	Carls	bad Fig	eld (Ducice		
Form 3160-3 (June 2015) UNITED STATE DEPARTMENT OF THE I	S 🖡	OCD H	seds	👂 🛛 OMB N	APPROVED o. 1004-0137 anuary 31, 2018	
BUREAU OF LAND MAN		OCT 102	018	NMNM121490		
APPLICATION FOR PERMIT TO [ORILL OR	REENTER RECEI	VED	6. If Indian, Allotee	or Tribe Name	
Ia. Type of work: 🔽 DRILL.	EENTER	KEV		7. If Unit or CA Ag	reement. Name a	ind No.
1b. Type of Well: 🚺 Oil Well 🛄 Gas Well 🛄 G	Other			8. Lease Name and	Well No.	315217
1c. Type of Completion: Hydraulic Fracturing	ingle Zone	Multiple Zone		RATTLESNAKE 2	* *	
				712H		
2. Name of Operator EOG RESOURCES INCORPORATED (7377)				9. API Well No. 30-02	g-452	48
3a. Address 1111 Bagby Sky Lobby2 Houston TX 77002	3b. Phone N (713)651-7	o. (include area cod 000	e)	10. Field and Pool, RED HILLS / WC-		
4. Location of Well (Report location clearly and in accordance	<u> </u>			11. Sec., T. R. M. of		(10071)
At surface NENE / 840 FNL / 1318 FEL / LAT 32.0194	1079 / LONG	-103.5729697		SEC 28 / T26S / R	33E / NMP	
At proposed prod. zone LOT 2 / 230 FSL / 1980 FEL / L	AT 32.00088	01 / LONG -103.57	/51126	1		
 Distance in miles and direction from nearest town or post of 35 miles 	fice*			12. County or Paris	h 13. Si NM	late
15. Distance from proposed* 230 feet	16. No of ac	eres in lease	17. Spacin	ng Unit dedicated to t	his well	
property or lease line, ft. (Also to nearest drig, unit line, if any)	1305.2		240			
18 Distance from proposed location*	19. Propose	d Depth	20. BLM/	/BIA Bond No. in file		
to nearest well, drilling, completed, 503 feet applied for, on this lease, ft.	12238 feet	/ 19632 feet	FED: NM	12308		,
21. Elevations (Show whether DF. KDB, RT. GL, etc.) 3249 feet	22. Approxi	mate date work will	start*	23. Estimated durat 25 days	ion	
	24. Attac		/	1		
The following, completed in accordance with the requirements o (as applicable)	of Onshore Oil	and Gas Order No. 1	I, and the I	lydraulic Fracturing r	ule per 43 CFR	3162.3-3
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office 		Item 20 above). 5. Operator certific 6. Such other site sp	cation.	ns unless covered by an arrange of the second se	-	
25. Signature	Name	BLM. (Printed/Typed)			Date	
(Electronic Submission)	Stan V	Vagner / Ph: (432)	686-3689		07/31/2017	
Title Regulatory Specialsit						
Approved by (Signature) (Electronic Submission)	4	(Printed/Typed) Layton / Ph: (575)2	234-5050		Date 09/24/2018	
Title	Office					
Assistant Field Manager Lands & Minerals Application approval does not warrant or certify that the applica	CARL		lose righte	in the subject lease w	hich would entit	le the
applicant to conduct operations thereon. Conditions of approval, if any, are attached.			.ose rigito			
Fitle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212. of the United States any false, fictitious or fraudulent statements					any department	or agency
ECP Rec 10/10/18			INS	K# 	16	David
	n WI	rti condit	IVIO			a die
(Continued on page 2)	VED WI	TH CONDIT	IVIND	*/!=	structions on	<u> </u>

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct 'comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

SHL: NENE / 840 FNL / 1318 FEL / TWSP: 26S / RANGE: 33E / SECTION: 28 / LAT: 32.0194079 / LONG: -103.5729697 (TVD: 0 feet, MD: 0 feet)
PPP: NWNE / 330 FNL / 1980 FEL / TWSP: 26S / RANGE: 33E / SECTION: 28 / LAT: 32.0208173 / LONG: -103.5751041 (TVD: 11711 feet, MD: 11778 feet)
PPP: SWSE / 2455 FSL / 1979 FEL / TWSP: 26S / RANGE: 33E / SECTION: 28 / LAT: 32.009 / LONG: -103.5751084 (TVD: 12238 feet, MD: 16100 feet)
BHL: LOT 2 / 230 FSL / 1980 FEL / TWSP: 26S / RANGE: 33E / SECTION: 33 / LAT: 32.0008801 / LONG: -103.5751126 (TVD: 12238 feet, MD: 19632 feet)

BLM Point of Contact

Name: Tenille Ortiz Title: Legal Instruments Examiner Phone: 5752342224 Email: tortiz@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Stan WagnerSigned on: 07/31/2017Title: Regulatory SpecialsitStreet Address: 5509 Champions DriveCity: MidlandState: TXPhone: (432)686-3689Zip: 79702Email address: Stan_Wagner@eogresources.comField RepresentativeField RepresentativeRepresentative Name: James Barwis
Street Address: 5509 Champions DriveCity: MidlandState: TXZip: 79706Zip: 79706

Phone: (432)425-1204

Email address: james_barwis@eogresources.com

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400016248

Submission Date: 07/31/2017

Zip: 77002

Induction Construction Construction Construction Show Final Text

09/25/2018

Application Data Report

Operator Name: EOG RESOURCES INCORPORATED

Well Name: RATTLESNAKE 28 FED COM

Well Type: OIL WELL

Well Number: 712H Well Work Type: Drill

Section 1 - General		
APD ID: 10400016248	Tie to previous NOS?	Submission Date: 07/31/2017
BLM Office: CARLSBAD	User: Stan Wagner	Title: Regulatory Specialsit
Federal/Indian APD: FED	is the first lease penetrate	ed for production Federal or Indian? FED
Lease number: NMNM121490	Lease Acres: 1305.2	
Surface access agreement in place?	Allotted?	Reservation:
Agreement in place? NO	Federal or Indian agreem	ent:
Agreement number:		
Agreement name:		
Keep application confidential? NO		
Permitting Agent? NO	APD Operator: EOG RES	OURCES INCORPORATED
Operator letter of designation:		

44.12

Operator Info

Operator Organization Name: EOG RESOURCES INCORPORATED

Operator Address: 1111 Bagby Sky Lobby2

Operator PO Box:

Operator City: Houston State: TX

Operator Phone: (713)651-7000

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO	Mater Development Plan name:	
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name:	
Well Name: RATTLESNAKE 28 FED COM	Well Number: 712H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: RED HILLS	Pool Name: WC-025 S263327G

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Well Number: 712H

Describe oth	ner minerals:			
Is the propo	sed well in a Helium produ	iction area? N	Use Existing Well Pad?	NO New surface disturbance?
Type of Well	I Pad: MULTIPLE WELL		Multiple Well Pad Name:	
Well Class: I	HORIZONTAL		RATTLESNAKE 28 FED 0 Number of Legs: 1	COM
Well Work T	ype: Drill			
Well Type: C	DIL WELL			
Describe We	ell Type:			
Well sub-Ty	pe: INFILL			
Describe sul	b-type:			
Distance to t	town: 35 Miles	Distance to ne	arest well: 503 FT	Distance to lease line: 230 FT
Reservoir w	ell spacing assigned acres	Measurement:	240 Acres	
Well plat:	Rattlesnake_28_Fed_Com	_712H_signed_	C_102_20171114125652.p	df
	Rattlesnake_28_Fed_Com	_712H_SHL_20	171114130445.pdf	
Well work st	tart Date: 12/01/2017		Duration: 25 DAYS	
Secti	on 3 - Well Location	Table		

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number:

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	QW	TVD
SHL Leg #1	840	FNL	131 8	FEL	26S	33E	28	Aliquot NENE	32.01940 79	- 103.5729 697	LEA	NEW MEXI CO	NEW MEXI CO	F		324 9	0	0
KOP Leg #1	57	FNL	193 9	FEL	26S	33E	28	Aliquot NWNE	32.02157 29	- 103.5749 6	LEA		NEW MEXI CO	F	NMNM 121490	- 846 2	117 78	117 11
PPP Leg #1	245 5	FSL	197 9	FEL	26S	33E	28	Aliquot SWSE	32.009	- 103.5751 084	LEA	NEW MEXI CO	NEW MEXI CO		NMNM 084898	- 898 9	161 00	122 38

,

Operator Name: EOG RESOURCES INCORPORATED

Well Name: RATTLESNAKE 28 FED COM

Well Number: 712H

I.

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
PPP Leg	330	FNL	198 0	FEL	26S	33E	28	Aliquot NWNE	32.02081 73	- 103.5751	LEA	MEXI	NEW MEXI	F	NMNM 121490	- 846	117 78	117 11
#1										041		со	со			2		
EXIT Leg #1	330	FSL	198 0	FEL	26S	33E	33	Lot 2	32.00115 5	- 103.5751 165	LEA	i	NEW MEXI CO	F	NMNM 000296 5A	- 898 9	195 32	122 38
BHL Leg #1	230	FSL	198 0	FEL	26S	33E	33		32.00088 01	- 103.5751 126	LEA		NEW MEXI CO	F	NMNM 000296 5A	- 898 9	196 32	122 38

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report 09/25/2018

Submission Date: 07/31/2017

Operator Name: EOG RESOURCES INCORPORATED Well Name: RATTLESNAKE 28 FED COM

Well Number: 712H

Well Type: OIL WELL

APD ID: 10400016248

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	PERMIAN	3249	Ō	Ô	ANHYDRITE	NONE	No
2	RUSTLER	2464	785	785	ANHYDRITE	NONE	No
3	TOP SALT	2124	1125	1125	SALT	NONE	No
4	BASE OF SALT	-1511	4760	4760	SALT	NONE	No
5	LAMAR	-1741	4990	4990	LIMESTONE	NONE	No
6	BELL CANYON	-1776	5025	5025	SANDSTONE	NATURAL GAS,OIL	No
7	CHERRY CANYON	-2791	6040	6040	SANDSTONE	NATURAL GAS,OIL	No
8	BRUSHY CANYON	-4431	7680	7680	SANDSTONE	NATURAL GAS,OIL	No
9	BONE SPRING LIME	-5941	9190	9190	LIMESTONE	NONE	No
10	BONE SPRING 1ST	-6876	10125	10125	SANDSTONE	NATURAL GAS,OIL	No
11	BONE SPRING 2ND	-7386	10635	10635	SANDSTONE	NATURAL GAS,OIL	No
12	BONE SPRING 3RD	-8516	11765	11765	SANDSTONE	NATURAL GAS,OIL	No
13	WOLFCAMP	-8931	12180	12180	SHALE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Operator Name: EOG RESOURCES INCORPORATED

Well Name: RATTLESNAKE 28 FED COM

Well Number: 712H

Pressure Rating (PSI): 10M

Rating Depth: 12238

Equipment: The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (10,000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil and Gas order No. 2.

Requesting Variance? YES

Variance request: Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line). Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation. Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement solution.

Testing Procedure: Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 5000/ 250 psig. The surface casing will be tested to 1500 psi for 30 minutes. Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 5000/ 250 psig and the annular preventer to 5000/ 250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

Choke Diagram Attachment:

Rattlesnake_28_FC_712H_10_M_Choke_Manifold_07-27-2017.pdf

Rattlesnake_28_FC_712H_Co_Flex_Hose_Certification_07-27-2017.PDF

Rattlesnake_28_FC_712H_Co_Flex_Hose_Chart_07-27-2017.pdf

BOP Diagram Attachment:

Rattlesnake_28_FC_712H_10_M_BOP_Diagram_07-27-2017.pdf

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.7 5	10.75	NEW	API	N	0	810	0	810	-8989	-9799	810	J-55	40.5	STC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
2	INTERMED IATE	9.87 5	7.625	NEW	API	Y	0	1000	0	1000	-8989	-9989		HCP -110	29.7	LTC	1.12 5	1.25	BUOY	1.6	BUOY	1.6
3	PRODUCTI ON	6.75	5.5	NEW	API	Y	0	10800	0	10800	-8989	- 19789	10800	P- 110		OTHER - DWC/C-IS MS	1.12 5	1.25	BUOY	1.6	BUOY	1.6

Section 3 - Casing

Well Number: 712H

Casing Attachments

Casing ID:	1	String Type:SURFACE
------------	---	---------------------

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Rattlesnake_28_FC_712H_BLM_Plan_07-27-2017.pdf

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Rattlesnake_28_FC_712H_7.625in_29.7_P110EC_VAM_SLIJ_II_07-27-2017.pdf See_previously_attached_Drill_Plan_07-27-2017.pdf Rattlesnake_28_FC_712H_7.625in_29.70_P_110_FlushMax_III_07-27-2017.pdf

Casing Design Assumptions and Worksheet(s):

See_previously_attached_Drill_Plan_07-27-2017.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

See_previously_attached_Drill_Plan_07-27-2017.pdf Rattlesnake_28_FC_712H_5.5in_20.00_VST_P110EC_DWC_C_IS_MS_07-27-2017.pdf Rattlesnake_28_FC_712H_5.5in_20.00_VST_P110EC_VAM_SFC_07-27-2017.pdf

Casing Design Assumptions and Worksheet(s):

See_previously_attached_Drill_Plan_07-27-2017.pdf

Well Name: RATTLESNAKE 28 FED COM

Well Number: 712H

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	810	325	1.73	13.5	562	25	Class C	Class C + 4.0% Bentonite + 0.6% CD- 32 + 0.5% CaCl2 + 0.25 Ib/sk Cello-Flake (TOC @ Surface)
SURFACE	Tail		810	810	200	1.34	14.8	268	25	Class C	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
INTERMEDIATE	Lead		0	1130 0	2250	1.38	14.8	3105	25	Class C	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead. (TOC @ surface)
INTERMEDIATE	Tail		1130 0	1130 0	550	1.2	14.4	660	25	Class H	50:50 Class H:Poz + 0.25% CPT20A + 0.40% CPT49 + 0.20% CPT35 + 0.80% CPT16A + 0.25% CPT503P pumped conventionally
PRODUCTION	Lead		1080 0	1963 2	850	1.26	14.1	1071	25	Class H	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C- 17 (TOC @ 10,800')

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: (A) A Kelly cock will be kept in the drill string at all times. (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times. (C) H2S monitoring and detection equipment will be utilized from surface casing point to TD. **Describe the mud monitoring system utilized:** An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure and stroke rate.

Well Name: RATTLESNAKE 28 FED COM

Well Number: 712H

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	F	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
810	1130 0	SALT SATURATED	8.8	10							
1130 0	1223 8	OIL-BASED MUD	10	14							
0	810	WATER-BASED MUD	8.6	8.8		-					

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Open-hole logs are not planned for this well.

List of open and cased hole logs run in the well:

DS

Coring operation description for the well:

None

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7318

Anticipated Surface Pressure: 4625.63

Anticipated Bottom Hole Temperature(F): 181

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Rattlesnake_28_FC_712H_H2S_Plan_Summary_07-27-2017.pdf

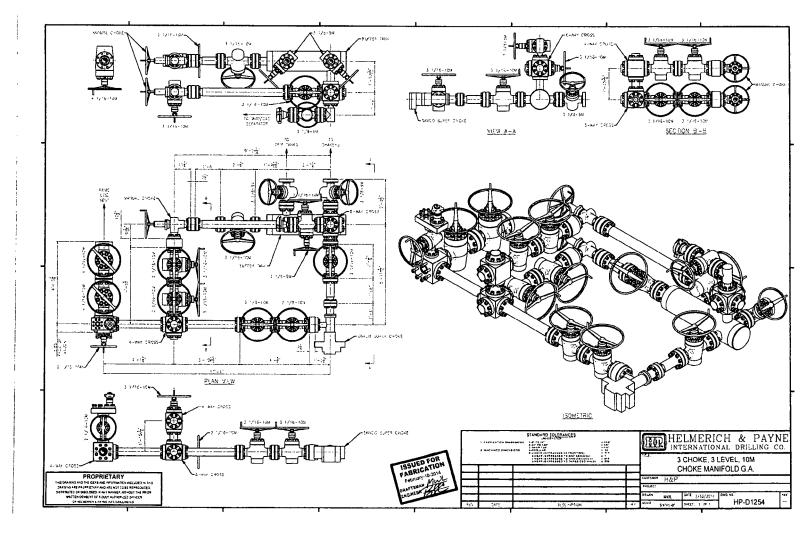
Operator Name: EOG RESOURCES INCORPORATED

Well Name: RATTLESNAKE 28 FED COM

Well Number: 712H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:


Rattlesnake_28_Fed_Com_712H_Planning_Report_07-27-2017.pdf Rattlesnake_28_Fed_Com_712H_Wall_Plot_07-27-2017.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

Rattlesnake_28_FC_712H_Rig_Layout_07-27-2017.pdf Rattlesnake_28_FC_712H_Wellbore_07-27-2017.pdf Rattlesnake_28_FC_712H_Wellhead_Cap_07-27-2017.pdf Rattlesnake_28_Fed_Com_712H_gas_capture_07-28-2017.pdf Rattlesnake_28_FC_712_GPC_20180614094532.pdf Rattlesnake_28_FC_712_deficiency_response_20180614094633.pdf

Other Variance attachment:

Manufacturer: Midwest Hose & Specialty

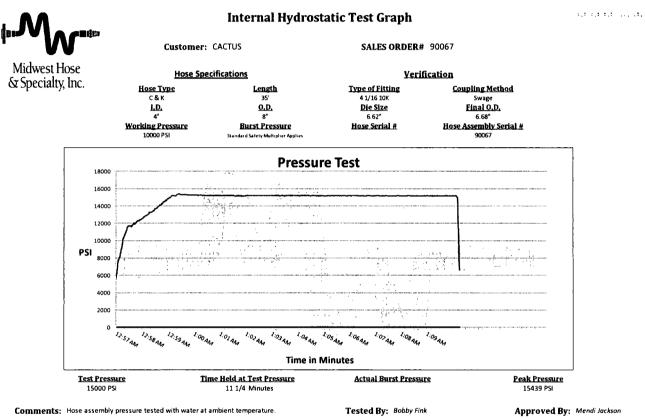
Serial Number: SN#90067

Length: 35'

Size: OD = 8" ID = 4"

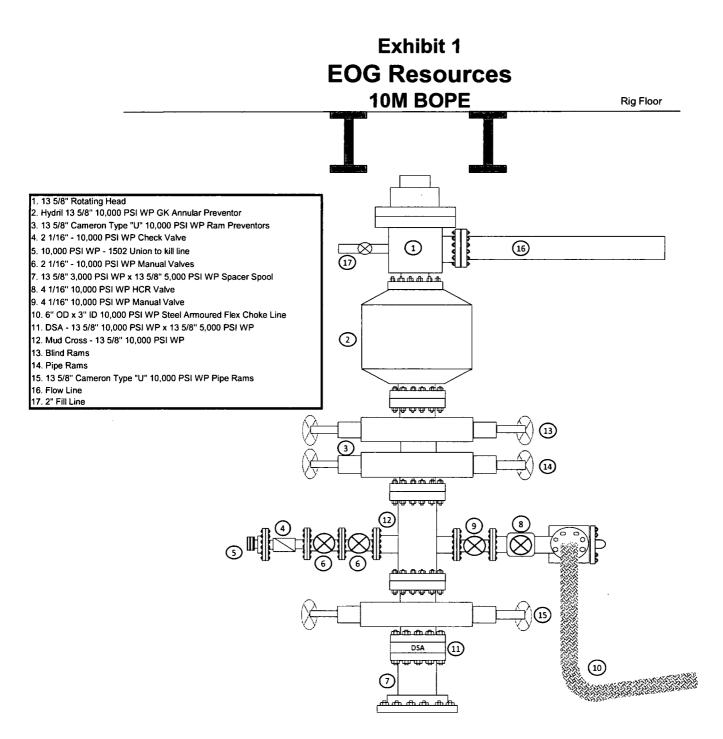
Ends: Flanges Size: 4-1/16"

WP Rating: 10,000 psi Anchors required by manfacturer: No


ı

MIDWEST

.


HOSE AND SPECIALTY INC.

IN	ITERNAL	HYDROST	ATIC TEST	REPOR	т
Customer	······································			P.O. Numb	er:
CACTUS				RIG #123	3
				Asset # N	A10761
		HOSE SPECI	ICATIONS		
Туре:	CHOKE LIN	E		Length:	35'
I.D.	4"	INCHES	O.D.	8"	INCHES
WORKING P	RESSURE	TEST PRESSUR	E	BURST PRES	SURE
10,000	PSI	15,000	PSI		PSI
		COUP	LINGS		
	nd Fitting 4 1/16 10K F	LANGE			
Type of C	oupling:		MANUFACTU	RED BY	
	SWEDGED		MIDWEST HOS	SE & SPECIA	LTY
		PROC	EDURE		
	Hose assembly	, pressure tested w	ith water at ambied	nt temperature .	
	TIME HELD AT	TEST PRESSURE	ACTUAL E	URST PRESSL	JRE:
	1	MIN.			0 <i>PSI</i>
COMMENT	'S:				
		M10761			
		ered with stain!			
		fire resistant v			
Date:	Insulation ra	ited for 1500 de Tested By:	grees complete	Approved:	eyes
	6/6/2011	BOBBY FINK		(* F	IACKSON
	WW&VII	SOUDT FIRM			

Soft Ze

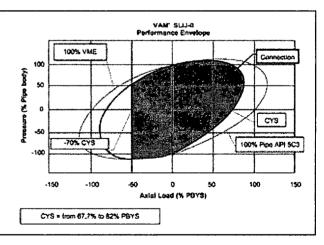
Mendi Jackson

. • •

Connection Data Sheet

		. ~~ .	
OD Wei	ght Wall Th.	Grade API Drif	ft Connection
	Res of the second se	M 110 HC 6.750 in	
7 5/8 in. 29.70	lb/ft 0.375 in. V	M 110 HC 6.750 in	n. VAM® SLIJ-II
		· · · · · · · · · · · · · · · · · · ·	

PIPE PROPERT	IES
Nominal OD	7.625 in.
Nominal ID	6.875 in.
Nominal Cross Section Area	8.541 sqin.
Grade Type	High Collapse
Min. Yield Strength	110 ksi
Max. Yield Strength	140 ksi
Min. Ultimate Tensile Strength	125 ksi


CONNECTION	PROPERTIES
Connection Type	Premium integral semi-flush
Connection OD (nom)	7.711 in.
Connection ID (nom)	6.820 in.
Make-up Loss	4.822 in.
Critical Cross Section	5.912 sqin.
Tension Efficiency	69.2 % of pipe
Compression Efficiency	48.5 % of pipe
	viting, ingga vanderen in Frieder
Internal Pressure Efficiency	100 % of pipe
External Pressure Efficiency	100 % of pipe
	میں میں ایک ایک اور

CONNECTION PERFORMA	NCES
Tensile Yield Strength	651 klb
Compression Resistance	455 klb
Internal Yield Pressure	9470 psi
Uniaxial Collapse Pressure	7890 psi
Max. Bending Capacity	TDB
Max Bending with Sealability	20 °/100 ft

FIELD TORQ	UE VALUES
Min. Make-up torque	11300 ft.lb
Opti. Make-up torque	12600 ft.lb
Max. Make-up torque	13900 ft.lb

VAM® SLIJ-II is a semi-flush integral premium connection for all casing applications. It combines a near flush design with high performances in tension, compression and gas sealability.

VAM® SLIJ-II has been validated according to the most stringent tests protocols, and has an excellent performance history in the world's most prolific HPHT wells.

4955 Do you need help on this product? - Remember no one knows VAM® like VAM canada@vamfieldservice.com uk@vamfieldservice.com china@vamfieldservice.com usa@vamfieldservice.com dubai@vamfieldservice.com baku@vamfieldservice.com mexico@vamfieldservice.com nigeria@vamfieldservice.com singapore@vamfieldservice.com brazil@vamfieldservice.com angola@vamfieldservice.com australia@vamfieldservice.com Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

Other Connection Data Sheets are available at www.vamservices.com

Vallourec Group

al One	FLU	SHMAX-III	F	Page Date	1-Oct-1
		ion Data Sheet	. F		
One Corp	00111000			Rev.	N-0
			ł.		
	1	Make up loss		1	
		wake up loss		•	
			a esta esta esta		1000000
. I .	and	mmi	~~~	~~~	a contraction of the second se
			T		
0		σ.		/	
	Pin critic	cal area	Ε	Box critical are	ea
Oine Bed		Immedia		e 1	
Pipe Body Grade		P110	- r	<u>5.1.</u> F110	
Pipe OD (0	21	7 5/8	in	193.68	mm
Weight		29.7	īb/ft	44.25	kg/m
Actual weig	ht	29.0	10/11	43.26	kg/m
Wall thickn		0.375	in	9.53	mm
Pipe ID (d		6.875	in	174.63	mm
	ross section	6.537	in ²	5.508	118112
Orift Dia.		6,750	in	171.45	mm
		1			
Connection	n				
Box OD (V	()	7.625	h	193.68	mm
PINID		6.875	in	174.63	mm
Pin critical a	area	4.420	in²	2,852	mm²
Box critical	area	4.424	in²	2.854	mm²
Joint load e	fficiency	60	%	60	%
Make up los	55	3.040	in	77.22	mm
Thread tap	a.	1/	16 (3/1)	in per ft)	
Number of	threads		5 thread	per in.	
	n Performance				
Tensile Yiel	a iosa	563.4	kips	2.506	<u>kN</u>
M.LY.P.		7,574	psi	52.2	MPa
Collapse st	rength	5,350	psi	38.9	MPa
Note					
M.I.Y.P.	= wanumum (nte)	rnal Yield Pressu	te of the	connection	
Tomus B-	commondad				
I OFQUE NO	commended Min.	8,700	ft-lb	11,700	N-m
	Opti.	9,700	ft-lb	13,100	- N-m
	Max.	10,700	R-b	14,500	N-m
		23,600	ft-lb	32,000	N-m
Oners	itional Max.				

See previously attached Drill Plan

-

•

See previously attached Drill Plan

1. GEOLOGIC NAME OF SURFACE FORMATION: Permian

2. ESTIMATED TOPS OF IMPORTANT GEOLOGICAL MARKERS:

Rustler Top of Salt Base of Salt / Top Anhydrite	785' 1,125' 4,760'
Base Anhydrite	4,990'
Lamar	4,990'
Bell Canyon	5,025'
Cherry Canyon	6,040'
Brushy Canyon	7,680'
Bone Spring Lime	9,190'
1 st Bone Spring Sand	10,125'
2 nd Bone Spring Shale	10,331'
2 nd Bone Spring Sand	10,635'
3 rd Bone Spring Carb	11,110'
3 rd Bone Spring Sand	11,765'
Wolfcamp	12,180'
TD	12,238'

3. ESTIMATED DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS:

Upper Permian Sands	0-400'	Fresh Water
Cherry Canyon	6,040'	Oil
Brushy Canyon	7,680'	Oil
1 st Bone Spring Sand	10,125'	Oil
2 nd Bone Spring Shale	10,331'	Oil
2 nd Bone Spring Sand	10,635'	Oil
3 rd Bone Spring Carb	11,110'	Oil
3 rd Bone Spring Sand	11,765'	Oil
Wolfcamp	12,180'	Oil

No other Formations are expected to give up oil, gas or fresh water in measurable quantities. Surface fresh water sands will be protected by setting 10.75" casing at 810' and circulating cement back to surface.

Hole Size	Interval	Csg OD	Weight	Grade	Conn	DF _{min} Collapse	DF _{min} Burst	DF _{min} Tension
14.75"	0 - 810'	10.75"	40.5#	J55	STC	1.125	1.25	1.60
9.875"	0 – 1,000'	7.625"	29.7#	HCP- 110	LTC	1.125	1.25	1.60
9.875"	1,000' – 3,000'	7.625"	29.7#	P-110EC	SLIJ II	1.125	1.25	1.60
8.75"	3,000' - 11,300'	7.625"	29.7#	HCP- 110	FlushMax III	1.125	1.25	1.60
6.75"	0' - 10,800'	5.5"	20#	P-110EC	DWC/C-IS MS	1.125	1.25	1.60
6.75"	10,800'-19,632'	5.5"	20#	P-110EC	VAM SFC	1.125	1.25	1.60

4. CASING PROGRAM - NEW

Variance is requested to wave the centralizer requirements for the 7-5/8" FJ casing in the 8-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 8-3/4" hole interval to maximize cement bond and zonal isolation.

Variance is also requested to wave any centralizer requirements for the 5-1/2" FJ casing in the 6-3/4" hole size. An expansion additive will be utilized, in the cement slurry, for the entire length of the 6-3/4" hole interval to maximize cement bond and zonal isolation.

Depth	No. Sacks	Wt. ppg	Yld Ft ³ /ft	Mix Water Gal/sk	Slurry Description
10-3/4" 810'	325	13.5	1.73	9.13	Class C + 4.0% Bentonite + 0.6% CD-32 + 0.5% $CaCl_2$ + 0.25 lb/sk Cello-Flake (TOC @ Surface)
	200	14.8	1.34	6.34	Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate
7-5/8" 11,300'	250	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead (TOC @ Surface)
	2000	14.8	1.38	6.48	Class C + 5% Gypsum + 3% CaCl2 pumped via Bradenhead
	550	14.4	1.20	4.81	50:50 Class H:Poz + 0.25% CPT20A + 0.40% CPT49 + 0.20% CPT35 + 0.80% CPT16A + 0.25% CPT503P pumped Conventionally
5-1/2" 19,632'	850	14.1	1.26	5.80	Class H + 0.1% C-20 + 0.05% CSA-1000 + 0.20% C-49 + 0.40% C-17 (TOC @ 10,800')

Cementing Program:

Note: Cement volumes based on bit size plus at least 25% excess in the open hole plus 10% excess in the cased-hole overlap section.

5. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL:

Variance is requested to use a co-flex line between the BOP and choke manifold (instead of using a 4" OD steel line).

The minimum blowout preventer equipment (BOPE) shown in Exhibit #1 will consist of a single ram, mud cross and double ram-type (10,000 psi WP) preventer and an annular preventer (10,000-psi WP). Both units will be hydraulically operated and the ram-type will be equipped with blind rams on bottom and drill pipe rams on top. All BOPE will be tested in accordance with Onshore Oil & Gas order No. 2.

Before drilling out of the surface casing, the ram-type BOP and accessory equipment will be tested to 10,000/250 psig and the annular preventer to 5,000/250 psig. The surface casing will be tested to 1500 psi for 30 minutes.

Before drilling out of the intermediate casing, the ram-type BOP and accessory equipment will be tested to 10,000/250 psig and the annular preventer to 5000/250 psig. The intermediate casing will be tested to 2000 psi for 30 minutes.

Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

A hydraulically operated choke will be installed prior to drilling out of the intermediate casing shoe.

6. TYPES AND CHARACTERISTICS OF THE PROPOSED MUD SYSTEM:

During this procedure we plan to use a Closed-Loop System and haul contents to the required disposal.

Depth	Туре	Weight (ppg)	Viscosity	Water Loss
0-810'	Fresh - Gel	8.6-8.8	28-34	N/c
810' - 11,300'	Brine	8.8-10.0	28-34	N/c
11,300' – 19,632'	Oil Base	10.0-14.0	58-68	3 - 6

The applicable depths and properties of the drilling fluid systems are as follows.

The highest mud weight needed to balance formation is expected to be 11.5 ppg. In order to maintain hole stability, mud weights up to 14.0 ppg may be utilized.

Lateral

An electronic pit volume totalizer (PVT) will be utilized on the circulating system, to monitor pit volume, flow rate, pump pressure and stroke rate.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the wellsite at all times.

7. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT:

- (A) A kelly cock will be kept in the drill string at all times.
- (B) A full opening drill pipe-stabbing valve (inside BOP) with proper drill pipe connections will be on the rig floor at all times.
- (C) H₂S monitoring and detection equipment will be utilized from surface casing point to TD.

8. LOGGING, TESTING AND CORING PROGRAM:

Open-hole logs are not planned for this well.

GR-CCL Will be run in cased hole during completions phase of operations.

9. ABNORMAL CONDITIONS, PRESSURES, TEMPERATURES AND POTENTIAL HAZARDS:

The estimated bottom-hole temperature (BHT) at TD is 181 degrees F with an estimated maximum bottom-hole pressure (BHP) at TD of 7318 psig (based on 11.5 ppg MW). No hydrogen sulfide or other hazardous gases or fluids have been encountered, reported or are known to exist at this depth in this area. Severe loss circulation is expected from 7,300' to Intermediate casing point.

10. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

The drilling operation should be finished in approximately one month. If the well is productive, an additional 60-90 days will be required for completion and testing before a decision is made to install permanent facilities.

(A) EOG Resources requests the option to contract a Surface Rig to drill, set surface casing, and cement on the subject well. After WOC 8 hours or 500 psi compressive strength (whichever is greater), the Durface Rig will move off so the wellhead can be installed. A welder will cut the casing to the proper height and weld on the wellhead (both "A" and "B" sections). The weld will be tested to 1000 psi. All valves will be closed and a wellhead cap will be installed (diagram attached). If the timing between rigs is such that EOG Resources would not be

able to preset the surface, the Primary Rig will MIRU and drill the well in its entirety per the APD.

11. WELLHEAD:

,

A multi-bowl wellhead system will be utilized.

After running the 10-3/4" surface casing, a 13-5/8" BOP/BOPE system with a minimum working pressure of 10,000 psi will be installed on the wellhead system and will be pressure tested to 250 psi low followed by a 10,000 psi pressure test. This pressure test will be repeated at least every 30 days, as per Onshore Order No. 2

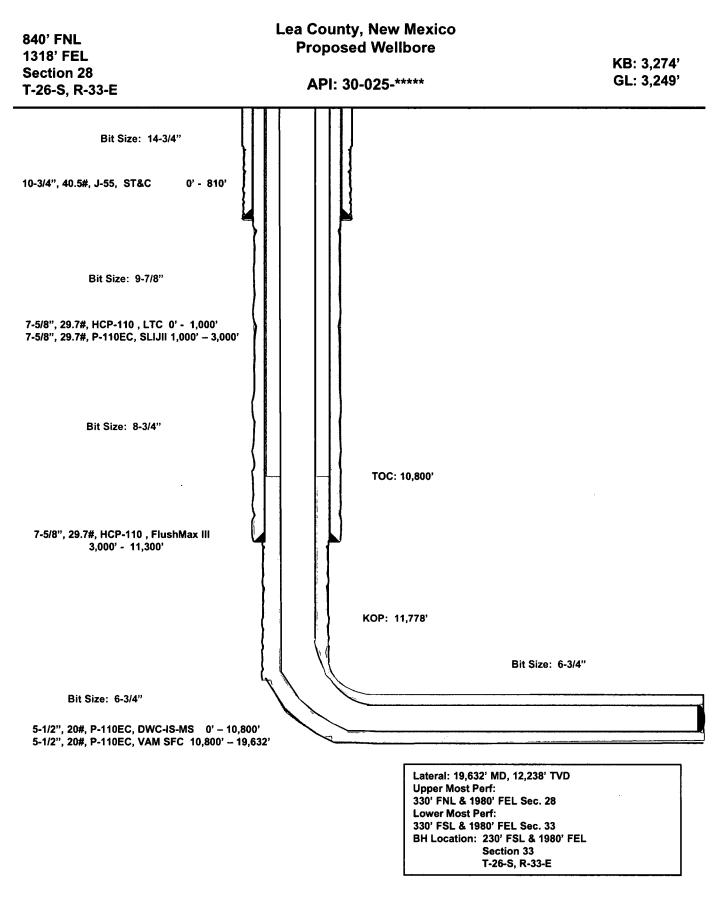
The minimum working pressure of the BOP and related BOPE required for drilling below the surface casing shoe shall be 10,000 psi.

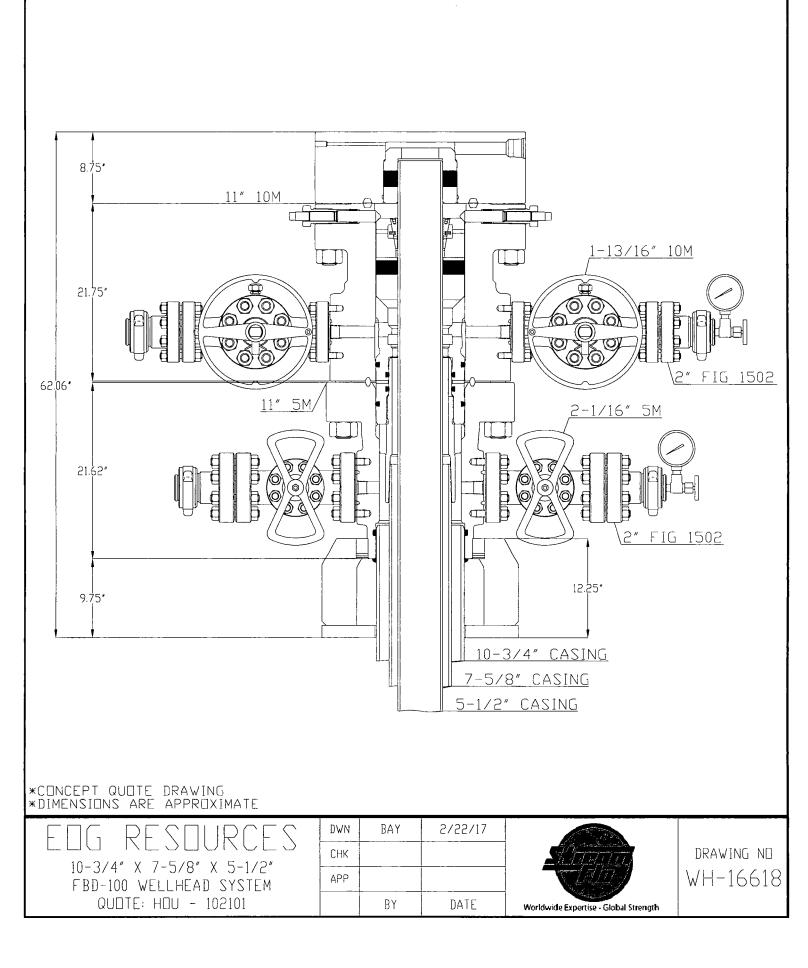
The multi-bowl wellhead will be installed by vendor's representative(s). A copy of the installation instructions for the Stream Flo FBD100 Multi-Bowl WH system has been sent to the NM BLM office in Carlsbad, NM.

The wellhead will be installed by a third party welder while being monitored by WH vendor's representative.

All BOP equipment will be tested utilizing a conventional test plug. Not a cup or J-packer type.

A solid steel body pack-off will be utilized after running and cementing the intermediate casing. After installation the pack-off and lower flange will be pressure tested to 5000 psi.


Both the surface and intermediate casing strings will be tested as per Onshore Order No. 2 to at least 0.22 psi/ft or 1500 psi, whichever is greater.


See previously attached Drill Plan

.

See previously attached Drill Plan

Rattlesnake 28 Fed Com #712H

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type: Injection well number: Assigned injection well API number? Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: Underground Injection Control (UIC) Permit? UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:PWD surface owner:PWD disturSurface discharge PWD discharge volume (bbl/day):Surface Discharge NPDES Permit?Surface Discharge NPDES Permit attachment:Surface Discharge site facilities information:Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment: Injection well name:

Injection well API number:

.

PWD disturbance (acres):

PWD disturbance (acres):

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NM2308

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Bond Info Data Report

09/25/2018

建花塘

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

PWD disturbance (acres):

PWD Data Report

VAFMSS

APD ID: 10400016248

Well Type: OIL WELL

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Submission Date: 07/31/2017

Row(s) Exist? NO

Algoritation de la most reference de most reference de most Show Final Text

09/25/2018

SUPO Data Report

Well Number: 712H Well Work Type: Drill

Section 1 - Existing Roads

Operator Name: EOG RESOURCES INCORPORATED

Well Name: RATTLESNAKE 28 FED COM

Will existing roads be used? YES

Existing Road Map:

RATTLESNAKE28FC712H_vicinity_07-28-2017.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2	- New or Recon	structed Access Roads
Will new roads be need	led? YES	
New Road Map:		
RATTLESNAKE28FC71	2H_padsite_07-28-20	17.pdf
RATTLESNAKE28FC71	2H_wellsite_07-28-20	17.pdf
RATTLESNAKE28FEDC	COM_infrastructure_0	7-28-2017.PDF
New road type: RESOL	IRCE	
Length: 298	Feet	Width (ft.): 24
Max slope (%): 2		Max grade (%): 20
Army Corp of Engineer	rs (ACOE) permit req	juired? NO
	,	

ACOE Permit Number(s):

New road travel width: 24

New road access erosion control: Newly constructed or reconstructed roads will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road. We plan to grade and water twice a year. **New road access plan or profile prepared?** NO **Operator Name: EOG RESOURCES INCORPORATED**

Well Name: RATTLESNAKE 28 FED COM

Well Number: 712H

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: 6" of Compacted Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: An adequate amount of topsoil/root zone will be stripped by dozer from the proposed well location and stockpiled along the side of the well location as depicted on the well site diagram / survey plat. **Access other construction information:**

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: No drainage crossings

Road Drainage Control Structures (DCS) description: N/A

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

RATTLESNAKE28FC712H_radius_07-28-2017.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Rattlesnake 28 Fed Com central tank battery located in NE/4 of section 28 **Production Facilities map:**