Form 3160-3 (June 2015)

la. Type of work: 1b. Type of Well:

2. Name of Operator

3a. Address

23 miles

15. Distance from proposed*

location to nearest property or lease line, ft.

FORM APPROVED OMB No. 1004-0137

UNITED STATES OCD	Expires, January 31, 2018
UNITED STATES DEPARTMENT OF THE INTERIOR BS BUREAU OF LAND MANAGEMENT	5. Lease Serial No. NMLC0063798
APPLICATION FOR PERMIT TO DRILL OF THE PARENTE	6. If Indian, Allotee or Tribe Name
Type of work:	7. If Unit or C'A Agreement. Name and No.
Type of Well:	8. Lease Name and Well No.
Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone	CHARLES LING FED COM
	204H (322238)
Name of Operator ATADOR PRODUCTION COMPANY (228937)	9. API Well No. 30-024-44300
Address 3b. Phone No. (include area code) 00 LBJ Freeway, Suite 1500 Dallas TX 75240 (972)371-5200	10. Field and Pool, or Exploratory WILDCAT / UPPER WOLFCAMP
ocation of Well (Report location clearly and in accordance with any State requirements.*) At surface NENE / 330 FNL / 761 FEL / LAT 32.2384826 / LONG -103.5370908	11. Sec., T. R. M. or Blk. and Survey or Area SEC 11 / T24S / R33E / NMP
At proposed prod. zone SESE / 240 FSL / 330 FEL / LAT 32.2255143 / LONG -103.5356717	

13. State

NM

20. BLM/BIA Bond No. in file 18. Distance from proposed location* 19. Proposed Depth to nearest well, drilling, completed, 30 feet 12141 feet / 16905 feet FED: NMB001079 applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 22. Approximate date work will start* 23. Estimated duration 3625 feet 10/01/2018 90 days 24. Attachments

16. No of acres in lease

2480

The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable)

1. Well plat certified by a registered surveyor.

(Also to nearest drig. unit line, if any)

- 2. A Drilling Plan.
- 3. A Surface Use Plan (if the location is on National Forest System Lands, the SUPO must be filed with the appropriate Forest Service Office).

1c. Type of Completion: Hydraulic Fracturing

5400 LBJ Freeway. Suite 1500 Dallas TX 75240

14. Distance in miles and direction from nearest town or post office*

MATADOR PRODUCTION COMPANY

360 feet

4. Bond to cover the operations unless covered by an existing bond on file (see Item 20 above)

12. County or Parish

17. Spacing Unit dedicated to this well

LEA

320

- 5. Operator certification.
- 6. Such other site specific information and/or plans as may be requested by the BLM

25. Signature	Name (1 Timed Typed)	Date
(Electronic Submission)	Brian Wood / Ph: (505)466-8120	07/31/2018
Title		
President		
Approved by (Signature)	Name (Printed/Typed)	Date
(Electronic Submission)	Christopher Walls / Ph: (575)234-2234	10/05/2018
Title	Office	
Petroleum Engineer	CARLSBAD	

Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.

Conditions of approval, if any, are attached.

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

501 Ken 10/24/ (Continued on page 2) roval Date: 10/05/2018

*(Instructions on page 2)

INSTRUCTIONS.

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

(Continued on page 3)

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: NENE / 330 FNL / 761 FEL / TWSP: 24S / RANGE: 33E / SECTION: 11 / LAT: 32.2384826 / LONG: -103.5370908 (TVD: 0 feet, MD: 0 feet)

PPP: NESE / 2640 FSL / 330 FEL / TWSP: 24S / RANGE: 33E / SECTION: 11 / LAT: 32.2384826 / LONG: -103.535687 (TVD: 12141 feet, MD: 14997 feet)

PPP: NENE / 330 FNL / 761 FEL / TWSP: 24S / RANGE: 33E / SECTION: 11 / LAT: 32.2384826 / LONG: -103.5370908 (TVD: 0 feet, MD: 0 feet)

BHL: SESE / 240 FSL / 330 FEL / TWSP: 24S / RANGE: 33E / SECTION: 11 / LAT: 32.2255143 / LONG: -103.5356717 (TVD: 12141 feet, MD: 16905 feet)

BLM Point of Contact

Name: Sipra Dahal

Title: Legal Instruments Examiner

Phone: 5752345983 Email: sdahal@blm.gov

(Form 3160-3, page 3)

Approval Date: 10/05/2018

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

APD ID: 10400032623

Submission Date: 07/31/2018

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: CHARLES LING FED COM

Well Number: 204H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

APD ID:

10400032623

Tie to previous NOS?

Submission Date: 07/31/2018

BLM Office: CARLSBAD

User: Brian Wood

Title: President

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMLC0063798

Lease Acres: 2480

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? YES

APD Operator: MATADOR PRODUCTION COMPANY

Operator letter of designation:

Operator Info

Operator Organization Name: MATADOR PRODUCTION COMPANY

Operator Address: 5400 LBJ Freeway, Suite 1500

Zip: 75240

Operator PO Box:

Operator City: Dallas

State: TX

Operator Phone: (972)371-5200

Operator Internet Address: amonroe@matadorresources.com

Section 2 - Well Information

Well in Master Development Plan? NO

Mater Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: CHARLES LING FED COM

Well Number: 204H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: WILDCAT

Pool Name: UPPER

WOLFCAMP

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL

Well Name: CHARLES LING FED COM Well Number: 204H

Describe other minerals:

Well Class: HORIZONTAL

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name:

Number: SLOT 4 CHARLES LING FED COM

Number of Legs: 1

Well Work Type: Drill

Well Type: OIL WELL

Describe Well Type:

Well sub-Type: INFILL

Describe sub-type:

Distance to town: 23 Miles Distance to nearest well: 30 FT Distance to lease line: 360 FT

Reservoir well spacing assigned acres Measurement: 320 Acres

Well plat:

CL_204H_C102_etal_20180906080518.pdf

Well work start Date: 10/01/2018

Duration: 90 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number: 18329

The state of the s	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
SHL Leg #1	330	FNL	761	FEL	24\$	33E	11	Aliquot NENE	32.23848 26	- 103.5370 908	LEA		NEW MEXI CO			362 5	0	0
KOP Leg #1	330	FNL	761	FEL	248	33E	11	Aliquot NENE	32.23926 6	- 103.5357 06		MEXI		ł	NMLC0 063798	- 793 7	115 80	115 62
PPP Leg #1	330	FNL	761	FEL	24S	33E	11	Aliquot NENE	32.23848 26	- 103.5370 908	LEA	NEW MEXI CO		F	NMLC0 063798	362 5	0	0

Production Company periodically provides a drilling, completion and estimate. Its production date for wells that are scheduled to be drilled in the foreseeable future to DCP Midstream. If changes occur that will affect the drilling and completion schedule, Matador Production Company will notify DCP Midstream. Additionally, the gas produced from the well will be processed at a processing plant further downstream and, although unanticipated, any issues with downstream facilities could cause flaring at the wellhead. The actual flow of the gas will be based on compression operating parameters and gathering system pressures measured when the well starts producing.

Flowback Strategy

After the fracture treatment/completion operations (flowback), the well will be produced to temporary production tanks and the gas will be flared or vented. During flowback, the fluids and sand content will be monitored. If the produced fluids contain minimal sand, then the well will be turned to production facilities. The gas sales should start as soon as the well starts lowing through the production facilities, unless there are operational issues on the midstream system at that time. Based on current information, it is Matador's belief the system will be able to take the gas upon completion of the well.

Safety requirements during cleanout operations may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Operating a generator will only utilize a portion of the produced gas and the remainder of gas would still need to be flared.
 - o Power Company has to be willing to purchase gas back and if they are willing they require a 5 year commitment to supply the agreed upon amount of power back to them. With gas decline rates and unpredictability of markets it is impossible to agree to such long term demands. If the demands are not met then operator is burdened with penalty for not delivering.
- Compressed Natural Gas On lease
 - o Compressed Natural Gas is likely to be uneconomic to operate when the gas volume declines.
- NGL Removal On lease
 - o NGL Removal requires a plant and is expensive on such a small scale rendering it uneconomic and still requires residue gas to be flared.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

APD ID: 10400032623 **Submission Date:** 07/31/2018

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: CHARLES LING FED COM Well Number: 204H

Well Type: OIL WELL Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical		•		Producing
·ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	QUATERNARY	3625	0	0		USEABLE WATER	No
2	RUSTLER ANHYDRITE	2288	1338	1338		NONE	No
3	SALADO	1761	1865	1865	SALT	NONE .	No
4	CASTILE	-114	3740	3744		NONE	No
5	BASE OF SALT	-1592	5217	5227		NONE	No
6	BELL CANYON	-1644	5269	5279		NATURAL GAS,OIL	No
7	CHERRY CANYON	-2721	6346	6358		NATURAL GAS,OIL	No
8	BRUSHY CANYON	-3862	7487	7502		NATURAL GAS,OIL	No
9	BONE SPRING	-5399	9024	9042	LIMESTONE	NATURAL GAS,OIL	No
10	BONE SPRING 1ST	-6198	9823	9840	OTHER : Carbonate	NATURAL GAS,OIL	No
11	BONE SPRING 1ST	-6406	10031	10049	SANDSTONE	NATURAL GAS,OIL	No
12	BONE SPRING 2ND	-6826	10452	10469	OTHER : Carbonate	NATURAL GAS,OIL	No
13	BONE SPRING 2ND	-7117	10742	10759	SANDSTONE	NATURAL GAS,OIL	No
14	BONE SPRING 3RD	-7642	11267	11285	OTHER : Carbonate	NATURAL GAS,OIL	No
15	BONE SPRING 3RD	-8220	11845	11876	SANDSTONE	NATURAL GAS,OIL	No
16	WOLFCAMP	-8458	12083	12235	OTHER : A Carbonate	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Well Name: CHARLES LING FED COM Well Number: 204H

Pressure Rating (PSI): 10M Rating Depth: 12000

Equipment: A 12,000' 5000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attached BOP, choke manifold, co-flex hose, and speed head diagrams. An accumulator complying with Onshore Order 2 requirements for the BOP stack pressure rating will be present. Rotating head will be installed as needed.

Requesting Variance? YES

Variance request: Matador requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. Manufacturer does not require the hose to be anchored. If the specific hose is not available, then one of equal or higher rating will be used. Matador is requesting a variance to use a speed head for setting the intermediate (9-5/8") casing. In the case of running a speed head with landing mandrel for 9-5/8" casing, BOP test pressures after setting surface casing will be 250 psi low and 5000 psi high. Annular will be tested to 250 psi low and 2500 psi high before drilling below the surface shoe. The BOPs will not be tested again until after setting 7-5/8" x 7" casing unless any flanges are separated. A diagram of the speed head is attached and does not require the hose to be anchored. If the specific hose is not available, then one of equal or higher rating will be used.

Testing Procedure: Pressure tests will be conducted before drilling out from under all casing strings. BOP will be inspected and operated as required in Onshore Order 2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs. After setting surface casing, a minimum 5M BOPE system will be installed. Test pressures will be 250 psi low and 5000 psi high with the annular being tested to 250 psi low and 2500 psi high before drilling below surface shoe. In the event that the rig drills multiple wells on the pad and the BOPs are removed after setting Intermediate 2 casing, a full BOP test will be performed when the rig returns and the 5M BOPE system is re-installed. After setting 7-5/8" x 7" Casing, pressure tests will be made to 250 psi low and 10,000 psi high. Annular will tested to 250 psi low and 5000 psi high.

Choke Diagram Attachment:

CL_204H_Choke_20180731104017.pdf

BOP Diagram Attachment:

CL 204H BOP 297 20180731104048.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17:5	13.375	NEW	API	N	0	1365	0	1365	3625		1365	J-55		OTHER - BTC	_ 1	1.12 5	DRY	1.8	DRY	1.8
2	INTERMED IATE	8.75	7.625	NEW	API	Y	0	4920	0	4892	3625			P- 110		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
3		12.2 5	9.625	NEW	API	N	0	5220	0	5214	3625		5220	J-55		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
	PRODUCTI ON	6.12 5	5.5	NEW	API	Υ	0	11400	0	11382	3625		11400	P- 110		OTHER - VAM DWC/C-IS MS	1.12 5	1.12 5	DRY	1.8	DRY	1.8

Well Name: CHARLES LING FED COM

Well Number: 204H

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
5	INTERMED IATE	8.75	7.625	NEW	API	Y	4920	11500	4892	11482			6580	P- 110		OTHER - VAM HTF- NR	1.12 5	1.12 5	DRY	1.8	DRY	1.8
6	INTERMED IATE	8.75	7.0	NEW	API	Y	11500	12379	11482	12126			879	P- 110		OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
1	PRODUCTI ON	6.12 5	4.5	NEW	API	Υ	11400	16905	11382	12141			5505	P- 110		OTHER - VAM DWC/C-IS HT	1.12 5	1.12 5	DRY	1.8	DRY	1.8

Casing Attachments

Casing ID: 1

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

 $CL_204H_Casing_Design_Assumptions_20180731104119.pdf$

Casing ID: 2

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

CL_204H_Casing_Design_Assumptions_20180731104216.pdf

Casing Design Assumptions and Worksheet(s):

 $CL_204H_Casing_Design_Assumptions_20180731104226.pdf$

Operator Name: MATADOR PRODUCTION COMPANY Well Name: CHARLES LING FED COM Well Number: 204H **Casing Attachments** Casing ID: 3 String Type: INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): CL_204H_Casing_Design_Assumptions_20180731104148.pdf Casing ID: 4 String Type: PRODUCTION **Inspection Document: Spec Document: Tapered String Spec:** 5.500in_Casing_Spec_20180731104433.PDF Casing Design Assumptions and Worksheet(s): CL_204H_Casing_Design_Assumptions_20180731104458.pdf Casing ID: 5 String Type: INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:**

7.625in_VAM_Casing_Spec_20180731104302.pdf

CL_204H_Casing_Design_Assumptions_20180731104318.pdf

Casing Design Assumptions and Worksheet(s):

Well Name: CHARLES LING FED COM Well Number: 204H

Casing Attachments

Casing ID: 6

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

CL_204H_Casing_Design_Assumptions_20180731104359.pdf

Casing Design Assumptions and Worksheet(s):

 $CL_204H_Casing_Design_Assumptions_20180731104413.pdf$

Casing ID: 7

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

4.500in_Casing_Spec_20180731104526.PDF

Casing Design Assumptions and Worksheet(s):

CL_204H_Casing_Design_Assumptions_20180731104540.pdf

Section 4 - Cement

ng Type	Lead/Tail	ge Tool oth	MD	Bottom MD	Quantity(sx)	70	Density	Ft	Excess%	Cement type	Additives
String	Lea	Stage Depth	Тор	Bot	ď	Yield	Der	7	ĽŠ.	Cer	Ado
SURFACE	Lead		0	1966	800	1.82	13.5	1456	100	Class C	Benjonio + 7% CaCl2 + 2% Náči + LÓW
SURFACE	Tail		0	1965	340	1.38	14.8	469	100	Class C	5% NaCl + LCM
INTERMEDIATE	Lead		0	4(9)(2(0)	470	2.36	11.5	1109	75	TXI	H huid Hoss (5 Dispension) Behrefstellenstell (CDM)
INTERMEDIATE	Tail		0	219(20)	320	1.38	14.8	442	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		0	52ZÑ	1290	1.82	12.8	2348	100	Class C	Bandania : 2% Cacib : 2% Necis Low

Well Name: CHARLES LING FED COM Well Number: 204H

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Tail		0	5220	500	1.38	14.8	690	100	Class C	5% NaCl + LC
PRODUCTION	Lead		0	1340 0	0	0	0	0	0	None	Note
PRODUCTION	Tail		0	1140 0	500	1.17	15.8	585	10	Class H	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		4920	1450 0	470	2.36	11.5	1109	75	TXI	Fluid Loss + Dispersant + Rejarder + LCM
INTERMEDIATE	Tail		4920	.1150 	320	1.38	14.8	442	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		1150 0	1237 9	470	2.36	11.5	1109	75	TXI	Muid Loss & Dispersant + Referder + LÖM
INTERMEDIATE	Tail		1150 0	1237 9	320	1.38	14.8	442	75	TXI	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Lead		1140 0	1690 5	0	0	0	0	0	None	Nego
PRODUCTION	Tail		1140 0	1690 5	500	1.17	15.8	585	10	Class H	Fluid Loss + Dispersant + Retarder + LCM

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions. A closed loop system will be used.

Describe the mud monitoring system utilized: An electronic Pason mud monitoring system complying with Onshore Order 1 will be used.

Circulating Medium Table

op Depth
Bottom Depth
Mud Type
Min Weight (lbs/gal)
Max Weight (Ibs/gal)
Density (lbs/cu ft)
Gel Strength (lbs/100 sqft)
H
Viscosity (CP)
Salinity (ppm)
Filtration (cc)
Additional Characteristics

Well Name: CHARLES LING FED COM

Well Number: 204H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1365	OTHER : Fresh water spud	8.3	8.3							
5220	1237 9	OTHER : Fresh water & cut brine	9	9	-						
1365	5220	OTHER : Brine water	10	10							
1237 9	1690 5	OIL-BASED MUD	12.5	12.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A 2-person mud logging program will be used from 5,220' to TD. No electric logs are planned at this time. GR will be collected through the MWD tools from intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to TOC.

List of open and cased hole logs run in the well:

CBL

Coring operation description for the well:

No core or drill stem test is planned.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8500

Anticipated Surface Pressure: 5828.98

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

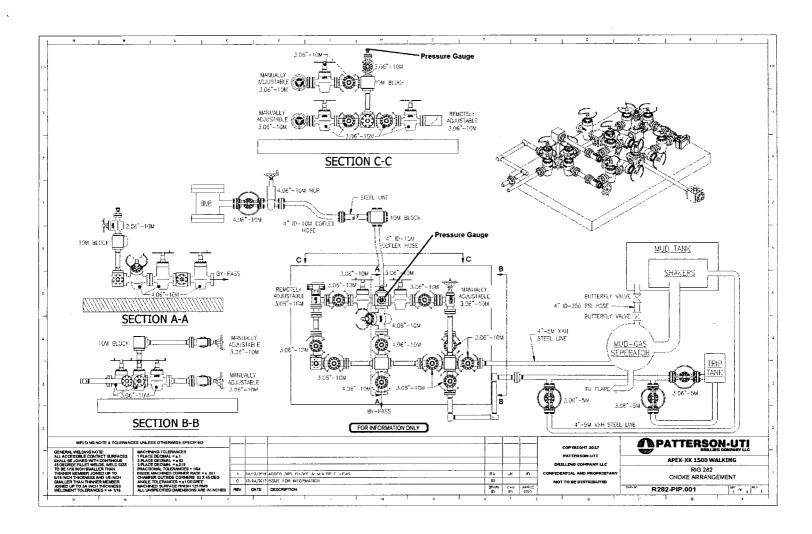
Well Name: CHARLES LING FED COM Well Number: 204H

CL_204H_H2S_Plan_Slot4_20180731105206.pdf

Section 8 - Other Information

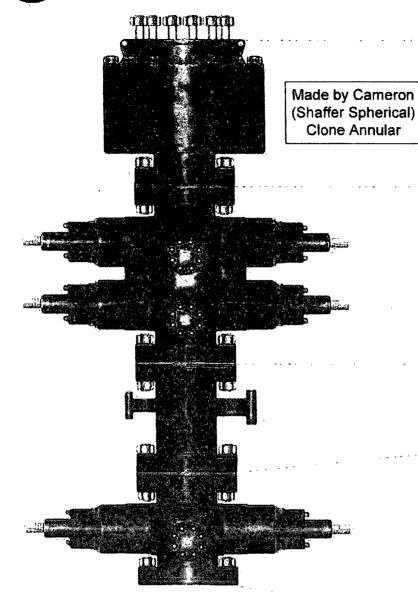
Proposed horizontal/directional/multi-lateral plan submission:

CL_204H_Horizontal_Drill_Plan_20180731105218.pdf


Other proposed operations facets description:

Other proposed operations facets attachment:

CL_204H_Speedhead_Specs_20180731105241.pdf 10M_Well_Control_Plan_20180816154556.pdf CL_204H_Drill_Plan_Revised_20180905150847.pdf


Other Variance attachment:

CL 204H Casing Variance 20180731105249.pdf

PATTERSON-UTI Well Control

PATTERSON-UTI # PS2-628

STYLE: New Shaffer Spherical

BORE 13 5/8" PRESSURE 5,000

HEIGHT: 48 ½" WEIGHT: 13,800 lbs

PATTERSON-UTI # PC2-128

STYLE: New Cameron Type U

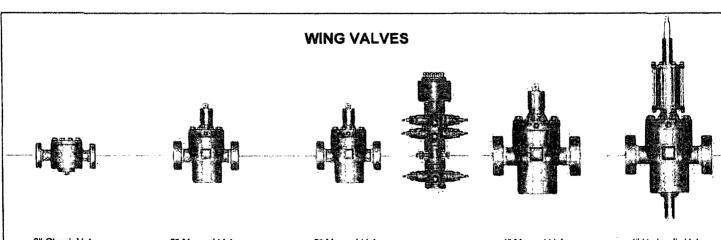
BORE 13 5/8" PRESSURE 10,000

RAMS: TOP 5" Pipe BTM Blinds

HEIGHT: 66 5/8" WEIGHT: 24,000 lbs

Length 40" Outlets 4" 10M

DSA 4" 10M x 2" 10M


PATTERSON-UTI # PC2-228

STYLE: New Cameron Type U

BORE 13 5/8" PRESSURE 10,000

RAMS: 5" Pipe

HEIGHT: 41 5/8" WEIGHT: 13,000 lbs

2" Check Valve

2" Manual Valve

2" Manual Valve

4" Manual Valve

4" Hydraulic Valve

December 8, 2014

Internal Hydrostatic Test Graph

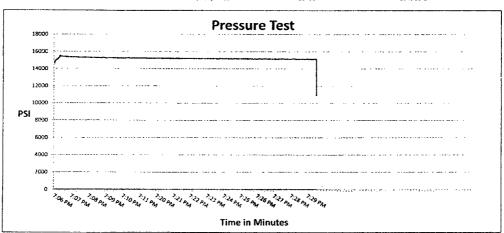
Customer: Patterson

Pick Ticket #: 284918

Hose	Spec	ificat	ions

Verification

 Type of Fitting
 Coupling Method


 4-1/16 10K
 Swage

 Die Size
 Final O.D.

 5.37*
 5.37*

 Hose Serial #
 Hose Sexmbly Serial #

 10490
 284918-2

Test Pressure 15000 PSI Time Held at Test Pressure 15 2/4 Minutes

Actual Burst Pressure

Peak Pressure 15732 PSI

Comments: Hose assembly pressure tested with water at ambient temperature

Tested By:/Tyler Hill

Approved By: Ryan Adam

Midwest Hose & Specialty, Inc.

General Infor	mation	Hose Specific	ations					
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill					
MWH Sales Representative	AMY WHITE	Certification	API 7K					
Date Assembled	12/8/2014	Hose Grade	MUD					
Location Assembled	ОКС	Hose Working Pressure	10000					
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13					
Customer Purchase Order #	260471	71 Hose I.D. (Inches)						
Assembly Serial # (Pick Ticket #)	287918-2	Hose O.D. (Inches)	5.30"					
Hose Assembly Length	10'	Armor (yes/no)	YES					
	Fitt	ings						
End A		End B						
Stem (Port and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB					
Stem (Heot #)	91996	Stem (Heat #)	91996					
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0					
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631					
Connection (Port#)	41/1610K	Connection (Pan #)	4 1/16 10K					
Connection (Heat#)		Connection (Heat #)						
Dies Used	5.37	Dies Used	5.3					
	Hydrostatic Tes	at Requirements						
VO	15,000	Hose assembly was tested w	vith ambient water					
Test Pressure (psi)	1/							

Midwest Hose & Specialty, Inc.

		Certifica	te o	Conformity	
Customer:	PATTERSON E	3&E		Customer P.O.# 260471	
Sales Order#	236404			Date Assembled: 12/8/2014	
		Spi	ecific	cations	
Hose Assen	nbly Type:	Choke & Kill			
Assembly	Serial #	287918-2		Hose Lot # and Date Code	10490-01/13
Hose Working	Pressure (psi)	10000		Test Pressure (psi)	15000
nose working	eressure (psi)	10000		rest Pressure (psi)	72000

We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards.

Supplier:

Midwest Hose & Specialty, Inc.

3312 S I-35 Service Rd

Oklahoma City, OK 73129

Comments:

Approved By	Date	
Fran Alama	12/9/2014	

Internal Hydrostatic Test Graph

December 9, 2014

Customer: Patterson

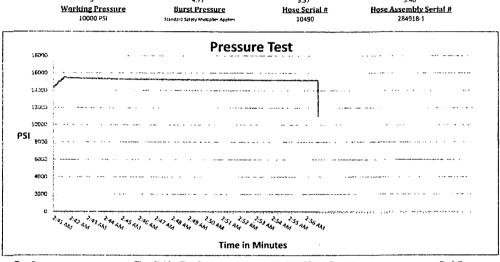
Pick Ticket #: 284918

Midwest Hose & Specialty, Inc.

Hose Specifications Hose Type Ck LD. 3"

O.D. Burst Pressure

Length


Verification

Type of Fitting 4-1/16 10K Die Size 5.37"

Hose Serial # 10490

Coupling Method Swage Final O.D. 5.40°

Hose Assembly Serial # 284918-1

Test Pressure 15000 PSI

Time Held at Test Pressure

Actual Burst Pressure

Peak Pressure 15893 PSI

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By: Tyler Hill

Approved By:

Midwest Hose & Specialty, Inc.

General Infor	mation	Hose Specific	ations	
Customer PATTERSON B&E		Hose Assembly Type	Choke & Kill	
MWH Sales Representative	AMY WHITE	Certification	API 7K	
Date Assembled	12/8/2014	Hose Grade	MUD	
Location Assembled	окс	Hose Working Pressure	10000	
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13	
Customer Purchase Order #	260471	Hose I.D. (Inches)	3"	
Assembly Serial # (Pick Ticket #)	287918-1	Hose O.D. (Inches)	5.30"	
Hose Assembly Length	20'	Armor (yes/no)	YES	
	Fitt	ings		
End A		End B		
Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB	
Stem (Heot #)	A141420	Stem (Heat II)	A141420	
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0	
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631	
Connection (Part#)	4 1/16 10K	Connection (Part #)	4 1/16 10K	
Connection (Heat #)	V3579	Connection (Heat #)	V3579	
Dies Used	5.37	Dies Used	5.3	
	Hydrostatic Tes	t Requirements		
Test Pressure (psi)	15,000	Hose assembly was tested with ambient wat		
Test Pressure Hold Time (minutes)	15 1/2	temperature.		

Midwest Hose & Specialty, Inc.

Customer: PATTERSO	ON B&E	Customer P.O.# 260471	
Sales Order # 236404		Date Assembled: 12/8/2014	
	Spe	eifications	
Hose Assembly Type:	Choke & Kill		
Assembly Serial #	287918-1	Hose Lot # and Date Code	10490-01/13
	si) 10000	Test Pressure (psi)	15000

We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards.

Supplier:

Midwest Hose & Specialty, Inc.

3312 S I-35 Service Rd

Oklahoma City, OK 73129

Comments:

Approved By	Date	
Fran Alaus	12/9/2014	

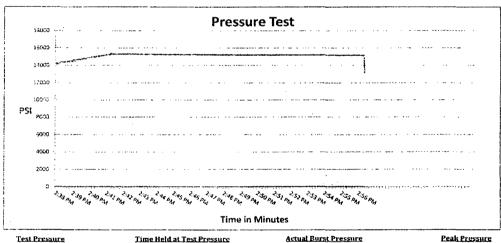
December 9, 2014

Internal Hydrostatic Test Graph

Customer: Patterson

Pick Ticket #: 284918

Verification


Hose Specifications

Mud <u>I.D.</u> 3" 70° **Q.D.** 4.79° Working Pressure Burst Pressure

10000 PSI

Type of Fitting 4 1/16 10K Die Size 5.37" Hose Serial #

Coupling Method Swage Final O.D. Hose Assembly Serial # 284918-3

Test Pressure 15000 PSI

Time Held at Test Pressure 16 3/4 Minutes

Actual Burst Pressure

Comments: Hose assembly pressure tested with water at ambient temperature.

Midwest Hose & Specialty, Inc.

	T-0.7107007 2222000000 (Av. 0.) 4 to 0.00000 (Av. 0.) 4 to 0.0000000000000000000000000000000000	tic Test Certificate	×700000
General Infort	mation	Hose Speci	fications
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill
MWH Sales Representative	AMY WHITE	Certification	API 7K
Date Assembled	12/8/2014	Hose Grade	MUD
Location Assembled	ОКС	Hose Working Pressure	10000
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13
Customer Purchase Order#	260471	Hose I.D. (Inches)	3"
Assembly Serial # (Pick Ticket #)	287918-3	Hose O.D. (Inches)	5.23"
Hose Assembly Length	70'	Armor (yes/no)	YES
	Fitti	ngs	
End A		End	3
Stem (Part and Revision #)	R3.0X64WB	Stem (Part and Revision #)	R3.0X64WB
Stem (Heat #)	A141420	Stem (Heat #)	A141420
Ferrule (Part and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631
Connection (Pan #)	4 1/16 10K	Connection (Part#)	4 1/16 10K
Connection (Heat #)		Connection (Heat #)	
Dies Used	5.37	Dies Used	5.37
	Hydrostatic Tes	t Requirements	
Test Pressure (psi)	15,000	Hose assembly was tested with ambient water	
Test Pressure Hold Time (minutes) 16 3/4		temperature.	

Midwest Hose & Specialty, Inc.

	4.40	122.24.140.14.14.14.14.1			
Customer: PAT	PATTERSON B&E		Customer P.O.# 260471		
Sales Order# 236	404		Date Assembled: 12/8/2014		
		Specific	cations		
Hose Assembly 1	Type: Choke	e & Kill			
Assembly Serio	al # 28791	8-3	Hose Lot # and Date Code	10490-01/13	
Hose Working Press	ure (psi) 10000)	Test Pressure (psi)	15000	

We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards.

Supplier:

Midwest Hose & Specialty, Inc.

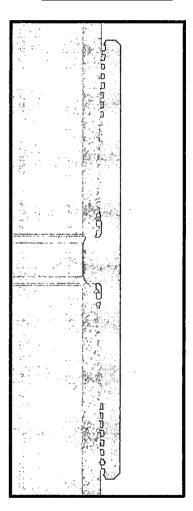
3312 S I-35 Service Rd

Oklahoma City, OK 73129

Comments:

Approved By	Date	
Fran Alaus	12/9/2014	

Technical Specifications

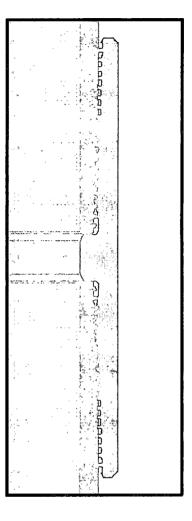

Connection Type:Size(O.D.):Weight (Wall):Grade:DWC/C-IS MS Casing5-1/2 in20.00 lb/ft (0.361 in)VST P110 EC

standard

VST P110 EC 125,000 135,000	Material Grade Minimum Yield Strength (psi) Minimum Ultimate Strength (psi)
5.500 4.778 0.361 20.00 19.83 5.828	Pipe Dimensions Nominal Pipe Body O.D. (in) Nominal Pipe Body I.D.(in) Nominal Wall Thickness (in) Nominal Weight (lbs/ft) Plain End Weight (lbs/ft) Nominal Pipe Body Area (sq in)
729,000 12,090 14,360 13,100	Pipe Body Performance Properties Minimum Pipe Body Yield Strength (lbs) Minimum Collapse Pressure (psi) Minimum Internal Yield Pressure (psi) Hydrostatic Test Pressure (psi)
6.115 4.778 4.653 4.13 5.828 100.0	Connection Dimensions Connection O.D. (in) Connection I.D. (in) Connection Drift Diameter (in) Make-up Loss (in) Critical Area (sq in) Joint Efficiency (%)
729,000 26,040 728,000 729,000 12,090 14,360 104.2	Connection Performance Properties Joint Strength (lbs) Reference String Length (ft) 1.4 Design Factor API Joint Strength (lbs) Compression Rating (lbs) API Collapse Pressure Rating (psi) API Internal Pressure Resistance (psi) Maximum Uniaxial Bend Rating [degrees/100 ft]
16,100 18,600 21,100	Appoximated Field End Torque Values Minimum Final Torque (ft-lbs) Maximum Final Torque (ft-lbs) Connection Yield Torque (ft-lbs)

VAM USA 4424 W. Sam Houston Pkwy. Suite 150 Houston, TX 77041 Phone: 713-479-3200 Fax: 713-479-3234 E-mail: VAMUSAsales@vam-usa.com

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).


Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

DWC Connection Data Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- All standard DWC/C connections are interchangeable for a give pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions. etc.
- 9. Connection yield torque is not to be exceeded.
- 10. Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- DWC connections will accommodate API standard drift diameters.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

1/11/2017 8:38:10 AM

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that

 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B

-	-7	ı,	מנ	Wei	aht ·	Wall Th.	Grade	API Deift	Connection
100	,		4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Market Company
· ·		75,	/8 in.	29.70	lb/ft	0.375 in.	P110 EC	6.750 in.	VAM® HTF NR

PIPE PROPE	RTIES
Nominal OD	7.625 in.
Nominal ID	6.875 in.
Nominal Gross Section Area	8,54½ sqin
Grade Type	Enhanced API
Min, Yield Strength)	125 KS)
Max. Yield Strength	140 ksi
Min, Witimate Tensile Strength	1 <u>2</u> 5; k 5)
Tensile Yield Strength	1 068 klb
Internal Yield Pressure	10) 760) psi.
Collapse pressure	7 360 psi

CONNECTION PROPERTIES					
Connection Type	Premjum Integral/Flush				
Connection OD (nom)	7.701 in.				
Gonnect(on tp) (nom)	6.782 in.				
Make-Up Loss	4.657 In.				
Gritical Gross Section	4.97d sqin				
Tension Efficiency	58 % of pipe				
Compression Efficiency	72.7 % of pipe				
Compression Efficiency with Sealability	34.8 % of pipe				
litternal Pressure Efficiency	100) % of pipp				
External Pressure Efficiency	100 % of pipe				

CONNECTION PERFORMANCES	
Tensile, Vield Strength	619 Kip
Compression Resistance	778 klb
Gompression, with Sealability	372) K(b)
Internal Yield Pressure	10 760 psi
External Pressure Resistance	7 [,] 360 psi;
Max. Bending	44 °/100ft
Max, Bending with Sealability	17° V1900

TORQUE VALUES	
Mins Māke dip tojaye	9 6 00 ft _a lb
Opti. Make-up torque	11 300 ft.lb
May. Makerup torque	13 000 (Glb.
Max. Torque with Sealability	58 500 ft.lb
Max, Torsional Value,	78/000 ft/16

VAM® HTF^{**} (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@yamfieldservice.com 'usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

Other Connection Data Sheets are available at www.vamservices.com

Vallourec Group

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an
 internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at
 setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force
 will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative
 backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an
 internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at
 setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force
 will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative
 backup force than pore pressure.

Tensile: DF,=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF,=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at
 setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force
 will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative
 backup force than pore pressure.

Tensile: DF,=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an
 internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

 Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_C=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: Df_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_C=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF,=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B

,	1			
OD	Weight	Wall Th.	Grade API Drift	Connection
	T .			
75/8 in.	29.70 lb/ft	0.375 in.	P110 EC 6.750 in.	VAM® HTF NR

PIPE PROPE	RTIES
Nortinal Ob	7:625; (n)
Nominal ID	6.875 in.
Nominal Ĝross, Sention Area	8,541 sqin '
Grade Type	Enhanced API
Min, Yield Sthength)	125 kši
Max. Yield Strength	140 ksi
Min. Ultimate fensile Strength	195 Kg
Tensile Yield Strength	1 068 klb
Internal Yield Pressure	10) 760) psi.
Collapse pressure	7 360 psi

Gonnection Type	Premium Integral Plus
Connection OD (nom)	7.701 in.
Gonnection (@/(nom)	6.782 in
Make-Up Loss	4.657 In.
Gritical Gross Section	4.970 sqin.
Tension Efficiency	58 % of pipe
Compression Efficiency	72,7 % of pipe
Compression Efficiency with Sealability	34.8 % of pipe
Internal Pressure Efficiency	100) % of pipe
External Pressure Efficiency	100 % of pipe

CONNECTION PERFO	ORMANCES :
vensile, vield/Strength	619 KIB
Compression Resistance	778 klb
Gompression with Sealability	37/2 ¹ /4]b)
Internal Yield Pressure	10 760 psi
byternali Pressure Rasistance	7 360 ps
Max. Bending	44 º/100ft
Max, Bending with Sealability	17, Wigort

TORQUE VALUE	:S
Min. Māke up Corque	9 600 ft 16
Opti. Make-up torque	11 300 ft.lb
Max, Makerup torque	13 000 (LB)
Max. Torque with Sealability	58 500 ft.lb
Max. Torsjonal/Value	70 000 (tub

VAM® HTF™ (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

Other Connection Data Sheets are available at www.vamservices.com

Vallourec Group

For the latest performance data, always visit our website: www.tenaris.com

July 15 2015

Size: 5.500 in.

Wall: 0.361 in.

Weight: 20.00 lbs/ft

Grade: P110-IC

Min. Wall Thickness: 87.5 %

|--|

Casing/Tubing: CAS

Connection: TenarisXP™ BTC

		PIPE BODY	DATA			
GEOMETRY						
Nominal OD	5.500 in.	Nominal Weight 20.00 lbs/ft		Standard Drift Diameter	4.653 in.	
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A	
Plain End Weight	19.83 lbs/ft					
		PERFORM	ANCE			
Body Yield Strength	641 x 1000 lbs	Internal Yleld	12630 psi	SMYS	110000 psi	
Collapse	12100 psi					
	TEI	NARISXP™ BTC CO GEOME		ATA		
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.	
Critical Section	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.	
PERFORMANCE						
Tension Efficiency	100 %	Joint Yield Strength	641 x 1000 lbs	Internal Pressure Capacity ⁽¹⁾	: 12630 psi	
Structural Compression Efficiency	100 %	Structural Compression Strength	641 x 1000 lbs	Structural Bending ⁽²⁾	92° /100 ft	
External Pressure Capacity	12100 psi					
	E	STIMATED MAKE-	UP TORQUES	3)		
Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lb	
		OPERATIONAL LI	MIT TORQUES	5		
Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs			

BLANKING DIMENSIONS

Blanking Dimensions

- (1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 2007.
- (2) Structural rating, pure bending to yield (i.e no other loads applied)
- (3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed. For additional information, please contact us at <u>contact-tenarishydril@tenaris.com</u>

December 31 2015

Size: 4.500 in. Wall: 0.290 in.

Weight: 13.50 lbs/ft

Grade: P110-ICY

Min. Wall Thickness: 87.5 %

|--|

Casing/Tubing: CAS

Connection: TenarisXP® BTC

Coupling Option: REGULAR

Nominal OD	4.500 in.	Nominal Weight	13.50 lbs/ft	Standard Drift Diameter	3.795 in.
Nominal ID	3.920 in.	Wall Thickness	0.290 in.	Special Drift Diameter	N/A
Plain End Weight	13.05 lbs/ft				
Body Yield Strength	479 x 1000 lbs	Internal Yield	14100 psi	SMYS	125000 psi
Collapse	11620 psi				
		1	479 x 1000 lbs	Internal Pressure	14100 psi
Tension Efficiency	100 %	Joint Yield Strength	479 X 1000 103	Compain (1)	
Tension Efficiency Structural Compression Efficiency	100 %	Structural Compression Strength	479 x 1000 lbs	Capacity ⁽¹⁾ Structural Bending ⁽²⁾	
Structural Compression		Structural		Structural	
Structural Compression Efficiency External Pressure	100 %	Structural		Structural	127 °/100 ft

Well Control Plan For 10M MASP Section of Wellbore

Component and Preventer Compatibility Table:

The table below covers the drilling and casing of the 10M MASP portion of the well and outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Component	OD	Preventer	RWP
Drill pipe	4"		
HWDP	4"		
Jars/Agitator	4.75-5"	Lower 3.5-5.5" VBR	10M
Drill collars and MWD tools	4.75-5.25"	Upper 3.5-5.5" VBR	TOW
Mud Motor			
Production casing	4.5-5.5"	7	
ALL	0-13.625"	Annular	5M
Open-hole	-	Blind Rams	10M

VBR = Variable Bore Ram with compatible range listed in chart

HWDP = Heavy Weight Drill Pipe

MWD = Measurement While Drilling

Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the Bottom Hole Assembly (BHA) through the Blowout Preventers (BOP). The maximum pressure at which well control is transferred from the annular to another compatible ram is 3,000 psi.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps and stop rotary
- 4. Shut-in well with the annular preventer (The Hydraulic Control Remote (HCR) valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close

Matador

Well Control Plan For 10M MASP Section of Wellbore

- 3. Space out drill string
- 4. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
- 5. Confirm shut-in
- 6. Notify tool pusher and company representative
- 7. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - · Time of shut in
- 8. Regroup and identify forward plan
- 9. If pressure has increased or is anticipated to increase above 3,000 psi, confirm spacing and close the upper pipe rams

General Procedure with No Pipe In Hole

- 1. At any point when the BOP stack is clear of pipe or BHA, the well will be shut in with blind rams, the HCR valve will be open, and choke will be closed. If pressure increase is observed:
- 2. Sound alarm (alert crew)
- 3. Confirm shut-in
- 4. Notify tool pusher and company representative
- 5. Read and record the following:
 - SICP
 - Time of shut in
- 6. Regroup and identify forward plan

General Procedure While Pulling BHA through Stack

- 1. Prior to pulling last joint/stand of drill pipe through the stack, perform flow check. If flowing:
 - a. Sound alarm (alert crew)
 - b. Stab full opening safety valve and close
 - c. Space out drill string
 - d. Shut-in well with annular preventer (The HCR valve and choke will already be in the closed position)
 - e. Confirm shut-in

Matador PADDUCTION CONFARY

Well Control Plan For 10M MASP Section of Wellbore

- f. Notify tool pusher and company representative
- g. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
- h. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with the upset just beneath the compatible pipe ram
 - d. Shut-in well using compatible pipe rams (The HCR valve and choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify tool pusher and company representative
 - g. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
 - h. Regroup and identify forward plan
- 3. With BHA in the stack and no compatible ram preventer and pipe combo immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull BHA clear of the stack
 - i. Follow "No Pipe in Hole" procedure above
 - c. If impossible to pick up high enough to pull string clear of the stack:
 - i. Stab crossover, make up one joint/stand of drill pipe, and full opening safety valve and close
 - ii. Space out drill string with the upset just beneath the compatible pipe ram
 - iii. Shut-in well using compatible pipe rams (The HCR valve and choke will already be in the closed position)
 - iv. Confirm shut-in
 - v. Notify tool pusher and company representative
 - vi. Read and record the following:
 - SIDPP and SICP
 - Pit gain
 - Time of shut in
 - vii. Regroup and identify forward plan

Well Control Drills

Well control drills are specific to the rig equipment, personnel, and operations. Each crew will execute one drill weekly relevant to ongoing operations, but will make a reasonable attempt to vary the type of drills. The drills will be recorded in the daily drilling log.

Drilling Program

1. ESTIMATED TOPS

Formation Name	MD	TVD	Bearing
Quaternary	000	000	water
Rustler anhydrite	1338	1338	N/A
Salado salt	1865	1865	N/A`
Castile	3744	3740	N/A
Base salt	5227	5217	N/A
Bell Canyon	5279	5269	hydrocarbons
Cherry Canyon	6358	6346	hydrocarbons
Brushy Canyon	7502	7487	hydrocarbons
Bone Spring Limestone	9042	9024	hydrocarbons
1 st Bone Spring carbonate	9840	9823	hydrocarbons
1 st Bone Spring sandstone	10049	10031	hydrocarbons
2 nd Bone Spring carbonate	10469	10452	hydrocarbons
2nd Bone Spring sandstone	10759	10742	hydrocarbons
3 rd Bone Spring carbonate	11285	11267	hydrocarbon
(КОР	11580	11562	hydrocarbons)
3 rd Bone Spring sandstone	11876	11845	hydrocarbons
Wolfcamp A carbonate (Goal)	12235	12083	hydrocarbons
TD	16905	12141	-

2. NOTABLE ZONES

Wolfcamp A carbonate is the goal. Hole will extend south of the last perforation point to allow for pump installation. All perforations will be $\geq 330'$ from the dedication perimeter. Closest water well (C 04014) is 6,058' northeast. No well depth or depth to water bearing strata was reported for the well. NMOSE estimated depth to groundwater is 175'.

3. PRESSURE CONTROL

Equipment

A 12,000' 5000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attached BOP, choke manifold, co-flex hose, and speed head diagrams.

An accumulator complying with Onshore Order 2 requirements for the BOP stack pressure rating will be present. Rotating head will be installed as needed.

Testing Procedure

Pressure tests will be conducted before drilling out from under all casing strings. BOP will be inspected and operated as required in Onshore Order 2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position.

A third party company will test the BOPs.

After setting surface casing, a minimum 5M BOPE system will be installed. Test pressures will be 250 psi low and 5000 psi high with the annular being tested to 250 psi low and 2500 psi high before drilling below surface shoe. In the event that the rig drills multiple wells on the pad and the BOPs are removed after setting Intermediate 2 casing, a full BOP test will be performed when the rig returns and the 5M BOPE system is re-installed. After setting 7-5/8" x 7" Casing, pressure tests will be made to 250 psi low and 10,000 psi high. Annular will tested to 250 psi low and 5000 psi high.

Variance Request

Matador requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. Manufacturer does not require the hose to be anchored. If the specific hose is not available, then one of equal or higher rating will be used.

Matador is requesting a variance to use a speed head for setting the intermediate (9-5/8") casing. In the case of running a speed head with landing mandrel for 9-5/8" casing, BOP test pressures after setting surface casing will be 250 psi low and 5000 psi high. Annular will be tested to 250 psi low and 2500 psi high before drilling below the surface shoe. The BOPs will not be tested again until after setting 7-5/8" x 7" casing unless any flanges are separated. A diagram of the speed head is attached and does not require the hose to be anchored. If the specific hose is not available, then one of equal or higher rating will be used.

4. CASING & CEMENT

All casing will be API and new. See attached casing assumption worksheet.

Hole O. D.	Set MD	Set TVD	Casing O. D.	Weight (lb/ft)	Grade	Joint	Collapse	Burst	Tension
17.5"	0′ - 1365'	0′ - 1365'	13.375" surface	54.5	J-55	втс	1.125	1.125	1.8
12.25"	0′ - 5220'	0′ - 5220'	9.625" inter. 1	40	J-55	втс	1.125	1.125	1.8
8.75"	0′ - 4920'	0′ – 4892′	7.625" inter. 2 top	29.7	P-110	втс	1.125	1.125	1.8
8.75"	4920' - 11500'	4892' - 11482'	7.625" inter. 2 middle	29.7	P-110	VAM HTF-NR	1.125	1.125	1.8
8.75″	11500' - 12379'	11482' - 12126'	7.000" inter. 2 bottom	29	P-110	втс	1.125	1.125	1.8
6.125″	0' - 11400'	0' - 11382'	5.5" product. top	20	P-110	VAM DWC/C- IS MS	1.125	1.125	1.8
6.125"	11400′ - 16905′	11382' - 12141'	4.5" product. Bottom	13.5	P-110	VAM DWC/C- IS HT	1.125	1.125	1.8

Casing Variance Request

Matador requests a variance to run 7-5/8" BTC casing inside 9-5/8" BTC casing which will be less than the 0.422" stand-off regulation. Matador has met with Christopher Walls and Mustafa Haque as well as other BLM representatives and determined that this would be acceptable as long as the 7-5/8" Flush casing was run throughout the entire 300' cement tie back section between 9-5/8" and 7-5/8" casing.

Matador Production Company Charles Ling Fed Com 204H SHL 330' FNL & 761' FEL BHL 240' FSL & 330' FEL

Sec. 11, T. 24 S., R. 33 E., Lea County, NM

Name	Туре	Sacks	Yield	Cu. Ft.	Weight	Blend			
Surface	Lead	800	1.82	1456	13.5	Class C + Bentonite + 3% CaCl₂ + 5% NaCl + LCM			
	340	1.38	469.2	14.8	Class C + 5% NaCl + LCM				
TOC = GL		1	00% Exces	ss	Centralizers per Onshore Order 2.III.B.1f				
Intermediate Lead		1290	1.82	2348	12.8	Class C + Bentonite + 2% CaCl ₂ + 3% NaCl + LCM			
	Tail	500	1.38	690	14.8	Class C + 5% NaCl + LCM			
TOC = GL	1	00% Exce	SS ·	2 on btm jt, 1 on 2nd jt, 1 every 4th jt to surface					
Intermediate	Lead	470	2.36	1109	11.5	TXI + Fluid Loss + Dispersant + Retarder + LCM			
2	Tail	320	1.38	442	14.8	TXI + Fluid Loss + Dispersant + Retarder + LCM			
TOC = 420	7	75% Exces	s	2 on btm jt, 1 on 2nd jt, 1 every other jt to top of tail cement (500' above TOC)					
Production	Tail	500	1.17	5,85	15.8	Class H + Fluid Loss + Dispersant + Retarder + LCM			
TOC = 1170	1	l0% Exces	S	2 on btm jt, 1 on 2nd jt, 1 every third top of curve					

5. MUD PROGRAM

An electronic Pason mud monitoring system complying with Onshore Order 1 will be used. All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions. A closed loop system will be used.

Туре	Interval (MD)	lb/gal	Viscosity	Fluid Loss	
fresh water spud	0' - 1365'	8.3	28	NC	
brine water	1365' - 5220'	10.0	30-32	NC	
fresh water & cut brine	5220' - 12379'	9.0	30-31	NC	
ОВМ	12379' - 16905'	12.5	50-60	<10	

6. CORES, TESTS, & LOGS

No core or drill stem test is planned.

A 2-person mud logging program will be used from ≈5,220′ to TD.

No electric logs are planned at this time. GR will be collected through the MWD tools from intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to TOC.

7. DOWN HOLE CONDITIONS

No abnormal pressure or temperature is expected. Maximum expected bottom hole pressure is ≈ 8500 psi. Expected bottom hole temperature is $\approx 160^{\circ}$ F.

In accordance with Onshore Order 6, Matador does not anticipate that there will be enough H₂S from the surface to the Bone Spring to meet the BLM's minimum requirements for the submission of an "H₂S Drilling Operation Plan" or "Public Protection Plan" for drilling and completing this well. Since Matador has an H₂S safety package on all wells, an "H₂S Drilling Operations Plan" is attached. Adequate flare lines will be installed off the mud/gas separator where gas may be flared safely. All personnel will be familiar with all aspects of safe operation of equipment being used.

8. OTHER INFORMATION

Anticipated spud date is upon approval. It is expected it will take ≈3 months to drill and complete the well.

Casing Variance

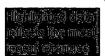
Matador requests a variance to run 7-5/8" BTC casing inside 9-5/8" BTC casing which will be less than the 0.422" stand-off regulation. Matador has met with Christopher Walls and Mustafa Haque as well as other BLM representatives and determined that this would be acceptable as long as the 7-5/8" Flush casing was run throughout the entire 300' cement tie back section between 9-5/8" and 7-5/8" casing.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

SUPO Data Report

Submission Date: 07/31/2018

Operator Name: MATADOR PRODUCTION COMPANY


Well Name: CHARLES LING FED COM

Well Type: OIL WELL

APD ID: 10400032623

Well Number: 204H

Well Work Type: Drill

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

CL_204H_Existing_Road_Map_MAP1_20180731105301.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

CL 204H New Road Map MAP2 20180731105313.pdf

New road type: LOCAL, RESOURCE

Length: 4312.53

Feet

Width (ft.): 30

Max slope (%): 0

Max grade (%): 4

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Crowned and ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Well Name: CHARLES LING FED COM Well Number: 204H

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crowned and ditched

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

CL_204H_Well_Map_MAP3_20180731105331.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: This Surface Use Plan is in support of Matador's Charles Ling well pad and production facilities. Matador will operate twelve (12) oil wells arranged across four (4) well pads (Slots 1, 2, 3,& 4), two (2) central tank batteries (CTBs) (E2 & W2), flow lines, a gas pipeline (E2 & W2), and associated access roads. Matador intends to construct two central tank batteries. The W2 CTB will service the Slot 1 & 2 pads while the E2 CTB will service the Slot 3 & 4 pads. Matador will install 489.85' of 4" buried flowline from Slots 1 & 2 to the W2 CTB and 616.32' from Slots 3 & 4 to the E2 CTB, for a total of 1,106.17'. Matador will install a total of 2,505.96' of ~6" O.D. buried gas pipeline to connect to an existing DCP gas line in the NWNE of Section 11. This pipeline will include two segments, 1,777.13' from the W2 CTB to the DCP tie-in point and 728.83' from the E2 CTB to the DCP tie-in point.

Production Facilities map:

CL_204H_Production_Facilities_FIG1_20180731105341.pdf

Well Name: CHARLES LING FED COM Well Number: 204H

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: DUST CONTROL,

Water source type: GW WELL

INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE

CASING

Describe type:

Source longitude:

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: PRIVATE

Water source transport method: TRUCKING

Source transportation land ownership: PRIVATE

Water source volume (barrels): 17000 Source volume (acre-feet): 2.1911826

Source volume (gal): 714000

Water source and transportation map:

CL 204H Water Gravel MAP4 20180731105353.pdf

Water source comments: Water will be trucked via existing roads from the existing Madera water station on private land in

NWNE 21 -24s-34e. New water well? NO

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aquifer comments:

Aguifer documentation:

Well depth (ft):

Well casing type:

Well casing outside diameter (in.):

Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method:

Drill material:

Grout material:

Grout depth:

Casing length (ft.):

Casing top depth (ft.):

Well Production type:

Completion Method:

Water well additional information:

Well Name: CHARLES LING FED COM Well Number: 204H

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: COG and NM One Call (811) will be notified before construction starts. Top 6" of soil and brush will be stockpiled south of the pad. Pipe racks will face north. Closed loop drilling system will be used. Caliche will be hauled from an existing caliche pit on private (Madera) land in SENW 6-25s-35e.

Construction Materials source location attachment:

CL_204H_Construction_Methods_FIG1_20180731105512.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000 b.

barrels

Waste disposal frequency: Daily

Safe containment description: Steel tanks

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: R360's state approved (NM-01-0006) disposal site at Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Well Name: CHARLES LING FED COM

Well Number: 204H

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

CL 204H Well Site Layout FIG1 20180731105548.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: CHARLES LING FED COM

Multiple Well Pad Number: SLOT 4

Recontouring attachment:

CL_204H Recontour Plat FIG2 20180731105619.pdf

CL_204H_Interim_Reclamation_v1_FIG1_20180731105626.pdf Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance

(acres): 4.5

Road proposed disturbance (acres):

Powerline proposed disturbance

(acres): 0

Pipeline proposed disturbance

(acres): 0

Other proposed disturbance (acres):

4.28

Well pad interim reclamation (acres): 2 Well pad long term disturbance

Road interim reclamation (acres): 0

(acres): 2.5

Road long term disturbance (acres):

Powerline interim reclamation (acres):

Pipeline interim reclamation (acres): 0 (acres): 0

Powerline long term disturbance

Other interim reclamation (acres): 0

Pipeline long term disturbance

(acres): 0

Other long term disturbance (acres): Total interim reclamation: 2

4.28

Well Name: CHARLES LING FED COM Well Number: 204H

Total proposed disturbance: 9.23 Total long term disturbance: 7.23

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking each pad by 2 acres by removing caliche and reclaiming a 230' x 370' wide block on the east side of each pad. This will leave roughly 2.26 acres for operating 3 wells and a tractor-trailer turn around on each pad. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the land owner's requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained on the south edge of the pad for Slots 1, 2, & 3 and on the east side of the pad for Slot 4. Top soil for the tank battery sites will be stockpiled on the south edge of each site. This soil will be used to cover the remainder of the pads and tank battery sites when the wells are plugged. Once the last well is plugged, then the rest of the pad and associated roads will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled.

Soil treatment: None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Operator Name: MATADOR PRODUCTION COMPANY Well Name: CHARLES LING FED COM Well Number: 204H **Seed Management Seed Table** Seed source: Seed type: Seed name: Source name: Source address: Source phone: Seed cultivar: Seed use location: PLS pounds per acre: Proposed seeding season: Total pounds/Acre: **Seed Summary Seed Type** Pounds/Acre Seed reclamation attachment: **Operator Contact/Responsible Official Contact Info** First Name: Last Name: Phone: Email: Seedbed prep: Seed BMP: Seed method: Existing invasive species? NO Existing invasive species treatment description: Existing invasive species treatment attachment: Weed treatment plan description: To BLM standards Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Success standards: To BLM satisfaction

Monitoring plan attachment:

Pit closure description: No pit

Pit closure attachment:

Page 7 of 12

Well Name: CHARLES LING FED COM

Well Number: 204H

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Fee Owner: Mark and Annette McCloy Revocable

Trust 2014

Phone: (432)940-4459

Fee Owner Address: C/O Mark McCloy PO Box 795 Tatum

NM 88267 Email:

Surface use plan certification: NO

Surface use plan certification document:

Surface access agreement or bond: Agreement

Surface Access Agreement Need description: In process

Surface Access Bond BLM or Forest Service:

BLM Surface Access Bond number:

USFS Surface access bond number:

Well Name: CHARLES LING FED COM Well Number: 204H

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Fee Owner: Mark and Annette McCloy Revocable

Trust 2014

Phone: (432)940-4459

Fee Owner Address: C/O Mark McCloy PO Box 795 Tatum

NM 88267 Email:

Surface use plan certification: NO

Surface use plan certification document:

Surface access agreement or bond: Agreement

Surface Access Agreement Need description: In process

Surface Access Bond BLM or Forest Service:

BLM Surface Access Bond number:

USFS Surface access bond number:

Disturbance type: OTHER

Describe: Central Tank Battery

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

Well Name: CHARLES LING FED COM	Well Number: 204H
BOR Local Office:	
COE Local Office:	•
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:
Fee Owner: Mark and Annette McCloy Revocable Trust 2014 Phone: (432)940-4459	Fee Owner Address: C/O Mark McCloy PO Box 795 Tatum NM 88267 Email:
Surface use plan certification: NO Surface use plan certification document:	
Surface access agreement or bond: Agreement	
Surface Access Agreement Need description: In	process
Surface Access Bond BLM or Forest Service:	
BLM Surface Access Bond number:	
USFS Surface access bond number:	
Disturbance type: PIPELINE	
Describe:	
Surface Owner: PRIVATE OWNERSHIP	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	

Well Name: CHARLES LING FED COM

Well Number: 204H

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Fee Owner: Mark and Annette McCloy Revocable

Trust 2014

Fee Owner Address: C/O Mark McCloy PO Box 795 Tatum

NM 88267

Email:

Phone: (432)940-4459

Surface use plan certification: NO

Surface use plan certification document:

Surface access agreement or bond: Agreement

Surface Access Agreement Need description: In process

Surface Access Bond BLM or Forest Service:

BLM Surface Access Bond number:

USFS Surface access bond number:

Section 12 - Other Information

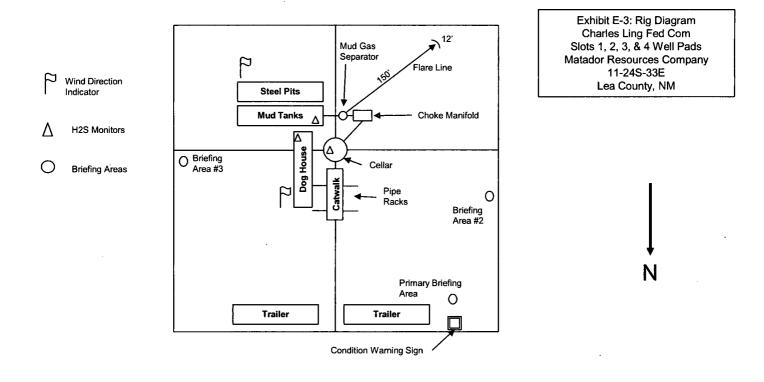
Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information:


Use a previously conducted onsite? YES

Previous Onsite information: On-site inspection was held on March 20, 2018 with Jesse Bassett (BLM).

Other SUPO Attachment

CL_204H_Slot4_SUPO_20180731105700.pdf

Rig Diagram

Figure 3: Drilling Rig Layout

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

Section 3 - Unlined Pits

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Would you like to utilize Unlined Pit PWD options? NO

	•
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Unlined pit PWD on or off channel:	
Unlined pit PWD discharge volume (bbl/day):	
Unlined pit specifications:	
Precipitated solids disposal:	
Decribe precipitated solids disposal:	
Precipitated solids disposal permit:	
Unlined pit precipitated solids disposal schedule:	
Unlined pit precipitated solids disposal schedule attachment	:
Unlined pit reclamation description:	
Unlined pit reclamation attachment:	•
Unlined pit Monitor description:	
Unlined pit Monitor attachment:	
Do you propose to put the produced water to beneficial use?	
Beneficial use user confirmation:	
Estimated depth of the shallowest aquifer (feet):	
Does the produced water have an annual average Total Dissorthat of the existing water to be protected?	olved Solids (TDS) concentration equal to or less than
TDS lab results:	
Geologic and hydrologic evidence:	
State authorization:	
Unlined Produced Water Pit Estimated percolation:	
Unlined pit: do you have a reclamation bond for the pit?	
Is the reclamation bond a rider under the BLM bond?	
Unlined pit bond number:	
Unlined pit bond amount:	V
Additional bond information attachment:	
Section 4 - Injection	
Would you like to utilize Injection PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):

Injection well type:	
Injection well number:	Injection well name:
Assigned injection well API number?	Injection well API number:
Injection well new surface disturbance (acres):	
Minerals protection information:	
Mineral protection attachment:	
Underground Injection Control (UIC) Permit?	
UIC Permit attachment:	
Section 5 - Surface Discharge	
Would you like to utilize Surface Discharge PWD options? NO)
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Surface discharge PWD discharge volume (bbl/day):	
Surface Discharge NPDES Permit?	
Surface Discharge NPDES Permit attachment:	
Surface Discharge site facilities information:	
Surface discharge site facilities map:	
Section 6 - Other	
Would you like to utilize Other PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Other PWD discharge volume (bbl/day):	
Other PWD type description:	
Other PWD type attachment:	
Have other regulatory requirements been met?	
Other regulatory requirements attachment:	

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001079

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Well Name: CHARLES LING FED COM Well Number: 204H

i pie ri pie ri	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
PPP Leg #1	264 0	FSL	330	FEL	24S	33E	11	Aliquot NESE	32.23213 1	- 103.5356 87	LEA	NEW MEXI CO	NEW MEXI CO	F	FEE	- 851 6	149 97	121 41
EXIT Leg #1	240	FSL	330	FEL	24S	33E	11	Aliquot SESE	32.22551 43	- 103.5356 717	LEA	NEW MEXI CO	NEW MEXI CO	F	FEE	- 851 6	169 05	121 41
BHL Leg #1	240	FSL	330	FEL	24S	33E	11	Aliquot SESE	32.22551 43	- 103.5356 717	LEA	NEW MEXI CO	NEW MEXI CO	F	FEE	- 851 6	169 05	121 41