(Continued on page 2)

FORM APPROVED OMB No. 1004-0137 Propires: January 31, 2018

*(Instructions on page 2)

DEPARTMENT OF THE BUREAU OF LAND MAAPPLICATION FOR PERMIT TO la. Type of work: DRILL DRILL Gas Well C. Type of Completion: Hydraulic Fracturing	E INTERIO ANAGEMEN	NT M.	AY 09	5. Lease Serial No. MM136233 6. If Indian, Allotee 7. If Unit or CA Agr 8. Lease Name and JUNIPER FED CO	Well No. DM 25 36 34				
2. Name of Operator				9. API Well No.	(325376				
AMEREDEV OPERATING LLC (97224)			ţ	30-029	= 45919				
3a. Address 5707 Southwest Parkway, Building 1, Suite 275 Austin		No. (include area cod	le)	10. Field and Pool,	• • • • • • • • • • • • • • • • • • • •				
4. Location of Well (Report location clearly and in accordan		· · · · · · · · · · · · · · · · · · ·		JAL / WOLFCAMP WEST 33 11. Sec., T. R. M. or Blk. and Survey or Ar					
At surface LOT D / 230 FNL / 290 FWL / LAT 32.07	•	•		SEC 3 / T26S / R3	•				
At proposed prod. zone LOT D / 50 FNL / 200 FWL /			I						
14. Distance in miles and direction from nearest town or post 5 miles				12. County or Parisi LEA	h 13. State NM				
15. Distance from proposed• 230 feet	16. No of	acres in lease	17. Spacii	ng Unit dedicated to this well					
location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any)	1280		320						
18. Distance from proposed location* to nearest well, drilling, completed, applied for on this lease ft	19. Propo	sed Depth	20. BLM/	1/BIA Bond No. in file					
applied for, on this lease, ft.	11720 fee	et / 22661 feet	FED: NM	MB001478					
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 2992 feet	22. Appro 03/01/201	ximate date work will 19	start*	23. Estimated duration 90 days					
	24. Att	achments		!					
The following, completed in accordance with the requiremen (as applicable)	ts of Onshore O	il and Gas Order No.	1, and the H	lydraulic Fracturing r	ule per 43 CFR 3162.3-3				
Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest Sysuppose Supo must be filed with the appropriate Forest Service Of		Item 20 above). 5. Operator certific	ation.	·	n existing bond on file (see				
25. Signature		ne (Printed/Typed)		_	Date				
(Electronic Submission) Title	Chri	stie Hanna / Ph: (73	/)300-472	3	07/24/2018				
Senior Engineering Technician									
Approved by (Signature)		ne (Printed/Typed)			Date				
(Electronic Submission)		Cody Layton / Ph: (575)234-5959 04/24/2019							
Title Assistant Field Manager Lands & Minerals		Office CARLSBAD							
Application approval does not warrant or certify that the appl applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 121		·							
of the United States any false, fictitious or fraudulent stateme	nts or represent		within its j	urisdiction.	iny department or agency				

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: LOT D / 230 FNL / 290 FWL / TWSP: 26S / RANGE: 36E / SECTION: 3 / LAT: 32.07894 / LONG: -103.26062 (TVD: 0 feet, MD: 0 feet)
PPP: SWSW / 0 FSL / 146 FWL / TWSP: 25S / RANGE: 36E / SECTION: 27 / LAT: 32.09408 / LONG: -103.26091 (TVD: 11720 feet, MD: 17433 feet)
PPP: SWSW / 0 FSL / 235 FWL / TWSP: 25S / RANGE: 36E / SECTION: 34 / LAT: 32.09676 / LONG: -103.26078 (TVD: 11703 feet, MD: 12185 feet)
BHL: LOT D / 50 FNL / 200 FWL / TWSP: 25S / RANGE: 36E / SECTION: 27 / LAT: 32.10845 / LONG: -103.26091 (TVD: 11720 feet, MD: 22661 feet)

BLM Point of Contact

Name: Tenille Ortiz

Title: Legal Instruments Examiner

Phone: 5752342224 Email: tortiz@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: | Ameredev Operating, LLC

LEASE NO.: NMNM-136233

WELL NAME & NO.: Juniper Fed Com 25 36 34 111H

SURFACE HOLE FOOTAGE: 0230' FNL & 0330' FWL

BOTTOM HOLE FOOTAGE | 0050' FNL & 0200' FWL Sec. 27, T. 25 S., R 36 E.

LOCATION: | Section 03, T. 26 S., R 36 E., NMPM

COUNTY: | County, New Mexico

Submit new C-102 with correct well name.

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- · In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

□ Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240,

Page 1 of 11

(575) 3933612

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Alternative when using skid/walking rig
 The operator has proposed to drill multiple wells utilizing a skid/walking rig.
 Operator shall secure the wellbore on the current well, after installing and
 testing the wellhead, by installing a blind flange of like pressure rating to the
 wellhead and a pressure gauge that can be monitored while drilling is performed
 on the other wells.
- 4. Option Setting surface casing with Surface Rig
 - a. Notify the BLM when removing the Surface Services Rig.
 - b. Notify the BLM when moving in the H&P Flex Rig. Rig to be moved in within 60 days of notification that Surface Rig has left the location. Failure to notify or have rig on location within 60 days will result in an Incident of Non-Compliance.
 - c. Once the H&P Flex Rig is on location, it shall not be removed from over the hole without prior approval unless the production casing has been run and cemented or the well has been properly plugged. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
 - d. BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as H&P Flex Rig is rigged up on well. CIT for the surface casing shall be performed and results recorded on subsequent sundry pressure to be 1200 psi.
- 5. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.

Page 2 of 11

6. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Capitan Reef

Possible water flows in the Castile, Salado, and Capitan Reef.

Page 3 of 11

Possible lost circulation in the Rustler, Red Beds, and Delaware. Abnormal pressures may be encountered within the 3rd Bone Spring and Wolfcamp Formations.

CASING DESIGN OPTION #1 (IF LOSS CIRCULATION OF 50% OR GREATER OCCURS ON THE 12-1/4" HOLE, OPERATOR WILL SWITCH TO THEIR CONTINGENCY FOUR STRING DESIGN):

- 1. The 13-3/8 inch surface casing shall be set at approximately 1888 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Formation below the 13-3/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

9-5/8" Intermediate casing shall be kept fluid filled while running into hole to meet BLM minimum collapse requirements.

IF LOSS CIRCULATION OF 50% OR GREATER OCCURS ON THE 12-1/4"

Page 4 of 11

HOLE, OPERATOR WILL SWITCH TO THEIR CONTINGENCY FOUR STRING DESIGN

Special Capitan Reef requirements:

If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following in addition to switching to their four string contingency design:

- Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
- Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing, which shall be set at 10,670 feet, is:

Operator has proposed DV tool at depth of 5013', but will adjust cement proportionately if moved. DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

Page 5 of 11

a.	First stage to DV tool:
X	Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage. Excess calculates to 9% - Additional cement may be required
b.	Second stage above DV tool:
	Cement to surface. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to Capitan Reef.
Test to be pore pres prevent d	n below the 9-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. done as a mud equivalency test using the mud weight necessary for the sure of the formation below the shoe (not the mud weight required to issolving the salt formation) and the mud weight for the bottom of the port results to BLM office.
Centraliz	ers required through the curve and a minimum of one every other joint.

3. The minimum required fill of cement behind the 5-1/2 inch production casing is:

Cement should tie-back at least 50 feet above the Capitan Reef (Top of Capitan Reef estimated at 3734'). Operator shall provide method of verification.

CONTINGENCY CASING DESIGN OPTION #2 (IF LOSS CIRCULATION OF 50% OR GREATER OCCURS ON THE 12-1/4" HOLE, OPERATOR WILL SWITCH TO THIS FOUR STRING DESING):

- 1. The 13-3/8 inch surface casing shall be set at approximately 1888 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature

survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Formation below the 13-3/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing, which shall be set at 5013 feet, is:

Operator has proposed DV tool at depth of 3262', but will adjust cement proportionately if moved. DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

- Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage.
- b. Second stage above DV tool:

a. First stage to DV tool:____

Cement to surface. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to

include the lead cement slurry due to Capitan Reef. Excess calculates to 20% - Additional cement may be required

Formation below the 9-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe (not the mud weight required to prevent dissolving the salt formation) and the mud weight for the bottom of the hole. Report results to BLM office.

7-5/8" Intermediate casing shall be kept fluid filled while running into hole to meet BLM minimum collapse requirements.

3.	The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:
_	Cement to surface. If cement does not circulate, contact the appropriate BLM
	office. Excess calculates to 14% - Additional cement may be required
	rmation below the 7-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. st to be done as a mud equivalency test using the mud weight necessary for the
•	re pressure of the formation below the shoe and the mud weight for the bottom of chole. Report results to BLM office
•	re pressure of the formation below the shoe and the mud weight for the bottom of
•	re pressure of the formation below the shoe and the mud weight for the bottom of chole. Report results to BLM office
the	re pressure of the formation below the shoe and the mud weight for the bottom of hole. Report results to BLM office

- - Cement should tie-back at least 50 feet above the Capitan Reef (Top of Capitan Reef estimated at 3734'). Operator shall provide method of verification.
- 5. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.

- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 3. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
 - e. Operator shall perform the 9-5/8" and 7-5/8" casing integrity tests to 70% of the casing burst. This will test the multi-bowl seals.
 - f. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi.)

10M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

4. The appropriate BLM office shall be notified a minimum of hours in advance for a representative to witness the tests.

Page 9 of 11

- a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- a. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer.
- b. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- c. The results of the test shall be reported to the appropriate BLM office.
- d. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- e. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- f. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the **Wolfcamp** formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

D. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the **Wolfcamp** formation, and shall be used until production casing is run and cemented.

Page 10 of 11

E. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

F. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 041119

Page 11 of 11

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME: | AMEREDEV OPERATING LLC

LEASE NO.: NMNM 137804

WELL NAME & NO.: JUNIPER FED COM 25 36 34 111H

SURFACE HOLE FOOTAGE: 230'/N & 290'/W BOTTOM HOLE FOOTAGE 200'/N & 380'/W

LOCATION: | SECTION 3, T25S, R36E, NMPM

COUNTY: LEA

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

	General Provisions
	Permit Expiration
	Archaeology, Paleontology, and Historical Sites
	Noxious Weeds
	Special Requirements
	Hydrology
	Construction
	Notification
	Topsoil
	Closed Loop System
	Federal Mineral Material Pits
	Well Pads
	Roads
	Road Section Diagram
	Production (Post Drilling)
	Well Structures & Facilities
	Pipelines
	Electric Lines
	Interim Reclamation
\Box	Final Abandonment & Reclamation

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult

with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

v. SPECIAL REQUIREMENT(S)

Hydrology:

Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank or 24 hour production, whichever is greater. Automatic shut off, check valves, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.

A leak detection plan will be submitted to the BLM Carlsbad Field Office for approval prior to pipeline installation. The method could incorporate gauges to detect pressure drops, situating valves and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.

Electric Lines: Any water erosion that may occur due to the construction of overhead electric line and during the life of the power line will be quickly corrected and proper measures will be taken to prevent future erosion.

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the .

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which

creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

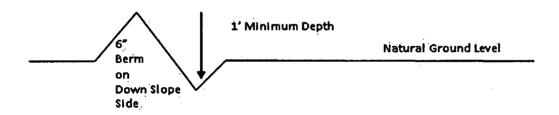
The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.


Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, leadoff ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Construction Steps

- 1. Salvage topsoil
- 3. Redistribute topsoil
- 2. Construct road
- 4. Revegetate slopes

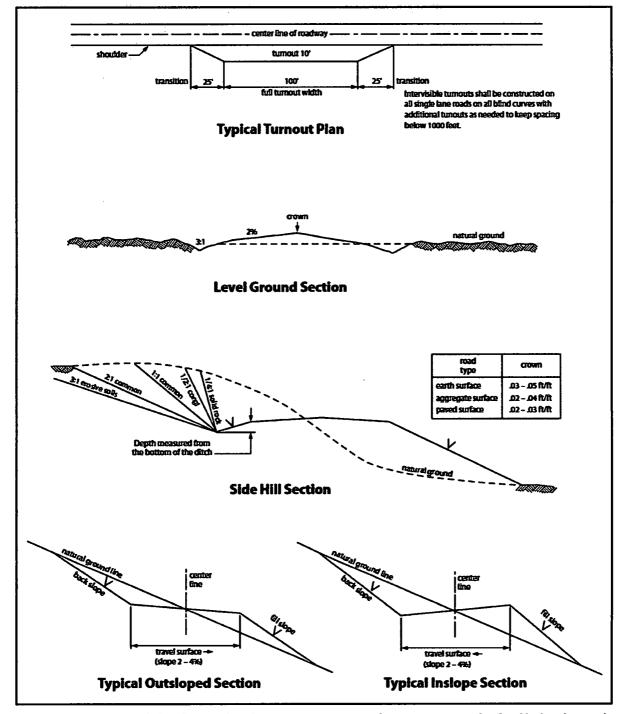


Figure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, **Shale Green** from the BLM Standard Environmental Color Chart (CC-001: June 2008).

B. PIPELINES

BURIED PIPELINE STIPULATIONS

A copy of the application (Grant, APD, or Sundry Notice) and attachments, including conditions of approval, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

- 1. The Holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.
- 2. The Holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.
- 3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, et seq. or the Resource Conservation and Recovery Act, 42 U.S.C.6901, et seq.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way.

This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

- 4. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil or other pollutant, wherever found, shall be the responsibility of holder, regardless of fault. Upon failure of holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve holder of any responsibility as provided herein.
- 5. All construction and maintenance activity will be confined to the authorized right-of-way.
- 6. The pipeline will be buried with a minimum cover of <u>36</u> inches between the top of the pipe and ground level.
- 7. The maximum allowable disturbance for construction in this right-of-way will be 30 feet:
 - Blading of vegetation within the right-of-way will be allowed: maximum width of blading operations will not exceed **20** feet. The trench is included in this area. (*Blading is defined as the complete removal of brush and ground vegetation.*)
 - Clearing of brush species within the right-of-way will be allowed: maximum width of clearing operations will not exceed 30 feet. The trench and bladed area are included in this area. (Clearing is defined as the removal of brush while leaving ground vegetation (grasses, weeds, etc.) intact. Clearing is best accomplished by holding the blade 4 to 6 inches above the ground surface.)
 - The remaining area of the right-of-way (if any) shall only be disturbed by compressing the vegetation. (Compressing can be caused by vehicle tires, placement of equipment, etc.)
- 8. The holder shall stockpile an adequate amount of topsoil where blading is allowed. The topsoil to be stripped is approximately ___6__ inches in depth. The topsoil will be segregated from other spoil piles from trench construction. The topsoil will be evenly distributed over the bladed area for the preparation of seeding.

- 9. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.
- 10. Vegetation, soil, and rocks left as a result of construction or maintenance activity will be randomly scattered on this right-of-way and will not be left in rows, piles, or berms, unless otherwise approved by the Authorized Officer. The entire right-of-way shall be recontoured to match the surrounding landscape. The backfilled soil shall be compacted and a 6 inch berm will be left over the ditch line to allow for settling back to grade.
- 11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.
- 12. The holder will reseed all disturbed areas. Seeding will be done according to the attached seeding requirements, using the following seed mix.

() seed mixture 1	() seed mixture 3
(X) seed mixture 2	() seed mixture 4
() seed mixture 2/LPC	() Aplomado Falcon Mixture

- 13. All above-ground structures not subject to safety requirements shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be color which simulates "Standard Environmental Colors" Shale Green, Munsell Soil Color No. 5Y 4/2.
- 14. The pipeline will be identified by signs at the point of origin and completion of the right-of-way and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. All signs and information thereon will be posted in a permanent, conspicuous manner, and will be maintained in a legible condition for the life of the pipeline.
- 15. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder before maintenance begins. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway. As determined necessary during the life of the pipeline, the Authorized Officer may ask the holder to construct temporary deterrence structures.

- 16. Any cultural and/or paleontological resources (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.
- 17. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes associated roads, pipeline corridor and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.
- 18. Escape Ramps The operator will construct and maintain pipeline/utility trenches [that are not otherwise fenced, screened, or netted] to prevent livestock, wildlife, and humans from becoming entrapped. At a minimum, the operator will construct and maintain escape ramps, ladders, or other methods of avian and terrestrial wildlife escape in the trenches according to the following criteria:
 - a. Any trench left open for eight (8) hours or less is not required to have escape ramps; however, before the trench is backfilled, the contractor/operator shall inspect the trench for wildlife, remove all trapped wildlife, and release them at least 100 yards from the trench.
 - b. For trenches left open for eight (8) hours or more, earthen escape ramps (built at no more than a 30 degree slope and spaced no more than 500 feet apart) shall be placed in the trench.

C. ELECTRIC LINES

STANDARD STIPULATIONS FOR OVERHEAD ELECTRIC DISTRIBUTION LINES

A copy of the grant and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

- 2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.
- 3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, et seq.) or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, et seq.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.
- 4. There will be no clearing or blading of the right-of-way unless otherwise agreed to in writing by the Authorized Officer.
- 5. Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all powerline structures placed on this right-of-way, should they be necessary to ensure the safety of large perching birds. Such modifications and/or additions shall be made by the holder without liability or expense to the United States.

Raptor deterrence will consist of but not limited to the following: triangle perch discouragers shall be placed on each side of the cross arms and a nonconductive perching deterrence shall be placed on all vertical poles that extend past the cross arms.

6. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The

holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

- 7. The BLM serial number assigned to this authorization shall be posted in a permanent, conspicuous manner where the power line crosses roads and at all serviced facilities. Numbers will be at least two inches high and will be affixed to the pole nearest the road crossing and at the facilities served.
- 8. Upon cancellation, relinquishment, or expiration of this grant, the holder shall comply with those abandonment procedures as prescribed by the Authorized Officer.
- 9. All surface structures (poles, lines, transformers, etc.) shall be removed within 180 days of abandonment, relinquishment, or termination of use of the serviced facility or facilities or within 180 days of abandonment, relinquishment, cancellation, or expiration of this grant, whichever comes first. This will not apply where the power line extends service to an active, adjoining facility or facilities.
- 10. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

11. Special Stipulations:

- For reclamation remove poles, lines, transformer, etc. and dispose of properly.
- Fill in any holes from the poles removed.

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Seed Mixture 2, for Sandy Sites

The holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be <u>no</u> primary or secondary noxious weeds in the seed mixture. Seed

will be tested and the viability testing of seed will be done in accordance with State law (s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the authorized officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). The holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

<u>Species</u>	l <u>b/acre</u>
Sand dropseed (Sporobolus cryptandrus)	1.0
Sand love grass (Eragrostis trichodes)	1.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

APD ID: 10400031759

Operator Name: AMEREDEV OPERATING LLC

Well Name: JUNIPER FED COM 25 36 34

Well Type: OIL WELL

Submission Date: 07/24/2018

Federal/Indian APD: FED

Well Number: 111H

Well Work Type: Drill

Show Final Text

Application

Section 1 - General

APD ID: 10400031759 **Tie to previous NOS?** 10400024490

Submission Date: 07/24/2018

BLM Office: CARLSBAD

User: Christie Hanna

Title: Senior Engineering Technician

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM136233

Lease Acres: 1280

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? NO

APD Operator: AMEREDEV OPERATING LLC

Operator letter of designation:

Operator Info

Operator Organization Name: AMEREDEV OPERATING LLC

Operator Address: 5707 Southwest Parkway, Building 1, Suite 275

Operator PO Box:

Zip: 78735

Operator City: Austin

State: TX

Operator Phone: (737)300-4700

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Master Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Approval Date: 04/19/2019

Page 1 of 23

Operator Name: AMEREDEV OPERATING LLC

Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: JAL

Pool Name: WOLFCAMP

WEST

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, CO2, OIL

Describe other minerals:

Is the proposed well in a Helium production area? N

Use Existing Well Pad? NO

New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name:

Number: 111H

Well Class: HORIZONTAL

JUNIPER

Number of Legs: 1

Well Work Type: Drill

Well Type: OIL WELL

Describe Well Type:

Well sub-Type: INFILL

Describe sub-type:

Distance to town: 5 Miles

Distance to nearest well: 8542 FT

Distance to lease line: 230 FT

Reservoir well spacing assigned acres Measurement: 320 Acres

Well plat:

Juniper_Fed_Com_25_36_34_111H___Gas_Capture_Plan_20180629090909.pdf

JUNIPER_FED_COM_25_36_34_121H___BLM_LEASE_MAP_20190205075500.pdf

JUNIPER_FED_COM_25_36_34_121H___C_102_REV_SIG_20190205075501.pdf

JUNIPER_FED_COM_25_36_34_121H___EXH_2AB_20190205075501.pdf

JUNIPER_FED_COM_25_36_34_121H___VICINITY_MAP_20190205075502.pdf

Well work start Date: 03/01/2019

Duration: 90 DAYS

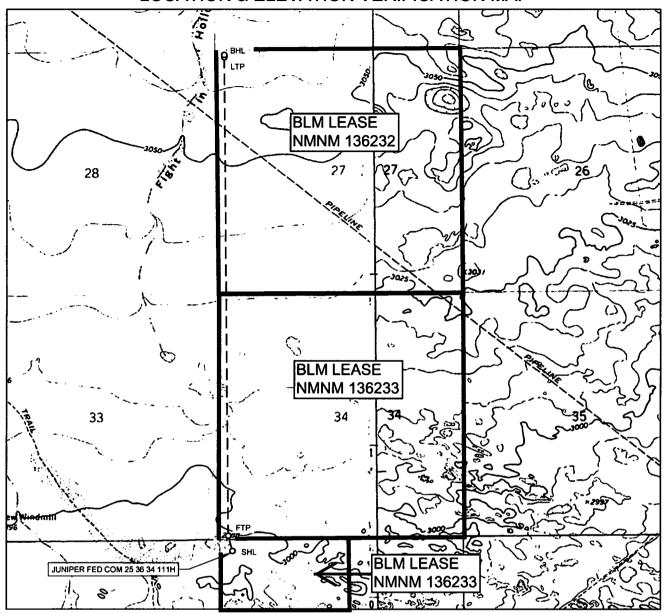
Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88


Survey number: 18329

_																			
	ļ	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	ΟΛΤ
- 1		230	FNL	290	FWL	26S	36E	3	Lot	32.07894	1		NEW		F			0	0
Le	eg								D		103.2606		MEXI			137804	2		
#	1		ŀ	ŀ							2		co	co					

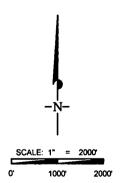
Approval Date: 04/19/2019

Page 2 of 23

LOCATION & ELEVATION VERIFICATION MAP

AMEREDEV

AMEREDEV OPERATING, LLC


LEASE NAME & WELL NO.: JUNIPER FED COM 25 36 34 111H

 SECTION
 3
 TWP
 26-S
 RGE
 36-E
 SURVEY
 N.M.P.M.

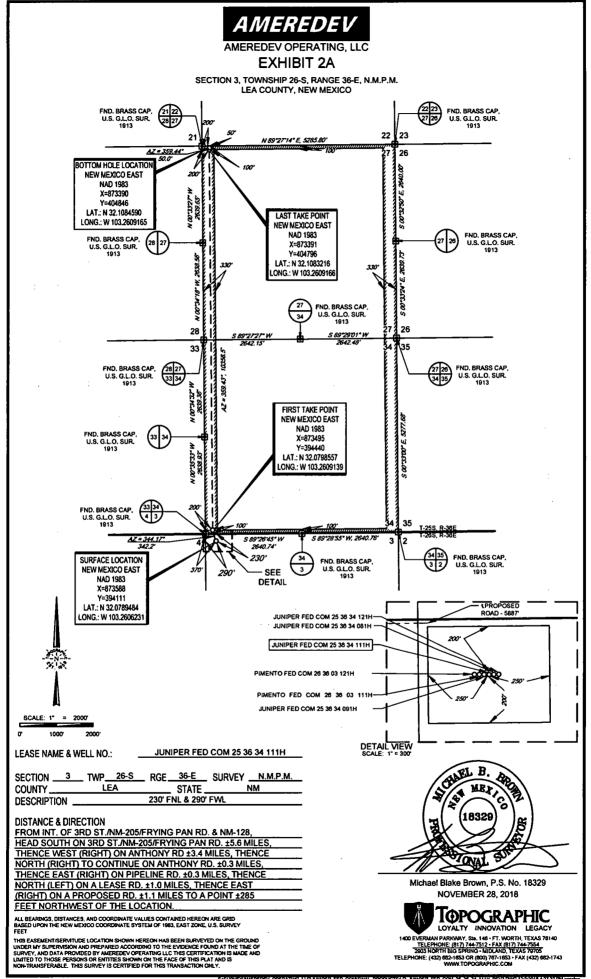
 COUNTY
 LEA
 STATE
 NM
 ELEVATION
 2992'

 DESCRIPTION
 230' FNL & 290' FWL

LATITUDE N 32.0789484 LONGITUDE W 103.2606231

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO STATE PLANE COORDINATE SYSTEM, EAST ZONE OF THE NORTH AMERICAN DATUM 1983, U.S. SURVEY FEET.


1400 EVERMAN PARKWAY, Ste. 146 • FT, WORTH, TEXAS 76140

TELEPHONE: (817) 744-7512 • FAX (817) 744-7554

2803 NORTH BIG SPRING • MIDLAND, TEXAS 76705

TELEPHONE: (432) 682-1633 OR (800) 767-1653 • FAX (432) 682-1743

WWW.TOPOGRAPHIC.COM

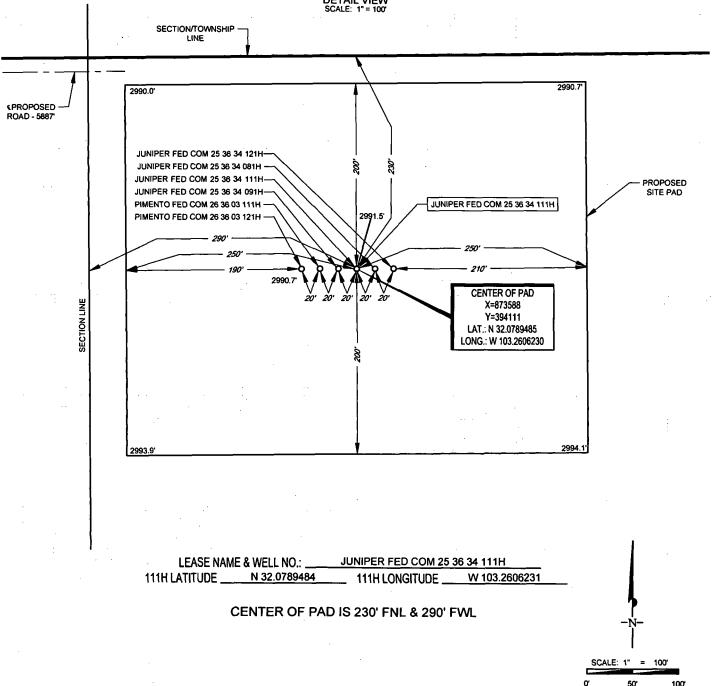
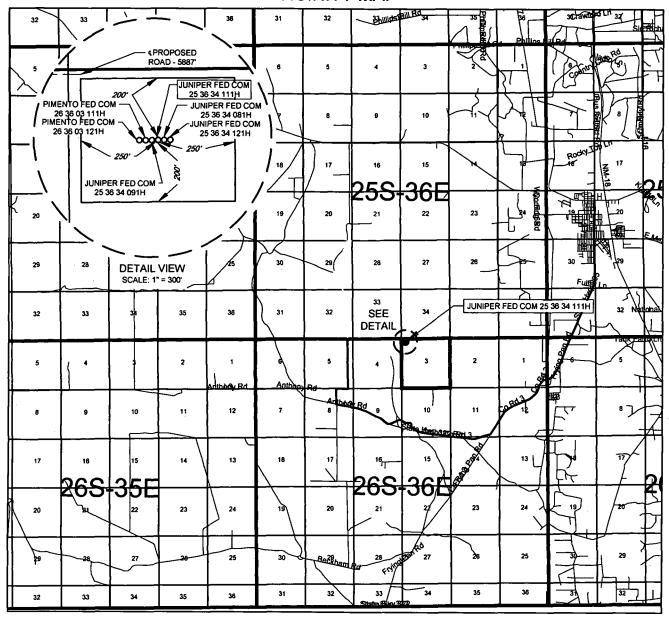


EXHIBIT 2B

SECTION 3, TOWNSHIP 26-S, RANGE 36-E, N.M.P.M. LEA COUNTY, NEW MEXICO

DETAIL VIEW SCALE: 1" = 100"



ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1883, EAST ZONE, U.S. SURVEY FEET

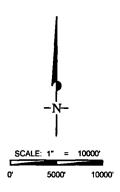
THIS PROPOSED PAD SITE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

EXHIBIT 2 VICINITY MAP

AMEREDEV

AMEREDEV OPERATING, LLC

LEASE NAME & WELL NO.:	JUNIPER FED COM 25 36 34 111H


SECTION _	3	_ TWP_	26-S	_ RGE_	36-E	SURVEY	N.M.P.M.
COUNTY_		LE	A		STATE		NM
DESCRIPTION	ON _			230' FI	NL & 290	FWL	

DISTANCE & DIRECTION

FROM INT. OF 3RD ST./NM-205/FRYING PAN RD. & NM-128, HEAD SOUTH ON 3RD ST./NM-205/FRYING PAN RD. ±5.6 MILES, THENCE WEST (RIGHT) ON ANTHONY RD ±3.4 MILES, THENCE NORTH (RIGHT) TO CONTINUE ON ANTHONY RD. ±0.3 MILES, THENCE EAST (RIGHT) ON PIPELINE RD. ±0.3 MILES, THENCE NORTH (LEFT) ON A LEASE RD. ±1.0 MILES, THENCE EAST (RIGHT) ON A PROPOSED RD. ±1.1 MILES TO A POINT ±330 FEET NORTHWEST OF THE LOCATION.

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO STATE PLANE COORDINATE SYSTEM, EAST ZONE OF THE NORTH AMERICAN DATUM 1983, U.S. SURVEY FEET.

1400 EVERMAN PARKWAY, Ste. 146 • FT. WORTH, TEXAS 76140 TELEPHONE: (817) 744-7512 • FAX (817) 744-7554 2903 NORTH BIG SPRING • MIDLAND, TEXAS 76705 TELEPHONE: (432) 682-1653 OR (800) 767-1653 • FAX (432) 682-1743 WWW.TOPOGRAPHIC.COM

Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

$\overline{}$																		
	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County .	State	Meridian	Lease Type	Lease Number	Elevation	MD	ΔΛΤ
KOP Leg #1	632	FNL	413	FWL	26S	36E	3	Aliquot NWN W	32.07784	- 103.2602 3	LEA	1	NEW MEXI CO	F	NMNM 137804	- 820 8	112 22	112 00
PPP Leg #1	0	FSL	235	FWL	258	36E	34	Aliquot SWS W	32.09676	- 103.2607 8	LEA	NEW MEXI CO		F	NMNM 136233	- 871 1	121 85	117 03
PPP Leg #1	0	FSL	146	FWL	25S	36E	27	Aliquot SWS W	32.09408	- 103.2609 1	LEA	NEW MEXI CO	—	F	NMNM 136232	- 872 8	174 33	117 20
EXIT Leg #1	50	FNL	200	FWL	258	36E	27	Aliquot NWN W	32.10845	- 103.2609 1	LEA	1	NEW MEXI CO	F	NMNM 136232	- 872 8	226 61	117 20
BHL Leg #1	50	FNL	200	FWL	258	36E	27	Lot D	32.10845	- 103.2609 1	LEA		NEW MEXI CO	F	NMNM 136232	- 872 8	226 61	117 20

Drilling Plan

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	
1	RUSTLER	1254	1763	1763	ANHYDRITE	NONE	No
2	SALADO	-731	1985	1985	SALT	NONE	No
3	TANSILL	-2008	3262	3262	LIMESTONE	NONE	No
4	CAPITAN REEF	-2553	3807	3807	LIMESTONE	USEABLE WATER	No
5	LAMAR	-3709	4963	4963	LIMESTONE	NONE	No
6	BELL CANYON	-3905	5159	5159	SANDSTONE	NATURAL GAS,OIL	No
7	BRUSHY CANYON	-5450	6704	6704	SANDSTONE	NATURAL GAS,OIL	No
8	BONE SPRING LIME	-6434	7688	7688	LIMESTONE	NONE	No
9	BONE SPRING 1ST	-8046	9300	9300	SANDSTONE	NATURAL GAS,OIL	No

Approval Date: 04/19/2019

Page 3 of 23

Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

ition Name Elevation	True Vertical Meas		Mineral Resources	Producing
	vanon popun j po		I Windrai Roeniimoe	Formation
	8631 9885 98		NATURAL GAS,OIL	No
SPRING 2ND -8631	90031 9003 90	65 SANDSTONE	NATURAL GAS,OIL	
SPRING 3RD -9291	9291 10545 105	545 LIMESTONE	NATURAL GAS,OIL	No
SPRING 3RD -9886	9886 11140 11	140 SANDSTONE	NATURAL GAS,OIL	No
LFCAMP -10067	10067 11321 113	321 SHALE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M

Rating Depth: 15000

Equipment: 10M BOPE SYSTEM WILL BE USED AFTER THE SURFACE CASING IS SET. A KELLY COCK WILL BE KEPT IN THE DRILL STRING AT ALL TIMES. A FULL OPENING DRILL PIPE STABBING VALVE WITH PROPER DRILL PIPE CONNECTIONS WILL BE ON THE RIG FLOOR AT ALL TIMES.

Requesting Variance? YES

Variance request: Co-Flex Choke Line, 5M Annular Preventer

Testing Procedure: See Attachment

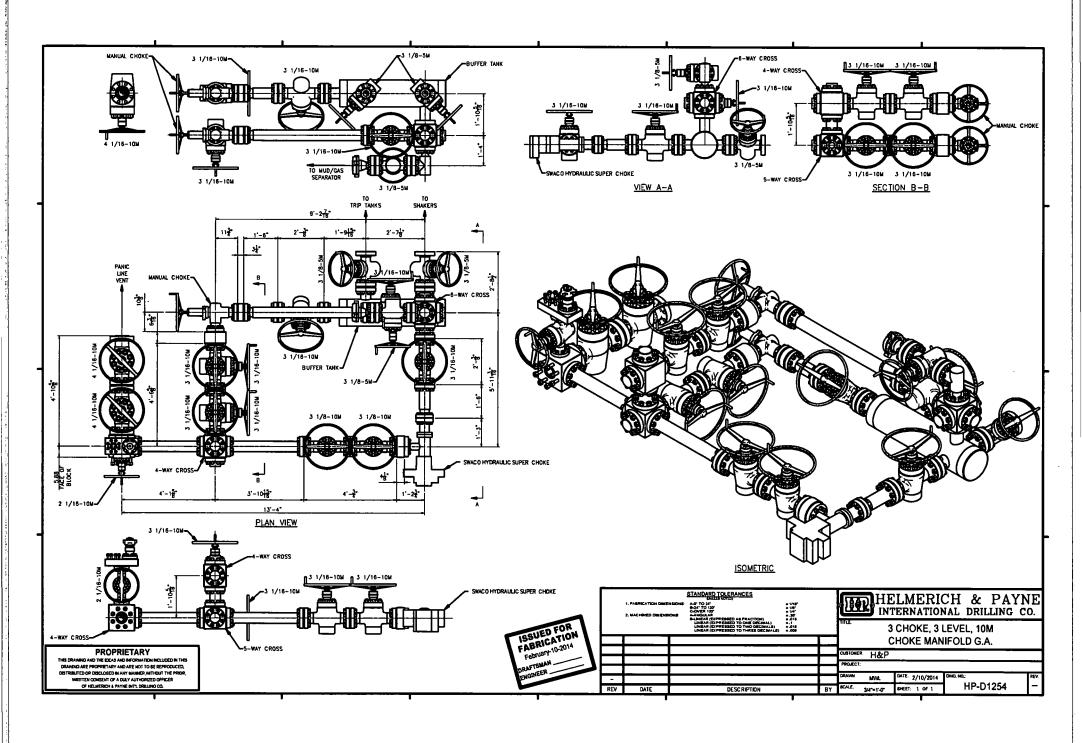
Choke Diagram Attachment:

10M_Choke_Manifold_REV_20190205080719.pdf

BOP Diagram Attachment:

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190205080742.pdf

5M_BOP_System_20190205080742.pdf


 $Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190205080742.pdf$

4_String_MB_Ameredev_Wellhead_Drawing_net_REV_20190205080752.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	TO - 7- C
1	SURFACE	17.5	13.375	NEW	API	N	0	1888	0	1888	2992		1888	J-55		OTHER - BTC	4.86	0.52	DRY	8.89	DRY	8.:

Approval Date: 04/19/2019

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Open Hole	13-5/8	Drilling Fluid	Blind Rams	

All Drilling Components in 10M Environment will have OD that will allow full Operational RATED WORKING PRESSURE for system design. Kill line with minimum 2" ID will be available outside substructure with 10M Check Valve for OOH Kill Operations

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

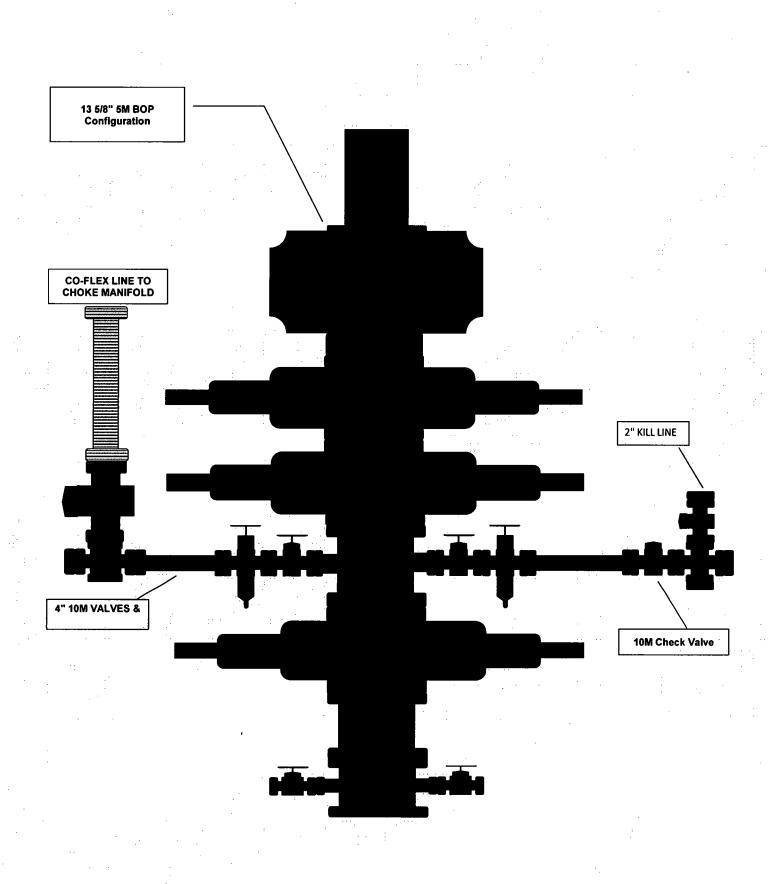
- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available


- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure
- *FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

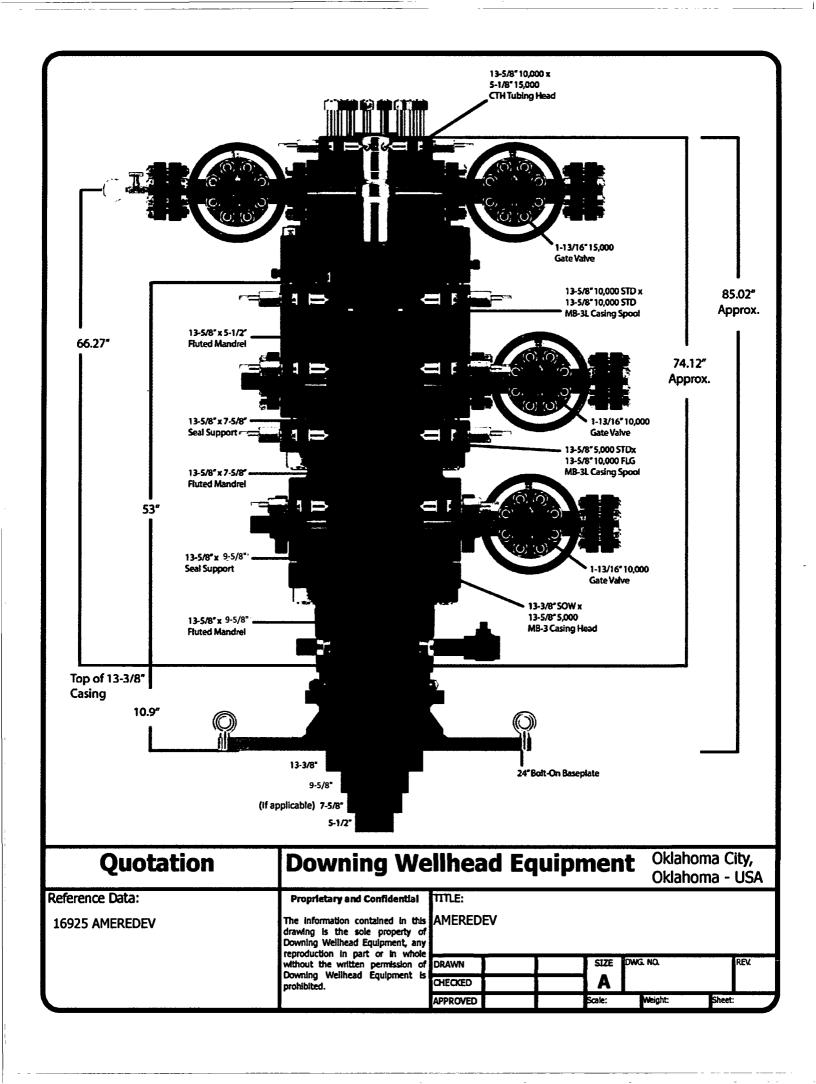
Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan


Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M
 Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure
 witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or
 .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the
 burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break
 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips
 and test same (Installation procedure witnessed and verified by a manufacturer's
 representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed
 and verified by a manufacturer's representative). Ameredev will test head to 70% casing design
 and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting
 completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a
 co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to
 API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications
 will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

AMEREDEV

Wellbore Schematic

Well: Juniper Fed Com 25-36-34 111H Sec. 03 26S-36E 230' FNL & 290' FWL SHL:

BHL: Sec. 27 25S-36E 50' FNL & 200' FWL

Lea. NM

Wellhead: A - 13-5/8" 10M x 13-5/8" SOW

> B - 13-5/8" 10M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

Tubing: 2-7/8" L-80 6.5# 8rd EUE Co. Well ID: XXXXXX

AFE No.: XXXX-XXX API No.:

XXXXXXXXXXX GL: 2.992'

Field: Delaware

Wolfcamp A Objective:

TVD: 11,720' 22.661' MD:

Rig: TBD KB: 27'

E-Mail: Wellsite2@ameredev.com

rubing.	2 770 2 00	78 E-00 0.5# 614 EOE		E-IVIAII.	_		<u> </u>	ameredev.com	
Hole Size			Formation Tops		Logs	Cemer	it	Mud Weight	
17.5"			Rustler	1,763'		1,165 Sacks TOC 0'	100% Excess	8.4-8.6 ppg WBM	
	4		13.375" 54.5# J-55 BTC	1,888'		1, t	100	<u>α</u>	
:			Salado	1,985'					
			Tansill	3,262'					
			Capitan Reef	3,807'		l s	SSe	5	
			Lamar	4,963'		886 Sacks TOC 0'	50% Excess	mulsi	
			DV Tool	5,013'		986 TO	20%	ne E	
12.25"			Bell Canyon	5,159'				8.5 - 9.4 ppg Diesel Brine Emulsion	
			Brushy Canyon	6,704'				og Die	
			Bone Spring Lime	7,688'				9.4 pt	
			First Bone Spring	9,300'			:	8.5 -	
			Second Bone Spring	9,885'		cks	ess		
			Third Bone Spring Upper	10,545'		1,723 Sacks TOC 0'	50% Excess		
	_//		9.625" 40# L-80HC BTC	10,670'		<u>5, 5</u>	20%		
8.5"			Third Bone Spring	11,140'				M8	
12° Buil @	d		Wolfcamp A	11,321'				opg OE	
11,221' N thru 12,405' N	}		20# P-110CYHP BTC mp A 11720 TVD // 22661 MD	22,661'		4,839 Sacks TOC 0'	25% Excess	10.5 - 14 ppg OBM	
					ļ	4,4 O	25%		

Casing Design and Safety Factor Check

Casing Specifications									
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling			
Surface	17.5	1,888'	13.375	54.5	J-55	ВТС			
Intermediate	12.25	10,670'	9.625	40	HCL-80	втс			
Prod Segment A	8.5	11,221'	5.5	20	CYHP-110	втс			
Prod Segment B	8.5	22,661'	5.5	20	CYHP-110	ВТС			

	Check Surface Casing								
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
14.375	853	915	4,100	2,730					
	S	afety Facto	ors						
1.56	8.29	8.89	4.86	0.52					
	Check I	ntermedia	te Casing						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
7.625	940	558	6700	9460					
	S	afety Facto	ors						
2.31	2.20	2.19	1.29	1.11					
	Check Pro	od Casing,	Segment A	i					
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
	S	afety Facto	ors						
1.36	3.11	2.79	1.57	1.68					
	Check Pro	od Casing,	Segment B						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
	S	afety Facto	ors						
1.36	72.95	65.63	1.50	1.68					

SěAH

13-3/8" 54.50# .380 J-55

Dimensions (Nominal)

Outside Diameter	13.375	in.
Wall	0.380	in.
Inside Diameter	12.615	in.
Drift	12.459	in.
Weight, T&C	54.500	lbs/ft
Weight, PE	52.790	lbs/ft

Performance Ratings, Minimum

Collapse, PE	1130	psi
Internal Yields Pressure		
PE	2730	psi
STC	2730	PSI .
ВТС	2730	psi
Yield Strength, Pipe Body	853	1000 lbs
Joint Strength, STC	514	1000 lbs
Joint Strength BTC	909	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

SěAH

9.625"

.395"

SEAH-80 HIGH COLLAPSE

(SEAH-80 IS A NON HEAT TREATED PRODUCT)

Dimensions (Nominal)

Outside Diameter	9.625	in.
Wall	0.395	in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.

<u>Performance Properties</u>		
Collapse	4100	psi
Internal Yield Pressure at Minimum Yield		
PE	5750	psi
LTC	5750	psi
ВТС	5750	psi
Yield Strength, Pipe Body	916	1000 lbs.
Joint Strength		
LTC	717	1000 lbs.
DTC	015	1000 lbc

 $\label{thm:continuous} \textbf{Note: SeAH Steel has produced this specification sheet for general information only.}$ SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

PERFORMANCE DATA

TMK UP SF TORQ™ Technical Data Sheet

Drift Diameter

Nom. Pipe Body Area

Yield Load In Tension

Collapse Pressure

Uniaxial Bending

Min. Internal Yield Pressure

5.500 in

20.00 lbs/ft

P-110 CYHP

Tubular Parameters					
Size	5.500	in	Minimum Yield	125,000	psi
Nominal Weight	20.00	lbs/ft	Minimum Tensile	135,000	psi
Grade	P-110 CYHP		Yield Load	728,000	lbs
PE Weight	19.81	lbs/ft	Tensile Load	786,000	lbs
Wall Thickness	0.361	in	Min. Internal Yield Pressure	14,360	psi
Nominal ID	4.778	in	Collapse Pressure	12,780	psi

in²

lbs

psi

psi

°/ 100 ft

4.653

5.828

655,000

14,360

12,780

93.8

Connection Parameters Connection OD 5.777 in Connection ID 4.734 in Make-Up Loss 5.823 in **Critical Section Area** 5.875 in² **Tension Efficiency** 90.0 % Compression Efficiency 90.0 %

Make-Up Torques Min. Make-Up Torque 15,700 ft-lbs Opt. Make-Up Torque 19,600 ft-lbs 21,600 Max. Make-Up Torque ft-lbs **Operating Torque** 29,000 ft-lbs Yield Torque 37,000 ft-lbs

Printed on: January-10-2018

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	٦٠٠٠٠٠
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	10670	0	10670			10670	HCL -80		OTHER - BTC	1.29	1.11	DRY	2.19	DRY	2.:
_	PRODUCTI ON	8.5	5.5	NEW	API	N	0	22661	0	11720			22661	OTH ER		OTHER - BTC	1.57	1.68	DRY	2.79	DRY	3.

Casing Attachments

Casing ID: 1

String Type:SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

13.375_54.50_J55_SEAH_20190205080921.pdf

JUNIPER_FED_COM_25_36_34_111H___WELLBORE_DIAGRAM_AND_CDA_20190205080944.pdf

Casing ID: 2

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

JUNIPER_FED_COM_25_36_34_111H___WELLBORE_DIAGRAM_AND_CDA_20190205081138.pdf 9625_40_SeAH80HC_4100_Collapse_20190205081230.pdf

Approval Date: 04/19/2019

Page 5 of 23

Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

Casing Attachments

Casing ID: 3

String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Section 4 - Cement

PRODUCTION

Lead

0

2266

4839

Casing Design Assumptions and Worksheet(s):

TMK_UP_SF_TORQ____5.500in_x_20.00__P_110_CYHP_20190205081337.pdf

JUNIPER_FED_COM_25_36_34_111H___WELLBORE_DIAGRAM_AND_CDA_20190205081349.pdf

Sement type Quantity(sx) String Type Bottom MD ead/Tail Top MD **Density** Ħ Yield 김 **SURFACE** 1502 965 1.76 13.5 1697. Lead Class C Bentonite, Accelerator, 63 Kolseal, Defoamer, Celloflake SURFACE Tail 1502 1888 200 1.34 14.8 268 100 Class C Salt 5013 INTERMEDIATE 0 4163 686 2.47 11.9 1694 25 Salt, Bentonite, Kolseal, Lead CLASS C 94 Defoamer, Celloflake, Anti-Settling Expansion Additive 5013 200 14.8 INTERMEDIATE 4163 1.33 266 25 Class C Retarder Tail **INTERMEDIATE** Lead | 5013 5013 9414 1531 11.9 3780 2.47 25 Class H Bentonite, Salt, Kolseal, 79 Defoamer, Celloflake, Retarder, Anti-Settling **Expansion Additive** INTERMEDIATE Tail 9414 1067 300 1.24 14.5 371.1 25 Class H Salt, Bentonite, 0 Retarder, Dispersant, Fluid Loss

1.34

14.2

6483

61

25

Class H

Salt, Bentonite, Fluid

Loss, Dispersant, Retarder, Defoamer

Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives	

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary supplies (e.g. bentonite, cedar bark) for fluid control will be on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure, and pump rate.

Circulating Medium Table

O Top Depth	Bottom Depth	Mud Type	α Min Weight (lbs/gal)	ο Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
Ľ	1000	MUD	0.4	0.0							
1888	1067 0	OTHER : Diesel Brine Emulsion	8.5	9.4							
1067 0	1172 0	OIL-BASED MUD	10.5	14							

Approval Date: 04/19/2019

Page 7 of 23

Well Name: JUNIPER FED COM 25 36 34 Well Number: 111H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5000

Anticipated Surface Pressure: 2421.6

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_20180629084022.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Jun111_DR_20190205082553.pdf

Jun111 LLR 20190205082554.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190205082612.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190205082613.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

CAPITAN_PROTECTION_CONTINGENCY_PLAN_20190322134005.pdf

Other Variance attachment:

R616___CoC_for_hoses_12_18_17_20180629084119.pdf Requested Exceptions 4 String 20190205082629.pdf

SUPO

Approval Date: 04/19/2019

H₂S Drilling Operation Plan

1. All Company and Contract personnel admitted on location must be trained by a qualified H₂S safety instructor to the following:

- a. Characteristics of H₂S
- b. Physical effects and hazards
- c. Principal and operation of H₂s detectors, warning system and briefing areas
- d. Evacuation procedure, routes and first aid
- e. Proper use of safety equipment and life support systems
- f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- b. Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

3. H₂S Detection and Alarm Systems:

- a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- b. An audio alarm will be installed on the derrick floor and in the top doghouse.

4. Protective Equipment for Essential Personnel:

a. **Breathing Apparatus:**

- i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
- ii. Two (SCBA) Units will be stored in safety trailer on location.
- Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.

b. **Auxiliary Rescue Equipment:**

- i. Stretcher
- ii. 2 OSHA full body harnesses
- iii. 100 ft. 5/8" OSHA approved rope
- iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- b. Windsock on the rig floor should be high enough to be visible.

6. Communication:

- a. While working under mask scripting boards will be used for communication where applicable.
- b. Hand signals will be used when script boards are not applicable.

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. <u>Drill Stem Testing:</u> No Planned DST at this time.

8. Mud program:

 If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

9. Metallurgy:

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
- b. Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H₂S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
- Have received training in the:
 - o Detection of H₂S and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating	LLC - Emergency Phone 737-300	-4799	
Key Personnel:			
Name	Title	Office	Mobile
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996
Blake Estrada	Construction Foreman		432-385-5831

<u>Artesia</u>	
Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283
Carlsbad	
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
US Bureau of Land Management	575-887-6544
Santa Fe	
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
National	
National Emergency Response Center (Washington, D.C.)	800-424-8802
<u>Medical</u>	
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433
.'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, NM	505-842-4949

AMEREDEV

Ameredev Operating, LLC.

JUN/PIM JUN/PIM #1S Juniper 111H

Wellbore #1

Plan: Design #1

Standard Planning Report

14 January, 2019

Planning Report

Database: Company: EDM5000

Project:

Ameredev Operating, LLC.

JUN/PIM

Site: Well: JUN/PIM #1S Juniper 111H Wellbore #1

Wellbore: Design:

Design #1

Local Co-ordinate Reference: **TVD Reference:**

Well Juniper 111H KN @ 3019.0usft KN @ 3019.0usft

MD Reference:

North Reference: **Survey Calculation Method:** Grid

Minimum Curvature

Project

JUN/PIM

Map System:

US State Plane 1983

Geo Datum: Map Zone:

North American Datum 1983 New Mexico Eastern Zone

System Datum:

Mean Sea Level

Site

From:

Well

JUN/PIM #1S

Site Position:

Well Position

Lat/Long

Northing: Easting: Slot Radius:

394,110.55 usft 873,588.15 usft

Latitude:

Grid Convergence:

Longitude:

32° 4' 44.214 N 103° 15' 38.243 W

0.57

Position Uncertainty:

Juniper 111H

+N/-S

0.0 usft 0.0 usft

0.0 usft

Northing: Easting:

394,110.55 usft 873,588.15 usft

6.64

13-3/16 "

Latitude: Longitude:

32° 4' 44.214 N 103° 15' 38.243 W

Position Uncertainty

+E/-W

0.0 usft

Wellhead Elevation:

12/4/2018

Ground Level:

2,992.0 usft

Wellbore

Wellbore #1

Design #1

Magnetics Mode! Name Sample Date

Declination (°)

Dip Angle (°)

Field Strength

59.96

(nT) 47,736,62818023

Design

Audit Notes:

Version:

Phase:

PROTOTYPE

Tie On Depth:

0.0

Vertical Section:

Depth From (TVD) (usft)

0.0

1/11/2019

+N/-S (usft) 0.0

+E/-W (usft) 0.0

Direction (°) 358.95

Plan Survey Tool Program Depth From

(usft)

Depth To (usft)

Survey (Wellbore)

Tool Name

MWD

Remarks

0.0 22,661.1 Design #1 (Wellbore #1)

IGRF2015

OWSG MWD - Standard

Planning Report

Database: Company: EDM5000

Ameredev Operating, LLC.

Project: Site:

JUN/PIM JUN/PIM #1S

Well: Wellbore: Design:

Juniper 111H Wellbore #1 Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Juniper 111H

KN @ 3019.0usft KN @ 3019.0usft

Grid Minimum Curvature

Measured			Vertical			Dogleg	Build	Turn		
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,300.0	6.00	163.00	2,299.5	-15.0	4.6	2.00	2.00	0.00	163.00	
6,020.9	6.00	163.00	6,000.0	-387.0	118.3	0.00	0.00	0.00	0.00	
6,320.9	0.00	0.00	6,299.5	-402.0	122.9	2.00	-2.00	0.00	180.00	•
11,221.5	0.00	0.00	11,200.0	-402.0	122.9	0.00	0.00	0.00	0.00	
11,920.1	83.83	345.22	11,674.7	10.1	14.2	12.00	12.00	0.00	345.22	
12,276.7	83.83	345.22	11,713.0	352.9	-76.3	0.00	0.00	0.00	0.00	
12,405.5	90.00	359.42	11,720.0	480.0	-93.4	12.00	4.79	11.02	66.98	Jun111 FTP2
22,661.1	90.00	359.42	11,720.0	10,735.1	-197.7	0.00	0.00	0.00	. 0.00	Jun111 BHL

Planning Report

Database: Company: EDM5000

Project: Site: Well:

Ameredev Operating, LLC.

JUN/PIM JUN/PIM #1S Juniper 111H

Wellbore: Design:

Wellbore #1

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well Juniper 111H

KN @ 3019.0usft KN @ 3019.0usft

Grid

			Mandle -4			\$4c-41 \$	Davie -	5	9 0
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	
			800.0						0.00
800.0 900.0	0.00 0.00	0.00 0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
				0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	2.00	163.00	2,100.0	-1.7	0.5	-1.7	2.00	2.00	0.00
2,200.0	4.00	163.00	2,199.8	-6.7	2.0	-6.7	2.00	2.00	0.00
2,300.0	6.00	163.00	2,299.5	-15.0	4.6	-15.1	2.00	2.00	0.00
2,400.0	6.00	163.00	2,398.9	-25.0	7.6	-25.1	0.00	0.00	0.00
2,500.0	6.00	163.00	2,498.4	-35.0	10.7	-35.2	0.00	0.00	0.00
2,600.0	6.00	163.00	2,597.8	-45.0	13.8	-45.2	0.00	0.00	0.00
2,700.0	6.00	163.00	2,697.3	-55.0	16.8	-55.3	0.00	0.00	0.00
2,800.0	6.00	163.00	2,796.7	-65.0	19.9	-65.3	0.00	0.00	0.00
2,900.0	6.00	163.00	2,896.2	-75.0	22.9	-75.4	0.00	0.00	0.00
3,000.0	6.00	163.00	2,995.6	-85.0	26.0	-85.4	0.00	0.00	0.00
3,100.0	6.00	163.00	3,095.1	-95.0	29.0	-95.5	0.00	0.00	0.00
3,200.0	6.00	163.00	3,194.5	-105.0	32.1	-105.5	0.00	0.00	0.00
3,300.0	6.00	163.00	3,294.0	-115.0	35.1	-115.6	0.00	0.00	0.00
3,400.0	6.00	163.00	3,393.4	-125.0	38.2	-125.6	0.00	0.00	0.00
3,500.0	6.00	163.00	3,492.9	-135.0	41.3	-135.7	0.00	0.00	0.00
3,600.0	6.00	163.00	3,592.3	-145.0	44.3	-145.7	0.00	0.00	0.00
3,700.0	6.00	163.00	3,691.8	-155.0	47.4	-155.8	0.00	0.00	0.00
3,800.0	6.00	163.00	3,791.2	-164.9	50.4	-165.8	0.00	0.00	0.00
3,900.0	6.00	163.00	3,890.7	-174.9	53.5	-175.9	0.00	0.00	0.00
4,000.0	6.00	163.00	3,990.1	-184.9	56.5	-186.0	0.00	0.00	0.00
4,100.0	6.00	163.00	4,089.6	-194.9	59.6	-196.0	0.00	0.00	0.00
4,200.0	6.00	163.00	4,189.0	-204.9	62.7	-206.1	0.00	0.00	0.00
4,300.0	6.00	163.00	4,288.5	-214.9	65.7	-216.1	0.00	0.00	0.00
4,400.0	6.00	163.00	4,387.9	-224.9	68.8	-226.2	0.00	0.00	0.00
4,500.0	6.00	163.00	4,487.4	-234.9	71.8	-236.2	0.00	0.00	0.00
•	6.00								
4,600.0		163.00	4,586.9	-244.9	74.9	-246.3	0.00	0.00	0.00
4,700.0	6.00	163.00	4,686.3	-254.9	77.9	-256.3	0.00	0.00	0.00
4,800.0	6.00	163.00	4,785.8	-264.9	81.0	-266.4	0.00	0.00	0.00
4,900.0	6.00	163.00	4,885.2	-274.9	84.0	-276.4	0.00	0.00	0.00
5,000.0	6.00	163.00	4,984.7	-284.9	87.1	-286.5	0.00	0.00	0.00
5,100.0	6.00	163.00	5,084.1	-294.9	90.2	-296.5	0.00	0.00	0.00
5,200.0	6.00	163.00	5,183.6	-304.9	93.2	-306.6	0.00	0.00	0.00

Planning Report

Database: Company: EDM5000

Ameredev Operating, LLC.

Project:

Design:

JUN/PIM

Site: Well: Wellbore: JUN/PIM #1S Juniper 111H

Wellbore #1

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Juniper 111H KN @ 3019.0usft

KN @ 3019.0usft Grid

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,400.0	6.00	163.00	5,382.5	-324.9	99.3	-326.7	0.00	0.00	0.00
5,500.0	6.00	163.00	5,481.9	-334.9	102.4	-336.7	0.00	0.00	0.00
5,600.0	6.00	163.00	5,581.4	-344.9	105.4	-346.8	0.00	0.00	0.00
5,700.0	6.00	163.00	5,680.8	-354.9	108.5	-356.8	0.00	0.00	0.00
5,800.0	6.00	163.00	5,780.3	-364.9	111.6	-366.9	0.00	0.00	0.00
5,900.0	6.00	163.00	5,879.7	-374.9	114.6	-376.9	0.00	0.00	0.00
•									
6,000.0	6.00	163.00	5,979.2	-384.9	117.7	-387.0	0.00	0.00	0.00
6,020.9	6.00	163.00	6,000.0	-387.0	118.3	-389.1	0.00	0.00	0.00
6,100.0	4.42	163.00	6,078.7	-393.8	120.4	-396.0	2.00	-2.00	0.00
6,200.0	2.42	163.00	6,178.6	-399.5	122.1	-401.7	2.00	-2.00	0.00
6,300.0	0.42	163.00	6,278.5	-401.9	122.9	-404.1	2.00	-2.00	0.00
6,320.9	0.00	0.00	6,299.5	-402.0	122.9	-404.2	2.00	-2.00	0.00
6,400.0	0.00	0.00	6,378.5	-402.0	122.9	-404.2	0.00	0.00	0.00
6,500.0	0.00	0.00	6,478.5	-402.0	122.9	-404.2	0.00	0.00	0.00
6,600.0	0.00	0.00	6,578.5	-402.0	122.9	-404.2	0.00	0.00	0.00
6,700.0	0.00	0.00	6,678.5	-402.0	122.9	-404.2	0.00	0.00	0.00
6,800.0	0.00	0.00	6,778.5	-402.0	122.9	-404.2	0.00	0.00	0.00
6,900.0	0.00	0.00	6,878.5	-402.0	122.9	-404.2	0.00	0.00	0.00
7,000.0	0.00	0.00	6,978.5	-402.0	122.9	-404.2	0.00	0.00	0.00
7,100.0	0.00	0.00	7,078.5	-402.0	122.9	-404.2	0.00	0.00	0.00
7,200.0	0.00	0.00	7,178.5	-402.0	122.9	-404.2	0.00	0.00	0.00
7,300.0	0.00	0.00	7,278.5	-402.0	122.9	-404.2	0.00	0.00	0.00
7,400.0	0.00	0.00	7,378.5	-402.0	122.9	-404.2	0.00	0.00	0.00
7,500.0	0.00	0.00	7,478.5	-402.0	122.9	-404.2	0.00	0.00	0.00
7,600.0	0.00	0.00	7,578.5	-402.0	122.9	-404.2	0.00	0.00	0.00
7,700.0	0.00	0.00	7,678.5	-402.0	122.9	-404.2	0.00	0.00	0.00
7,800.0	0.00 0.00	0.00 0.00	7,778.5	-402.0 -402.0	122.9	-404.2	0.00 0.00	0.00 0.00	0.00 0.00
7,900.0			7,878.5		122.9	-404.2			
8,000.0	0.00	0.00	7,978.5	-402.0	122.9	-404.2	0.00	0.00	0.00
8,100.0	0.00	0.00	8,078.5	-402.0	122.9	-404.2	0.00	0.00	0.00
8,200.0	0.00	0.00	8,178.5	-402.0	122.9	-404.2	0.00	0.00	0.00
8,300.0	0.00	0.00	8,278.5	-402.0	122.9	-404.2	0.00	0.00	0.00
8,400.0	0.00	0.00	8,378.5	-402.0	122.9	-404.2	0.00	0.00	0.00
8,500.0	0.00	0.00	8,478.5	-402.0	122.9	-404.2	0.00	0.00	0.00
8,600.0	0.00	0.00	8,578.5	-402.0	122.9	-404.2	0.00	0.00	0.00
8,700.0	0.00	0.00	8,678.5	-402.0	122.9	-404.2	0.00	0.00	0.00
8,800.0	0.00	0.00	8,778.5	-402.0	122.9	-404.2	0.00	0.00	0.00
8,900.0	0.00	0.00	8,878.5	-402.0 -402.0	122.9	-404.2 -404.2	0.00	0.00	0.00
9,000.0	0.00	0.00	8,978.5	-402.0	122.9	-404.2 -404.2	0.00	0.00	0.00
9,100.0	0.00	0.00	9,078.5	-402.0 -402.0	122.9	-404.2 -404.2	0.00	0.00	0.00
9,100.0	0.00	0.00	9,078.5 9,178.5	-402.0 -402.0	122.9	-404.2 -404.2	0.00	0.00	0.00
9,300.0	0.00	0.00	9,278.5	-402.0	122.9	-404.2	0.00	0.00	0.00
9,400.0	0.00	0.00	9,378.5	-402.0	122.9	-404.2	0.00	0.00	0.00
9,500.0	0.00	0.00	9,478.5	-402.0	122.9	-404.2	0.00	0.00	0.00
9,600.0	0.00	0.00	9,578.5	-402.0	122.9	-404.2	0.00	0.00	0.00
9,700.0	0.00	0.00	9,678.5	-402.0	122.9	-404.2	0.00	0.00	0.00
9,800.0	0.00	0.00	9,778.5	-402.0	122.9	-404.2	0.00	0.00	0.00
9,900.0	0.00	0.00	9,878.5	-402.0	122.9	-404.2	0.00	0.00	0.00
10,000.0	0.00	0.00	9,978.5	-402.0	122.9	-404.2	0.00	0.00	0.00
10,100.0	0.00	0.00	10,078.5	-402.0	122.9	-404.2 -404.2	0.00	0.00	0.00
	0.00		-						
10,200.0		0.00	10,178.5	-402.0	122.9	-404.2	0.00	0.00	0.00
10,300.0	0.00	0.00	10,278.5	-402.0	122.9	-404.2	0.00	0.00	0.00
10,400.0	0.00	0.00	10,378.5	-402.0	122.9	-404.2	0.00	0.00	0.00

Planning Report

Database: Company: EDM5000

Ameredev Operating, LLC.

Project:

JUN/PIM

Site: Well:

JUN/PIM #1S Juniper 111H

Wellbore: Design:

Wellbore #1 Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method: Well Juniper 111H KN @ 3019.0usft

KN @ 3019.0usft

Grid Minimum Curvature

nned Survey			Mandle - 1			NA47.	B'	5	
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,600.0	0.00	0.00	10,578.5	-402.0	122.9	-404.2	0.00	0.00	0.00
10,700.0	0.00	0.00	10,678.5	-402.0	122.9	-404.2	0.00	0.00	0.00
10,800.0	0.00	0.00	10,778.5	-402.0	122.9	-404.2	0.00	0.00	0.00
10,900.0	0.00	0.00	10,878.5	-402.0	122.9	-404.2	0.00	0.00	0.00
11,000.0	0.00	0.00	10,978.5	-402.0	122.9	-404.2	0.00	0.00	0.00
11,100.0	0.00	0.00	11,078.5	-402.0	122.9	-404.2	0.00	0.00	0.00
11,121.5	0.00	0.00	11,100.0	-402.0	122.9	-404.2	0.00	0.00	0.00
Jun111 FTP2	KOP								
11,200.0	0.00	0.00	11,178.5	-402.0	122.9	-404.2	0.00	0.00	0.00
11,200.0	0.00	0.00	11,176.5	-402.0 -402.0	122.9	-404.2 -404.2	0.00	0.00	0.00
		0.00	11,200.0	-102.0	122.5	-404.2	0.00	0.00	0.00
Sec 03 - Jun 11,300.0	9.42	345.22	11,278.2	-395.7	121.2	-397.9	42.00	12.00	0.00
11,400.0	9.42 21.42	345.22 345.22	11,278.2	-395.7 -370.1	121.2 114.5	-397.9 -372.1	12.00 12.00	12.00 12.00	0.00
11,500.0	33.42	345.22 345.22	11,374.4	-370.1 -325.6	102.8	-372.1 -327.5	12.00	12.00	0.00
11,600.0	45.42	345.22	11,540.1	-264.3	86.6	-265.9	12.00	12.00	0.00
11,700.0	57.42	345.22	11,602.3	-188.9	66.7	-190.1	12.00	12.00	0.00
11,800.0	69.42	345.22	11,647.0	-102.6	43.9	-103.4	12.00	12.00	0.00
11,900.0 11,920.1	81.42 83.83	345.22 345.22	11,672.1 11,674.7	-9.2 10.1	19.3 14.2	-9.5 9.8	12.00 12.00	12.00 12.00	0.00 0.00
			•						
12,000.0	83.83	345.22	11,683.3	86.9	-6.1	87.0	0.00	0.00	0.00
12,100.0	83.83	345.22	11,694.0	183.1	-31.4	183.6	0.00	0.00	0.00
12,184.7	83.83	345.22	11,703.1	264.4	-52.9	265.4	0.00	0.00	0.00
Sec 34									
12,200.0	83.83	345.22	11,704.8	279.2	-56.8	280.2	0.00	0.00	0.00
12,259.0	83.83	345.22	11,711.1	335.9	-71.8	337.1	0.00	0.00	0.00
Jun111 FTP									
12,276.7	83.83	345.22	11,713.0	352.9	-76.3	354.3	0.00	0.00	0.00
12,300.0	84.93	347.80	11,715.3	375.5	-81.7	376.9	12.00	4.72	11.09
12,400.0	89.73	358.81	11,720.0	474.5	-93.3	476.1	12.00	4.81	11.01
12,405.5	90.00	359.42	11,720.0	480.0	-93.4	481.6	12.00	4.84	10.98
Jun111 FTP2									
12,500.0	90.00	359.42	11,720.0	574.5	-94.3	576.1	0.00	0.00	0.00
12,600.0	90.00	359.42	11,720.0	674.5	-95.3	676.1	0.00	0.00	0.00
12,700.0	90.00	359.42	11,720.0	774.5	-96.4	776.1	0.00	0.00	0.00
12,800.0	90.00	359.42	11,720.0	874.5	-97.4	876.1	0.00	0.00	0.00
12,900.0	90.00	359.42	11,720.0	974.5	-98.4	976.1	0.00	0.00	0.00
13,000.0	90.00	359.42	11,720.0	1,074.5	-99.4	1,076.1	0.00	0.00	0.00
13,100.0	90.00	359.42	11,720.0	1,174.5	-100.4	1,176.1	0.00	0.00	0.00
13,200.0	90.00	359.42	11,720.0	1,274.5	-101.4	1,276.1	0.00	0.00	0.00
13,300.0	90.00	359.42	11,720.0	1,374.5	-102.5	1,376.1	0.00	0.00	0.00
13,400.0	90.00	359.42	11,720.0	1,474.5	-103.5	1,476.1	0.00	0.00	0.00
13,500.0	90.00	359.42	11,720.0	1,574.4	-104.5	1,576.1	0.00	0.00	0.00
13,600.0	90.00	359.42	11,720.0	1,674.4	-105.5	1,676.1	0.00	0.00	0.00
13,700.0	90.00	359.42	11,720.0	1,774.4	-105.5 -106.5	1,776.1	0.00	0.00	0.00
13,800.0	90.00	359.42	11,720.0	1,874.4	-107.5	1,876.1	0.00	0.00	0.00
13,900.0	90.00	359.42	11,720.0	1,974.4	-108.6	1,976.1	0.00	0.00	0.00
14,000.0	90.00	359.42	11,720.0	2,074.4	-109.6	2,076.1	0.00	0.00	0.00
14,100.0	90.00	359.42	11,720.0	2,174.4	-110.6	2,176.1	0.00	0.00	0.00
14,200.0	90.00	359.42	11,720.0	2,274.4	-111.6	2,276.1	0.00	0.00	0.00
14,300.0 14,400.0	90.00 90.00	359.42 359.42	11,720.0 11,720.0	2,374.4 2,474.4	-112.6 -113.6	2,376.1 2,476.1	0.00 0.00	0.00 0.00	0.00 0.00
	90.00	JJ9.42	11.720.0	2.4/4.4	-113.6	Z.4/D.1	0.00	U.UU	0.00

14,600.0

90.00

359.42

11,720.0

2,674.4

-115.7

2,676.1

0.00

0.00

0.00

Planning Report

Database:

EDM5000

Ameredev Operating, LLC.

Company: Project: Site:

JUN/PIM

Design #1

Well: Wellbore: Design:

JUN/PIM #1S Juniper 111H Wellbore #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Juniper 111H

KN @ 3019.0usft KN @ 3019.0usft

Grid

PI	ann	ed	Su	rvav	

Measured			Vertical			Vertical		Build	Turn
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
14,700.0	90.00	359.42	11,720.0	2,774.4	-116.7	2,776.1	0.00	0.00	0.00
14,800.0	90.00	359.42	11,720.0	2,874.4	-117.7	2,876.1	0.00	0.00	0.00
14,900.0	90.00	359.42	11,720.0	2,974.4	-118.7	2,976.1	0.00	0.00	0.00
15,000.0	90.00	359.42	11,720.0	3,074.4	-119.7	3,076.1	0.00	0.00	0.00
			· ·						
15,100.0 15,200.0	90.00 90.00	359.42 359.42	11,720.0 11,720.0	3,174.4 3,274.4	-120.8 -121.8	3,176.0 3,276.0	0.00 0.00	0.00 0.00	0.00 0.00
	90.00	359.42 359.42				•			
15,300.0			11,720.0	3,374.4	-122.8	3,376.0	0.00	0.00	0.00
15,400.0	90.00	359.42	11,720.0	3,474.3	-123.8	3,476.0	0.00	0.00	0.00
15,500.0	90.00	359.42	11,720.0	3,574.3	-124.8	3,576.0	0.00	0.00	0.00
15,600.0	90.00	359.42	11,720.0	3,674.3	-125.8	3,676.0	0.00	0.00	0.00
15,700.0	90.00	359.42	11,720.0	3,774.3	-126.9	3,776.0	0.00	0.00	0.00
15,800.0	90.00	359.42	11,720.0	3,874.3	-127.9	3,876.0	0.00	0.00	0.00
15,900.0	90.00	359.42	11,720.0	3,974.3	-128.9	3,976.0	0.00	0.00	0.00
16,000.0	90.00	359.42	11,720.0	4,074.3	-129.9	4,076.0	0.00	0.00	0.00
16,100.0	90.00	359.42	11,720.0	4,174.3	-130.9	4,176.0	0.00	0.00	0.00
	90.00								
16,200.0		359.42	11,720.0	4,274.3	-131.9	4,276.0	0.00	0.00	0.00
16,300.0	90.00	359.42	11,720.0	4,374.3	-133.0	4,376.0	0.00	0.00	0.00
16,400.0	90.00	359.42	11,720.0	4,474.3	-134.0	4,476.0	0.00	0.00	0.00
16,500.0	90.00	359.42	11,720.0	4,574.3	-135.0	4,576.0	0.00	0.00	0.00
16,600.0	90.00	359.42	11,720.0	4,674.3	-136.0	4,676.0	0.00	0.00	0.00
16,700.0	90.00	359.42	11,720.0	4,774.3	-137.0	4,776.0	0.00	0.00	0.00
16,800.0	90.00	359.42	11,720.0	4,874.3	-138.0	4,876.0	0.00	0.00	0.00
16,900.0	90.00	359.42	11,720.0	4,974.3	-139.1	4,976.0	0.00	0.00	0.00
17,000.0	90.00	359.42	11,720.0	5,074.3	-140.1	5,076.0	0.00	0.00	0.00
•									
17,100.0	90.00	359.42	11,720.0	5,174.3	-141.1	5,176.0	0.00	0.00	0.00
17,200.0	90.00	359.42	11,720.0	5,274.3	-142.1	5,276.0	0.00	0.00	0.00
17,300.0	90.00	359.42	11,720.0	5,374.2	-143.1	5,376.0	0.00	0.00	0.00
17,400.0	90.00	359.42	11,720.0	5,474.2	-144.2	5,476.0	0.00	0.00	0.00
17,433.1	90.00	359.42	11,720.0	5,507.3	-144.5	5,509.0	0.00	0.00	0.00
Sec 27									
17,500.0	90.00	359.42	11,720.0	5,574.2	-145.2	5,576.0	0.00	0.00	0.00
17,600.0	90.00	359.42	11,720.0	5,674.2	-146.2	5,676.0	0.00	0.00	0.00
17,700.0	90.00	359.42	11,720.0	5,774.2	-147.2	5,776.0	0.00	0.00	0.00
17,800.0	90.00	359.42	11,720.0	5,874.2	-148.2	5,876.0	0.00	0.00	0.00
17,900.0	90.00	359.42	11,720.0	5,974.2	-149.2	5,976.0	0.00	0.00	0.00
•									
18,000.0 18,100.0	90.00	359.42	11,720.0	6,074.2	-150.3	6,075.9	0.00	0.00	0.00
•	90.00	359.42	11,720.0	6,174.2	-151.3	6,175.9	0.00	0.00	0.00
18,200.0	90.00	359.42	11,720.0	6,274.2	-152.3	6,275.9	0.00	0.00	0.00
18,300.0 18,400.0	90.00 90.00	359.42 359.42	11,720.0 11,720.0	6,374.2 6,474.2	-153.3 -154.3	6,375.9 6,475.9	0.00 0.00	0.00 0.00	0.00 0.00
			·						
18,500.0	90.00	359.42	11,720.0	6,574.2	-155.3	6,575.9	0.00	0.00	0.00
18,600.0	90.00	359.42	11,720.0	6,674.2	-156.4	6,675.9	0.00	0.00	0.00
18,700.0	90.00	359.42	11,720.0	6,774.2	-157.4	6,775.9	0.00	0.00	0.00
18,800.0	90.00	359.42	11,720.0	6,874.2	-158.4	6,875.9	0.00	0.00	0.00
18,900.0	90.00	359.42	11,720.0	6,974.2	-159.4	6,975.9	0.00	0.00	0.00
19,000.0	90.00	359.42	11,720.0	7,074.2	-160.4	7,075.9	0.00	0.00	0.00
19,100.0	90.00	359.42	11,720.0	7,174.2	-161.4	7,175.9	0.00	0.00	0.00
19,200.0	90.00	359.42	11,720.0	7,174.2	-162.5	7,175.9	0.00	0.00	0.00
19,200.0									
19,300.0 19,400.0	90.00	359.42 359.42	11,720.0	7,374.1 7,474.1	-163.5 -164.5	7,375.9 7,475.9	0.00	0.00	0.00
	90.00	359.42	11,720.0	7,474.1	-164.5	7,475.9	0.00	0.00	0.00
19,500.0	90.00	359.42	11,720.0	7,574.1	-165.5	7,575.9	0.00	0.00	0.00
19,600.0	90.00	359.42	11,720.0	7,674.1	-166.5	7,675.9	0.00	0.00	0.00
19,700.0	90.00	359.42	11,720.0	7,774.1	-167.5	7,775.9	0.00	0.00	0.00
19,800.0	90.00	359.42	11,720.0	7,874.1	-168.6	7,875.9	0.00	0.00	0.00

Planning Report

Database:

EDM5000

Company:

Ameredev Operating, LLC.

Project: Site: JUN/PIM JUN/PIM #1S

Weilbore: Design:

Well:

Juniper 111H Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Juniper 111 H

KN @ 3019.0usft KN @ 3019.0usft

Grid

Planned Survey	· · · · · · · · · · · · · · · · · · ·								
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
19,900.0	90.00	359.42	11,720.0	7,974.1	-169.6	7,975.9	0.00	0.00	0.00
20,000.0	90.00	359.42	11,720.0	8,074.1	-170.6	8,075.9	0.00	0.00	0.00
20,100.0	90.00	359.42	11,720.0	8,174.1	-171.6	8,175.9	0.00	0.00	0.00
20,200.0	90.00	359.42	11,720.0	8,274.1	-172.6	8,275.9	0.00	0.00	0.00
20,300.0	90.00	359.42	11,720.0	8,374.1	-173.6	8,375.9	0.00	0.00	0.00
20,400.0	90.00	359.42	11,720.0	8,474.1	-174.7	8,475.9	0.00	0.00	0.00
20,500.0	90.00	359.42	11,720.0	8,574.1	-175.7	8,575.9	0.00	0.00	0.00
20,600.0	90.00	359.42	11,720.0	8,674.1	-176.7	8,675.9	0.00	0.00	0.00
20,700.0	90.00	359.42	11,720.0	8,774.1	-177.7	8,775.9	0.00	0.00	0.00
20,800.0	90.00	359.42	11,720.0	8,874.1	-178.7	8 875.9	0.00	0.00	0.00
20,900.0	90.00	359.42	11,720.0	8,974.1	-179.7	8 975.9	0.00	0.00	0.00
21,000.0	90.00	359.42	11,720.0	9,074.1	-180.8	9,075.8	0.00	0.00	0.00
21,100.0	90.00	359.42	11,720.0	9,174.1	-181.8	9,175.8	0.00	0.00	0.00
21,200.0	90.00	359.42	11,720.0	9,274.0	-182.8	9,275.8	0.00	0.00	0.00
21,300.0	90.00	359.42	11,720.0	9,374.0	-183.8	9,375.8	0.00	0.00	0.00
21,400.0	90.00	359.42	11,720.0	9,474.0	-184.8	9,475.8	0.00	0.00	0.00
21,500.0	90.00	359.42	11,720.0	9,574.0	-185.8	9,575.8	0.00	0.00	0.00
21,600.0	90.00	359.42	11,720.0	9,674.0	-186.9	9,675.8	0.00	0.00	0.00
21,700.0	90.00	359.42	11,720.0	9,774.0	-187.9	9,775.8	0.00	0.00	0.00
21,800.0	90.00	359.42	11,720.0	9,874.0	-188.9	9,875.8	0.00	0.00	0.00
21,900.0	90.00	359.42	11,720.0	9,974.0	-189.9	9,975.8	0.00	0.00	0.00
22,000.0	90.00	359.42	11,720.0	10,074.0	-190.9	10,075.8	0.00	0.00	0.00
22,100.0	90.00	359.42	11,720.0	10,174.0	-192.0	10,175.8	0.00	0.00	0.00
22,200.0	90.00	359.42	11,720.0	10,274.0	-193.0	10,275.8	0.00	0.00	0.00
22,300.0	90.00	359.42	11,720.0	10,374.0	-194.0	10,375.8	0.00	0.00	0.00
22,400.0	90.00	359.42	11,720.0	10,474.0	-195.0	10,475.8	0.00	0.00	0.00
22,500.0	90.00	359.42	11,720.0	10,574.0	-196.0	10,575.8	0.00	0.00	0.00
22,600.0	90.00	359.42	11,720.0	10,674.0	-197.0	10,675.8	0.00	0.00	0.00
Jun111 LTP						• •			
22,661.1	90.00	359.42	11,720.0	10,735.1	-197.7	10,736.9	0.00	0.00	0.00
Jun111 BHL									• • •

Planning Report

Database:

EDM5000

Company:

Ameredev Operating, LLC.

Project:

JUN/PIM

Site: Well: Wellbore:

Design:

JUN/PIM #1S Juniper 111H

Wellbore #1 Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:** Well Juniper 111H

KN @ 3019.0usft KN @ 3019.0usft

Grid

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Jun111 KOP - plan hits target cente - Point	0.00 er	0.00	11,200.0	-402.0	122.9	393,708.59	873,711.05	32° 4' 40.225 N	103° 15' 36.861 W
Sec 03	0.00	0.00	11,471.0	-5,054.0	-239.0	389,056.56	873,349.16	32° 3′ 54.231 N	103° 15' 41.604 W
- plan misses target ce	enter by 467	3.9usft at 11	221.5usft MC) (11200.0 TV	D, -402.0 N, 1	22.9 E)			
- Polygon			44 474 0	0.0	0.0	389.056.56	072 240 46		
Point 1 Point 2			11,471.0	5,281.2	-53.3	394,337.76	873,349.16 873,295.86		
Point 3			11,471.0 11,471.0	5,330.6	5,227.9	394,387.16	878,577.06		
Point 4			11,471.0	5,330.6 47.9	5,227. 9 5,279.4	389,104.46	878,628.56	•	
	0.00	0.00			-292.3	7.	. '	32° 4' 46.491 N	103° 15' 41.614 W
- plan misses target ce - Polygon		0.00 5usft at 121.	11,471.0 84.7usft MD	227.2 (11703.1 TVE		394,337.79 2.9 E)	873,295.83	32 4 40.491 N	103 15 41.614 VV
Point 1			11,471.0	0.0	0.0	394,337.79	873,295.83		
Point 2			11,471.0	5,278.0	-53.8	399,615,79	873,242.03	•	
Point 3			11,471.0	5,326.9	5,230.6	399,664.69	878,526.43		
Point 4			11,471.0	49.4	5,281.3	394,387.19	878,577.13		
Sec 27	0.00	0.00	11,541.0	5,505.2	-346.1	399,615.80	873,242.02	32° 5′ 38.720 N	103° 15′ 41.630 W
 plan misses target ce Polygon 	enter by 269	.6usft at 174	33.1usft MD	(11720.0 TVE), 5507.3 N, -1	44.5 E)			
Point 1			11,541.0	0.0	0.0	399,615.80	873,242.02		
Point 2			11,541.0	5,278.0	-52.0	404,893.80	873,190.02		
Point 3			11,541.0	5,328.3	5,215.5	404,944.10	878,457.52		
Point 4			11,541.0	48.8	5,284.4	399,664.60	878,526.42		
Jun111 FTP	0.00	0.00	11,720.0	329.2	-93.4	394,439.73	873 494 80	32° 4' 47.481 N	103° 15' 39.290 W
 plan misses target ce Point 	enter by 24.3	Busft at 1225	9.0usft MD (11711.1 TVD,	335.9 N, -71.	B E)	•		
Jun111 FTP2 - plan hits target cente - Point	0.00 er	0.00	11,720.0	480.0	-93.4	394,590.55	873,494.80	32° 4' 48.973 N	103° 15' 39.273 W
Jun111 BHL - plan hits target cente - Point	0.00 r	0.00	11,720.0	10,735.1	-197.7	404,845.65	873,390.50	32° 6' 30.452 N	103° 15' 39.299 W
Jun111 LTP	0.00	0.00	11,720.0	10,685.1	-197.2	404,795.66	873,390.96	32° 6′ 29.958 N	103° 15' 39.300 W
 plan misses target ce Point 	enter by 11.1	usft at 2260	0.0usft MD (11720.0 TVD,	10674.0 N, -1	97.0 E)			

JUN/PIM JUN/PIM #1S Juniper 111H Wellbore #1

Plan: Design #1

Lease Penetration Section Line Footages

14 January, 2019

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Profess Sie

JUN/PIM JUN/PIM #1S Juniper 111H

allett) Wellboxee Design:

Wellbore #1 Design #1

Local Co-ordinate References

TVD References MD Reference: North References

Survey Calculation Mathods

Deteloasex

Well Juniper 111H

KN @ 3019.0usft KN @ 3019.0usft

Grid

Minimum Curvature

EDM5000

Project

Sĩ:

From:

JUN/PIM

Map System: Geo Datum:

US State Plane 1983 North American Datum 1983 System Datum:

Mean Sea Level

Map Zone:

New Mexico Eastern Zone

Site Position:

Well Position

JUN/PIM #1S

Lat/Long

0.0 usft

Northing: Easting:

Slot Radius:

394,110.55 usft 873,588.15 usft

13-3/16 "

Latitude:

Longitude: **Grid Convergence:**

32° 4' 44,214 N 103° 15' 38.243 W

0.57 °

Mall

Position Uncertainty:

Position Uncertainty

Juniper 111H

+N/-S

+E/-W

0.0 usft 0.0 usft

0.0 usft

Northing: Easting:

Wellhead Elevation:

394,110.55 usft

873,588.15 usft

Latitude:

32° 4' 44.214 N 103° 15' 38,243 W

Longitude: **Ground Level:** 2.992.0 usft

Welliam Wellbore #1 Model Name Sample Date Decilitation Dip Angle Fleld Strength Magnettes (P)(P)(traft) IGRF2015 12/4/2018 6.64 59.96 47.736.62818023

Dæign	Design #1			
Audit Notes:				
Version:	Phase:	PROTOTYPE	Tie On Depth:	0.0
Variael Section:	Papih From (TVD)	OMES.	OBAW	Direction
	(mæil)	(lieu)	(meta)	(4)
	0.0	0.0	0.0	358.95

Survey Tool Program	Date 1/11/2019		
From	To		
(fiert)	(mail) Survey (Walbore)	Tool Name	Description
0.0	22,661.1 Design #1 (Wellbore #1)	MWD	OWSG MWD - Standard

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site: JUN/PIM JUN/PIM #1S

Well:

Juniper 111H Wellbore #1

Wellbore: Design:

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: KN @ 3019,0usft KN @ 3019.0usft

North Reference:

Database:

Survey Calculation Method:

Grid

Minimum Curvature

Well Juniper 111H

Design: Desig	jii # i					Database:				
Planned Survey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)	
0.0	0.00	0.00	0.0	-230.0	290.0	0.0	0.00	0.00	0.00	
100.0	0.00	0.00	100.0	-230.0	290.0	0.0	0.00	0.00	0.00	
200.0	0.00	0.00	200.0	-230.0	290.0	0.0	0.00	0.00	0.00	
300.0	0.00	0.00	300.0	-230.0	290.0	0.0	0.00	0.00	0.00	
400.0	0.00	0.00	400.0	-230.0	290.0	0.0	0.00	0.00	0.00	
500.0	0.00	0.00	500.0	-230.0	290.0	0.0	0.00	0.00	0.00	
600.0	0.00	0.00	600.0	-230.0	290.0	0.0	0.00	0.00	0.00	
700.0	0.00	0.00	700.0	-230.0	290.0	0.0	0.00	0.00	0.00	
800.0	0.00	0.00	800.0	-230.0	290.0	0.0	0.00	0.00	0.00	
900.0	0.00	0.00	900.0	-230,0	290,0	0.0	0.00	0.00	0.00	
1,000.0	0.00	0.00	1,000.0	-230.0	290.0	0.0	0.00	0.00	0.00	
1,100.0	0.00	0.00	1,100.0	-230.0	290,0	0.0	0.00	0.00	0.00	
1,200.0	0.00	0.00	1,200.0	-230.0	290.0	0.0	0.00	0.00	0.00	
1,300.0	0.00	0.00	1,300.0	-230.0	290.0	0.0	0.00	0.00	0.00	
1,400.0	0.00	0.00	1,400.0	-230.0	290.0	0.0	0.00	0.00	0.00	
1,500.0	0.00	0.00	1,500.0	-230.0	290.0	0.0	0.00	0.00	0.00	
1,600.0	0.00	0.00	1,600.0	-230.0	290.0	0.0	0.00	0.00	0.00	
1,700.0	0.00	0.00	1,700.0	-230.0	290.0	0.0	0.00	0.00	0.00	
1,800.0	0.00	0.00	1,800.0	-230.0	290.0	0.0	0.00	0.00	0.00	
1,900.0	0.00	0.00	1,900.0	-230.0	290.0	0.0	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	-230.0	290.0	0.0	0.00	0.00	0.00	
2,100.0	2.00	163.00	2,100.0	-231.7	290.5	-1.7	2.00	2.00	0.00	
2,200.0	4.00	163.00	2,199.8	-236.7	292.0	-6.7	2.00	2.00	0.00	
2,300.0	6.00	163.00	2,299.5	-245.0	294.6	-15.1	2.00	2.00	0.00	
2,400.0	6.00	163.00	2,398.9	-255.0	297.6	-25.1	0.00	0.00	0.00	
2,500.0	6.00	163.00	2,498.4	-265.0	300.7	-35.2	0.00	0.00	0.00	
2,600.0	6.00	163.00	2,597.8	-275.0	303.8	-45.2	0.00	0.00	0.00	

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project:

JUN/PIM

Site: Well: JUN/PIM #1S Juniper 111H

Wellbore: Design:

Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Juniper 111H

KN @ 3019.0usft KN @ 3019.0usft

Grid

Minimum Curvature

P	lann	ha	Sur	vev
- 4	au	T-U	oui'	YCY.

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
2,700.0	6.00	163.00	2,697.3	-285.0	306.8	-55.3	0.00	0.00	0.00
2,800.0	6.00	163.00	2,796.7	-295.0	309.9	-65.3	0.00	0.00	0.00
2,900.0	6.00	163.00	2,896.2	-305.0	312.9	-75.4	0.00	0.00	0.00
3,000.0	6,00	163.00	2,995.6	-315.0	316.0	-85.4	0.00	0.00	0.00
3,100.0	6.00	163.00	3,095.1	-325.0	319.0	-95.5	0.00	0.00	0.00
3,200.0	6.00	163.00	3,194.5	-335.0	322.1	-105.5	0.00	0.00	0.00
3,300.0	6.00	163.00	3,294.0	-345.0	325.1	-115.6	0.00	0.00	0.00
3,400.0	6.00	163.00	3,393.4	-355.0	328.2	-125.6	0.00	0.00	0.00
3,500.0	6.00	163.00	3,492.9	-365.0	331.3	-135.7	0.00	0.00	0.00
3,600.0	6.00	163.00	3,592.3	-375.0	334.3	-145.7	0.00	0.00	0.00
3,700.0	6.00	163.00	3,691.8	-385.0	337.4	-155.8	0.00	0.00	0.00
3,800.0	6.00	163.00	3,791.2	-394.9	340.4	-165.8	0.00	0.00	0.00
3,900.0	6.00	163.00	3,890.7	-404.9	343.5	-175.9	0.00	0.00	0.00
4,000.0	6,00	163,00	3,990.1	-414.9	346.5	-186.0	0.00	0.00	0.00
4,100.0	6.00	163.00	4,089.6	-424.9	349.6	-196.0	0.00	0.00	0.00
4,200.0	6.00	163.00	4,189.0	-434.9	352.7	-206.1	0.00	0.00	0.00
4,300.0	6.00	163.00	4,288.5	-444.9	355.7	-216.1	0.00	0.00	0.00
4,400.0	6.00	163.00	4,387.9	-454.9	358.8	-226.2	0.00	0.00	0.00
4,500.0	6.00	163.00	4,487.4	-464.9	361.8	-236.2	0.00	0.00	0.00
4,600.0	6.00	163.00	4,586.9	-474.9	364.9	-246.3	0.00	0.00	0.00
4,700.0	6.00	163.00	4,686.3	-484.9	367.9	-256.3	0.00	0.00	0.00
4,800.0	6.00	163.00	4,785.8	-494.9	371.0	-266.4	0.00	0.00	0.00
4,900.0	6,00	163.00	4,885.2	-504.9	374.0	-276.4	0.00	0.00	0.00
5,000.0	6.00	163.00	4,984.7	-514.9	377.1	-286.5	0.00	0.00	0.00
5,100.0	6.00	163.00	5,084.1	-524.9	380.2	-296.5	0.00	0.00	0.00
5,200.0	6.00	163.00	5,183.6	-534.9	383.2	-306.6	0.00	0.00	0.00
5,300.0	6.00	163.00	5,283.0	-544,9	386.3	-316.6	0.00	0.00	0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project:

JUN/PIM

Site: Well:

JUN/PIM #1S Juniper 111H

Wellbore: Design:

Wellbore #1 Design #1

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Juniper 111H

KN @ 3019,0usft

KN @ 3019.0usft Grid

Minimum Curvature

Planned Survey	
----------------	--

5,400.0		(°)	(usft)	(usft)	(usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
	6.00	163.00	5,382.5	-554.9	389.3	-326.7	0.00	0.00	0.00
5,500.0	6.00	163.00	5,481.9	-564.9	392.4	-336.7	0.00	0.00	0.00
5,600.0	6.00	163.00	5,581.4	-574.9	395.4	-346.8	0.00	0.00	0.00
5,700.0	6.00	163,00	5,680.8	-584.9	398.5	-356.8	0.00	0.00	0.00
5,800.0	6.00	163.00	5,780.3	-594.9	401.6	-366.9	0.00	0.00	0.00
5,900.0	6.00	163.00	5,879.7	-604.9	404.6	-376.9	0.00	0.00	0.00
6,000.0	6.00	163.00	5,979.2	-614.9	407.7	-387.0	0.00	0.00	0.00
6,020.9	6.00	163.00	6,000.0	-617.0	408.3	-389.1	0.00	0.00	0.00
6,100.0	4.42	163.00	6,078.7	-623.8	410.4	-396.0	2.00	-2.00	0.00
6,200.0	2.42	163.00	6,178.6	-629.5	412.1	-401.7	2.00	-2.00	0.00
6,300.0	0.42	163.00	6,278.5	-631.9	412.9	-404.1	2.00	-2.00	0.00
6,320.9	0.00	0.00	6,299.5	-632.0	412.9	-404.2	2.00	-2.00	0.00
6,400.0	0.00	0.00	6,378.5	-632.0	412.9	-404.2	0.00	0.00	0.00
6,500.0	0.00	0.00	6,478.5	-632.0	412.9	-404.2	0.00	0.00	0.00
6,600.0	0.00	0.00	6,578.5	-632.0	412.9	-404.2	0.00	0.00	0.00
6,700.0	0.00	0.00	6,678.5	-632.0	412.9	-404.2	0.00	0.00	0.00
6,800.0	0.00	0.00	6,778.5	-632.0	412.9	-404.2	0.00	0.00	0.00
6,900.0	0.00	0.00	6,878.5	-632.0	412.9	-404.2	0.00	0.00	0.00
7,000.0	0.00	0.00	6,978.5	-632.0	412.9	-404.2	0.00	0.00	0.00
7,100.0	0.00	0.00	7,078.5	-632.0	412.9	-404.2	0.00	0.00	0.00
7,200.0	0.00	0.00	7,178.5	-632.0	412.9	-404.2	0.00	0.00	0.00
7,300.0	0.00	0.00	7,278.5	-632.0	412.9	-404.2	0.00	0.00	0.00
7,400.0	0.00	0.00	7,378.5	-632.0	412.9	-404.2	0.00	0.00	0.00
7,500.0	0.00	0.00	7,478.5	-632.0	412.9	-404.2	0.00	0.00	0.00
7,600.0	0.00	0.00	7,578.5	-632.0	412.9	-404.2	0.00	0.00	0.00
7,700.0	0.00	0.00	7,678.5	-632.0	412.9	-404.2	0.00	0.00	0.00
7,800.0	0.00	0.00	7,778.5	-632.0	412.9	-404.2	0.00	0.00	0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project:

JUN/PIM

Site: Well: JUN/PIM #1S Juniper 111H

Wellbore: Design: Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Database:

Well Juniper 111H

KN @ 3019.0usft KN @ 3019.0usft

Grid

Minimum Curvature

Planned Survey	Pi	lann	ıed	Su	rvey
----------------	----	------	-----	----	------

Trainica Sarvey										
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)	
7,900.0	0.00	0.00	7,878.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
8,000.0	0.00	0.00	7,978.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
8,100.0	0.00	0.00	8,078.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
8,200.0	0.00	0.00	8,178.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
· ·										
8,300.0	0.00	0.00	8,278.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
8,400.0	0.00	0.00	8,378.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
8,500.0	0.00	0.00	8,478.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
8,600.0	0.00	0,00	8,578.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
8,700.0	0.00	0.00	8,678.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
8,800.0	0.00	0.00	8,778.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
8,900.0	0.00	0.00	8,878.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
9,000.0	0.00	0.00	8,978.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
9,100.0	0.00	0.00	9,078.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
9,200.0	0.00	0.00	9,178.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
9,300.0	0.00	0.00	9,278.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
9,400.0	0.00	0.00	9,378.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
9,500.0	0.00	0.00	9,478.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
9,600.0	0.00	0.00	9,578.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
9,700.0	0.00	0.00	9,678.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
9,800.0	0.00	0.00	9,778.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
9,900.0	0.00	0.00	9,878.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
10,000.0	0.00	0.00	9,978.5	-632.0	. 412.9	-404.2	0.00	0.00	0.00	
10,100.0	0.00	0.00	10,078.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
10,200.0	0.00	0.00	10,178.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
10,300.0	0,00	0.00	10,278.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
10,400.0	0.00	0.00	10,378.5	-632.0	412.9	-404.2	0.00	0.00	0.00	
10,500.0	0.00	0.00	10,478.5	-632.0	412.9	-404.2	0.00	0.00	0.00	

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project:

JUN/PIM

Site: JUN/PIM #1S Well: Juniper 111H

Wellbore: Design:

Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference:

Database:

Well Juniper 111H KN @ 3019,0usft KN @ 3019.0usft

North Reference:

Survey Calculation Method:

Grid

Minimum Curvature

EDM5000

	# 					Database:		EDINISUUU	
d Survey						· · · · ·			
MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
10,600.0	0.00	0.00	10,578.5	-632.0	412.9	-404.2	0.00	0.00	0.00
10,700.0	0.00	0.00	10,678.5	-632.0	412.9	-404.2	0.00	0.00	0.00
10,800.0	0.00	0.00	10,778.5	-632.0	412.9	-404.2	0.00	0.00	0.00
10,900.0	0.00	0.00	10,878.5	-632.0	412.9	-404.2	0.00	0.00	0.00
11,000.0	0.00	0.00	10,978.5	-632.0	412.9	-404.2	0.00	0.00	. 0.00
11,100.0	0.00	0.00	11,078.5	-632.0	412.9	-404.2	0.00	0.00	0.00
11,121.5	0.00	0.00	11,100.0	-632.0	412.9	-404.2	0.00	0.00	0.00
Jun111 FTP2 KO	P								
11,200.0	0.00	0.00	11,178.5	-632.0	412.9	-404.2	0.00	0.00	0.00
11,221.5	0.00	0.00	11,200.0	-632.0	412.9	-404.2	0.00	0.00	0.00
Sec 03 - Jun111 F	KOP								
11,300.0	9.42	345.22	11,278.2	-625.7	411.2	-397.9	12.00	12.00	0.00
11,400.0	21.42	345.22	11,374.4	-600.1	404.5	-372.1	12.00	12.00	0.00
11,500.0	33,42	345.22	11,463.0	-555.6	392.8	-327.5	12.00	12.00	0.00
11,600.0	45.42	345.22	11,540.1	-494.3	376.6	-265.9	12.00	12.00	0.00
11,700.0	57.42	345,22	11,602.3	-418.9	356.7	-190.1	12.00	12.00	0.00
11,800.0	69.42	345.22	11,647.0	-332.6	333.9	-103.4	12.00	12.00	0.00
11,900.0	81.42	345.22	11,672.1	-239.2	309.3	-9.5	12.00	12.00	0.00
11,920.1	83.83	345.22	11,674.7	-219.9	304.2	9.8	12.00	12.00	0.00
12,000.0	83.83	345.22	11,683.3	-143.1	283.9	87.0	0.00	0.00	0.00
12,100.0	83.83	345.22	11,694.0	-46.9	258.6	183.6	0.00	0.00	0.00
12,184.7	83.83	345.22	11,703.1	34.4	237.1	265.4	0.00	0.00	0.00
Sec 34		045.00	44 70 1 0	40.5	005 5	200 -			0.00
12,200.0 12,259.0	83.83	345.22	11,704.8	49.2	233.2 218.2	280.2 337.1	0.00 0.00	0.00	0.00
17 75G N	83.83	345.22	11,711.1	105.9	フログ	7771	በበበ	0.00	0.00

213,7

354.3

0.00

0.00

12,276,7

83,83

345.22

11,713,0

122.9

0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project:

JUN/PIM JUN/PIM #1S

Site: Well:

Juniper 111H Wellbore #1

Wellbore: Design:

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Juniper 111H

KN @ 3019.0usft KN @ 3019.0usft

Grid

Minimum Curvature

n: Desig	jii # i 			men and state over more than the transfer than the second of the second	-	Database:		EDM5000	
ed Survey							·		
MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
12,300.0	84.93	347.80	11,715.3	145.5	208.3	376.9	12.00	4.72	11.09
12,400.0	89.73	358.81	11,720.0	244.5	196.7	476.1	12.00	4.81	11,01
12,405.5	90.00	359.42	11,720.0	250.0	196.6	481.6	12.00	4.84	10.98
Jun111 FTP2									
12,500.0	90.00	359.42	11,720.0	344.5	195.7	576.1	0.00	0.00	0.00
12,600.0	90.00	359.42	11,720.0	444.5	194.7	676.1	0.00	0.00	0.00
12,700.0	90.00	359.42	11,720.0	544.5	193.6	776.1	0.00	0.00	0.00
12,800.0	90.00	359.42	11,720.0	644.5	192.6	876.1	0.00	0.00	0.00
12,900.0	90.00	359.42	11,720.0	744.5	191.6	976.1	0.00	0.00	0.00
13,000.0	90.00	359.42	11,720.0	844.5	190.6	1,076.1	0.00	0.00	0.00
13,100.0	90.00	359.42	11,720.0	944.5	189.6	1,176.1	0.00	0.00	0.00
13,200.0	90.00	359.42	11,720.0	1,044.5	188.6	1,276.1	0.00	0.00	0.00
13,300.0	90.00	359.42	11,720.0	1,144.5	187.5	1,376.1	0.00	0.00	0.00
13,400.0	90.00	359.42	11,720.0	1,244.5	186.5	1,476.1	0.00	0.00	0.00
13,500.0	90.00	359.42	11,720.0	1,344.4	185.5	1,576.1	0.00	0.00	0.00
13,600.0	90.00	359.42	11,720.0	1,444.4	184.5	1,676.1	0.00	0.00	0.00
13,700.0	90.00	359.42	11,720.0	1,544.4	183.5	1,776.1	0.00	0.00	0.00
13,800.0	90.00	359.42	11,720.0	1,644.4	182.5	1,876.1	0.00	0.00	0.00
13,900.0	90.00	359.42	11,720.0	1,744.4	181.4	1,976.1	0.00	0.00	0.00
14,000.0	90.00	359.42	11,720.0	1,844.4	180.4	2,076.1	0.00	0.00	0.00
14,100.0	90.00	359.42	11,720.0	1,944.4	179.4	2,176.1	0.00	0.00	0.00
14,200.0	90.00	359.42	11,720.0	2,044.4	178.4	2,276.1	0.00	0.00	0.00
14,300.0	90.00	359.42	11,720.0	2,144.4	177.4	2,376.1	0.00	0.00	0.00
14,400.0	90.00	359.42	11,720.0	2,244.4	176.4	2,476.1	0.00	0.00	0.00
14,500.0	90.00	359.42	11,720.0	2,344.4	175.3	2,576.1	0.00	0.00	0.00
14,600.0	90.00	359.42	11,720.0	2,444.4	174.3	2,676.1	0.00	0.00	0.00
14,700.0	90.00	359.42	11,720.0	2,544.4	173.3	2,776.1	0.00	0.00	0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project:

JUN/PIM

Site: Well: JUN/PIM #1S Juniper 111H

Wellbore:

Wellbore #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Well Juniper 111H

KN @ 3019.0usft KN @ 3019.0usft

Grid

Minimum Curvature

sign: Desi	gn #1					Database:		EDM5000	
nned Survey								=	
MD (usft)	lnc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/109usft)
14,800.0	90.00	359.42	11,720.0	2,644.4	172.3	2,876.1	0.00	0.00	0.00
14,900.0	90.00	359.42	11,720.0	2,744.4	171,3	2,976.1	0.00	0.00	0.00
15,000.0	90.00	359.42	11,720.0	2,844.4	170.3	3,076.1	0.00	0.00	0.00
15,100.0	90.00	359.42	11,720.0	2,944.4	169.2	3,176.0	0.00	0.00	0.00
15,200.0	90.00	359.42	11,720.0	3,044.4	168.2	3,276.0	0.00	0.00	0.00
15,300.0	90.00	359.42	11,720.0	3,144.4	167.2	3,376.0	0.00	0.00	0.00
15,400.0	90.00	359.42	11,720.0	3,244.3	166.2	3,476.0	0.00	0.00	0.00
15,500.0	90.00	359.42	11,720.0	3,344.3	165.2	3,576.0	0.00	0.00	0.00
15,600.0	90.00	359.42	11,720.0	3,444.3	164.2	3,676.0	0.00	0.00	0.00
15,700.0	90.00	359.42	11,720.0	3,544.3	163.1	3,776.0	0.00	0.00	0.00
15,800.0	90.00	359.42	11,720.0	3,644.3	162.1	3,876.0	0.00	0.00	0.00
15,900.0	90.00	359.42	11,720.0	3,744.3	161.1	3,976.0	0.00	0.00	0.00
16,000.0	90.00	359.42	11,720.0	3,844.3	160.1	4,076.0	0.00	0.00	0.00
16,100.0	90.00	359.42	11,720.0	3,944.3	159.1	4,176.0	0.00	0.00	0.00
16,200.0	90.00	359.42	11,720.0	4,044.3	158.1	4,276.0	0.00	0.00	0.00
16,300.0	90.00	359.42	11,720.0	4,144.3	157.0	4,376.0	0.00	0.00	0.00
16,400.0	90.00	359.42	11,720.0	4,244.3	156.0	4,476.0	0.00	0.00	0.00
16,500.0	90.00	359.42	11,720.0	4,344.3	155.0	4,576.0	0.00	0.00	0.00
16,600.0	90.00	359.42	11,720.0	4,444.3	154.0	4,676.0	0.00	0.00	0.00
16,700.0	90.00	359.42	11,720.0	4,544.3	153.0	4,776.0	0.00	0.00	0.00
16,800.0	90.00	359.42	11,720.0	4,644.3	152.0	4,876.0	0.00	0.00	0.00
16,900.0	90.00	359.42	11,720.0	4,744.3	150.9	4,976.0	0.00	0.00	0.00
17,000.0	90.00	359.42	11,720.0	4,844.3	149.9	5,076.0	0.00	0.00	0.00
17,100.0	90.00	359.42	11,720.0	4,944.3	148.9	5,176.0	0.00	0.00	0.00
17,200.0	90.00	359.42	11,720.0	5,044.3	147.9	5,276.0	0.00	0.00	0.00
17,300.0	90.00	359.42	11,720.0	5,144.2	146.9	5,376.0	0.00	0.00	0.00
17,400.0	90.00	359.42	11,720.0	5,244.2	145.8	5,476.0	0.00	0.00	0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project:

JUN/PIM JUN/PIM #1S

Site: Well:

Juniper 111H Wellbore #1

Wellbore: Design:

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

KN @ 3019.0usft

North Reference:

Database:

Survey Calculation Method:

Grid

Minimum Curvature

Well Juniper 111H

KN @ 3019.0usft

ned Survey	i									
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)	
17,433.1	90.00	359.42	11,720.0	5,277.3	145.5	5,509.0	0.00	0.00	0.00	
Sec 27										
17,500.0	90.00	359.42	11,720.0	5,344.2	144.8	5,576.0	0.00	0.00	0.00	
17,600.0	90.00	359.42	11,720.0	5,444.2	143.8	5,676.0	0.00	0.00	0.00	
17,700.0	90.00	359.42	11,720.0	5,544.2	142.8	5,776.0	0.00	0.00	0.00	
17,800.0	90,00	359.42	11,720.0	5,644.2	141.8	5,876.0	0.00	0.00	0.00	
17,900.0	90.00	359.42	11,720.0	5,744.2	140.8	5,976.0	0.00	0.00	0.00	
18,000.0	90.00	359.42	11,720.0	5,844.2	139.7	6,075.9	0.00	0.00	0.00	
18,100.0	90.00	359.42	11,720.0	5,944.2	138.7	6,175.9	0.00	0.00	0.00	
18,200.0	90.00	359.42	11,720.0	6,044.2	137.7	6,275.9	0.00	0.00	0.00	
18,300.0	90.00	359.42	11,720.0	6,144.2	136.7	6,375.9	0.00	0.00	0.00	
18,400.0	90.00	359.42	11,720.0	6,244.2	135.7	6,475.9	0.00	0.00	0.00	
18,500.0	90.00	359.42	11,720.0	6,344.2	134,7	6,575.9	0.00	0.00	0.00	
18,600.0	90,00	359.42	11,720.0	6,444.2	133.6	6,675.9	0,00	0.00	0.00	
18,700.0	90.00	359.42	11,720.0	6,544.2	132.6	6,775.9	0.00	0.00	0.00	•
18,800.0	90.00	359.42	11,720.0	6,644.2	131.6	6,875.9	0.00	0.00	0.00	
18,900.0	90.00	359.42	11,720.0	6,744.2	130.6	6,975.9	0.00	0.00	0.00	
19,000.0	90.00	359.42	11,720.0	6,844.2	129.6	7,075.9	0.00	0.00	0.00	
19,100.0	90.00	359.42	11,720.0	6,944.2	128.6	7,175.9	0.00	0.00	0.00	
19,200.0	90.00	359.42	11,720.0	7,044.2	127.5	7,275.9	0.00	0.00	0.00	
19,300.0	90.00	359.42	11,720.0	7,144.1	126.5	7,375.9	0.00	0.00	0.00	
19,400.0	90.00	359.42	11,720.0	7,244.1	125.5	7,475.9	0.00	0.00	0.00	
19,500.0	90.00	359.42	11,720.0	7,344.1	124.5	7,575.9	0.00	0.00	0.00	
19,600.0	90.00	359.42	11,720.0	7,444.1	123.5	7,675.9	0.00	0.00	0.00	
19,700.0	90.00	359.42	11,720.0	7,544.1	122.5	7,775.9	0.00	0.00	0.00	
19,800.0	90.00	359.42	11,720.0	7,644.1	121.4	7,875.9	0.00	0.00	0.00	
19,900.0	90.00	359,42	11,720.0	7,744.1	120.4	7,975.9	0.00	0,00	0.00	

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site:

JUN/PIM JUN/PIM #1S

Well:

Juniper 111H Wellbore #1

Wellbore: Design:

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Juniper 111H

KN @ 3019.0usft KN @ 3019.0usft

Grid

Minimum Curvature

V

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
20,000.0	90.00	359.42	11,720.0	7,844.1	119.4	8,075.9	0.00	0.00	0.00
20,100.0	90.00	359.42	11,720.0	7,944.1	118.4	8,175.9	0.00	0.00	0.00
20,200.0	90.00	359.42	11,720.0	8,044.1	117.4	8,275.9	0.00	0.00	0.00
20,300.0	90.00	359.42	11,720.0	8,144.1	116.4	8,375.9	0.00	0.00	0.00
20,400.0	90.00	359.42	11,720.0	8,244.1	115.3	8,475.9	0.00	0.00	0.00
20,500.0	90.00	359.42	11,720.0	8,344.1	114.3	8,575.9	0.00	0.00	0.00
20,600.0	90.00	359.42	11,720.0	8,444.1	113.3	8,675.9	0.00	0.00	0.00
20,700.0	90.00	359.42	11,720.0	8,544.1	112.3	8,775.9	0.00	0.00	0.00
20,800.0	90.00	359.42	11,720.0	8,644.1	111.3	8,875.9	0.00	0.00	0.00
20,900.0	90.00	359.42	11,720.0	8,744.1	110.3	8,975.9	0.00	0.00	0.00
21,000.0	90.00	359.42	11,720.0	8,844.1	109.2	9,075.8	0.00	0.00	0.00
21,100.0	90.00	359.42	11,720.0	8,944.1	108.2	9,175.8	0.00	0.00	0.00
21,200.0	90.00	359.42	11,720.0	9,044.0	107.2	9,275.8	0.00	0.00	0.00
21,300.0	90.00	359.42	11,720.0	9,144.0	106.2	9,375.8	0.00	0.00	0.00
21,400.0	90.00	359.42	11,720.0	9,244.0	105.2	9,475.8	0.00	0.00	0.00
21,500.0	90.00	359.42	11,720.0	9,344.0	104.2	9,575.8	0.00	0.00	0.00
21,600.0	90.00	359.42	11,720.0	9,444.0	103.1	9,675.8	0.00	0.00	0.00
21,700.0	90.00	359.42	11,720.0	9,544.0	102,1	9,775.8	0.00	0.00	0.00
21,800.0	90.00	359.42	11,720.0	9,644.0	101.1	9,875.8	0.00	0.00	0.00
21,900.0	90.00	359.42	11,720.0	9,744.0	100.1	9,975.8	0.00	0.00	0.00
22,000.0	90.00	359.42	11,720.0	9,844.0	99.1	10,075.8	0.00	0.00	0.00
22,100.0	90.00	359.42	11,720.0	9,944.0	98.0	10,175.8	0.00	0.00	0.00
22,200.0	90.00	359.42	11,720.0	10,044.0	97.0	10,275.8	0.00	0.00	0.00
22,300.0	90.00	359.42	11,720.0	10,144.0	96.0	10,375.8	0.00	0.00	0.00
22,400.0	90.00	359.42	11,720.0	10,244.0	95.0	10,475.8	0.00	0.00	0.00
22,500.0	90.00	359.42	11,720.0	10,344.0	94.0	10,575.8	0.00	0.00	0.00

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project:

JUN/PIM

Site: Well: JUN/PIM #1S

Wellbore:

Juniper 111H Wellbore #1

Design:

Design #1

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Juniper 111H

KN @ 3019,0usft KN @ 3019.0usft

Grid Minimum Curvature

EDM5000

Planned Survey

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)	
22,600.0	90.00	359.42	11,720.0	10,444.0	93.0	10,675.8	0.00	0.00	0.00	
Jun111 LTP										
22,661.1	90.00	359.42	11,720.0	10,505.1	92.3	10,736.9	0.00	0.00	0.00	

Ameredev Drilling Plan: 3 String with 4 String Contingency

- Contingency Plan If Losses Exceed 50% in Intermediate Interval
 - We will utilize a MB4 wellhead that will enable us to convert a 3 string design to a 4 string design. (Schematic Attached)
 - We will displace well with FW and drill or condition to run 9-5/8" Casing at the Lamar Limestone, we will utilize DV Tool w/ ACP @ the Tansill to Isolate Capitan Reef and cement to surface.
 - Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- 7.625 Casing will be Additional 4th String
 - o Drill remaining hole section to 10,670'
 - o Run 7.625 29.7# HCL80 FJM Casing

4-String Contingency Wellbore Schematic

Well: (Well Name) SHL:

(SHL)

BHL:

(BHL)

Lea, NM

Wellhead: A - 13-5/8" 10M x 13-5/8" SOW

B - 13-5/8" 10M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

Tubing:

2-7/8" L-80 6.5# 8rd EUE

Co. Well ID:

AFE No.:

API No.:

XXXX-XXX XXXXXXXXXXX

XXXXXX

GL:

(Elevation)'

Field:

Delaware

Objective:

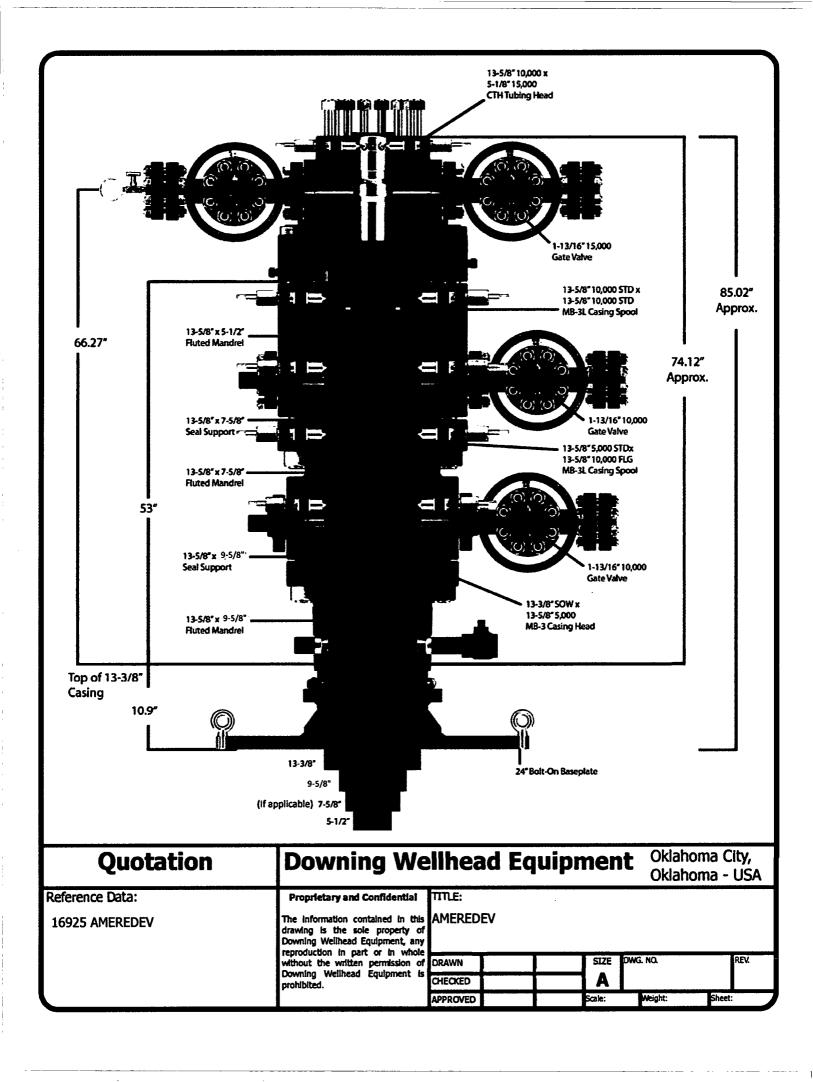
Wolfcamp B

TVD:

(TVD)' (MD)'

MD:

Rig: E-Mail: TBD KB 27'


Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs	Cement	Mud Weight
17.5"	Rustler 125' below 13.375" 54.5# J-55 BTC Rustler		TOC 0' 100% Excess	8.4-8.6 ppg WBM
	Salado DV Tool with ACP At Tansill		TOC 0' 50% Excess	sh Water
12.25"	Tansill Capitan Reef Lamar 50' below 9.625" 40# L-80HC BTC Lamar		TOC 0' 50% Excess	8.3-10.2 Fresh Water
8.75"	Bell Canyon Brushy Canyon Bone Spring Lime First Bone Spring Second Bone Spring Third Bone Spring Upper 125' below 7.625" 29.7# L-80HC FJM TBSG Upper		TOC 0' 25% Excess	8.5-9.4 Diesel Brine Emulsion
6.75" 12° Build @ KOP	Third Bone Spring Wolfcamp Wolfcamp B (If Applicable) 5.5" 20# P-110CYHP TMK UP SF TORQ (MD) Target Wolfcamp B TVD // MD		0' Excess	10.5-14 ppg OBM
<u> </u>	rarget woncamp B TVD // WID		TOC 0' 25% Ex	

Contingency Casing Design and Safety Factor Check

		Casing .	Specificati	ons		
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling
Surface	17.5	1,888'	13.375	54.5	J-55	BTC
Int #1	12.25	5,013'	9.625	40	HCL-80	BTC
Int #2	8.75	11,147'	7.625	29.7	HCL-80	FJM
Prod Segment A	6.75	11,147'	5.5	20	CYHP-110	TMK UPSF
Prod Segment B	6.75	22,496'	5.5	20	CYHP-110	TMK UPSF

	Chec	k Surface (Casing							
OD Cplg	Body	Joint	Collapse	Burst						
inches	1000 lbs	1000 lbs	psi	psi						
14.38	853	909	1,130	2,730						
	S	afety Facto	ors							
1.56	8.29	8.83	1.15	0.91						
	Che	ck Int #1 C	asing							
OD Cplg	Body	Joint	Collapse	Burst						
inches	1000 lbs	1000 lbs	psi	psi						
10.625	916	1042	4230	5750						
	S	afety Facto	ors							
0.81	4.57	5.20	1.41	0.95						
Check Int #2 Casing										
OD Cplg	Body	Joint	Collapse	Burst						
inches	1000 lbs	1000 lbs	psi	psi						
7.625	940	558	6700	9460						
		afety Facto	ors							
0.56	2.84	1.96	1.10	1.24						
	Check Pro	od Casing,	Segment A							
OD Cplg	Body	Joint	Collapse	Burst						
inches	1000 lbs	1000 lbs	psi	psi						
5.777	728	655	12780	14360						
		afety Facto	ors							
0.49	3.11	2.79	1.77	1.89						
	Check Pro	od Casing,	Segment B							
OD Cplg	Body	Joint	Collapse	Burst						
inches	1000 lbs	1000 lbs	psi	psi						
5.777	728	655	12780	14360						
		afety Facto								
0.49	63.53	57.16	1.68	1.89						

	ſ							
	I –	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	I L	17.5	13.375	1888		1.76	13.5	
		/Sk				0.31372549		
	bbl					419.402246		
		ge Tool Depti				N/A		
		MD of Segm				0		
		tom MD of Se	egment			1502		
		ment Type	Dantanika Assal	Kalasal Da	farmer Callefield	<u> </u>		
2 g	Add	ditves	Bentonite, Accei	erator, Kolseal, De	toamer, Cenonake	<u> </u>		
Stage 1 Lead	–							
l۳	<u></u>	antity (sks)				1,337		
		ld (cu ft/sk)				1,337		
		nsity (lbs/gal)			· · · · · · · · · · · · · · · · · · ·	13.5		
		ume (cu ft)				2,352.85		
Į.		cent Excess				100%	Target %	100%
		umn Height				3,389.88		
	 							
			Target TOC	0				
			Calc TOC	-1888	bbl	25% Excess	100%	
			calc vol	0.12372195	233.587041	291.9838012	467.174082	
	}		care vor	0.1237,2235	233.50.0.12	2323000022	707.127.1002	
	l	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		17.5	13.375	1888	V	1.34	14.8	
	i –		•					
	Bbl	/Sk				0.23885918		
	bbl	5				47.77183601		
	Top	MD of Segm	ent			1502		
	Bot	tom MD of Se	egment			1888		
	Cer	ment Type				С		
l _	Add	ditives						
Stage 1 Tall	<u> </u>							
Sta	<u> </u>							
		antity (sks)				200		
		ld (cu ft/sk)				1.34		
		nsity (lbs/gal)				14.8		
		olume (cu ft)				268		
		rcent Excess				100%		
	_ <u>Co</u>	lumn Height				386.1225606		

SURFACE CEMENT

-				-			
	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
1	12.25	9.625	5013		3.5	9	
	Bbl/Sk				0.623885918		
	bbls	-			372.0365733		
i	Stage Tool Dep	h			N/A		
	Top MD of Seg		·		0		
	Bottom MD of				4163		
ŀ	Cement Type				<u> </u>		
	Additves	Bentonite,Salt,K	olseal,Defoamer,Ce	llodake			
Stage 1 Lead	<u> </u>						
St.	ONo. (dla)				596		
ł	Quantity (sks) Yield (cu ft/sk)				3.5		
1	Pensity (lbs/ga				9		
1	Volume (cu ft)	<u> </u>			2,087.13		
Ì	Percent Excess	 -			50%	Target %	50%
	Column Height				6,669.49	10.864.70	50,0
	- Column Height				0,003.43		
		Target TOC	0				
		Calc TOC	-2506.5	bbl	25% Excess	50%	
		calc vol	0.055781888	279.6346021	349.5432526	419.4519031	
					•		
	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	12.25	9.625	5013		1.33	14.8	
	BbI/Sk				0.237076649		
	bbls				47.41532977		
I	Top MD of Segi	nent			4163		
	Bottom MD of				5013		
	Cement Type	reginent.			<u>55_5</u>		
	Additives						
Stage 1 Tail				•			
Stag							
-	Quantity (sks)				200		
i	Yield (cu ft/sk)				1.33		
l	Density (lbs/ga				14.8		
	Volume (cu ft)				266		
l	Percent Excess				25% 850.013004		
	Column Heigh	l .			630.013004		
	}						
	L			_			

INTERMEDIATE 1 CEMENT - STAGE 1

	Т							
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
ı	ľ	12.25	9.625	3262		3.5	9	
		Bbl/Sk				0.623885918		
	1	bbls				225.5254458		
	1	Stage Tool Dept	h		•	N/A		
	1	Top MD of Segm				0		
		Bottom MD of S				2412		
		Cement Type						
2 P		Additves	Bentonite,Salt,K	olseal,Defoamer,Ce	lloclake			
Stage 2 Lead					_			
		Quantity (sks)				361		
	1	Yield (cu ft/sk) Density (lbs/gal)				3.5		
ł	ł	Volume (cu ft)				1,265.20		
		Percent Excess				50%	Target %	50%
		Column Height	***			4,042.99	ranger 70	30%
		Colonia ricigit				4,042.33		
			Target TOC	0				
]		Calc TOC	-1631	bbl	25% Excess	50%	
			calc vol	0.055781888	181.960517	227.4506463	272.9407756	
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		12.25	9.625	3262		1.33	14.8	
		Bb1/Sk				0.237076649		
		bbls	•			47.41532977		
l	Į	Top MD of Segm	nent			2412		
		Bottom MD of S				3262		
		Cement Type				c		
۱ _~		Additives						
Stage 2 Tail			·					
% _		Quantity (sks)				200		
		Yield (cu ft/sk)				1.33		
	ĺ	Density (lbs/gal))			14.8		
		Volume (cu ft)				266		
		Percent Excess				25%		
1	ŀ	Column Height				850.013004		
1	İ							
1	ļ							
1								
	<u> </u>							

INTERMEDIATE 1 CEMENT - STAGE 2

	\neg	· · · · · · · · · · · · · · · · · · ·		-				
	1	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		8.75	7.625	10670		2.47	9	
	ŀ	8bl/Sk				0.440285205		
		bbls				168.6309595		
1	ı	Stage Tool De	pth			N/A		
1		Top MD of Se	gment			0		
1	ı	Bottom MD o	f Segment			6755		
1		Cement Type				Н		
-	_	Additves	Bentonite,Retar	der, Kolseał, Defoam	er,Celloflake, Ant	ti-Settling		
Stage 1	Lead	Expansion Ad	ditive					
"		Quantity (sks)		***		383		
1		Yield (cu ft/sk				2.47		
ı		Density (lbs/g				9		
1		Volume (cu ft	•			946.02		
		Percent Exces				25%	Target %	25%
		Column Heigh	nt			9,422.97		
			Target TOC	0				
1			Calc TOC	-2667.5	bbl	25% Excess	25%	
ŀ			calc vol	0.01789574	190.9475483	238.6844354	238.6844354	
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	1	8.75	7.625	10670		1.31	14.2	
		Bbl/Sk				0.233511586		
	- 1	bbls				70.05347594		
l		Top MD of Se	gment			6755		
	- 1	Bottom MD o	f Segment			10670		
		Cement Type				НН		
1	_	Additves	Salt,Bentonite,R	etarder,Dispersant	Fluid Loss			
Stage 1	Tail							
		Quantity (sks)				300		
		Yield (cu ft/sk	·			1.31		
		Density (lbs/g				14.2 393		
	Į.	Volume (cu f				25%		
		Column Heig				3914.533571		
1	į	Column neig		•		JJ14.JJJJ/1		
1	ı							
I								

INTERMEDIATE 2 CEMENT

1								
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
1		6.75	5.5	22496		1.34	14.2	
Stage 1		Bbl/Sk bbls Stage Tool Depti Top MD of Segm Bottom MD of S Cement Type Additves Quantity (sks) Yield (cu ft/sk)	n eent egment	22490 Fluid Loss, Dispersa	nt, Retarder, Def	0.23885918 418.2897805 N/A 0 22496 H	14.2	
		Density (lbs/gal)			•	14.2		
		Volume (cu ft)				2,346.61		
	1	Percent Excess				25%	Target %	25%
	1	Column Height				28,120.00		
		Hole Size 6.75	Target TOC Calc TOC calc vol Casing Size 5.5	0 -5624 0.01487517 Depth 22496	5acks 0	25% Excess 418.2897805 Yield 0	25% 418.2897805 Density 0	·····
	ŀ	nt let				•		
		Bbl/Sk bbls				0		
		Top MD of Segm	ent	.		22496		
		Bottom MD of S				22496		
ŀ	I	Cement Type				Н		
12 -		Additives						
Stage 1		One with delay						
		Quantity (sks) Yield (cu ft/sk)				0		
		Density (lbs/gal)				0		
		Volume (cu ft)				0		
		Percent Excess						
		Column Height				0		

PRODUCTION CEMENT

HALLIBURTON

Permian Basin, Ft Stockton

Lab Results- Lead

Request/Slurr	mation v 24	188456/2		Rig Name			:		Date	18/DEC/20	18
Submitted By	•	illon Briers		Job Type		Interme	diate Casing		Bulk Plant		
Customer	A	meredev		Location		Lea	_		Well		
Well Info	was a tikan						••				
Casing/Liner		625 in		Depth MI		5013 ft	· .		BHST	165°F	
Hole Size		75 in		Depth TV		5013 ft			ВНСТ	130°F	
Hote Size	0.	,		Берия 1 7		3013 K			<u> </u>	150 1	
Cement In	formati	on - Lead D	esign								8
Conc UO	<u>M</u> <u>C</u>	ement/Additive							Cen	ent Propertie	s
100 % E	SWOC N	leoCem						Slurry D	•	9	lbm/gal
14.68 gal/s	sack H	leated Fresh Wate	r					Slurry Y		3.5	ft3/sack
								Water R	equirement	14.68	gal/sack
Pilot Test	Results	Request ID	248845	6/1							
		quest Test I				-	·				
Temp (degF)	300	200		00	60		30	6	3		Cond Time
											(min)
80 (up)	82	67	4		42		39	36		28	0
80 (down)	82	59	3:		26		18	10	9		0
80 (avg.)	82	63	4:	2	34		29	23	1	9	0
PV (cP) & YP (lbs/100ft2):	61.73	22.32	(Least-squa	res metho	d)					
V (cP) & YP (lbs/100ft2):	60	22	(Traditional	method (300 & 100	rpm based))				
eneralized He	rschel-Bulk	ley 4: YP(lbf/100)ft2)=20.33	MuInf(cP)=	52.39	m=0.81	n=0.81				
	logy. Re	quest Test I	D:3566	5341							
API Rheol											
						30	6		3	Cond Time	Cond Temi
	300	200	100	· 60		30	6		3	Cond Time (min)	Cond Temp (degF)
						30	6		3		
Temp (degF)						30	6		6		
Temp (degF)	300	200	100	60						(min)	(degF)
Temp (deg F) 134 (up) 134 (down)	300	200	100	60		15	7	,	6	(min) 30	(degF)
Temp (degF) 134 (up) 134 (down) 134 (avg.)	300 63 63 63	200 47 46 47	100 29 29	60 21 21		15 14 15	7 7	,	6 4	(min) 30 30	(degF) 134 134
Temp (degF) 134 (up) 134 (down) 134 (avg.) V (cP) & YP (300 63 63 63 1bs/100ft2):	200 47 46 47 57.12	100 29 29 29	21 21 21 (Least-squa	res metho	15 14 15 d)	7 7	,	6 4	(min) 30 30	(degF) 134 134
Femp (degF) 134 (up) 134 (down) 134 (avg.) V (cP) & YP (63 63 63 63 lbs/100ft2):	200 47 46 47 57.12	100 29 29 29 29 7.98	21 21 21 (Least-squa	res metho	15 14 15 d)	7 7 7	,	6 4	(min) 30 30	(degF) 134 134
Temp (degF) 134 (up) 134 (down) 134 (avg.) PV (cP) & YP (63 63 63 63 (bs/100ft2): rschel-Bulk	200 47 46 47 57.12 51 ley 4: YP(lbf/100	100 29 29 29 7.98 12 0f(2)=2.26	21 21 21 (Least-squa (Traditional MuInf(cP)=	res metho	15 14 15 d) (300 & 100	7 7 7 rpm based))	,	6 4	(min) 30 30	(degF) 134 134
Temp (degF) 134 (up) 134 (down) 134 (avg.) PV (cP) & YP (300 63 63 63 (bs/100ft2): lbs/100ft2): rschel-Bulk Loss, R	200 47 46 47 57.12	29 29 29 29 7.98 12 0ft2)=2.26 ID:3566	21 21 21 (Least-squa (Traditional MuInf(cP)=	res metho	15 14 15 d) (300 & 100 m=0.41	7 7 7 rpm based)) n=0.41		6 4	(min) 30 30 30	(degF) 134 134

This report is the property of Halliburton Energy Services and neither it nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

Free Fluid A	API 10B-2,	Request Test	ID:356653	43			,
Con. Temp (deg	F) Cond.	Time (min)	Static T. (F)	Static	time (min)	Incl. (deg)	% Fluid
134	30		80	120		0	0
Pilot Test R	esults Requ	iest ID 25041	16/5				
		OFF-ON, R		ID:3585239	2		
Test Temp (degF)	Pressure (psi) Reached in	(min) 70 Bc (h	h:min) Start	Вс		
126	5800	40	6:18	16			
UCA Comp	. Strength,	Request Tes	ID:358523	94			
End Temp (degF)	Pressure (psi)	50 psi (hh:mm)	500 psi (hh:mm)	12 hr CS (psi)	24 hr CS (psi)	48 hr CS (psi)	
159	4000	8:55	12:23	456	749	681	

This report is the property of Halliburton Energy Services and neither it nor arry part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

U. S. Steel Tubular Products

7.625" 29.70lbs/ft (0.375" Wall) HCL80 USS-LIBERTY FJM®

		·····	
MECHANICAL PROPERTIES	Pipe	USS-LIBERTY FJM®	The state of the s
Minimum Yield Strength	110,000	-	psi
Maximum Yield Strength	140,000	-	psi
Minimum Tensile Strength	125,000	-	psi
DIMENSIONS	Pipe	USS-LIBERTY FJM®	
Outside Diameter	7.625	7.625	in.
Wall Thickness	0.375	-	in.
Inside Diameter	6.875	6.789	in.
Standard Drift	6.750	6.750	in.
Alternate Drift		-	in.
Nominal Linear Weight, T&C	29.70	_	lbs/ft
Plain End Weight	29.06	-	lbs/ft
SECTION AREA	Pipe	USS-LIBERTY FJM®	
Critical Area	8.541	5.074	sq. in.
Joint Efficiency	_	59.4	%
PERFORMANOE	Pipe	USS LIGHT Y FAR	
Minimum Collapse Pressure	6,700	6,700	psi
Minimum Internal Yield Pressure	9,460	9,460	psi
Minimum Pipe Body Yield Strength	940,000		lbs
Joint Strength		558,000	lbs
Compression Rating		558,000	lbs
Reference Length	_	12,810	ft
Maximum Uniaxial Bend Rating	-	39.3	deg/100 ft
Make-Up Loss	_	3.92	in.
Minimum Make-Up Torque	-	10,800	ft-lbs
Maximum Make-Up Torque	_	15,250	ft-lbs

^{1.} Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness and Specified Minimum Yield Strength (SMYS).

Legal Notice

USS-LIBERTY FJM® is a trademark of U. S. Steel Corporation. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U.S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

^{2.} Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.

^{3.} Unlaxed bending rating shown is structural only, and equal to compression efficiency.

^{4.} USS-LIBERTY FJM™ connections are optimized for each combination of OD and wall thickness and cannot be interchanged.

^{5.} Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

^{6.} Reference length is calculated by joint strength divided by nominal plain end weight with 1.5 safety factor.

Connection external pressure leak resistance has been verified to 100% API pipe body collepse pressure following the guidelines of API 5C5 Cal III.

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTION	
MECHANICAL PROPERTIES .			
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
DIMENSIONS			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
SECTION AREA		-	
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
PERFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes

- Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.
- 4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.
- Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

Manuel USS Product Data Sheet 2017 rev25 (April)

QUALITY CONTROL	No.: QC-DB- 651 / 2013
	Page: 1 / 44
Hose No.:	Revision: 0
66551, 66552, 66553, 66554	Date: 14. November 2013.
	Prepared by: Scala Landon
	Appr. by:

CHOKE AND KILL HOSES

id.: 3" 69 MPa x 35 ft (10,67 m)

DATA BOOK

Purchaser: H&P STOCK

Purchaser Order No.:

ContiTech Rubber Order No.: 537587

ContiTech Oil & Marine Corp. Order No.:

4500370505

NOT DESIGNED FOR WELL TESTING

CONTITECH RUBBER Industrial Kft.

No.: QC- DB- 651 / 2013
Page: 2 / 44

CONTENT

1.	API QMS Certificate (No.: 0760)	<u>Page</u> 3.
2.	American Petroleum Institute Certificate of Authority To Use the Official API Monogram (No.: 16C-0004)	4.
3.	Quality Control Inspection and Test Certificates (No.: 1905, 1906, 1907, 1908)	5-8 .
4.	Hose Data Sheet	9.
5.	Metal Parts	
5.1.	Raw Material Quality Certificates (No.: TR070687, EUR-265844, 86989/13-0)	10-13.
5.2.	Hardness Test Reports (No.: 561/13, 562/13)	14-15.
5.3.	Ultrasonic Test Reports (No.: 513/13, 514/13, 515/13)	16-18.
5.4.	NDT Examiner Certificate (Name: Tóth Ákos József)	19-20.
5.5.	Welding Procedure Specification (No.: 140-71)	21-24.
5.6 .	Welding Procedure Qualification Record (No.: BUD 0700002/1)	25-26.
5.7.	Welder's Approval Test Certificate (No.: RK1825997.R1)	27-28.
5.8.	Welding Log Sheet (No.: 2013/2898)	29.
5.9.	Visual Examination Record (No.: 813/13)	30.
5.10.	NDT Examiner Certificate (Name: Kis Gábor Balázs)	31-32.
5.11.	Radiographic Test Certificates (No.: 2431/13, 2430/13)	33-34.
5.12 .	NDT Examiner Certificate (Name: Ménesi István)	35-36.
5.13.	MP Examination Record (No.: 1222/13)	37.
5.14.	NDT Examiner Certificate (Name: Oravecz Gábor)	38-39.
6.	Steel Cord	
6.1.	Inspection Certificate (No.: 4046181212)	40.
7 .	Outside Stripwound Tube	
7.1.	Inspection Certificate (No.: 63892/2012)	41.
8.	Certificate of Calibration (Manometer Serial No.: 1518086)	42-44.

Constitute Bullion

Contifiech Rubber Industrial Kft. Quality Control Dept. CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

3/44

Certificate of Registration

APIQR REGISTRATION NUMBER 0760

This certifies that the quality management system of

CONTITECH RUBBER INDUSTRIAL LTD.

Budapesti ut 10

Szeged

Hungary

bas been assessed by the American Petroleum Institute Quality Registrar (APIQR*) and found it to be in conformance with the following standard:

ISO 9001:2008

The scope of this registration and the approved quality management system applies to the Design and Manufacture of High Pressure Hoses

APIQR® approves the organization's justification for excluding:

No Exclusions Identified as Applicable

Effective Date: October 15, 2013 Expiration Date: October 15, 2016 Registered Since: October 15, 2007

W. Dow Whitfake Munager of Operations, APIQR

This resultance is which for the period operative breats. The explorated organization must continually once all requirements of APA(A) in Replecation. Programs and the explorations of the Replecation Agreement in Replecation is continued and regularly monitored through annual full spaces mades. Retriber challifundation regarding the compare of this certificate and the application (A) EAO Notes assembly requirements may be obtained by consisting the registered organization. This certificate has been form MAVIA officers bound of 11.00 L Street, V.V., Visablegion, D.C., 20075-1070, I.S.A. It is the property of APA(A) and must be entermed again request. To verify the authorisation;

4/44

Certificate of Authority to use the Official API Monogram

License Number: 16C-0004

ÓRIGINÁL

The American Retroleum Institute hereby grants to

CONTITECH RUBBER INDUSTRIAL LTD **Budapesti ut 10** Szeged Hungary

the right to use the Official API Monogram on manufactured products under the conditions in the official publications of the American Petroleum Institute entitled API Spec Q1º and API Spec 16C and in accordance with the provisions of the License Agreement.

in all cases where the Official API Monogram is applied, the API Monogram should be used in conjunction with this certificate number 16C-0004

The American Petroleum Institute reserves the right to seroke this authorization to use the Official API Monogram for any reason satisfactory to the Board of Directors of the American Petroleum Institute.

The scope of this license includes the following product: Flexible Chake and Kill Lines.

QMS Exclusions: No Exclusions Identified as Applicable

Effective Date: OCTOBER 15, 2013 Expiration Date: OCTOBER 15, 2016

To verify the authenticity of this license, go to www.ani.org/compositolist.

Ontinental & CONTITECH

CONTITECH RUBBER Industrial Kft:

No:QC-DB- 651 /2013 Page: 5 / 44

	INSPI	QUA ECTION	ALITY (ATE		CERT. N	1 °;	1905	
PURCH	ASER:		Conti	Tech (Oil & N	/larine C	Corp.		P.O. Nº:		4500370505	
CONTITI	ECH RUB	BER order	Nº: 537	587	HOSE	TYPE:	3"	ID		Choke and	i Kill Hose	
HOSE S	SERIAL N	l°:	665	51	NOMI	NAL / AC	TUAL LI	ENGTH:		10,67 m	1 / 10,75 m	
W.P.	68,9	MPa	10000	psi	T.P.	103,4	MPa	1500)() psi	Duration:	60	min.
ambient	e test with temperature temper	10 мі	in. Pa	•	See at	ttachm	ent. ('	1 page	;)			
7 10		PLINGS T				Seria	ıl N°		Q	uality	Heat N°	
	3° c	oupling wi	ith		80)84	808	3	AIS	il 4130	24613	
4	1/16" 10	K API Fla	inge end						AIS	SI 4130	034939	
	NOT	DESIG	NED FO	OR W	/ELL 1	restin	lG			A	PI Spec 16 C	;
	- 1									Temp	erature rate:	"B"
WE CER	TIFY THA	e flawless T THE ABO PRESSURE	VE HOSE I	HAS BE	EN MAN	IUFACTUI	RED IN A	CCORDA	NCE WIT	H THE TERMS	OF THE ORDER	
STATEM	ENT OF (s and spe	CONFORMIT	TY: We h	nereby o ve Purci , codes :	certify that chaser Or and spec	at the aborder and t	ve items/ that these and meet	equipment items/eather	nt supplied quipment v rant accept	were fabricated	conformity with the d inspected and tes nd design requireme	ted in
Date:			Inspec	tor			Qualit	y Contro		· ·		
13. N	lovemb	er 2013.					2	<u>~~</u>		Tech Rubber ustrial Kft. Control Depl		

ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE No: 1904, 1905

Page: 1/1

	your in
15. Lugada ec	Contilect Rublier Industrial Kft. Quality Control Dept.
RD +20.05.40	20:20 20:20
GN +19-66 90 RO +29-67 90 BL +1849 - 64 GH +19-52 90	201 10 201 10 201 10
RO +28.89 9C BL +1851 bor CN +28.81 90 RO +28.17 9C	20 00 20 20 20 20 20 20 20 20 20 20 20 2
FL +1053. Har	19:50
184 H1055- bon 1	19148 19148
RD +20.17 40 BL +1859. bar	19:30
BL +1964- Edr	19120
12.11.2013. 19:10 66511.66551 19:10	
0 10 20 30 4	50 60 70 80 90 100
10	39696

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013 Page: 6 / 44

QU/ INSPECTION	ALITY CON I AND TES		CATE		CERT.	N°:	1906	
PURCHASER:	ContiTech	Oil & Marine	Corp.		P.O. Nº	·	4500370505	
CONTITECH RUBBER order	Nº: 537587	HOSE TYPE	3"	1D		Choke an	d Kili Hose	
HOSE SERIAL Nº:	66552	NOMINAL / A	CTUAL L	ENGTH:		10,67 r	m / 10,73 m	
W.P. 68,9 MPa	10000 psi	T.P. 103,4	. MPa	1500)() psi	Duration:	60	min.
↑ 10 mm = 10 Mi		See attachr	nent. (1 page	;)			
	Pa							
COUPLINGS T	уре	Ser	ial N°			Quality	Heat Nº	
3" coupling w	ith	8088	808	35	Als	SI 4130	24613	
4 1/16" 10K API Fla	nge end				AIS	SI 4130	034939	
NOT DESIG	NED FOR W	VELL TEST	NG			F	API Spec 16 (3
All makes weeks and flowless.						Temp	erature rate:	"B"
All metal parts are flawless WE CERTIFY THAT THE ABOY	VE HOSE HAS B	EEN MANUFACT	URED IN A	CCORDA	NCE WIT	H THE TERM	S OF THE ORDER	
INSPECTED AND PRESSURE STATEMENT OF CONFORMIT conditions and specifications of accordance with the referenced	TY: We hereby	certify that the at	ove items that these s and mee	equipmer titems/ed the relev	nt supplied quipment ant accep	were fabricate	d inspected and te	sted in
Date:	Inspector		Quali	ly Contro	ol			
13. November 2013.			Cal		Contill Indu	ech Rubber strial Kft. Control Dept.	Yaca Co	۷

Ontinental & CONTITECH

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

7/44

QUA INSPECTION	ALITY CON AND TES		CATE		CERT.	N°:	1907	
PURCHASER:	ContiTech	Oil & Marine	Corp.		P.O. Nº	;	450037050)5
CONTITECH RUBBER order	N°: 537587	HOSE TYPE:	3"	ID		Choke and	d Kill Hose	
HOSE SERIAL N°:	66553	NOMINAL / A	CTUAL LE	ENGTH:		10,67 m	/ 10,745 m	
W.P. 68,9 MPa 1	10000 psi	T.P. 103,4	MPa	1500	0 psi	Duration:	60	min.
	;	See attachn	nent. (1	1 page)			
↑ 10 mm = 10 Min								
→ 10 mm = 25 MP	°a	Seri	al No	 Τ'		huality	Heat	N IO
→ 10 mm = 25 MP	Pa /pe	Seri.	al N°	7		Quality	Heat 23171	N° 24813
→ 10 mm = 25 MP	oa vpe			77	Als			24613
→ 10 mm = 25 MP COUPLINGS Ty 3" coupling with	rpe th nge end	8089	808	77	Als	SI 4130 SI 4130	23171	24613 39
→ 10 mm = 25 MP COUPLINGS Ty 3" coupling with 4 1/16" 10K API Flan	rpe th nge end	8089	808	77	Als	6i 4130 6i 4130	23171	24613 39
→ 10 mm = 25 MP COUPLINGS Ty 3" coupling with 4 1/16" 10K API Flam NOT DESIGN	rpe th nge end NED FOR W	8089 /ELL TESTI	808	CCORDA	AIS AIS	6i 4130 6i 4130 A Temp	23171 0349 PI Spec 10 erature ra	24613 39 6 C be:"B"
→ 10 mm = 25 MP COUPLINGS Ty 3" coupling with 4 1/16" 10K API Flan NOT DESIGN All metal parts are flawless WE CERTIFY THAT THE ABOVE	re HOSE HAS BETESTED AS ABO Y: We hereby of the above Purcestandards, codes a	8089 /ELL TESTII EEN MANUFACTUVE WITH SATISF certify that the ab- thaser Order and	NG RED IN AGACTORY Ove items/cthat these and meet	CCORDA RESULT. equipmen Items/eq the releva	AIS NCE WIT t supplied ulpment ant accep	A Temp TH THE TERMS To by us are in were fabricated	23171 0349 PI Spec 10 erature ra s OF THE ORDE	24613 39 6 C be:"B"

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

8 / 44

QUA INSPECTION	LITY CON AND TES			ATE		CERT.	N°:	1908	
PURCHASER:	ContiTech	Oil & M	larine (Corp.		P.O. N°	:	45003705	05
CONTITECH RUBBER order N	_{l°:} 537587	HOSE	TYPE:	3"	ID		Choke ar	nd Kill Hose	
HOSE SERIAL N°:	66554	NOMINAL / ACTUAL LENGTH			ENGTH:	_	10,67 ו	m / 10,71 m	
W.P. 68,9 MPa 1	0000 psi	T.P.	103,4	MPa	1500)() psi	Duration:	60	min.
↑ 10 mm = 10 Min		See at	tachm	ent. ('	1 page)			
T 10 mm = 10 Min → 10 mm = 25 MP	•						·		
COUPLINGS Ty			Seria	l N°			Quality	Hea	t Nº
3" coupling with	า	809	90	808	6	Als	SI 4130	23171	24613
4 1/16" 10K API Flan	ge end					AIS	SI 4130	0349	939
NOT DESIGN	ED FOR W	ELL T	ESTIN	lG				API Spec 1	6 C
All A-1 do							Temp	perature ra	te:"B"
All metal parts are flawless WE CERTIFY THAT THE ABOVI INSPECTED AND PRESSURE T							TH THE TERM	S OF THE ORD	ER
STATEMENT OF CONFORMITY conditions and specifications of accordance with the referenced s	the above Purc tandards, codes	haser Ord and speci	der and t	hat these and meet	the relev	uipment ant accep	were fabricate	ed inspected an	d tested in
Date: 13. November 2013.	Inspector			Qualit	y Contro	Con	atiTech Rubb adustrial Kfi ity Control D	· /) Ser

Page: 1/1

-G] [Contifect Rub Industrial Ki Lity Control I (1)
	+19.92 +1949.			7	20 20 20	1				:: [}					
유민경	+19.64 +1950	40 60 60		171 171	100					1:					
RD BL	19.69 191052)	ibo(it)	þ		99	6	O;	7	ם י	8	p' [٤	D	1	00
39 平 28	+19.77 +1053	ec bar o		120	50				1:				1		
BL	+19.78 +1055	20 B G			#0 #0				1						
중문교	+19.73 +1056	bar		6			11	11	. []	. :			, !		
RD BL	+19.78 +1062	eC bar		6	20 20		11		1			1			
2								}							
665	11 - 2013 52 - 6655	3,66554		00				:	1			; ;			
			H		7 :	, , ,	1					; i			1

CONTITECH RUBBER Industrial Kft.	No:QC-DB- 651 /2013	
	Page:	9 / 44

Hose Data Sheet

CRI Order No.	537587	
Customer	ContiTech Oil & Marine Corp.	
Customer Order No	4500370505	
Item No.	1	
Hose Type	Flexible Hose	
Standard	API SPEC 16 C	
Inside dia in inches	3	
Length	35 ft	
Type of coupling one end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVE	
Type of coupling other end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVE	
H2S service NACE MR0175	Yes	
Working Pressure	10 000 psi	
Design Pressure	10 000 psi	
Test Pressure	15 000 psi	
Safety Factor	2,25	
Marking	USUAL PHOENIX	
Cover	NOT FIRE RESISTANT	
Outside protection	St.steel outer wrap	
Internal stripwound tube	No	
Lining	OIL RESISTANT	
Safety clamp	No	
Lifting collar	No	
Element C	No	
Safety chain	No	
Safety wire rope	No	
Max.design temperature [°C]	100	
Min.design temperature [°C]	-20	
Min. Bend Radius operating [m]	0,90	
Min. Bend Radius storage [m]	0,90	
Electrical continuity	The Hose is electrically continuous	
Type of packing	WOODEN CRATE ISPM-15	

No:QC-DB- 651 /2013

Page:

10 / 44

ContiTech Rubber Industrial Kft

Order Number:

32258500 4205160045

Part Number: Our Ref:

SO64201

Date:

11th February 2013 TR070687/(Rev. 18/06/2013)

Certificate Number: Approved Signatories:

R M Greaves A Cocking J Jarvis A Pears S Selman

8083-8088

3451- 3466

42 0516 00 45

Description

CERTIFICATE OF CONFORMITY

Heat Treatment

AISH130/BLACK ROLLED BAR, HEAT TREATED & TESTED TO 197-238 BHN, 655MPA MIN TENSILE, 517MPA MIN YIELD, 18% MIN ELONGATION, CHARPY IMPACT TESTING 27J MIN @ -30C (OR COLDER) LATERAL EXPANSION 0.38 MIN, ROLLING REDUCTION 3:1 MIN. NI 1% MAX & CE 0.82 MAX. TESTS MAY BE TAKEN FROM A 4" SQR QTC AS PER API BAIPSL 3 QTC SIZE. MECHANICAL TEST SPECIMEN TO ASTM A370 NACE MR0175/ISO15158 APPLIES

APPROX 20 TONNES 210 MM DIA

HARDENED FROM 860°C FOR 5:30 HOURS (WATER QUENCH) TEMPERED AT 670°C FOR 10 HOURS (AIR COOL) WATER TEMPERATURE BEFORE QUENCH, 28°C, AFTER, 35°C. TEMP. MEASUREMENT, FURNACE ATMOSPHERE THERMOCOUPLE COMPONENT HARDNESS E10 - 211 HBW10/3000

TEST COUPON - 4" SQ X 8" LONG, TESTED AT 1/4 T LOCATION **REDUCTION RATIO - 6.2**

REDUCTION RATIO & HT APPLY TO BOTH JOB & TEST PIECE FURNACE CALIBRATION: APISA 20th ed, annex M C/E = 0.693

CERTS TO EN10204 3.1

					CAST	24613)				
C	Si	Mn	s	P	N	er	Mo	AI	Cu	Sn	Nb
0.3200	0.2590	0.5680	0.0090	0.0100	0.1660	1.0560	0.2350	0.0200	0.1420	0.0070	0.0010
V	Ta	Ti	Nb+Ta	Co	N	В	W	Ce	Fe	As	Sb
0.0010		0.0010			0.0079	0.0001				L	
Pb	Ca	H (ppm)	CEV							ļ	
		1.20	0.69								

	TEST	T SPECIF	ICATION	517 N/mr	n2 MIN Y	/ELD		
Temperature RT	Re	Rp 0.2 517.000	Rm	A %	Z %	Impact	Temp.	Hardness
	Mmm2	Namm2	Kimm2	40				

				TEST R	ESULTS			Charpy
Test Number	Dir./Temp.	Re	Rp	Rm	A %_	Z %	Joules	Direction
ST22561N	20.0°C		524.000	698.000	27.60	67.70	KCV 46°C 60 50 78	LONG 211
Specimen Ø 12.500mm	,					•	KCV -60°C 50 50 46	LONG
							% Show Surface	1

62.0% 52.0% 60.0% 0.840 0.740 1.020 LONG

For and on Behalf of TM Steels Ltd. A Cocking

Contilech Rubber Industrial Kit. CERTIFICATE ACCEPTABLE النابيل OC INSPECTOR DATE: /1-06-2

TAT Steem Ltd

Foxwood Way

Forewood Road

Chesterfold

Steel for the Oil and Engineering Industries

Machining and Boring Facilities

Tei +44 (0)1248 268312

Sales Fax +44 (0)1246 288313

ction Fex. +44 (0)1248 269841

Co Reg No: 3523526 Vat No: GB 706 2614 57

Carbrook Street Sheffleld S9 2JN

Telephone: +44 114 244 6711 Facsimile: +44 114 244 7469

Test Certificate Customer Order Test Number

To: CONTITECH RUBBER INDUSTRIAL KFT SZEGED BUDAPESTI UT 10, K /S62 -K /S75 HUNGARY, HUNGARY 420516 0045

Description AISI 4130 75KSI .2% PS API QTC

Customer Order Number	32252193 - 01	Test Number	402483
Customer Order Date	27Feb12	Part Number	4205160045
Sales Order Number	EUR-352087-1	Cast Number	28171
Report Date	25Sep12	Cert Number	EUR-265844
Quantily	14 Pos 17402 Kgs 210 mm Dia		
		Steel Type	ALLOY 4130

Results quoted only refer to the items tested/ AISH130 / Material Specification 197-237BHN Test Spec 517N/MMZMIN.YLD Heat Treatment Spec Test Spec Matt Practice EFAD Production Method FORGED Temp recorded using Heat Treatment Temp(%) Soak Coalant Charge Ref. Init Max(°C) Batch CONTACT THERMOCOUPLE HARDEN 860 3 HRS WATER QUENCH SHF-158284 Nature of T/P 20 30 0912091308 Separate TEMPER 650 4 HRS TABLE COOL SHF-158284 1012091319 Oto size 4inch SQ X 6inch LONG Req. Min/Max Achieved Hardness on T/P 197 237 HBW 229 229 HBW Hardness on Material 197 HBW HBW

Tenstie -						Impacts -		··	-, -l	
Location	Direction	Rp 0.20%	Fim	A%	Z%	Location	Direction	CVN	Lat. Exp. (mm)	% Shear
. 1/4T	LONGITUDINAL	517 Min	655 to 800	18 Min (4d)	O Min	1/4T	LONGITUDINAL	27 Min Ave	0.380 Min	0
Results (N/mm2)		580	766	25 (50.0mm)	64.0 (12.56mm)	Results (Joules)	-30 Centigrade	106 104 102	1,44 1.42 1.4	40 40 40
									<u></u>	
Results						Results				
		·····								

1100000							<u> </u>		 				1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_	يلجين ي				 				
Сотовіс	n								 														
Pitting F	Resistance	, ,		1	Ferrite								Microsi	ructure									
Carbon	Equivaler	nt.	I			.6	71				Grad	in Size	Min		6	Mex		6					
C	SI	Mn	P	6	Cr	Mo	NI	Cu											I	T			
0.2940	0.2920	0.5370	0.0110	0.0050	1.0620	0.2290	0.1860	0.2430		ļ						<u> </u>							
Certs to	BSENIO	204,2004	3.1						 Contr	IBCH IN	Anner						W &	Callbrook	 AI	DIGA SAM	Edition A	Albrev M	

NACE MR-01-75 FE = BAL

REDUCTION RATIO 6.5:1

Industrial Kit. CERTIFICATE ACCEPTABLE OC INSPECTOR All furnace Calibration conforms to API6A 20th Edition ANNEX M. Hardness load/penetration depth - HBW 10 diameter (mm)/3000 kg/ test force per ASTM E10.

Third party inspection :

Names of Approved Signatories: S.Maxted G.Smith S.Suter P.Rogers M.Brown This report is not to be reproduced without written approval.

Page 1 of 1

CONTITECH RUBBER Industrial Kft.

Page: No:QC-DB-651 /2013 CONTITECH RUBBER | No:QC-DB- 651 /2013 Industrial Kft.

Page:

12 / 44

8083-8030 FORGING, MACHINING, HEAT-TREATING

1386 4205140284 ÉMI - TŪV ISO9001

H-3531 Miskolc, Kiss Ernö u. 17. Phone: 36/46/401-033 Fax: 36/46/379-199

INSPECTION CERTIFICATE

ACCEPTANCE ACCORDING EN 10204-05/3.1

Certificate No.: (86989/13-0)

Date of issue: 2013.03.27 | Hámor No.: 98-39B5263 | Order No.: 32259784/13/2

Customer: Contitech Rubber Industrial Kft.

6728 Szeged Budapesti út 10

Spec.No.: API 6A PSL3 315/191 × 182

Quality: AISI 4130/CONTI Dimension: MSO-100597-002/A/H mm

Final dim.: MSO-100597-002/A(4 1/16") Heat-treatment: Quenched & tempered

Quantity: 30 pcs | Weight: 73.0 kg/pc | Total weight: 2190.00 kg

nomination of product: Forged, machined disc

Chemical analysis %

Heat No.: (034939)

Steelmaker: CELSA Hutaostrowiec POLA

Test		1	MN 1.80	1.00	P 0.025	S 0.025	2.75	MO 1.500	0.300	Ce 0.82	
	Result	0.28	0.56	0.20	0.006	0.003	0.99	0.170	0.003	0.62	

Mechanical properties:

Test	Spec. value Min. Max.	HB 197 238	Rp0.2 MPa 517	Rm MPa 655	A5 % 18	KV-J -30°C 27
L13314	Result Result	235 238	525	662	19.50	35 52 82

Test bar from product.

Dimensional and visual control: passed

Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory Steel making (melting) process: UHP-ASEA vacuum-treated. NACE MR 0175/ISO 15156+API 17K + API 6A PSL3.

HB-E10, Mechanika: ASTM A370 acc.

Grade Of forging: 9.81

pc/series.

Executive namor zki linőség ellenőrzé Osztály

Expèrt

C/c

FIALKA FERR A

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 13 / 44

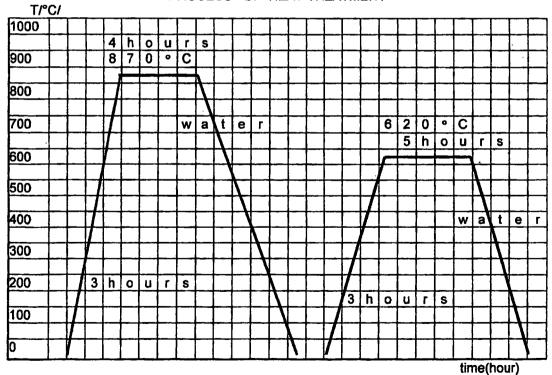
MISKOLC Kiss Ernő u. 17. sz. H-3531

tel:36/46/401-033

fax:36/46/379-199

e-mail: hamor@t-online,hu

PROTOCOL NUMMER: 98-39B5263


HEAT-TREATMENT PROTOCOL										
BUYER: CONTITECH RUBBER INDUSTRIAL Kft. Szeged Budapesti út 10. sz.	Order No. of Buyer: 32259784/13/2 Work No. of Buyer:									
Dodapesa at 10, 32.										
PRODUCT:	QUANTITY: PIECE	No. of drawing:								
forged	30	MSO-100597-002/A/H								
MATERIAL QUALITY: AISI 4130 CONTI API 6A PSL3	Charge No.: 34939	Test No.:								

<u>HEAT-TREATMENT</u>: quenching and tempering

Typ of furnace: electric furnace

Hardening medium: water

PROCESS OF HEAT-TREATMENT

Miskolc, Hámor ZRt. 2013-03-26.

head of heat-treatment

Hámor zRt. Ilnőség ellenőrzés Osztály

No:QC-DB- 651 /2013

Page:

14 / 44

Felado :

61344

gamma controll kft

19/18/13 12:54 Lap: 2

HARDNESS TEST **REPORT**

Report No: 561/13.

CLIENT:

JE-ZO KFT. SZEGED, KÜLTERÜLET, 01408/22.

TEST EQUIPMENT:

TH 160-D Hardness tester

PROCEDURE:

QCP-45-R1

DESCRIPTION OF COUPLING: coupling(s) after PWHT

DRAWING NUMBER:

MT-3121-3000

SERIAL NUMBER:

8083; 8084; 8085; 8086

BRINELL HARDNESS REQUIREMENT	SERIAL NO OF COUPLING	PART OF THE COUPLING	ACTUAL HARDNESS RESULT (HB)
Min HB 197 Max HB 238	√ 8083	body weld flange connection face	224 222 236 238
	√ 8084	body weld flange connection face	213 208 220 238
	/ ₈₀₈₅	body weld flange connection face	214 214 219 222
	/ 8086	body weld flange connection face	232 237 238 197
	·		
	REQUIREMENT Min HB 197	Min HB 197 Max HB 238 8083 8084	Min HB 197 Max HB 238 Max HB

The coupling(s) conform to API Spec 6A requirements.

DATE:

PREPARED:

2013. október 30.

Ménesi István

QCP-03 HB/11

No:QC-DB- 651 /2013

Page:

15 / 44

Felado :

61344

gamma control1 kft

19/18/13 12:54 Lap: 3

HARDNESS TEST REPORT

Report No: 562/13,

CLIENT:

JE-ZO KFT. SZEGED, KÜLTERÜLET, 01408/22.

TEST EQUIPMENT:

TH 160-D Hardness tester

PROCEDURE:

QCP-45-R1

DESCRIPTION OF COUPLING: coupling(s) after PWHT

DRAWING NUMBER:

MT-3121-3000

SERIAL NUMBER:

8087; 8088; 8089; 8090

BRINELL HARDNESS REQUIREMENT	SERIAL NO OF COUPLING	PART OF THE COUPLING	ACTUAL HARDNESS RESULT (HB)
		body	213
	√ 8087	weld	216
Min HB 197	,	flange	220
Max HB 238		connection face	225
		body	229
	√ 8088	weld	212
		flange	223
		connection face	213
		body	219
	√ 8089	weld	229
		flange	231
		connection face	238
	,	body .	207
	√ 8090 Ì	weld	210
		flange	226
		connection face	234
	İ		
		ļ	

The coupling(s) conform to API Spec 6A requirements.

DATE:

PREPARED:

APPROMEDIONTROLL KFT.

2013. október 30.

Ménesi István

QCP-03 HB/11

No:QC-DB- 651 /2013

Page:

16 / 44

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

Vizsgálati szám: Report No.:

ULTRASONIC EXAMINATION REPORT

513/13

Vizsgálat tár	gya / Objec	t of tes	t		Соц	oling (Body)		
Gyártó Manufacturer				Megrendek Customer	δ JE-ZO F	(ft. Szeged		
Gyáriszám				Rendelési	szám			
Serial-No.				Order-No.				
Azonosító jel Identification	8083-8088			Követelmér Requireme	•	ASTM A388		
Geometriai kialakítás /	Rajzszám			Vizsgálati I	hőkezelés	előtt		
Geometric configuration	n / Drawing-No.			Test heat to	reatment	prior		
MT-3121-3000		ø200	0xø70x491	<u> </u>				
Anyagminőség Material		AISI 413	0 /	Letapogata Direction of	•	axiális és radiális		
Adagszám Heat-No.		24613	/					
Vizsgálati felület állapot	ta	forgácsolt		Vizsgálati t	erjedelem	100%		
Surface condition		machined		Exted of Te	est	100%		
Vizsgált darabszám Testing pieces	· -	6 db						
	Viza	sgálati s	datok / E	xamina	tion data			
Készülék típusa		LICHAR	- <u>::-</u>	Készülék g	yári száma	20254		
Type of US-equipment		USM25		Serial-No. (Of US-equipment	7875f		
Vizsgálófej(ek)		SEB-2,		Frekvencia	(k)	2 MHz		
Searc unit(s)		SEB4H		Frequency((ies)	4 MHz		
				1		MHz		
		•		<u> </u>		MHz		
Kalibrációs blokk		F	T1,ET2	Erősítés(ek) axiálisan	18 dB		
Calibration standard ide	entfication	•		Gain		dB		
						dB		
					radiálisan	6 dB		
Csatoló közeg		olaj		Hanggyeng		dB/m		
Couplant		oil		Attenuation		· · · · · · · · · · · · · · · · · · ·		
Ertékelés / észle	eit Rijeizesek			lable ind:	lcations			
Ertekeles Evaluation	X	megfelel			nem megfelel	ő / not acceptable		
Evaluauori Megjegyzés(ek)	L	satisfact	OIY	<u> </u>	<u> </u>			
Remark(s)								
Hely / kelt Place / date Gamma-Controll Kft. Algyő, 2013.10.17			Vizsgálat	GAMMA CONTROLL HST. 6750 Algy Walls at a 1894 3 firsz. Adószám. 1094614-7-06 www.gammasanathal hu Tel. 06-30-218-2640 Approved by				
				UT20103090307 Benkő Péter - Felelős vezetőh.				
	For a long with				detaile is prohibited			

No:QC-DB- 651 /2013

Page:

17 / 44

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

Vizsgálati szám: Report No.:

www.garryna-controll hus 6750 Algyd, botherdiet 01884/14. hrsz. Tel /Fax.: +38 62/517-400 / 81344 A NAT 62n NAT-1-1407/510 szlanon aktrollálii vángálálato ULTRASONIC EXAMINATION REPORT

514/13

Vizsgálat tár	gya / Objec	t of te	st			Coupl	ing (Boo	4)
Gyártó	*************************************	· · · · · · · ·		Megrendelő	5	JE-70 K	t. Szeged	
Manufacturer				Customer		<u> </u>	c ozegou	
Gyárlszám				Rendelesi s	szám			
Serial-No.				Order-No.				
Azonosító jel Identification	8089-8090			Követelmény Requirement ASTM A			1388	
Geometriai klalakítás /	Rajzszám			Vizsgálati h	őkezelé	B		lőtt
Geometric configuration	n / Drawing-No.			. Test heat tr	eatment		р	rlor
MT-3121-3000		ø20	00xø70x491					
Anyagminőség Materiat		AISI 4130 /		Letapogatá: Direction of	-		axiális é	s radiális
Adagszám Heat-No.		23171	/					
Vizsgálati felület állapota forgácsoft Surface condition machined			Vizsgálati te Exted of Te	•	n	100%		
Vízsgált darabszám Testing pleces 2 db			1		-		,	
	Viza	sgálati	adatok / E	xaminat	tion	data		-
Készülék típusa Type of US-equipment USM25				Készülék gy Serial-No. C			7875f	
Vizsgálófej(ek)		SEB-2.		Frekvencia(upnent		2 MHz
Searc unit(s)		SEB4H		Frequency(i				4 MHz
		•						MHz
								MHz
Kalibrációs blokk			ET1,ET2 Er)	axiáilsan		18 dB
Calibration standard ide	entfication	l			Gain			dB
				ł		•		dB
				<u> </u>		radiálisan		6 dB
Csatoló közeg		olaj		Hanggyeng				dB/m
Couplant		oil		Attenuation				
Ertékelés / észle Ertékelés		megfele		T T				
Evaluation	X	satisfac			nem	megfelelő	/ not acc	eptable
Megjegyzés(ek) Remark(s)	<u> </u>							
Hely / kelt		 -				CAMBA	A - CONTR	OLL KFI.
Place / date Gamma-Controll Kft. Algyő, 2013.10.17			_	tot végezte		5750 Algy	w gaminta con	1884/14. hrsz. 14-2-06
		Ļ		ted by		Approved by		
		Ĺ.	Tóth Ákos UT20103090307			Benkő Péter - Felelős vezetőh.		

No:QC-DB- 651 /2013

Page:

18 / 44

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

Vizagálati szám: Report No.:

ULTRASONIC EXAMINATION REPORT

515/13

Vizsgálat tár	gya / Objec	t of test	Flange			
Gyártó .		· · · · · · · · · · · · · · · · · · ·	Megrendelö	JE-ZO Kft. Sz	anad	
Manufacturer		·····	Cuatomer		offer	
Gyáriszám			Rendalési szam			
Serial-No.	·		Order-No.			
Azonositó jel Identification	8083-8090		Követelmény Requirement	TM A388		
Geometriai kislekités /	Raizazám		Vizagátati hékez	wide.	előtt	
Geometric configuration	•		Test heat treatm		grior	
MT-3121-3000	• • • • • • • • • • • • • • • • • • • •	#315x85x#190x94x#70			P 1.40	
Anyagminöség Material		AISI 4130 /	Letapogatási irá Direction of scar	· avid	ilis és radiális	
Adagszám Heat-No:		034939 /				
Vizagétati felület állapo Surface condition	inface condition machined		Versgalati terjed Exted of Test	elem 100	%	
Viziget derebazim Testing pieces 8 db						
	Viz	sgálati adatok / E	zaminatio	n data	/ . <u></u> .	
Készülék tipusa		USM25	Készülék gyári száma. 7875f			
Type of US-equipment USM25			Senzi-No. Of US-equipment			
Vizegálófej(ek)		8EB-2,	Freivencia(k) 2 54H			
Searc unit(s)		SEB4H	Frequency(les)		4 MHz MHz MHz	
Kalibrációs blókk Ceilbration standard ide	entification	ET1,ET2	Erősítés(ek) Gain	exiâlican	6 dB dB dB	
Cestolà kázea	 	olej	Hanggyengulés	radiálban	6 dB	
Couplant		cii	Attenuation		dB/m	
Ertékelés / észi Ertékelés		/ Evaluation / recor		· · · · · · · · · · · · · · · · · · ·		
Evaluation	X	satisfactory	ne	m megfelelő / no	rt acceptable	
Megjegyzés(ek) Remark(s)					•	
	2-Controll Kft. 2013.10.17	Tes	itot végezte ited by	olin legen für Adiesign www.gan Japan	Henry (1881 II has 1109614-2.00 1109614-2.00 1109616-2.00 1109616-2.00 Feletis vezetith	

Page:

No:QC-DB-651/2013 19 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

Azonositó szám: UT20103090307 (Identification No.):

A tanúsitott neve: (The name and forename of

Tóth Ákos József

A tanúsított személy aláírása (The signature of the certificated individual)

Születési hely/idő: (Place and date of birth):

Hódmezőváráshely, 1987. 09.

Vizsgálati eljárás(ok): (The NDT method(s): Ultrahangos anyagvizsgálat

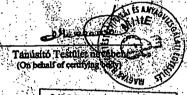
(Ultrasonic testing)

Ipari terület: (Industrial sector):

Készülékek, berendezések, létesítmények vizsgálata EM (Pre and in-service testing of equipment, plant and structure)

Termék terület(ek): Product sector(s):

(c)+Fv, (w)+Fv, (wp)+Fv, (f)+Fv


A minositės fokozata: (The level of certification)

A tanúsítás és kiadásának időpontja: (The date of certification and it's issue):

Budapest, 2009. 12. 07.

A tanúsítás érvényes: (The date upon which certification expires):

2014. 12. 06.

Az ipari és/vagy termék tern. 9/2001 GM, 97/23 EC

let ervenyesseg kiterjesztve: (The industrial and/or product sector has been expanded to):

Dátum (Date): 😃

067/2004

A tanúsítás érvényessége

(Renewed the validity of the certification until (MSZ EN 473 9.):)

ig megújítva (MSZ EN 473 9.):

Dátum (Date):

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikái és Anyagvizsgálati Egyesülés, mint a Nemzeti Akkreditáló Testület által a NAT-5-0013/2006 számon akkreditált tanúsító testület az MSZ EN 473 számú szabvány szerint eredményes

vizsgája alapján a nevezett személyt tánúsítja a fentiek szerint: (The Hungarian Association of Welding Technology and Material Testing as an accredited by the National Accreditation Board (under No. NAT'S 1013/2000 certification body, on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above.)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csővek (tubes); wp - alaktroti termékek (wrought products); p - mūanyag termékek (glastics products), k - kompozitok (composites products).

CONTITECH	RUBBER
Industria	l Kft.

No:QC-DB- 651 /2013 Page: 20 / 44

UT20103090307

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN 473 3.21)

(The holder of this certificate has been authorised to perform tests and take responsibility for the test results. (MSZ EN 473 3.21)

	%22 9268 ed/ (CONTROLI Gyertyamos u	KFT F16/A
Munkáltató aláírás Signature of the employ	OTT HELDE	4796085E	6154
		mma-controll ht	1

Dátum: 4009 . 12.07

	Folyamatos minkavegzés igazolása (MSZ Ei (Evidence of continued work activity (MSZ EN 473	
Sorsz.:	Munkáltató aláírása (Signature of the employer) (Signature of the employer)	OL Dátum (Date)
1.	N I I I I I I I I I I I I I I I I I I I	Ku. 1
2	- County Co	18011 20N. Ol. 06
3.		19. noll 01.09.
4	THE PARTY OF THE P	
5.	Anyagotasu	rad Kft
6.		
7.		
8.		
9,		
10.		

Kiegészítések:

A tanúsítvány a munkáltató aláírásávál érvényes (This certificate)s valid with the signature of the employer.)

CONTITECH RUBBER	No:QC-D	3- 651 /2013
Industrial Kft.	Page:	21 / 44

A COMPANY	- PHOENI	X	TECHNICAL D	ATA SHEET	<u></u>	TDS	Page
	PHOENIX RUBBER INDUSTRIAL LTD.	WEL	DING PROCEDUR	E SPECIFICATION V		WPS	Nº 1 of 2
, 1	CLIENT		THIS SPECIFICAT	ION IS BASED	WPS N°	140-71	REV 4
	IDENTITY CODE		ON ASME CODE	SECTION IX	SUPPOR	RTING PQR N° BUD 0700002/1	
	Ітем	Qty	WELDING PROCESS: G'	TAW-SMAW	PERFORM	ED BY:	
	DATA FOR ACCE	PTANCE	TYPES: MANUAL		WELDER'	's Stamp	
	JOINTS (QW-402) Appr. 1.5			Sequences of weld see on addendum			dum
Livido Disk History	JOINT DESIGN	B	WELD SEQUENCE				
	BASE METALS (QW-403)			PART "A"		PART "B"	
	DRW N°						
	GRADE: WNo.:1.7220			ASTM A 322-91: AISI 4130 / 34CrMo4 (MSZ EN 10083-1) *			
	CARBON EQUIVA	LENT	max.C _e =	0.82		0.	82
ŀ	MECHANICAL PROPERTIES:						
		SILE STRENGTH					55
		TILITY	% min.	18		18	
į.		DNESS	HB max.	238			38
		CT TEST -30°		Ormore Diverge			7
	THICKNESS: FILLER METALS (i-38 mm	OUTSIDE DIAMET	ER. 1	ØD = 60-2	OV IIIII
	WELD MATERIAL	DIAMETER	Brand	STA	NDARD	ļ	SUPPLIER
	Rod	2.4 mm	EML 5	AWS A5.18)S-3	Böhler
	Electrode	3.2; 4.0	T-PUT NiMo 100**	AWS A 5.5-96:	E 10018-D	2 (mod.)	Böhler
	Lapse between	OF PASSES	MIN./min	•		•	Ì
	Positions (QW-	405)		Preheat (QW-406)			
!	Positions: 1G	Rotated (horiz	contal)	Рпенеат темр.: 300-330 °С			
ļ	WELDING PROG	RESSION: Wel	d flat at or	INTERPASS TEMP.: max. 350 °C			
	Position of fil		to the top	PREHEAT MAIN postweld he			gining of
	OTHER	t		METHOD OF PRI	EHEATING:	Fumace	
		 		1.205 0, 110	*******		لــــــا

•

CONTITECH RUBBER Industrial Kft.	No:QC-DE	3- 651 /2013
	Page:	22 / 44

	CONTINUAT	TION OF WPS	Nº 140-71 Rev	v.4	·		P	age N° 2 of 2	
	POSTWELD	HEAT TREATM	ENT (QW-407)	Gas (QW	4 08)			
i:	HOLDING	TEMP. RANG	620 +20 / -	0 C°	SHIELDI	NG GAS A	Argon for roo	t	
	HOLDING TEMP. TIME 4 HR								
	HEATING	RATE MAX.:			PERCEN	TAGE COMPO	SION (MIXTUR	RE)	
	COOLING	RATE MAX.:	80 °C/HR			9	9.995 %		
	LOCATION	OF THERMOO	COUPLE		FLOW RA		10-12 LITRES/min.		
						_	n (for 1st and		
	1 _	ATMOSPHERE	: Air_		FLOW RA		-9 Litres/min		
	TYPE:	 			TRAILIN	G SHIELDING			
	ELECTRICAL CURRENT	DC DC	ISTICS (QW-40	19) 	ELECTROD	E POLARITY	1st : 2nd-28th	pass: - passes: +	
ľ	TUNGSTEN	ELEKTRODE SI	ZE/TYPE: Ø3.2	mm thoriated	i tungsten				
ĺ		RANSFER FOR							
distribution	ELECTRODE / WIRE FEED SPEED RANGE								
	WELD LAYERS	PROCESS	Filler Class	METAL DIAMETER		RENT AMP.	VOLT	HEAT	
	LATERS		CLASS	DIAMETER	POLAR.	RANGE	RANGE	(KJ/cm)	
	1	GTAW	EML 5	2.4 mm	-	110-130	11-12	5-8.4	
	2-3	SMAW	T-PUT	3.2 mm	+	120-140	24-26	12-19.6	
	4-28	SMAW	NiMo 100 T-PUT NiMo 100	4.0 mm	+	150-170	26-30	16.2-27.5	
	TRAVEL SPEED RANGE 100-130 mm/min								
1	Technique (QW-410)								
	STRING OR	WEAVE BEAD			ORIPACE OR GAS CUP SIZE Ø9mm				
ŀ	INITAL/INTE	RPASS CLEAN	ING: Brushing,	Grinding					
	EQUIPMENTS FOR WELDING:								
	OTHER:								
	EXAMINA				REMARKS				
}	1		eptance instruct		- * Formerly CMo3 (MSZ 61)				
	N.	" MIO-FB 2 E	Based on ASMI	SIX.	- ** Ni content less than 1 % - Before welding bake electrodes for 2 hours at				
					350 °C	iding bake c	rectiones for	2 nours at	
	Ву	DATE	TECH	NICAL D	DATA SHEET				
	Desig.	24 14.06.	WELDING F	PROCEDU	RE SPECIF	ICATION	HOSETI	ECHNICAL	
	Appr. CZ	to 1200 8	UBJECT: Butt	weld of hose	coupling for	H2S service	DEPAI	RTMENT	
	Chek'd			Strengh	t 75K		WPS Nº 14	10-71 Rev.4	

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 23 / 44

PHOENIX RUBBER Industrial Ltd.	Nº:	WPS 140-71 Addendum
Hose Division	Revision:	4
	Page No:	1/2
	Date:	2007-06-12
ADDENDUM	Designed:	Buin W
for the approved wall thickness range 5-38 mm	Checked:	11.
Based on WPS 140-71 Rev.4, PQR No.: BUD 0700002/1	Approval:	Chefen

No.	Wall thickness [mm]	Weld layers		Electrode Ø [mm]
1.	5-7		1 2	3,2 3,2
2.	7-9		1 2-3	3,2 3,2
3.	9-11		1 2-3 4-5	3,2 3,2 4,0
3.	11-13		1 2-3 4-6	3,2 3,2 4,0
5.	13-15		l 2-3 4-8	3,2 3,2 4,0
6.	15-18		l 2-3 4-10	3,2 3,2 4,0
7.	18-20		l 2-3 4-11	3,2 3,2 4,0
8.	20-22,22		1 2-3 4-15	3,2 3,2 4,0
9.	22,2-26		l 2-3 4-19	3,2 3,2 4,0

CONTITECH RUBBER North

No:QC-DB- 651 /2013

Page: 24 / 44

PHOENIX RUBBER Industrial Ltd.

ADDENDUM

for the approved wall thickness range 5-38 mm Based on WPS 140-71Rev.4, PQR No.: BUD 0700002/1

Nº:	WPS 140-71 Addendum
Revision:	4
Page No:	2/2

No.	Wall thickness [mm]	Weld layers		Electrode Ø [mm]
10.	26-29		1 2-3 4-19	3,2 3,2 4,0
11.	29-32		ł 2-3 4-23	3,2 3,2 4,0
ار خاندان المجاورة المجاورة المجاورة المجاورة المجاورة المجاورة المجاورة المجاورة المجاورة المجاورة المجاورة ا	32-35		i 2-3 4-24	3,2 3,2 4,0
13.	35-38		I 2-3 4-28	3,2 3,2 4,0

No:QC-DB-651/2013

Page:

25 / 44

Certificate no: Page 1 of 2

BUD 0700002/1

Welding Procedure Qualification Record (PQR) ASME IX

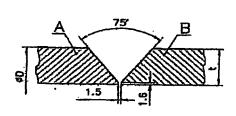
Energy and Transportation

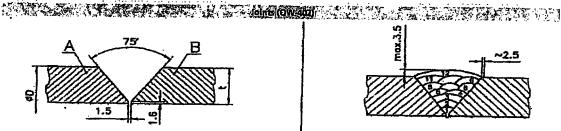
Company Nama Phoenix Rubber Gumilpari Kft; SZEGED

Procedure Qualification Record No.

BUD 0700002/1

Date


· 在"天主" 板 " 盐、酸四氢" (32) (3)


28 February 2007

140-71 Welding Process(es)

GTAW/SMAW Types (Manual, Automatic, Semi-Auto.)

Menual

Groove Design for Test Coupon

(For combination qualifications, the deposited weld metal thickness shall be recorded for each titler metal or process used.)

AISI 4130

E 1001B-G

3.2. 4.0 mm

A5.5

Material Socc.

Type or Grade

SFA Specification

AWS Classification

Filler Metal F-No.

Stre of Filter Metal

Weid Motal Thickness

Weld Metal Analysis A-No.

P.No.

ASTM A 322-91, A1SI 4190

AISI 4130

AISI 4130

Thickness of Test Coupon 👍

Diameter of Test Coupon

to P-No. 19 mm

ER 705-3

81.2A

2.4 mm

3 mm

6

Base Metals (CW-405):

Temperature 620 +20-0 °C 4 hours

Time

Other

: Marie o

Shielding

Current

Polarity

72 mm FORMATION OF THE STATE OF THE S

Percent Composition Girdel

(Mixture) Flow Rate 10-12 l/min

APPLIES.

7-9 Vmln

Trans Badding Ar 99.95%

Filter Metals (CIN-404) GTAW SMAW Electrical Ch

tice (OW-400)

Ar 99.95%

DC GTAW DCEN, SMAW DCEP

Armos.

Layer I 120, Luyer 2-3 127, Legar 4-12 136

Layer 1 11-12. Later 2-5 2436. layer 4-12 24-30

SMAW

M

M

Tungsten Electroda Siza

9.2 mm

Technique coverio

Layer 1-11 100-130 Layer 12 man/min

Feeting (Cop-WO) notices 1G rotated Pastilan of Groove

Weld Progression (Uphill, Downhill)

Other

Travel Speed String or Weave Bead

Layer 1-11 String Layer 12 Wane GTAW

Multipass or Single Pess (per side) S Single or Multiple Electrodes

Heat

Layer 1 6,0-8.6 KU/cm Layer 2-3 14.1-19.8 KI/cm

Prehen (OW-405)

Preheat Temp. Interpass Temp

300-930 ℃ mex 350 ℃

Other

Layer 4-12 18.7-28.1 KI/cm

Lloyd's Register, its affiliates and subsidiaries and their respective officers, employees or agents are, individually and collectively, referred to in this clause as the 'tloyd's Register Group'. The Lloyd's Register Group assumes no responsibility and shall not be liable to any person for any loss, damage or expense caused by reliance on the information or advice in this document or howsomer provided, unless that person has signed a contract with the relevant Lloyd's Register Group entity for the provision of this information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that contract.

No:QC-DB- 651 /2013

Page:

26 / 44

						Certificate no: Page 2 of 2	BUD 070000	2/1
	Width	Thickness		Tensue Test Ullimate Total	(044150) Uldmate Unit	ACKTONO	FQR No.	BUD 0700002/1
Specimen No.	18.9 18.9	15.8	Area mm²	Load kN	Stress MPa 657	Type of Failure & Local Base material	icon The control of the control of t	:- :
39/2	183 		deservice.		664	Base material		*; · · , · · · · · · · ·
Glumen Ber	HTESTE (QW	160/27		ATTENTO	Results		na ana	
	oller dia. 36 r	nnt 2+2 pcs.			Satisfactory			
1.54		ente (e)	1. 100 W.A		g the last op-		terner -	e Production
(olennes)			Specim	Meeting of Active Court for	amo.	n Velue		Drop Weight Break
Specimen No.	.	Location	mm 10x10	-c -30		% Shear		(YM)
39 39	s Maria S ala	ALEXANDER (10x10 10x10	x55	49 41			
39 39	HAZ HAZ		10x10 10x10		38 2007 - 1 97		医多原剂	
39	HAZ	: (3 6 34,333)	10x10	b55 -30	62		Beconvole	Walley Cont
			34.38 1 416135	Porga de No	ing and the second		do de ante	Meirichtelland 20
Comments:					AND PARTY			Warder Co
				or the property and the second of the second				
ADDIE VALO		Characteristic as a first of the						
Result - Satisfac Macro - Results	tory:	Yes 🔲	No [Penetrat	on into Parent Metal	t: Yes	<u>□</u> ₩	• 🗆
Culturatients Type of Test		rdness test			. m			
Deposit Analysis Other	Me	cro - Satisfac ay - Satisfacto						
Weider's Name Test Conducted	TIV	adar Szabo Di G EAST Anyag	-II. 378258	Clock to bor. Labora	to. (BC 15) tory Test No:	Stamp No. TIMO 007-7/07 VJK 1	207/2007	
		nts in this recon		nd that the test we	ids were prepared	, welded, and tested in	accordance wi	ith the
Data issued:		February 200			Lloyd's Registed	(Lugo		
	Bo	er cer		· · · · · · · · · · · · · · · · · · ·	1/2	Lloy	ds iei	
Manufacturer's Manufacturer		1252io Bajusz ber Gumüpari Kft	, SZEGED		Laszlo Penz Surveyor to	Lloyd's Register EMEA		·

A member of the Lloyd's Register Group

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 27 / 44

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Designation ASME IX: GTAW / SMAW Pipe BW s19 1G

Welder's name: Tivadar Szabó (BC15)

Identification card No: 517278EA

Date and place of birth: 19. August 1949; SZEGED

	Weld test details		tails	Range of a	pproval	Photo (if required)	
Welding process	3	GTAW/SMA	w			(
·	Туре	Rod / Electrode					
Filler metal Designation		AWS 5.18; ER7 AWS 5.5; E99					
Parent metal group(s)		ASTM A 322-91 4130		ASTM A 322 4130	•		
Plate or pipe	2	Pipe		Pipe/PI	ate		
Welding position	<u>.</u>	1G		1G/FI	at		
Outside diamete	rį̇́ (mm)	72 mm		> 25 m	ım	Identification of test pleces:	
Test piece thick	ness (mm)	19		Max to be	welded	pieces.	
Single/ both side welding		Single			WPS No.:		
Gouging/ backing						140-60 Rev.4	
Joint type		Groove	Groove / Fillet		Fillet	Testing standard:	
Shielding/ backing gas(ses)		Argon (99,95	5%)			ASME IX	
Welding carried	out, place: Sze	eged	Date	e: ding Engineer:	29 April 20	110 USZ Barrer	
Type of test	Pe	erformed and accepted		Not required		ace and date:	
Visual	Acce	pted (Vjk-1739/10)				Szeged, 18-Jun-2010	
Radiography	Acce	pted (Vjk-1739/10)				Surveyor:	
Ultrasonic			+		Sun		
Magnetic particle	9			+		Péter Szabó	
Penetrant				+			
Macro				+		Stamp and signature	
Fracture				+		((ACADE))	
Bend				+		The state of the s	
Additional tests				+		777	
0	ac/a) for prolo	ngation by employe	er evenu	C antha			

CONTITECH RUBBER	No:QC-DB- 651 /2013				
Industrial Kft.	Page:	28 / 44			

CONTITECH

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Welder's name: Tivadar Szabó (BC15)

Identification card No.: 517278AE

Date and place of birth: 19. August 1949; SZEGED

	PROLON	IGATION OF APPROVAL BY EMPLOY	ER
Place	Date	Name/ position/ title	Stamp and signature
Szeged	29.10.2010.	Laselo Bajusz / Wekley bedeur lagist	Boeres
Szeged	29.04.201.	Lasto Bajusz / Walding telendoj do	Begrel
Sieged	29 10. 2011	Lasto Bapen Welding Jedus Osist	Beerel
Sreged	29.04.2012.	Casilo Baiun (Weldery Lechenolgist	Burel
Sz ejecl	29. 10. 2012.	Lasse Dairen / Mabling La le wolg of	Becol
Signel	29. 04. 20B	lagelo Bajun Weblicy balendajist	Borrel
Sigeil	28.10.2013	Carlo Baien / Weblie falous land	Beerel
			· · · · · · · · · · · · · · · · · · ·
		•	
	·		
			
