Form 3160-3 (June 2015)

FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018

Form 3160-3			^	FORM OMB N				
(June 2015)	2		CA	Expires: Ja				
DEPARTMENT OF THE I	, NTERIO	or as		5. Lease Serial No.				
BUREAU OF LAND MANA	AGEME	NT.OB	2019	NMNM137804				
UNITED STATES DEPARTMENT OF THE IN BUREAU OF LAND MANA APPLICATION FOR PERMIT TO D 1a. Type of work:	RILL O	R REENTER 1.	LIVE	5. Lease Serial No. NMNM137804 of If Indian, Allotee 7. If Unit or CA Agr	or Tribe	Name		
la. Type of work:	EENTER	a EC		7. If Unit or CA Agi	reement,	Name and No.		
1b. Type of Well: ✓ Oil Well ☐ Gas Well ☐ Oil	ther			8. Lease Name and	Well No	<u> </u>		
1c. Type of Completion: Hydraulic Fracturing Si	ngle Zone	Multiple Zone		PIMENTO FED C	ЭМ 26 3	36 03		
				121H (3	243	77)		
2. Name of Operator AMEREDEV OPERATING LLC (372224)	-			9. API Well No.		46818		
3a. Address 5707 Southwest Parkway, Building 1, Suite 275 Austin TX		e No. <i>(include area cod</i> 0-4700	le)	10. Field and Pool, of JAL WOLFCAMF	•	ratory 98234		
4. Location of Well (Report location clearly and in accordance v	vith any S	tate requirements.*)		11. Sec., T. R. M. or	Blk. an	d Survey or Area		
At surface LOT D / 230 FNL / 230 FWL / LAT 32.07894	186 / LON	IG -103.2608167		SEC 3 / T26S / R3	6E / NM	IP		
At proposed prod. zone LOT M / 50 FSL / 200 FWL / LAT	Г 32.0506	861 / LONG -103.260	9062					
14. Distance in miles and direction from nearest town or post offi 5 miles	ce*		•	12. County or Parish LEA	h	13. State NM		
15. Distance from proposed* 230 feet	16. No o	f acres in lease	17. Spacii	ng Unit dedicated to t	his well			
location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	160		640	640 				
18. Distance from proposed location*	19. Proposed Depth 20. BLM.			BIA Bond No. in file				
to nearest well, drilling, completed, applied for, on this lease, ft.		eet / 22916 feet	1B001478					
21 Elevations (Show whether DF, KDB, RT, GL, etc.) 2991 feet	22. Appr 03/01/20	oximate date work will 020	start*	23. Estimated duration, 90 days				
	24. At	tachments						
The following, completed in accordance with the requirements of (as applicable)	Onshore	Oil and Gas Order No. 1	l, and the F	lydraulic Fracturing r	ule per 4	3 CFR 3162.3-3		
Well plat certified by a registered surveyor. A Drilling Plan.		4. Bond to cover the Item 20 above).	e operation	s unless covered by ar	n existing	g bond on file (see		
3. A Surface Use Plan (if the location is on National Forest Syster	n Lands, t	he 5. Operator certific		•				
SUPO must be filed with the appropriate Forest Service Office).	6. Such other site sp BLM.	ecific infor	mation and/or plans as	may be	requested by the		
25. Signature	Na	me (Printed/Typed)			Date			
(Electronic Submission)	Ch	ristie Hanna / Ph: (73	7)300-472	3 ,	08/02/	2018		
Title Senior Engineering Technician								
Approved by (Signature) (Electronic Submission)		me <i>(Printed/Typed)</i> dy Layton / Ph: (575)2	234-5959		Date 03/21/	2019		
Title Assistant Field Manager Lands & Minerals		fice RLSBAD						
Application approval does not warrant or certify that the applican applicant to conduct operations thereon. Conditions of approval, if any, are attached.	t holds leg	al or equitable title to the	nose rights	in the subject lease w	hich wo	uld entitle the		
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, m of the United States any false, fictitious or fraudulent statements of					iny depa	rtment or agency		
GCP Rec 04/16/19		TH CONDIT	10NS	Ke	rlib	119		

(Continued on page 2)

*(Instructions on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: LOT D / 230 FNL / 230 FWL / TWSP: 26S / RANGE: 36E / SECTION: 3 / LAT: 32.0789486 / LONG: -103.2608167 (TVD: 0 feet, MD: 0 feet)

PPP: NWSW / 2642 FNL / 223 FWL / TWSP: 26S / RANGE: 36E / SECTION: 10 / LAT: 32.0723208 / LONG: -103.2615561 (TVD: 12050 feet, MD: 15045 feet)

BHL: LOT M / 50 FSL / 200 FWL / TWSP: 26S / RANGE: 36E / SECTION: 10 / LAT: 32.0506861 / LONG: -103.2609062 (TVD: 12050 feet, MD: 22916 feet)

BLM Point of Contact

Name: Priscilla Perez

Title: Legal Instruments Examiner

Phone: 5752345934 Email: pperez@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:

Ameredev Operating, LLC

LEASE NO.:

NMNM-137804

WELL NAME & NO.: | Pimento Fed Com 26 36 03 121H

SURFACE HOLE FOOTAGE:

0230' FNL & 0230' FWL

BOTTOM HOLE FOOTAGE

0050' FSL & 0200' FWL Sec. 10, T. 26 S., R 36 E.

LOCATION: |

Section 03, T. 26 S., R 36 E., NMPM

COUNTY: | County, New Mexico

Operator to submit sundry for 4 string contingency casing design option after receiving approved permit.

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

Α. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

☐ Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240,

Page 1 of 9

(575) 3933612

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Alternative when using skid/walking rig
 The operator has proposed to drill multiple wells utilizing a skid/walking rig.
 Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other wells.
- 4. Option Setting surface casing with Surface Rig
 - a. Notify the BLM when removing the Surface Services Rig.
 - b. Notify the BLM when moving in the H&P Flex Rig. Rig to be moved in within 60 days of notification that Surface Rig has left the location. Failure to notify or have rig on location within 60 days will result in an Incident of Non-Compliance.
 - c. Once the H&P Flex Rig is on location, it shall not be removed from over the hole without prior approval unless the production casing has been run and cemented or the well has been properly plugged. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
 - d. BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as H&P Flex Rig is rigged up on well. CIT for the surface casing shall be performed and results recorded on subsequent sundry pressure to be 1200 psi.
- 5. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.

6. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Capitan Reef

Possible water flows in the Castile, Salado, and Capitan Reef.

Page 3 of 9

Possible lost circulation in the Rustler, Red Beds, and Delaware.

Abnormal pressures may be encountered within the 3rd Bone Spring and Wolfcamp Formations.

- 1. The 13-3/8 inch surface casing shall be set at approximately 1888 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Formation below the 13-3/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

Special Capitan Reef requirements:

If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following in addition to switching to their four string contingency design:

- Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
- Daily drilling reports from the Base of the Salt to the setting of the
 intermediate casing are to be submitted to the BLM CFO engineering staff
 via e-mail by 0800 hours each morning. Any lost circulation encountered is
 to be recorded on these drilling reports. The daily drilling report should
 show mud volume per shift/tour. Failure to submit these reports will result
 in an Incidence of Non-Compliance being issued for failure to comply with
 the Conditions of Approval. If not already planned, the operator shall run a
 caliper survey for the intermediate well bore and submit to the appropriate
 BLM office.

9-5/8" Intermediate casing shall be kept fluid filled while running into hole to meet BLM minimum collapse requirements.

2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Operator has proposed DV tool at depth of 5013', but will adjust cement proportionately if moved. DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

a. First stage to DV tool:
--

- Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage. Excess calculates to 9% Additional cement may be required
- b. Second stage above DV tool:
- Cement to surface. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to Capitan Reef.

Formation below the 9-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the

pore pressure of the formation below the shoe (not the mud weight required to prevent dissolving the salt formation) and the mud weight for the bottom of the hole. Report results to BLM office.

Centralizers required through the curve and a minimum of one every other joint.

3.	The minimum	required fill	of cement	behind the	5-1/2	inch	production	casing is:
----	-------------	---------------	-----------	------------	-------	------	------------	------------

- Cement should tie-back at least **50 feet above the Capitan Reef** (Top of Capitan Reef estimated at 3734'). Operator shall provide method of verification.
- 4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.
- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 3. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.

Page 6 of 9

- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. Operator shall perform the intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
- e. Operator shall perform the 9-5/8" and 7-5/8" casing integrity tests to 70% of the casing burst. This will test the multi-bowl seals.
- f. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi.)

10M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

- 4. The appropriate BLM office shall be notified a minimum of hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - a. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer.
 - b. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall

Page 7 of 9

have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.

- c. The results of the test shall be reported to the appropriate BLM office.
- d. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- e. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- f. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the **Wolfcamp** formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

D. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the **Wolfcamp** formation, and shall be used until production casing is run and cemented.

E. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

F. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and

disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 031519

Page 9 of 9

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME: | AMEREDEV OPERATING LLC.

LEASE NO.: NMNM137804

WELL NAME & NO.: | 121H-PIMENTO FED COM 263603

SURFACE HOLE FOOTAGE: 230'/N & 230'/W BOTTOM HOLE FOOTAGE 200'/S & 380'/W

LOCATION: Section. 3.,T26S.,R.36E., NMP

COUNTY: LEA County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
${\Box}$ Archaeology, Paleontology, and Historical Sites
Noxious Weeds
Special Requirements
Hydrology
☐ Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
□ Road Section Diagram
☐ Production (Post Drilling)
Well Structures & Facilities
Pipelines
Electric Lines
☐ Interim Reclamation
Final Abandonment & Reclamation

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult

with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

v. SPECIAL REQUIREMENT(S)

Hydrology:

Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank or 24 hour production, whichever is greater. Automatic shut off, check valves, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.

A leak detection plan will be submitted to the BLM Carlsbad Field Office for approval prior to pipeline installation. The method could incorporate gauges to detect pressure drops, situating valves and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.

Electric Lines: Any water erosion that may occur due to the construction of overhead electric line and during the life of the power line will be quickly corrected and proper measures will be taken to prevent future erosion.

VI. CONSTRUCTION

A. **NOTIFICATION**

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the .

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which

·			

creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

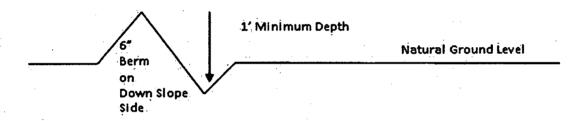
Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts


•			
•			
	•		
		·	

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, leadoff ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Construction Steps

- Salvage topsoil
 Construct road
- 3. Redistribute topsoil4. Revegetate slopes
- center line of roadway turnout 10' transition 100 full turnout width Intervisible turnouts shall be constructed on all single lane roads on all blind curves with additional tunouts as needed to keep spacing below 1000 feet. **Typical Turnout Plan** natural ground **Level Ground Section** road COWN type earth surface #1/ff 20. - EQ. aggregate surface .02 - .04 ft/ft paved surface .02 - .03 ft/ft Depth measured from the bottom of the ditch **Side Hill Section** center travel surface travel surface 🗢 (stope 2 - 4%) (slope 2 - 4%) **Typical Outsloped Section Typical Inslope Section**

Figure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, **Shale Green** from the BLM Standard Environmental Color Chart (CC-001: June 2008).

B. PIPELINES

BURIED PIPELINE STIPULATIONS

A copy of the application (Grant, APD, or Sundry Notice) and attachments, including conditions of approval, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

- 1. The Holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.
- 2. The Holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.
- 3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, et seq. or the Resource Conservation and Recovery Act, 42 U.S.C.6901, et seq.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way.

This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

- 4. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil or other pollutant, wherever found, shall be the responsibility of holder, regardless of fault. Upon failure of holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve holder of any responsibility as provided herein.
- 5. All construction and maintenance activity will be confined to the authorized right-of-way.
- 6. The pipeline will be buried with a minimum cover of <u>36</u> inches between the top of the pipe and ground level.
- 7. The maximum allowable disturbance for construction in this right-of-way will be 30 feet:
 - Blading of vegetation within the right-of-way will be allowed: maximum width of blading operations will not exceed **20** feet. The trench is included in this area. (Blading is defined as the complete removal of brush and ground vegetation.)
 - Clearing of brush species within the right-of-way will be allowed: maximum width of clearing operations will not exceed 30 feet. The trench and bladed area are included in this area. (Clearing is defined as the removal of brush while leaving ground vegetation (grasses, weeds, etc.) intact. Clearing is best accomplished by holding the blade 4 to 6 inches above the ground surface.)
 - The remaining area of the right-of-way (if any) shall only be disturbed by compressing the vegetation. (Compressing can be caused by vehicle tires, placement of equipment, etc.)
- 8. The holder shall stockpile an adequate amount of topsoil where blading is allowed. The topsoil to be stripped is approximately ___6__ inches in depth. The topsoil will be segregated from other spoil piles from trench construction. The topsoil will be evenly distributed over the bladed area for the preparation of seeding.

- 9. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.
- 10. Vegetation, soil, and rocks left as a result of construction or maintenance activity will be randomly scattered on this right-of-way and will not be left in rows, piles, or berms, unless otherwise approved by the Authorized Officer. The entire right-of-way shall be recontoured to match the surrounding landscape. The backfilled soil shall be compacted and a 6 inch berm will be left over the ditch line to allow for settling back to grade.
- 11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.
- 12. The holder will reseed all disturbed areas. Seeding will be done according to the attached seeding requirements, using the following seed mix.

() seed mixture 1	() seed mixture 3
(X) seed mixture 2	() seed mixture 4
() seed mixture 2/LPC	() Aplomado Falcon Mixture

- 13. All above-ground structures not subject to safety requirements shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be color which simulates "Standard Environmental Colors" **Shale Green**, Munsell Soil Color No. 5Y 4/2.
- 14. The pipeline will be identified by signs at the point of origin and completion of the right-of-way and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. All signs and information thereon will be posted in a permanent, conspicuous manner, and will be maintained in a legible condition for the life of the pipeline.
- 15. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder before maintenance begins. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway. As determined necessary during the life of the pipeline, the Authorized Officer may ask the holder to construct temporary deterrence structures.

- 16. Any cultural and/or paleontological resources (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.
- 17. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes associated roads, pipeline corridor and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.
- 18. <u>Escape Ramps</u> The operator will construct and maintain pipeline/utility trenches [that are not otherwise fenced, screened, or netted] to prevent livestock, wildlife, and humans from becoming entrapped. At a minimum, the operator will construct and maintain escape ramps, ladders, or other methods of avian and terrestrial wildlife escape in the trenches according to the following criteria:
 - a. Any trench left open for eight (8) hours or less is not required to have escape ramps; however, before the trench is backfilled, the contractor/operator shall inspect the trench for wildlife, remove all trapped wildlife, and release them at least 100 yards from the trench.
 - b. For trenches left open for eight (8) hours or more, earthen escape ramps (built at no more than a 30 degree slope and spaced no more than 500 feet apart) shall be placed in the trench.

C. ELECTRIC LINES

STANDARD STIPULATIONS FOR OVERHEAD ELECTRIC DISTRIBUTION LINES

A copy of the grant and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

- 2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.
- 3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, et seq. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, et seq.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.
- 4. There will be no clearing or blading of the right-of-way unless otherwise agreed to in writing by the Authorized Officer.
- 5. Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all powerline structures placed on this right-of-way, should they be necessary to ensure the safety of large perching birds. Such modifications and/or additions shall be made by the holder without liability or expense to the United States.

Raptor deterrence will consist of but not limited to the following: triangle perch discouragers shall be placed on each side of the cross arms and a nonconductive perching deterrence shall be placed on all vertical poles that extend past the cross arms.

6. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The

holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

- 7. The BLM serial number assigned to this authorization shall be posted in a permanent, conspicuous manner where the power line crosses roads and at all serviced facilities. Numbers will be at least two inches high and will be affixed to the pole nearest the road crossing and at the facilities served.
- 8. Upon cancellation, relinquishment, or expiration of this grant, the holder shall comply with those abandonment procedures as prescribed by the Authorized Officer.
- 9. All surface structures (poles, lines, transformers, etc.) shall be removed within 180 days of abandonment, relinquishment, or termination of use of the serviced facility or facilities or within 180 days of abandonment, relinquishment, cancellation, or expiration of this grant, whichever comes first. This will not apply where the power line extends service to an active, adjoining facility or facilities.
- 10. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

11. Special Stipulations:

- For reclamation remove poles, lines, transformer, etc. and dispose of properly.
- Fill in any holes from the poles removed.

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Seed Mixture 2, for Sandy Sites

The holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be <u>no</u> primary or secondary noxious weeds in the seed mixture. Seed

will be tested and the viability testing of seed will be done in accordance with State law (s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the authorized officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). The holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

<u>Species</u>	l <u>b/acre</u>
Sand dropseed (Sporobolus cryptandrus)	1.0
Sand love grass (Eragrostis trichodes)	1.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

©perator Certification Data Report 03/25/2019

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie Hanna Signed on: 02/01/2019

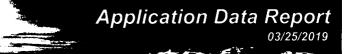
Title: Senior Engineering Technician

Street Address: 5707 Southwest Parkway, Building 1, Suite 275

City: Austin State: TX Zip: 78735

Phone: (737)300-4723

Email address:


Email address: channa@ameredev.com

Field Representative

•	·	-
Representative Name:		
Street Address:	en. Santa araban	
City:	State:	Zip:
Phone:	• • • • • • • • • • • • • • • • • • • •	

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400031733

Submission Date: 08/02/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

APD ID:

10400031733

Tie to previous NOS? 10400024490

Submission Date: 08/02/2018

BLM Office: CARLSBAD

User: Christie Hanna

Lease Acres: 160

Title: Senior Engineering Technician

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM137804

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? NO

APD Operator: AMEREDEV OPERATING LLC

Operator letter of designation:

Operator Info

Operator Organization Name: AMEREDEV OPERATING LLC

Operator Address: 5707 Southwest Parkway, Building 1, Suite 275

Operator PO Box:

Zip: 78735

Operator City: Austin

State: TX

Operator Phone: (737)300-4700

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Mater Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: JAL

Pool Name: WOLFCAMP

WEST

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Operator Name: AMEREDEV OPERATING LLC

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Describe other minerals:

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO

New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name:

Number: 121H

Well Class: HORIZONTAL

PIMENTO

Number of Legs: 1

Well Work Type: Drill

Well Type: OIL WELL

Describe Well Type:

Well sub-Type: INFILL

Describe sub-type:

Distance to town: 5 Miles

Distance to nearest well: 8501 FT

Distance to lease line: 230 FT

Reservoir well spacing assigned acres Measurement: 640 Acres

Well plat:

Pimento_Fed_Com_26_36_03_121H___Gas_Capture_Plan_20180628151427.pdf

PIMENTO_FED_COM_26_36_03_121H___BLM_LEASE_MAP_20190131144704.pdf

PIMENTO_FED_COM_26_36_03_121H___C_102_REV_SIG_20190131144706.pdf

PIMENTO_FED_COM_26_36_03_121H___EXH_2AB_20190131144708.pdf

PIMENTO_FED_COM_26_36_03_121H___VICINITY_MAP_20190131144708.pdf

Well work start Date: 03/01/2020

Duration: 90 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number: 19642

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	QW	TVD
SHL Leg #1	230	FNL	230	FWL	26S	36E	3	Lot D	32.07894 86	- 103.2608 167	LEA	MEXI	1454		NMNM 137804	299 1	0	0

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	dΛΤ
KOP Leg #1	349	FSL	273	FEL	258	36E	33	Aliquot SESE	32.08055 36	- 103.2624 228	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 136233	- 857 9	116 09	115 70
PPP Leg #1	264 2	FNL	223	FWL	26S	36E	10	Aliquot NWS W	32.07232 08	- 103.2615 561	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 136234	- 905 9	150 45	120 50
EXIT Leg #1	50	FSL	200	FWL	26S	36E	10	Lot M	32.05068 61	- 103.2609 062	LEA	NEW MEXI CO	NEW MEXI CO	F	FEE	- 905 9	229 16	120 50
BHL Leg #1	50	FSL	200	FWL	26S	36E	10	Lot M	32.05068 61	- 103.2609 062	LEA	NEW MEXI CO	NEW MEXI CO	F	FEE	- 905 9	229 16	120 50

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report 03/25/2019

APD ID: 10400031733

Well Type: OIL WELL

Submission Date: 08/02/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical	Measured	-		Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	
1	RUSTLER	1254	1763	1763	ANHYDRITE	NONE	No
2	SALADO	-731	1985	1985	SALT	NONE	No
3	TANSILL	-2008	3262	3262	LIMESTONE	NONE	No
4	CAPITAN REEF	-2551	3805	3805	LIMESTONE	USEABLE WATER	No
5	LAMAR	-3709	4963	4963	LIMESTONE	NONE	No
6	BELL CANYON	-3905	5159	5159	SANDSTONE	NATURAL GAS,OIL	No
7	BRUSHY CANYON	-5450	6704	6704	SANDSTONE	NATURAL GAS,OIL	No
8	BONE SPRING LIME	-6434	7688	7688	LIMESTONE	NONE	No
9	BONE SPRING 1ST	-8046	9300	9300	SANDSTONE	NATURAL GAS,OIL	No
10	BONE SPRING 2ND	-8631	9885	9885	SANDSTONE	NATURAL GAS,OIL	No
11	BONE SPRING 3RD	-9291	10545	10545	LIMESTONE	NATURAL GAS,OIL	No
12	BONE SPRING 3RD	-9886	11140	11140	SANDSTONE	NATURAL GAS,OIL	· No
13	WOLFCAMP	-10067	11321	11321	SHALE	NATURAL GAS,OIL	No
14	WOLFCAMP	-10471	11725	11725	SHALE	NATURAL GAS,OIL	Yes
						,	

Section 2 - Blowout Prevention

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Pressure Rating (PSI): 10M

Rating Depth: 15000

Equipment: 10M BOPE SYSTEM WILL BE USED AFTER THE SURFACE CASING IS SET. A KELLY COCK WILL BE KEPT IN THE DRILL STRING AT ALL TIMES. A FULL OPENING DRILL PIPE STABBING VALVE WITH PROPER DRILL PIPE CONNECTIONS WILL BE ON THE RIG FLOOR AT ALL TIMES.

Requesting Variance? YES

Variance request: Co-Flex Choke Line, 5M Annular Preventer

Testing Procedure: See Attachment

Choke Diagram Attachment:

10M_Choke_Manifold_REV_20190131155215.pdf

BOP Diagram Attachment:

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190131155237.pdf

5M_BOP_System_20190131155237.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190131155238.pdf

4_String_MB_Ameredev_Wellhead_Drawing_net_REV_20190131155256.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1888	0	1888	2991		1888	J-55		OTHER - BTC	4.86	0.52	DRY	8.89	DRY	8.29
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	10670	0	10670			10670	HCL -80		OTHER - BTC	1.29	1.08	DRY	2.19	DRY	2.2
1 .	PRODUCTI ON	8.5	5.5	NEW	API	N	0	22916	0	12050			22916	OTH ER		OTHER - BTC	1.51	1.64	DRY	2.72	DRY	3.02

Casing Attachments

Operator Name: AMEREDEV OPERATING LLC Well Name: PIMENTO FED COM 26 36 03 Well Number: 121H **Casing Attachments** Casing ID: 1 String Type: SURFACE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): 13.375_54.50_J55_SEAH_20190131155501.pdf PIMENTO_FED_COM_26_36_03_121H WELLBORE_DIAGRAM_AND_CDA_20190131155513.pdf Casing ID: 2 String Type: INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): PIMENTO_FED_COM_26_36_03_121H___WELLBORE_DIAGRAM_AND_CDA_20190131155655.pdf 9625_40_SeAH80HC_4100_Collapse_20190131155734.pdf Casing ID: 3 String Type: PRODUCTION **Inspection Document: Spec Document: Tapered String Spec:**

Casing Design Assumptions and Worksheet(s):

PIMENTO_FED_COM_26_36_03_121H___WELLBORE_DIAGRAM_AND_CDA_20190131160235.pdf 5.50_20_USS_P110_HC_BTC_API_20190207144858.pdf

Well Name: PIMENTO FED COM 26 36 03 Well Number: 121H

Section 4 - Cement

L											
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	1502	965	1.76	13.5	1697. 63	50	Class C	Bentonite, Accelerator, Kolseal, Defoamer, Celloflake
SURFACE	Tail		1502	1888	200	1.34	14.8	268	100	Class C	Salt
INTERMEDIATE	Lead		0	4163	686	2.47	11.9	1694. 94	25	Class C	Salt, Bentonite, Kolseal, Defoamer, Celloflake, Anti-Settling Expansion Additive
INTERMEDIATE	Tail		4163	5013	200	1.33	14.8	266	25	Class C	Retarder
INTERMEDIATE	Lead	5013	5013	9414	1531	2.47	11.9	3780. 79	25	Class H	Bentonite, Salt, Kolseal, Defoamer, Celloflake, Retarder, Anti-settling Expansion Additive
INTERMEDIATE	Tail		9414	1067 0	300	1.24	14.5	371.1	25	Class H	Salt, Bentonite, Retarder, Dispersant, Fluid Loss
PRODUCTION	Lead		0	2291 6	4893	1.34	14.2	6556. 57	25	Class H	Salt, Bentonite, Fluid Loss, Dispersant, Retarder, Defoamer

Section 5 - Circulating Medium

Mud System Type: Closed.

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary supplies (e.g. bentonite, cedar bark) for fluid control will be on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure, and pump rate.

Circulating Medium Table

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	H	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1888	WATER-BASED MUD	8.4	8.6							
1888	1067 0	OTHER : Diesel Brine Emulsion	8.5	9.4							
1067 0	1205 0	OIL-BASED MUD	10.5	14				·			

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5000

Anticipated Surface Pressure: 2349

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_20180628162029.pdf

Well Name: PIMENTO FED COM 26 36 03 Well Number: 121H

Section 8 - Other Information

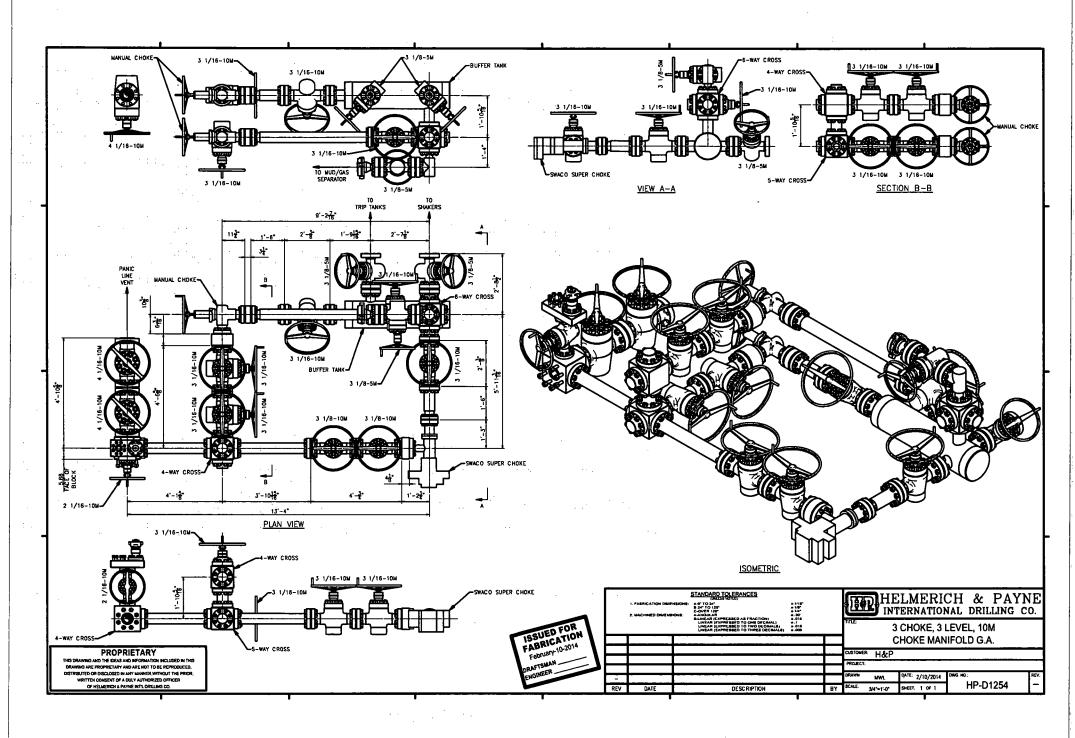
Proposed horizontal/directional/multi-lateral plan submission:

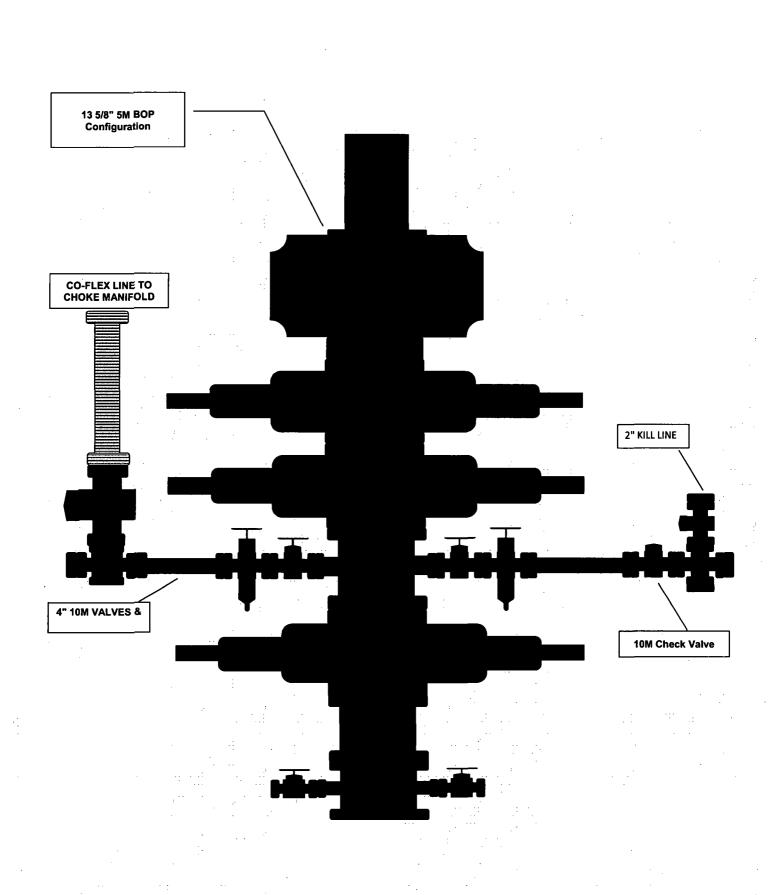
Pim121_DR_20190201083711.pdf

Pim121_LLR_20190201083712.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190201083741.pdf

 $Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190201083758.pdf$


Other proposed operations facets description:


Other proposed operations facets attachment:

Other Variance attachment:

R616___CoC_for_hoses_12_18_17_20180628162114.pdf

Requested_Exceptions___3_String_Revised_01312019_20190201083832.pdf

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Open Hole	13-5/8	Drilling Fluid	Blind Rams	

All Drilling Components in 10M Environment will have OD that will allow full Operational RATED WORKING PRESSURE for system design. Kill line with minimum 2" ID will be available outside substructure with 10M Check Valve for OOH Kill Operations

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure
- *FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

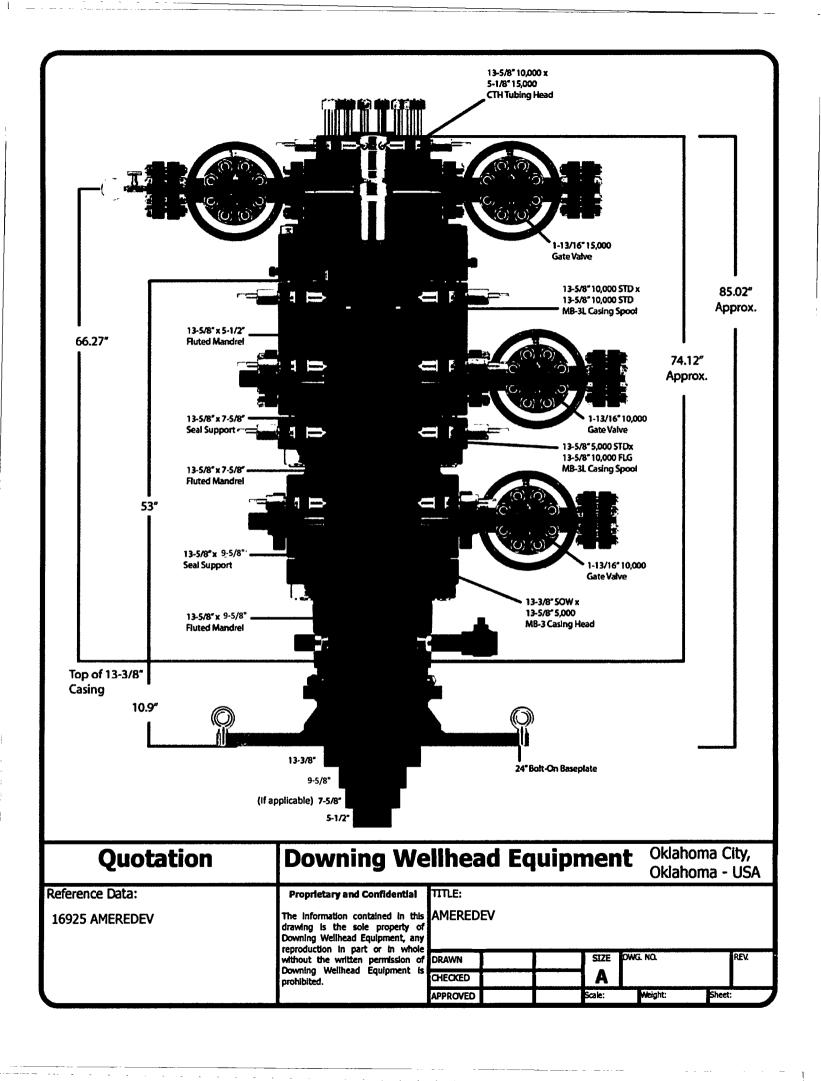
Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan


Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak
 off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.</p>
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break
 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips
 and test same (Installation procedure witnessed and verified by a manufacturer's
 representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed
 and verified by a manufacturer's representative). Ameredev will test head to 70% casing design
 and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting
 completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional
 and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a
 co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to
 API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications
 will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

13-3/8" 54.50# .380 J-55

Dimensions (Nominal)

Outside Diameter	13.375	in.
Wall	0.380	in.
Inside Diameter	12.615	in.
Drift	12.459	in.
Weight, T&C	54.500	lbs/ft
Weight, PF	52.790	lbs/ft

Performance Ratings, Minimum

Collapse, PE	1130	psi
Internal Yields Pressure		
PE	2730	psi
STC	 2730	PSI
втс	2730	psi
Yield Strength, Pipe Body	853	1000 lbs
Joint Strength, STC	514	1000 lbs
Joint Strength, BTC	909	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

Wellbore Schematic

Well: Pimento Fed Com 26-36-03 111H

SHL: Sec. 03 26S-36E 230' FNL & 230' FWL **BHL:** Sec. 10 26S-36E 50' FSL & 200' FWL

Lea, NM

Wellhead: A - 13-5/8" 10M x 13-5/8" SOW

B - 13-5/8" 10M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

Tubing: 2-7/8" L-80 6.5# 8rd EUE

Co. Well ID: XXXXX

AFE No.: XXXX-XXX

API No.: XXXXXXXXXX

GL: 2,991' Delaware

Field: Delaware
Objective: Wolfcamp B

TVD: 12,050' MD: 22,916'

Rig: TBD **KB**: 27'

E-Mail: Wellsite2@ameredev.com

i ubing:	2-1/6 L-60 6.5# 6fd EUE		E-Wall:	•	AACHSIK	<u> </u>	ameredev.com
Hole Size	For	mation Tops	<u> </u>	Logs	Cemen	t	Mud Weight
17.5"	Rus	itler 875" 54.5# J-55 BTC	1,763' 1,888'		1,165 Sacks TOC 0'	100% Excess	8.4-8.6 ppg WBM
	13.3	75 54.5# J-55 BTC	1,000		1		
	Sala	ado	1,985'				
	Tan	sill	3,262'				
	Сар	itan Reef	3,805'		ks	ses	
	Lam	nar ·.	4,963'		886 Sacks TOC 0'	50% Excess	Emulsi
	DV.	Tool	5,013'		886 TO	20	l e l
12.25"	. Bell	Canyon	5,159'	.: .:			- 9.4 ppg Diesel Brine Emulsion
	Brus	shy Canyon	6,704'	:			pg Die
	Bon	e Spring Lime	7,688'				9.4 p
	First	t Bone Spring	9,300'				8.5-
; } }	Sec	ond Bone Spring	9,885'		cks	sess	
	Thir	d Bone Spring Upper	10,545'		1,723 Sacks TOC 0'	50% Excess	· ·
	9.62	25" 40# L-80HC BTC	10,670'		1,7 TO	20	
0.5"	Thin	d Bone Spring	11,140'				
8.5"	Wot	fcamp A	11,321				ррд ОВМ
12° Buil @	d Wol	fcamp B	11,725'				
11,609' N	ID L				တ္သ	S	5 - 14
thru	5.5" 20# P	-110CYHP BTC	22,916'		sack	ces	10.5
12,728' N	Target Wolfcamp B	3 12050 TVD // 22916 MD			4,893 Sacks TOC 0'	25% Excess	
L					4 -	Ñ	L

Casing Design and Safety Factor Check

Casing Specifications										
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling				
Surface	17.5	1,888'	13.375	54.5	J-55	ВТС				
Intermediate	12.25	10,670'	9.625	40	HCL-80	ВТС				
Prod Segment A	8.5	11,609'	5.5	20	CYHP-110	втс				
Prod Segment B	8.5	22,916'	5.5	20	CYHP-110	ВТС				

Check Surface Casing										
OD Cplg	Body	Joint	Collapse	Burst						
inches	1000 lbs	1000 lbs	psi	psi						
14.375	853	915	4,100	2,730						
Safety Factors										
1.56	8.29	8.89	4.86	0.52						
	Check I	ntermedia	te Casing							
OD Cplg	Body	Joint	Collapse	Burst						
inches	1000 lbs	1000 lbs	psi	psi						
7.625	940	558	6700	9460						
Safety Factors										
2.31 2.20 2.19 1.29 1.08										
	Check Pro	od Casing, .	Segment A							
OD Cplg	Body	Joint	Collapse	Burst						
inches	1000 lbs	1000 lbs	psi	psi						
5.777	728	655	12780	14360						
	S	afety Facto	ors							
1.36	3.02	2.72	1.51	1.64						
_	Check Pro	od Casing,	Segment B							
OD Cplg	Body	Joint	Collapse	Burst						
inches	1000 lbs	1000 lbs	psi	psi						
5.777	728	655	12780	14360						
	5	afety Facto	ors							
1.36	1.36 82.54 74.26 1.46 1.64									

SěAH

9.625"

<u>40#</u>

.395"

SEAH-80 HIGH COLLAPSE

(SEAH-80 IS A NON HEAT TREATED PRODUCT)

Dimensions (Nominal)

Outside Diameter		9.625	in.
Wall	•	0.395	in.
Inside Diameter		8.835	in.
Drift		8.750	in.
Weight, T&C		40.000	lbs./ft.
Weight, PE		 38.970	lbs./ft.

Performance Properties

Collapse	4100	psi
Internal Yield Pressure at Minimum Y	ield	
PE	5750	psi
LTC	5750	psi
ВТС	5750	psi
Yield Strength, Pipe Body	916	1000 lbs.
Joint Strength		
LTC	717	1000 lbs.
втс	915	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

U.S. Steel Tubular Products

Product Information
5.5 in. 20 lb/ft (0.361 in. wall) P-110 HC Casing
STAR SEAL - CDC™

Grade(s)	P-110 HC		
MECHANICAL PROPERTIES	Viold Changeth		•
	Yield Strength Minimum	110	ksi
	Maximum	140	ksi
•	Tensile Strength	140	VOI
	Minimum	125	ksi
PIPE PROPERTIES		1.10	
Dimensions, Nominal	Pipe Outside Diameter	5.500	in.
	Wall	0.361	in.
	Pipe Inside Diameter	4.778	in.
	Pipe Drift	,	
	API	4.653	in.
	Special (If Applicable)	N/A	in.
••	Weight, T&C	20.00	lbs/ft
	Weight, Plain End	19.83	lbs/ft
	Pipe Cross Sectional Area	5.828	sq. in.
Performance Properties	Minimum Pipe Body Yield Strength	641	1,000 lbs
	Minimum Collapse Pressure	12,200	psi
	Minimum Internal Yield Pressure	12,640	psi
CONNECTION PROPERTIES			
Dimensions, Nominal	Connection Outside Diameter	6.050	in.
	Connection Inside Diameter	4.778	in.
	Connection Drift		
	API	4.653	in.
	Special (If Applicable)	N/A	in.
	Makeup Loss	4.63	in.
	Critical Area	5.828	in
	Joint Efficiency	100	%
Performance Properties	Joint Strength	667	1,000 lbs
	Compression Rating	400	1,000 lbs
	API Collapse Pressure Rating	12,200	psi
	API Internal Pressure Resistance	12,360	psi
	Maximum Uniaxial Bend Rating	57.2	deg/100 ft
Recommended Torque Values	Minimum Shoulder Torque	5,000	ft-lbs
Recommended Torque Values	Minimum Shoulder Torque Maximum Shoulder Torque Connection Yield Torque	5,000 7,500 16,100	ft-lbs ft-lbs ft-lbs

^{*} STAR SEAL - CDC (Casing Drilling Connection) is a Modified API Buttress threaded and coupled connection designed for field proven in drilling with casing applications. Star Seal is a registered trademark of U. S. Steel Corporation. All material contained in this publication is for general information only. This material should not therefore, be used or relied upon for any specific application without independent competent professional examination and verification of its accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U.S. Steel Tubular Products, Inc. 600 Grant Street Pittsburgh, PA 15219

H₂S Drilling Operation Plan

1. All Company and Contract personnel admitted on location must be trained by a qualified H₂S safety instructor to the following:

- a. Characteristics of H₂S
- **b.** Physical effects and hazards
- c. Principal and operation of H2s detectors, warning system and briefing areas
- d. Evacuation procedure, routes and first aid
- e. Proper use of safety equipment and life support systems
- f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- b. Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

3. H₂S Detection and Alarm Systems:

- a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- b. An audio alarm will be installed on the derrick floor and in the top doghouse.

4. Protective Equipment for Essential Personnel:

a. Breathing Apparatus:

- i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
- ii. Two (SCBA) Units will be stored in safety trailer on location.
- iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.

b. **Auxiliary Rescue Equipment:**

- i. Stretcher
- ii. 2 OSHA full body harnesses
- iii. 100 ft. 5/8" OSHA approved rope
- iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- b. Windsock on the rig floor should be high enough to be visible.

6. Communication:

- a. While working under mask scripting boards will be used for communication where applicable.
- b. Hand signals will be used when script boards are not applicable.

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. <u>Drill Stem Testing:</u> No Planned DST at this time.

8. Mud program:

a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

9. Metallurgy:

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
- b. Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H₂S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
- Have received training in the:
 - o Detection of H₂S and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating	LLC – Emergency Phone 737-300	-4799							
Key Personnel:									
Name	Title	Office	Mobile						
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810						
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996						
Blake Estrada	Construction Foreman		432-385-5831						

<u>Artesia</u>	
Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283
Carlsbad	
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
US Bureau of Land Management	575-887-6544
Santa Fe	:
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
<u>National</u>	
National Emergency Response Center (Washington, D.C.)	800-424-8802
<u>Medical</u>	
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433
.'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, NM	505-842-4949

JUN/PIM JUN/PIM #1S Pimento 121H

Wellbore #1

Plan: Design #1

Standard Planning Report

14 January, 2019

Planning Report

Database: Company: EDM5000

Local Co-ordinate Reference:

Well Pimento 121H

Ameredev Operating, LLC.

TVD Reference:

KB @ 3018.0usft

Project:

JUN/PIM

MD Reference North Reference: KB @ 3018.0usft Grid

Site: Well: JUN/PIM #1S

Wellbore:

Pimento 121H

Wellbore #1 Design #1

Survey Calculation Method:

Minimum Curvature

Design: Project

JUN/PIM

Map System:

US State Plane 1983

North American Datum 1983

System Datum:

Mean Sea Level

Geo Datum: Map Zone:

New Mexico Eastern Zone

Site

JUN/PIM #1S

Site Position:

Northing:

394,110.55 usft

Latitude:

Longitude:

32° 4' 44.214 N

103° 15' 38.243 W

From: **Position Uncertainty:** Lat/Long

Easting: Slot Radius: 0.0 usft

873,588.15 usft 13-3/16 "

Grid Convergence:

0.57 °

Well

Pimento 121H

Well Position

Wellbore

+N/-S

IGRF2015

-0.5 usft

Northing: Easting:

394,110.03 usft

6.63

Latitude:

32° 4' 44.215 N

Position Uncertainty

+E/-W

Design #1

-60.0 usft 0.0 usft

Wellhead Elevation:

873,528.19 usft

Longitude: **Ground Level:** 103° 15' 38.940 W 2,991.0 usft

Wellbore #1

Magnetics **Model Name** Sample Date

1/11/2019

Declination (°)

Dip Angle (°)

Field Strength (nT)

47,725.90533641

Design

Audit Notes:

Version:

Phase:

PROTOTYPE

Tie On Depth:

(°) 179.59

Vertical Section:

Depth From (TVD)

(usft)

+N/-S (usft)

0.0

+E/-W (usft)

0.0

0.0 Direction

59.96

Depth From

(usft)

0.0

1/14/2019

Plan Survey Tool Program Depth To

(usft)

Survey (Wellbore)

Tool Name

MWD

Remarks

0.0

22,915.7 Design #1 (Wellbore #1)

Date

OWSG MWD - Standard

Planning Report

Database: Company: EDM5000

Ameredev Operating, LLC.

Project:

JUN/PIM

Site: Well: Wellbore:

Design:

Pimento 121H Wellbore #1

JUN/PIM #1S

Design #1

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference: **Survey Calculation Method:** Well Pimento 121H

KB @ 3018.0usft KB @ 3018.0usft

Grid

Minimum Curvature

/leasured			Vertical			Dogleg	Build	Turn		
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	· · · · · · · · · · · · · · · · · · ·
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,300.0	6.00	319.00	2,299.5	11.8	-10.3	2.00	2.00	0.00	319.00	
6,724.8	6.00	319.00	6,700.0	360.9	-313.7	0.00	0.00	0.00	0.00	
7,024.8	0.00	0.00	6,999.5	372.8	-324.0	2.00	-2.00	0.00	180.00	
8,525.3	0.00	0.00	8,500.0	372.8	-324.0	0.00	0.00	0.00	0.00	
8,825.3	6.00	319.00	8,799.5	384.6	-334.3	2.00	2.00	0.00	319.00	
11,138.6	6.00	319.00	11,100.0	567.1	-493.0	0.00	0.00	0.00	0.00	
11,438.6	0.00	0.00	11,399.5	578.9	-503.3	2.00	-2.00	0.00	180.00	
11,609.1	0.00	0.00	11,570.0	578.9	-503.3	0.00	0.00	0.00	0.00	
12,353.0	89.26	135.73	12,047.4	241.4	-174.2	12.00	12.00	0.00	135.73	
12,363.5	89.26	135.73	12,047.5	233.9	-166.9	0.00	0.00	0.00	0.00	
12,727.5	90.00	179.41	12,050.0	-94.5	-31.3	12.00	0.20	12.00	89.23	Pim121 FTP2
22,915.7	90.00	179.41	12,050.0	-10,282.2	74.2	0.00	0.00	0.00	0.00	Pim121 BHL

Planning Report

Database: Company: EDM5000

Ameredev Operating, LLC.

Project: Site:

JUN/PIM

Well: Wellbore: JUN/PIM #1S Pimento 121H

Wellbore #1

Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Well Pimento 121H

> KB @ 3018.0usft KB @ 3018.0usft

Grid

Minimum Curvature

sign:	Design #1								
lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
0.008	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
			-						
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
-	2.00	319.00					2.00	2.00	0.00
2,100.0			2,100.0 2,199.8	1.3 5.3	-1.1	-1.3			
2,200.0	4.00	319.00	-,		-4.6	-5.3	2.00	2.00	0.00
2,300.0	6.00	319.00	2,299.5	11.8	-10.3	-11.9	2.00	2.00	0.00
2,400.0	6.00	319.00	2,398.9	19.7	-17.2	-19.9	0.00	0.00	0.00
2,500.0	6.00	319.00	2,498.4	27.6	-24.0	-27.8	0.00	0.00	0.00
2,600.0	6.00	319.00	2,597.8	35.5	-30.9	-35.7	0.00	0.00	0.00
2,700.0	6.00	319.00	2,697.3	43.4	-37.7	-43.7	0.00	0.00	0.00
2,800.0	6.00	319.00	2,796.7	51.3	-44.6	-51.6	0.00	0.00	0.00
2,900.0	6.00	319.00	2,896.2	59.2	-51.4	-59.5	0.00	0.00	0.00
0.000.0	0.00	040.00	0.005.0	07.4		07.5	0.00	0.00	0.00
3,000.0	6.00	319.00	2,995.6	67.1	-58.3	-67.5	0.00	0.00	0.00
3,100.0	6.00	319.00	3,095.1	75.0	-65.2	-75.4	0.00	0.00	0.00
3,200.0	6.00	319.00	3,194.5	82.8	-72.0	-83.4	0.00	0.00	0.00
3,300.0	6.00	319.00	3,294.0	90.7	-78.9	-91.3	0.00	0.00	0.00
3,400.0	6.00	319.00	3,393.4	98.6	-85.7	-99.2	0.00	0.00	0.00
3,500.0	6.00	319.00	3,492.9	106.5	-92.6	-107.2	0.00	0.00	0.00
3,600.0	6.00	319.00	3,592.3	114.4	-99.4	-115.1	0.00	0.00	0.00
3,700.0	6.00	319.00	3,691.8	122.3	-106.3	-123.1	0.00	0.00	0.00
3,800.0	6.00	319.00	3,791.2	130.2	-113.2	-131.0	0.00	0.00	0.00
3,900.0	6.00	319.00	3,890.7	138.1	-120.0	-138.9	0.00	0.00	0.00
4 000 0	0.00	040.00	0.000.4	440.0	400.0	440.0	0.00	0.00	0.00
4,000.0	6.00	319.00	3,990.1	146.0	-126.9	-146.9	0.00	0.00	0.00
4,100.0	6.00	319.00	4,089.6	153.8	-133.7	-154.8	0.00	0.00	0.00
4,200.0	6.00	319.00	4,189.0	161.7	-140.6	-162.7	0.00	0.00	0.00
4,300.0	6.00	319.00	4,288.5	169.6	-147.4	-170.7	0.00	0.00	0.00
4,400.0	6.00	319.00	4,387.9	177.5	-154.3	-178.6	0.00	0.00	0.00
4,500.0	6.00	319.00	4,487.4	185.4	-161.2	-186.6	0.00	0.00	0.00
4,600.0	6.00	319.00	4,586.9	193.3	-168.0	-194.5	0.00	0.00	0.00
4,700.0	6.00	319.00	4,686.3	201.2	-174.9	-202.4	0.00	0.00	0.00
4,800.0	6.00	319.00	4,785.8	209.1	-181.7	-210.4	0.00	0.00	0.00
4,900.0	6.00	319.00	4,785.0	217.0	-188.6	-218.3	0.00	0.00	0.00
5,000.0	6.00	319.00	4,984.7	224.8	-195.5	-226.2	0.00	0.00	0.00
5,100.0	6.00	319.00	5,084.1	232.7	-202.3	-234.2	0.00	0.00	0.00
5,200.0	6.00	319.00	5,183.6	240.6	-209.2	-242.1	0.00	0.00	0.00
5,300.0	6.00	319.00	5,283.0	248.5	-216.0	-250.1	0.00	0.00	0.00

Planning Report

Database: Company: EDM5000

Project: Site:

Ameredev Operating, LLC.

JUN/PIM JUN/PIM #1S

Well: Wellbore: Design:

Pimento 121H Wellbore #1

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Pimento 121H

KB @ 3018.0usft KB @ 3018.0usft

Grid Minimum Curvature

Measured	In a No 41	Antonocity	Vertical Depth	.N/ C	AE/ 104	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
Depth (usft)	Inclination (°)	Azimuth (°)	(usft)	+N/-S (usft)	+E/-W (usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
5,400.0	6.00	319.00	5,382.5	256.4	-222.9	-258.0	0.00	0.00	0.00
5,500.0	6.00	319.00	5,481.9	264.3	-229.7	-265.9	0.00	0.00	0.00
5,600.0	6.00	319.00	5,581.4	272.2	-236.6	-273.9	0.00	0.00	0.00
5,700.0	6.00	319.00	5,680.8	280.1	-243.5	-281.8	0.00	0.00	0.00
5,800.0	6.00	319.00	5,780.3	288.0	-250.3	-289.8	0.00	0.00	0.00
5,900.0	6.00	319.00	5,879.7	295.8	-257.2	-297.7	0.00	0.00	0.00
6,000.0	6.00	319.00	5,979.2	303.7	-264.0	-305.6	0.00	0.00	0.00
6,100.0	6.00	319.00	6,078.6	311.6	-270.9	-313.6	0.00	0.00	0.00
6,200.0	6.00	319.00	6,178.1	319.5	-277.7	-321.5	0.00	0.00	0.00
6,300.0	6.00	319.00	6,277.5	327.4	-284.6	-329.4	0.00	0.00	0.00
6,400.0	6.00	319.00	6,377.0	335.3	-291.5	-337.4	0.00	0.00	0.00
6,500.0	6.00	319.00	6,476.4	343.2	-298.3	-345.3	0.00	0.00	0.00
6,600.0	6.00	319.00	6,575.9	351.1	-305.2	-353.3	0.00	0.00	0.00
6,700.0	6.00	319.00	6,675.3	359.0	-312.0	-361.2	0.00	0.00	0.00
6,700.0	6.00	319.00	6,700.0	360.9	-312.0	-363.2	0.00	0.00	0.00
6,800.0	4.50	319.00	6,774.9	366.1	-318.2	-368.4	2.00	-2.00	0.00
6,900.0	2.50	319.00	6,874.7	370.7	-322.2	-373.0	2.00	-2.00	0.00
7,000.0	0.50	319.00	6,974.7	370.7 372.7	-324.0	-375.0 -375.0	2.00	-2.00	0.00
•	0.00	0.00	6,999.5	372.7 372.8	-324.0 -324.0	-375.0 -375.1	2.00	-2.00 -2.00	0.00
7,024.8			•	372.8	-324.0	-375.1 -375.1	0.00	0.00	0.00
7,100.0 7,200.0	0.00 0.00	0.00 0.00	7,074.7 7,174.7	372.8 372.8	-324.0	-375.1 -375.1	0.00	0.00	0.00
7,300.0	0.00	0.00	7,274.7	372.8	-324.0	-375.1	0.00	0.00	0.00
7,400.0	0.00	0.00	7,374.7	372.8	-324.0	-375.1	0.00	0.00	0.00
7,500.0	0.00	0.00	7,474.7	372.8	-324.0	-375.1	0.00	0.00	0.00
7,600.0 7,700.0	0.00 0.00	0.00 0.00	7,574.7 7,674.7	372.8 372.8	-324.0 -324.0	-375.1 -375.1	0.00 0.00	0.00 0.00	0.00 0.00
·									
7,800.0	0.00 0.00	0.00 0.00	7,774.7 7,874.7	372.8 372.8	-324.0 -324.0	-375.1 -375.1	0.00 0.00	0.00 0.00	0.00 0.00
7,900.0 8,000.0	0.00	0.00	7,974.7	372.8 372.8	-324.0	-375.1 -375.1	0.00	0.00	0.00
	0.00	0.00	8,074.7	372.8	-324.0	-375.1	0.00	0.00	0.00
8,100.0 8,200.0	0.00	0.00	8,174.7	372.8	-324.0 -324.0	-375.1 -375.1	0.00	0.00	0.00
·									
8,300.0	0.00	0.00	8,274.7	372.8	-324.0	-375.1	0.00	0.00	0.00
8,400.0	0.00	0.00	8,374.7	372.8	-324.0	-375.1	0.00	0.00	0.00
8,500.0	0.00	0.00	8,474.7	372.8	-324.0	-375.1	0.00	0.00	0.00
8,525.3 8,600.0	0.00 1.49	0.00 319.00	8,500.0 8,574.7	372.8 373.5	-324.0 -324.7	-375.1 -375.8	0.00 2.00	0.00 2.00	0.00 0.00
- ·									
8,700.0	3.49	319.00	8,674.6	376.8	-327.5	-379.1	2.00	2.00	0.00
8,800.0	5.49	319.00	8,774.2	382.7	-332.7	-385.1	2.00	2.00	0.00
8,825.3	6.00	319.00	8,799.5	384.6	-334.3	-387.0	2.00	2.00	0.00
8,900.0	6.00	319.00	8,873.7	390.5	-339.4	-392.9	0.00	0.00	0.00
9,000.0	6.00	319.00	8,973.2	398.4	-346.3	-400.9	0.00	0.00	0.00
9,100.0	6.00	319.00	9,072.6	406.3	-353.2	-408.8	0.00	0.00	0.00
9,200.0	6.00	319.00	9,172.1	414.2	-360.0	-416.7	0.00	0.00	0.00
9,300.0	6.00	319.00	9,271.5	422.0	-366.9	-424.7	0.00	0.00	0.00
9,400.0	6.00	319.00	9,371.0	429.9	-373.7	-432.6	0.00	0.00	0.00
9,500.0	6.00	319.00	9,470.4	437.8	-380.6	-440.6	0.00	0.00	0.00
9,600.0	6.00	319.00	9,569.9	445.7	-387.4	-448.5	0.00	0.00	0.00
9,700.0	6.00	319.00	9,669.3	453.6	-394.3	-456.4	0.00	0.00	0.00
9,800.0	6.00	319.00	9,768.8	461.5	-401.2	-464.4	0.00	0.00	0.00
9,900.0	6.00	319.00	9,868.2	469.4	-408.0	-472.3	0.00	0.00	0.00
10,000.0	6.00	319.00	9,967.7	477.3	-414.9	-480.2	0.00	0.00	0.00

10,100.0

10,200.0

10,300.0

6.00

6.00

6.00

319.00

319.00

319.00

485.2

493.0

-421.7

-428.6

-435.5

-488.2

-496.1

-504.1

0.00

0.00

0.00

0.00

0.00

10,067.1 10,166.6 10,266.0

0.00 0.00 0.00

Planning Report

Database: Company: EDM5000

Project: Site:

Ameredev Operating, LLC.

JUN/PIM JUN/PIM #1S

Design #1

Well: Wellbore: Design:

Pimento 121H Wellbore #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Pimento 121H KB @ 3018.0usft KB @ 3018.0usft

Grid

Minimum Curvature

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,400.0	6.00	319.00	10,365.5	508.8	-442.3	-512.0	0.00	0.00	0.00
10,500.0	6.00	319.00	10,464.9	516.7	-449.2	-519.9	0.00	0.00	0.00
10,600.0	6.00	319.00	10,564.4	524.6	-456.0	-527.9	0.00	0.00	0.00
10,700.0	6.00	319.00	10,663.8	532.5	-462.9	-535.8	0.00	0.00	0.00
10,800.0	6.00	319.00	10,763.3	540.4	-469.7	-543.8	0.00	0.00	0.00
10,900.0	6.00	319.00	10,862.8	548.3	-476.6	-551.7	0.00	0.00	0.00
11,000.0	6.00	319.00	10,962.2	556.2	-483.5	-559.6	0.00	0.00	0.00
11,100.0	6.00	319.00	11,061.7	564.0	-490.3	-567.6	0.00	0.00	0.00
11,138.6	6.00	319.00	11,100.0	567.1	-493.0	-570.6	0.00	0.00	0.00
11,200.0	4.77	319.00	11,161.2	571.4	-496.7	-575.0	2.00	-2.00	0.00
11,300.0	2.77	319.00	11,261.0	576.4	-501.1	-580.0	2.00	-2.00	0.00
11,400.0	0.77	319.00	11,360.9	578.7	-503.1	-582.3	2.00	-2.00	0.00
11,438.6	0.00	0.00	11,399.5	578.9	-503.3	-582.5	2.00	-2.00	0.00
11,500.0	0.00	0.00	11,460.9	578.9	-503.3	-582.5	0.00	0.00	0.00
11,509.1	0.00	0.00	11,470.0	578.9	-503.3	-582.5	0.00	0.00	0.00
Sec 34									
11,600.0	0.00	0.00	11,560.9	578.9	-503.3	-582.5	0.00	0.00	0.00
11,609.1	0.00	0.00	11,570.0	578.9	-503.3	-582.5	0.00	0.00	0.00
Pim121 KOP									
11,700.0	10.91	135.73	11,660.3	572.8	-497.2	-576.3	12.00	12.00	0.00
11,800.0	22.91	135.73	11,755.9	552.0	-477.0	-555.4	12.00	12.00	0.00
11,900.0	34.91	135.73	11,843.2	517.4	-443.3	-520.6	12.00	12.00	0.00
12,000.0	46.91	135.73	11,918.7	470.6	-397.7	-473.5	12.00	12.00	0.00
12,100.0	58.91	135.73	11,978.9	413.6	-342.1	-416.1	12.00	12.00	0.00
12,200.0	70.91	135.73	12,021.2	348.9	-279.0	-350.9	12.00	12.00	0.00
12,300.0	82.91	135.73	12,043.8	279.3	-211,1	-280.8	12.00	12.00	0.00
12,353.0	89.26	135.73	12,047.4	241.4	-174.2	-242.7	12.00	12.00	0.00
12,363.5	89.26	135.73	12,047.5	233.9	-166.9	-235.1	0.00	0.00	0.00
12,400.0	89.33	140.11	12,048.0	206.8	-142.4	-207.8	12.00	0.17	12.00
12,500.0	89.51	152.11	12,049.0	124.0	-86.8	-124.6	12.00	0.19	12.00
12,515.4	89.54	153.96	12,049.1	110.2	-79.8	-110.8	12.00	0.20	12.00
Pim121 FTP									
12,600.0	89.72	164.11	12,049.7	31.3	-49.6	-31.7	12.00	0.21	12.00
12,700.0	89.94	176.11	12,050.0	-67.0	-32.4	66.8	12.00	0.22	12.00
12,727.5	90.00	179.41	12,050.0	-94.5	-31.3	94.2	12.00	0.22	12.00
Pim121 FTP2	2								
12,800.0	90.00	179.41	12,050.0	-167.0	-30.6	166.7	0.00	0.00	0.00
12,900.0	90.00	179.41	12,050.0	-267.0	-29.6	266.7	0.00	0.00	0.00
13,000.0	90.00	179.41	12,050.0	-367.0	-28.5	366.7	0.00	0.00	0.00
13,100.0	90.00	179.41	12,050.0	-466.9	-27.5	466.7	0.00	0.00	0.00
13,200.0	90.00	179.41	12,050.0	-566.9	-26.4	566.7	0.00	0.00	0.00
13,300.0	90.00	179.41	12,050.0	-666.9	-25.4	666.7	0.00	0.00	0.00
	90.00	179.41	12,050.0	-766.9	-24.4	766,7	0.00	0.00	0.00

13,500.0

13,600.0

13,700.0

13,800.0

13,900.0

14,000.0

14,100.0

14,200.0

14,300.0

14,400.0

90.00

90.00

90.00

90.00

90.00

90.00

90.00

90.00

90.00

179.41

179.41

179.41

179.41

179.41

179.41

179.41

179.41

179.41

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

-866.9

-966.9

-1,066.9

-1,166.9

-1,266.9

-1,366.9

-1,466.9

-1,566.9

-1,666.9

-1,766.9

-23.3

-22.3

-21.3

-20.2

-19.2

-18.2

-17.1

-16.1

-15.0

-14.0

866.7

966.7

1,066.7

1,166.7

1,266.7

1,366.7

1,466.7

1,566.7

1,666.7

1,766.7

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Planning Report

Database: Company: EDM5000

Ameredev Operating, LLC.

Project: Site:

JUN/PIM

JUN/PIM #1S

Well: Wellbore: Design:

Pimento 121H Wellbore #1 Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Pimento 121H KB @ 3018.0usft KB @ 3018.0usft

Grid

Minimum Curvature

ŀ	Planned	Survey
	- railiien	Juitey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,500.0	90.00	179.41	12,050.0	-1,866.9	-13.0	1,866.7	0.00	0.00	0.00
14,600.0	90.00	179.41	12,050.0	-1,966.9	-11.9	1,966.7	0.00	0.00	0.00
14,700.0	90.00	179.41	12,050.0	-2,066.9	-10.9	2,066.7	0.00	0.00	0.00
14,800.0	90.00	179.41	12,050.0	-2,166.9	-9.9	2,166.7	0.00	0.00	0.00
14,900.0	90.00	179.41	12,050.0	-2,266.8	-8.8	2,266.7	0.00	0.00	0.00
15,000.0	90.00	179.41	12,050.0	-2,366.8	-7.8	2,366.7	0.00	0.00	0.00
15,044.6	90.00	179.41	12,050.0	-2,411.4	-7.3	2,411.3	0.00	0.00	0.00
Pimento Inf	to NMNM 136234								
15,100.0	90.00	179.41	12,050.0	-2,466.8	-6.8	2,466.7	0.00	0.00	0.00
15,200.0	90.00	179.41	12,050.0	-2,566.8	-5.7	2,566.7	0.00	0.00	0.00
15,300.0	90.00	179.41	12,050.0	-2,666.8	-4.7	2,666.7	0.00	0.00	0.00
15,400.0	90.00	179.41	12,050.0	-2,766.8	-3.7	2,766.7	0.00	0.00	0.00
15,500.0	90.00	179.41	12,050.0	-2,866.8	-2.6	2,866.7	0.00	0.00	0.00
15,600.0	90.00	179.41	12,050.0	-2,966.8	-1.6	2,966.7	0.00	0.00	0.00
·						•			
15,700.0	90.00	179.41	12,050.0	-3,066.8	-0.5	3,066.7	0.00	0.00	0.00
15,800.0	90.00	179.41	12,050.0	-3,166.8	0.5	3,166.7	0.00	0.00	0.00
15,900.0	90.00	179.41	12,050.0	-3,266.8	1.5	3,266.7	0.00	0.00	0.00
16,000.0 16,100.0	90.00 90.00	179.41 179.41	12,050.0 12,050.0	-3,366.8 -3,466.8	2.6 3.6	3,366.7 3,466.7	0.00 0.00	0.00 0.00	0.00 0.00
•									
16,200.0	90.00	179.41	12,050.0	-3,566.8	4.6	3,566.7	0.00	0.00	0.00
16,300.0	90.00	179.41	12,050.0	-3,666.8	5.7	3,666.7	0.00	0.00	0.00
16,400.0	90.00	179.41	12,050.0	-3,766.8	6.7	3,766.7	0.00	0.00	0.00
16,500.0	90.00	179.41	12,050.0	-3,866.8	7.7	3,866.7	0.00	0.00	0.00
16,600.0	90.00	179.41	12,050.0	-3,966.8	8.8	3,966.7	0.00	0.00	0.00
16,700.0	90.00	179.41	12,050.0	-4,066.8	9.8	4,066.7	0.00	0.00	0.00
16,800.0	90.00	179.41	12,050.0	-4,166.7	10.8	4,166.7	0.00	0.00	0.00
16,900.0	90.00	179.41	12,050.0	-4,266.7	11.9	4,266.7	0.00	0.00	0.00
17,000.0	90.00	179.41	12,050.0	-4,366.7	12.9	4,366.7	0.00	0.00	0.00
17,100.0	90.00	179.41	12,050.0	-4,466.7	14.0	4,466.7	0.00	0.00	0.00
17,200.0	90.00	179.41	12,050.0	-4,566.7	15.0	4,566.7	0.00	0.00	0.00
17,300.0	90.00	179.41	12,050.0	-4,666.7	16.0	4,666.7	0.00	0.00	0.00
17,400.0	90.00	179.41	12,050.0	-4,766.7	17.1	4,766.7	0.00	0.00	0.00
17,500.0	90.00	179.41	12,050.0	-4,866.7	18.1	4,866.7	0.00	0.00	0.00
17,600.0	90.00	179.41	12,050.0	-4,966.7	19.1	4,966.7	0.00	0.00	0.00
17,684.7	90.00	179.41	12,050.0	-5,051.4	20.0	5,051.4	0.00	0.00	0.00
Sec 03		4=4	10.555						
17,700.0	90.00	179.41	12,050.0	-5,066.7	20.2	5,066.7	0.00	0.00	0.00
17,800.0	90.00	179.41	12,050.0	-5,166.7	21.2	5,166.7 5,266.7	0.00	0.00	0.00
17,900.0 18,000.0	90.00 90.00	179.41 179.41	12,050.0 12,050.0	-5,266.7 -5,366.7	22.2 23.3	5,266.7 5,366.7	0.00 0.00	0.00 0.00	0.00 0.00
18,100.0	90.00	179.41	12,050.0	-5,466.7	24.3	5,466.7	0.00	0.00	0.00
18,200.0	90.00	179.41	12,050.0	-5,566.7	25.3	5,566.7	0.00	0.00	0.00
18,300.0	90.00	179.41	12,050.0	-5,666.7	26.4	5,666.7	0.00	0.00	0.00
18,400.0 18,500.0	90.00 90.00	179.41 179.41	12,050.0 12,050.0	-5,766.7 -5,866.7	27.4 28.5	5,766.7 5,866.7	0.00 0.00	0.00 0.00	0.00 0.00
18,600.0	90.00	179.41	12,050.0	-5,966.7	29.5	5,966.7	0.00	0.00	0.00
18,700.0	90.00	179.41	12,050.0	-6,066.6	30.5	6,066.7	0.00	0.00	0.00
18,800.0	90.00	179.41	12,050.0	-6,166.6	31.6	6,166.7	0.00	0.00	0.00
18,900.0	90.00	179.41	12,050.0	-6,266.6	32.6	6,266.7	0.00	0.00	0.00
19,000.0	90.00	179.41	12,050.0	-6,366.6	33.6	6,366.7	0.00	0.00	0.00
19,100.0	90.00	179.41	12,050.0	-6,466.6	34.7	6,466.7	0.00	0.00	0.00
19,200.0	90.00	179.41	12,050.0	-6,566.6	35.7	6,566.7	0.00	0.00	0.00
19,300.0	90.00	179.41	12,050.0	-6,666.6	36.7	6,666.7	0.00	0.00	0.00
19,400.0	90.00	179.41	12,050.0	-6,766.6	37.8	6,766.7	0.00	0.00	0.00

Planning Report

Database: Company: EDM5000

Ameredev Operating, LLC.

Project: Site:

JUN/PIM JUN/PIM #1S

Well: Wellbore: Pimento 121H Wellbore #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

KB @ 3018.0usft

North Reference: **Survey Calculation Method:**

Grid

Minimum Curvature

Well Pimento 121H

KB @ 3018.0usft

esign:	Design #1								······································
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
19,500.0	90.00	179.41	12,050.0	-6,866.6	38.8	6,866.7	0.00	0.00	0.00
19,600.0	90.00	179.41	12,050.0	-6,966.6	39.9	6.966.7	0.00	0.00	0.00
19,700.0	90.00	179.41	12,050.0	-7,066.6	40.9	7,066.7	0.00	0.00	0.00
19,800.0	90.00	179.41	12,050.0	-7,166.6	41.9	7,166.7	0.00	0.00	0.00
19,900.0	90.00	179.41	12,050.0	-7,266.6	43.0	7,266.7	0.00	0.00	0.00
20,000.0	90.00	179.41	12,050.0	-7,366.6	44.0	7,366.7	0.00	0.00	0.00
20,100.0	90.00	179.41	12,050.0	-7,466.6	45.0	7,466.7	0.00	0.00	0.00
20,200.0	90.00	179.41	12,050.0	-7,566.6	46.1	7,566.7	0.00	0.00	0.00
20,300.0	90.00	179.41	12,050.0	-7,666.6	47.1	7,666.7	0.00	0.00	0.00
20,400.0	90.00	179.41	12,050.0	-7,766.6	48.1	7,766.7	0.00	0.00	0.00
20,500.0	90.00	179.41	12,050.0	-7,866.5	49.2	7,866.7	0.00	0.00	0.00
20,600.0	90.00	179.41	12,050.0	-7,966.5	50.2	7,966.7	0.00	0.00	0.00
20,700.0	90.00	179.41	12,050.0	-8,066.5	51.2	8,066.7	0.00	0.00	0.00
20,800.0	90.00	179.41	12,050.0	-8,166.5	52.3	8,166.7	0.00	0.00	0.00
20,900.0	90.00	179.41	12,050.0	-8,266.5	53.3	8,266.7	0.00	0.00	0.00
21,000.0	90.00	179.41	12,050.0	-8,366.5	54.4	8,366.7	0.00	0.00	0.00
21,100.0	90.00	179.41	12,050.0	-8,466.5	55.4	8,466.7	0.00	0.00	0.00
21,200.0	90.00	179.41	12,050.0	-8,566.5	56.4	8,566.7	0.00	0.00	0.00
21,300.0	90.00	179.41	12,050.0	-8,666.5	57.5	8,666.7	0.00	0.00	0.00
21,400.0	90.00	179.41	12,050.0	-8,766.5	58.5	8,766.7	0.00	0.00	0.00
21,500.0	90.00	179.41	12,050.0	-8,866.5	59.5	8,866.7	0.00	0.00	0.00
21,600.0	90.00	179.41	12,050.0	-8,966.5	60.6	8,966.7	0.00	0.00	0.00
21,700.0	90.00	179.41	12,050.0	-9,066.5	61.6	9,066.7	0.00	0.00	0.00
21,800.0	90.00	179.41	12,050.0	-9,166.5	62.6	9,166.7	0.00	0.00	0.00
21,900.0	90.00	179.41	12,050.0	-9,266.5	63.7	9,266.7	0.00	0.00	0.00
22,000.0	90.00	179.41	12,050.0	-9,366.5	64.7	9,366.7	0.00	0.00	0.00
22,100.0	90.00	179.41	12,050.0	-9,466.5	65.7	9,466.7	0.00	0.00	0.00
22,200.0	90.00	179.41	12,050.0	-9,566.5	66.8	9,566.7	0.00	0.00	0.00
22,300.0	90.00	179.41	12,050.0	-9,666.5	67.8	9,666.7	0.00	0.00	0.00
22,400.0	90.00	179.41	12,050.0	-9,766.4	68.9	9,766.7	0.00	0.00	0.00
22,500.0	90.00	179.41	12,050.0	-9,866.4	69.9	9,866.7	0.00	0.00	0.00
22,600.0	90.00	179.41	12,050.0	-9,966.4	70.9	9,966.7	0.00	0.00	0.00
22,700.0	90.00	179.41	12,050.0	-10,066.4	72.0	10,066.7	0.00	0.00	0.00
22,800.0	90.00	179.41	12,050.0	-10,166.4	73.0	10,166.7	0.00	0.00	0.00
22,865.8	90.00	179.41	12,050.0	-10,232.2	73.7	10,232.4	0.00	0.00	0.00
Pim121 LTP									
22,900.0	90.00	179.41	12,050.0	-10,266.4	74.0	10,266.7	0.00	0.00	0.00
22,915.7	90.00	179.41	12,050.0	-10,282.2	74.2	10,282.4	0.00	0.00	0.00
Sec 10 - Pim	121 BHL								

Planning Report

Database: Company: EDM5000

Ameredev Operating, LLC.

Local Co-ordinate Reference: TVD Reference:

Well Pimento 121H

Project:

JUN/PIM

KB @ 3018.0usft KB @ 3018.0usft

Site:

JUN/PIM #1S

MD Reference: North Reference:

Grid

Well: Wellbore: Pimento 121H Wellbore #1

Survey Calculation Method:

Minimum Curvature

Design:	Design #1				<u> </u>		!	**************************************	
Design Targets					The second secon				
Target Name									
 hit/miss target 	Dip Angle	Dip Dir.	TVD	+N/-S	+E/-W	Northing	Easting		
- Shape	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
Sec 03	0.00	0.00	11,470.0	-5,053.5	-179.0	389,056.56	873,349.16	32° 3' 54.231 N	103° 15' 41.604 \
- plan misses target	center by 613	.2usft at 176	84.7usft MD	(12050.0 TVI	D, -5051.4 N, 2	20.0 E)			
- Polygon									
Point 1			11,470.0	0.0	. 0.0	389,056.56	873,349.16		
Point 2			11,470.0	5,281.2	-53.3	394,337.76	873,295.86		
Point 3			11,470.0	5,330.6	5,227.9	394,387.16	878,577.06		
Point 4			11,470.0	47.9	5,279.4	389,104.46	878,628.56		
Sec 10	0.00	0.00	11,470.0	-10,334.2	-125.0	383,775.85	873,403.15	32° 3' 1.975 N	103° 15' 41.586 \
 plan misses target Polygon 	center by 615	.5usft at 229	15.8usft MD	(12050.0 TVI	D, -10282.2 N,	74.2 E)			
Point 1			11,470.0	0.0	0.0	383,775.85	873,403.15		
Point 2			11,470.0	5,280.7	-54.0	389,056.55	873,349.15		
Point 3	•		11,470.0	5,328.6	5,225.4	389,104.45	878,628.55		
				•					
Point 4			11,470.0	49.3	5,280.9	383,825.15	878,684.05		
Sec 34	0.00	0.00	11,470.0	227.8	-232.4	394,337.79	873,295.83	32° 4' 46.491 N	103° 15' 41.614 V
 plan misses target 	center by 443	.5usft at 115	09.1usft MD	(11470.0 TVE), 578.9 N, -50	3.3 E)			
- Polygon									
Point 1			11,470.0	0.0	0.0	394,337.79	873,295.83		
Point 2			11,470.0	5,278.0	-53.8	399,615.79	873,242.03		
Point 3		1	11,470.0	5,326.9	5,230.6	399,664.69	878,526.43		
Point 4			11,470.0	49.4	5,281.3	394,387.19	878,577.13		•
Pim121 KOP	0.00	0.00	11,570.0	578.9	-503.3	394,688.96	873,024.93	32° 4' 49.993 N	103° 15' 44.722 V
plan hits target cerPoint	nter								
Pimento Into NMNM 136	0.00	0.00	11,720.0	-2,413.5	-205.1	391,696.55	873,323.08	32° 4' 20.355 N	103° 15' 41.602 V
- plan misses target	center by 384	.7usft at 150	44.6usft MD	(12050.0 TV), -2411.4 N, -	7.3 E)			
- Polygon			44 700 0	• •		004 000 55	070 000 00		
Point 1			11,720.0	0.0	0.0	391,696.55	873,323.08		
Point 2			11,720.0	50.2	5,279.9	391,746.75	878,602.98		
Pim121 FTP	0.00	0.00	12,050.0	129.7	-31.3	394,239.71	873,496.85	32° 4' 45.501 N	103° 15' 39.289 V
plan misses targetPoint	center by 52.2	2usft at 1251	5.4usft MD (12049.1 TVD,	, 110.2 N, -79.i	8 E)	:		
Pim121 LTP	0.00	0.00	12,050.0	-10,232.2	73.9	383,877.84	873,602.11	32° 3′ 2.965 N	103° 15' 39.263 V
plan misses targetPoint	center by 0.20	usft at 22865	.8usft MD (1	2050.0 TVD, -	-10232.2 N, 73	3.7 E)	•		
Pim121 BHL	0.00	0.01	12,050.0	-10,282.2	74.5	383,827.86	873,602.64	32° 3' 2.470 N	103° 15' 39.262 V
plan misses targetPoint	center by 0.30			2050.0 TVD, -	-10282.2 N, 74				
Pim121 FTP2	0.00	0.01	12,050.0	-94.5	-31.3	394,015.55	873,496.85	32° 4′ 43.283 N	103° 15' 39.315 \
 plan hits target cer Point 	nter								

JUN/PIM JUN/PIM #1S Pimento 121H Wellbore #1

Plan: Design #1

Lease Penetration Section Line Footages

14 January, 2019

Lease Penetration Section Line Footages

Company

Ameredev Operating, LLC.

Projects Sie

JUN/PIM JUN/PIM #1S

MeMe Malloones Desiens

Pimento 121H Wellbore #1

Design #1

Local Co-ordinate References

TVD References MD References

North References

Survey Calculation Methods

Databases

Well Pimento 121H

KB @ 3018,0usft KB @ 3018.0usft

Grid

Minimum Curvature

EDM5000

Project

Map Zone:

JUN/PIM

Map System: Geo Datum:

US State Plane 1983 North American Datum 1983

New Mexico Eastern Zone

System Datum:

Mean Sea Level

Sie

JUN/PIM #1S

Site Position: From:

Lat/Long

Northing:

394,110.55 usft 873,588.15 usft

Latitude:

Longitude:

32° 4' 44.214 N 103° 15' 38.243 W

Position Uncertainty:

0.0 usft

Easting: Slot Radius:

13-3/16 "

Grid Convergence:

0.57 °

Well Position

(Mall)

Pimento 121H

+N/-S +E/-W 0.0 usft

0.0 usft

Northing: Easting:

394,110.03 usft 873,528.19 usft

Latitude: Longitude:

32° 4' 44.215 N 103° 15' 38.940 W

0.0 usft usft **Position Uncertainty** Wellhead Elevation:

Ground Level:

2.991.0 usft

Wellbore	Wellbore #1

Model Name Magnetics

Sample Date

1/11/2019

Deellnetton (P)6.63 Dip Andle (P) 59.96 Field Strength (mm)

47,725,90533641

Design **Audit Notes:**

Version:

Design #1

Date 1/14/2019

IGRF2015

Phase:

PROTOTYPE

Tie On Depth:

Description

Varifical Sections

Dapili From (TVD) (USII) 0.0

-MAS (mail) 0.0

¢B/W (tosti) 0.0

Direction

0.0

(P)179.59

Survey Tool Program From

OT (i)em) (tieti)

0.0

Survey (Wellbord)

22,915.8 Design #1 (Wellbore #1)

Tool Name MWD

OWSG MWD - Standard

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site: JUN/PIM JUN/PIM #1S

Well: Wellbore: Design: Pimento 121H Wellbore #1

Velibore # Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference:

Database:

KB @ 3018.0usft KB @ 3018.0usft Grid

North Reference:

Survey Calculation Method:

Minimum Curvature

Well Pimento 121H

Plant	ed	Sur	vev

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
0.0	0.00	0.00	0.0	-230.5	230.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	-230.5	230.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	-230.5	230.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	-230.5	230.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	-230.5	230.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	-230.5	230.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	-230.5	230.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	-230.5	230.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	-230.5	230.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	-230.5	230.0	0.0	. 0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	-230.5	230.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	-230.5	230.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	-230.5	230.0	0.0	0.00	0.00	0.00
2,100.0	2.00	319.00	2,100.0	-229.2	228.9	-1.3	2.00	2.00	0.00
2,200.0	4.00	319.00	2,199.8	-225.3	225.5	-5.3	2.00	2.00	0.00
2,300.0	6.00	319.00	2,299.5	-218.7	219.7	-11.9	2.00	2.00	0.00
2,400.0	6.00	319.00	2,398.9	-210.8	212.9	-19.9	0.00	0.00	0.00
2,500.0	6.00	319.00	2,498.4	-202.9	206.0	-27.8	0.00	0.00	0.00
2,600.0	6.00	319,00	2,597.8	-195.0	199.2	-35.7	0.00	0.00	0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site:

JUN/PIM JUN/PIM #1S

Well: Wellbore: Design:

Pimento 121H Wellbore #1

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Database:

KB @ 3018,0usft KB @ 3018.0usft Grid

Well Pimento 121H

Survey Calculation Method:

Minimum Curvature

EDM5000

Planned Survey

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
2,700.0	6.00	319.00	2,697.3	-187.1	192.3	-43.7	0.00	0.00	0.00
2,800.0	6.00	319.00	2,796.7	-179.2	185.4	-51.6	0.00	0.00	0.00
2,900.0	6.00	319.00	2,896.2	-171.3	178.6	-59.5	0.00	0.00	0.00
3,000.0	6.00	319.00	2,995.6	-163.5	171.7	-67.5	0.00	0.00	0.00
3,100.0	6.00	319.00	3,095.1	-155.6	164.9	-75.4	0.00	0.00	0.00
3,200.0	6.00	319.00	3,194.5	-147.7	158.0	-83.4	0.00	0.00	0.00
3,300.0	6.00	319.00	3,294.0	-139.8	151.2	-91.3	0.00	0.00	0.00
3,400.0	6.00	319.00	3,393.4	-131.9	144.3	-99.2	0.00	0.00	0.00
3,500.0	6.00	319.00	3,492.9	-124.0	137.4	-107.2	0.00	0.00	0.00
3,600.0	6.00	319.00	3,592.3	-116,1	130.6	-115.1	0.00	0.00	0.00
3,700.0	6.00	319.00	3,691.8	-108.2	123.7	-123.1	0.00	0.00	0.00
3,800.0	6.00	319.00	3,791.2	-100.3	116.9	-131.0	0.00	0.00	0.00
3,900.0	6.00	319.00	3,890.7	-92.5	110.0	-138.9	0.00	0.00	0.00
4,000.0	6.00	319.00	3,990.1	-84.6	103.2	-146.9	0.00	0.00	0.00
4,100.0	6.00	319.00	4,089.6	-76.7	96.3	-154.8	0.00	0.00	0.00
4,200.0	6.00	319.00	4,189.0	-68.8	89.4	-162.7	0.00	0.00	0.00
4,300.0	6.00	319.00	4,288.5	-60.9	82.6	-170.7	0.00	0.00	0.00
4,400.0	6.00	319.00	4,387.9	-53.0	75.7	-178.6	0.00	0.00	0.00
4,500.0	6.00	319.00	4,487.4	-45.1	68.9	-186.6	0.00	0.00	0.00
4,600.0	6.00	319.00	4,586.9	-37.2	62.0	-194.5	0.00	0.00	0.00
4,700.0	6.00	319.00	4,686.3	-29.3	55.2	-202.4	0.00	0.00	0.00
4,800.0	6.00	319.00	4,785.8	-21.5	48.3	-210.4	0.00	0.00	0.00
4,900.0	6.00	319.00	4,885.2	-13.6	41.4	-218.3	0.00	0.00	0.00
5,000.0	6.00	319.00	4,984.7	-5.7	34.6	-226.2	0.00	0.00	0.00
5,100.0	6.00	319.00	5,084.1	2.2	27.7	-234.2	0.00	0.00	0.00
5,200.0	6.00	319.00	5,183.6	10.1	20.9	-242.1	0.00	0.00	0.00
5,300.0	6,00	319.00	5,283.0	18.0	14.0	-250.1	0.00	0.00	0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site:

JUN/PIM JUN/PIM #1S

Well: Wellbore: Pimento 121H Wellbore #1

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Well Pimento 121H

KB @ 3018,0usft KB @ 3018.0usft

Grid

Minimum Curvature

gn: Design #1					Database:		EDM5000		
ed Survey									
MD (usft)	Inc (°)	Azi (azlmuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
5,400.0	6.00	319.00	5,382.5	25.9	7.1	-258.0	0.00	0.00	0.00
5,500.0	6.00	319.00	5,481.9	33.8	0.3	-265.9	0.00	0.00	0.00
5,600.0	6.00	319.00	5,581.4	41.7	-6.6	-273.9	0.00	0.00	0.00
5,700.0	6.00	319.00	5,680.8	49.5	-13.4	-281.8	0.00	0.00	0.00
5,800.0	6.00	319.00	5,780.3	57.4	-20.3	-289.8	0.00	0.00	0.00
5,900.0	6.00	319.00	5,879.7	65.3	-27.1	-297.7	0.00	0.00	0.00
6,000.0	6.00	319.00	5,979.2	73.2	-34.0	-305.6	0.00	0.00	0.00
6,100.0	6.00	319.00	6,078.6	81.1	-40.9	-313.6	0.00	0.00	0.00
6,200.0	6.00	319.00	6,178.1	89.0	-47.7	-321.5	0.00	0.00	0.00
6,300.0	6.00	319.00	6,277.5	96.9	-54.6	-329.4	0.00	0.00	0.00
6,400.0	6.00	319.00	6,377.0	104.8	-61.4	-337.4	0.00	0.00	0.00
6,500.0	6.00	319.00	6,476.4	112.7	-68.3	-345.3	0.00	0.00	0.00
6,600.0	6.00	319.00	6,575.9	120.5	-75.1	-353.3	0.00	0.00	0.00
6,700.0	6.00	319.00	6,675.3	128.4	-82.0	-361.2	0.00	0.00	0.00
6,724.8	6.00	319.00	6,700.0	130.4	-83.7	-363.2	0.00	0.00	0.00
6,800.0	4.50	319.00	6,774.9	135.6	-88.2	-368.4	2.00	-2.00	0.00
6,900.0	2.50	319.00	6,874.7	140.2	-92.2	-373.0	2.00	-2.00	0.00
7,000.0	0.50	319.00	6,974.7	142.1	-93.9	-375.0	2.00	-2.00	0.00
7,024.8	0.00	0.00	6,999.5	142.2	-94.0	-375.1	2.00	-2.00	0.00
7,100.0	0.00	0.00	7,074.7	142.2	-94.0	-375.1	0.00	0.00	0.00
7,200.0	0.00	0.00	7,174.7	142.2	-94.0	-375.1	0.00	0.00	0.00
7,300.0	0.00	0.00	7,274.7	142.2	-94.0	-375.1	0.00	0.00	0.00
7,400.0	0.00	0.00	7,374.7	142.2	-94.0	-375.1	0.00	0.00	0.00
7,500.0	0.00	0.00	7,474.7	142.2	-94.0	-375.1	0.00	0.00	0.00
7,600.0	0.00	0.00	7,574.7	142.2	-94.0	-375.1	0.00	0.00	0.00
7,700.0	0.00	0.00	7,674.7	142.2	-94.0	-375.1	0.00	0.00	0.00
7,800.0	0.00	0.00	7,774.7	142.2	-94.0	-375.1	0.00	0.00	0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site: JUN/PIM JUN/PIM #1S

Well: Wellbore: Pimento 121H Wellbore #1

Velibore
Design:

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

Well Pimento 121H KB @ 3018.0usft KB @ 3018.0usft Grid

North Reference:

Survey Calculation Method:

Database:

Minimum Curvature

EDM5000

Planned Survey

-									
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
7,900.0	0.00	0.00	7,874.7	142.2	-94.0	-375.1	0.00	0.00	. 0.00
8,000.0	0.00	0.00	7,974.7	142.2	-94.0	-375.1	0.00	0.00	0.00
8,100.0	0.00	0.00	8,074.7	142.2	-94.0	-375.1	0.00	0.00	0.00
8,200.0	0.00	0.00	8,174.7	142.2	-94.0	-375.1	0.00	0.00	0.00
8,300.0	0.00	0.00	8,274.7	142.2	-94.0	-375.1	0.00	0.00	0.00
8,400.0	0.00	0.00	8,374.7	142.2	-94.0	-375.1	0.00	0.00	0.00
8,500.0	0.00	0.00	8,474.7	142.2	-94.0	-375.1	0.00	0.00	0.00
8,525.3	0.00	0.00	8,500.0	142.2	-94.0	-375.1	0.00	0.00	0.00
8,600.0	1.49	319.00	8,574.7	143.0	-94.6	-375.8	2.00	2.00	0.00
8,700.0	3.49	319.00	8,674.6	146.2	-97.5	-379.1	2.00	2.00	0.00
8,800.0	5.49	319.00	8,774.2	152.2	-102.6	-385.1	2.00	2.00	0.00
8,825.3	6.00	319.00	8,799.5	154.1	-104.3	-387.0	2.00	2.00	0.00
8,900.0	6.00	319.00	8,873.7	160.0	-109.4	-392.9	0.00	0.00	0.00
9,000.0	6.00	319.00	8,973.2	167.9	-116.3	-400.9	0.00	0.00	0.00
9,100.0	6.00	319.00	9,072.6	175.7	-123.1	-408.8	0.00	0.00	0.00
9,200.0	6.00	319.00	9,172.1	183.6	-130.0	-416.7	0.00	0.00	0.00
9,300.0	6.00	319.00	9,271.5	191.5	-136.8	-424.7	0.00	0.00	0.00
9,400.0	6.00	319.00	9,371.0	199.4	-143.7	-432.6	0.00	0.00	0.00
9,500.0	6.00	319.00	9,470.4	207.3	-150.6	-4 40.6	0.00	0.00	0.00
9,600.0	6.00	319.00	9,569.9	215.2	-157.4	-448.5	0.00	0.00	0.00
9,700.0	6.00	319.00	9,669.3	223.1	-164.3	-456.4	0.00	0.00	0.00
9,800.0	6.00	319.00	9,768.8	231.0	-171.1	-464.4	0.00	0.00	0.00
9,900.0	6.00	319.00	9,868.2	238.9	-178.0	-472.3	0.00	0.00	0.00
10,000.0	6.00	319.00	9,967.7	246.7	-184.8	-480.2	0.00	0.00	0.00
10,100.0	6.00	319.00	10,067.1	254.6	-191.7	-488.2	0.00	0.00	0.00
10,200.0	6.00	319.00	10,166.6	262.5	-198.6	-496.1	0.00	0.00	0.00
10,300.0	6:00	319.00	10,266.0	270.4	-205.4	-504.1	0.00	0.00	0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site: JUN/PIM JUN/PIM #1S

Well:

Pimento 121H Wellbore #1

Wellbore: Design:

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

KB @ 3018.0usft KB @ 3018.0usft Grid

North Reference:

Survey Calculation Method:

Database:

Minimum Curvature

Well Pimento 121H

ed Survey									
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
10,400.0	6.00	319.00	10,365.5	278.3	-212.3	-512.0	0.00	0.00	0.00
10,500.0	6.00	319.00	10,464.9	286.2	-219.1	-519.9	0.00	0.00	0.00
10,600.0	6.00	319.00	10,564.4	294.1	-226.0	-527.9	0.00	0.00	0.00
10,700.0	6.00	319.00	10,663.8	302.0	-232.9	-535.8	0.00	0.00	0.00
10,800.0	6.00	319.00	10,763.3	309.9	-239.7	-543.8	0.00	0.00	0.00
10,900.0	6.00	319.00	10,862.8	317.7	-246.6	-551.7	0,00	0.00	0.00
11,000.0	6.00	319.00	10,962.2	325.6	-253.4	-559.6	0.00	0.00	0.00
11,100.0	6.00	319.00	11,061.7	333.5	-260.3	-567.6	0.00	0.00	0.00
11,138.6	6.00	319.00	11,100.0	336.6	-262.9	-570.6	0.00	0.00	0.00
11,200.0	4.77	319.00	11,161.2	340.9	-266.7	-575.0	2.00	-2.00	0.00
11,300.0	2.77	319.00	11,261.0	345.9	-271.0	-580.0	2.00	-2.00	0.00
11,400.0	0.77	319.00	11,360.9	348.2	-273.1	-582.3	2.00	-2.00	0.00
11,438.6	0.00	0.00	11,399.5	348.4	-273.2	-582.5	2.00	-2.00	0.00
11,500.0	0.00	0.00	11,460.9	348.4	-273,2	-582,5	0.00	0.00	0.00
11,509.1	0.00	0.00	11,470.0	348.4	-273.2	-582.5	0.00	0.00	0.00
Sec 34									
11,600.0	0.00	0.00	11,560.9	348.4	-273.2	-582.5	0.00	0.00	0.00
11,609.1	0.00	0.00	11,570.0	348.4	-273.2	-582.5	0,00	0.00	0.00
Pim121 KOP									
11,700.0	10.91	135.73	11,660.3	342.2	-267.2	-576.3	12.00	12.00	0.00
11,800.0	22.91	135.73	11,755.9	321.4	-246.9	-555.4	12.00	12.00	0.00
11,900.0	34.91	135.73	11,843.2	286.9	-213.3	-520.6	12.00	12.00	0.00
12,000.0	46.91	135.73	11,918.7	240.1	-167.6	-473.5	12.00	12.00	0.00
12,100.0	58.91	135.73	11,978.9	183.1	-112.0	-416.1	12.00	12.00	0.00
12,200.0	70.91	135.73	12,021.2	118.3	-48.9	-350.9	12.00	12.00	0.00
12,300.0	82.91	135.73	12,043.8	48.7	18.9	-280.8	12.00	12.00	0.00
12,353.0	89.26	135.73	12,047.4	10.9	55.8	-242.7	12.00	12.00	0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project:

JUN/PIM

Site: Well: JUN/PIM #1S Pimento 121H

Wellbore:

Wellbore #1

Design:

Design #1

Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

erence:

Survey Calculation Method:

Database:

Well Pimento 121H

KB @ 3018.0usft KB @ 3018.0usft

Grid

Minimum Curvature

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
12,363.5	89.2	6 135.73	12,047.5	3.4	63.1	-235.1	0.00	0.00	0.00
12,400.0	. 89.3	140.11	12,048.0	-23.7	87.6	-207.8	12.00	0.17	12.00
12,500.0	89.5	51 152.11	12,049.0	-106.6	143.3	-124.6	12.00	0.19	12.00
12,515.4	89.5	153.96	12,049.1	-120.3	150.2	-110.8	12.00	0.20	12.00
Pim121 FTP									
12,600.0	89.7	⁷ 2 164.11	12,049.7	-199.2	180.5	-31.7	12.00	0.21	12.00
12,700.0	89.9	176.11	12,050.0	-297.5	197.6	66.8	12.00	0.22	12.00
12,727.5	90.0	00 179.41	12,050.0	-325.0	198.7	94.2	12.00	0,22	12.00
Plm121 FTP2					4				
12,800.0	90.0	•	12,050.0	-397.5	199.4	166.7	0.00	0.00	0.00
12,900.0	90.0	00 179.41	12,050.0	-497.5	200.5	266.7	0.00	0.00	0.00
13,000.0	90.0	00 179.41	12,050.0	-597.5	201.5	366.7	0.00	0.00	0.00
13,100.0	90.0	00 179.41	12,050.0	-697.5	202.6	466.7	0.00	0.00	0.00
13,200.0	90.0	00 179.41	12,050.0	-797.5	203.6	566.7	0.00	0.00	0.00
13,300.0	90.0	00 179.41	12,050.0	-897.5	204.6	666.7	0.00	0.00	0.00
13,400.0	90.0	00 .179,41	12,050.0	-997.5	205.7	766.7	0.00	0.00	0.00
13,500.0	90.0	00 179.41	12,050.0	-1,097.4	206.7	866.7	0.00	0.00	0.00
13,600.0	90.0	00 179.41	12,050.0	-1,197.4	207.7	966.7	0.00	0.00	0.00
13,700.0	90.0	00 179.41	12,050.0	-1,297.4	208.8	1,066.7	0.00	0.00	0.00
13,800.0	90.0	00 179.41	12,050.0	-1,397.4	209.8	1,166.7	0.00	0.00	0.00
13,900.0	90.0	00 179,41	12,050.0	-1,497.4	210.8	1,266.7	0.00	0.00	0.00
14,000.0	90.0	00 179.41	12,050.0	-1,597.4	211.9	1,366.7	0.00	0.00	0.00
14,100.0	90.0	00 179.41	12,050.0	-1,697.4	212.9	1,466.7	0.00	0.00	0.00
14,200.0	90.0	00 179.41	12,050.0	-1,797.4	213.9	1,566.7	0.00	0.00	0.00
14,300.0	90.0	00 179.41	12,050.0	-1,897.4	215.0	1,666.7	0.00	0.00	0.00
14,400.0	90.0	00 179.41	12,050.0	-1,997.4	216.0	1,766.7	0.00	0.00	0.00
14,500.0	90.0	00 179,41	12,050,0	-2,097.4	217,1	1,866.7	0.00	0.00	0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site:

JUN/PIM JUN/PIM #1S

Well: Wellbore: Pimento 121H Wellbore #1

Design:

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Pimento 121H

KB @ 3018.0usft KB @ 3018.0usft

Grid

Minimum Curvature

Planned Survey
MĐ

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
14,600.0	90.00	179.41	12,050.0	-2,197.4	218.1	1,966.7	0.00	0.00	0.00
14,700.0	90.00	179,41	12,050.0	-2,297.4	219.1	2,066.7	0.00	0.00	0.00
14,800.0	90.00	179.41	12,050.0	-2,397.4	220.2	2,166.7	0.00	0.00	0.00
14,900.0	90.00	179.41	12,050.0	-2,497.4	221.2	2,266.7	0.00	0.00	0.00
15,000.0	90.00	179.41	12,050.0	-2,597.4	222.2	2,366.7	0.00	0.00	0.00
15,044.6	90.00	179.41	12,050.0	-2,642.0	222.7	2,411.3	0.00	0.00	0.00
Pimento Into Ni	MNM 136234								
15,100.0	90.00	179.41	12,050.0	-2,697.4	223.3	2,466.7	0.00	0.00	0.00
15,200.0	90.00	179.41	12,050.0	-2,797.4	224.3	2,566.7	0.00	0.00	0.00
15,300.0	90.00	179.41	12,050.0	-2,897.4	225.3	2,666.7	0.00	0.00	0.00
15,400.0	90.00	179.41	12,050.0	-2,997.3	226.4	2,766.7	0.00	0.00	0.00
15,500.0	90.00	179.41	12,050.0	-3,097.3	227.4	2,866.7	0.00	0.00	0.00
15,600.0	90.00	179.41	12,050.0	-3,197.3	228.4	2,966.7	0.00	0.00	0.00
15,700.0	90.00	179.41	12,050.0	-3,297.3	229.5	3,066.7	0.00	0.00	0.00
15,800.0	90.00	179.41	12,050.0	-3,397.3	230.5	3,166.7	0.00	0.00	0.00
15,900.0	90.00	179.41	12,050.0	-3,497.3	231.6	3,266.7	0.00	0.00	0.00
16,000.0	90.00	179.41	12,050.0	-3,597.3	232.6	3,366.7	0.00	0.00	0.00
16,100.0	90.00	179,41	12,050.0	-3,697.3	233.6	3,466.7	0.00	0.00	0.00
16,200.0	90.00	179.41	12,050.0	-3,797.3	234.7	3,566.7	0.00	0.00	0.00
16,300.0	90.00	179.41	12,050.0	-3,897.3	235.7	3,666.7	0.00	0.00	0.00
16,400.0	90.00	179.41	12,050.0	-3,997.3	236.7	3,766.7	0.00	0.00	0.00
16,500.0	90.00	179.41	12,050.0	-4,097.3	237.8	3,866.7	0.00	0.00	0.00
16,600.0	90.00	179.41	12,050.0	-4,197.3	238.8	3,966.7	0.00	0.00	0.00
16,700.0	90.00	179.41	12,050.0	-4,297.3	239.8	4,066.7	0.00	0.00	0.00
16,800.0	90.00	179.41	12,050.0	-4,397.3	240.9	4,166.7	0.00	0.00	0.00
16,900.0	90.00	179.41	12,050.0	-4,497.3	241.9	4,266.7	0.00	0.00	0.00
17,000.0	90,00	179.41	12,050.0	-4,597.3	243.0	4,366.7	0.00	0.00	0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site:

JUN/PIM JUN/PIM #1S

Well: Wellbore: Design:

Pimento 121H Wellbore #1

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

Database:

North Reference:

KB @ 3018.0usft Grid

Well Pimento 121H

KB @ 3018.0usft

Survey Calculation Method: Minimum Curvature

EDM5000

Planned Survey

MD (usft)	Inc (°)	Azi (azimuth) (°)	CVT (tall)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
17,100.0	90.00	179.41	12,050.0	-4,697.3	244.0	4,466.7	0.00	0.00	0.00
17,200.0	90.00	179.41	12,050.0	-4,797.2	245.0	4,566.7	0.00	0.00	0.00
17,300.0	90.00	179.41	12,050.0	-4,897.2	246.1	4,666.7	0.00	0.00	0.00
17,400.0	90.00	179.41	12,050.0	-4,997.2	247.1	4,766.7	0.00	0.00	0.00
17,500.0	90.00	179.41	12,050.0	-5,097.2	248.1	4,866.7	0.00	0.00	0.00
17,600.0	90.00	179.41	12,050.0	-5,197.2	249.2	4,966.7	0.00	0.00	0.00
17,684.7	90.00	179.41	12,050.0	-5,281.9	250.0	5,051.4	0.00	0.00	0.00
Sec 03									
17,700.0	90.00	179.41	12,050.0	-5,297.2	250.2	5,066.7	0.00	0.00	0.00
17,800.0	90.00	179.41	12,050.0	-5,397.2	251.2	5,166.7	0.00	0.00	0.00
17,900.0	90.00	179.41	12,050.0	-5,497.2	252,3	5,266.7	0.00	0.00	0.00
18,000.0	90.00	179.41	12,050.0	-5,597.2	253.3	5,366.7	0.00	0.00	0.00
18,100.0	90.00	179.41	12,050.0	-5,697.2	254.3	5,466.7	0.00	0.00	0.00
18,200.0	90.00	179,41	12,050.0	-5,797.2	255.4	5,566.7	0.00	0.00	0.00
18,300.0	90.00	179.41	12,050.0	-5,897.2	256.4	5,666.7	0.00	0.00	0.00
18,400.0	90.00	179,41	12,050.0	-5,997.2	257.5	5,766.7	0.00	0.00	0.00
18,500.0	90.00	179.41	12,050.0	-6,097.2	258.5	5,866.7	0.00	0.00	0.00
18,600.0	90.00	179.41	12,050.0	-6,197.2	259.5	5,966.7	0.00	0.00	0.00
18,700.0	90.00	179.41	12,050.0	-6,297.2	260.6	6,066.7	0.00	0.00	0.00
18,800.0	90.00	179.41	12,050.0	-6,397.2	261.6	6,166.7	0.00	0.00	0.00
18,900.0	90.00	179.41	12,050.0	-6,497.2	262.6	6,266.7	0.00	0.00	0.00
19,000.0	90.00	179.41	12,050.0	-6,597.2	263.7	6,366.7	0.00	0.00	0.00
19,100.0	90.00	179.41	12,050.0	-6,697.1	264.7	6,466.7	0.00	0.00	0.00
19,200.0	90.00	179.41	12,050.0	-6,797.1	265.7	6,566.7	0.00	0.00	0.00
19,300.0	90.00	179.41	12,050.0	-6,897.1	266.8	6,666.7	0.00	0.00	0.00
19,400.0	90.00	179.41	12,050.0	-6,997.1	267.8	6,766.7	0.00	0.00	0.00
19,500.0	90.00	179.41	12,050.0	-7,097.1	268.8	6,866.7	0.00	0.00	0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site: JUN/PIM JUN/PIM #1S

Well: Wellbore: Design:

Pimento 121 Wellbore #1 Design #1

Pimento 121H

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Database:

Well Pimento 121H

KB @ 3018.0usft KB @ 3018.0usft

Grid

Minimum Curvature

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
19,600.0	90.00	179.41	12,050.0	-7,197.1	269.9	6,966.7	0.00	0.00	0.00
19,700.0	90.00	179.41	12,050.0	-7,297.1	270.9	7,066.7	0.00	0.00	0.00
19,800.0	90.00	179.41	12,050.0	-7,397.1	272.0	7,166.7	0.00	0.00	0.00
19,900.0	90.00	179.41	12,050.0	-7,497.1	273.0	7,266.7	0.00	0.00	0.00
20,000.0	90.00	179.41	12,050.0	-7,597.1	274.0	7,366.7	0.00	0.00	0.00
20,100.0	90.00	179.41	12,050.0	-7,697.1	275.1	7,466.7	0.00	0.00	0.00
20,200.0	90.00	179.41	12,050.0	-7,797.1	276.1	7,566.7	0.00	0.00	0.00
20,300.0	90.00	179.41	12,050.0	-7,897.1	277.1	7,666.7	0.00	0.00	0.00
20,400.0	90.00	179.41	12,050.0	-7,997.1	278.2	7,766.7	0.00	0.00	0.00
20,500.0	90.00	179.41	12,050.0	-8,097.1	279.2	7,866.7	0.00	0.00	0.00
20,600.0	90.00	179.41	12,050.0	-8,197.1	280.2	7,966.7	0.00	0.00	0.00
20,700.0	90.00	179.41	12,050.0	-8,297.1	281.3	8,066.7	0.00	0.00	0.00
20,800.0	90.00	179.41	12,050.0	-8,397.1	282.3	8,166.7	0.00	0.00	0.00
20,900.0	90.00	179.41	12,050.0	-8,497.1	283.4	8,266.7	0.00	0.00	0.00
21,000.0	90.00	179.41	12,050.0	-8,597.0	284.4	8,366.7	0.00	0.00	0.00
21,100.0	90.00	179.41	12,050.0	-8,697.0	285.4	8,466.7	0.00	0.00	0.00
21,200.0	90.00	179.41	12,050.0	-8,797.0	286.5	8,566.7	0.00	0.00	0.00
21,300.0	90.00	179.41	12,050.0	-8,897.0	287.5	8,666.7	0.00	0.00	0.00
21,400.0	90.00	179.41	12,050.0	-8,997.0	288.5	8,766.7	0.00	0.00	0.00
21,500.0	90.00	179.41	12,050.0	-9,097.0	289.6	8,866.7	0.00	0.00	0.00
21,600.0	90.00	179.41	12,050.0	-9,197.0	290.6	8,966.7	0.00	0.00	0.00
21,700.0	90.00	179.41	12,050.0	-9,297.0	291.6	9,066.7	0.00	0.00	0.00
21,800.0	90.00	179.41	12,050.0	-9,397.0	292.7	9,166.7	0.00	0.00	0.00
21,900.0	90.00	179.41	12,050.0	-9,497.0	293.7	9,266.7	0.00	0.00	0.00
22,000.0	90.00	179.41	12,050.0	-9,597.0	294.7	9,366.7	0.00	0.00	0.00
22,100.0	90.00	179.41	12,050.0	-9,697.0	295.8	9,466.7	0.00	0.00	0.00
22,200.0	90.00	179.41	12,050.0	-9,797,0	296.8	9,566.7	0.00	0.00	0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site:

JUN/PIM JUN/PIM #1S

Well:

Pimento 121H Wellbore #1

Wellbore: Design:

Design #1

Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Database:

Well Pimento 121H

KB @ 3018.0usft KB @ 3018.0usft

Grid

Minimum Curvature

EDM5000

Planned Survey

MD (usft)	lne (°)	Azi (azimuth) (°)	TVD (usft)	+F\$L/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
22,300.0	90.00	179.41	12,050.0	-9,897.0	297.9	9,666.7	0.00	0.00	0.00
22,400.0	90.00	179.41	12,050.0	-9,997.0	298.9	9,766.7	0.00	0.00	0.00
22,500.0	90.00	179.41	12,050.0	-10,097.0	299.9	9,866.7	0.00	0.00	0.00
22,600.0	90.00	179.41	12,050.0	-10,197.0	301.0	9,966.7	0.00	0.00	0.00
22,700.0	90.00	179.41	12,050.0	-10,297.0	302.0	10,066.7	0.00	0.00	0.00
22,800.0	90,00	179,41	12,050.0	-10,396.9	303.0	10,166.7	0.00	0.00	0.00
22,865.8	90.00	179.41	12,050.0	-10,462.7	303.7	10,232.5	0.00	0.00	0.00
Pim121 LTP									
22,900.0	90.00	179.41	12,050.0	-10,496.9	304.1	10,266.7	0.00	0.00	0.00
22,915.8	90.00	179.41	12,050.0	-10,512.7	304.2	10,282.4	0.00	0.00	0.00
Sec 10 - Pim121	BHL								

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o :: 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Open Hole	13-5/8	Drilling Fluid	Blind Rams	

All Drilling Components in 10M Environment will have OD that will allow full Operational RATED WORKING PRESSURE for system design. Kill line with minimum 2" ID will be available outside substructure with 10M Check Valve for OOH Kill Operations

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves
 Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves
 Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure
- *FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan

Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing
 Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M BSec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2
 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M
 Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure
 witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or
 .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the
 burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break
 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips
 and test same (Installation procedure witnessed and verified by a manufacturer's
 representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed
 and verified by a manufacturer's representative). Ameredev will test head to 70% casing design
 and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting
 completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a
 co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to
 API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications
 will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

QUALITY CONTROL	No.: QC-DB- 651 / 2013			
	Page: 1 / 44			
Hose No.:	Revision: 0			
66551, 66552, 66553, 66554	Date: 14. November 2013.			
	Prepared by: Seals Sandor			
·	Appr. by:			

CHOKE AND KILL HOSES

id.: 3" 69 MPa x 35 ft (10,67 m)

DATA BOOK

Purchaser: H&P STOCK

Purchaser Order No.:

ContiTech Rubber Order No.: 537587

ContiTech Oil & Marine Corp. Order No.:

4500370505

NOT DESIGNED FOR WELL TESTING

CONTITECH RUBBER Industrial Kft.

No.: QC- DB- 651 / 2013 Page: 2 / 44

CONTENT

		<u>Page</u>
1.	API QMS Certificate (No.: 0760)	3.
2.	American Petroleum Institute Certificate of Authority To Use the Official API Monogram (No.: 16C-0004)	4.
3.	Quality Control Inspection and Test Certificates (No.: 1905, 1906, 1907, 1908)	5-8 .
4.	Hose Data Sheet	9.
5.	Metal Parts	
5.1.	Raw Material Quality Certificates (No.: TR070687, EUR-265844, 86989/13-0)	10-13
5.2.	Hardness Test Reports (No.: 561/13, 562/13)	14-15.
5.3.	Ultrasonic Test Reports (No.: 513/13, 514/13, 515/13)	16-18
5.4.	NDT Examiner Certificate (Name: Tóth Ákos József)	19-20.
5.5.	Welding Procedure Specification (No.: 140-71)	21-24
5.6.	Welding Procedure Qualification Record (No.: BUD 0700002/1)	25-26
5.7.	Welder's Approval Test Certificate (No.: RK1825997.R1)	27-28
5.8 .	Welding Log Sheet (No.: 2013/2898)	29.
5.9.	Visual Examination Record (No.: 813/13)	30.
5.10.	NDT Examiner Certificate (Name: Kis Gábor Balázs)	31-32.
5.11.	Radiographic Test Certificates (No.: 2431/13, 2430/13)	33-34
5.12.	NDT Examiner Certificate (Name: Ménesi István)	35-36.
5.13.	MP Examination Record (No.: 1222/13)	37.
5.14.	NDT Examiner Certificate (Name: Oravecz Gábor)	38-39.
6.	Steel Cord	
6.1.	Inspection Certificate (No.: 4046181212)	40.
7.	Outside Stripwound Tube	
7.1.	Inspection Certificate (No.: 63892/2012)	41.
8.	Certificate of Calibration (Manameter Serial No.: 1518086.)	42-44

des jula

ContiTech Rubber Industrial Kft. Quality Control Dept. (1) CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

3/44

Certificate of Registration

APIQR REGISTRATION NUMBER 0760

This certifies that the quality management system of

CONTITECH RUBBER INDUSTRIAL LTD.
Budapesti ut 10
Szeged
Hungary

bas been assessed by the American Petroleum Institute Quality Registrar (APIQR*) and found it to be in conformance with the following standard:

ISO 9001:2008

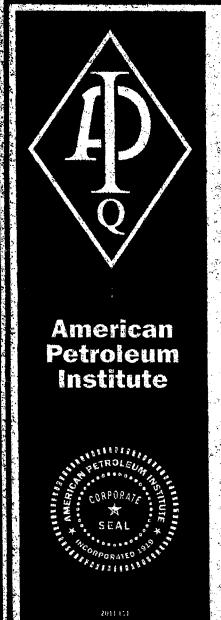
The scope of this registration and the approved quality management system applies to the Design and Manufacture of High Pressure Hoses

APIQK® approves the organization's justification for excluding:

No Exclusions Identified as Applicable

Effective Date: October 15, 2013 Expiration Date: October 15, 2016 Registered Since: October 15, 2007

W. Do Whittake
Munager of Operations, APIQR



This restillants is said for the period specified beerto. The registered organization must continuelly most all requirements of APA(B) is Registration. Programs and the experimences of the Registration Approximate the Registration of the Registration Approximates and the APA of the APA

ren; of APIQR, and must be returned upon request. To his confliction on to wast and performancialists

No:QC-DB-

Certificate of Authority to use the Official API Monogram License Number: 16C-0084

The American Petroleum Institute hereby grants to

CONTITECH RUBBER INDUSTRIAL LTD Budapesti ut 10 Szeged Hungary

the right to use the Official API Monogram on manufactured products under the conditions in the official publications of the American Petroleum Institute entitled API Spec Q1° and API Spec 16C and in accordance with the provisions of the License Agreement.

In all cases where the Official API Monogram is applied, the API Monogram should be used in conjunction with this certificate number:

16C-0004

The American Petroleum Institute reserves the right to sevoke this authorization to use the Official API Monogram for any reason satisfactory to the Soard of Directors of the American Petroleum Institute.

The scope of this license includes the following product: Flexible Charle and Kill Likes

QMS Exclusions: No Exclusions Identified as Applicable

Effective Date: OCTOBER 15, 2013 Expiration Date: OCTOBER 15, 2016

To verify the authenticity of this license, go to www.apl.org/compositelist.

American Petroleum Institute

Director of Global Industry Services

CONTITECH RUBBER Industrial Kft:

No:QC-DB- 651 /2013

Page:

5/44

QUALITY INSPECTION AND				ATE		CERT	Γ. N°:		1905	
PURCHASER: Cont	Tech	Oil & M	arine (Corp.		P.O. l	Nº:		4500370505	
CONTITECH RUBBER order Nº: 537	7587	HOSE	3"	ID		Ch	oke an	d Kill Hose		
HOSE SERIAL N°: 665	551	NOMIN	AL / AC	TUAL L	ENGTH:			10,67 n	n / 10,75 m	
W.P. 68,9 MPa 10000	psi	T.P.	103,4	MPa	1500	0 P	si Du	ıration;	60	min.
Pressure test with water at ambient temperature							<u> </u>			_
	,	Saa a4	h		1	`				
•	•	See att	acnm	ent. (ı page)				
			,		·					
										,
↑ 10 mm = 10 Min.										
→ 10 mm = 25 MPa						:				
COUPLINGS Type			Seria	l Nº			Quali	ty	Heat N°).
3" coupling with		808	34	808	33	-	AISI 4	130	24613	
4 1/16" 10K API Flange end				•	: '	A	AISI 4	130	034939)
NOT DESIGNED F	OR W	ELL T	ESTIN	IG				A	PI Spec 16 (C
							ě	Temp	erature rate	:"B"
All metal parts are flawless WE CERTIFY THAT THE ABOVE HOSE	HAS BE	EN MANU	JFACTUI	RED IN A	CCORDA	NCE V	VITH TI	IE TERMS	S OF THE ORDER	
INSPECTED AND PRESSURE TESTED										
STATEMENT OF CONFORMITY: We conditions and specifications of the abo accordance with the referenced standards	ve Purci	haser Ord	ler and t fications	hat these and meel	items/ed the relev	uipmei ant acc	nt were	fabricate	d inspected and te	sted in
			OI OI	T .						· · ·
13. November 2013.	ctor . •			Quali	y Contro	Co:	ndustr	h Rubher ial Kft. atrol Dep	1 \	-naane

Page: 1/1

	Contifect Rubber
15 us sa sc	Industrial Kft. Quality Control Dent
RD +20.65 40 St +1847 bar GN +19-68 40	20:28 20:29 20:49
RD +29.07 90 BL +1849 bd +	20 10 20 16 30 02
RD +20.09 9C BL +1051. bar Ch +20.01 9D	20:00 20:00 19:50
RD +20-17 °C RL +1053- 44+	19150 19150 19150
inu lung da an i : : :	19148
61 +1059- bar	19138
	19128
12-11-2013-19:10 66511-66551 19:10	
) 10 20 30 2	m 50 80 70 80 90 100
10	39698

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

6/44

	· · · · · · · · · · · · · · · · · · ·							<u> </u>	· · · · ·	
QUA INSPECTION	LITY CON AND TES			ATE		CERT.	Nº:	1906		
PURCHASER:	ContiTech	Oil & N	larine C	orp.		P.O. N):	4500370505		
CONTITECH RUBBER order N	CONTITECH RUBBER order N°: 537587 HOSE TYPE: 3" ID						Choke an	d Kill Hose		
HOSE SERIAL Nº:	66552	NOMINAL / ACTUAL LENGTH				10,67 m / 10,73 m				
W.P. 68,9 MPa 10	0000 psi	T.P.	103,4	MPa	1500)O psi	Duration:	60	min.	
Pressure test with water at ambient temperature										
	· · · · · · · · · · · · · · · · · · ·	See at	tachme	ent. ('	1 page	·)		e ^r		
							÷			
↑ 10 mm = 10 Min → 10 mm = 25 MPa										
COUPLINGS Typ	oe		Serial	N°		(Quality	Heat Nº		
3" coupling with	1	80	88	808	35	Al	Si 4130	24613		
4 1/16" 10K API Flan	ge end				İ	Al	SI 4130	034939		
NOT DESIGN	ED FOR W	ELL T	ESTIN	G			<u>, </u>	\Pi Spec 16 (3	
							Temp	erature rate:	"B"	
All metal parts are flawless WE CERTIFY THAT THE ABOVE	HOSE HAS BE	EN MAN	UFACTUR	ED IN A	CCORDA	NCE WI	TH THE TERMS	S OF THE ORDER		
INSPECTED AND PRESSURE T STATEMENT OF CONFORMITY conditions and specifications of accordance with the referenced s	ESTED AS ABO ': We hereby of the above Purcitandards, codes	ertify that haser On and spec	SATISFA t the above der and the	re items/ nat these	equipmer items/ed the relev	nt supplie quipment ant accep	d by us are in were fabricate	conformity with the	sted in	
Date: 13. November 2013.	Inspector			Quali	y Contro	Contill Indu	ech Rubher strial Kft. Control Dept.	Back Cyc	<u> </u>	

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013 Page: 7 / 44

INSPE	QUALITY CTION AND		CERT. I	4 °:	1907				
PURCHASER:	Cont	iTech Oil &	Marine	Согр.		P.O. N°:		450037050	5
CONTITECH RUBB	ER order Nº: 537	7587 HO	SE TYPE:	3"	ID		Choke and	Kill Hose	
HOSE SERIAL Nº:	: 665	553 NOI	MINAL / AC	CTUAL L	ENGTH:		10,67 m	/ 10,745 m	
W.P. 68,9	MPa 10000	psi T.P.	103,4	MPa	1500	O psi	Duration:	60	min.
		See	attachm	ent. (1 page)			
↑ 10 mm =	10 Min.								

COUPLINGS Type	Serial N°		Quality	Heat N°
3" coupling with	8089 8087		AISI 4130	23171 24613
4 1/16° 10K API Flange end			AISI 4130	034939

NOT DESIGNED FOR WELL TESTING

API Spec 16 C

Temperature rate:"B"

All metal parts are flawless

10 mm =

25

MPa

WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT.

STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.

COUNTRY OF ORIGIN HUNGARY/EU

Date:	Inspector	Quality Control
13. November 2013.	######################################	Contilet Britister Industrial Whit. Quality Control Ordinal See Supply See

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013 Page: 8 / 44

QUALITY CONTROL INSPECTION AND TEST CERTIFICATE

CERT. Nº:

1908

PURCHASER:

ContiTech Oil & Marine Corp.

HOSE TYPE:

P.O. Nº:

4500370505

CONTITECH RUBBER order Nº: 537587

3" ID Choke and Kill Hose

HOSE SERIAL Nº:

66554

NOMINAL / ACTUAL LENGTH:

10,67 m / 10,71 m

W.P. 68,9

MPa

psi 10000

T.P. 103.4 MPa

15000

Duration:

60

min.

Pressure test with water at ambient temperature

See attachment. (1 page)

10 mm =

10 Min.

10 mm =

25 MPa

COUPLINGS Type	Seri	ial Nº	Quality	Heat N°	
3" coupling with	8090 8086		AISI 4130	23171 24613	
4 1/16" 10K API Flange end			AISI 4130	034939	

NOT DESIGNED FOR WELL TESTING

API Spec 16 C

Temperature rate:"B"

All metal parts are flawless

WE CERTIFY THAT THE ABOVE HOSE HAS BEEN MANUFACTURED IN ACCORDANCE WITH THE TERMS OF THE ORDER INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT.

STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.

COUNTRY OF ORIGIN HUNGARY/EU

Date:

Inspector

Quality Control

13. November 2013.

Contifech Rubber Industrial Kft. dality Control De

ContTech Rubber Industriel Kft. Budapesti út 10., Szeged H-6728 P.O.Box 152 Szeged H-6701 Hungary

Phone: +36 62 566 737 Fex: +38 62 566 738 e-mail: Info@fluid.contitech.hu Internet: www.contitech-rubber.hu

The Court of Coongred County as Registry Court Registry Court No: HU 06-09-002502 EU VAT No: HU11087209 Benk date Commercial and Creditbank 10402805-28014250-00000000

Page: 1/1

						1 1			C	ontiTech R fadustrial plity Contro
di-	h.19.4	9 40 2 40	- +	· 20		++				(t)
20 B	19.9	2 9C		20						
ex RD	19.6	. bar	11127	the.		+++				-
	+19.8 +1858	. bat	1 1 1 1 1 1	10					. ; ; ;	
妕	+19-6 +19-8	2 → • • · · · · ·		' 199		1 1 1	' 			1
RO BL	191052) both	b i a	600	60	70	8	p 9	D 10	d
	112-5	2 °C 	1111	لجعا		+++	-			1
BL	+19.7 +1053	bar	1	250 250				1:		
200 E		<u> </u>	-	10		 		1 1		†
BL	+19.7 +1055		14	1 1 1 1						
	+19.8 +19.7	9 90 3 90	11 129	1 80 1 60		+	+++-			1
면접용무검	+1058	- bar	Į į į	2000						ļ
	113.9	e ec		8 20 20			- 			į
BL	+19.7	- bar	1 1	20 20				11 1.	1 1	
++		 		╫╫	+ + + + + + + + + + + + + + + + + + + +	7	111	 		1
ופ										ļ
12.	11 - 201	3. 14.0 53,6655		0			, ,			1
500	روو وعر	J39 6433		ĭ 🔛	;			\		
#		 			111					1
	┸	╎┝ ┼╂╂┼	#							
	<u> </u>		//	11:1		111				Ī

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	9 / 44

Hose Data Sheet

CRI Order No.	537587
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500370505
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVE
Type of coupling other end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVE
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL RESISTANT
Safety clamp	No
Lifting collar	No
Element C	. No
Safety chain	No
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

Printed: TIRETECH2\CsontosG - 2013.11.04 13:21:20

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

10 / 44

Body

Customer:

ContiTech Rubber Industrial Kft

Order Number:

32258500

Part Number: Our Ref:

4205160045 SO64201

11th February 2013

Certificate Number:

TR070687/(Rev. 18/06/2013)

Approved Signatories:

R M Greaves A Cocking J Jarvis A Pears S Selman

8083 - 8088

1451- 1466

42 0516 00 45

Description

CERTIFICATE OF CONFORMITY

Heat Treatment

AJSI4130/BLACK ROLLED BAR, HEAT TREATED & TESTED TO 197-238 BHN, 655MPA MIN TENSILE, 517MPA MIN YIELD, 18% MIN ELONGATION, CHARPY IMPACT TESTING 27J MIN @ -30C (OR COLDER) LATERAL EXPANSION 0.38 MIN. ROLLING REDUCTION 3:1 MIN, NI 1% MAX & CE 0.62 MAX, TESTS MAY BE TAKEN FROM A 4" SQR QTC AS PER API BA/PSL 3 QTC SIZE. MECHANICAL TEST SPECIMEN TO ASTM A370 NACE MR0175/ISO15156 APPLIES

APPROX 20 TONNES 210 MM DIA

TEMPERED AT 670°C FOR 10 HOURS (AIR COOL) WATER TEMPERATURE BEFORE QUENCH, 28°C, AFTER, 35°C. TEMP. MEASUREMENT, FURNACE ATMOSPHERE THERMOCOUPLE COMPONENT HARDNESS E10 - 211 HBW10/3000

HARDENED FROM 860°C FOR 5:30 HOURS (WATER QUENCH)

TEST COUPON - 4" SQ X 8" LONG, TESTED AT 1/4 T LOCATION

REDUCTION RATIO - 6,2 REDUCTION RATIO & HT APPLY TO BOTH JOB & TEST PIECE FURNACE CALIBRATION: APISA 20th ed, annex M

C/E = 0.693

CERTS TO EN10204 3.1

					CAST	24613)		_		
C	Si	Mn	S	P	N	er	Mo	Al	Cu	Sn .	Nb
0.3200	0.2590	0.5680	0.0090	0.0100	0.1660	1.0560	0.2350	0.0200	0.1420	0.0070	0.0010
V	Ta	TI	Nb+Ta	Co	N	В	W	Ce	Fe	As	Sb
0.0010		0.0010			0.0079	0.0001					
Pb	Ca	H (ppm)	CEV								
		1.20	0.69	ļ	1	ŀ	1				

TEST SPECIFICATION 517 N/mm2 MIN YIELD Rp 0.2 Temperature impact Temp. Hardness Rm 517.000 RT

				TEST R	ESULTS			Charpy
Test Number	Dir./Temp.	Re	Rp	Rm	A %_	Z %	Joules	Direction
ST22561N	20.0°C		524.000	698.000	G/L 50.00mm 27.60	67.70	KCV -46°C 60 50 78	LONG HERMINGON
Specimen Ø 12.500mm	п						KCV 50 50 46	LONG
							N. Chart Curless	

0.840 0.740 1.020 LONG

62.0% 52.0% 80.0%

For and on Behalf of TM Steels Ltd.

A locking

Contilech Rubber industrial Kit. CERTIFICATE ACCEPTABLE ساسط OC INSPECTOR DATE: /4- 06- 2

TM Stees Ltd

Fouwood Way

Forwood Road

Chesterfaid 841 9RA

Steel for the Oil and Engineering Industries

Machining and Boring Facilities

Tei •44 (0)1248 268312

Soles Fax +44 (0)1246 258313

Production Fex. +44 (0)1248 269841

Ornati: solos@imsteels.co.ul Co Reg No: 3523526 Vat No: GB 706 2814 57

H)	36
C	ROL	
HOHOU	AFTRI CHAN	MSEMERY

Carbrook Street Sheffleld S9 2JN

Telephone: +44 114 244 6711 Facsimile: +44 114 244 7469

Names of Approved Signatories: S.Maxted G.Smith S.Suter P.Rogers M.Brown This report is not to be reproduced without written approved.

Body

Test Certificate

Customer Order Test Number 32252193 - 01 402483 Number TO:
CONTITECH RUBBER INDUSTRIAL KFT
H-6728,
SZEGED,
BUDAPESTI UT 10, K-/S62 - K-/S75
HUNGARY,
HUNGARY
42-0516-0045 Customer Order Date Part Number 27Feb12 4205160045 Sales Order Number Cast Number EUR-352087-1 (23171) Report Date 25Sep12 Cert Number EUR-265844 420516 0045 14 Pos 17402 Kgs 210 mm Dia Quantity Description AISI 4130 75KSI .2% PS API QTC Steel Type **ALLOY 4130**

lesulis q	uo	ted anly	refer	to th	e items	teste	d																									
Material	S	ecificati	חכ	A	ISH13 0	7																,										
Heat Tre	æt	ment Sp	BC	11	97-237	BHN				-	-	Τ	Test	Spec 5	17N/MR	(ZMIN.Y	۵					Te	st Sp	90								
Melt Pre	ci	CO .		E	₹NO				Produc	tion Metho	oď	FC	ORGE	5																		
He	ud	Treatme	nt	Т	Temp((C)	· S	oak		Coc	ilant		Chan	je Ref.	Init	Max(C	Ba	toh	Temp	ecorded	using		CONT	ACT	THER	мосо	UPLE				
HARDE	N			8	60		3 HRS			WATER C	UENC	1 S	HF-15	8284	20	30	7	9120	91308	Nature	of T/P			Separate								
TEMPE	Ř			6	50		4 HRS			TABLE C	OOL	8	3HF-15	8284			1	0120	91319	Oto st	ze 4ln	ch SC	X Gin	ch LON	IG							
				Т		\neg						7			1		7							T	Req.	MIn/M	lax	\top		Achieve	d	
												T					T			Hardn	1983 ON T	TP		197		237	HBM	7	229	229		HBW
				T								7					T			Herdn	1958 ON A	Aaterla	ď	197		237	HBW	v	218	235		HBW
Tensilo -																	lπ	paole	} -													
L	00	ellon			Direction	on	Pi	0.2	0%	F	<u>ju</u>			4%		2%			Location		Dii	rection			CV	N		Let	Exp. (mn	<u>, </u>	% S	1025
	1/	/4T		D	BITU	JINAL.	5	17 M	lin .	655	to 600		18 M	lin (4d)		0 Min			1/4T		LONG	ITUDI	NAL	2	7 Min	Ave		0.0	380 Min		0	,
Results	/ /	Vmm2)						580	,	7	185	T	25 (5	0.0mm)	64.6	(12.561	ım) F	ìesult	a (Joules,)	-30 C	entigr	ade	1	06 10	4 102		1.44	1.42 1.4		40 4	9 40
							1																									
Results	_									1								?esult	8		<u>l</u>											
Corrosia	on			Т																				-								
Pitting F	Re	sistance		\neg			Ferrite	,									M	lcrost	ructure				Τ,			-						
Carbon	E	ulvalen		7						871					Gre	in Size	M	ln		6	Mex	7	•	6								
C	Ţ	SI	Mn	丁	P	8	a	7	Mo	NI	Cu	Т	$\neg \tau$			1	T					\top			T			T	\top	$\neg \neg$		
0.2940	T	0.2920	0.597	v	0.0110	0.00	50 1.00	20	0.2290	0.1860	0.2430	Π.					1					\top			\top							
Certs to NACE N FE = BA REDUC	MFI AL	1-01-75			1.1		•			,- , 		•	In C A	dTech R dustrial ERTIFIC CCEPTA	Kit. ATE BLE		•					Hard	ness l		netral				Oth Editional Control of the Control			al test

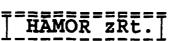
Page 1 of 1

Third party inspection :

CONTITECH RUBBER Industrial Kft.

Page:

No:QC-DB-


/2013

CONTITECH RUBBER I Industrial Kft.

No:QC-DB- 651 /2013

Page:

12 / 44

Flange

2083-8030 FORGING, MACHINING, HEAT-TREATING

1386 4205140284

ÉMI - TÜV ISO9001

Phone: 36/46/401-033 Fax: 36/46/379-199 H-3531 Miskolc, Kiss Ernő u. 17.

INSPECTION CERTIFICATE

ACCEPTANCE ACCORDING EN 10204-05/3.1 | Certificate No.: (86989/13-0

Date of issue: 2013.03.27 | Hámor No.: 98-39B5263 | Order No.: 32259784/13/2

Customer: Contitech Rubber Industrial Kft.

6728 Szeged Budapesti út 10

nomination of product: Forged, machined disc

Quality: AISI 4130/CONTI Spec.No.: API 6A PSL3 \$15/151 × 182

Dimension: MSO-100597-002/A/H mm

Final dim.: MSO-100597-002/A(4 1/16") Heat-treatment: Quenched & tempered

Quantity: 30 pcs | Weight: 73.0 kg/pc | Total weight: 2190.00 kg

Chemical analysis %

Heat No.: (034939)

Steelmaker: CELSA Hutaostrowiec POLA

	Spec.		MN	SI	P	S	CR	MO	v	Ce
Test		Į								
No.	Min. Max.	0.45	1.80	1.00	0.025	0.025	2.75	1.500	0.300	0.82
1	Pecult	10 20	10 56	10 20	10 006	10 003	مه ما	10 170	0.003	ln 621

|Result|0.28|0.56|0.20|0.006|0.003|0.99|0.170|0.003|0.62|

Mechanical properties:

Test No.	Spec. value Min. Max.	НВ 197 238	Rp0.2 MPa 517	Rm MPa 655	A5 % 18	KV-J -30°C 27
L13314	Result Result	235 238	525	662	19.50	35 52 82

ContiTech Rubber Industrial Kft. CERTIFICATE ACCEPTABLE

Test bar from product.

Dimensional and visual control: passed

Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory

Steel making (melting) process: UHP-ASEA vacuum-treated. NACE MR 0175/ISO 15156+API 17K + API 6A PSL3.

HB-E10, Mechanika: ASTM A370 acc.

Grade Of forging: 9.81

30 pc/series.

Executive namor zki linőség ellenőrzé Osztály

Expert

C/c

HÁMOR zRt. FIALKA FEDE O CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 13 / 44

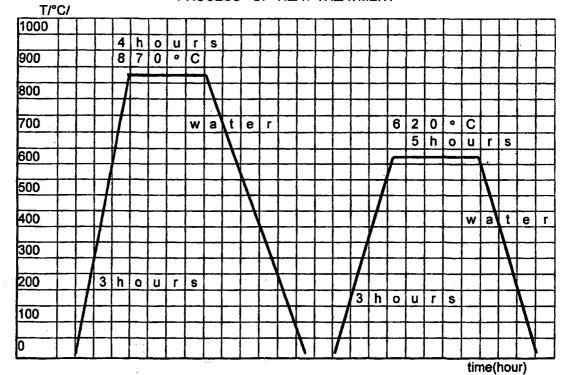
MISKOLC Kiss Emô u. 17. sz. H-3531

tel:36/46/401-033

fax:36/46/379-199

e-mail: hamor@t-online,hu

PROTOCOL NUMMER: 98-39B5263


HEAT-TREAT	MENT PROTOC	OL
BUYER: CONTITECH RÜBBER INDUSTRIAL Kft. Szeged Budapesti út 10. sz.		o. of Buyer: 9784/13/2
Dudapesti ut 10. 52.	Work No. of Buyer:	
PRODUCT:	QUANTITY: PIECE	No. of drawing:
forged	30	MSO-100597-002/A/H
MATERIAL QUALITY: AISI 4130 CONTI API 6A PSL3	Charge No.: 34939	Test No.:

HEAT-TREATMENT: quenching and tempering

Typ of furnace: electric furnace

Hardening medium: water

PROCESS OF HEAT-TREATMENT

Miskolc, Hámor ZRt. 2013-03-26.

head of heat-treatment

Hámor zRt. Jinőség ellenőrzés Osztály CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

14/44

Felado :

61344

gamma controll kft

19/10/13 12:54

HARDNESS TEST **REPORT**

Report No: 561/13.

CLIENT:

JE-ZO KFT. SZEGED, KÜLTERÜLET, 01408/22.

TEST EQUIPMENT;

TH 160-D Hardness tester

PROCEDURE:

QCP-45-R1

DESCRIPTION OF COUPLING: coupling(s) after PWHT

DRAWING NUMBER:

MT-3121-3000

SERIAL NUMBER:

8083; 8084; 8085; 8086

BRINELL HARDNESS REQUIREMENT	SERIAL NO OF COUPLING	PART OF THE COUPLING	ACTUAL HARDNESS RESULT (HB)
Min HB 197 Max HB 238	√ 8083	body weld flange connection face	224 222 236 238
	√ 8084	body weld flange connection face	213 208 220 238
	J 8085	body weld flange connection face	214 214 219 222
: .	√8086	body weld flange connection face	232 237 238 197
			.

The coupling(s) conform to API Spec 6A requirements.

DATE:

PREPARED:

APPROXECONTROLL KFT.
6750 Algyo, Kulterulet 0182474, turz

2013. október 30.

Ménesi István

QCP-03 HB/11

CONTITECH RUBBER Industrial Kft.

No:QC-DB-651/2013

Page:

15 / 44

Felado :

61344

gamma controll kft

19/18/13 12:54

HARDNESS TEST REPORT

Report No: 562/13.

CLIENT:

JE-ZO KFT. SZEGED, KÜLTERÜLET, 01408/22.

TEST EQUIPMENT:

TH 160-D Hardness tester

PROCEDURE:

QCP-45-R1

DESCRIPTION OF COUPLING: coupling(s) after PWHT

DRAWING NUMBER:

MT-3121-3000

SERIAL NUMBER:

8087; 8088; 8089; 8090

Brinell Hardness Requirement	SERIAL NO OF COUPLING	PART OF THE COUPLING	ACTUAL HARDNESS RESULT (HB)
	✓ 8087	body weld	213 216
Min HB 197 Max HB 238		flange connection face	220 225
	✓ 8088	body weld	229 212
:		flange connection face	223 213
;		body	219
	√ 8089	weld flange	229 231
		connection face	238
	8090	body weld	207
	V 8080	flange	210 226
		connection face	234
	1		
·		}	

The coupling(s) conform to API Spec 6A requirements.

DATE:

PREPARED:

2013. október 30.

Ménesi István

APPROXEDEONTROLL KFT.

6750 Algoo, Kulterulet OHER/14. hrsz.

Addissens Trosoft P. Od.

Www.gamma/control I for

Varyes Millions

QCP-03 HB/11

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

16 / 44

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

Vizsgálati szám: Report No.:

513/13

ULTRASONIC EXAMINATION REPORT

Vizsgálat tár	gya / Obje	ct of te	st	*	Coupl	ling (Body)		
Gyártó Manufacturer				Megrendelő Customer JE-ZO Kft. Szeged				
Gyáriszám				Rendelési azám				
Serial-No.				Order-No.				
Azonosító jel 8083-8088				Követelmény Requirement		ASTM A388		
Geometriai kialakítás / Rajzszám				Vizsgálati hőkezel	93	előtt		
Geometric configuration	n / Drawing-No.			Test heat treatmer	ıt	prior		
MT-3121-3000		øz	00xø70x491	1 -4	-1.	 		
Material	yagminőség Iterial		30 /	Letapogatási irányok Direction of scanning		axiális és radiális		
Adagszám Heat-No.		24613	/					
Vizsgálati felület állapota Surface condition		forgácsolt machined		Vizsgålati terjedele Exted of Test	em .	100%		
Vizsgált darabszám Festing pieces 6 db								
	Viz	sgálati	adatok / I	Examination	data			
Készülék típusa				Készülék gyári szá		7875f		
Type of US-equipment		OFD 0		Serial-No. Of US-e	quipment	0.141		
Vizsgálófej(ek) Searc unit(s)		SEB-2, SEB4H		Frekvencia(k) Frequency(ies)	•	2 MHz 4 MHz		
searc uniqs/		SEDTI		r requency(les)		MHz		
		•	•	1		MHz		
Kalibrációs blokk			ET4 ET0	Erősítés(ek)	axiálisan	18 dB		
Calibration standard ide	entfication	ET1,ET2		Gain		dB		
				·		dB		
	·				radiálisan	6 dB		
Csatoló közeg		olaj		Hanggyengülés				
Couplant Értékelés / észi		oil	4.0	Attenuation				
	ert Aljeisese.			dable marcacio				
Ertékelés Evaluation	Х	megfel satisfa		nem	megfelelő	/ not acceptable		
Megjegyzés(ek) Remark(s)								
Hely / keit Place / date Gamma-Controll Kft. Algyö, 2013.10.17			Vizsgálatot végezte G750 Algyá Vizsgálatot végezte www. Tested by		Adosza	gam: 71094614-2-00 gam: 71094614-2-00 : 06-30-218-2540 Approved by		
			Tóth Ákos UT20103090307		Benkő Péter - Felelős vezetőh.			

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013 Page:

17 / 44

WWW.garmna-controllinu 8750 Algyő, küllerüsel (†1884/14. hrsz. Tel /Fax.: +38 92/517-400 / 81344 A NAT 4bal MAT-1-11972010 ezkacan aktrasikkil vizagálób

ULTRAHANG VIZSGÁLATI **JEGYZŐKÖNYV**

Vizsgélati szám: Report No.:

ULTRASONIC EXAMINATION REPORT

514/13

Vizsgálat tárgy	a / Objec	ct of tes	st			Coup	ing (Boo	4))	
Gyártó				Megrendelő IF-70 K# Szogad					
Manufacturer				Customer					
Gyáriszám				Rendelési szám					
Serial-No.				Order-No.					
Azonositó jel 80 80 80 80 80 80 80 80 80 80 80 80 80		Követelmér Requiremer	· ART			1388			
Geometrial klalakítás / Raja	Vizsgálati hőkezelés			6	lőtt				
Geometric configuration / Drawing-No.				Test heat treatment			prior		
MT-3121-3000		ø20	0xø70x491	1			·		
Anyagminőség	•	A101 44	20 4	Letapogatás	Letapogatási irányok		axiális és radiális		
Material		AISI 41	30 /	Direction of	Direction of scanning				
Adagszám		00474							
Heat-No.		23171		3					
Vizsgálati felület állapota		forgácsolt		Vizsgálati terjedelem			4000/		
Surface condition		machined		Exted of Te	Exted of Test		100%		
Vizsgált darabszám									
Testing pieces		2 db		1					
	Viz	sgálati	adatok / l	Examinat	ion da	ta			
Készülék típusa									
Type of US-equipment		USM25	_		Készülék gyári száma Serial-No. Of US-equipment 7875f				
Vizsgálófei(ek)	 	SEB-2.							
Searc unit(s)		SEB4H			•			2 MHz	
Searc unit(s)	-	SEDAN		Frequency(ies)			4 MHz		
			*					MHz	
Kalibrációs blokk				Erősítés(ek)		iálisan		MHz	
Calibration standard identific	ation	1	ET1,ET2	Gain	н н	iansan		18 dB dB	
	ABUUII			Gain				dB	
						حمدالكاله			
0-1-16 1-1	 	-1-1		Name of the last		diálisan		6 dB	
Csatoló közeg	-	olaj		Hanggyengülés Attenuation dB/m					
Couplant Értékelés / észlelt		oil	41 /						
	wilerscaes			dable indi				· · · · · · · · · · · · · · · · · · ·	
Értékelés	X	megfele			nem me	egfelelő	/ not acc	eptable	
Evaluation		satisfac	tory	1		-9	,	-1-44-10	
Vlegjegyzés(ek)									
Remark(s)									
lely / kelt		 -				CAMA	A - CONTR	OLL KFI.	
Place / date			1 1) 11. 01		1	GAMMA - CONTROLL KF I. 5750 Alsvo Material 1889/14. hrsz.			
Gamma-Controll Kft.			1006-111			5750 Alawa Katerole 8188/14. hrsz.			
• • • • • • • • • • • • • • • • • • •			Viscophiatet viscopto			MUNICIPAL CAMPUS AND			
Algyő, 2013.10.17			Vizsgálatot végezte			Tel-10/81/89/198-2640			
			Tested by Toth Akos UT20103090307			Approved by Benkő Péter - Felelős vezetőh.			
		j	Toth Akos I	JT2010309030	7 1	Renkő F	Páter - Felelñe	vezetőh	

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

18 / 44

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

Vizagálati szám: Report No.:

ULTRASONIC EXAMINATION REPORT 515/13

Vizsgálat tár	gya / Objec	t of test	Flange			
Gyártó		·	Megrendelò IE 70 Kfs Comment			
Manufacturer	···	· · · · · · · · · · · · · · · · · · ·	Customer JE-ZO Kft. Szeged			
Gydriszem			Rendalési szám	•		
Senal-No.	· · · · · · · · · · · · · · · · · · ·		Order-No.			
Azonositó (el Identification	8083-8090		Követelmány	ASTM A	ASTM A388	
Geometriai klelakitás /			Requirement	160		
Geometric configuration	•		Vizsgálati hékezel Test heat treatme		előti grior	
MT-3121-3000	ir braning rid.	6315x85x6190x94x670	1 89f (169f Dashile	in pr	tur .	
Anyagminôséa	-		Letepogatási irány	raix		
Material		AISI 4130 /	Direction of scann	avialle de	radiális	
Adequation		22222 /				
Heat-No		034939 /				
Vizsgátati felület állapoi			Vozagálati terjedek	em	46501	
Surface condition		machined	Exted of Test	100%	100%	
Vizegát darebezám		8 db	1			
Testing pieces		e ub				
	Viz	sgálati adatok / E	xamination	data		
Készülék tipusa		HOMAS	Készülék gyári szi	ama 7875 f		
Type of US-equipment		USM25	Sertal-No. Of US-			
Vizsgálófej(ex)		SEB-2,	Frekvencia(k)	- 	2 MHz	
Searc unit(s)		SEB4H	Frequency(les)		4 MHz	
			I		MHz	
22. 2. 3. 44. 4					PAIH2	
Kalibrációs blokk Calibration standard ide		ET1,ET2	Erősités(ek) Galo	axidilsen	6 dB	
CORNECTO PROPERTY OF	HILL CONCE	·	Gam	·	Ø3 ø3	
			1	radiálisan	6 dB	
Castoló közeg		olai	Hanggyengulés	1251011-271		
Couplant		oli	Attenuation		dB/m	
	elt kijelsések	/ Evaluation / recor	dable indication	one		
Ertékelés Evaluation	X	megfelelő satisfactory	пел	megfelelő / not acc	eptable	
Megjegyzés(ek)						
Remark(s)					-	
Haly / kett					o	
Place / date		al lus	U	GAMBLE CUSTEBLL KE		
Gamma	-Controll Kft.	1 the		nist News Willemit (1984) Is have		
Alavő.	2013.10.17	Vizagála	tot végezte	Advisory 11,72614-2.66 www.gemme-Controll but p. Action of the News		
3541		Tes	ted by			
		Tớth Akos U	T20103090307	Benkő Péter - Felelős vezetőh		

No:QC-DB-651/2013 Page:

19 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

A tanúsított neve: The name and forename of the certificated individual): Születési hely/idő: (Place and date of birth):

Tóth Ákos József

Hódmezőváráshely, 1987. 09.

Azonosító szám: UT20103090307 (Identification No.):

A tanúsított személy aláírása (The signature of the certificated individual)

Vizsgálati eljárás(ok): (The NDT method(8): Ultrahangos anyagvizsgálat

(Ultrasonic testing)

Ipari terület: (Industrial sector):

Készülékek, bérendezések, létesítmények vizsgálata EM (Pre and in-service testing of equipment, plant and structure)

Termek terület(ek): Product sector(s):

(c)+Fv, (w)+Fv, (wp)+Fv, (f)+Fv

A minosités fokozata; (The level of certification)

A tanusítás és kiadásának időpontja: (The date of certification and it's issue):

Budapest, 2009. 12. 07.

A tanúsítás érvényes: (The date upon which certification expires):

2014, 12, 06,

Tanúsito Testulet ne (On behalf of certifying

Datum (Date): &

Az ipari és/vagy termék terti-let érvényesség kiterjésztve: (The industrial and/or product sector has

90001 GM 057/2004

izsgáztató

Se Too Materia -ig megújítva (MSZ EN 473 9.):

A tanúsítás érvényessége

(Renewed the validity of the certification until (MSZ EN 473 9.):)

Tanúsító Testület nevében (On behalf of certification body)

Dátum (Date):

A Magyar Hegesztéstechnikái és Anyagvizsgálati Egyesülés, mint a Nemzeti Akkreditáló Testülét által a NAT-5-0013/2006 számon akkreditált tanúsító testület az MSZ EN 473 számú szabvány szerint eredményes vizsgája alapján a nevezett személyt tanúsítja a fentiek szerint:

(The Hungarian Association of Welding Technology and Material Testing as an accredited by the National Accreditation Board (under No. NAT-5-0013/2006) certification body, on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csővek (tubes); wp - alakttott termékek (wrought products); p - mūanyag termékek (plastics products); k - kompozitok (composites products).

CONTITECH	RUBBER
Industria	l Kft.

No:QC-DB- 651 /2013 Page: 20 / 44

UT20103090307

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN 473 3.21)

(The holder of this certificate has been authorised to perform tests and take responsibility for the test results. (MSZ EN 473 3.21)

Dátum: 4004 . 12.07.

	Folyamatos munkavěgzé (Evidence of continued we	s Igazolása (MSZ EN 473 9.) ork activity (MSZ EN 473 9.))	
Sorsz.:	Munkáltató aláírása (Signature of the employer)	GAMMA CONTROL	Dátum (Date)
1.00	NIW	Mindségallenérső Kfall	2010.01.04.
2.	I soot	-OACH CONTROLL"	2011.01.06.
3.	The solution	The same of the sa	1012 01-09.
A,	一つのと		100.01.09
5.		Anyagus Mendeső Kft	
6.			
7.			
8.			क्षा राष्ट्र प्रदेश करा विद्यासील है। इ.स.
9,			
10.			

Kiegészítések: (Additional remarks:)

^{*} A tamisítvány a munkálitató aláírásávál érvényes (This certificate)s vallid with the signature of the employer)

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	21 / 44

		,	····				T	T_	
	- PHOENIX		TECHNICA	ECHNICAL DATA SHEET TDS			Page		
	PHOEMIX RUBBER INDUSTRIAL LTD.	WEL	DING PROCE	E SPECIFICATION WPS			N° 1 of 2		
· ·	CLIENT		THIS SPECIF	TCATI	ION IS BASED	WPS Nº	140–71	REV 4	
 :	IDENTITY CODE		ON ASME	CODE	SECTION IX	SUPPOR'	TING PQ	R N°	
							Bt	JD 0700002/1	
•	Ітем	Qty	WELDING PROCE		TAW-SMAW	PERFORM	•		
	DATA FOR ACCEPT.	ANCE	Types: MANU	AL		WELDER'	S STAMP		
	JOINTS (QW-402) Appr. 1.5				Sequences of weld see on addendum				
	JOINT DESIGN	B	ACKING: <u>YES</u> /N	10	WELD SEQUEN	ICE			
	BASE METALS (QW-403)			PART "A	17	PAR	T "B"	
	DRW N°								
	GRADE:	WNo.:1.7	7220	ASTM A 322-91: AISI 4130 / 34CrMo4 EN 10083-1) *		Mo4 (MSZ			
	CARBON EQUIVALE	max.C _e ≃		0.82		0.	82		
	MECHANICAL PROPERTIES:								
		E STRENGTH		min.	655		·	55	
	Ducn			min.	18			18	
	HARDI			max.	238			38	
		TTEST -30°	C J Ave:	rage	27 Outside Diamet		0D = 60-2	27	
	THICKNESS: FILLER METALS (Q)		-26 mm		OUTSIDE DIAMET	EK: Y	D - 00-2	200 Hilli	
	l 'ı'	DIAMETER	Brand		STA1	NDARD		SUPPLIER	
	Rod	2.4 mm	EML 5		AWS A5.18		S-3	Böhler	
	Electrode	3.2; 4.0	T-PUT NiMo 1	00++	AWS A 5.5-96: I	E 10018-D	2 (mod.)	Böhler	
	LAPSE BETWEEN OF	PASSES	MIN./min	•	•			•	
	Positions (QW-40)5)			PREHEAT (QW-406)				
	POSITIONS: 1G R	otated (horiz	ontal)		PREHEAT TEMP.: 300-330 °C				
	WELDING PROGRE	•	•		INTERPASS TEM	P.: max. 3	50 °C	i	
		near	to the top		PREHEAT MAINTENANCE: Till the begining of postweld heat threating			gining of	
	POSITION OF FILLE	T			_		•		
	OTHER				METHOD OF PRE	HEATING:	rumace	.,	

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	22 / 44

CONTINUATION	ON OF WPS	N° 140–71 Rev	.4	<u></u>		р	age N° 2 of 2	
 		ENT (QW-407)		GAS (QW	-408)		ugo 11 2 01 2	
	EMP. RANG	620 +20 / -	 		SHIELDING GAS Argon for root			
HOLDING T		4 HR					-	
HEATING R			 -	PERCEN'	PERCENTAGE COMPOSION (MIXTURE)			
COOLING R		80 °C/HR	·			.995 %	,	
LOCATION	LOCATION OF THERMOCOUPLE			FLOW RA	ATE 10	-12 LITRES	S/min.	
		•		GASBAC	CKING: Argon	(for 1st and	i 2nd passes)	
FURNACE A	TMOSPHERE	Аіг	 	FLOW RA	_	Litres/min		
TYPE:		-		TRAILIN	G SHIELDING G	IAS COMP.		
ELECTRICAL CHARACTERISTICS (QW-409) CURRENT DC				ELECTROD	E POLARITY:	1st 2nd-28th	pass: - passes: +	
TUNGSTEN E	LEKTRODE SI	ZE/TYPE: Ø3.2 :	mm thoriated	tungsten		···		
MODE OF TRA	ANSFER FOR O	3MAW						
ELECTRODE /	WIRE FEED 8	SPEED RANGE				· · · · · · · · · · · · · · · · · · ·	· · · · · ·	
WELD	PROCESS	FILLER	METAL	Cui	RRENT	VOLT	HEAT	
LAYERS	T. C.	CLASS	DIAMETER	TYPE	AMP.	RANGE	INPUT	
	- S	T) 47 6	24	POLAR.	RANGE	11.15	(KJ/cm)	
2-3	GTAW SMAW	EML 5 T-PUT	2.4 mm 3.2 mm	+	110-130 120-140	11-12 24-26	5-8.4 12-19.6	
		NiMo 100						
4-28	SMAW	T-PUT NiMo 100	4.0 mm	+	150-170	26-30	16.2-27.5	
TRAVEL SPEE	D RANGE	100-130 n	nm/min	<u> </u>	<u> </u>	<u> </u>		
TECHNIQUE (QW-410)							
STRING OR W	EAVE BEAD		······································	ORIFACE O	R GAS CUP SIZ	E Ø9mm		
INITAL/INTER	PASS CLEAN	NG: Brushing,	Grinding					
EQUIPMENTS	FOR WELDIN	O:			·			
OTHER:	·····			· · · · · · · · · · · · · · · · · · ·				
EXAMINAT	ION -	· · · · · · · · · · · · · · · · · · ·		REMARKS				
		ptance instruct	l		y CMo3 (MS	•		
Nº MIO-FB 2 Based on ASME IX ** Ni conten						<u>.</u>		
- Before welding bake e 350 ℃						ectrodes for	2 hours at	
BY	DATE	TECH	NICAL D	ATA SHE	EET			
Desig. Low	4 14.06.	WELDING P	ROCEDUI	RE SPECIF	ICATION	HoseT	ECHNICAL	
Appr. CZ4	114.00	UBJECT: Butt	weld of hose	coupling for	H2S service;	DEPA	RTMENT	
Chek'd			Strengh	75K		WPS Nº 1	40-71 Rev.4	

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 23 / 44

PHOENIX RUBBER Industrial Ltd.	Nº:	WPS 140-71 Addendum
Hose Division	Revision:	4
	Page No:	1/2
	Date:	2007-06-12
ADDENDUM	Designed:	Bain W
for the approved wall thickness range 5-38 mm	Checked:	11.
Based on WPS 140-71 Rev.4, PQR No.: BUD 0700002/1	Approval:	Sefent

No.	Wali thickness [mm]	Weld layers		Electrode Ø [mm]
1.	5-7		1 2	3,2 3,2
2.	7-9		! 2- 3	3,2 3,2
. ભં ્ર હતા	9-11		1 2-3 4-5	3,2 3,2 4,0
3. (1978) (1978) (1974) (1974)	11-13		1 2-3 4-6	3,2 3,2 4,0
5.	13-15		l 2-3 4-8	3,2 3,2 4,0
6.	15-18		l 2-3 4-10	3,2 3,2 4,0
7.	18-20		l 2-3 4-11	3,2 3,2 4,0
8.	20-22,22		1 2-3 4-15	3,2 3,2 4,0
9.	22,2-26		l 2-3 4-19	3,2 3,2 4,0

No:QC-DB- 651 /2013

Page:

24 / 44

PHOENIX RUBBER Industrial Ltd.

ADDENDUM

for the approved wall thickness range 5-38 mm Based on WPS 140-71Rev.4, PQR No.: BUD 0700002/1

Nº:	WPS 140-71 Addendum
Revision:	4
Page N°:	2/2

No.	Wail thickness [mm]	Weld layers		Electrode Ø [mm]
10.	26-29		1 2-3 4-19	3,2 3,2 4,0
11.	29-32		l 2-3 4-23	3,2 3,2 4,0
e jaring tit film for start for star	32-35		! 2-3 4-24	3,2 3,2 4,0
13.	35-38		i 2-3 4-28	3,2 3,2 4,0

No:QC-DB-651/2013 25 / 44 Page:

Certificate no:

BUD 0700002/1

Welding Procedure Qualification Record (PQR) ASME IX

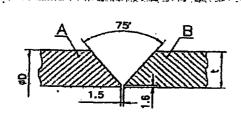
Energy and Transportation

Welding Process(es)

Company Nama Phoenix Rubber Gumilpart Kft, SZEGED

BUD 0700002/1

Date


·在了新教会选择数据的 500 多 28 February 2007


Procedure Chraliffication Record No. 140-71

GTAW/SMAW

Types (Manual, Automatic, Semi-Auto.)

Manual

Groove Design for Test Coupon
(For combination qualifications, the deposited weld metal shickness shall be recorded for each titler metal or process used.)

E 10018-G

3.2, 4.0 mm

16 mm

455

2

Base Metals (QW-403) Material Spec. Type or Grade

Postweld Heat Treatment (OW-407) ASTM A 322-91, AISI 4130

AISI 4130

AISI 4130

AISI 4190 to P-No.

Time

620 +20-0 °C 4 hours

Other

Temperature

Yhickness of Test Coupon 👍 Diameter of Test Coupon

19 mm

ER 705-3

1

2.4 mm

3 mm

1G rotated

SFA Specification

AWS Classification

Weld Metal Analysis A-No.

Filler Metzl F-No.

Size of Filler Metal

Weld Metal Thickness

Position of Groove

Weld Progression (Uphill, Downhill)

P.No.

stations and Shielding

KONALI TERRETAKAN MENENTERI KANDAN MENENTERI KENTERI KANDAN MENENTERI MENENTERI KANDAN MENENTERI KENTERI KANDAN MENENTERI KAN Percent Composition Gastest (Albeium) Row Rate Ar 99.95% 10-12 l/min **刘刚张张达哥**

7-9 1/mln

SMAW

M

Training Backing Ar 99.95% Filler Metals (CW-404) GTAW SMAW Electrical Cha

sta (OW-409)

3.2 mm

Curent

GTAW OCEN, SMAW DCEP Layer 1 120, Amps.

Layer 1 11-12, Layer 2-3 121, Leger 2-3 2425, Layer 4-12 28-30 Layer 4-12 156

Tungsten Electrode Size Other

Technique toward of

Layer 1-11 100-130 Layer 12 condesin

Position (CNV-405) Layer 1-11 String Layer 12 Weave

(JAW Multipass or Single Pass (per side) S Single or Multiple Electrodes

Layer 1 6,0-8.6 KI/co. Layer 2-3 14.1-19.8 KI/cm Lover 4-12 18.7-28.1 KI/cm

Problet (CV/400)

Preheat Temp.

300-330 ℃

interpass Temp Other

Other

max 350 °C

Lloyd's Register, its affiliates and subsidiaries and their respective officers, employees or agents are, individually and collectively, referred to in this clause as the 'Lloyd's Register Group'. The Lloyd's Register Group assumes no responsibility and shall not be liable to any person for any loss, damage or expense caused by reliance on the information or advice in this document or however provided, unless that person has signed a contract with the relevant Lloyd's Register Group entity for the provision of this Information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that contract.

Form 4106 (2006.12)

No:QC-DB- 651 /2013

Page:

26 / 44

						Certificate no: Page 2 of 2	BUD 070000	2/1
Specimen No.	Width	Thickness mm	Area mm²	Tensile Test Ultimate Total Load kN	Ultimate Unit Stress MPa	Type of Failure & Local	PQR No. Lion	BUD 0700002/1
39/1 39/2	18.9 18.9	15.8 15.7	přivitěli 	i di Arriv	657 664	Base material Base material	%.	:
4. (4.) 静识	JEF (#J) 1	"自然特益			i ek	·	<i>2</i>	
Guided-Ber Type and Figur 180° Regid o	e No.	7/160) rnm 2+2 pts		Re	suls atisfactory			
			a de la composition br>La composition de la				de i zo	
(Toughness)	Lagrova	70F.T.		<i>A7.024</i> 0			o e e e	
Specimen No.	Not	ch Location	Specimen Si	ze Test Te		ct Velue		Drop Weight Break
39 39	\$ \$		10x10x55 10x10x55	-30) 33 49	% Shear	Mis	(VAI)
39 39	S HA HA	-	10x10x55 10x10x55 10x10x55	-30	38			
39 39	HA 1		10x10x55	ONG TAY AMAKA	62	r newskij sterre sa Diskovatovski kali		re Grande Frederic Maddina de Caractería
								Maria Caranta
Comments:	1024.15.0						Wilde Pol	
(Eliacivales	BUQUAT							
Result- Satisfac	tory:	Yes 🔲	No 🗀	Penetration	Into Parent Meta	£ Yes	□ Mr	. 🗆
Macro - Results Citheratients Type of Test	A TAN	ardness test						, a
Deposit Analysis Other	M	acro - Satisfacto ray - Satisfactor						
Welder's Name Test Conducted	T	vadar Szabo DC- KG EAST Anyagy	IL 378258	Clock No Laborato	. (BC 15) ry Test No:	Stamp No. TIMO 007-7/07 V.K 12	207/2007	
		ents in this record of the ASME Cod		۳-		l, welded, and tested in	accordance wi	th the
Data Issued:		8 February 2007			loyd's Hegiste	110	de	
		cer w		Ì	VC	A Segy	ilei	
Manufacturer's i Manufacturer	-	Laszio Bajusa bber Gumüpari Kft., S	SZEGED	Ĺ	Laszlo Pena Surveyor to	lloyd's Register EMEA		

A member of the Lloyd's Register Group

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 27 / 44

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Designation ASME IX: GTAW / SMAW Pipe BW s19 1G

Welder's name: Tivadar Szabó (BC15)

Identification card No: 517278EA

Date and place of birth: 19. August 1949; SZEGED

		Weld test det	tails	Range of a	pproval	Photo (if required)	
Welding process	3	GTAW/SMAW					
	Туре	Rod / Electrode]			
Filler metal	Designation	AWS 5.18; ER7 AWS 5.5; E9					
Parent metal gro	oup(s)	ASTM A 322-91 4130	I; AISI	ASTM A 322 4130			
Plate or pipe	7	Pipe		Pipe/Pl	ate		
Welding position	i i	1G		1G/Flat			
Outside diamete	rį̇́ (mm)	72 mm		> 25 n	າກາ	Identification of test pleces:	
Test piece thick	ness (mm)	19		Max to be	welded	J. 1000.	
Single/ both side	welding	Single				WPS No.:	
Gouging/backin	g					140-60 Rev.4	
Joint type		Groove Groove / Fillet		Fillet	Testing standard:		
Shielding/ backing	ng gas(ses)	Argon (99,95	5%)			ASME IX	
Welding carried	out, place: Sze	ged	Dat Wel	e: ding Engineer:	29 April 20 László Ba	110 USZ Berzer	
Type of test		erformed and accepted		Not required Pr		e and date:	
Visual	Accer	oted (Vjk-1739/10)				Szeged, 18-Jun-2010	
Radiography	Accep	oted (Vjk-1739/10)			j		
Ultrasonic				+	Sun	reyor:	
Magnetic particle)			+		Péter Szabó	
Penetrant				+		no and simulatura:	
Macro				+	Star	np and signature	
Fracture	racture			+			
Bend				+ +		To the state of th	
Additional tests						-ZAA	

CONTITECH RUBBER	
Industrial Kft.	

No:QC-DB- 651 /2013

Page:

28 / 44

CONTITECH

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Welder's name: Tivadar Szabó (BC15)

Identification card No.: 517278AE

Date and place of birth: 19. August 1949; SZEGED

·	PROLON	GATION OF APPROVAL BY EMPLOY	ER
Place	Date	Name/ position/ title	Stamp and signature
Szeged	29.10.2010.	Lasels Bajusz / Welling beding logist	Boeres
Szeged	28.04.2011.	Lasto Bajusz / Welding telenologis	Begrel
Sieged	29 10. 2011	Lasto Bapen Welding Jedusbyist	Beerer
Sreged	23.04.2012	Costo Bainer (Webling Lecteralget	Burel
Sz eject		Cassle Dairen / Mabling La le wolf ix	
segal	29. 04. 20B	lacelo Bajun Willing Laderologist	Board
rgell	28.10.2013	Casilo Baien / Weblier tale wolgest	Beercel
. *			
	1		
	·		
<u> </u>			
			· · · · · · · · · · · · · · · · · · ·
			

No:QC-DB- 651 /2013 Page: 29 / 44

JE-ZO KFT. zeged, Külterület 01408/Adószám: 13341039-2-00 Bankszámlaszám:	,		ELDIN Sesz					WLS N ^o Száma: PAGE /c	2013.	<i> 2898</i> 	•
	ONTIT	ECH R	UBBER I	ndustria	al Kft.		CH.ORDE	R Nº.	444		
Megrendelő CONTRACT NO.		SPOO	OLJOB Nº			Reno	vps N°		2261598		15
Kötésszérn		Ozen	l m.szám	2898	-2905		Heg.ut.s	záma 💮	4D-71.	. Rev. 4	. /. 7
NAME OF WEDED PAR Heg. alkatrész megneve		Bod	(+ I)	ange.			DRWG I Rajzszár	M ² . 47	3121 -	3000	
NAME/ N ^Q . OF WELDEI Hegesztő neve és szám		Szabo	livador	löszle	. 35.G	15.	LOCATI: Munkaye	ON/SHOP	e Sægeo	i. Tope	ozele 6.
DATE Dátum 2013.10.	25	QUANT		8.			SERIAL Sorszán	NUMBER	s 8083 ^		
1. MATERIAL	SUB.	ECT 1	boo	dy	MATERIA	L		C	AST NO.	24613x	80 73-708
CONTROL Anyag megfelelőség	Tárg	y 1 ECT 2			Anyag MATERIA		AISI 41:		lagszám NST N ^Q .	23171	, 8085-80
azonosítása 	Tárg		Flon	ge	Anyag	1	DIS1. 11:	2 I	lagazám	0349	<u> </u>
2. FILLER METAL Elektróda minőség		LAYER Iszám	\$ 		l.	2	3.	4	- H ,		
és méret	TYPE Tipus	•		Fh.	5.	NIH	0. 100	. NIM	O. 10D .		
	Átmá	DIAMETER Átmárð FILLER CAST N ^O . Elektr.adagszám			4.	32.		4.			
					1303.	1124075		112	7750.		
3. ELECTRICAL CHARACTERISTICS	TYPE	POLAR	Polaritás	_		+			+		
Elektromos adatok	VOLT			12		24.		26.			
	AMPE	AMPERE (A)			180.		140 .		80.		
4. PRE HEAT TREATME Elektróda felhaszmálás					<i>300</i> .		C⁰		8.		Hours
5. APPLIED SHILDING G Alkalmazott védőgáz	AS 1	TYPE	qon.	Percent Tisztasa	tage Comp ag .	osition 9	9 ⁹⁸ .	%	Flow Rate Aramlási Vmin		
B. HEAT TREATMENT (p Előmelegítés				7. POSI Helyz		Forq	atott .				.,
B. SPEED OF TRAVELS Hegesztési sebesség	100	÷ 130 .	mm/min	9. LAPS	E BEETW			8			min
10.POSTWELD HEAT		Tit	ne	Te	mperature	201160	Furne	ce atmos	ph.		ng rate
TREATMENT Utóhőkezelési adatok		240.	-		mersektet 20 .	Co		Otőközeg egő.		808	sebesség . C°/H
1. RADIOGRAPHIC TES			2450	115	2451	<u>_</u>	•		1		
Radiográfiai vizsg. biz REPAIR Bavitás YES/ Ige					`		ern.				
PLACE OF DEFECT			TYPE	X NO/ Nern TYPE OF DEFECT Hiba tipusa							
METHOD OF F											
ISUAL INSPECTION .		egfelel	å / 50	hsfacti	ory.	· ·					
EMARKS feglegyzés		Dhius.			· · · · · · · · · · · · · · · · · · ·	Gon	· 		· 	JE-ZO	WET
regjegyzes late, end of coling down t latum, kihűlés vége			MINOSIT		ÉGESZÍ ÁRSASÁ lé széle 6.		C INS	SPECTOR	6728 Szege	A, Külter	Diet 01408/2 41039-2-06

No:QC-DB- 651 /2013

Page:

30 / 44

Felado :

61344

gamma controll kft

19/10/13 12:50 Lap: 1

SZEMREVÉTELEZÉSES VIZSGÁLATI JEGYZŐKÖNYV

Record No. Jegyzőkönyv száma:

813/13

VISUAL EXAMINATION

A PAGE 450D FAXT-1-174592DTG SEEMON SEEMON	n van constant	REPORT	
Object Tárgy	Coupling welding Eatlakozó hogesztés	Serial No. Gyári szám	8083-8090
Customer Megrendel	JE-ZO Kft. Szeged	Orawing No. Rajzszám	MT-3121-3000
Job Nr. Munkaszá	002/13	Material/Dimensi Anyagminöség/m	
Quantity Mennyisé	8 ർъ	Extent of examina Vizagalat terjedelr	100%
Requirements Követelmények	ASME code VIII/1	Heat treatment Hökezelés	after PWHT
Written Procedure N Vizagálati eljárás szá	· OCP.09.1	Welder Hegesztő	BC15
		Becmrevételezéses vizagál	at
Technique Mödszer	Direct visus	al	•
Instrument Készülék	•		•
Visual aids Segédeszközök	3x magnitiying	lens	•

Készülék	•	•
Visual side	3x magnifiying lens	•
	Measurement / Més	rés
Equipment		
Készülék	<u>-</u>	
Instrument		
Készülék	•	•
Surface temperature	Surface	Lighting intensity
A felület 20 °6 hőmérséklete	condition Feither machined Allapota	Megvilágítás 1000lx
Test results		
Eredmények :	SATISFACTORY	
	megfelelö8	pc(a)/db
	not accepted nem megicielū0	pc(s)/db
Vizsgålat helye és ideje:	Vizsgálatot végezje:	Áttekintette és jóváhagyta:
Place and date of test:	Tested by:	Reviewed and approved by TC
Gamma-Controll Kft. Algyo, 2013.10.30. (10h)	Kis Mabor VT20/03130102	6750 All N. Kulyotto Oluthi Adago M. Holyotto Oluthi Adago M. Holyotto Oluthi Adago M. Tel Posense 18-2045

No:QC-DB- 651 /2013

Page:

31 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

· · · · · · · · · · · · · · · · · · ·		(Certificate of NDT personnel)	
A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő: (Place and date of birth):			Zonosítő szám: Menificstim No.): A tamisity (The signiture of	VT2010313010
The constant				
	ljárás(ok): DT method(s):	Szemrevételezéses anyagy (Visual testing)	izsgáló	ing a state of the
	ari terillet: ustrial sector):	Készülékek, berendezések, lé (Pre and in-service testing of	tesítmények egyipment, r	vizsgálata EM ilant and structi
Termêk te Produ	rület(ek): ct sector(s):	(c), (ne), (nep), (f)		
	certification):	VT2	\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
A tanúsitás és kiadásánal (The date of certification e	k klõpontja: nd it's issue):	Budapest, 2013. 02. 19.	•	ST EDVANTA
A tanúsitás (The date upon which certifica	érvéhyes: aion expires):	2018. 02. 18.		
	Aceroe	Sall Barrie	Bar	The state of the s
Tamistió (On behsi	Testillet never for certifying be		Vizsgáztai (Examines)	6
Az ipari és/vagy termé let érvényesség kiterj (The industrial and/or product a beco espa	Perio-	THE THE		
	Ďátu	m (Date):	7-1-61	T-471 4 4
		•		Testillet nevében of centifying body)
tamúsítás érvényessége newed the validity of the certificat	ion until (MSZ E	-ig megújítya (MSZ EN IS N ISO 9712 10.):)	O 9712 10.):	
tuin.				
ate):				
			Tamúsító Testüle	t nevében ation body)

^{*} c - öntvények (castings); f - kovácsoli termékek (fingings); w - hegesztett és forrasztott termékek (welded products); t - csövek és csővezetékek (tübes); wp - alakított termékek (wrought products); k - kompozit anyagok (composites products).

CONTITECH	RUBBER
Industria	I Kft.

No:QC-DB- 651 /2013

Page:

32 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanústivány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN ISO 9712 3.21)
The holder of this companyies a superior and the contraction of the contr

(MSAC EN 15U 9/12 3/21)

(The holder of this conditional to be principal tops tops and take responsibility for the test results. (MSZ EN 150 9712 3/21))

0726 Szehed, Túzok a. 8/A.

Munikáltató aláírásan dószámi 110946/14.2. pod.

(Signature of the employal D Bank: 11265003-20000) 34

Www.gamrad-controll.hu

Sorsz.	Municipal of the employer)	S work activity (MSZ EM ISO 9712 10.)) Ph. "GAMMA CECASTRIOL!"	Dátum (Date)
1.	LA A	Anyogothagáló és Minőségellendéső Kfr.	
2.			1613.02.04.
3.			
4.			
5.			
6.			
7.			
8.			
9.			
10.			

Kiegészítések: (Additional remarks:)

A tanúsítvány a munkáltató aláírásával érvényes (This cortificate is valid with the signsture of the employer.)

No:QC-DB- 651 /2013 CONTITECH RUBBER Industrial Kft. Page: 33 / 44

Felado :

61344

gamma controll kft

19/18/13 12:54 Lap: 1

RADIOGRÁFIAI VIZSGÁLATI **JEGYZŐKÖNYV**

RADIOGRAPHIC **EXAMINATION REPORT** Jegyzőkönyv szám: Report No.:

2431/13

Kiállátás dátunus: Date of report:

2013.10.30

Vizagálai Object:	radha:				Coupling	B		Megre	ndeiő;				1E 20 1	/A C	
Munkosz	ėm.								idsi sen	<u> </u>			JE-ZO 1	Cft. Szeg	ea
Job No.:	E1414,							Order						_	
Rabazóm	<u>;</u>								mindse	a :					
Drawing				_ MT	-3121-3	000		Maler					AIS	14130	
	i sysbyłny	:			CP-13-	1	-		llat terje				1/	00%	
Testing st				`	(C) -10-	•			of testi	ng:				<i>7</i> 0 <i>7</i> 0	
	avetolmén	у:		A	STM E9	4		Hoke					After	PWHT	
Accepton Cód:	ce criteria:									t condition:	_,				
Noa: Code:			N	ASZ E	IN ISO	6 520 -	t		uń jele: z stamo				(B	CIS	
	s tipusa:									lző típusa;					
	quipment:			GA	MMAM	ΑŤ		Type c	•	w upan			ASTM	set B typ	e
nontgu					1.300					tző halye.					
Source:					Ir192				क्ता <u>वर्ष</u>					F	
	is mérete:			3	x 1,5mm				rchinin	hick!			294	(2-217)	
lourec siz					 		<u>. </u>		ed KJI:		· · · · ·		2 70		
Aktivit ts ;					. 4 550-				pus:					To	
lotivky:	gozás mód	0,4 TBq Film Type: idje: Kézi: Automata: Fóliafajta és vasta				arread	FOMA R5								
ijus buce Immooil		jac.	Kézi: Manual:		Automet	_	X			d thick:			Pb (0,027	
ma proc	33111	r –	- Transaction					-	· <i>y</i> j~			Hibák/	Defects		
	l	l .	Attagazott anyagynstagsåg: Peactated Chickmens	<u>.</u>	Fin th. ethy suffere total destair. District for source tide of object to flor.	1	· `	٦ ا	7	Gáz	Salak	Kötés	Gyök	Repedés	Pellie
	Į.	본		Segirfords film tivoleds Segre-to-film disease:	y suglecrés la source side of	!	١.	Makshes: A-meglelek NA-nem meglebili Basutt A-metemet: NA-net resented	Vangalan kilipomijar, Daze of test			Lacker	Lack of		
Si e i	ł	1 11 15	1 5 1	153	3 5	١.	ă	[6 名 8	8	Porosity		fiction	punstration	Crack	Surfac
Megnevezés Designation	1	Febrételets száma: Number of cadiographs	19	i i	9 = 2	i	Megralapathi ida Espos. Time:	sties: A-magleleke toon maglebeld: Re contect: NA-man no	養	[A	В	С	ס	E	F
5 B	Í 🔣 - '	4 5		III	Fits the adapt ocernite District ton a	Februadis Density.	Megnillette Expos. Time:		I &	l l					١
₹. <u>§</u>	Meret Size	121] }	1 8 6		Februarity.	64		F R	200	300	401	402	100	500
ZΩ	Z		2 2	88	E 8 H 8	24	2 4	肾产品	1			· ·	ľ	ļ	l
	Ø	db_	ताप्रक	mm	Lilia		min	3 5 [-22			<u> </u>			
8083	115/77	4	19	96	19	2,4	0,5	Α	100	1					
0005		<u> </u>					-,-	<u> </u>							<u> </u>
8084	113/77	4	19	96	19	2,4	0,5	A	10,78 10k				l l		
					┝┯╌┥	-	_			-					
8085	115/77	4	19	96	19	2,4	0.5	·A	104,50) (40)	1					l
				\vdash	 -			 	10,80	├───┤					
8086	115/77	4	19	96	19	2,4	0,5	Α.	100	[
		-	4.5				2	Γ. Ι	10.30.						
8087	115/77	4	19	96	19	2,4	0,5	. A	103						L
8088	115/77	4	19	96	19	2,4	0,5	A	10,30.						
									105						
filmsz	ámok és	VEITELS.	zámok a	20 n 0s	ak, bew	onosít	ásuk s	ı wettı	endolč	t terheli.					
he num	bers of t	he film:	s and we	lds ar	e identic	al, the	ir ide	ntifical	al noi:	the task o	of the cos	итег,			
7Seála	tot végez	te:													
erforme	•									Ménesi I.	- Szabó	T.			
" IOIIII	~. <u>~ y</u> .														

Vizapilat helya:

Place of test:

Értékelte: Evaluated by:

Joythansii A - CONTROLL KFT ARTSO 1870, Kalteralet 01884/11, hrsz Adoszánii 1102/14/2 ol Wyksznia 4310/01Lh Urci 0630/218/3640

6750 Algyő, Gamma-Controll Kft. Telephely

Ménesi István RT20101120107

Ez a jegyzőkünyv részleteiben nem másalható! / Copying details is probibited!

No:QC-DB- 651 /2013

Page:

34 / 44

Felado :

61344

gamma controll kft

19/10/13 12:49 Lap: 1

RADIOGRÁFIAI VIZSGÁLATI JEGYZŐKÖNYV

RADIOGRAPHIC EXAMINATION REPORT

Jegyzůkonyv szám: Report No.:

2430/13

Kiallith dátumu:

Tate of report: 2013.10.30

														2013.10			
Vizagála Úbject	t tergya:				Couplin	g		-	endelä:								
Doject; Munkasz	4								Client; Rendektsi szám:				JE-ZO Kft. Szeged				
iob No.:	MIL,							Order		m:							
Raposin	,								minās								
Drawing				MI	Г-3121-3	000		Mater		5 -			AIS	14130			
	i sombykny							_		edelme:							
Cesting s	landwd:			(2CP-13-	1			of test				16	30%			
	övetelmén	ÿ.			STM ES	14		Hiller					1.0	D114744			
	ce criteria:			^	SOLIAL ENS	~		Hent t	rentmen	t condition;			Atter	PWHT			
Kåd;				MS7. E	IN ISO	6570_	1 .		ali jelė:					C15)			
ode;				-100	3/1 150	<u> </u>	<u>. </u>		r stomp					<u> </u>			
	ds tipusa:			GA	MMAM	AT				iző típusa:			ASTM	set B typ	Α		
ype or e	quipment							Type									
ogunan: Ogunan:	13 :				11192			Kepm	under i	olzű helye:				F			
	às mérate:							1/M/G	képmin	QI:							
ource sk				3	1,5mm	1			ed IQI:	men.			2%	(2-2T)			
ktivités:								l'ilm (
ctivity:				(0,4 TBq			Film T					FON	IA R5			
imkidol	gozás mód	a;	Kćzi:		Automata		X			anceapt:		-,					
lm proc	casing:		Mancal:		Autenziti	o:		Surcen	type ur	d thick:			PD	0,027			
			1 at		1		Ι.		T			HIPAK	Defocts				
	i		Assignment enværnsmærke Penembed friefanss:	#	First shire o target ang formes todos observes from source side of object to fare.		ł	الإسا	ंक्ष्रद्वीय लेक्ष्यम् . Dan of ees	Cláz.	Salak	Kôtés	Gyök	Kepalés	Fciüles		
	1	Fetvitalet azina: Number of cadlographs.	2 4	Sugarfurts film tavelede Source-to-film distance		ļ ·	1	Nimbiak: Armegielek: KAroem orgánisk Resalt Kraszantok NA-on messze	8	Porosity	Slag	Lock of	lack of	Crack	Surface		
% 8	l		16	1 4		1	Meprikgitsi idi. Esper, Time	Sankates: Armegieleke VA-nem ongelsteld - Re V-nemetek NA-net an	4	A	В	funion.	besettativa		F		
Megnevezé: Designation	ŀ	Fetreticist száma Number of cadlog	音道	124	5 g ;	۱	Meprikgiksi Esper, Time		} }	^	D	C	D	E	F		
Megnevezés Designation	Méret	3 6	1 5 5	1 3 2	First Ar. outs otsetting Observe from otject to Ger	February.	3年	F # 3	Į.	200	300	401	402				
₹ % I	真真			計算	Pleasthe. December to	Peterodi.	5 8	Hiji	į,	200	200	401	402	100	300		
	20,	45	1	I .			nin	ほじる	7	l i		i		1			
	- 2	90	asm	thu:	धान		min	222	-								
8089	115/77	4	19	96	19	2,4	0,5	A	10.30. 10b	iii					l		
		<u> </u>		├	-		H										
3090	119/77	4	19	96	19	2,4	0,5	A	1030. 10b			ŀ					
			_	-		 -	_										
- 1	•	-	-	-	-	-	-	-	• .	-	- 1	-	-	-	-		
-1							<u> </u>		- -								
- 1	T)		1										1				
									_								
i						1				1	- 1		l				
											-						
			L	1]			1		1				
filmsz	imok és	varrats	zámok a	zonos	ak, beazo	onosit	Asuk a	megn	andelő	t terheli.							
e num	bers of th	e film	and we	lds ar	e identic	al, the	ir ide	ntifica	ion is	the task of	f the cost	tumer.					
	ot végez																
		us.					• •		1	Ménesi L.	- Szabó '	۲.					
riorme					5 . 0		٠										
og≜lat h	•				Ertékelte			;				Jóváhagyta					
ce of tes	t			l	Evaluato	d by:		12	بسبر		Į.	Approved I	у л - СО	NTROL	LKFT		
				ļ			/	766	~		1	6750 AL	gyö, Kelta	DIMEN	THE DIEZ		
6750 Al <u>e</u> y 6 ,					M	énesi l	stván		ł	1	YAUTA .	ALEIST.	1 10				
Gamma-Controll Kft. Telephely RT2				Ménesi István RT20101120107 Ménesi István RT20101120107													
Continue							17.14	CAIDII	ZUIG				HED-TANKED				

No:QC-DB- 651 /2013

Page:

35 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

Azonosító szám: RT20101120107

A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő:

(Place and date of birth):

Ménesi István

Szentes, 1988. 09. 06.

A tamúsított személy aláírása (The signature of the certificated individual)

Vizagálati eljárás(ok): (The NDT method(s): Radiográfiai anyagvizsgálat

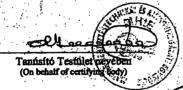
Ipari teriliet:

(Radiographic testing)

(Industrial sector):

Készülékek, berendezések, létesítmények vizsgálata EM (Pre and in-service testing of equipment, plant and structure)

Termék terület(ek): Product sector(s): (c), (w)


A mindsites fokozata: (The level of certification):

RT2

A tanúsítás és kiadásának időpontja: (The date of certification and it s issue):

Budapest, 2012. 03. 28.

A tanúsitás érvényes: (The date upon which certification expires): 2017. 03. 27.

Vizsgáziatő (Bramines)

Az ipari és/vagy termék terület érvényesség kiterjesztve: (The industrial end/or product actor has

 Tamisan Testilet de velocita de la company (que de la company (que de la company de la company de la company (que de la company
A tanúsítás érvényessége -ig megújítva (MSZ EN 473 9.): (Renewed the validity of the certification until (MSZ EN 473 9.):)

Dátum (Date):

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsító szervezet" a nevezett személyt tanúsítja az MSZ EN 473 szerint erdeményes vizsgája alapján a fentik szerint:

(The Huggarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by

473 szerint eredményes vizsgája alapján a fentiek szerint:
(The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by National Accreditation Board (under No. NAT-5-013/2010", on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakított termékek (wrought products); p - milanyag termékek (plastics products); k - kompozitok (composites products).

CONTITECH	RUBBER
Industria	ıl Kft.

No:QC-DB- 651 /2013 Page: 36 / 44

RT20101120107

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Munkáltató Signature of th		Dátum: hu (Date:) -	012.04.19.
	roiyamatos munka	végzés igazolása (MSZ EN 473 9.) med work activity (MSZ EN 473 9.)	
Sorsz :	Munkáltató aláírása (Signature of the employer)	PhONTROLL	Dátum (Date)
1.		Minoster United States	-012.04.19.
2.		Ampagelsegáló és Mandadgellenáras Kfs.	1013.06.09
3.			
4			
5.			
6.			
7.			
8.			
0.			

Kiegészítések: (Additional remarks:)

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

No:QC-DB- 651 /2013 Page: 37 / 44

ContiTech Rubber	Examinat	ion record		Record No.		
Industrial Kft.	Vizsgálati	egyzőköny	v	Jegyzőkönyv		
Szeged/Hungary				száma: 1222/13		
	Liquid penetra		on			
1	Festékdiffúzi	_				
1	Magnetic par					
	Mágneses re	pedésvizsgál	at			
		···				
	E-ZO Kft.	Serial No.		8083-8090		
Gyártó		Gyári szám				
	Tech Rubber	Drawing No).	MT 3121-3000		
	ustrial Kft.	Rajzszám				
	oupling(s)	Material		AISI 4130		
Tárgy		Anyagminö				
	8 pc(s)	Extent of ex				
Mennyiség	THE 300	Vizsgálat te				
	STM E 709	Heat treatm	ent	yes		
Követelmények Written Procedure No.	QCP-11-1	Hőkezelés		Szabó T.		
	QCP-11-1	Welder:		Szabo I.		
Vizsgálati eljárás száma	·	Hegesztő:				
l lauid nenetra	nt examination /l	Folyadákbal	natolás	ne vizemálat		
Eldaia bollogá		Olyadonbol	iatoras.	oo vieogalat		
Penetrant	Remover		Develop	per		
Behatoló anyag	Tisztító		Eiőhívó			
Dwell time Behatolási idő	Drying Szérítás		Developing time Előhívási idő			
Surface temperature	Surface condition		Lighting intensity			
A felület hőmérséklete	Felület állapota	Megvilágítás				
Magnetic parti	cle examination/	Mágnesezhe	tō por	os vizsgálat		
Equipment type TSW 4000	Testing material		Magneti	zing current		
Készülék típusa TSW 1000	Vizsgáló anyag	MR 76F	Magnes	ező áram 1000 A		
Black light type Superlight C UV-A lampa tipusa 10A-HE	Field strength checki Tereromero	ng Berthold disc	Field str Térerő	ength 4,2 kA/m		
Surface temperature	Surface condition			intensity 4000 Nav2		
A felület hőmérséklete 23 °C	Felület állapota	machined	Megvilá	gítás 1000 µW/cm²		
Test results						
Eredmények :	satisfactory					
	megfelelő	8	pc(s)/c	lb		
	not accepted					
	nem megfelelő	·····	pc(s)/d	lb [
				•		
Designation NDC 1 at 122	\$ 15.					
Performed by NDE Level II.	Agg Revis	sed by Q.C. r				
Vizsgálatot végezte	Revise Ellen Signal Aláíra	örizte – MEC	vezeto	Industrial Kft.		
Signature Oravecz Gábo	or Car Signa	sture AA	arkó Lá	QC1		
Aláírás Oravecz Gabi	Signal Signal	icui c IVI Se	aiku Lä	szló //		
Place/Date	Place &	/Date		vul		
Kelt Szeged, 04.11.20			eaed 04	1.11.2013.		
OCD 42 4 MDT/07	.s. Ron		-g-u, u			

No:QC-DB- 651 /2013

Page:

38 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

Azonosító szám: MT20103010506Ú (Identification No.):

A tanúsított neve: (The name and forename of the certificated individuals Születési hely/idő:

(Place and date of birth):

Oravecz Gábor

Szeged, 1958. 07. 07.

A tanúsított személy aláírása (The signature of the certificated individual)

Vizsgálati eljárás(ok): (The NDT method(s):

Mágnesezhető poros anyagvizsgáló

(Magnetic particle testing)

Ipari terület: (Industrial sector): Fémfeldolgozás MM (Metal manufacturing)

Termék terület(ek): Product sector(s):

(c), (f), (w), (wp)

A minősítés szintje: (The level of certification):

MT2

A tanúsítás és kiadásának időpontja: (The date of certification and it's issue):

Budapest, 2012. 02. 21.

A tanúsítás érvényes:

2017. 02. 20.

(The date upon which certification expires):

Tanúsító Testület nev (On behalf of certifying b

Vizsgáztató

Az ipari és/vagy termék terület érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to):

Dátum (Date)

Tanúsító Testület nevében (On behalf of certifying body)

A tanúsítás érvényessége (Renewed the validity of the certification until (MSZ EN 473 9.):)

ig megújítva (MSZ EN 473 9.):

Dátum (Date):

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsító szervezet" a nevezett személyt tanúsítja az MSZ EN 473 szerint eredményes vizsgája alapján a fentiek szerint;
(The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by National Accreditation Board (under No. NAT-5-013/2010"), on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakitott termékek (wrought products); p - milanyag termékek (plastics products); k - kompozitok (composites products).

CONTITECH	RUBBER
Industria	l Kft.

No:QC-DB- 651 /2013 Page: 39 / 44

MT20103010506Ú

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN 473 3.21)
(The holder of this certificate has been authorised to perfect tests and take responsibility for the test results. (MSZ EN 473 3.21))

Munkáltató aláírása:
(Signature of the employer.)

Dátum:
(Date:)

Dátum:
(Date:)

	Folyamatos munkavég (Evidence of continued	zés igazolása (MSZ EN 473 9.) work activity (MSZ EN 473 9.))	
Sorsz.:	Munkáltató aláírása (Signature of the employer)	Ph.	Dátum (Date)
1.	Back Cras	Industrial Kft. Quality Control Dept.	2013. 01. 24.
2.		w	
3.			
4.			·
5.			
6.			
7.	i i		
8.			
9.			
10.		· · · · · · · · · · · · · · · · · · ·	

Kiegészítések: (Additional remarks:)

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

No:QC-DB- 651 /2013 Page:

40 / 44

Bekaert Hlohovec a.s.

Milerová 2317

92028 Hichovec / Slovakia

Tel:: Fer 00421337363111 00421337422742

STEELCORD

MANUFACTURER: BKHL

Page: 1 / 1

Certificate of Analysis

Delivery No. : 4046181212

Contitech Rubber Industrial Kft,

CONTITECH RUBBER IND SZEGED

Confitech Rubber Industrial Kft.

14-18-07/1

REV.3 / 15.01.2002

H207297 / 26.10.2012

Budapesti út 10

H-6728 SZEGED

Spec customer

Your code

Your spec

Our Spec

Sales Order

3046059220/10

Purchase Order

32260330

Inspection lot

090000200665/000001

Batch

3500245379

Date produced

01.07.2013

Date CQA

09.08.2013

Spools

32 delivered from a batch of 32 produced

18 delivered from a batch of 16 produced

Units

10517 KG

Delivery net Qty.

Material Description

Zinc coated steelcord 1X24DW/3.6 NT 20/36 ZZ B650

5000 M

Lay direction Lay length

ZZ

20/36

Tests			Specs		Results	
Test	Procedure	Unit	Alm	Min. Max.	Avg. N	Min ind Max ind
Cord diameter	RA12-100	man .	3,6000	3,4200 3,7800	3,6845 6	3,6840 3,8930
Linear density	RA30-110	g/m	65,000	61,700 68,300	65,632 6	65,300 65,870
Cord breaking strength	RA30-203	N		17900,0	19337,0 6	19087,0 19584,0
Cord elongation at break	RA30-203	96		2,50	2,98 6	2,80 3,15
Zinc D1	RA40-741	g/m2		32,000	40,057 6	37,870 44,630
Zinc D2	RA40-741	g/m2		44,000	48,788 6	45,350 55,100
Residual torsions	RA30-150	Nt	0,000	-3,000 3,000	-0,250 6	-0, 5 00 0,000

Comments:

D1: 0,54

D2: 0.73

Nominal Chemical composition of High Grade Oxysteet:

%Carbon: 0.70-0.90 %Manganese: 0.40-0.60 %Silicon: <0.230 %S: <0.011 %P: <0.012

Microstructure/Texture: Metallurgically the texture is known as a high drawn, fine pertitic structure.

Electronically Signed by Quality Manager (Nagy Marcel)

According DIN EN 10204 3.1

Terninox s.p.A. con Unico Bocio Lina società del gruppo ThyssenKnipp Acciai Speciali Len

Azienda con sistema di . gestione certificato da IGQ secondo ISO 9001

PAG 1/1

Specifica/Specification:

Conforme a EN 10204/ 3.1

63892/2012 n°:

EN 10088-2

Destinatario/Receiver:

ACCIAI VENDER S.P.A.

VIA A. NOBEL, 3/A 43100 PARMA

Cliente/Customer: ACCIAI VENDER S.P.A.

VIA A.NOBEL, 4/A Q.RE IND.LE S.P.I.P

43100 PARMA

Accialo/Steel: 304PS

DDT/DEL. NOTE:

16753 DEL/OF: 24/05/2012 Ordine/order Terninox:

P04249

Ord, Cliente/Customer:

Matricola Serial Number	Pos Item	Tipo Prodotto Product Type	Fin	 Dimensioni(mm) Dimensions(mm)	1	Weight (Kg)	Rif. Cli. Cust. Ref.	Colata Heat	NIM
C47997 7-3-3882	22	COIL	28	0.60 x 460.0	1	6040		0431359	310727
C54489 7-23887	- 27	NASTRI STRETTI	BA	0.79 x 284.7	1	1290		0431741	324612
		<u> </u>			<u> </u>		L	<u> </u>	

IL MATERIALE SOPRA ELENCATO E' STATO DIMENSIONALMENTE EIO SUPERFICIALMENTE TRASFORMATO DA TERNINOX SENZA ALTERARNE LE CARATTERISTICHE MECCANICHE E CHIMICHE
THE MATERIAL DESCRIBED ABOVE MAS BEEN DIMENSIONALLY ANDIOR SUPERFICIALLY TRASFORMED BY TERNINOX WITHOUT CHANGING THE MECHANICAL AND CHEMICAL PEATURES

Analisi di colata/Chemical Composition

711,011,01,01,001,0	<u> </u>	di oonip											·		
Colate/Heat	С %	Si %	Mn %	P %	S %	Cr %	Ni %	Mo %	N %	Ti %	Cu %	Nb %	В%	Al %	Co%
0431359	0.045	0.300	1:290	0.027	0.001	18.000	9.040	0.260	0.024		0.310				
0431741	0.048	0.310	1.420	0.029	0.001	18.090	8.050	0.320	0.019		0.370			İ	
	1				Į.	1			٠,	l			 -	l	

Risultati delle prove/Test Result (1N/mm²=1 M Pa)

NIM	V 8 4 1 - 8 A	10 e a a a	Caric. unit. s Yield st		Caric, unit. Rottura Tensile strength	Allungamento a rottura Ultimate elongation (%)		Durezza Hardness	Piega a Bend To 180°	Trailtermico Ricot, di solub. / hast treatment of ennealing for solubifiz.	Resistenza alla corrosione intergranutare secondo / Resistance to corrosion intergranutare	Grano Grain	
	e e	1	RpO2% N/mm²	Rp1% N/mm²	Rm N/mm²	Lo =2"	Lo =80	Lo =A5	HRB		.•		<u>l</u> .
310727	7	Ŧ	245	271	607		60.7		70.5		1050	EN ISO 3651-2	Ţ
	c	T	230	261	604		62.8	ł	66.0		1 .		1
324612	1	T	235	. 262	588		62.4		70.5		1050	EN ISO 3651-2	1
	l c	Įτ	237	267	605		62.1		72.0		1 .		
				·				- 10	hi				}

COMPLIES WITH ED 2000/53/EC

Certificato emesso automaticamente

Data/Date

24/05/2012

R. GOVONI

STRIPWOUNDIVE

CONTITECH RUBBER Industrial Kft.

Page: No:QC-DB- 651 /2013

41 / 44

No:QC-DB- 651 /2013

Page:

42 / 44

MKEH

Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements BUDAPEST XII., NÉMETVÖLGYI ÚT 37-39.

1535 Budapest, Pf. 919 Telefon: 458-5800 Telefax: 458-5927 Ügyiratszám / File No.:

MKEH-MH/00287-003/2013/NY

Bizonyítványszám / Certificate No.:

NYO - 0008/2013

Hivatkozási szám / Reference No.:

32259470

Page 1/3 oldal Kiadva / Issued

Budapest, 2013. 01. 28. / 28 01 2013

KALIBRÁLÁSI BIZONYÍTVÁNY CALIBRATION CERTIFICATE

A kalibrálás tárgya:

Object of calibration:

Gyártó / Manufacturer: Típus / Type:

Azonosító szám / Serial No.:

villamos kimenőjelű nyomásmérő

electrical-output manometer

AFRISO-EURO-INDEX GmbH

DMU03 HD 1518086

Műszaki adatok / Technical data:

(0...2500) bar méréstartomány / measuring range (0...2500) bar (4...20) mA kimenőjel tartomány / output signal range (4...20) mA

Kalibrálásra bemutatta:

Customer:

ContiTech Rubber Industrial Kft. 6728 Szeged, Budapesti út 10.

A kalibrálás helye és ideje:

Place and date of calibration:

Magyar Kereskedelmi Engedélyezési Hivatal

Hungarian Trade Licensing Office

Metrológiai Hatóság, Mechanikai Mérések Osztály Metrology Authority, Section of Mechanical Measurements

Budapest, 2013.01.24.

A kalibrálást végezte:

Calibrated by:

Szaulich Dénes

metrológus / metrologist

A kalibrálásnál alkalmazott etalonok:

Standards used for the calibration:

Megnevezés: Designation:	Gyártó: Manufacturer:	Tipus: <i>Type</i> :	Gyártási szám: Serial No.:	Bizonyítvány szám: Certificate No.:
túlnyomás etalon / pressure standard	Budenberg	283	20603	NYO-0001/2013
digitalis multiméter / digital multimeter	Keithley	2000	0597910	ELD-0014/2012
normál ellenállás / resistance standard	ZIP	P 331	117530	ELD-0021/2012
hőmérő / temperature measuring instr.	GANZ MM	DTHI	33656	Höm-0296/2012

A mérési eredmények a nemzeti (nemzetközi) etalonra visszavezetettek. The measuring results are traceable to national standards.

A kalibrálás módja:

Calibration method:

A kalibrálást a KE NYO-3-2002 számú kalibrálás eljárás alapján végeztük. The calibration was done according to the calibration procedure No.: KE NYO-3-2002.

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see https://www.bipm.org).

A bizonyítvány az MKEH írásbeli engedétye nélkül csak teljes formájában és terjedelmében másolható!

The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

No:QC-DB- 651 /2013

Page:

43 / 44

MKEH
Metrológiai Hatóság/Metrology Authority
Mechanikai Mérések Osztály
Section of Mechanical Measurements

Ügyiratszám / File No.:

MKEH-MH/00287-003/2013/NY

Bizonyítványszám / Certificate No.:

NYO - 0008/2013

Page 2/3 oldal

A kalibrálás körülményei:

Calibration conditions:

környezeti hőmérséklet / Ambient temperature

a kalibrált eszköz helyzete / Position of the calibrated manometer

a kalibrált eszköz tápfeszültsége / Supply voltage of the calibrated manometer

nyomóközeg / Pressure transfer medium

21,1 °C

függőleges / vertical

24V DC olaj / oil

Mérési eredmények a (0...2500) bar nyomástartományban: Results of the measurements in the pressure range of (0...2500) bar:

Nyomás, névleges érték	Áram-kimenőjel, névleges érték	Áram-kimenőjel, mért eltérés a helyes értéktől	Nyomás, mért eltérés a helyes értéktől	Eredő mérési bizonytalanság
Pressure, nominal value	Current-Output, nominal value	Current-Output, measured deviation from the reference value	Pressure, measured deviation from the reference value	Expanded uncertainty of the measurement
bar	mA .	mA	bar	bar
0	4,0	-0,0042	-0,7	
250	5,6	-0,0002	0,0	
500	7,2	0,0029	0,5	
750	8,8	0,0050	0,8	
1000	10,4	0,0063	1,0	
1250	12,0	0,0053	0,8	2,6
1500	13,6	0,0033	0,5	
1750	15,2	-0,0003	-0,1	
2000	16,8	-0,0052	-0,8	
2250	18,4	-0,0117	-1,8	
2500	20,0	-0,0192	-3,0	:

Mérési bizonytalanság: A mérési eredmény(ek) mellett közölve.

Uncertainty of measurement: See next to the results of the measurements.

A közölt kiterjesztett mérési bizonytalanság a standard bizonytalanságnak k kiterjesztési tényezővel szorzott értéke (k = 2), amely normális (Gauss) eloszlás feltételezésével közelítőleg 95%-os fedési valószínűségnek felel meg.

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to coverage probability of approximately 95 %.

A mérési bizonytalanság tartalmazza az etalonból, a kalibrálás módszeréből, a környezeti feltételekből, a kalibrált mérőeszközből stb. eredő részbizonytalanságokat.

It contains the uncertainties of the standards, calibration method, environmental conditions, calibrated device etc.

A standard bizonytalanság meghatározása az EA-4/02 (Expression of the Uncertainty of Measurement in Calibration) kiadványnak megfelelően történt.

The standard uncertainty of measurement has been determined in accordance with the EA Publication EA 4/02 (Expression of the Uncertainty of Measurement in Calibration).

No:QC-DB-651/2013 Page:

44 / 44

Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements

Ügyiratszám / File No.:

MKEH-MH/00287-003/2013/NY

Bizonyítványszám / Certificate No.:

NYO - 0008/2013

Page 3/3 oldal

Bélyegzés:

Calibration mark:

A kalibrált mérőeszközön K067662 azonosító számú kalibrálási bélyeget helyeztünk el. We have placed a calibration stamp No.: K067662 on the calibrated instrument.

Megjegyzések:

Additional remarks:

Jelen bizonyítvány összhangban van a Nemzetközi Súly és Mértékügyi Bizottság (CIPM) Kölcsönös Elismerési Megegyezése (MRA) C függeléke által tartalmazott kalibrálási és mérési képességekkel (CMCs). Az MRA minden aláíró intézete elismeri egymás kalibrálási és mérési bizonyítványait a C függelék szerinti mennyiségfajtákra, azok értéktartományaival és mérési bizonytalanságaival (közelebbit lásd: http://www.bipm.org)

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bipm.org)

A kalibrálási bizonyítványban megadott értékek a mérőeszköznek a kalibrálás idejére és körülményeire jellemző adatai.

The measurement results show the metrological properties of the device during the time of the calibration under the environmental conditions listed above.

Az újrakalibrálás időpontját a felhasználó dönti el a mérőeszköz használatának és állapotának függvényében.

The date of the next calibration is decided by the user. It depends on the usage and the condition of the device.

edelmi Engede

A bizonyítvány kiadható / Approved by:

Kálóczi László osztályvezető / Head of Section

Requested Exceptions

- Variance is requested to connect the BOP choke outlet to the choke manifold using a co-flex line (instead of using a 4" OD steel line) with a 10,000 psi working pressure that has been tested to 15,000 psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps.
- Variance is requested to allow Option of rig not capable of reaching TD presetting Surface,
 Drilling Plan will be same using Fresh Water fluid system.
- Variance is requested to wave any centralizer requirements on the 5-1/2" casing. Ameredev will
 utilize cement expansion additives in the cement slurry to maximize cement bond and zonal
 isolation.
- Variance is requested to wave any centralizer requirements on the 9-5/8" casing. Ameredev will
 utilize cement expansion additives in the cement slurry to maximize cement bond and zonal
 isolation.
- Variance is requested to allow Temporary Postponement of Operations on well to skid to adjacent well if multiple wells on drilling pad are drilled.
- Variance is requested to allow use of Multi-Bowl Well Head System.
- Variance is requested to allow adjustment of Casing Design Safety Factor on conditions that
 Ameredev keeps minimum of 1/3 casing capacity filled with OMW drilling fluids.
- Variance is requested to allow 5M Annular Preventer on 10M BOPE System to drill Production Interval. (Supporting Documentation Attached)

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

APD ID: 10400031733

Submission Date: 08/02/2018

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Existing Roads

Operator Name: AMEREDEV OPERATING LLC

Will existing roads be used? YES

Existing Road Map:

PIMENTO_FED_COM_26_36_03_121H___WELL_PAD_ACCESS_MAP_REV_20190201100812.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

PIMENTO FED COM 26 36 03 121H WELL PAD ACCESS MAP REV 20190201100858.pdf

Juniper_Pimento_Road_20190201101115.pdf

New road type: RESOURCE

Length: 4442

Feet:

Width (ft.): 30

Max slope (%): 2

Max grade (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 20

New road access erosion control: Crowned and Ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Well Name: PIMENTO FED COM 26 36 03 Well Number: 121H

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information: NM One Call (811) will be notified before construction starts.

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crowned and Ditched

Road Drainage Control Structures (DCS) description: Crowned and Ditched

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Pimento_Fed_Com_26_36_03_121H___One_Mile_Radius_Existing_Wells_20180628162428.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: A multiple well pad will be located on section 3, and will measure 400'x500'. The top 6" of soil and brush will be stockpiled south of the well pad. A buried 4" poly flowline (750 psi maximum) will be run approximately 570' from the Pimento Fed Com 26 36 03 121H to the Juniper/Pimento CTB north of the well pad. A 20' pipeline ROW containing three buried 12" poly water lines (200 psi maximum) will be run from the Juniper/Pimento CTB to tie into existing water lines at the Firethorn CTB. The overall length of disturbance for the new water lines will be approximately 4,857'. A power line will be run parallel to the water line and will connect into the power line at the Firethorn CTB. The power

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

line will be approximately 4,857'. The Juniper/Pimento CTB will be 500'x525' and will include a separator, heat exchanger, VRU, VRT, meter run and a tank battery. The new production facility will have a secondary containment structure that is constructed to hold the capacity of 1-1/2 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Production Facilities map:

EP_JUN_PIM_1S_FLOWLINE_SEC_3_S_20190201115824.pdf

BO_JUNIPER_FED_COM_BATTERY_SITE_REV1_20190201115822.pdf

EP_JUN_PIM_1S_FLOWLINE_SEC_34_S_20190201115825.pdf

Juniper_CTB_Electric_20190201115826.pdf

Juniper_CTB_Water_20190201115828.pdf

PIMENTO_FED_COM_26_36_03_121H___FACILITIES_MAP_REV_20190201115842.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: DUST CONTROL,

Water source type: GW WELL

INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE

CASING

Describe type:

Source longitude:

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: PRIVATE

Water source transport method: PIPELINE, TRUCKING

Source transportation land ownership: FEDERAL

Water source volume (barrels): 20000

Source volume (acre-feet): 2.577862

Source volume (gal): 840000

Water source and transportation map:

PIMENTO_FED_COM_26_36_03_121H___WATER_WELLS_MAP_REV_20190201120014.pdf

Pimento_Fed_Com_26_36_03_121H___WATER_WELLS_LIST_20190201120040.pdf

Water source comments: Water will be trucked or surface piped from existing water wells on private land. See attached list of available wells.

New water well? NO

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aquifer comments:

Aguifer documentation:

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Well depth (ft): Well casing type:

Well casing outside diameter (in.): Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method: Drill material:

Grout material: Grout depth:

Casing length (ft.): Casing top depth (ft.):

Well Production type: Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: NM One Call (811) will be notified before construction start. Top 6" of soil and brush will be stockpiled south of the pad. V-door will face west. Closed loop drilling system will be used. Caliche will be hauled from an existing caliche pit on private (EOG) land in N2NE4 29-25S-36E or an existing caliche pit on private (Beckham) land in S2SW4 19-25S-36E or a proposed caliche pit on state land in S2SE4 11-26S-36E.

Construction Materials source location attachment:

PIMENTO_FED_COM_26_36_03_121H___CALICHE_MAP_REV_20190201120115.pdf PIMENTO_FED_COM_26_36_03_121H___WELL_SITE_DIAGRAM_20190201120116.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency: Daily

Safe containment description: Steel tanks

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: R360's state approved (NM-01-0006) disposal site at Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Well Name: PIMENTO FED COM 26 36 03 Well Number: 121H

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

PIMENTO_FED_COM_26_36_03_121H___WELL_SITE_DIAGRAM_20190201120312.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: PIMENTO

Multiple Well Pad Number: 121H

Recontouring attachment:

PIMENTO_FED_COM_26_36_03_121H___WELL_SITE_DIAGRAM_20190201120336.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well Name: PIMENTO FED COM 26 36 03 Well Number: 121H

Well pad proposed disturbance

(acres): 4.59

Road proposed disturbance (acres):

3.06

Powerline proposed disturbance

(acres): 2.23

Pipeline proposed disturbance

(acres): 0.39

Other proposed disturbance (acres):

6.03

Total proposed disturbance: 16.3

Well pad interim reclamation (acres): Well pad long term disturbance

Road interim reclamation (acres): 0

Powerline interim reclamation (acres):

Pipeline interim reclamation (acres): 0

Other interim reclamation (acres): 0

Total interim reclamation: 0.79

(acres): 3.8

Road long term disturbance (acres):

Powerline long term disturbance

(acres): 2.23

Pipeline long term disturbance

(acres): 0.39

Other long term disturbance (acres):

Total long term disturbance: 15.51

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 17% (.79 acre) by removing caliche and reclaiming 40' wide swaths on the south and west sides of the pad. This will leave 3.8 acres for producing three wells, with tractor-trailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. New road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled.

Soil treatment: None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Seed Management

Seed Table

Seed type:

Seed source:

Seed name:

Source name:

Source address:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Seed Summary

Seed Type

Pounds/Acre

Total pounds/Acre:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name:

Last Name:

Phone:

Email:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Pit closure description: No pit

Pit closure attachment:

Well Name: PIMENTO FED COM 26 36 03

Well Number: 121H

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

Operator Name: AMEREDEV OPERATING LLC		
Well Name: PIMENTO FED COM 26 36 03	Well Number: 121H	
USFS Forest/Grassland:	USFS Ranger District:	
Disturbance type: PIPELINE		
Describe:		
Surface Owner: PRIVATE OWNERSHIP		
Other surface owner description:		
BIA Local Office:		
BOR Local Office:		
COE Local Office:		
DOD Local Office:		
NP\$ Local Office:		
State Local Office:		
Military Local Office:		
USFWS Local Office:		
Other Local Office:		
USFS Region:		
USFS Forest/Grassland:	USFS Ranger District:	
Disturbance type: OTHER		
Describe: Powerline		
Surface Owner: PRIVATE OWNERSHIP		
Other surface owner description:		
BIA Local Office:		
BOR Local Office:		

COE Local Office:
DOD Local Office:
NPS Local Office:
State Local Office:

Military Local Office:

Operator Name: AMEREDEV OPERATING LLC		
Well Name: PIMENTO FED COM 26 36 03	Well Number: 121H	
USFWS Local Office:		
Other Local Office:		
USFS Region:		
USFS Forest/Grassland:	USFS Ranger District:	
Disturbance type: OTHER		
Describe: CTB		
Surface Owner: PRIVATE OWNERSHIP		
Other surface owner description:		
BIA Local Office:		
BOR Local Office:		
COE Local Office:		
DOD Local Office:		
NPS Local Office:		
State Local Office:		
Military Local Office:		
USFWS Local Office:		
Other Local Office:		
USFS Region:		
USFS Forest/Grassland:	USFS Ranger District:	
Section 12 - Other Information		
Right of Way needed? NO	Use APD as ROW?	
ROW Type(s):		

SUPO Additional Information:

ROW Applications

Operator Name: AMEREDEV OPERATING LLC

Well Name: PIMENTO FED COM 26 36 03 Well Number: 121H

Use a previously conducted onsite? YES

Previous Onsite information: On-site inspection was held with Jeff Robertson (BLM) on 11/28/17. Ameredev made a donation with the MOU fund in lieu of an archaeology report.

Other SUPO Attachment

Pimento_Fed_Com_26_36_03_121H___SUPO_REV_20190201_20190201121526.pdf Pimento_Fed_Com_26_36_03_121H___Owner_Agreement_Letter_20190201121540.pdf

Surface Use Plan of Operations

Introduction

The following Surface Use Plan of Operations will be implemented by Ameredev Operating, LLC (Ameredev), after APD approval. No disturbance will be created other than those described in this surface use plan. If any additional surface disturbance becomes necessary after APD approval, the appropriate BLM approved sundry notice or right of way application will be acquired prior to such disturbance. This Surface Use Plan includes Ameredev's well pad, battery site, electrical, water and flow lines, and access roads.

Before any surface disturbance is created, stakes or flagging will be installed to mark boundaries of permitted areas of disturbance, including soil storage areas. As necessary, slope, grade, and other construction control stakes will be placed to ensure construction is in accordance with the surface use plan. All boundary markers will be maintained in place until final construction cleanup is completed. If disturbance boundary markers are displaced, they will be replaced before construction proceeds. Adjacent operators will be contacted before construction starts to mark adjacent pipelines.

Directions to proposed pad:

At the intersection of 3rd St/NM-205/Frying Pan Rd & NM-128, head south on 3rd St/NM-205/Frying Pan Road approximately 5.6 miles. Turn right on Anthony Road and proceed west approximately 3.4 miles. Continue North (right) on Anthony Road and proceed north approximately 0.3 miles. Turn right on Pipeline Road and proceed east approximately 0.3 miles. Turn left on lease road and proceed north approximately 1 mile. Turn right on unnamed lease road and proceed east for approximately 1.1 miles to the north side of the location.

See Exhibit 1 – Well Pad Access for a map of the route.

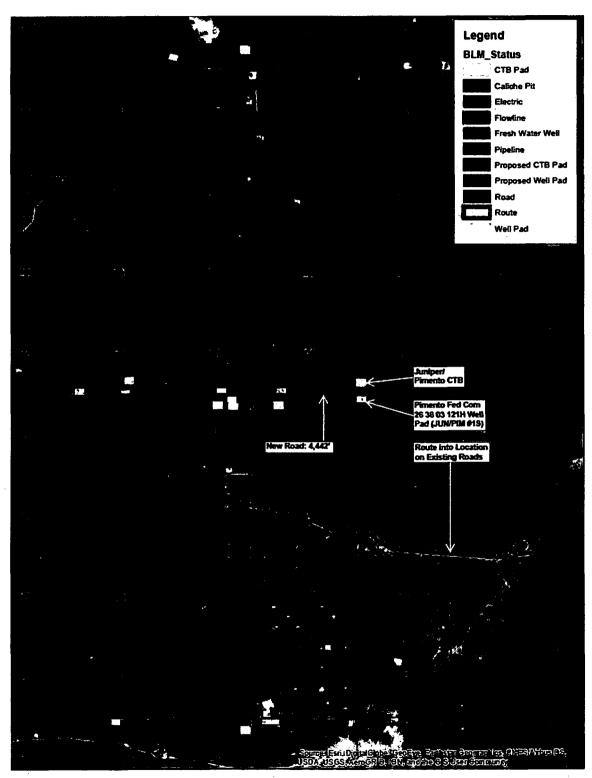
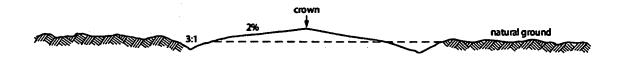


Exhibit 1 - Well Pad Access



Section 1 - Existing Roads

- A. The existing access road route to the proposed project is depicted on *Exhibit 1 Well Pad Access*. Improvements to the driving surface will be done where necessary. No new surface disturbance will be done, unless otherwise noted in the New or Reconstructed Access Roads section of this surface use plan.
- B. Right-Of-Way will be acquired before construction begins.
- C. The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattle guards, other range improvement projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use.
- D. Operator will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

Section 2 - New or Reconstructed Access Roads

- **A.** A section of new access road will be needed for this proposed project. See *Exhibit 1 Well Pad Access*, for locations.
- **B.** The length of new access road needed to be constructed for this proposed project is approximately 4,442 feet.
- **C.** New access road will be constructed with 6 inches of compacted caliche.
- D. The maximum driving width of the access road will be 20 feet. The maximum width of surface disturbance when constructing the access road will not exceed 30 feet. All areas outside of the driving surface will be revegetated.
- E. When the road travels on fairly level ground, the road will be crowned and ditched with a maximum 2% slope from the tip of the road crown to the edge of the driving surface. Ditches will be constructed on each side of the road. The ditches will be 3 feet wide with 3:1 slopes. See road cross section diagram below:

- F. No turnouts will be constructed on the new portions of access road.
- G. No cattle guards will be installed on the new portions of access road.
- H. Right-Of-Way will be acquired before construction begins.
- I. No culverts or low water crossings will be constructed for the new portions of access road.
- J. Since the access road is on level ground, no lead-off ditches will be constructed for the new portions of access road.
- K. Any sharp turns in the in the new road will be rounded to facilitate turning by trucks.

- L. Newly constructed or reconstructed roads, on surface under the jurisdiction of the Bureau of Land Management, will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road.
- M. All topsoil and fragmented rock removed in excavation will be used as directed in approved plan.

Section 3 – Location of Existing Wells

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Pimento Fed Com 26 36 03 121H. See Exhibit 2a – One Mile Radius Wells List for a list of wells depicted.

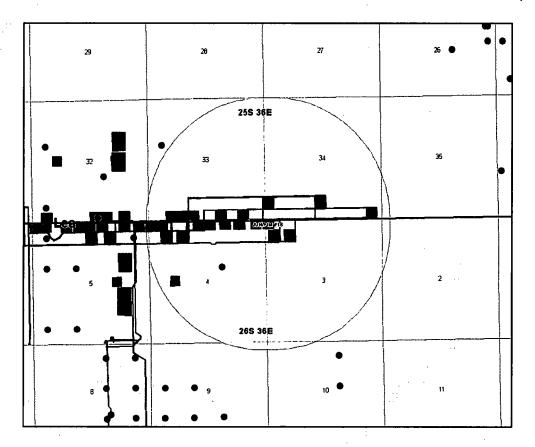


Exhibit 2 - One Mile Radius Existing Wells

API	WELL NAME	STATUS	TD
30025208430000	SOUTHWEST JALIT-FED 1	PLUGGED	13505

Exhibit 2a - One Mile Radius Existing Wells List

Section 4 - Location of Existing and/or Proposed Production Facilities

- A. The multiple well pad will be located on Section 3, and will measure 400'x500'. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location.
- **B.** Production from the proposed well will be transported to a new production facility named Juniper/Pimento CTB, north of the well pad.
- C. A buried 4" poly flowline (750 psi maximum) will be run approximately 570' from the Pimento Fed Com 26 36 03 121H to the Juniper/Pimento CTB north of the well pad. A 20' pipeline ROW containing three buried 12" poly water lines (200 psi maximum) will be run from the Juniper/Pimento CTB to tie into existing water lines at the Firethorn CTB. The overall length of disturbance for the new water lines will be approximately 4,857'. A power line will be run parallel to the water line and will connect into the power line at the Firethorn CTB. The power line will be approximately 4,857'. The Juniper/Pimento CTB will be 500'x525' and will include a separator, heat exchanger, VRU, VRT, meter run and a tank battery. The new production facility will have a secondary containment structure that is constructed to hold the capacity of 1-1/2 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.
- D. All permanent (lasting more than six months) above ground structures including but not limited to pump jacks, storage tanks, barrels, pipeline risers, meter housing, etc., that are not subject to safety requirements will be painted a non-reflective paint color, Shale Green, from the BLM Standard Environmental Colors chart, unless another color is required in the APD Conditions of Approval.
- E. If any plans change regarding the production facility or other infrastructure (pipeline, electrical lines, etc.), Ameredev will submit a sundry notice or right-of-way (if applicable) prior to installation or construction.

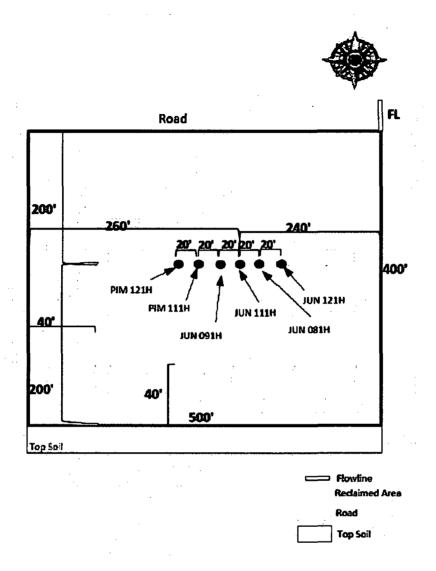
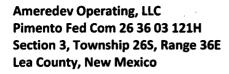



Exhibit 3 - Well Site Diagram

Section 5 - Location and Types of Water Supply

A. This location will be drilled using a combination of water and mud systems (outlined in the Drilling Program). The water will be obtained from preexisting water wells, by running a pump directly to the drilling rig. See *Exhibit 4 - Water Wells*, for a list of available water wells. In cases where a polyline is used to transport water for drilling or completion purposes, the existing and proposed roads into location will be utilized.

Permit #	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04′14.32″ N, 103°12′32.30″ W
CP 1378	S. Eppenour	32°05′40.62″ N, 103°13′ 35.26″ W
CP 1285	Sec. 5	32°03′56.50″ N, 103°17′37.04″ W
CP 857	Capped	32°04′39.70″ N, 103°16′51.13″ W
C 2287	#1	32°03′59.0″ N, 103°33′16.8″ W
C 2286	#2	32°03′59.2″ N, 103°33′15.2″ W
C 2290	#3	32°04′1.0″ N, 103°33′ 12.6″ W
C 2285	#4	32°04′3.7″ N, 103°33′9.7″ W
C 2288	#5	32°04′0.5″ N, 103°33′8.4″ W
C 2294	Garden	32°03′3.2″ N, 103°32′38.1″ W
C 2293	House	32°03′2.3″ N, 103°32′36.8″ W
J-11-S-3	Farm Well #2	32°03'08.4" N, 103°16'35.2" W
J-11-S-2	Farm Well #3	32°03′11.5″ N, 103°17′02.0″ W
J-11-S	Farm Well #4	32°03′24.6″ N, 103°17′02.1″ W
CP 1170 POD 1	CB 1	32°03′57.2″ N, 103°18′45.3″ W
CP 1170 POD 5		32°07′17.1" N, 103°17′48.0" W
CP 1263 POD 5	CB 2	32°03′56.27" N, 103°18′27.4" W
CP 1263 POD 3	CB 3	32°03′54.90″ N, 103°18′16.74″ W
CP 1351 POD 1	CB 4	32°03′57.16″ N, 103°17′45.13″ W
CP 1351 POD 2	CB 5	32°03′30.70″ N, 103°17′45.70″ W
J 26 Ryan	32°01′20.41″ N, 103°15′49.46″ W	
13	32°02′41.5″ N, 103°18′55.8″ W	

Exhibit 4 – Water Wells

Section 6 - Construction/Construction Materials

- A. Caliche will be obtained from the caliche pit located at Lat: 32° 6'28.78"N, Long: 103°16'58.77"W or the caliche pit at Lat: 32° 6'33.14"N, Long: 103°18'44.16"W or the caliche pit at Lat: 32° 3'8.30"N, Long: 103°13'57.00"W.
- B. Caliche utilized for the drilling pad will be obtained either from the locations listed above, an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "flipping" the well location. A mineral material permit will be obtained from the BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "flipping" a well location is as follows:
 - 1. An adequate amount of topsoil/root zone (usually top 6 inches of soil) will be stripped from the proposed well location and stockpiled along the side of the well location as depicted on the *Exhibit 3 Well Site Diagram*.
 - 2. An area will be used within the proposed well site dimensions to excavate caliche.
 - 3. Subsoil will be removed and stockpiled within the surveyed well pad dimensions.
 - **4.** Once caliche/surfacing mineral is found, the mineral material will be excavated and stock piled within the approved drilling pad dimensions.
 - 5. Subsoil will then be pushed back in the excavated hole and caliche will be spread accordingly across the entire well pad and road (if available).
 - 6. Neither caliche, nor subsoil will be stockpiled outside of the well pad dimensions. Topsoil will be stockpiled along the edge of the pad as depicted in *Exhibit 5 Enlarged Well Site Diagram*.
 - 7. In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. A BLM mineral material permit will be acquired prior to obtaining any mineral material from BLM pits or federal land.

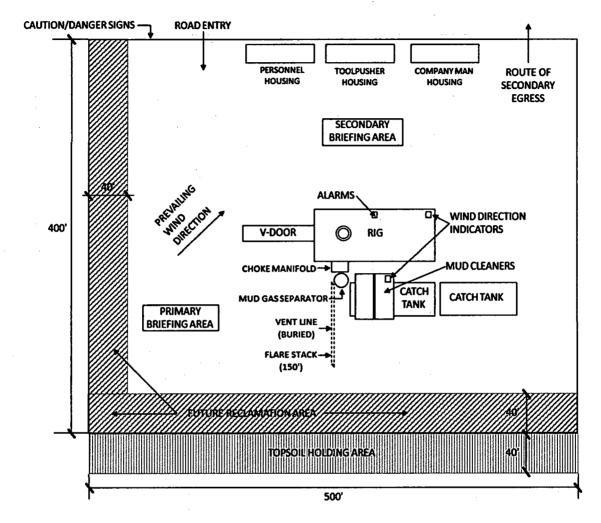


Exhibit 5 - Enlarged Well Site Diagram

Section 7 - Methods of Handling Waste

- A. Drill cuttings, mud, salts and other chemicals will be properly disposed of into steel tanks on site and hauled to a State approved commercial disposal facility.
- B. Garbage and trash produced during drilling and completion operations will be collected in a portable metal trash container and disposed of properly at a state approved disposal facility. All trash on and around the well site will be collected for disposal.
- C. Human waste and grey water will be properly contained and disposed of properly at a state approved disposal facility.
- D. After drilling and completion operations, trash, chemicals, salts, frac sand and other waste material will be removed and disposed of properly at a state approved disposal facility.

Section 8 - Ancillary Facilities

A. No ancillary facilities will be needed for the proposed project.

Section 9 - Well Site Layout

- **A.** See Exhibit 3 Well Site Diagram and Exhibit 5 Enlarged Well Site Diagram. The following information is presented:
 - 1. Reasonable scale
 - 2. Well pad dimensions/orientation
 - 3. Drilling rig components/layout
 - 4. Proposed access road
 - 5. Topsoil stockpile
- B. The proposed drilling pad was staked and surveyed by a professional surveyor. The attached survey plat of the well site depicts the drilling pad layout as staked.
- C. Topsoil salvaging
 - 1. Grass, forbs, and small woody vegetation such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and re-spread evenly on the site following topsoil re-spreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

Section 10 - Plans for Final Surface Reclamation

Reclamation Objectives

- A. The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil, to control erosion, and to minimize habitat and forage loss, visual impact, and weed infestation during the life of the well or facilities.
- B. The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources, and wildlife habitats. To ensure that the long-term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning, and vegetative productivity.

- **C.** The BLM will be notified at least 3 days prior to the commencement of any reclamation procedures.
- D. If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged.

 Ameredev will gain written permission from the BLM if more time is needed.
- E. Interim reclamation will be performed on the well site after the well is drilled and completed. Exhibit 3 – Well Site Diagram and Exhibit 5 – Enlarged Well Site Diagram depict the location and dimension of the planned interim reclamation for the well site.

Interim Reclamation Procedures (if performed)

- A. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production.
- **B.** In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. The areas planned for interim reclamation will then be contoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to reseeding will not be steeper than a 3:1 Ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be re-contoured to the above ratios during interim reclamation.
- D. Topsoil will be evenly re-spread and aggressively revegetated over the entire disturbed area not needed for all-weather operations, including cuts and fills. To seed the area, the proper BLM mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- **E.** Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Final Reclamation Procedures (well pad, buried pipelines, etc.)

- A. Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- **B.** All surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be re-contoured to the contour existing prior to initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to re-contouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation.

- D. After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BLM seed mixture, free of noxious weeds. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- **E.** Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. All unused equipment and structures including pipelines, electric line poles, tanks, etc. that serviced the well will be removed.
- **G.** All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not re-disturbed, and that erosion is controlled.

Section 11 - Surface Ownership

A. EOG has surface ownership for proposed project area.

Section 12 - Other Information

- A. There are no dwellings within 1 mile of this location.
- B. An on-site meeting for the Pimento Fed Com 26 36 03 121H well was held on Nov. 28, 2017.
- C. The well pad described in this document Juniper/Pimento (JUN/PIM #1S) will contain 6 wells that produce into a central tank battery (CTB) located north of the well pad. The wells share a common pad access road, and the six total flowlines from the individual wells will share a common corridor that terminates into the CTB. The CTB will be tied into a shared pipeline and electrical corridor. The wells that share the pad are:
 - Juniper Fed Com 25 36 34 081H, APD ID# 10400031765
 - Juniper Fed Com 25 36 34 091H, APD ID# 10400031762
 - Juniper Fed Com 25 36 34 111H, APD ID# 10400031759
 - Juniper Fed Com 25 36 34 121H, APD ID# 10400031755
 - Pimento Fed Com 26 36 03 111H, APD ID# 10400031732
 - Pimento Fed Com 26 36 03 121H, APD ID# 10400031733

Ameredev field representative:

Ameredev office contact:

Zac Boyd, Operations Supervisor

Christie Hanna, Regulatory Coordinator

Cell: (432) 385-6996

Direct: (737) 300-4723

Email: zboyd@ameredev.com

Email: channa@ameredev.com

Ameredev Operating, LLC Address: 5707 Southwest Parkway Building 1, Suite 275 Austin, Texas 78735

6/28/2018

To whom it may concern:

Julia Stager

Ameredev Operating, LLC is negotiating a private surface owner agreement with EOG Resources Inc. (P.O. Box 267 Midland, TX 79702; 432-425-1204) for a power line, flowline, saltwater disposal line, roads, central production facility, and pad for the Pimento Fed Com 26-36-03 121H well in section 3 of T26S, R36E.

Thank you,

Julia Steger

Engineer

BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

Section 3 - Unlined Pits

PWD surface owner:

Injection well mineral owner:

Injection PWD discharge volume (bbl/day):

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Unlined pit PWD on or off channel:	
Unlined pit PWD discharge volume (bbl/day):	
Unlined pit specifications:	
Precipitated solids disposal:	
Decribe precipitated solids disposal:	
Precipitated solids disposal permit:	
Unlined pit precipitated solids disposal schedule:	
Unlined pit precipitated solids disposal schedule attachment:	
Unlined pit reclamation description:	
Unlined pit reclamation attachment:	
Unlined pit Monitor description:	
Unlined pit Monitor attachment:	
Do you propose to put the produced water to beneficial use?	
Beneficial use user confirmation:	
Estimated depth of the shallowest aquifer (feet):	
Does the produced water have an annual average Total Dissolve that of the existing water to be protected?	red Solids (TDS) concentration equal to or less than
TDS lab results:	
Geologic and hydrologic evidence:	
State authorization:	
Unlined Produced Water Pit Estimated percolation:	
Unlined pit: do you have a reclamation bond for the pit?	
Is the reclamation bond a rider under the BLM bond?	
Unlined pit bond number:	The second secon
Unlined pit bond amount:	
Additional bond information attachment:	
Section 4 - Injection	
Would you like to utilize Injection PWD options? NO	
Produced Water Disposal (PWD) Location:	

PWD disturbance (acres):

Injection well type: Injection well number: Injection well name: Assigned injection well API number? Injection well API number: Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: **Underground Injection Control (UIC) Permit? UIC Permit attachment:** Section 5 - Surface Discharge Would you like to utilize Surface Discharge PWD options? NO **Produced Water Disposal (PWD) Location:** PWD surface owner: PWD disturbance (acres): Surface discharge PWD discharge volume (bbl/day): **Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment:** Surface Discharge site facilities information: Surface discharge site facilities map: Section 6 - Other Would you like to utilize Other PWD options? NO **Produced Water Disposal (PWD) Location:** PWD surface owner: PWD disturbance (acres): Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment:

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: