Form 3160-3	CDHa	666650C	D	FORM	APPROVED			
(June 2015)	ЪС О			OMB N Expires: Ja	o. 1004-0137 anuary 31, 2018			
DEPARTMENT OF THE BUREAU OF LAND MAI	ES U EINTERIOR NAGEMENT	CI 242018 r		5. Lease Serial No. NMLC0063798				
APPLICATION FOR PERMIT TO	DRILL OR	RGEIKED)	6. If Indian, Allotee	or Tribe Name			
Ia. Type of work: 🗹 DRILL	REENTER			7. If Unit or CA Ag	reement, Name and No.			
1b. Type of Well: 🚺 Oil Well 🛄 Gas Well	Other			8. Lease Name and	Well No.			
1c. Type of Completion: Hydraulic Fracturing	Single Zone	Multiple Zone		CHARLES LING F	ED COM 222339)			
2. Name of Operator MATADOR PRODUCTION COMPANY (2.2893	77)			9. API Well No. 30-02	4-45297			
3a. Address 5400 LBJ Freeway, Suite 1500 Dallas TX 75240	3b. Phone N (972)371-5	lo. <i>(include area cod</i> 200	e)	10. Field and Pool, o WILDCAT / UPPE	or Exploratory 981 R WOLFCAMP			
4. Location of Well (Report location clearly and in accordance	e with any State	requirements.*)	ė.	11. Sec., T. R. M. or	Blk. and Survey or Area			
At surface NWNW / 360 FNL / 556 FWL / LAT 32.23	883834 / LONG	-103.5484505	194600	SEC 11 / T24S / R	33E / NMP			
14. Distance in miles and direction from nearest town or post c 23 miles	office*			12. County or Parish LEA	n 13. State NM			
15. Distance from proposed* 360 feet	16. No of ac	res in lease	17. Spaci	ing Unit dedicated to t	his well			
focation to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	2480		320					
18. Distance from proposed location*	19. Proposed	d Depth	20. BLM	I/BIA Bond No. in file MB001079				
applied for, on this lease, ft.	12234 feet	/ 16991 feet	FED: NN	/B001079				
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3612 feet	22. Approxi 09/01/2018	mate date work will	start*	23. Estimated durati90 days	on			
	24. Attac	hments						
The following, completed in accordance with the requirements as applicable)	s of Onshore Oil	and Gas Order No. 1	, and the I	Hydraulic Fracturing r	ule per 43 CFR 3162.3-3			
1. Well plat certified by a registered surveyor.		4. Bond to cover th	e operation	ns unless covered by ar	n existing bond on file (see			
 A Drilling Plan. A Surface Use Plan (if the location is on National Forest Sys 	stem Lands, the	5. Operator certific	ation.					
SUPO must be filed with the appropriate Forest Service Offi	ice).	6. Such other site sp BLM.	ecific info	rmation and/or plans as	may be requested by the			
25. Signature (Electronic Submission)	Name Brian	(Printed/Typed) Wood / Ph: (505)46	66-8120		Date 07/16/2018			
Γitle President								
Approved by (Signature) (Electronic Submission)	Name	(Printed/Typed)	575\004	2224	Date			
	Office	opher walls / Ph: (5/5)234-2	2234	10/05/2016			
Petroleum Engineer	CARL	SBAD						
Application approval does not warrant or certify that the applic applicant to conduct operations thereon.	cant holds legal of	or equitable title to the	ose rights	in the subject lease w	hich would entitle the			
Fitle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, of the United States any false, fictitious or fraudulent statement	, make it a crime ts or representati	for any person know	vingly and within its	l willfully to make to a jurisdiction.	iny department or agency			
5cp Rec 10/24/18					7. 18			
		TIMIN	IONS		126110			
	oven WI	LA CANADA			•			
1111	ny dv 👯 💈							

44

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

SHL: NWNW / 360 FNL / 556 FWL / TWSP: 24S / RANGE: 33E / SECTION: 11 / LAT: 32.2383834 / LONG: -103.5484505 (TVD: 0 feet, MD: 0 feet)
 PPP: NWSW / 2640 FSL / 1000 FWL / TWSP: 24S / RANGE: 33E / SECTION: 11 / LAT: 32.232118 / LONG: -103.548458 (TVD: 12234 feet, MD: 14591 feet)
 PPP: NWNW / 360 FNL / 556 FWL / TWSP: 24S / RANGE: 33E / SECTION: 11 / LAT: 32.2383834 / LONG: -103.5484505 (TVD: 0 feet, MD: 0 feet)
 BHL: SWSW / 240 FSL / 989 FWL / TWSP: 24S / RANGE: 33E / SECTION: 11 / LAT: 32.2255198 / LONG: -103.5484609 (TVD: 12234 feet, MD: 16991 feet)

BLM Point of Contact

Name: Sipra Dahal Title: Legal Instruments Examiner Phone: 5752345983 Email: sdahal@blm.gov

Review and Appeal Rights

•

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

1

APD ID: 10400032152

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: CHARLES LING FED COM

Well Type: OIL WELL

Submission Date: 07/16/2018

Zip: 75240

Well Number: 201H Well Work Type: Drill lighighted data. reflects the most recent changes

Show Final Text

Section 1 - General		
APD ID: 10400032152	Tie to previous NOS?	Submission Date: 07/16/2018
BLM Office: CARLSBAD	User: Brian Wood	Title: President
Federal/Indian APD: FED	Is the first lease penetra	ted for production Federal or Indian? FED
Lease number: NMLC0063798	Lease Acres: 2480	
Surface access agreement in place?	Allotted?	Reservation:
Agreement in place? NO	Federal or Indian agreer	ment:
Agreement number:		
Agreement name:		
Keep application confidential? NO		
Permitting Agent? YES	APD Operator: MATADO	OR PRODUCTION COMPANY
Operator letter of designation:		
Operator Info		

Operator Organization Name: MATADOR PRODUCTION COMPANY

Operator Address: 5400 LBJ Freeway, Suite 1500

Operator PO Box:

Operator City: Dallas State: TX

Operator Phone: (972)371-5200

Operator Internet Address: amonroe@matadorresources.com

Section 2 - Well Information

Well in Master Development Plan? NO	Mater Development Plan n	ame:						
Well in Master SUPO? NO	Master SUPO name:	Master SUPO name:						
Well in Master Drilling Plan? NO	Master Drilling Plan name:							
Well Name: CHARLES LING FED COM	Well Number: 201H	Well API Number:						
Field/Pool or Exploratory? Field and Pool	Field Name: WILDCAT	Pool Name: UPPER WOLFCAMP						

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, CO2, OIL

Operator Name: MATADOR PRODUCTION COMPANY **Well Name:** CHARLES LING FED COM

Well Number: 201H

Describe other minerals:		
Is the proposed well in a Helium production area?	N Use Existing Well Pad? NO	New surface disturbance?
Type of Well Pad: MULTIPLE WELL	Multiple Well Pad Name:	Number: SLOT 1
Well Class: HORIZONTAL	CHARLES LING FED COM Number of Legs: 1	
Well Work Type: Drill		
Well Type: OIL WELL		
Describe Well Type:		
Well sub-Type: INFILL		
Describe sub-type:		
Distance to town: 23 Miles Distance to t	nearest well: 30 FT Dist	ance to lease line: 360 FT
Reservoir well spacing assigned acres Measurement	nt: 320 Acres	
Well plat: CL_201H_C102_ETAL_2018071614044	8.pdf	
Well work start Date: 09/01/2018	Duration: 90 DAYS	
Section 3 - Well Location Table]	

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Survey number: 18329

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
SHL	360	FNL	556	FWL	24S	33E	11	Aliquot	32.23838	-	LEA	NEW	NEW	F	NMLC0	361	0	0
Leg						ļ		NWN	34	103.5484		MEXI	MEXI		063798	2		
#1								W		505		CO						
КОР	49	FNL	100	FWL	24S	33E	11	Aliquot	32.23924	-	LEA	NEW	NEW	F	NMLC0	-	116	116
Leg			0					NWN	2	103.5484		MEXI	MEXI	ļ	063798	804	74	55
#1								W		55		co	co	l		3		
PPP	360	FNL	556	FWL	24S	33E	11	Aliquot	32.23838	-	LEA	NEW	NEW	F	NMLCO	361	0	0
Leg								NWN	34	103.5484		MEXI	MEXI	1	063798	2		
#1								W		505		co	co					

Vertical Datum: NAVD88

AFMSS

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT** Drilling Plan Data Report 10/08/2018

APD ID: 10400032152

Operator Name: MATADOR PRODUCTION COMPANY

Submission Date: 07/16/2018

1999 199

ichtonice dels sleak the most scèri dininène

Well Name: CHARLES LING FED COM

Well Type: OIL WELL

Well Number: 201H

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	QUATERNARY	3612	Ö	0		USEABLE WATER	No
2	RUSTLER ANHYDRITE	2299	1313	1314		NONE	No
3	SALADO	1772	1840	1843	SALT	NONE	No
4	CASTILE	-128	3740	3747		NONE	No
5	BASE OF SALT	-1607	5219	5230		NONE	No
6	BELL CANYON	-1648	5260	5271		NATURAL GAS,CO2,OIL	No
7	CHERRY CANYON	-2673	6285	6298		NATURAL GAS,CO2,OIL	No
8	BRUSHY CANYON	-3890	7502	7518		NATURAL GAS,CO2,OIL	No
9	BONE SPRING	-5409	9021	9039	LIMESTONE	NATURAL GAS,CO2,OIL	No
10	BONE SPRING 1ST	-6300	9918	9936	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
11	BONE SPRING 1ST	-6491	10109	10127	SANDSTONE	NATURAL GAS,CO2,OIL	No
12	BONE SPRING 2ND	-6779	10391	10409	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
13	BONE SPRING 2ND	-7702	11320	11338	SANDSTONE	NATURAL GAS,CO2,OIL	No
14	BONE SPRING 3RD	-8280	11892	11918	SANDSTONE	NATURAL GAS,CO2,OIL	No
15	BONE SPRING 3RD	-8274	11892	11905	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
16	WOLFCAMP	-8579	12197	12384	OTHER : A Carbonate	NATURAL GAS,CO2,OIL	Yes

Section 2 - Blowout Prevention

Company periodically provides a dilling, completion and estimated first product ... date for wells that are scheduled to be drilled in the foreseeable future to DCP Midstream. If changes occur that will affect the drilling and completion schedule, Matador Production Company will notify DCP Midstream. Additionally, the gas produced from the well will be processed at a processing plant further downstream and, although unanticipated, any issues with downstream facilities could cause flaring at the wellhead. The actual flow of the gas will be based on compression operating parameters and gathering system pressures measured when the well starts producing.

Flowback Strategy

After the fracture treatment/completion operations (flowback), the well will be produced to temporary production tanks and the gas will be flared or vented. During flowback, the fluids and sand content will be monitored. If the produced fluids contain minimal sand, then the well will be turned to production facilities. The gas sales should start as soon as the well starts flowing through the production facilities, unless there are operational issues on the midstream system at that time. Based on current information, it is Matador's belief the system will be able to take the gas upon completion of the well.

Safety requirements during cleanout operations may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Operating a generator will only utilize a portion of the produced gas and the remainder of gas would still need to be flared.
 - Power Company has to be willing to purchase gas back and if they are willing they require a 5 year commitment to supply the agreed upon amount of power back to them. With gas decline rates and unpredictability of markets it is impossible to agree to such long term demands. If the demands are not met then operator is burdened with penalty for not delivering.
- Compressed Natural Gas On lease
 - Compressed Natural Gas is likely to be uneconomic to operate when the gas volume declines.
- NGL Removal On lease
 - NGL Removal requires a plant and is expensive on such a small scale rendering it uneconomic and still requires residue gas to be flared.

Well Name: CHARLES LING FED COM

Well Number: 201H

Pressure Rating (PSI): 10M

Rating Depth: 12000

Equipment: A 12,000' 5000-psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attached BOP, choke manifold, co-flex hose, and speed head diagrams. An accumulator complying with Onshore Order 2 requirements for the BOP stack pressure rating will be present. Rotating head will be installed as needed.

Requesting Variance? YES

Variance request: Matador requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. Manufacturer does not require the hose to be anchored. If the specific hose is not available, then one of equal or higher rating will be used. Matador is requesting a variance to use a speed head for setting the intermediate (9-5/8") casing. In the case of running a speed head with landing mandrel for 9-5/8" casing, BOP test pressures after setting surface casing will be 250 psi low and 5000 psi high. Annular will be tested to 250 psi low and 2500 psi high before drilling below the surface shoe. The BOPs will not be tested again until after setting 7-5/8" x 7" casing unless any flanges are separated. A diagram of the speed head is attached and does not require the hose to be anchored. If the specific hose is not available, then one of equal or higher rating will be used.

Testing Procedure: Pressure tests will be conducted before drilling out from under all casing strings. BOP will be inspected and operated as required in Onshore Order 2. Kelly cock and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. A third party company will test the BOPs. After setting surface casing, a minimum 5M BOPE system will be installed. Test pressures will be 250 psi low and 5000 psi high with the annular being tested to 250 psi low and 2500 psi high before drilling below surface shoe. In the event that the rig drills multiple wells on the pad and the BOPs are removed after setting Intermediate 2 casing, a full BOP test will be performed when the rig returns and the 5M BOPE system is re-installed. After setting 7-5/8" x 7" Casing, pressure tests will be made to 250 psi low and 10,000 psi high. Annular will tested to 250 psi low and 5000 psi high.

Choke Diagram Attachment:

CL_201H_choke_20180716141959.pdf

BOP Diagram Attachment:

CL_201H_BOP_297_20180716142016.pdf

Section	3 -	Casing
---------	-----	--------

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1350	0	1350	3612		1350	J-55	54.5	OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
2	INTERMED IATE	8.75	7.625	NEW	API	Y	0	4920	0	4910	3612		4920	P- 110	29.7	OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
3	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	5300	0	5289	3612		5300	J-55	40	OTHER - BTC	1.12 5	1.12 5	DRY	1.8	DRY	1.8
4	PRODUCTI ON	6.12 5	5.5	NEW	API	Y	0	11500	0	11482	3612		11500	P- 110	20	OTHER - VAM DWC/C-IS MS	1.12 5	1.12 5	DRY	1.8	DRY	1.8

Well Name: CHARLES LING FED COM

Well Number: 201H

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
5	INTERMED IATE	8.75	7.625	NEW	API	Y	4921	11600	4911	11582			6679	P- 110	29.7	OTHER - VAM HTF- NR	1.12 5	1.12 5	DRY	1.8	DRY	1.8
6	INTERMED IATE	8.75	7.0	NEW	API	Y	11601	12473	11583	12220			872	P- 110	29	OTHER - BTC	1. 12 5	1.12 5	DRY	1.8	DRY	1.8
7	PRODUCTI ON	6.12 5	4.5	NEW	API	Y.	11501	16991	11483	12234			5490	P- 110	13.5	OTHER - VAM DWC/C-IS HT	1.12 5	1.12 5	DRY	1.8	DRY	1.8

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CL_201H_Casing_Design_Assumptions_20180716142709.pdf

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

CL_201H_Casing_Design_Assumptions_20180716142855.pdf

Casing Design Assumptions and Worksheet(s):

CL_201H_Casing_Design_Assumptions_20180716143640.pdf

Well Name: CHARLES LING FED COM

Well Number: 201H

Casing Attachments

Casing ID: 3 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CL_201H_Casing_Design_Assumptions_20180716142818.pdf

Casing ID: 4 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

5.500in_Casing_Spec_20180716143448.PDF

Casing Design Assumptions and Worksheet(s):

CL_201H_Casing_Design_Assumptions_20180716143619.pdf

Casing ID: 5 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

7.625in_VAM_Casing_Spec_20180716143104.pdf

Casing Design Assumptions and Worksheet(s):

CL_201H_Casing_Design_Assumptions_20180716143121.pdf

Well Number: 201H

Casing Attachments

Casing ID: 6 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

CL_201H_Casing_Design_Assumptions_20180716143359.pdf

Casing Design Assumptions and Worksheet(s):

CL_201H_Casing_Design_Assumptions_20180716143607.pdf

Casing ID: 7 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

4.500in_Casing_Spec_20180716143537.PDF

Casing Design Assumptions and Worksheet(s):

CL_201H_Casing_Design_Assumptions_20180716143557.pdf

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1350	800	1.82	13.5	1456	100	Class C	Bentonite + 2% CaCl2 + 3% NaCl + LCM
SURFACE	Tail		0	1350	340	1.38	14.8	469	100	Class C	5% NaCl + LCM
INTERMEDIATE	Lead		0	4920	470	2.36	11.5	1109	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		0	4920	320	1.38	14.8	442	75	тхі	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		0	5300	1290	1.82	12.8	2348	100	Class C	Bentonite + 2% CaCl2 + 3% NaCl + LCM

Well Name: CHARLES LING FED COM

Well Number: 201H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Tail		0	5300	500	1.38	14.8	690	100	Class C	5% NaCl + LC
PRODUCTION	Lead		0	1150 0	0	0	0	0	0	None	None
PRODUCTION	Tail		0	1150 0	500	1.17	15.8	585	10	Class H	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		4921	1160 0	470	2.36	11.5	1109	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		4921	1160 0	320	1.38	14.8	442	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		1160 1	1247 3	470	2.36	11.5	1109	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		1180 1	1247 3	320	1.38	14.8	442	75	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
PRODUCTION	Lead		1150 1	1699 1	0	0	0	0	0	None	None
PRODUCTION	Tail		1150 1	1699 1	500	1.17	15.8	585	10	Class H	Fluid Loss + Dispersant + Retarder + LCM

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary mud products (barite, bentonite, LCM) for weight addition and fluid loss control will be on location at all times. Mud program is subject to change due to hole conditions. A closed loop system will be used.

Describe the mud monitoring system utilized: An electronic Pason mud monitoring system complying with Onshore Order 1 will be used.

 w	Circ	ulating Medi	um T	able							
Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (Ibs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics

Well Name: CHARLES LING FED COM

Well Number: 201H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	, Additional Characteristics
0	1340	OTHER : Fresh water spud	8.4	8.4							
5220	1247 3	OTHER : Fresh water & cut brine	9	9							
1340	5220	OTHER : Brine water	8.4	8.6							
1247 3	1699 1	OIL-BASED MUD	12.5	12.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A 2-person mud logging program will be used from 5,220' to TD. No electric logs are planned at this time. GR will be collected through the MWD tools from intermediate casing to TD. CBL with CCL will be run as far as gravity will let it fall to TOC.

List of open and cased hole logs run in the well:

CBL

Coring operation description for the well:

No core or drill stem test is planned.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 8560

Anticipated Surface Pressure: 5868.52

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Well Name: CHARLES LING FED COM

Well Number: 201H

CL_201H_H2S_Plan_Slot1_20180716144443.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

CL_201H_Horizontal_Drill_Plan_20180716144455.pdf

Other proposed operations facets description:

Deficiency Letter dated 8/13/18 requested:

1) 10M BOP/Choke specifications - originally submitted as 10M

2) 7.0 casing spec - see revised Drill Plan - error in Casing Spec entry

Other proposed operations facets attachment:

CL_201H_Speedhead_Specs_20180716144538.pdf 10M_Well_Control_Plan_20180716144618.pdf

CL_201H_Drill_Plan_Revised_20180814120631.pdf

Other Variance attachment:

CL_201H_Casing_Variance_20180716144603.docx

			×	
		Midwest Hose & Specialty, Inc.		
	Cer	tificate of Confor	mity	
Customer: PA	ATTERSON B&E	Customer I	P.O.# 260471	
Sales Order # 23	6404	Date Assen	mbled: 12/8/2014	
		Specifications		
Hose Assembly	Type: Choke 8	kill		
Assembly Se	rial # 28791 8	2 Hose Lot	# and Date Code	10490-01/13
Hose Working Pre	ssure (psi) 10000	Test	Pressure (psi)	15000
We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments:				
······			12/9/201	4

Midwest Hose & Specialty, Inc.

Internal Hydrostatic Test Certificate

General Infor	nation	Hose Specifi	cations 👘	
Customer	PATTERSON B&E	Hose Assembly Type	Choke & Kill	
MWH Sales Representative	AMY WHITE	Certification	API 7K	
Date Assembled	12/8/2014	Hose Grade	MUD	
Location Assembled	ОКС	Hose Working Pressure	10000	
Sales Order #	236404	Hose Lot # and Date Code	10490-01/13	
Customer Purchase Order #	260471	Hose I.D. (Inches)	3"	
Assembly Serial # (Pick Ticket #)	287918-1	Hose O.D. (Inches)	5.30"	
Hose Assembly Length	20'	Armor (yes/no)	YES	
	Fitte	ings		
End A		End B		
Stem (Part and Revision #)	R3.0X64WB	Stem (Port and Revision #)	R3.0X64WB	
Stem (Heat #)	A141420	Stem (Heat #)	A141420	
Ferrule (Port and Revision #)	RF3.0	Ferrule (Part and Revision #)	RF3.0	
Ferrule (Heat #)	37DA5631	Ferrule (Heat #)	37DA5631	
Connection (Part #)	4 1/16 10K	Connection (Pan #)	4 1/16 10K	
Connection (Heat #)	V3579	Connection (Heat #)	V3579	
Dies Used	5.37	Dies Used	5.37	
	HydrostatieTes	t Requirements		
Test Pressure (psi)	15,000	Hose assembly was tested	with ambient water	
Test Pressure Hold Time (minutes) 15 1/2		temperature.		

Date Tested 12/9/2014

Tested By

Approved By Plans

l S S	Midwest Hose z Specialty, Inc.				
Certific	ate of Conformity				
Customer: PATTERSON B&E	Customer P.O.# 260471				
Sales Order # 236404	Date Assembled: 12/8/2014				
Sp	secifications				
Hose Assembly Type: Choke & Kill					
Assembly Serial # 287918-1	Hose Lot # and Date Code 10490-01/13				
Hose Working Pressure (psi) 10000	Test Pressure (psi) 15000				
We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City. OK 73129					
Comments:					
Comments:					

	Midw	est Hose			
	& Spec	cialty, Inc.			
	Certificates	of Conformity			
Customer: PATTERSON B&	Ę	Customer P.O.# 260471			
Sales Order # 236404		Date Assembled: 12/8/2014			
	Specif	ications			
Hose Assembly Type:	choke & Kill				
Assembly Serial # 2	87918-3	Hose Lot # and Date Code	10490-01/13		
Hose Working Pressure (psi) 1	.0000	Test Pressure (psi)	15000		
We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards. Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd					
3312 S I-35 Service Rd Oklahoma City, OK 73129					
3312 S I-35 Service Rd Oklahoma City, OK 73129 Comments:					

.

•

Technical Specifications

Connection Type:	
DWC/C-IS MS Casing	
standard	

125,000

135.000

VST P110 EC

Size(O.D.): 5-1/2 in

Minimum Yield Strength (psi)

Minimum Ultimate Strength (psi)

Weight (Wall): 20.00 lb/ft (0.361 in) **Grade:** VST P110 EC

VAM USA 4424 W. Sam Houston Pkwy. Suite 150 Houston, TX 77041 Phone: 713-479-3200 Fax: 713-479-3234 E-mail: VAMUSAsales@vam-usa.com

	Pipe Dimensions
5.500	Nominal Pipe Body O.D. (in)
4.778	Nominal Pipe Body I.D.(in)
0.361	Nominal Wall Thickness (in)
20.00	Nominal Maight (lbc/ft)

Material

Grade

- 20.00 Nominal Weight (lbs/ft) 19.83 Plain End Weight (lbs/ft)
- 5.828 Nominal Pipe Body Area (sq in)

Pipe Body Performance Properties

- 729,000 Minimum Pipe Body Yield Strength (lbs)
- 12,090 Minimum Collapse Pressure (psi)
- 14,360 Minimum Internal Yield Pressure (psi)
- 13,100 Hydrostatic Test Pressure (psi)

Connection Dimensions

- 6.115 Connection O.D. (in)
- 4.778 Connection I.D. (in)
- 4.653 Connection Drift Diameter (in)
- 4.13 Make-up Loss (in)
- 5.828 Critical Area (sq in)
- 100.0 Joint Efficiency (%)

Connection Performance Properties

729,000	Joint Strength (lbs)
26,040	Reference String Length (ft) 1.4 Design Factor
728,000	API Joint Strength (lbs)
729,000	Compression Rating (lbs)
12,090	API Collapse Pressure Rating (psi)
14,360	API Internal Pressure Resistance (psi)
104.2	Maximum Uniaxial Bend Rating [degrees/100 ft]
	Appoximated Field End Torque Values

- 16,100 Minimum Final Torque (ft-lbs)
- 18,600 Maximum Final Torque (ft-lbs)
- 21,100 Connection Yield Torque (ft-lbs)

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

DWC Connection Data Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- All standard DWC/C connections are interchangeable for a give pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

1/11/2017 8:38:10 AM

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Issued on: 12 Janv. 2017 by T. DELBOSCO

VRCC 16-1177 Rev02 for Houston Field Service

DATA ARE INFORMATIVE ONLY. BASED ON SI_PD-101836 P&B **Connection Data Sheet**

OD	Weight	Wall Th	Grade	API Drift	Connection
7 5/8 in.	29.70 lb/ft	0.375 in,	P110 ÉC	6.750 in.	VAM® HTF NR

PIPE PROPE	RTIES
Norffinal OB	7:625. m
Nominal ID	6.875 in.
Nominal Gross Section Area	8.541 sqin
Grade Type	Enhanced API
Min. Yield Streng())	125: KS)
Max. Yield Strength	140 ksi
Min ultimate Tensile Strength	195 Keli
Tensile Yield Strength	1 068 klb
Internali Yield Pressure	10) 760) psi
Collapse pressure	7 360 psi

ensile AddiStrength	619*K(b)
Compression Resistance	778 klb
iompression with Seelability	3772 ¹ KIB)
nternal Yield Pressure	10 760 psi
sternal Pressure Rasistance	7 360) psil,
lax. Bending	44 º/100f
lax, Bending, with Sealability	17 %100/

CONNECTION PROPERTIES			
Connection Type	Premium Integrali Flush		
Connection OD (nom)	7.701 in.		
Connection (D) (norm)	6.782 in		
Make-Up Loss	4.657 In.		
Gritical Gross Section	4.974) sqim		
Tension Efficiency	58 % of pipe		
Compression Efficiency	7217 % of pipe		
Compression Efficiency with Sealability	34.8 % of pipe		
internal, Pressone Officiency	100) % of pipe		
External Pressure Efficiency	100 % of pipe		

TORQUE VAL	UES
Miar Makerup torque	'9 600 AJb
Opti. Make-up torque	11 300 ft.lb
Max., Makerup torque	15 000 (t. fb.
Max. Torque with Sealability	58 500 ft.lb
Max, Torsional Value,	73)000 (ta)b

VAM[®] HTFr[®] (High Torque Flush) is a flush OD integral connection providing maximum clearance along with torque strength for challenging applications such as extended reach and slim hole wells, drilling liner / casing, liner rotation to acheive better cementation in highly deviated and critical High Pressure / High Temperature wells.

Looking ahea on the outcoming testing industry standards, VAM® decided to create an upgraded design and launch on the market the VAM® HTF-NR as the new standard version of VAM® extreme high torque flush connection. The VAM® HTF-NR has extensive tests as per API RP 5C5:2015 CAL II which include the gas sealability having load points with bending, internal pressure and high temperature at 135°C.

Do you need help on this product? - Remember no one knows VAM® like VAM®

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com brazil@vamfieldservice.com

uk@vamfieldservice.com dubai@vamfieldservice.com nigeria@vamfieldservice.com angola@vamfieldservice.com

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 180 VAM[®] Specialists available worldwide 24/7 for Rig Site Assistance Other Connection Data Sheets are available at www.vamservices.com

Vallourec Group

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

· · ·

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

 Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore
pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

 Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DFc=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud
 gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore
 pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DF_c=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient
of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DFt=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud
 gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient
 of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

ł.

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

Casing Design Criteria and Load Case Assumptions

Surface Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.43 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.52 psi/ft).

Burst: DF_b=1.125

• Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.43 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (8.3 ppg).

Intermediate #1 Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 50 bbl kick with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that (0.47 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft), which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.52 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (10.0 ppg).

Intermediate #2 Casing

Collapse: DFc=1.125

• Partial Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.47 psi/ft). The effects of axial load on collapse will be considered. Internal force equal to gas gradient over half of setting depth and mud gradient with which the next hole section will be run below that (0.65 psi/ft).

• Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.47 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: Casing test per Onshore Oil and Gas Order No. 2 with an external force equal to the mud gradient in which the casing will be run (0.47 psi/ft), which is a more conservative backup force than pore pressure.
- Gas Kick Profile: Internal burst force at the shoe will be Fracture Pressure at that depth. Surface burst
 pressure will be fracture gradient at setting depth less a gas gradient to equivalent height of 100 bbl kick
 with Drill Pipe inside casing and mud gradient with which the next hole section will be run above that
 (0.65 psi/ft). External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft),
 which is a more conservative backup force than pore pressure.
- Fracture at Shoe with 1/3 BHP at Surface: Internal burst force at the shoe will be Fracture Pressure at setting depth. Internal burst force at surface will be 1/3 of pore pressure at setting depth. External force will be equal to the mud gradient in which the casing will be run (0.47 psi/ft) which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (9.0 ppg).

Production Casing

Collapse: DF_c=1.125

- Full Internal Evacuation: Collapse force equal to the mud gradient in which the casing will be run (0.65 psi/ft). The effects of axial load on collapse will be considered.
- Cementing: Collapse force equal to the gradient of planned cement slurries to planned depths and mud gradient in which the casing will be run above that (0.65 psi/ft) and an internal force equal to mud gradient of displacement fluid (0.43 psi/ft).

Burst: DF_b=1.125

- Pressure Test: 8000 psi casing test with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.
- Injection Down Casing: 9500 psi surface injection pressure plus an internal pressure gradient of 0.65 psi/ft with an external force equal to the mud gradient in which the casing will be run (0.65 psi/ft), which is a more conservative backup force than pore pressure.

Tensile: DF_t=1.8

• Overpull: A downward force of 100,000 lbs is applied at the shoe along with the weight of the casing string utilizing the effects of buoyancy (12.5 ppg).

VAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400032152

Operator Name: MATADOR PRODUCTION COMPANY

Well Name: CHARLES LING FED COM

Well Type: OIL WELL

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

CL_201H_Road_Map_MAP1_20180716144636.pdf

Existing Road Purpose: ACCESS

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Max grade (%): 4

Will new roads be needed? YES

New Road Map:

CL_201H_New_Road_Map_MAP2_20180716144700.pdf

New road type: LOCAL, RESOURCE

Length: 4312.53 Feet Width (ft.): 30

Max slope (%): 0

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Crowned and ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Well Number: 201H

and the second

Well Work Type: Drill

Row(s) Exist? NO

SUPO Data Report

10/00/2010

Casing Variance

Matador requests a variance to run 7-5/8" BTC casing inside 9-5/8" BTC casing which will be less than the 0.422" stand-off regulation. Matador has met with Christopher Walls and Mustafa Haque as well as other BLM representatives and determined that this would be acceptable as long as the 7-5/8" Flush casing was run throughout the entire 300' cement tie back section between 9-5/8" and 7-5/8" casing.

Well Name: CHARLES LING FED COM

Well Number: 201H

Access surfacing type: OTHER Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crowned and ditched

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

CL_201H_Well_Map_MAP3_20180716144718.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: This Surface Use Plan is in support of Matador's Charles Ling well pad and production facilities. Matador will operate twelve (12) oil wells arranged across four (4) well pads (Slots 1, 2, 3,& 4), two (2) central tank batteries (CTBs) (E2 & W2), flow lines, a gas pipeline (E2 & W2), and associated access roads. Matador intends to construct two central tank batteries. The W2 CTB will service the Slot 1 & 2 pads while the E2 CTB will service the Slot 3 & 4 pads. Matador will install 489.85' of 4" buried flowline from Slots 1 & 2 to the W2 CTB and 616.32' from Slots 3 & 4 to the E2 CTB, for a total of 1,106.17'. Matador will install a total of 2,505.96' of ~6" O.D. buried gas pipeline to connect to an existing DCP gas line in the NWNE of Section 11. This pipeline will include two segments, 1,777.13' from the W2 CTB to the DCP tie-in point and 728.83' from the E2 CTB to the DCP tie-in point. **Production Facilities map:**

CL_201H_Production_Facilities_FIG1_20180716144730.pdf

Nell Name: CHARLES LING FED COM	Well Number: 201H
Section 5 - Location and Types of V	Water Supply
Water Source Table	
Water source use type: DUST CONTROL, INTERMEDIATE/PRODUCTION CASING, STIMULATIC CASING	Water source type: GW WELL DN, SURFACE
Describe type:	Source longitude:
Source latitude:	
Source datum:	
Water source permit type: PRIVATE CONTRACT	
Source land ownership: PRIVATE	
Water source transport method: TRUCKING	
Source transportation land ownership: PRIVATE	
Water source volume (barrels): 17000	Source volume (acre-feet): 2.1911826
Source volume (gal): 714000	
ater source and transportation map:	
L 201H Water Gravel MAP4 20180716144744.pdf	

Water source comments: Water will be trucked via existing roads from the existing Madera water station on private land in NWNE 21 -24s-34e.

New water well? NO

Water well additional information:

New Water Well I	nfo	
Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		· · ·
Est. depth to top of aquifer(ft):	Est thickness o	of aquifer:
Aquifer comments:		
Aquifer documentation:		
Well depth (ft):	Well casing type:	
Well casing outside diameter (in.):	Well casing insid	e diameter (in.):
New water well casing?	Used casing sour	rce:
Drilling method:	Drill material:	
Grout material:	Grout depth:	
Casing length (ft.):	Casing top depth	(ft.):
Well Production type:	Completion Meth	od:

Well Name: CHARLES LING FED COM

Well Number: 201H

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: COG and NM One Call (811) will be notified before construction starts. Top 6" of soil and brush will be stockpiled south of the pad. Pipe racks will face north. Closed loop drilling system will be used. Caliche will be hauled from an existing caliche pit on private (Madera) land in SENW 6-25s-35e. **Construction Materials source location attachment:**

CL_201H_Construction_Methods_FIG1_20180716145006.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY Disposal type description:

Disposal location description: R360's state approved (NM-01-0006) disposal site at Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Well Name: CHARLES LING FED COM

Well Number: 201H

Cuttings area length (ft.)

Cuttings area depth (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

CL_201H_Well_Site_Layout_20180716145157.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: CHARLES LING FED COM

Multiple Well Pad Number: SLOT 1

Recontouring attachment:

CL_201H_Recontour_Plat_FIG2_20180716145215.pdf CL_201H_Interim_Reclamation_v1_FIG1_20180716145241.pdf Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance	Well pad interim reclamation (acres): 2	Well pad long term disturbance
(acres): 4.5	Poad interim realemation (parise): ()	(acres): 2.5
Road proposed disturbance (acres):	Road Interim reclamation (acres): 0	Road long term disturbance (acres):
0.2	Powerline interim reclamation (acres):	0.2
Powerline proposed disturbance	0	Powerline long term disturbance
(acres): 0	Pipeline interim reclamation (acres): 0	(acres): 0
Pipeline proposed disturbance		Pipeline long term disturbance
(acres): 0	Other interim reclamation (acres): 0	(acres): 0
Other proposed disturbance (acres): 4.14	Total interim reclamation: 2	Other long term disturbance (acres): 4.14

Well Name: CHARLES LING FED COM

Well Number: 201H

Total proposed disturbance: 8.84

Total long term disturbance: 6.84

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking each pad by 2 acres by removing caliche and reclaiming a 230' x 370' wide block on the east side of each pad. This will leave roughly 2.26 acres for operating 3 wells and a tractor-trailer turn around on each pad. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the land owner's requirements. **Topsoil redistribution:** Enough stockpiled topsoil will be retained on the south edge of the pad for Slots 1, 2, & 3 and on the east side of the pad for Slot 4. Top soil for the tank battery sites will be stockpiled on the south edge of each site. This soil will be used to cover the remainder of the pads and tank battery sites when the wells are plugged. Once the last well is plugged, then the rest of the pad and associated roads will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled.

Soil treatment: None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Well Name: CHARLES LING FED COM

Well Number: 201H

Sood Managaman		
Seed wanagement	L	
Seed Table		
Seed type:		Seed source:
Seed name:		
Source name:		Source address:
Source phone:		· · ·
Seed cultivar:		
Seed use location:		
PLS pounds per acre:		Proposed seeding season
Seed Su	Immary	Total pounds/Acre:
Seed Type	Pounds/Acre	h.
First Name:		Last Name:
First Name:		Last Name:
Phone:		Email:
eedbed prep:		
eed BMP:		
eed method:		
xisting invasive species? N	0	
xisting invasive species tre	atment description:	
xisting invasive species tre	atment attachment:	
Veed treatment plan descrip	tion: To BLM standards	
Veed treatment plan attachm	ient:	
Ionitoring plan description:	To BLM standards	
Ionitoring plan attachment:		
Success standards: To BLM s	satisfaction	

Pit closure attachment:

Well Name: CHARLES LING FED COM

Well Number: 201H

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Fee Owner: Mark McCloy	Fee Owner Address: PO Box 795 Tatum NM 88267
Phone: (505)466-8120	Email:
Surface use plan certification: NO	
Surface use plan certification document:	
Surface access agreement or bond: Agreement	
Surface Access Agreement Need description: In process	
Surface Access Bond BLM or Forest Service:	
BLM Surface Access Bond number:	
USFS Surface access bond number:	

Well Name: CHARLES LING FED COM

Well Number: 201H

Disturbance type: NEW ACCESS ROAD	
Describe:	
Surface Owner: PRIVATE OWNERSHIP	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Fee Owner: Mark McCloy	Fee Owner Address: PO Box 795 Tatum NM 88267
Phone: (505)466-8120	Email:
Surface use plan certification: NO	
Surface use plan certification document:	
Surface access agreement or bond: Agreem	ent
Surface Access Agreement Need descriptio	n: In process
Surface Access Bond BLM or Forest Service	e:
BLM Surface Access Bond number:	
USFS Surface access bond number:	

Disturbance type: OTHER Describe: Central Tank Battery Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office: **Operator Name:** MATADOR PRODUCTION COMPANY **Well Name:** CHARLES LING FED COM

Well Number: 201H

BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: USFWS Local Office: Other Local Office: USFS Region: USFS Forest/Grassland:

USFS Ranger District:

Fee Owner: Mark McCloy	Fee Owner Address: PO Box 795 Tatum NM 88267	
Phone: (505)466-8120	Email:	
Surface use plan certification: NO		
Surface use plan certification document:		
Surface access agreement or bond: Agreement		
Surface Access Agreement Need description: In process		
Surface Access Bond BLM or Forest Service:		
BLM Surface Access Bond number:		
USFS Surface access bond number:		

Disturbance type: PIPELINE Describe: Surface Owner: PRIVATE OWNERSHIP Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: **Operator Name:** MATADOR PRODUCTION COMPANY **Well Name:** CHARLES LING FED COM

Well Number: 201H

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Fee Owner: Mark McCloy

Fee Owner Address: PO Box 795 Tatum NM 88267

Phone: (505)466-8120

Email:

Surface use plan certification: NO

Surface use plan certification document:

Surface access agreement or bond: Agreement

Surface Access Agreement Need description: In process

Surface Access Bond BLM or Forest Service:

BLM Surface Access Bond number:

USFS Surface access bond number:

Section 12 - Other Information

Use APD as ROW?

Right of Way needed? NO ROW Type(s):

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: On-site inspection was held on March 20, 2018 with Jesse Bassett (BLM).

Other SUPO Attachment

CL_201H_SUPO_20180716152111.pdf