending ⁽²⁾	92 °/100 ft
External Pressure Capacity	12100 psi				
	8	STIMATED MAKE-	JP TORQUES	(3)	
Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lb
		OPERATIONAL LI	4IT TORQUES	5	
Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs		

BLANKING DIMENSIONS

Blanking Dimensions

- (1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 - 2007.
- (2) Structural rating, pure bending to yield (i.e no other loads applied)
- (3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at licensees@oilfield.tenaris.com. Torque values may be further reviewed. For additional information, please contact us at contact-tenarishydril@tenaris.com

December 31 2015

Size: 4.500 in. Wall: 0.290 in.

Weight: 13.50 lbs/ft

Grade: P110-ICY

Min. Wall Thickness: 87.5 %

		Te		a			5
--	--	----	--	---	--	--	---

Casing/Tubing: CAS

Connection: TenarisXP® BTC

			Wiiii. Wan	mickiles:
4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.
3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A
13.05 lbs/ft				
479 x 1000 lbs	Internal Yield	14100 psi	SMYS	1 2500 0 psi
11620 psi				
100 %	Joint Yield Strength	479 x 1000 lbs	Internal Pressure	14100 psi
100 %	Structural Compression Strength	479 x 1000 lbs	Capacity ⁽¹⁾ Structural Bending ⁽²⁾	127°/100
11620 psi				**************************************
6950 ft-lbs	Optimum	7720 ft-lbs	Maximum	8490 ft-lbs
	3.920 in. 13.05 lbs/ft 479 x 1000 lbs 11620 psi 5.000 in. 3.836 sq. in. 100 %	4.500 in. Nominal Weight 3.920 in. Wall Thickness 13.05 lbs/ft 479 x 1000 lbs Internal Yield 11620 psi 5.000 in. Coupling Length Threads per in. 100 % Joint Yield Strength 100 % Structural Compression Strength 11620 psi	4.500 in. Nominal Weight 13.50 lbs/ft 3.920 in. Wall Thickness 0.290 in. 13.05 lbs/ft 479 x 1000 lbs Internal Yield 14100 psi 11620 psi 5.000 in. Coupling Length 9.075 in. Threads per in. 5.00 100 % Joint Yield Strength 479 x 1000 lbs Compression Strength 1620 psi	4.500 in. Nominal Weight 13.50 lbs/ft Diameter Special Drift Diameter Special Drift Diameter 13.05 lbs/ft 479 x 1000 lbs Internal Yield 14100 psi SMYS 5.000 in. Coupling Length 7.000 lbs Connection ID Make-Up Loss 100 % Joint Yield Strength 479 x 1000 lbs Capacity(1) Structural Compression Strength 479 x 1000 lbs Bending(2)

Matador Production Company Brad Dyer Federal 226H SHL 330' FSL & 2189' FWL BHL 240' FNL & 2310' FWL Sec. 35, T. 22 S., R. 32 E., Lea County, NM

DRILLING PROGRAM

1. ESTIMATED TOPS

Formation Name	MD	TVD	Bearing
Quaternary	000′	000′	water
Rustler anhydrite	1189'	1189′	N/A
Salado salt	1668'	1668′	N/A
Base salt	4942'	4933'	N/A
Bell Canyon sandstone	4956'	4947'	hydrocarbons
Brushy Canyon sandstone	7142'	7133′	hydrocarbons
Bone Spring limestone	8714'	8705′	hydrocarbons
1 st Bone Spring carbonate	9817′	9808′	hydrocarbons
1 st Bone Spring sandstone	9838'	9829'	hydrocarbons
2 nd Bone Spring carbonate	10172′	10163'	hydrocarbons
2nd Bone Spring sandstone	10530'	10520'	hydrocarbons
3 rd Bone Spring carbonate	10978'	10969'	hydrocarbon
3 rd Bone Spring sandstone	11764'	11754'	hydrocarbons
(КОР	12003'	11994'	hydrocarbons)
Wolfcamp A carbonate	12052'	12043'	hydrocarbons
Wolfcamp A fat	12207′	12194'	hydrocarbons & goal
Wolfcamp B	12603'	12490'	hydrocarbons
TD	17143'	12590'	hydrocarbons

2. NOTABLE ZONES

Wolfcamp B is the goal. Hole will extend north of the last perforation point to allow for pump installation. All perforations will be ≥ 330 ' from the dedication perimeter. Closest water well (C 02349) is 6556' southwest. Water bearing strata depth were not reported in the 525' deep well.

Matador Production Company Brad Dyer Federal 226H SHL 330' FSL & 2189' FWL BHL 240' FNL & 2310' FWL Sec. 35, T. 22 S., R. 32 E., Lea County, NM

3. PRESSURE CONTROL

Equipment

A 12,000' 10,000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attached BOP, choke manifold, co-flex hose, and speed head diagrams. An accumulator complying with Onshore Order 2 requirements for the BOP stack pressure rating will be present. Rotating head will be installed as needed.

Testing Procedure

Pressure tests will be conducted before drilling out from under all casing strings. BOP will be inspected and operated as required in Onshore Order 2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position.

A third party company will test the BOPs.

After setting surface casing, a minimum 5M BOPE system will be installed. Test pressures will be 250 psi low and 5000 psi high with the annular being tested to 250 psi low and 2500 psi high before drilling below surface shoe. In the event that the rig drills multiple wells on the pad and the BOPs are removed after setting Intermediate 2 casing, a full BOP test will be performed when the rig returns and the 5M BOPE system is re-installed. After setting 7-5/8" x 7" Casing, pressure tests will be made to 250 psi low and 10,000 psi high. Annular will tested to 250 psi low and 5000 psi high.

Variance Request

Matador requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. Manufacturer does not require the hose to be anchored. If the specific hose is not available, then one of equal or higher rating will be used.

Operator requests a variance to use a 5M Annular and test to 250 psi low and 5000 psi high. Matador is requesting a variance to use a speed head for setting the intermediate (9-5/8") casing. In the case of running a speed head with landing mandrel for 9-5/8" casing, BOP test pressures after setting surface casing will be 250 psi low and 5000 psi high. Annular will be tested to 250 psi low and 2500 psi high before drilling below the surface shoe. The BOPs will not be tested again until after setting 7-5/8" x 7" casing unless any flanges are separated. A diagram of the speed head is attached.

Matador Production Company Brad Dyer Federal 226H SHL 330' FSL & 2189' FWL BHL 240' FNL & 2310' FWL Sec. 35, T. 22 S., R. 32 E., Lea County, NM

4. CASING & CEMENT

All casing will be API and new. See attached casing assumption worksheet.

Hole O. D.	Set MD	Set TVD	Casing O. D.	Weight (lb/ft)	Grade	Joint	Collapse	Burst	Tension
17.5"	0′ - 1235'	0′ - 1235'	13.375" surface	54.5	J-55	втс	1.125	1.125	1.8
12.25"	0' - 5010'	0′ - 4870'	9.625" inter. 1	40	J-55	втс	1.125	1.125	1.8
8.75"	0' - 4710'	0′ – 4562′	7.625" inter. 2 top	29.7	P-110	втс	1.125	1.125	1.8
8.75"	4710' - 11900'	4562' - 11895'	7.625" inter. 2 middle	29.7	P-110	VAM HTF-NR	1.125	1.125	1.8
8.75"	11900' - 12703'	11895' - 12387'	7.000" inter. 2 bottom	29	P-110	втс	1.125	1.125	1.8
6.125"	0' - 11800'	0′ - 11791′	5.5" product. top	20	P-110	BTC/TXP	1.125	1.125	1.8
6.125"	11800' - 17334'	11791' - 12590'	4.5" product. Bottom	13.5	P-110	BTC/TXP	1.125	1.125	1.8

Name	Туре	Sacks	Yield	Cu. Ft.	Weight	Blend
Surface	Lead	700	1.82	1274	12.8	Class C + Bentonite + 2% CaCl ₂ + 3% NaCl + LCM
	Tail	400	1.38	552	14.8	Class C + 5% NaCl + LCM
TOC = GL		1	00% Exces	55	Centra	lizers per Onshore Order 2.III.B.1f
Intermediate 1	Lead	1070	2.13	2279	12.6	Class C + Bentonite + 1% CaCl ₂ + 8% NaCl + LCM
	Tail	500	1.38	690	14.8	Class C + 5% NaCl + LCM
TOC = GL		1	00% Exce	SS	2 on btm jt, 1 on 2nd jt, 1 every 4th jt t surface	
Intermediate	Lead	617	2.36	1456	11.5	TXI + Fluid Loss + Dispersant + Retarder + LCM
2	Tail	232	1.38	320	13.2	TXI + Fluid Loss + Dispersant + Retarder + LCM

Matador Production Company Brad Dyer Federal 226H SHL 330' FSL & 2189' FWL BHL 240' FNL & 2310' FWL

TOC = 4400'		75% Excess			2 on btm jt, 1 on 2nd jt, 1 every other jt to top of tail cement (500' above TOC)	
Production	Tail	540	1.17	632	15.8	Class H + Fluid Loss + Dispersant + Retarder + LCM
TOC = 11900'		2	25% Excess		2 on btm jt, 1 on 2nd jt, 1 every third jt to top of curve	

5. MUD PROGRAM

An electronic Pason mud monitoring system complying with Onshore Order 1 will be used. All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions. A closed loop system will be used.

Type	Interval (MD)	lb/gal	Viscosity	Fluid Loss
fresh water spud	0' - 1235'	8.3	28	NC
brine water	1235' - 5010'	10.0	30-32	NC
fresh water & cut brine	5010' - 12703'	9.0	30-31	NC
ОВМ	12703′ – 17334′	12.5	50-60	<10

6. CORES, TESTS, & LOGS

No core or drill stem test is planned.

A 2-person mud logging program will be used from \approx 12703" to TD.

No electric logs are planned at this time. GR will be collected through the MWD tools from intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to TOC.

7. DOWN HOLE CONDITIONS

No abnormal pressure or temperature is expected. Maximum expected bottom hole pressure is \approx 7600 psi. Expected bottom hole temperature is \approx 160° F.

DRILL PLAN PAGE 5

Matador Production Company Brad Dyer Federal 226H SHL 330' FSL & 2189' FWL BHL 240' FNL & 2310' FWL Sec. 35, T. 22 S., R. 32 E., Lea County, NM

In accordance with Onshore Order 6, Matador does not anticipate that there will be enough H₂S from the surface to the Bone Spring to meet the BLM's minimum requirements for the submission of an "H₂S Drilling Operation Plan" or "Public Protection Plan" for drilling and completing this well. Since Matador has an H₂S safety package on all wells, an "H₂S Drilling Operations Plan" is attached. Adequate flare lines will be installed off the mud/gas separator where gas may be flared safely. All personnel will be familiar with all aspects of safe operation of equipment being used.

8. OTHER INFORMATION

Anticipated spud date is upon approval. It is expected it will take ≈ 3 months to drill and complete the well.

Well Control Plan For 10M MASP Section of Wellbore

Component and Preventer Compatibility Table:

The table below covers the drilling and casing of the 10M MASP portion of the well and outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Component	OD	Preventer	RWP	
Drill pipe	4"			
HWDP	4"	7	10M	
Jars/Agitator	4.75-5"	Lower 3.5-5.5" VBR		
Drill collars and MWD tools	4.75-5.25"	Upper 3.5-5.5" VBR		
Mud Motor	4.75-5.25"			
Production casing	4.5-5.5"	1		
ALL	0-13.625"	Annular	5M	
Open-hole	-	Blind Rams	10M	

VBR = Variable Bore Ram with compatible range listed in chart

HWDP = Heavy Weight Drill Pipe

MWD = Measurement While Drilling

Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the Bottom Hole Assembly (BHA) through the Blowout Preventers (BOP). The maximum pressure at which well control is transferred from the annular to another compatible ram is 3,000 psi.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps and stop rotary
- 4. Shut-in well with the annular preventer (The Hydraulic Control Remote (HCR) valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close

Matador

Well Control Plan For 10M MASP Section of Wellbore

- 3. Space out drill string
- 4. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - . Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure with No Pipe In Hole

- 1. At any point when the BOP stack is clear of pipe or BHA, the well will be shut in with blind rams, the HCR valve will be open, and choke will be closed. If pressure increase is observed:
- 2. Sound alarm (alert crew)
- 3. Confirm shut-in
- 4. Notify tool pusher and company representative
- 5. Read and record the following:
 - SICP
 - Time of shut in
- 6. Regroup and identify forward plan

General Procedure While Pulling BHA through Stack

- 1. Prior to pulling last joint/stand of drill pipe through the stack, perform flow check. If flowing:
 - a. Sound alarm (alert crew)
 - b. Stab full opening safety valve and close
 - c. Space out drill string
 - d. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
 - e. Confirm shut-in

Matador PRODUCTION COMPANY

Well Control Plan For 10M MASP Section of Wellbore

- f. Notify tool pusher and company representative
- g. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- h. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with the upset just beneath the compatible pipe ram
 - d. Shut-in well using compatible pipe rams (The HCR valve and choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify tool pusher and company representative
 - g. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
 - h. Regroup and identify forward plan
- 3. With BHA in the stack and no compatible ram preventer and pipe combo immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull BHA clear of the stack
 - i. Follow "No Pipe in Hole" procedure above
 - c. If impossible to pick up high enough to pull string clear of the stack:
 - i. Stab crossover, make up one joint/stand of drill pipe, and full opening safety valve and close
 - ii. Space out drill string with the upset just beneath the compatible pipe ram
 - iii. Shut-in well using compatible pipe rams (The HCR valve and choke will already be in the closed position)
 - iv. Confirm shut-in
 - v. Notify tool pusher and company representative
 - vi. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
 - vii. Regroup and identify forward plan

Well Control Drills

Well control drills are specific to the rig equipment, personnel, and operations. Each crew will execute one drill weekly relevant to ongoing operations, but will make a reasonable attempt to vary the type of drills. The drills will be recorded in the daily drilling log.

APD ID: 10400029353

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

SUPO Data Report

Submission Date: 04/11/2018

Operator Name: MATADOR PRODUCTION COMPANY

MALIEN DOAD DVCD CCDCDAL

Well Name: BRAD DYER FEDERAL

Well Type: CONVENTIONAL GAS WELL

Submission Date: 04/11/2016

Well Number: 226H

Well Work Type: Drill

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

BD 226H Road Map 20180411143801.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

BD_226H_New_Road_Map_20180411143817.pdf

New road type: RESOURCE

Length: 1280.7

Feet

Width (ft.): 30

Max slope (%): 0

Max grade (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Crowned and dtiched

New road access plan or profile prepared? NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Well Name: BRAD DYER FEDERAL Well Number: 226H

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information:

Access miscellaneous information: A 3" O. D. poly surface flowline on the west side of the existing road will be padded.

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crowned and ditched

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

BD 226H Well Map 20180411143842.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Production equipment will be located on the south and west sides of the pad. A 3-phase overhead raptor-safe power line will be built south and east 2,924.64' from an existing power pole at OXY's Red Tank 35 Federal 3 SWD. No pipeline plans have been finalized at this time.

Production Facilities map:

BD_226H_Production_Facilities_20180411143855.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Well Name: BRAD DYER FEDERAL Well Number: 226H

Water source use type: DUST CONTROL, Water source type: GW WELL

INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE

CASING

Describe type:

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: PRIVATE

Water source transport method: TRUCKING

Source transportation land ownership: FEDERAL

Water source volume (barrels): 20000 Source volume (acre-feet): 2.577862

Source volume (gal): 840000

Water source and transportation map:

BD 226H Water Source Map 20180411143941.pdf

Water source comments: Water will be trucked from an existing water station on private land. Berry's water station (CP

Source longitude:

00802) is in NWNE 2-21s-33e.

New water well? NO

New Water Well Info

Well latitude: Well Longitude: Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft): Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well depth (ft): Well casing type:

Well casing outside diameter (in.): Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method: Drill material:

Grout material: Grout depth:

Casing length (ft.): Casing top depth (ft.):

Well Production type: Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Well Name: BRAD DYER FEDERAL

Well Number: 226H

Section 6 - Construction Materials

Construction Materials description: NM One Call (811) will be notified before construction starts. Top 6" of soil and brush will be stockpiled north of the pad. V-door will face south. Closed loop drilling system will be used. Caliche will be hauled from an existing caliche pit on private (Berry) land in E2NE4 35-20s-34e.

Construction Materials source location attachment:

BD 226H Construction Methods 20180411143958.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Cuttings, mud, salts, and other chemicals

Amount of waste: 1000

barrels

Waste disposal frequency: Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: R360's state approved (NM-01-0006) disposal site at Halfway, NM.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Well Name: BRAD DYER FEDERAL Well Number: 226H

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

BD_226H_Well_Site_Layout_20180411144026.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: BRAD DYER

Multiple Well Pad Number: 202H

Recontouring attachment:

BD 226H Interim Reclamation Diagram 20180411144042.pdf

BD 226H Recontour Plat 20180411144050.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance

(acres): 3.65

Road proposed disturbance (acres):

0.88

Powerline proposed disturbance

(acres): 1.01

Pipeline proposed disturbance

(acres): 0

Other proposed disturbance (acres): 0

Total proposed disturbance: 5.54

Well pad interim reclamation (acres):

0.45

Road interim reclamation (acres): 0

Powerline interim reclamation (acres):

Pipeline interim reclamation (acres): 0

Other interim reclamation (acres): 0

Total interim reclamation: 0.45

Well pad long term disturbance

(acres): 3.2

Road long term disturbance (acres):

Powerline long term disturbance

(acres): 0

Pipeline long term disturbance

(acres): 0

Other long term disturbance (acres): 0

Total long term disturbance: 4.08

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 12% (0.45 acre) by removing caliche and reclaiming a 140' x 140' area in the southeast corner of the pad. This will leave 3.20 acres for production equipment (e.g., tank battery, heater-treaters, separators,

Page 5 of 10

Well Name: BRAD DYER FEDERAL Well Number: 226H

flare/CBU, pump jacks), and tractor-trailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owners' requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. Once the last well is plugged, then the rest of the pad and 1280.7' of new road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled.

Soil treatment: None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation?

Seed harvest description:

Seed harvest description attachment:

Seed Management	
Seed Table	
Seed type:	Seed source:
Seed name:	
Source name:	Source address:
Source phone:	
Seed cultivar:	

Well Name: BRAD DYER FEDERAL

Well Number: 226H

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Seed Summary

Total pounds/Acre:

Seed Type

Pounds/Acre

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name:

Last Name:

Phone:

Email:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Pit closure description: No pit

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Levell Office:

COE Local Office:

DOD Local Office:

Well Name: BRAD DYER FEDERAL	Well Number: 226H
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	•
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:
Disturbance type: NEW ACCESS ROAD	
Describe:	
Surface Owner: BUREAU OF LAND MANAGEMENT	
Other surface owner description:	
BIA Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	·
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:
Disturbance type: OTHER	
Describe: Powerline	
Surface Owner: BUREAU OF LAND MANAGEMENT	
Other surface owner description:	
BIA Local Office:	

Operator Name: MATADOR PRODUCTION COMPANY Well Name: BRAD DYER FEDERAL Well Number: 226H DOR LOSSI ONTES **COE Local Office: DOD Local Office: NPS Local Office: State Local Office:** Military Local Office: **USFWS Local Office:** Other Local Office: **USFS Region: USFS** Forest/Grassland: **USFS Ranger District:** Disturbance type: EXISTING ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: **BIA Local Office:** BOR Level Office: **COE Local Office: DOD Local Office: NPS Local Office:** State Local Office: Military Local Office: **USFWS Local Office:** Other Local Office: **USFS Region: USFS** Forest/Grassland:

USFS Ranger District:

Well Name: BRAD DYER FEDERAL

Well Number: 226H

Section 12 - Other Information

Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: On site inspection was held with Vance Wolf (BLM) on November 13, 2017. Lone Mountain will file an archaeology report.

Other SUPO Attachment

BD_226H_General_SUPO_20180411144243.pdf

Section 3 - Unlined Pits

PWD surface owner:

Injection well mineral owner:

Injection PWD discharge volume (bbl/day):

Would you like to utilize Unlined Pit PWD options? NO **Produced Water Disposal (PWD) Location:** PWD surface owner: PWD disturbance (acres): Unlined pit PWD on or off channel: Unlined pit PWD discharge volume (bbl/day): Unlined pit specifications: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Unlined pit precipitated solids disposal schedule: Unlined pit precipitated solids disposal schedule attachment: Unlined pit reclamation description: Unlined pit reclamation attachment: **Unlined pit Monitor description: Unlined pit Monitor attachment:** Do you propose to put the produced water to beneficial use? Beneficial use user confirmation: Estimated depth of the shallowest aquifer (feet): Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected? TDS lab results: Geologic and hydrologic evidence: State authorization: **Unlined Produced Water Pit Estimated percolation:** Unlined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Unlined pit bond number: Unlined pit bond amount: Additional bond information attachment: Section 4 - Injection Would you like to utilize Injection PWD options? NO **Produced Water Disposal (PWD) Location:**

PWD disturbance (acres):

Injection well type:	
Injection well number:	Injection well name:
Assigned injection well API number?	Injection well API number:
Injection well new surface disturbance (acres):	
Minerals protection information:	
Mineral protection attachment:	
Underground Injection Control (UIC) Permit?	•
UIC Permit attachment:	
Section 5 - Surface Discharge	
Would you like to utilize Surface Discharge PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Surface discharge PWD discharge volume (bbl/day):	
Surface Discharge NPDES Permit?	
Surface Discharge NPDES Permit attachment:	
Surface Discharge site facilities information:	
Surface discharge site facilities map:	
Section 6 - Other	
Would you like to utilize Other PWD options? NO	÷
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Other PWD discharge volume (bbl/day):	
Other PWD type description:	
Other PWD type attachment:	
Have other regulatory requirements been met?	v
Other regulatory requirements attachment:	

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001079

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: