L	OCD FOR OMB Expires	FORM APPROVED OMB NO. 1004-0137 Expires: January 31, 2018			
SUNDR	Y NOTICES AND REPO	NGEMENT ORTS ON WELLISC T 9 / 20	5. Lease Serial No. NMNM0127A		
Do not use abandoned v	6. If Indian, Allotte	e or Tribe Name			
SUBMIT II	CD 7. If Unit or CA/Ag	7. If Unit or CA/Agreement, Name and/or No.			
1. Type of Well	8. Well Name and N	lo.			
Oil Well S Gas Well	Other Contact:		9 API Well No	V 9 16 W1AP FED COM 2H	
MEWBOURNE OIL COMPA	ANY E-Mail: jlathan@m		30-025-44913	-00-X1	
P O BOX 5270 HOBBS, NM 88241	-	Ph: 575-393-5905 TT	RED HILLS -	r Exploratory Area WOLFCAMP (GAS)	
4. Location of Well (Footage, Sec.	, T., R., M., or Survey Description	1)	11. County or Paris	h, State	
Sec 9 T26S R33E NENE 33	30FNL 210FEL			Υ, NM	
12. CHECK THE	APPROPRIATE BOX(ES)	TO INDICATE NATURE OF	NOTICE, REPORT, OR O	THER DATA	
TYPE OF SUBMISSION	T	TYPE OF	ACTION		
Notice of Intent		Deepen	Production (Start/Resume)	□ Water Shut-Off	
	□ Alter Casing	Hydraulic Fracturing	Reclamation	Well Integrity	
	Casing Repair	New Construction	□ Recomplete	Other Change to Original A	
Final Abandonment Notice	Change Plans	Plug and Abandon	Temporarily Abandon	rarily Abandon PD	
1) Change well name to	equests approval to make the of Draw 9/16 W1AP Fed & 330' FEL, Sec 16, T26S, design as detailed in attact	Com #21 / Charles to the app Com #21 / Charles / Com #21 / Com #2	22767		
 2) Change Chaing & cement 3) Change casing & cement 4) Variance for use of 5M ai 5) Variance for use of multi- 6) Variance to batch drill we See attachments for C-102, Please contact Andy Taylor 14. I hereby certify that the foregoing 	nnular BOP on 10M BOPE bowl wellhead ills as detailed in attachmer drilling program, directiona with any questions. g is true and correct. Electronic Submission # For MEWBO ommitted to AFMSS for proc	All plan and equipment schemati all plan and equipment schemati 437870 verified by the BLM Well URNE OIL COMPANY, sent to the essing by PRISCILLA PEREZ on	CS. Information System e Hobbs 10/03/2018 (19PP0012SE)	<u></u>	
 2) Change Dif to Too TSL 3) Change casing & cement 4) Variance for use of 5M ai 5) Variance for use of multi- 6) Variance to batch drill we See attachments for C-102, Please contact Andy Taylor 14. I hereby certify that the foregoing 14. I hereby certify that the foregoing Control (Printed/Typed) ANDY T	nnular BOP on 10M BOPE bowl wellhead ills as detailed in attachmer drilling program, directiona with any questions. g is true and correct. Electronic Submission # For MEWBO ommitted to AFMSS for proc TAYLOR	437870 verified by the BLM Well URNE OIL COMPANY, sent to th Essing by PRISCILLA PEREZ on Title ENGINE	CS. Information System e Hobbs 10/03/2018 (19PP0012SE) ER	<u>- 12</u>	
2) Change Chill to Too Toll 3) Change casing & cement 4) Variance for use of 5M ai 5) Variance for use of multi- 6) Variance to batch drill we See attachments for C-102, Please contact Andy Taylor 14. I hereby certify that the foregoing Construct (Electronic) Signature (Electronic)	nnular BOP on 10M BOPE bowl wellhead ills as detailed in attachmer drilling program, directiona with any questions. g is true and correct. Electronic Submission # For MEWBO ommitted to AFMSS for proc TAYLOR	437870 verified by the BLM Well URNE OIL COMPANY, sent to the essing by PRISCILLA PEREZ on Title ENGINE Date 10/01/20	CS. Information System e Hobbs 10/03/2018 (19PP0012SE) ER 18		
 2) Change casing & cement 3) Change casing & cement 4) Variance for use of 5M and 5) Variance for use of multi- 6) Variance to batch drill we See attachments for C-102, Please contact Andy Taylor 14. I hereby certify that the foregoing Canon (Printed/Typed) ANDY T Signature (Electronic) 	nnular BOP on 10M BOPE bowl wellhead ills as detailed in attachmer drilling program, directiona with any questions. g is true and correct. Electronic Submission # For MEWBOI ommitted to AFMSS for proc AYLOR ic Submission) THIS SPACE FO	437870 verified by the BLM Well WRNE OIL COMPANY, sent to th ressing by PRISCILLA PEREZ on Title ENGINE Date 10/01/20	cs. Information System e Hobbs 10/03/2018 (19PP0012SE) ER 18 DFFICE USE		
2) Change Chill to Tot TSL 3) Change casing & cement 4) Variance for use of 5M ai 5) Variance for use of multi- 6) Variance to batch drill we See attachments for C-102, Please contact Andy Taylor 14. I hereby certify that the foregoing 14. Signature (Electroni Approved By_ZQTA_STEVENS	nnular BOP on 10M BOPE bowl wellhead ills as detailed in attachmer drilling program, directiona with any questions. g is true and correct. Electronic Submission # For MEWBO ommitted to AFMSS for proc TAYLOR ic Submission) THIS SPACE FO	Address of the second stack al plan and equipment schemation 437870 verified by the BLM Well URNE OIL COMPANY, sent to the ressing by PRISCILLA PEREZ on Title ENGINE Date 10/01/20 DR FEDERAL OR STATE C TitlePETROLEL	cs. Information System e Hobbs 10/03/2018 (19PP0012SE) ER 18 DFFICE USE JM ENGINEER	Date 10/18/2018	
Approved By_ZQTA_STEVENS mittions of approval, if any, are attac	nnular BOP on 10M BOPE bowl wellhead ills as detailed in attachmer drilling program, directiona with any questions. g is true and correct. Electronic Submission # For MEWBOI ommitted to AFMSS for proc TAYLOR ic Submission) THIS SPACE FO hed. Approval of this notice does equitable title to those rights in the iduct operations thereon.	A stack at at at at at at at at at at	CS. Information System e Hobbs 10/03/2018 (19PP0012SE) ER 18 DFFICE USE JM ENGINEER	Date 10/18/2018	

•

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District D 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

Ē

State of New Mexico Energy, Minerals & Natural Resources Department **OIL CONSERVATION DIVISION** 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

Job No .: LS1509543D

Operator Name:	Property Name:	Well Number
Mewbourne Oil Co.	Salado Draw 9/16 W1AP Fed Com	2H

Kick Off Point (KOP)

.

UL A	Section 9	Township 26S	Range 32E	Lot	Feet 10	From N/S N	Feet 330	From E/W	County Lea
Latitu	Latitude				Longitud	e	NAD		
32.0	065232	29			-103.5	697841			83

First Take Point (FTP)

UL A	Section 9	Township 26S	Range 32E	Lot	Feet 100	From N/S N	Feet 330	From E/W	County Lea
Latitude				Longitude	Longitude			NAD	
32.0)64988	32			-103.569	97841			83

Last Take Point (LTP)

UL P	Section 16	Township 26S	Range 32E	Lot	Feet 100	From N/S S	Feet 330	From E/W	County Lea
Latitu	Latitude				Longitud	le		NAD	
32.0365016			-103.	5697806	5	83			

Is this well the defining well for the Horizontal Spacing Unit?

Y

.

Is this well an infill well?

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API # 30-025-44648		
Operator Name:	Property Name:	Well Number
Mewbourne Oil Co.	Salado Draw 9/16 W0AP Fed Com	ЗН

1. Geologic Formations

TVD of target	12,310'	Pilot hole depth	NA
MD at TD:	17,014'	Deepest expected fresh water:	250'

Basin

٠

.

Formation	Depth (TVD)	Water/Mineral Bearing/	Hazards*
	from KB	Target Zone?	
Quaternary Fill	Surface		
Rustler	934		
Top of Salt	1292		
Castile	3502		
Base of Salt	4874		
Lamar	5005	Oil	
Bell Canyon	5052		
Cherry Canyon	6108		
Manzanita Marker	6227		
Brushy Canyon	7590		
Bone Spring	9022	Oil/Gas	
1 st Bone Spring Sand	10,010		
2 nd Bone Spring Sand	10,589		
3 rd Bone Spring Sand	11,652		
Abo		· · · · · · · · · · · · · · · · · · ·	
Wolfcamp	12,107	Target Zone	
Devonian			
Fusselman			
Ellenburger			
Granite Wash			

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

Hole	Casing Interval		Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	To	Size	(lbs/ft)			Collapse	Burst	Tension	Tension
20"	0'	1010'	16"	65	H40	BTC	1.36	3.55	11.90	11.21
13.5"	0'	4930'	10.75"	45.5	HCL80	BTC	1.23	2.04	5.24	4.64
9.875"	0'	11,900'	7.625"	29.7	HCP110	LTC	1.16	1.53	2.18	2.66
6.5"	0'	22,779'	5.5"	23	P110	UFJ	1.70	1.70	1.67	2.51
BLM Minimum Safety Factor								1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

	Y or N		
Is casing new? If used, attach certification as required in Onshore Order #1	Y		
Is casing API approved? If no, attach casing specification sheet.			
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Ν		
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y		
justification (loading assumptions, casing design criteria).			
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y		
collapse pressure rating of the casing?			
Is well located within Capitan Reef?	<u>N</u>		
If yes, does production casing cement tie back a minimum of 50' above the Reef?			
Is well within the designated 4 string boundary.			
Is well located in SOPA but not in R-111-P?	N		
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back			
500' into previous casing?			
Is well located in R-111-P and SOPA?	N		
If yes, are the first three strings cemented to surface?			
Is 2 nd string set 100' to 600' below the base of salt?			
	• • • • •		
Is well located in high Cave/Karst?	N		
If yes, are there two strings cemented to surface?			
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?			
Is well located in critical Cave/Karst?	N		
If yes, are there three strings cemented to surface?			

3. Cementing Program

.

.

asing	# Sks	Wt. lb/	Yld ft3/	H20 gal/	500# Comp.	Slurry Description
		gai	Sack	SK	Strength (hours)	
urf.	625	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM
	200	14.8	1.34	6.3	8	Tail: Class C + Retarder
nter.	1100	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM
	200	14.8	1.34	6.3	8	Tail: Class C + Retarder
rod. tg 1	1. 500 12.5 2.12 11 9 Lead: Class C + Gel + Retarder + D1Extender		Lead: Class C + Gel + Retarder + Defoamer + Extender			
-8 -	400	15.6	1.18	5.2	13	Tail: Class H + Retarder + Fluid Loss + Defoamer
					ECP/DV T	Fool @ 6227'
rod. tg 2	130	12.5	2.12	11	16	Lead: Class C + Gel + Retarder + Defoamer + Extender
0-	100	14.8	1.34	6.3	8	Tail: Class C + Retarder
iner	425	11.2	2.97	18	16	Class C + Salt + Gel + Fluid Loss + Retarder + Dispersant + Defoamer + Anti-Settling Agent

copy of cement test will be available on location at time of cement job providing pump times & compressive strengths.

Casing String	TOC	% Excess
Surface	0'	100%
Intermediate	0'	25%
Production	4730'	25%
Liner	11,000'	25%

. .

4. Pressure Control Equipment

Y Variance: A variance is requested for use of a 5000 psi annular BOP with the 10,000 psi BOP stack. Please see attached description and procedure.

BOP installed and tested before drilling which hole?	Size?	System Rated WP	Туре	√	Tested to:		
			Annular	X	1500#		
	13-5/8"	3M	Blind Ram	X	3000#		
13-1/2"			Pipe Ram	X			
			Double Ram				
			Other*				
			Annular	X	5000#		
		10M	Blind Ram	X			
9-7/8"	13-5/8"		Pipe Ram	X	10 000#		
			Double Ram		10,000#		
			Other*				

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

X	Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.
	N Are anchors required by manufacturer?

Y A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

• Provide description here: See attached schematic.

5. Mud Program

TVD		Туре	Weight (ppg)	Viscosity	Water Loss	
From	To			6		
0	1010	FW Gel	8.6-8.8	28-34	N/C	
1010	4930	Saturated Brine	10.0	28-34	N/C	
4930	11,900	Cut Brine	8.6-10.0	28-34	N/C	
11,900	12,629	OBM	10.0-13.0	30-40	<10cc	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	Pason/PVT/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.
X	Will run GR/CNL from KOP (12,000') to surface (horizontal well - vertical portion of
	hole). Stated logs run will be in the Completion Report and submitted to the BLM.
	No Logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain
	Coring? If yes, explain

Ade	litional logs planned	Interval
X	Gamma Ray	12,000' (KOP) to TD
	Density	
	CBL	
	Mud log	
	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	8537 psi
Abnormal Temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers in surface hole. Weighted mud for possible over-pressure in Wolfcamp formation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

H2S is present X H2S Plan attached

8. Other facets of operation

Is this a walking operation? If yes, describe. Will be pre-setting casing? If yes, describe.

Attachments

____ Directional Plan

____ Other, describe

TUBULAR PARAMETERS	•		PIPE BODY PROPERTIES	
Nominal OD, (inch)		5.500	PE Weight, (Ibs/ft)	29.64
Wall Thickness, (inch)		0.562	Nominal Weight, (lbs/ft)	29.70
Pipe Grade	<i>ک</i> ن	P110 HC	Nominal ID, (inch)	4.376
Drift		Standard	Drift Diameter, (inch)	4.251
			Nominal Pipe Body Area, (sq inch)	8.718
CONNECTION PARAMETERS			Yield Strength in Tension, (klbs)	959
Connection OD (inch)		5.50	Min. Internal Yield Pressure, (psi)	19 670
Connection ID, (inch)		4.373	Collapse Pressure. (psi)	22 200
Make-Up Loss, (inch)		5.040		
Connection Critical Area,	(sq inch)	4.886	anginal Pressure	
Yield Strength in Tension	(klbs)	717		
Yeld Strength in Compres	sion, (klbs)	618		
Tension Efficiency		75%		New
Compression Efficiency		64%		
Min. Internal Yield Pressu	re, (psi)	19 670		
Collapse Pressure, (psi)		22 200		As a first fill School

69.0

MAKE-UP TORQUES

Uniaxial Bending (deg/100ft)

.

Yield Torque, (ft-lb)	18 800
Minimum Make-Up Torque, (ft-lb)	10 600
Optimum Make-Up Torque, (ft-lb)	11 800
Maximum Make-Up Torque, (ft-lb)	13 000

	Sec. 22	لسسط		فتقسر تنعيتها		لينذب	S
		and the		-		\mathbf{X}	
A CATODA			\mathbb{Z}				
		$\langle / \rangle \rangle$	100	ALCONTRACT	0.0		
Compressi			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	/2			4 10 4 2			
					\propto	25.45	9
	No.					Viole	
					1.00		
			Eclemat	Prossure			s diautours an Findly

.

NOTE: The content of this Technical Data Shew is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can getern in econsidering the specific installator, and operation parameters. This information supersearce all prior versions for this connection, information that is printed or downloaded is no longer controlled by TARK and might in x be the latest information. Anyone using the information areas does so at their own risk. To verify that, you have the latest technical information, bease contact PAO/TRAM Technical Sales in Runsia (Tel. -1 (201949-1044, Email technical gattike) score).

Print date: 10/17/2018 01:16

Mewbourne Oil Company

Lea County, New Mexico NAD 83 Salado Draw 9/16 W1AP Fed Com #2H Sec 9, T26S, R33E SL: 330' FNL & 210' FEL, Sec 9 BHL: 100' FSL & 330' FEL, Sec 16

Plan: Design #1

Standard Planning Report

27 September, 2018

Database.	Hobbe			Local Co.	ordinate Refer	onco: Sit	e Salado Dra	W 9/16 W/1AP	Fed Com #2H	
Company:	Mewbou	urne Oil Company		TVD Réference: WELL @ 3359.0usft (Original Well Elev) MD Reference: WELL @ 3359.0usft (Original Well Elev)						
Project:	Lea Cou	inty, New Mexico I	NAD 83							
Site:	Salado I	Draw 9/16 W1AP F	ed Com #2H	North Reference: Grid Survey Calculation Method: Minimum Curvature						
Well:	Sec 9, 1	26S, R33E								
Wellbore:	BHL: 10	0' FSL & 330' FEL	, Sec 16							
Design:	Design i	#1								
Project	Lea Cour	nty, New Mexico N	AD 83	en e	• . • •	in in a second	· · ·		· · · · · · · · · · ·	
Map System: Geo Datum: Map Zone:	US State F North Ame New Mexic	Plane 1983 rican Datum 1983 co Eastern Zone		System Da	itum:	Mear	n Sea Level			
Site	Salado D)raw 9/16 W1AP F	ed Com #2H				······			
Site Desition			Northing:	387	7.987.00 usft	Latitudo			32 0643537	
From:	Man		Easting:	777	7.986 00 usft	Longitude:			-103 5693976	
Position Uncertain	nty:	0.0 usft	Slot Radius:	,	13-3/16 "	Grid Convergen	ice:		0.41 °	
Well	Sec 9, T2	26S, R33E	····· v.) ··	·		······································				
14/- 13 D 14/		0.0	5 ·		297 097 00				20.0642527	
well Position	+N/-5	0.0 us	n Northing:		367,967.00	usit Latitu	ae:		32.0043537	
	+E/-W	0.0 us	t Easting:		///,986.00	usπ Longi	tuae:		-103.3693976	
Position Uncertain	nty	0.0 us	t Wellhead E	levation:	3,359.0	usit Grour	nd Level:		3,332.0 ustt	
Magnetics	Mod	el Name	Sample Date	Declin	ation	Dip An	gle	Field \$	Strength	
				(*)		(°)		· · (nT)	
		IGRF2010	9/27/20	(°) 18	6.67	(°)	59.85	. (1	n T) 47,793	
Design	Design #	IGRF2010	9/27/20	(°) 18	6.67	(?)	59.85	()	n T) 47,793	
Design Audit Notes:	Design #	IGRF2010	9/27/20	[°]	6.67	(*)	59.85	(1	nT) 47,793	
Design Audit Notes: Version:	Design #	IGRF2010	9/27/20	(°)	6.67	(°)	59.85	0.0	nT) 47,793	
Design Audit Notes: Version: Vertical Section	Design #	IGRF2010	9/27/20	(°) 18 PROTOTYPE +N/S) 6.67 Tie +F	(°) On Depth:	59.85	0.0 rection	nT) 47,793	
Design Audit Notes: Version: Vertical Section:	Design #	IGRF2010	9/27/20 Phase: From (TVD) (usit) 0.0	(*) 18 PROTOTYPE +N/-S (usft) 0.0) Tie +E (u C	(*) On Depth: /-W sft) .0	59.85 Dir 1	() 0.0 rection (°) 80.27	nT) 47,793	
Design Audit Notes: Version: Vertical Section: Plan Sections	Design #	IGRF2010	9/27/20 Phase: From (TVD) (usift) 0.0	(*) 18 PROTOTYPE +N/-S (usft) 0.0)	(*) On Depth: /-W sft) .0	59.85 Dir 1	() 0.0 rection (°) 80.27	nT) 47,793	
Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth In (usft)	Design # nclination (°)	IGRF2010 1 Depth Azimuth De (°) (u	9/27/20 Phase: From (TVD) (usft) 0.0 tical .pth +N/-S sft) (usft)	(*) 18 PROTOTYPE +N/-S (usft) 0.0 +-E/-W (usft)) 6.67 Tie +E (u C Dogleg Rate ('/100usft)	(*) On Depth: /-W sft)).0 Build Rate (*/100usft) (59.85 Dir Turri Rate 7100usft)	0.0 rection (°) 80.27 TFO (°)	nT) 47,793 Tärget	
Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth in (usft)	Design # nclination (*)	IGRF2010 1 Depth Azimuth De (*) (u	9/27/20 Phase: From (TVD) (usft) 0.0 tical pth +N/-S sft) (usft) 0.0	(*) 18 PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0) 6.67 Tie +E (u C Dogleg Raté (*/100usft) 0.000	(*) • On Depth: /-W sft)).0 Build Rate (*/100usft) (59.85 Dir 1 Turn Rate 7/100usft)	0.0 rection (°) 80.27 TFO (°)	nT) 47,793 Tärget	
Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth In (usft) 0.0 5 000 0	Design #	IGRF2010 1 Depth Azimuth De (*) (u 0.00 0.00	9/27/20 Phase: From (TVD) (usft) 0.0 tical pth +N/-S sft) (usft) 0.0 5.000.0	(*) 18 PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 0.0) 6,67 Tie +E (u 0 Dogleg Rate (*/100usft) 0.00 0.00	(*) On Depth: /-W sft) 0.0 Build Rate (*/100usft) (0.00 0.00	59.85 Dir 11 Turn Rate */100usft) 0.00	0.0 rection (°) 80.27 TFO (°) 0.00 0.00	nT) 47,793 Tärget	
Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth In (usft) 0.0 5,000.0 5 191 7	Design # nclination (*) 0.00 0.00 2.88	IGRF2010 1 Depth Azimuth De (*) (u 0.00 0.00 339.07	9/27/20 Phase: From (TVD) (usift) 0.0 tical sft) (usift) 0.0 5,000.0 5,191.6	(*) 18 PROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.) 6,67 Tie +E (u 0 0 0 0 0 0 0 0 0 0 0 0 0	(*) On Depth: /-W sft)).0 Build Rate (*/100usft) 0.00 0.00 1.50	59.85 Dir Turn Rate */100usft) 0.00 0.00 0.00	((0.0 rection (°) 80.27 TFO (°) 0.00 0.00 0.00 339 07	nT) 47,793 Target	
Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth In (usft) 0.0 5,000.0 5,191.7 11 807 8	Design #	IGRF2010 1 1 Depth Azimuth De (°) (u 0.00 0.00 339.07 339.07 1	9/27/20 Phase: From (TVD) (usft) 0.0 tical pth +N/-S sft) (usft) 0.0 5,000.0 5,000.0 5,191.6 1,799.4 3	(°) 18 PROTOTYPE +N/-S (usft) 0.0 +E/-W (üsft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 -1.7 14.5 -120.3) 6,67 Tie +E (u C Dogleg Rátě (*/100usft) 0.00 0.00 1.50 0.00	(*) On Depth: /-W sft)).0 Build Rate (*/100usft) 0.00 0.00 1.50 0.00	59.85 Dir Turn Rate */100usft) 0.00 0.00 0.00 0.00	() 0.0 rection (°) 80.27 TFO (°) 0.00 0.00 339.07 0.00	nT) 47,793 Target	
Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth In (usft) 0.0 5,000.0 5,191.7 11,807.8 11 999 5	Design #	IGRF2010 1 1 Depth (*) (u 0.00 0.00 339.07 339.07 1 0.00 1	9/27/20 Phase: From (TVD) (usift) 0.0 tical pth +N/-S sift) (usift) 0.0 5,000.0 5,000.0 5,191.6 1,799.4 3 1,991.0 3	(°) 18 PROTOTYPE +N/-S (usft) 0.0 (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.) 6,67 Tie +E (u C , Dogleg Rate (*/100usft) 0.00 0.00 1.50 0.00 1.50 0.00 1.50	(*) On Depth: /-W sft) .0 Build Rate (*/100usft) 0.00 0.00 1.50 0.00 -1.50	59.85 Dir Turn Rate */100usft) 0.00 0.00 0.00 0.00 0.00	() 0.0 rection (°) 80.27 TFO (°) 0.00 0.00 339.07 0.00 180.00	nT) 47,793 Target KOP: 10' FNL & 330' I	
Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth In (usft) 0.0 5,000.0 5,191.7 11,807.8 11,999.5 12,895.8	Design #	IGRF2010 1 1 Depth (*) (u 0.00 0.00 339.07 339.07 1 0.00 1 179.59 1	9/27/20 Phase: From (TVD) (usift) 0.0 tical sift) (usift) 0.0 5,000.0 5,000.0 5,191.6 1,799.4 3 1,991.0 3 2,564.0 -2	(°) 18 PROTOTYPE +N/-S (usft) 0.0 .0 .0 .0 .0 .0 .0 .0 .0	6,67 Tie +E (u C C C C C C C C C C C C C C C C C C	(*) On Depth: /-W sft)).0 Build Rate (*/100usft) 0.00 0.00 1.50 0.00 -1.50 10.00	59.85 Dir Rate */100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	() 0.0 rection (°) 80.27 TFO (°) 0.00 0.00 339.07 0.00 180.00 179.59	nT) 47,793 Target KOP: 10' FNL & 330'	
Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth (usft) 0.0 5,000.0 5,191.7 11,807.8 11,999.5 12,895.8 22,779.1	Design #	IGRF2010 1 Depth Azimuth De (*) (u 0.00 0.00 339.07 339.07 1 0.00 1 179.59 1 179.59 1	9/27/20 Phase: From (TVD) (usift) 0.0 tical pth +N/-S sft) (usift) 0.0 5,000.0 5,000.0 5,191.6 1,799.4 3 1,991.0 3 2,564.0 -2 2,629.0 -10 1	(*) 18 PROTOTYPE +N/-S (usft) 0.0) 6.67 Tie +E (u C 2 2 2 2 2 2 2 2 2 2 2 2 2	(*) On Depth: /-W sft) .0 Build Rate (*/100usft) (*) 0.00 0.00 1.50 0.00 -1.50 10.00 0.00	59.85 Dir Rate 7/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.0 rection (°) 80.27 TFO (°) 0.00 0.00 339.07 0.00 180.00 179.59 0.00	nT) 47,793 Target KOP: 10' FNL & 330' I BHL: 100' FSL & 330'	

•

•

D -4-b	llabba		· •				Site Colorda D		
Database:	Mewbourne Oil C	ompany		Local Co	-ordinate Ker	erence:	Site Salado D	aw 9/16 WIAP	rea Com #2n
Company.			02	IVD Ret	erence:		WELL @ 335	9.00stt (Original	
Project:	Eea County, New		03 1	MD Rete	rence:		WELL @ 335	9.0usit (Original	VVell Elev)
SIKE:	Salado Draw 9/11	o vviAP red C	om #2 n	North Re	ference:	1. S. S.	Grid		· · · · · · · · · · · · · · · · · · ·
Well:	- Sec 9, 126S, R3		10	Survey C	alculation Me	ithod:	Minimum Cur	vature	
Wellbore:	BHL: 100 FSL &	330 FEL, Sec	; 16						
Design:	Design #1				ere de la ser				
Planned Survey	- s				• •		• . •		· · · · · · · · · · · · · · · · · · ·
					n system	·· · ·	·	Sec. Sec. 1970	
Measured		te de la sec	Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)	(°)	(*)	(usft)	(usft)	(usft)	(usft)	(*/100usft)	(°/100usft)	(*/100usft)
A State State		i en els properio	્યું કે સ્વયત્વર છે.						
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
SL: 330' FNL	. & 210' FEL, Sec 9	0.00	400.0				0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0,00			5.0	5,0	5.0		5,00	5,00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0 700.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0,00	0.00	800.0	0.0	0.0	0,0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
	0,00		4	0,0	5.5	5,5	0.00	5,00	5.55
1,000.0	0.00	0.00	1,000.0	0.0	0,0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1 300 0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
.,									
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000,0	0.0	0.0	0.0	0.00	0.00	0.00
1,700,0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
.,									
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0,00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
0.500.0	0.00	0.00	0,500,0				0.00	0.00	0.00
2,500,0	0.00	0.00	2,500.0	0.0	0.0	0.0	0,00	0,00	0,00
2,000,0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,800.0	0.00	0.00	2,800.0	0.0	0.0	0.0	0.00	0.00	0.00
2,900.0	0.00	0.00	2,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2 000 0	0.00	0.00	3 000 0	0.0	0.0	0.0	0.00	0.00	0.00
3,000.0	0.00	0.00	3,000.0	0.0	0.0	0.0	0.00	0.00	0.00
3.200.0	0,00	0.00	3.200.0	0.0	0.0	0.0	0.00	0.00	0.00
3.300.0	0.00	0.00	3,300.0	0.0	0.0	0.0	0.00	0.00	0.00
3,400.0	0.00	0.00	3,400.0	0.0	0.0	0.0	0.00	0.00	0.00
3 500 0	0.00	0.00	3 500 0	0.0	0.0	0.0	0.00	0.00	0.00
3.600.0	0.00	0.00	3,600.0	0.0	0.0	0.0	0.00	0.00	0.00
3,700.0	0.00	0.00	3,700.0	0.0	0,0	0.0	0.00	0.00	0.00
3,800.0	0.00	0.00	3,800.0	0.0	0.0	0.0	0.00	0.00	0.00
3,900.0	0.00	0.00	3,900.0	0.0	0.0	0.0	0.00	0.00	0.00
4.000.0	0.00	0.00	4,000.0	0.0	0.0	0.0	0.00	0.00	0,00
4,100.0	0.00	0.00	4,100.0	0.0	0.0	0.0	0.00	0.00	0.00
4,200.0	0.00	0.00	4,200.0	0.0	0.0	0.0	0.00	0.00	0.00
4,300.0	0.00	0.00	4,300.0	0.0	0.0	0.0	0.00	0.00	0.00
4,400.0	0.00	0.00	4,400.0	0.0	0.0	0.0	0.00	0.00	0.00
4 500 0	0.00	0 00	4 500 0	0 0	0.0	0.0	0.00	0.00	0.00
4.600 0	0.00	0.00	4,600.0	0.0	0.0	0.0	0.00	0.00	0.00
4,700.0	0.00	0.00	4,700.0	0.0	0.0	0.0	0.00	0.00	0.00
4,800.0	0.00	0.00	4,800.0	0.0	0.0	0.0	0.00	0.00	0.00
4,900.0	0.00	0.00	4,900.0	0.0	0.0	0.0	0.00	0.00	0.00
5 000 0	0.00	0.00	5 000 0	0.0	0.0	0.0	0.00	0.00	0.00
5 100 0	1.50	339.07	5,100.0	1.2	-0.5	-1 2	1 50	1 50	0.00
5.191.7	2.88	339.07	5,191.6	4.5	-1.7	-4.5	1.50	1.50	0.00
······································			·····						

9/27/2018 6:03:38PM

.

.

COMPASS 5000.1 Build 72

	•		
Database:	Hobbs	Local Co-ordinate Reference:	Site Salado Draw 9/16 W1AP Fed Com #2H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3359.0usft (Original Well Elev)
Project:	Lea County, New Mexico NAD 83	MD Reference:	WELL @ 3359.0usft (Original Well Elev)
Site:	Salado Draw 9/16 W1AP Fed Com #2H	North Reference:	Grid
Well:	Sec 9, T26S, R33E	Survey Calculation Method:	Minimum Curvature
Wéllbore:	BHL: 100' FSL & 330' FEL, Sec 16		
Design:	Design #1		

Planned Survey

.

.

Measured			Vertical			Vertical	Donlen	Rulid	Turn	÷
Denth	Inclinetien	A m I um u i A la	Donth		- E()N	Section	Dogleg	Data	Pato	1.1.1
(ueff)	inclination	Azimum	(ueft)	TINI-S	+=/-	(ucft)	(%/1000cft)	(*/100uc#)	(%/400uc#)	<u>,</u> * +
(uait)	0	\mathcal{O}	(usir)	(usπ)	(usn)	(USIL)	(Toousii)	(Thoush)	(mousil)	
5,200.0	2.88	339.07	5,199,9	4,9	-1.9	-4,9	0.00	0.00	0.00	
5,300.0	2.88	339.07	5,299.8	9.6	-3.7	-9.5	0.00	0.00	0.00	
E 400.0	0.00	000.07	5 000 7							
5,400.0	2.88	339.07	5,399.7	14.3	-5.5	-14.2	0.00	0.00	0.00	
5,500.0	2.88	339.07	5,499.5	18.9	-1.2	-18,9	0.00	0.00	0.00	
5,600.0	2.00	339.07	5,599.4	23.0	-9.0	-23.0	0.00	0.00	0.00	
5,700.0	2.00	339.07	5,099.3	20,3	-10.8	-20.3	0.00	0.00	0.00	
5,000.0	2.00	339.07	5,799.2	33.0	-12.0	-32.9	0.00	0.00	0.00	
5,900.0	2,88	339.07	5,899.0	37.7	-14.4	-37.6	0.00	0.00	0.00	
6,000.0	2.88	339.07	5,998.9	42.4	-16.2	-42.3	0.00	0.00	0.00	
6,100.0	2.88	339.07	6,098.8	47.1	-18.0	-47.0	0.00	0.00	0.00	
6,200.0	2.88	339.07	6,198.6	51.7	-19.8	-51.6	0.00	0.00	0,00	
6,300.0	2.88	339.07	6,298.5	56.4	-21.6	-56.3	0.00	0.00	0.00	
6.400.0	2.88	339.07	6 398 4	61.1	-23.4	-61.0	0.00	0.00	0.00	
6.500.0	2.88	339.07	6 498 3	65.8	-25.2	-65 7	0.00	0.00	0.00	
6,600.0	2.88	339.07	6.598.1	70.5	-27.0	-70.4	0.00	0.00	0.00	
6,700.0	2.88	339.07	6,698.0	75.2	-28.7	-75.0	0.00	0.00	0.00	
6.800.0	2.88	339.07	6,797.9	79.9	-30.5	-79.7	0.00	0.00	0.00	
1										
6,900.0	2.88	339.07	6,897.8	84.5	-32.3	-84.4	0.00	0.00	0.00	
7,000.0	2,88	339.07	6,997.6	89.2	-34.1	-89.1	0.00	0.00	0,00	
7,100.0	2,88	339,07	7,097.5	93,9	-35.9	-93,7	0.00	0.00	0.00	
7,200.0	2.88	339.07	7,197.4	98.6	-37.7	-98.4	0.00	0.00	0.00	
7,300.0	2.88	339.07	7,297.3	103.3	-39.5	-103.1	0.00	0.00	0.00	
7,400.0	2.88	339.07	7,397.1	108.0	-41.3	-107.8	0.00	0.00	0.00	
7,500.0	2.88	339.07	7,497.0	112.7	-43.1	-112.5	0.00	0.00	0.00	
7,600.0	2.88	339.07	7,596.9	117.3	-44.9	-117.1	0.00	0.00	0.00	
7,700.0	2.88	339.07	7,696.8	122.0	-46.7	-121.8	0.00	0.00	0.00	
7,800.0	2.88	339.07	7,796.6	126.7	-48.5	-126.5	0.00	0.00	0.00	
- 7 900 0	2.66	320.07	7 906 5	121 /	50.2	121 2	0.00	0.00	0.00	
8,000.0	2.00	339.07	7,090.5	131,4	-50.5	-131.2	0.00	0.00	0.00	
8 100 0	2.00	339.07	9,006,3	140.8	-52.0	-100.0	0.00	0.00	0.00	
8 200 0	2.00	339.07	8 106 1	145.5	-55.6	145.2	0.00	0.00	0.00	
8 300 0	2.00	339.07	8 296 0	145.5	-53.0	-143.2	0.00	0.00	0.00	
0,000.0	2.00	555.07	0,230.0	150.1	~77.4	-145.5	0.00	0.00	0.00	
8,400.0	2.88	339.07	8,395.9	154.8	-59.2	-154.5	0.00	0.00	0.00	
8,500.0	2.88	339.07	8,495.8	159.5	-61.0	-159.2	0.00	0.00	0.00	
8,600.0	2.88	339.07	8,595.6	164.2	-62.8	-163.9	0.00	0.00	0.00	
8,700.0	2.88	339,07	8,695.5	168.9	-64.6	-168.6	0.00	0.00	0.00	
; 8,800.0	2.88	339.07	8,795.4	173.6	-66.4	-173.3	0.00	0.00	0.00	
8,900.0	2,88	339,07	8,895,2	178.3	-68.2	-177.9	0,00	0,00	0.00	
9,000.0	2.88	339.07	8,995,1	182.9	-70.0	-182.6	0.00	0.00	0.00	
9,100.0	2.88	339.07	9,095.0	187.6	-71.8	-187.3	0.00	0.00	0.00	
9,200.0	2.88	339.07	9,194.9	192.3	-73.5	-192.0	0.00	0.00	0.00	
9,300.0	2.88	339.07	9,294.7	197.0	-75.3	-196.6	0.00	0.00	0.00	
1 0 400 0	0.00	220.07	0 204 6	201 7	77 4	201.2	0.00	0.00	0.00	
9,400.0	2.88	339.07	9,394.6	201.7	-//.1	-201.3	0.00	0.00	0.00	
9,500.0	2.88	339.07	9,494.5	206.4	-/8,9	-206,0	0.00	0.00	0.00	
9,000.0	2.88	339.07	9,594.4	211,1	-80.7	-210.7	0.00	0.00	0.00	
9,700.0	2.08	339.07	9,094.2	215./	-02.5	-215.4	0.00	0.00	0.00	
9,800.0	2.88	539.07	9,794.1	220.4	-84.3	-220.0	0.00	0.00	0.00	
9,900.0	2,88	339,07	9,894.0	225,1	-86.1	-224.7	0.00	0.00	0.00	
10,000.0	2.88	339.07	9,993.9	229.8	-87.9	-229.4	0.00	0.00	0.00	
10,100.0	2,88	339.07	10,093.7	234,5	-89.7	-234.1	0.00	0.00	0.00	
10,200.0	2,88	339.07	10,193.6	239.2	-91.5	-238.7	0,00	0,00	0.00	
10,300.0	2.88	339.07	10,293.5	243.9	-93.3	-243.4	0.00	0.00	0.00	
10 400 0	2 00	320.07	10 202 4	349 E	05.4	049 4	0.00	0.00	0.00	
10,400.0	2.88	339.07	10,393.4	248.0	-95,1	-246.1	0.00	0.00	0.00	
10,500.0	2.88	339.07	10,493.2	253.2	-90.8	-252.8	0.00	0.00	0.00	

,	1.11	الحي من من المراجع من المراجع المراجع المراجع المراجع المراجع المراجع المراجع	n na series de la companya de la com Alternativa	
Database:		Hobbs	Local Co-ordinate Reference: Site Salado Draw 9/16 W1AP Fed Com #2H	
Company:		Mewbourne Oil Company	TVD Reference: WELL @ 3359.0usft (Original Well Elev)	
Project:	0	Lea County, New Mexico NAD 83	MD Reference: WELL @ 3359.0usft (Original Well Elev)	,
Site:	and the second	Salado Draw 9/16 W1AP Fed Com #2H	North Reference: Grid	•
Well:		Sec 9, T26S, R33E	Survey Calculation Method: Minimum Curvature	
Wellbore:	e street	BHL: 100' FSL & 330' FEL, Sec 16		L,
Design:		Design #1		<u>,</u>

Planned Survey

٠,

.

Planne	u Survey		elle part vie note	· · · · · · · · · · · · · · · · · · ·						118년 11일 - 11일 11일 - 11일 - 11일 11일 - 11일 - 11 11일 - 11일 - 11
	Management	Sale L.		Voidland			Vertical	Dealta	Datia	.
	Measured			vertical	1		Vertical	Dogleg	Build	lum
	Depth	inclination .	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
	(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	("/100usft)	(*/100usft)
	10 600 0	2.88	339.07	10 593 1	257.9	-98.6	-257 5	0.00	0.00	0.00
	10,000,0	2.88	339.07	10,693,0	262.6	-100.4	-262.1	0.00	0.00	0.00
	10,700.0	2.88	339.07	10,792.9	267.3	-102.2	-266.8	0.00	0.00	0.00
[10,000.0	2.00	000.07	10,102.0	201.0	102.2	200.0	0.00	0.00	
	10,900.0	2.88	339.07	10,892.7	272.0	-104.0	-271.5	0.00	0.00	0.00
1	11,000.0	2.88	339.07	10,992.6	276.7	-105.8	-276.2	0.00	0.00	0.00
	11,100.0	2.88	339.07	11,092.5	281.3	-107.6	-280.8	0.00	0.00	0.00
	11,200.0	2.88	339.07	11,192.4	286.0	-109.4	-285.5	0.00	0.00	0.00
	11,300.0	2.88	339.07	11,292.2	290.7	-111.2	-290.2	0.00	0.00	0.00
	11,400.0	2.88	339,07	11,392.1	295.4	-113.0	-294.9	0,00	0.00	0.00
	11,500.0	2,88	339.07	11,492.0	300.1	-114.8	-299.5	0.00	0.00	0.00
	11,600.0	2,88	339.07	11,591.9	304.8	-116.6	-304.2	0.00	0.00	0.00
	11,700.0	2.88	339.07	11,691.7	309.5	-118.3	-308.9	0.00	0.00	0.00
	11,800.0	2.88	339.07	11,791.6	314,1	-120.1	-313.6	0.00	0,00	0.00
	11 207 8	2.88	339.07	11 700 /	314 5	-120.3	-313 0	0.00	0.00	0.00
	11,007.0	1 49	339.07	11 891 5	317.8	-121.5	-317.2	1.50	-1 50	0.00
	11,900.0	0.00	0.00	11 991 0	319.0	-121.0	-318.4	1.50	-1.00	0.00
	KOD: 40' ENI	8 220' EEL C	0.00	11,001.0	010.0	-122.0	-010.4	1.00	-1.00	0.00
	40 000 0	- 6 330 FEL, 5	170.50	11 001 5	310.0	122.0	210 4	10.00	10.00	0.00
	12,000.0	10.05	179.59	12 001 0	319.0	-122.0	-310,4	10.00	10,00	0.00
	12,100.0	10.05	179.59	12,091.0	510.2	-121.9	-309.0	10.00	10.00	0.00
	12,200.0	20.05	179.59	12,187.4	284.3	-121.8	-283.7	10.00	10.00	0.00
	12,300.0	30.05	179.59	12,277.9	242.0	-121.4	-241.4	10.00	10.00	0.00
	12,323.2	32.36	179.59	12,297.7	230.0	-121.4	-229.4	10.00	10.00	0.00
	FTP: 100' FN	L & 330' FEL, S	Sec 9							
	12,400.0	40.05	179.59	12,359.7	184.7	-121.0	-184.1	10.00	10.00	0.00
	12,500.0	50.05	179.59	12,430.3	114.0	-120.5	-113.4	10.00	10.00	0.00
	12 600 0	60.05	170 50	12 497 5	20.4	110.0	31.6	10.00	10.00	0.00
	12,000.0	70.05	179.59	12,529.6	-58 4	-119.3	-51.0	10.00	10,00	0.00
	12,700.0	80.04	179.59	12,525,0	-154 9	-118.6	155 5	10,00	10.00	0.00
	12,805,8	89.62	179.59	12,564.0	-250.2	-117.9	250.7	10.00	10.00	0.00
	1 D: 590' ENI	8 330' EEL 80		12,007.0	200.2					•
j	12 000 0	04 JJU FEL, 36	170 50	12 564 0	254 4	117 0	254.0	´ 0.00	0.00	0.00
	12,900.0	09.02	179.59	12,304.0	-204.4	-117.5	234.3	0.00	0.00	0.00
}	13,000.0	89.62	179.59	12,564.7	-354.4	-117.2	354.9	0.00	0.00	0.00
	13,100,0	89.62	179,59	12,565.3	-454.4	-116.5	454.9	0.00	0.00	0.00
	13,200.0	89.62	179.59	12,566.0	-554,4	-115.7	554,9	0.00	0,00	0.00
	13,300.0	89.62	179.5 9	12,566.7	-654.4	-115.0	654.9	0.00	0.00	0.00
	13,400.0	89.62	179,59	12,567.3	-754.4	-114.3	754,9	0.00	0.00	0.00
	13,500,0	89.62	179.59	12,568.0	-854.4	-113.6	854.9	0.00	0.00	0.00
	13,600.0	89.62	179.59	12,568.6	-954.4	-112.9	954.9	0.00	0.00	0.00
Í	13,700.0	89.62	179,59	12,569.3	-1,054.4	-112.1	1,054.9	0.00	0.00	0.00
	13,800.0	89.62	179.59	12,569.9	-1,154.4	-111.4	1,154.9	0.00	0.00	0.00
	13,900.0	89.62	179.59	12,570.6	-1,254.4	-110.7	1,254.9	0.00	0,00	0.00
	14 000 0	90.62	170 50	12 571 2	1 254 4	110.0	1 254 8	0.00	0.00	0.00
	14,000,0	09.02	179,59	12,571,5	-1,334.4	-110.0	1,554.8	0.00	0.00	0.00
	14,100.0	89.02	179.59	12,571.5	1 554 3	108.6	1,454.8	0.00	0.00	0.00
	14,200.0	09.0Z	179.59	12,572.0	-1,004.0	-100.0	1,004.0	0.00	0.00	0.00
	14 400 0	80 FJ	170.50	12,573.2	-1,004.0	-107.0	1 754 9	0.00	0.00	0.00
	14,400.0	09.02	175.55	12,010.0	-1,104.0	-107.1	1,704.0	0.00	0.00	0.00
	14,500.0	89.62	179.59	12,574.6	-1,854.3	-106.4	1,854.8	0.00	0.00	0.00
	14,600.0	89.62	179.59	12,575.2	-1,954.3	-105.7	1,954.8	0.00	0.00	0.00
	14,700.0	89.62	179.59	12,575.9	-2,054.3	-105.0	2,054.8	0.00	0.00	0.00
	14,800.0	89,62	179.59	12,576.5	-2,154.3	-104.3	2,154.8	0.00	0.00 ~	0.00
	14,900.0	89,62	179.59	12,577.2	-2,254.3	-103.5	2,254.8	0.00	0.00	0.00
	14 955 7	89.62	179 59	12,577,5	-2 310 0	-103 1	2,310.5	0.00	0.00	0.00
	DDD: 26441		Sec 9	,.,.,.	2,010.0	100,1	2,0,0,0	0,00	0.00	0.00
	FFF2: 2041' I	OL & JU FEL	, 380 9			· · · - · · ·				

Databaco		Hobbs	12212-047	n na al si n	Name and Street ave	o ordinate Ref	aranca	Site Salado Dra	w 9/16 W1AP I	Fed Com #2H
Company:		Mewbourne Oil C	Company			lerence:	stellee.	WELL @ 3359.	Ousft (Original)	Vell Elev)
Project:		Lea County, New	v Mexico NAD	83	MD Refe	erence:	いいと筆頭	WELL @ 3359.	Ousft (Original V	Vell Elev)
Site:		Salado Draw 9/1	6 W1AP Fed C	Com #2H	North R	eference:		Grid		,
Well:		Sec 9, T26S, R3	3E		Survey	Calculation Me	thod:	Minimum Curva	ature	
Wellbore:		BHL: 100' FSL &	330' FEL, Sec	: 16						
Design:		Design #1			9 . 	4. 4		5. 		
0				Part Street States - 11		t an al san awar				• • •
Planned Surve	y	11日 11日日 - 11日 - 11日 11日日 - 11日日 - 11日	ana ang sa	یانیا ہے۔ مریکان اور مال ہے۔	म्बद्धाः स्टब्स्	1. 182 - 1.	ser setti nor	tian na Ta		, se grader i
Mooney	rod	ر توریخ در انداز اند انداز انداز اند		Vertical		1 1	Vertical	Dogleg	Bulld	Turn
Den	ireu Ih	Inclination	Azimuth	Depth	IN/S	+E/M	Section	Rate	Rate	Rate
(usf	ñ		جداری (۹)	(usft)	(usft)	(usff)	(usft)	(°/100usft)	*/100usft)	(°/100usft)
and the state of the state		Res Marine and		n en sin de sin	CARLEY AND	(-0.14)	- Witten (AND AND AND AND		
15,0	000.0	89.62	179.59	12,577.8	-2,354.3	-102.8	2,354.8	0.00	0.00	0.00
10,	200.0	89.62	179.59	12,576.5	-2,454.3	-102.1	2,434.7	0.00	0.00	0.00
15,	300.0	89.62	179.59	12,579.8	-2,654.3	-100.7	2,654.7	0.00	0.00	0.00
16.	400.0	80.62	170 50	12 580 5	-2 754 3	-00 0	2 754 7	0.00	0.00	0.00
15,4	400.0 500.0	89.62	179.59	12,580.5	-2,754.3	-99.9	2,754.7	0.00	0.00	0.00
15,0	600.0	89.62	179.59	12,581.8	-2,954.3	-98.5	2,954.7	0.00	0.00	0.00
15,	700.0	89.62	179.59	12,582.4	-3,054,3	-97.8	3,054.7	0.00	0.00	0,00
15,8	800.0	89.62	179.59	12,583.1	-3,154.3	-97.1	3,154.7	0.00	0.00	0.00
15.9	900.0	89.62	179,59	12,583,8	-3,254,3	-96.4	3,254,7	0.00	0.00	0,00
16,0	0.000	89.62	179,59	12,584.4	-3,354,3	-95,6	3,354.7	0.00	0.00	0,00
' 16,	100.0	89.62	179.59	12,585.1	-3,454.3	-94.9	3,454.7	0.00	0.00	0.00
16,:	200.0	89.62	179.59	12,585.7	-3,554.2	-94.2	3,554.6	0.00	0.00	0.00
16,:	300.0	89.62	179.59	12,586.4	-3,654.2	-93.5	3,654.6	0.00	0.00	0.00
¹ 16,4	400.0	89.62	179.59	12,587.0	-3,754.2	-92.8	3,754.6	0.00	0.00	0.00
16,	500.0	89.62	179.59	12,587.7	-3,854.2	-92.1	3,854.6	0.00	0.00	0.00
16,0	600.0	89.62	179.59	12,588.4	-3,954.2	-91.3	3,954.6	0.00	0.00	0.00
16,	/00.0 800.0	89.62	179.59	12,589.0	-4,054.2	-90,6	4,054.6	0.00	0.00	0.00
10,1		.03.02	178.58	12,000.7		-00.0	4,104.0	0.00	0.00	0.00
16,	900.0	89.62	179.59	12,590.3	-4,254.2	-89.2	4,254.6	0.00	0.00	0.00
17,	100.0	89.62	179.59	12,591,0	-4,354.2	-00.3	4,354.6	0.00	0.00	0.00
17.	200.0	89.62	179.59	12,592.3	-4.554.2	-87.0	4,554.6	0.00	0.00	0.00
i 17,	300.0	89.62	179.59	12,593.0	-4,654.2	-86.3	4,654.5	0.00	0.00	0.00
. 17.	400.0	89.62	179 59	12 593 6	-4 754 2	-85.6	4 754 5	0.00	0.00	0.00
17.	500.0	89.62	179,59	12,594.3	-4,854,2	-84.9	4.854.5	0.00	0.00	0.00
17,0	600.0	89.62	179.59	12,594.9	-4,954.2	-84.2	4,954.5	0.00	0.00	0.00
17,	700.0	89.62	179.59	12,595.6	-5,054.2	-83.4	5,054.5	0.00	0.00	0.00
17,6	800.0	89.62	179.59	12,596.3	-5,154.2	-82.7	5,154.5	0.00	0.00	0.00
17,9	900.0	89.62	179,59	12,596.9	-5,254.2	-82.0	5,254.5	0.00	0.00	0.00
18,0	0,000	89.62	179.59	12,597.6	-5,354.2	-81.3	5,354.5	0.00	0.00	0.00
18,	100.0	89.62	179.59	12,598.2	-5,454.2	-80.6	5,454.5	0.00	0.00	0.00
18,2	200.0	89.62	1/9.59	12,598.9	-5,554.2	-/9.9	5,554.5	0.00	0.00	0.00
10,1	300.0	09.02	179.59	12,599.5	-5,654.1	-/ 5.1	5,054.5	0.00	0.00	0.00
18,4	400.0	89.62	179.59	12,600.2	-5,754.1	-78.4	5,754.4	0.00	0.00	0.00
18,5	500.0 800.0	89.62	179.59	12,600.9	-5,854.1	-//./	5,854.4	0.00	0.00	0.00
18	700.0	89.62	179.59	12,001.0	-6 054 1	-76.3	6 054 4	0.00	0.00	0.00
18,8	BOO.0	89.62	179.59	12,602.8	-6,154.1	-75.6	6,154.4	0.00	0.00	0.00
18.0	0.00	80.62	179 59	12 603 5	6 254 1	-74 8	6 254 4	0.00	0.00	0.00
10,0	0.000	89.62	179.59	12,603.5	-6,354,1	-74.1	6.354.4	0.00	0.00	0.00
19,	100.0	89.62	179.59	12,604.8	-6,454.1	-73.4	6,454.4	0.00	0.00	0.00
19,2	200.0	89.62	179.59	12,605.5	-6,554.1	-72.7	6,554.4	0.00	0.00	0.00
19,3	300.0	89.62	179.59	12,606.1	-6,654.1	-72.0	6,654.4	0.00	0.00	0.00
19,4	400.0	89.62	179.59	12,606.8	-6,754.1	-71.2	6,754.4	0.00	0.00	0.00
19,5	500.0	89.62	179,59	12,607.4	-6,854.1	-70.5	6,854.3	0.00	0.00	0.00
19,6	500.0	89.62	179.59	12,608.1	-6,954.1	-69.8	6,954.3	0.00	0.00	0.00
19,7	700.0	89.62	179,59	12,608.7	-7,054.1	-69.1	7,054.3	0.00	0.00	0.00
. 19,8	500,0	89.62	1/9.59	12,609.4	-7,154.1	-68.4	7,154.3	0.00	0.00	0.00
19,9	900.0	89.62	179.59	12,610,1	-7,254.1	-67.7	7,254.3	0.00	0.00	0.00
20,0	0.000	89.62	179.59	12,610.7	-7,354.1	-66,9	7,354.3	0.00	0.00	0.00
20,1	100.0	89.62	179.59	12,611.4	-7,454.1	-66.2	7,454.3	0.00	0.00	0.00
20,2	200,0	89.02 89.62	179.59	12,012,0	-7,554.1 -7,654 1	-05.5 _64 8	7 654 3	0.00	0.00	0.00
20,0		00,02	.73,35	12,012,1	-,,004,1	-0-4,0	,004.0	0.00	0.00	0.00

•

.

•

		······································	······································
Design:	Design #1		
Wellbore:	BHL: 100' FSL & 330' FEL, Sec 16		
Well:	Sec 9, T26S, R33E	Survey Calculation Method:	Minimum Curvature
Site:	Salado Draw 9/16 W1AP Fed Com #2H	North Reference:	Grid
Project:	Lea County, New Mexico NAD 83	MD Reference:	WELL @ 3359.0usft (Original Well Elev)
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3359.0usft (Original Well Elev)
Database:	Hobbs	Local Co-ordinate Reference:	Site Salado Draw 9/16 W1AP Fed Com #2H

		с ÷	· •						4
Measured Depth (usft)	inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (*/100usft)	Turn Rate (*/100usft)
20,400.0	89.62	179.59	12,613.4	-7,754.0	-64.1	7,754.3	0,00	0.00	0.00
20,500.0	89.62	179.59	12,614.0	-7,854.0	-63.4	7,854.3	0.00	0.00	0.00
20,600.0	89.62	179,59	12,614,7	-7,954.0	-62.6	7,954.2	0.00	0.00	0,00
20,700.0	89.62	179,59	12,615.3	-8,054.0	-61.9	8,054.2	0.00	0.00	0.00
20,800.0	89.62	179,59	12,616.0	-8,154.0	-61.2	8,154.2	0.00	0.00	0.00
20,900.0	89.62	179.59	12,616.6	-8,254.0	-60.5	8,254.2	0.00	0.00	0.00
21,000.0	89.62	179.59	12,617.3	-8,354.0	-59.8	8,354.2	0.00	0.00	0.00
21,100.0) 89.62	179.59	12,618.0	-8,454.0	-59.0	8,454.2	0.00	0.00	0.00
21,200.0	89.62	179.59	12,618.6	-8,554.0	-58.3	8,554.2	0,00	0.00	0.00
21,300.0	89.62	179.59	12,619.3	-8,654.0	-57.6	8,654.2	0.00	0.00	0.00
21,400.0	89.62	179.59	12,619,9	-8,754.0	-56,9	8,754.2	0.00	0.00	0.00
21,500.0	89.62	179.59	12,620.6	-8,854.0	-56.2	8,854.2	0.00	0.00	0.00
21,600.0	89.62	179,59	12,621,2	-8,954.0	-55.5	8,954.2	0.00	0.00	0.00
21,700.0) 89.62	179,59	12,621.9	-9,054,0	-54.7	9,054.1	0.00	0.00	0.00
21,800.0	89.62	179,59	12,622.6	-9,154.0	-54.0	9,154.1	0.00	0.00	0.00
21,900.0	89.62	179.59	12,623.2	-9,254.0	-53.3	9,254.1	0.00	0.00	0.00
22,000.0	89.62	179.59	12,623.9	-9,354.0	-52.6	9,354.1	0.00	0.00	0.00
22,100.0) 89.62	179,59	12,624.5	-9,454.0	-51.9	9,454.1	0.00	0.00	0.00
22,200.0	89.62	179.59	12,625.2	-9,554.0	-51.2	9,554.1	0.00	0.00	0.00
22,300.0	89.62	179.59	12,625.8	-9,654.0	-50.4	9,654.1	0.00	0.00	0.00
22,400.0	89.62	179.59	12,626.5	-9,754.0	-49.7	9,754.1	0.00	0.00	0.00
22,500.0	89.62	179,59	12,627.2	-9,853.9	-49.0	9,854.1	0.00	0.00	0.00
22,600.0	89.62	179.59	12,627.8	-9,953.9	-48.3	9,954.1	0.00	0.00	0.00
22,700.0	89.62	179.59	12,628.5	-10,053,9	-47.6	10,054,1	0.00	0.00	0.00
22,779.1	89.62	179,59	12.629.0	-10.133.0	-47.0	10.133.1	0,00	0.00	0.00

Design Targets							•		
Target Name - hit/miss target Ói - Shape	ip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W. (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SL: 330' FNL & 210' FEL - plan hits target center - Point	0.00	0.00	0.0	0.0	0.0	387,987.00	777,986.00	32.0643537	-103.5693976
KOP: 10' FNL & 330' FE - plan hits target center - Point	0.00	0.00	11,991.0	319.0	-122.0	388,306.00	777,864.00	32.0652329	-103.5697841
FTP: 100' FNL & 330' FE - plan hits target center - Point	0.00	0.00	12,297.7	230.0	-121.4	388,217.00	777,864.64	32.0649882	-103.5697841
LP: 580' FNL & 330' FEL - plan hits target center - Point	0.00	0.00	12,564.0	-250.2	-117.9	387,736.80	777,868.10	32.0636682	-103.5697838
PPP2: 2641' FSL & 330' - plan hits target center - Point	0.00	0.00	12,577.5	-2,310.0	-103.1	385,677.00	777,882.86	32.0580061	-103.5697832
BHL: 100' FSL & 330' FE - plan hits target center - Point	0.00	0.00	12,629.0	-10,133.0	-47.0	377,854.00	777,939.00	32.0365016	-103.5697806

.

.

.

Database:	Hobbs	Local Co-ordinate Reference:	Site Salado Draw 9/16 W1AP Fed Com #2H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3359.0usft (Original Well Elev)
Project:	Lea County, New Mexico NAD 83	MD Reference:	WELL @ 3359.0usft (Original Well Elev)
Site:	Salado Draw 9/16 W1AP Fed Com #2H	North Reference:	Grid
Well:	Sec 9, T26S, R33E	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 100' FSL & 330' FEL, Sec 16		
Design:	Design #1		· · · · ·

.

.

,

NOTE DRAFT Publication is for Review ONLY. NOT approved for System Installation. NOT approved for field usage. NOT approved for distribution : If you obtain a DRAFT copy - it is your responsibility to verify SAP revision level or contact Houston Engineering to ensure document has been approved and released.

RUNNING PROCEDURE

Mewbourne Oil Co

13-5/8" 10K MN-DS System 13-3/8" x 9-5/8" x 7" Casing Program RP-003815 Rev 01 Draft A

5,000 PSI Annular BOP Variance Request

Mewbourne Oil Company request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOP).

1. Component and Preventer Compatibility Tables

The tables below outline the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.

12-1/4" Intermediate Hole Section 10M psi Requirement										
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP					
Drillpipe	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M					
	4.500"			Lower 3.5"-5.5" VBR	10M					
HWDP	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M					
	4.500"			Lower 3.5"-5.5" VBR	10M					
Jars	6.500"	Annular	5M	-	-					
DCs and MWD tools	6.500"-	Annular	5M	-	-					
	8.000"									
Mud Motor	8.000"-	Annular	5M	-	-					
	9.625"									
Intermediate Casing	10.75"	Annular	5M	-	-					
Open-Hole	-	Blind Rams	10M	-	-					

	9-7/8" Production Hole Section 10M psi Requirement										
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP						
Drillpipe	5.000" or 4.500"	Annular	5M	Upper 3.5"-5.5" VBR Lower 3.5"-5.5" VBR	10M 10M						
HWDP	5.000" or 4.500"	Annular	5M	Upper 3.5"-5.5" VBR Lower 3.5"-5.5" VBR	10M 10M						
Jars	6.500"	Annular	5M	-	-						
DCs and MWD tools	6.500"- 8.000"	Annular	5M	-	-						
Mud Motor	6.750"- 8.000"	Annular	5M	-	-						
Production Casing	7.625"	Annular	5M	-	-						

Open-Hole	-	Blind Rams	10M	-	-

6-1/8" Lateral Hole Section 10M psi Requirement						
Component	OD	Primary Preventer	RWP	Alternate Preventer(s)	RWP	
Drillpipe	4.500"	Annular	5M	Upper 3.5"-5.5" VBR	10M	
				Lower 3.5"-5.5" VBR	10M	
HWDP	4.500"	Annular	5M	Upper 3.5"-5.5" VBR	10M	
				Lower 3.5"-5.5" VBR	10M	
DCs and MWD tools	4.750"-	Annular	5M	Upper 3.5"-5.5" VBR	10M	
	5.500"			Lower 3.5"-5.5" VBR	10M	
Mud Motor	4.750"-	Annular	5M	Upper 3.5"-5.5" VBR	10M	
	5.500"			Lower 3.5"-5.5" VBR	10M	
Production Casing	5.500"	Annular	5M	Upper 3.5"-5.5" VBR	10M	
				Upper 3.5"-5.5" VBR	10M	
Open-Hole	-	Blind Rams	10M	-	-	

VBR = Variable Bore Ram

2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the Mewbourne Oil Company drilling supervisor's office on location and on the rig floor. All BOP equipment will be tested as per Onshore O&G Order No. 2 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)

- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full-opening safety valve & close
- 3. Space out drill string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Running Production Casing

1. Sound alarm (alert crew)

- 2. Stab crossover and full-opening safety valve and close
- 3. Space out string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams (HCR & choke will already be in the closed position)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA Through Stack

- 1. PRIOR to pulling last joint of drillpipe through stack:
 - a. Perform flow check. If flowing, continue to (b).
 - b. Sound alarm (alert crew)
 - c. Stab full-opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams
 - e. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full-opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams
 - d. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain

- iii. Time
- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible, pull string clear of the stack and follow "Open Hole" procedure.
 - c. If impossible to pull string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe and full-opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram
 - f. Shut-in using upper variable bore ram (HCR & choke will already be in the closed position)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

Mewbourne Oil Co. requests approval to batch drill the Salado Draw 9/16 W1AP Fed Com #2H and Salado Draw 9/16 W0AP Fed Com #3H in the sequence depicted below.

• Surface, Production & Intermediate Hole:

- 1. Drill 17-1/2" surface hole with fresh water to planned casing set depth.
- 2. Run casing as stated by approved APD, land out wellhead, and cement.
- 3. N/U and test 13-5/8" BOPE to 250 psi / 5,000 psi.
- 4. Test casing to required pressure. Drill out shoe and 10' of new formation. Perform FIT.
- 5. Drill 12-1/4" hole to planned casing set depth.
- 6. Run casing as stated by approved APD, land out hanger and cement.
- 7. Test casing to required pressure. Drill out shoe and 10' of new formation. Perform FIT.
- 9 7/8
 8. Drill 8-3/4" vertical section and curve as stated by approved APD.
- 9. Run casing as stated by approved APD, land out hanger and cement.
- 10. Secure with wellhead cover, walk rig to Salado Draw 9/16 W0AP Fed Com #3H and repeat Steps 1-9.

• Lateral:

- 1. Test casing to required pressure. Drill out shoe and 10' of new formation. Perform FIT.
- 2. Drill 6-1/8" lateral as stated by approved APD.
- 3. Run liner as stated by approved APD, cement, set liner hanger and secure with wellhead cover.
- 4. Walk rig to Salado Draw 9/16 W1AP Fed Com #2H.
- 5. N/U and test 13-5/8" BOPE to 250 psi / 5000 psi.
- 6. Repeat Steps 1-3.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Mewbourne Oil Company
LEASE NO.:	NMNM0000127A
WELL NAME & NO.:	2H-Salado Draw 9/16 W1AP Fed Com
SURFACE HOLE FOOTAGE:	330'/N & 210'/E
BOTTOM HOLE FOOTAGE	100'/S & 330/E; Sec. 16
LOCATION:	Section 9, T.26 S., R.33 E., NMPM
COUNTY:	Lea County, New Mexico

All COA still apply expect the following:

H2S	• Yes	r No	
Potash	None		C R-111-P
Cave/Karst Potential	C Low	Medium	High
Variance	C None	Flex Hose	C Other
Wellhead	Conventional	Multibowl	Both
Other	□ 4 String Area	Capitan Reef	F WIPP

A. Hydrogen Sulfide

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware** formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- The 13-378 inch surface casing shall be set at approximately 1010 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength,

whichever is greater.

- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 10 3/4 inch 1^{st} intermediate is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Additional cement maybe required. Excess calculates to 24%.
 - In <u>Medium/High Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

96

3. The minimum required fill of cement behind the 7-5/8 inch 2nd intermediate casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back 200' into the previous casing. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.
- Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9-5/8 intermediate casing shoe shall be 5000 (5M) psi.
- 4. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 7 intermediate casing shoe shall be 10,000 (10M) psi.

Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi.).

SPECIAL REQUIREMENTS

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be</u> <u>on the sign.</u>

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. Operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.

- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.

- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
 - g. BOP/BOPE must be tested by an independent service company within 500

feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Waste Minimization Plan (WMP)

In the interest of resource development, submission of additional well gas capture development plan information is deferred but may be required by the BLM Authorized Officer at a later date.

ZS 101818

263309 SUNDRY 437870 Salado Draw 9 W1AP Fed 2H 30015 NM-0127A Mewbourne v12.0 ZS 10.16.2018

	surface	csg in a	20	inch hole.	~~~~	Design F	actors	SUR	FACE
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	Weight
"A"	65.00	Н	40	BUTT	11.22	1.36	0.64	1,010	65,650
"B"					÷			0	0
w/8.4#/g r	nud, 30min Sf	c Csg Test psig:	707	Tail Cmt	does not	circ to sfc.	Totals:	1,010	65,650
Comparison of	f Proposed	to Minimum	Required Cer	ment Volumes				·	
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
20	0.7854	825	1593	988	61	8.80	1476	2M	1.50
Burst Frac Grad	lient(s) for Se	egment(s) A,	B=,b All>	0.70, OK.		n			
103/4	casing in	side the	16	,		Desian F	actors	INTERN	EDIATE
Segment	#/ft	Grade	alian da sua	Coupling	Bodv	Collapse	Burst	Lenath	Weight
"A"	45.50	HCL	80	BUTT	4.64	1.22	0.84	4.930	224.315
"B"				· · · ·	·			0	0
w/8.4#/g r	nud. 30min Sf	c Csg Test psig:					Totals:	4.930	224.315
The	cement volu	ime(s) are in	tended to ac	hieve a top of	0	ft from su	face or a	1010	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
13 1/2	0.3637	1300	2600	2094	24	10.00	3561	5M	0.88
Burst Frac Grad	ient(s) for Se	egment(s): A,	B, C, D = 1.06	, b, c, d All	RED IT EET # 1274 .	n	es , es a es	•	7 P caa e caa o d
75/8	casing in	side the	10 3/4			Design Fac	tors	INTERN	IEDIATE
Segment	#/ft	Grade		Coupling	Joint	Collapse	Burst	Length	Weight
"A"	29.70	HCP	110	LT&C	2.18	1.16	1.11	11,900	353,430
"B"				•				0	0
w/8.4#/g r	nud, 30min Sf	c Csg Test psig:	1,440				Totals:	11,900	353,430
w/8.4#/g r The (nud, 30min Sf cement volu	c Csg Test psig: I me(s) are in	1,440 tended to ac	hieve a top of	4730	ft from su	Totals: rface or a	11,900 200	353,430 overlap.
w/8.4#/gr The (Hole	nud, 30min Sf cement volu Annular	c Csg Test psig: ime(s) are in 1 Stage	1,440 tended to act 1 Stage	hieve a top of Min	4730 1 Stage	ft from su Drilling	Totals: rface or a Calc	11,900 200 Req'd	353,430 overlap. Min Dist
w/8.4#/gr The Hole Size	nud, 30min Sf cement volu Annular Volume	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx	1,440 tended to act 1 Stage CuFt Cmt	hieve a top of Min Cu Ft	4730 1 Stage % Excess	ft from su Drilling Mud Wt	Totals: rface or a Calc MASP	11,900 200 Req'd BOPE	353,430 overlap. Min Dist Hole-Cplg
w/8.4#/g r The d Hole Size 9 7/8	nud, 30min Sf cement volu Annular Volume 0.2148	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx look V	1,440 tended to act 1 Stage CuFt Cmt 0	hieve a top of Min Cu Ft 1553	4730 1 Stage % Excess	ft from su Drilling Mud Wt 10,00	Totals: rface or a Calc MASP 5750	11,900 200 Req'd BOPE 10M	353,430 overlap. Min Dist Hole-Cplg 0.69
w/8.4#/gr The Hole Size 9 7/8 Setting	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx IOOK ↘ D V Tool(s):	1,440 tended to act 1 Stage CuFt Cmt 0 6227	hieve a top of Min Cu Ft 1553	4730 1 Stage % Excess	ft from su Drilling Mud Wt 10.00	Totals: fface or a Calc MASP 5750 <u>sum of sx</u>	11,900 200 Req'd BOPE 10M Σ CuFt	353,430 overlap. Min Dist Hole-Cplg 0.69 Σ%excess
w/8.4#/gr The of Hole Size 9 7/8 Setting % excess of	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx Iook S D V Tool(s): 25	1,440 tended to aci 1 Stage CuFt Cmt 0 6227 27	hieve a top of Min Cu Ft 1553	4730 1 Stage % Excess	ft from su Drilling Mud Wt 10.00	Totals: face or a Calc MASP 5750 <u>sum of sx</u> 1130	11,900 200 Req'd BOPE 10M Σ CuFt 1942	353,430 overlap. Min Dist Hole-Cplg 0.69 <u>Σ%excess</u> 25
w/8.4#/gr The of Hole Size 9 7/8 Setting % excess of	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx Iook S D V Tool(s): 25	1,440 tended to aci 1 Stage CuFt Cmt 0 6227 27 MASP is with	hieve a top of Min Cu Ft 1553 hin 10% of 5000	4730 1 Stage % Excess	ft from su Drilling Mud Wt 10.00	Totals: face or a Calc MASP 5750 <u>sum of sx</u> 1130	11,900 200 Req'd BOPE 10M Σ CuFt 1942	353,430 overlap. Min Dist Hole-Cplg 0.69 Σ%excess 25
w/8.4#/gr The of Size 9 7/8 Setting % excess of Tail cmt	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx IOOK > D V Tool(s): 25	1,440 tended to acl 1 Stage CuFt Cmt 0 6227 27 MASP is with	hieve a top of Min Cu Ft 1553	4730 1 Stage % Excess	ft from su Drilling Mud Wt 10.00	Totals: face or a Calc MASP 5750 <u>sum of sx</u> 1130	11,900 200 Req'd BOPE 10M Σ CuFt 1942	353,430 overlap. Min Dist Hole-Cplg 0.69 Σ%excess 25
w/8.4#/gr The of Size 9 7/8 Setting % excess of Tail cmt 5 1/2	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage casing in	c Csg Test psig: ime(s) are im 1 Stage Cmt Sx Iook DV Tool(s): 25	1,440 tended to acl 1 Stage CuFt Cmt 0 6227 27 MASP is with 7 5/8	hieve a top of Min Cu Ft 1553 hin 10% of 5000	4730 1 Stage % Excess	ft from su Drilling Mud Wt 10.00 krta equip?	Totals: rface or a Calc MASP 5750 <u>sum of sx</u> 1130 Calc Sum of sx	11,900 200 Req'd BOPE 10M Σ CuFt 1942 PRODU	353,430 overlap. Min Dist Hole-Cplg 0.69 Σ%excess 25
w/8.4#/gr The of Hole Size 9 7/8 Setting % excess of Tail cmt 5 1/2 Segment	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage casing in #/ft	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx look S D V Tool(s): 25 side the Grade	1,440 tended to aci 1 Stage CuFt Cmt 0 6227 27 MASP is with 7 5/8	hieve a top of Min Cu Ft 1553 hin 10% of 5000 Coupling	4730 1 Stage % Excess psig, need ex Joint	ft from su Drilling Mud Wt 10.00 krta equip? <u>Design F</u> Collapse	Totals: rface or a Calc MASP 5750 <u>sum of sx</u> 1130 Cactors Burst	11,900 200 Req'd BOPE 10M Σ CuFt 1942 PRODU Length	353,430 overlap. Min Dist Hole-Cplg 0.69 Σ%excess 25 JCTION Weight
w/8.4#/gr The of Hole Size 9 7/8 Setting % excess of Tail cmt 5 1/2 Segment "A"	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage casing in #/ft 23.00	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx Iook S D V Tool(s): 25 side the Grade	1,440 tended to acl 1 Stage CuFt Cmt 0 6227 27 MASP is with 7 5/8 110	hieve a top of Min Cu Ft 1553 hin 10% of 5000 Coupling #N/A	4730 1 Stage % Excess psig, need ex Joint 2.47 7 61	ft from su Drilling Mud Wt 10.00 krta equip? <u>Design F</u> Collapse 2.74	Totals: face or a Calc MASP 5750 <u>sum of sx</u> 1130 Cactors Burst 2.31	11,900 200 Req'd BOPE 10M Σ CuFt 1942 PRODU Length 12,000	353,430 overlap. Min Dist Hole-Cplg 0.69 ∑%excess 25 JCTION Weight 276,000
w/8.4#/gr The of Hole 9 7/8 Setting % excess of Tail cmt 5 1/2 Segment "A" "B"	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage casing in #/ft 23.00 23.00	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx Iook S D V Tool(s): 25 side the Grade P	1,440 tended to acl 1 Stage CuFt Cmt 0 6227 27 MASP is with 7 5/8 110 110	hieve a top of Min Cu Ft 1553 hin 10% of 5000 Coupling #N/A #N/A	4730 1 Stage % Excess psig, need ex Joint 2.47 7.61	ft from su Drilling Mud Wt 10.00 krta equip? <u>Design F</u> Collapse 2.74 2.36	Totals: rface or a Calc MASP 5750 <u>sum of sx</u> 1130 Calc Sum of sx 2.31 2.31 2.31 2.31 2.31	11,900 200 Req'd BOPE 10M Σ CuFt 1942 PRODU Length 12,000 10,779 22 770	353,430 overlap. Min Dist Hole-Cplg 0.69 ∑%excess 25 JCTION Weight 276,000 247,917 522,047
w/8.4#/gr The d Size 9 7/8 Setting % excess of Tail cmt 5 1/2 Segment "A" "B" w/8.4#/gn	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage casing in #/ft 23.00 23.00 nud, 30min Sf	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx Iook S D V Tool(s): 25 iside the Grade P c Csg Test psig: sign Eactor	1,440 tended to acl 1 Stage CuFt Cmt 0 6227 27 MASP is with 7 5/8 110 110 2,640	hieve a top of Min Cu Ft 1553 hin 10% of 5000 Coupling #N/A #N/A	4730 1 Stage % Excess psig, need ex- Joint 2.47 7.61 49.56	ft from su Drilling Mud Wt 10.00 krta equip? <u>Design F</u> Collapse 2.74 2.36	Totals: rface or a Calc MASP 5750 <u>sum of sx</u> 1130 <u>actors</u> Burst 2.31 2.31 Totals: fitures	11,900 200 Req'd BOPE 10M Σ CuFt 1942 PRODU Length 12,000 10,779 22,779	353,430 overlap. Min Dist Hole-Cplg 0.69 ∑%excess 25 25 25 25 25 25 25 25 25 25 25 25 25
w/8.4#/gr The of Size 9 7/8 Setting % excess of Tail cmt 5 1/2 Segment "A" "B" w/8.4#/gr B Set	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage casing in #/ft 23.00 23.00 nud, 30min Sf egment De	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx IOOK D V Tool(s): 25 iside the Grade P P c Csg Test psig: sign Factor	1,440 tended to aci 1 Stage CuFt Cmt 0 6227 27 MASP is with 7 5/8 110 110 2,640 s would be:	hieve a top of Min Cu Ft 1553 hin 10% of 5000 Coupling #N/A #N/A	4730 1 Stage % Excess psig, need ex- Joint 2.47 7.61 49.56 (cm)/(b)	ft from su Drilling Mud Wt 10.00 krta equip? <u>Design F</u> Collapse 2.74 2.36	Totals: rface or a Calc MASP 5750 <u>sum of sx</u> 1130 Factors Burst 2.31 2.31 Totals: f it were a v	11,900 200 Req'd BOPE 10M Σ CuFt 1942 PRODU Length 12,000 10,779 22,779 retrical wellb	353,430 overlap. Min Dist Hole-Cplg 0.69 Σ%excess 25 JCTION Weight 276,000 247,917 523,917 ore.
w/8.4#/gr The of Hole Size 9 7/8 Setting % excess of Tail cmt 5 1/2 Segment "A" "B" w/8.4#/gr B So No Pilo	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage casing in #/ft 23.00 23.00 nud, 30min Sf egment De ot Hole Pla	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx Iook S D V Tool(s): 25 side the Grade P c Csg Test psig: sign Factor nned	1,440 tended to aci 1 Stage CuFt Cmt 0 6227 27 MASP is with 7 5/8 110 110 2,640 s would be: MTD 22770	hieve a top of Min Cu Ft 1553 hin 10% of 5000 Coupling #N/A #N/A Max VTD 12620	4730 1 Stage % Excess psig, need ex Joint 2.47 7.61 49.56 Csg VD 12620	ft from su Drilling Mud Wt 10.00 (rta equip? <u>Design F</u> Collapse 2.74 2.36 2.6 Curve KOP	Totals: face or a Calc MASP 5750 <u>sum of sx</u> 1130 Sum of sx 2.31 2.31 2.31 Totals: f it were a v Dogleg° 00	11,900 200 Req'd BOPE 10M Σ CuFt 1942 PRODU Length 12,000 10,779 22,779 rertical wellb Severity°	353,430 overlap. Min Dist Hole-Cplg 0.69 ∑%excess 25 JCTION Weight 276,000 247,917 523,917 ore. MEOC 12806
w/8.4#/g n The of Size 9 7/8 Setting % excess of Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g n B Setting No Pilo	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage casing in #/ft 23.00 23.00 nud, 30min Sf egment De ot Hole Pla	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx IOOK S D V Tool(s): 25 side the Grade P c Csg Test psig: sign Factor: nned me(c) are int	1,440 tended to acl 1 Stage CuFt Cmt 0 6227 27 MASP is with 7 5/8 110 110 2,640 s would be: MTD 22779	hieve a top of Min Cu Ft 1553 Ann 10% of 5000 Coupling #N/A #N/A Max VTD 12629	4730 1 Stage % Excess psig, need ex Joint 2.47 7.61 49.56 Csg VD 12629 11700	ft from su Drilling Mud Wt 10.00 krta equip? <u>Design F</u> Collapse 2.74 2.36 2.6 Curve KOP 12000	Totals: face or a Calc MASP 5750 <u>sum of sx</u> 1130 Cactors Burst 2.31 Totals: f it were a v Dogleg° 90 face or a	11,900 200 Req'd BOPE 10M Σ CuFt 1942 PRODU Length 12,000 10,779 22,779 rertical wellb Severity° 10 200	353,430 overlap. Min Dist Hole-Cplg 0.69 ∑%excess 25 JCTION Weight 276,000 247,917 523,917 ore. MEOC 12896
w/8.4#/g r The of Size 9 7/8 Setting % excess of Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g r B Se No Pilo The of	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage casing in #/ft 23.00 23.00 23.00 nud, 30min Sf egment De ot Hole Place cement volu	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx IOOK S D V Tool(s): 25 Side the Grade P P c Csg Test psig: sign Factor nned ime(s) are inf 1 Stage	1,440 tended to acl 1 Stage CuFt Cmt 0 6227 27 MASP is with 7 5/8 110 110 2,640 s would be: MTD 22779 tended to acl	hieve a top of Min Cu Ft 1553 hin 10% of 5000 Coupling #N/A #N/A Max VTD 12629 hieve a top of Min	4730 1 Stage % Excess psig, need ex- Joint 2.47 7.61 49.56 Csg VD 12629 11700 1 Stage	ft from su Drilling Mud Wt 10.00 krta equip? <u>Design F</u> Collapse 2.74 2.36 2.6 Curve KOP 12000 ft from su	Totals: rface or a Calc MASP 5750 <u>sum of sx</u> 1130 <u>sum of sx</u> 1130 <u>sum of sx</u> 2.31 2.31 2.31 2.31 Totals: f it were a v Dogleg° 90 rface or a Calc	11,900 200 Req'd BOPE 10M Σ CuFt 1942 PRODU Length 12,000 10,779 22,779 ertical wellb Severity° 10 200 Poold	353,430 overlap. Min Dist Hole-Cplg 0.69 ∑%excess 25 JCTION Weight 276,000 247,917 523,917 ore. MEOC 12896 overlap. Min Dist
w/8.4#/gr The of Bize 9 7/8 Setting % excess of Tail cmt 5 1/2 Segment "A" "B" w/8.4#/gr B So No Pilo The of Hole	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage casing in #/ft 23.00 23.00 23.00 nud, 30min Sf egment De of Hole Plat cement volu Annular	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx IOOK S D V Tool(s): 25 iside the Grade P c Csg Test psig: sign Factor nned ime(s) are int 1 Stage Cmt Sc	1,440 tended to acl 1 Stage CuFt Cmt 0 6227 27 MASP is with 7 5/8 110 110 2,640 s would be: MTD 22779 tended to acl 1 Stage CuEt Cmt	hieve a top of Min Cu Ft 1553 hin 10% of 5000 Coupling #N/A #N/A Max VTD 12629 hieve a top of Min Cu Et	4730 1 Stage % Excess psig, need ex- Joint 2.47 7.61 49.56 Csg VD 12629 11700 1 Stage % Excess	ft from su Drilling Mud Wt 10.00 crta equip? <u>Design F</u> Collapse 2.74 2.36 2.6 i Curve KOP 12000 ft from su Drilling Mud Wé	Totals: rface or a Calc MASP 5750 <u>sum of sx</u> 1130 Factors Burst 2.31 2.31 Totals: f it were a v Dogleg° 90 rface or a Calc MASP	11,900 200 Req'd BOPE 10M Σ CuFt 1942 PRODU Length 12,000 10,779 22,779 rertical wellb Severity° 10 200 Req'd BOPE	353,430 overlap. Min Dist Hole-Cplg 0.69 ∑%excess 25 25 25 25 25 25 25 25 25 25 25 25 25
w/8.4#/gr The of Size 9 7/8 Setting % excess of Tail cmt 5 1/2 Segment "A" "B" w/8.4#/gr B So No Pilo The of Hole Size 6 1/2	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage casing in #/ft 23.00 23.00 nud, 30min Sf egment De ot Hole Pla cement volu Annular Volume 0.0654	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx IOOK S D V Tool(s): 25 iside the Grade P c Csg Test psig: sign Factor: nned ime(s) are int 1 Stage Cmt Sx 425	1,440 tended to aci 1 Stage CuFt Cmt 0 6227 27 MASP is with 7 5/8 110 110 2,640 s would be: MTD 22779 tended to aci 1 Stage CuFt Cmt 1262	hieve a top of Min Cu Ft 1553 hin 10% of 5000 Coupling #N/A #N/A Max VTD 12629 hieve a top of Min Cu Ft 725	4730 1 Stage % Excess psig, need ex- Joint 2.47 7.61 49.56 Csg VD 12629 11700 1 Stage % Excess 72	ft from su Drilling Mud Wt 10.00 krta equip? <u>Design F</u> Collapse 2.74 2.36 2.6 Curve KOP 12000 ft from su Drilling Mud Wt	Totals: rface or a Calc MASP 5750 <u>sum of sx</u> 1130 Factors Burst 2.31 2.31 Totals: f it were a v Dogleg° 90 rface or a Calc MASP	11,900 200 Req'd BOPE 10M Σ CuFt 1942 PRODU Length 12,000 10,779 22,779 retrical wellbo Severity° 10 200 Req'd BOPE	353,430 overlap. Min Dist Hole-Cplg 0.69 ∑%excess 25 25 25 25 25 25 25 25 25 25 25 25 25
w/8.4#/g r The o Hole Size 9 7/8 Setting % excess of Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g n B Setting W/8.4#/g n B Setting No Pilo The o Size 6 1/2	nud, 30min Sf cement volu Annular Volume 0.2148 g Depths for cmt by stage casing in #/ft 23.00 23.00 nud, 30min Sf egment De ot Hole Pla cement volu Annular Volume 0.0654 tvid > 1.20	c Csg Test psig: ime(s) are in 1 Stage Cmt Sx look D V Tool(s): 25 side the Grade P P c Csg Test psig: sign Factor nned ime(s) are inf 1 Stage Cmt Sx 425	1,440 tended to aci 1 Stage CuFt Cmt 0 6227 27 MASP is with 7 5/8 110 10 2,640 s would be: MTD 22779 tended to aci 1 Stage CuFt Cmt 1262 Capitan Pace	hieve a top of Min Cu Ft 1553 hin 10% of 5000 Coupling #N/A #N/A Max VTD 12629 hieve a top of Min Cu Ft 735	4730 1 Stage % Excess psig, need ex- Joint 2.47 7.61 49.56 Csg VD 12629 11700 1 Stage % Excess 72	ft from su Drilling Mud Wt 10.00 (rta equip? <u>Design F</u> Collapse 2.74 2.36 2.6 Curve KOP 12000 ft from su Drilling Mud Wt 13.00	Totals: rface or a Calc MASP 5750 <u>sum of sx</u> 1130 Factors Burst 2.31 2.31 Totals: f it were a v Dogleg° 90 rface or a Calc MASP	11,900 200 Req'd BOPE 10M Σ CuFt 1942 PRODU Length 12,000 10,779 22,779 rertical wellbo Severity° 10 200 Req'd BOPE	353,430 overlap. Min Dist Hole-Cplg 0.69 ∑%excess 25 JCTION Weight 276,000 247,917 523,917 ore. MEOC 12896 overlap. Min Dist Hole-Cplg 0.50

.1

.