	<u> </u>		

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 29 / 44

zeged, Ki Adószám	O KFT. htterület 01408/2 : 13341039-2-06	2 hrsz		ELDIN Beszi						: 2013.	/ 280	78 .	
Bank:	számlaszám: Ologopy, procedo	Λ1					N M I	LAP	PAGE	oldal 1/	/1		
CLIENT		ITNC	TECH R	UBBER II	ndustri	al Kft.		CH.ORDE	ERN ^Q .	3226159	8.		
CONTRA Kötésszá				AL/JOB N ^O . I m.szám	2898	-2905		WPS No	•	40-71	. Rev.	4. 1.7	7
	F WEDEO PAR atrész megnevez		Body	r + Il	ome			DRWG Rajzszá	No. Y	T 3121 -	-3000		
NAME/ N	ü. OF WELDER 5 neve és száma			livador	lószl	6. B.C	15.	LOCATI	ION/SHO régzés he	P		ė Gzėle	6.
DATE Datum	2013.10.2	5	QUANT		8.			SERIAL Sorszán	. NUMBE	rs 8083 -	~ <i>8</i> o 9c) <u>.</u>	
1. MATE	RIAL		UECT 1	boo		MATERIA	ı T		10	AST NO.	2466	3, 80 8	
	egfelelőség	$\overline{}$	gy 1 JECT 2			Anyag MATERIA		AIS1.41		dagszám AST Nº.	1234	11, 808	<u> </u>
azonosit	ésa 		gy 2	-Dan	ge	Anyag		AISI. 11	a 1	dagszám	03	4939 .	
1	R MÉTAL a minőség		D LAYER: atazám	S 		1.	, e	2-3.		4-11.			
és mére	t	TYP Tipu	-		FW.	5.	NIH	0. 100	. WI	10. 100			
		DIAMETER Átmérő		2	4.	·	3.2.		4.				
			FILLER CAST Nº. Elektr.adagszám		800	1303.	112	4075	112	27750			
	3. ELECTRICAL CHARACTERISTICS		TYPE POLAR Polaritás		-		+		+				
	nos adatok	VOLT (V)		12.			24.		26.				
		AMP	PERE (A)		180.		140 .		180 .				
	EAT TREATMEI da felhasználási					<i>300</i> .		C°		8.		Н	oun
5. APPLII	ED SHILDING G azott védőgáz	AS	TYPE Tipus An		Percen Tisztas	tage Comp ág .	osition	995.	%	Flow Ra Áramlás I/min		8.	
6. HEAT	TREATMENT (p				7. POS Hely		Force	atott		100000		· · · · · · · · · · · · · · · · · · ·	
	OF TRAVELS	100)÷ 130 .	mm/min		SE BEETW Itfelrakási s			3	3.			min
10.POST	WELD HEAT		Tir Id	ne		mperature imérséklet			ace atmo łūtókāzec			ooling rate si sebess	
	ezelési adatok		240.			620 .	C°		veqö.			. •	C%H
	OGRAPHIC TES gráfial vizag, biz			2410	115,	2451	14		··-	<u> </u>			
REPAIR Javitás	YES/ Ige					X	NO/ N	em				· · · · · · · · · · · · · · · · · · ·	
	PLACE OF DE Hiba helye					TYPE Hiba t		EFECT					
	METHOD OF R		R										
VISUAL II Szemrevé	NSPECTION .		Hegfele)	å 50	hsfact	ory.							
REMARK: Meglegyza		Ŧ	onius.		. Ika	we.	2600	_			JE-7	O KF	r
Date, end	of colling down ti núlés vége	me	W	MINIST	EII H	PARSASÁ Pé széle 6. Heller köz 1290-2-06	G (1	15/E	ISPECTO	R ⁶⁷²⁸ Sze	ged, Kiûl Oszám:		408/

No:QC-DB- 651 /2013

Page:

30 / 44

Felado :

61344

garma controll kft

19/10/13 12:50 Lap: 1

Algy6, 2013.10.30. (10h)

SZEMREVÉTELEZÉSES VIZSGÁLATI JEGYZŐKÖNYV

Record No. Jegyzőkönyv száma:

813/13

VISUAL EXAMINATION

REPORT

			_
Object Tárgy	Coupling welding Cantlakozó hegesztés	Serial No. Gyári szám	8083-8090
Customer Megrendel	JE-ZO Kft. Szeged	Orawing No. Rajzszám	AT-3121-3000
Job Nr. Munkaszi	002/13	Material/Dimension Anyagminöség/méret	AISI 4130 118/77
Quantity Mennylsé	8 db	Extent of examination Vizsgálat terjedelme	100%
Requirements Követelmények	ASME code VIII/1	Hest treatment Hökezelés	after PWHT
Written Procedure Vizsgálati eljárás s	OCP-09-1	Welder Hegesztő	BC15
	Visual examination / Szer	mrevételezéses vissgélet	
Technique	Direct visual	1	•

Technique Môdszer	Direct visual	: .	<u>.</u>	
instrument Készülék	•		•	
Visual aids Segédeszközök	3x magnifiying lens		•	

	Wennatement / Wei	rea
Equipment	_	
Készülék		
Instrument		
Készülék		1.
Surface temperature	Surface	Lighting intensity
A felület 20 °C hőmérséklete	condition Fetület machined	Megvilágítás 1000lx
Test results	· · · · · · · · · · · · · · · · · · ·	
Eredmények :	SATISFACTORY megfelelö8	pc(s)/db
	not accepted nem megfelelö0	pc(s)/db
Vizsgålat helye és ideje:	Vizsgálatot végezje:	Áttekintette és jóváhagyta:
Place and date of test:	Tested by:	Reviewed and appropried by To
Gamma-Controll Kft.	Kis sabor	Adlacing 110 4614 2-08
Algyő, 2013.10.30, (10h)	VT20/03130102	TAL FRACES BIS 100-260C

VT20103130102

Tol Federal Negation

No:QC-DB- 651 /2013

Page:

31 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

A tanúsított neve:	
(The name and forename of	
the certificated individual):	
Születési hely/idő:	

Kis Gábor Balázs

Szeged, 1980. 02. 29.

Azonosító szám: VT20103130102 (Mentification No.):

A tamisitudi személy alálrása he signáture of the certificated individua

Vizzgáláti eljárás(ok): (The NUT method(s):

Szemrevételezéses anyagvizsgáló

(Visual testing)

Ipari tertilet: (Industrial sector):

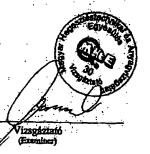
Készülékek, berendezések, létesítmények vizsgálata EM (Pre and in-service testing of equipment, plant and structure)

Termék terület(ek):

Product sector(s):

(c), (w), (wp), (f)

A minosités fokozata: (The level of conflication):


VT2

A tamúsitás és kiadásának időpontja: (The date of certification and it's issue):

Budapest, 2013. 02. 19.

A tanúsitás érvényes: (The date upon which certification expires):

2018, 02, 18.

Tamisito Testillet neve (On behalf of certifying bo

Az ipari és/vagy termék terüket érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to):

Dátum (Date):

Tamisito Testillet nevében (On behalf of certifying body)

A tamúsítás érvényessége -ig megújítva (MSZ EN ISO 9712 10.): (Renewed the validity of the certification until (MSZ EN ISO 9712 10.):)

Dátuin (Date):

> Tamúsitó Testület nevében (On behalf of certification body)

c - ömtvények (castings); f - kovácsolt termékek (forgings); w - hegesztett és forrasztott termékek (weided products); t - csövek és csővezetékek (tubes); wp - alakított termékek (wrought products); k - kompozit anyagok (composites products).

CONTITECH RUBBER
Industrial Kft.

No:QC-DB- 651 /2013 Page: 32 / 44

VT20103130102

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanústivány tulajdonosát, hogy vizagálatokat végezzen és azok eredményéért felelősséget vállalj	jon.
(MSZ EN ISO 9712 3.21)	
(The holder of this calculation is the property of the case of the	

6726 Szeked, Túzok n. 84.

Munkáttató aláírásar dószámi 1109an 14.2.00

(Signature of the completed P Bank. 11355003-20500154

Www.gamma-competition

Sorsz.:	Municalizato aldirasa (Signature of the employer)	work estivity (MSZ EN ISO 9712 10.)) "GAMMA (SCASTROLL"	Dátum (Date)
1.		Anyagettegáló és Minőségellendőső Kft.	7011.02:06
2.			
3.			
4.			
5.			
6.			
7 .			
8.			
9.			
10.			

Kiegészítések: (Additional remadu:)

A tamúsítvány a munkáltató aláírásával érvényes (This cerüficate is valid with the signature of the employer.)

No:QC-DB- 651 /2013 33 / 44 Page:

Felado :

61344

gamma controll kft

19/18/13 12:54 Lap: 1

RADIOGRÁFIAI VIZSGÁLATI **JEGYZŐKÖNYV**

Jegyzőkönyv szám: Report No.:

2431/13

RADIOGRAPHIC EXAMINATION REPORT

Kiálláta dátuma: Date of report: 2013.10.30

Vizegálat Object:	tárgys:				Coupling	<u> </u>		Megre	ndelő:	-			1E 20 1	/A C		
Munkauzi													IE-ZU	Kft. Szeg	<u>ea</u>	
MUTUKUUZA Jeb Nu.:	un;								ldsi sat Nor	m:						
Robszám:								Order No: Anysemināsės:								
Drawing I	-			MT	-3121-3	000		Maler		8;		AISI 4130				
	szabvány:								lat terje	dalma						
Testina st				C	<u> 2</u> CP-13-	1							10	18%		
	vetelmen	-						Extent of testing: Hokozolds:								
Acceptance		,		A	STM E9	4				t condition:			After	PWHT		
Kód:	Cód:								uń jele;		-		6			
Code: MSZ EN ISO 6520-1						l	_	sump:				Œ	CIS			
Demon Astrik House:									kô tipusa;		,	A 6704				
Type of equipment: GAMMAMAT							Туро о			_		ASIM	set B typ	£		
Sugarforni	d:				Ir192					tzń holye.				F		
Source:					17176				ent of l					r		
ingiritani				1	x 1.5mm				գերակու	inter:			20/	(2-21)		
louree size	o:				# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				cd IQI:				470	(0*61)		
Aktivitės:									pus:							
Activity.				(),4 TBq			Film T					FOA	DMA R5		
	ozás módj	Æ	Kézi:	-	Automate		X		Foliafajm és vastagság:				Ph	0,027		
ilm proce	ssing:		Manual:		Automui	σ		Sereou type due uniex:								
i		l	نؤا أ	1	Fibs dk. e kingy sugicoris ledde oldstatic Districts from source side of object to fibr:			1	۱ "	<u> </u>	Hibák/Defects					
(J	Aragicant enygnatagaig. Pactoted dictorss	1 1	Fibs the a they supports be contained by containing the containing the source side of object to there.	I		43	Vargalas idéposéja; Daza af Erst	Ciez	Salak	Kütés	Gyök	Repedés	Pelale	
ł		1 1	g	7 8		1]		. B	Porosity	Slag	Lock of Scion	Lack of	Crack	Surfac	
AS S	ı		84	34			ğ	B _ §	-Ğ	A	В	C	D	Ε	F	
罗雷月		18 2	# 2	34	5 5 E	,	4	P # 2	Ť	i ^ i	Ь	~	"	ו י		
H.5	¥	46	97	[] }	¥ # 8 8	ظ 🕏	36		∯	200	300	401	402	100	500	
Megnevezés Designation	Måret Size	Febréteks száme: Nember of cadiographs		Sogiefords film tivoledg Sourceto-film dismoce	Fibratika, en isko oktobatika Distorce from Object to fibra	Februarity.	Megviláptási tűk Expos. Trans:	S A A	Ī	400	200	401	402	100	200	
20						I A	20	Maketes A-maglelek NA-nom maglelek Result A-rowned: MA-not necessed	1]]				•		
	Ø	ďΦ	mm	mm	tutti		ınin	2 S F	N _B							
8083	115/77	4	19	96	19	2,4	0,5	A	10,30.	!]						
8084	115/77	4	19	96	19	2,4	0.5	A	10,30	 						
	112/11	-	-17	70		-		./%	104							
8085	115/77	4	19	96	19	2.4	0.5	·A	iup IU'TO							
8086	115/77	4	19	96	19	2,4	0,5	Α	15,80 10b							
8087	115/77	4	19	96	19	2,4	0,5	A	10.30.						_	
					_			╼┼╌┼┈┼┈┈┼┈┈┼┈╌┼┈┼								
8088	115/77	4	19	96	19	2,4	0,5	A	IOD							
										t terheli.						
he num!	bers of t	io film:	s and we	ids ar	e identic	al, the	ir ide	ntifical	ion Is	the task o	f the cas	tumer,				

Vizsgálatot végezte:

Performed by:

Vizapület helya: Place of lest:

6750 Algyō, Gamma-Controll Kft. Telephely Ménesi I. - Szabó T.

Érićkalta: Evaluated by:

Ménesi István

RT20101120107

Jovenhouses CONTROLL KFT CANTIA - CONTROLL KFT ABTSITATION, Kulterulet 01884 of hrsz Addszánt 1199461 / 2014 Wydganhalasci oll hr Lipci 1653 V 2180

No:QC-DB- 651 /2013

Page:

34 / 44

Pelado :

61344

gamma controll kft

19/10/13 12:40 Lap: 1

RADIOGRÁFIAI VIZSGÁLATI **JEGYZŐKÖNYV**

Jegyzůkůmyv szám: Report No.:

2430/13

1994 (Jacobs - Carlos III) 0750 Algod, Autoritics 01994/14, brad. 761/7861: <03 027817-400 / 01304 MAT 1 (14672010 Extent abbushes servestes

RADIOGRAPHIC **EXAMINATION REPORT** Kiállithe dátumu: Date of report: 2013.10.30

Vizagála	t biruva:							Moo	endelő:							
Object					Couplin	g	•	Clina					JF.70	KfL Szer		
Munkago	dan;								clési se	less.			18-20	NIL OZE	¿cu	
Job No.:								Order		411.				_		
Rapsode	o;							_	Anyugminőség:							
Drawing	No.:			M	Г-3121-3	9000			Material:			AISI 4130				
Vizzgále	i szabyttny	r.				_		Vizze	álut teri	edelme:						
Testing s	tandard;			•	QCP-13-	-)			t of traff				1	00%		
Atvételi I	követelmér	ty:		· ·) 10kc								
Accepton	oc criteria:	:		Λ	STM E	94		Henri 1	rentmen	t condition;			After	· PWHT		
Kad;				200	11100	45AA	4		vañ jelê					- 17		
Code				M36	en iso	05ZU-	1		r Mame				(B	C15)		
	Serendents tipusa: GAMMAMAT							Képm	indscal	izi tipusa:						
Type of a	quipment			GA	IATIATETA	IA I		Тура		•			ASTM	set B tyr	10	
Sugarlan	ás:				1 100					elző helye:						
Source:					Ir192				nun of					F		
	às márata;				- 1 E			1/36trt	képmin	(kst/µ:						
Source sb					x 1,5mn	1	•	Requi	red JQI:	*			2%	(2-2T)		
Aktivitis:								Film (pus:							
Activity:					0,4 TBq			Film T	урс:				FON	14 R5		
	gozás mód	ja:	Kćzi:		Automat		X	Folia fe	ju es v	nanogsåg:						
Hilm proo	casing:		Manual:		Automut	lo:	Λ.	Sunsen	type at	d thick:			Pb	0,627		
			144		ğ		T.	1	Ī			Hibák/	Defects			
	}	1	Augical enegranging Poemic flictues	<u>ن</u> وا	Fin the a terpy way family tests offsitting Distance from source side of others to fire.	1		١., ١	íasgila idopomja; Dan of tes	Cláz	Salak	Kötés	Győk	Repedes	Felület	
		Fetvetelet szkaz. Number of codingraphs	1 8	Separtures film timelabe Source-to-film distance	F A	l ·	1	indrik: A-megidek: iA-ven angidek Resik A-megidek NA-mi sorrani	A.	D		Lands of	Lack of	1 -		
-83 🖻	ļ	1 1		148		1	بغ	Underles Armegicless VAroem orgentels Re Varoement NArmes	å	Porosity	Slag	fixion	penatrarina	Crack	Surface	
を提	ĺ	1 1 8	1 5 3	[a.i	1 E	1	1 E u	10000000000000000000000000000000000000	¥	A	В	C	D	E	F	
Megnevezés Designation	"	Febretelsk szdang. Number of cading	8 3	# ¥	Firm take is taken observed from a defect to fiber	₩.	Nepsitagitsi ida Expor. Time	Nindside: Armegiel NA-vem megieteld A-manack NA-ver	1]				1		
20 E	Meret	1 1 1	1 1 1 5	1 5 8	Parish officials Disease of parish	Febredés Density.	2 8	Cit	1 2	200	300	401	402	100	500	
ΣØ	医迈	医是	1 2 E	a a	6 8 8 8	28	32		4	1 1		[·]	j .	1		
	ø	45	am	rttom	m	•	min	4 35	1.5) 1		1		1	1	
2000							1		10.10.					-		
8089	115/77	4	19	96	19	2,4	0,5	A	106	1			1			
2000		— , –		T					10.30							
8090	115/77	4	19	96	19	2,4	0,5	A	100	ļ j			1			
			-			· ·										
-	•	- 1	-	-	-	- 1		-	•	-	-	- 1	-	-	-	
							H									
İ	1				i					1	ĺ			l	1	
┣══╃═┈╏┈┋═ ╅ ┈╏ ┈┼┈┼┈┼┈┼┈┼																
- 1			.]							i	l	1				
▀▀▐▀▔▐▀▐▀▐▔▐▔▐▀▊▀▊▀▊																
filme	mok és	Varrate	rimok -	TORGE	k bass	200016	deuk a	Maur	المامد	t towhol?						
										t terneii. the task o	f the cost	umer.				
	ot végez					<u> </u>										
_	_	 .					•		1	Ménesi I.	- Szabó 1	r.				
rforme		<u> </u>														
bagålat h	alyo:			- 1	Ertekeltt):					7.	ovahagyta	:			

Place of test

Evaluated by:

Gamma-Controll Kft. Telephely

6750 Algyo,

Ménesi István

RT20101120107

Appranta - CONTROLL

lis a jegozhkönyv nezeleteihen nem missolhmól / Copying details is prohibited!

No:QC-DB- 651 /2013

Page:

35 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

Azonosító szám: RT20101120107

A tamusitott neve: (The name and forename of the certificated individual): Születési hely/idő:

(Place and date of birth):

Ménesi Istyán

Szentes, 1988. 09. 06.

A tentisitott személy aláírása (The stenature of the certificated individua

Vizzgálati eljárás(ok): (The NDT method(s):

Radiográfiai anyagvizsgálat

Ipari terület:

(Radiographic testing)

(Industrial sector):

Készülékek, berendezések, létesítmények vizsgálata EM (Pre and in-service testing of equipment, plant and structure)

Termék tertilet(ek):

Product sector(s):

(c), (w)

A minosités fokozata: (The leyel of certification):

RT2

A tapúsitás és kiadásának időpontja: (The date of certification and it i issue):

Budapest, 2012: 03: 28.

A tanúsítás érvényes: (The date upon which cartification expires):

2017. 03. 27.

Tamusito Testillet prevention (On behalf of certifying body)

Vizagaznik (Examiner)

Az ipari és/vagy termék terület érvényesség kiterjesztve: (The industrial and/or product acctor has

Dátum (Data) 12 Mb est. 26

and Materia

Tamisin Testillet (

A tanúsitás érvényessége (Renewed the validity of the certification until (MSZ EN 473 9.).)

-ig megújítva (MSZ EN 473 9.):)

Dátum (Date):

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsító szervezet" a nevezett személyt tanúsítja az MSZ EN 473 szerint eredményes vizsgája alapján a fentiek szerint:

(The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by Sational Accreditation Board (under No. NAT-5-013/2010", on the basis of his/her successful examination under the standard MSZ en 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakított termékek (wrought products); p - milanyag termékek (plastics products); k - kompozitok (composites products).

No:QC-DB-651/2013 36 / 44 Page:

RT20101120107

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

(The holder of this certificate the Deff Automotive program of the Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon.

Munkáltató aláírása: (Signature of the employer:)

Adószám: 110946142-2004

OTPBank: 11735005-20406154

Www.gauma-2004-218-2640 (Date:) 01.04.19.

	Folyamatos munica (Evidence of contin	végzés igazolása (MSZ EN 473 9.) med work activity (MSZ EN 473 9.))	AND THE MINE
Sorsz.:	Munkáltató alátrása (Signature of the employer)	GAMMA GONTROLL	Dátum (Date)
1.		Anyogotasgalo és Minostas Usuras (Kir	-012.04.19.
2.		Assporologisto & Kft.	7013.01.09
3.			
4.			
5.			
6.			
7.			
8.			
9.			
10.			

Kiegészítések: (Additional remarks:)

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 37 / 44

ContiTech Rubber	Examinat	ion record		Record No.						
Industrial Kft.	Vizsgálati i	egyzőköny	v l	Jegyzőkönyv						
Szeged/Hungary				száma: 1222/13						
_	Liquid penetra		on							
	Festékdiffúzi	_								
	Magnetic par	ticie examina	tton							
	Mágneses re	pedésvizsgál	at							
Manufacturer JI	E-ZO Kft.	Serial No.		8083-8090						
Gyártó		Gyári szám								
Customer Conti	Tech Rubber	Drawing No).	MT 3121-3000						
Megrendelő Ind	ustrial Kft.	Rajzszám								
	upling(s)	Material		AISI 4130						
Tárgy		Anyagminö								
Quantity	8 pc(s)	Extent of ex								
Mennyiség		Vizsgálat te	rjedelm	e						
	STM E 709	Heat treatm	ent	yes						
Követelmények		Hőkezelés								
Written Procedure No.	QCP-11-1	Welder:		Szabó T.						
Vizsgálati eljárás száma		Hegesztő:								
Liquid penetrant examination /Folyadékbehatolásos vizsgálat										
Penetrant	Remover		Develop	er						
Behatoló anyag	Tisztító		Előhívó							
Dwell time	Drying			ing time						
Behatolási idő Surface temperature	Szárítás Surface condition		Előhívás Lighting	intensity						
A felület hömérséklete	Felület állapota		Megvilá							
			<u> </u>							
Magnetic parti	cle examination/	Mágnesezhe	tõ por	os vizsgálat						
Equipment type TSM 1000	Testing material		Magneti	zing current						
Készülék típusa TSW 1000	Vizsgáló anyag	MR 76F		ező áram 1000 A						
Black light type Superlight C	Field strength checki		Field str							
UV-A lampa típusa 10A-HE	Téreroméro	disc	Térero	· · · · · · · · · · · · · · · · · · ·						
Surface temperature A feißlet hömérséklete 23 °C	Surface condition Felület állapota	machined	Megvilás	intensity nitas 1000 μW/cm²						
Test results	TOTAL CONCEPTION		incepties.							
Eredmények :	satisfactory									
Z.ou.iio.iyok	megfelelő	8	pc(s)/c	lb						
			p = (=). =							
	not accepted									
nem megfelelő pc(s)/db										
	_		,							
	_									
Performed by NDE Level II.	Revis	ed by Q.C. r	nanage	r						
Vizsgálatot végezte	TE Ellen	ōrizte – MEC		ContiTech Rubber						
4 Have Ud	Revise Ellen			Industrial Kit.						
Signature Oravecz Gáb	or Color Signa	ature M	arkó Lá	szló QC 1						
Aláírás	Aláira	is		1/2/1/						
Place/Date	Place	/Date								
Kelt Szeged, 04.11.20										
OCP-12-1-MPT/07										

No:QC-DB-651/2013

Page:

38 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

Azonosító szám: MT20103010506Ú (Identification No.):

A tanúsított neve: (The name and forename of the certificated individual):

Születési hely/idő:

(Place and date of birth):

Oravecz Gábor

Szeged, 1958. 07. 07.

A tanúsított személy aláírása (The signature of the certificated individual)

Vizsgálati eljárás(ok): (The NDT method(s):

Mágnesezhető poros anyagvizsgáló

(Magnetic particle testing)

Ipari terület: (Industrial sector):

Fémfeldolgozás MM (Metal manufacturing)

Termék terület(ek): Product sector(s):

(c), (f), (w), (wp)

A minősítés szintje: (The level of certification):


MT2

A tanúsítás és kiadásának időpontja: (The date of certification and it's issue);

Budapest, 2012. 02. 21.

A tanůsítás érvényes: (The date upon which certification expires):

2017. 02. 20.

Vizsgáztató

Az ipari és/vagy termék terü-let érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to):

Dátum (Date):

Dátum (Date): Tanúsító Testület nevében (On behalf of certifying body)

A tanúsítás érvényessége (Renewed the validity of the certification until (MSZ EN 473 9.):) -ig megújítva (MSZ EN 473 9.):

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsító szervezet" a nevezett személyt tanúsítja az MSZ EN 473 szerint eredményes vizsgája alapján a fentiek szerint:
(The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by National Accreditation Board (under No. NAT-5-013/2010"), on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakított termékek (wrought products); p - milanyag termékek (plastics products); k - kompozitok (composites products).

CONTITECH	RUBBER
Industria	l Kft.

No:QC-DB- 651 /2013 Page: 39 / 44

Dátum: 2012. 02. 21.

MT20103010506Ú

Munkáltató aláírása:

(Signature of the employer:)

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon.
 (MSZ EN 473 3.21)
 (The holder of this certificate has been authorised to perform tests and take responsibility for the test results. (MSZ EN 473 3.21))

	Folyamatos munk (Evidence of conti	avégzés igazolása (MSZ EN 473 9.) inued work activity (MSZ EN 473 9.)	
Sorsz.:	Munkáltató aláírása (Signature of the employer)	Ph.	Dátum (Date)
1.	Back Ja	Industrial Kft. Quality Control Dept.	2013. 01. 24.
2.		- (i)	
3.		·	
4.			
5.			
6.			
7.	·		
8.			
9.			
10.	<u></u>		

Kiegészítések: (Additional remarks:)

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

No:QC-DB- 651 /2013 Page:

40 / 44

505760

Bekaert Hiohovee a.s.

Mierová 2317

92028 Hilohovec / Slovakia

Tel::

00421337383111 00421337422742

Page: 1 / 1

Certificate of Arialysis

Delivery No. : 4046181212

Contitech Rubber Industrial Kft.

MANUFACTURER: BKHL

CONTITECH RUBBER IND SZEGED

Budapesti út 10 H-6728 SZEGED

STEELCORD

Sales Order

3048059220/10

Purchase Order

32260330

Inspection tot

090000200665/000001

Batch

3500245379

Date produced

01,07,2013

Date COA

09.08.2013

Spools

32 delivered from a batch of 32 produced

Units

18 delivered from a batch of 16 produced

Spec customer Contitech Rubber Industrial Kft. Your code

14-18-07/1

Delivery net Qty. Material Description 10517 KG Zinc coated stesicord 1X24DW/3.6 NT 20/36 ZZ 8650

Your spec REV.3 / 16.01.2002 Our Spec

•)

H207297 / 26.10.2012

Lay direction Lay length

ZZ 20/36

5000 M

Tests			Specs		Results		
Test	Procedure	Unit	Alm	Min. Max.	Avg. N	Min ind Max ind	
Cord diameter	RA12-100	mm	3,6000	3,4200 3,7800	3,6845 6	3,6840 3,8930	
Linear density	RA30-110	g/m	65,000	61,700 68,300	65,632 6	65,300 65,870	
Cord breaking strength	RA30-203	N		17900,0	19337,0 6	19087,0 19584,0	
Cord elongation at break	RA30-203	%		2,50	2,98 6	2,80 3,15	
Zinc D1	RA40-741	g/m2		32,000	40,057 8	37,870 44,630	
Zinc D2	RA40-741	g/m2		44,000	48,788 6	45,350 55,100	
Residual torsions	RA30-150	Nt	0,000	-3,000 3,000	-0,250 6	-0,500 0,000	

Comments:

D1: 0,54

 \cdot

D2: 0,73

Nominal Chemical composition of High Grade Oxysteel:

%Carbon : 0.70-0.90 %Manganase: 0.40-0.60 %Silicon: <0.230 %S: <0.011

%P: <0.012

Microstructure/Texture: Metallurgically the texture is known as a highy

drawn, fine perlitic structure.

Electronically Signed by Quality Manager (Nagy Marcel)

According DIN EN 10204 3.1

Conforme a EN 10204/ 3.1

Azienda con sistema di . gestione certificato da IGO secondo ISO 9001

PAG 1/1

Specifica/Specification:

Destinatario/Receiver:

ACCIAI VENDER S.P.A.

VIA A. NOBEL. 3/A

43100 PARMA

63892/2012 n° : (

Cliente/Customer: ACCIAI VENDER S.P.A.

VIA A.NOBEL, 4/A Q.RE IND.LE S.P.I.P

43100 PARMA

Acclaio/Steel: 304PS

EN 10088-2

16753 DEL/OF: 24/05/2012 Ordinelarder Terninov :

DD1/DEL, NOTE: 10/33 DELIOF: 24/03/2012	Ordinable 1971mox . F04249 Ord. Change Customer										
Matricola	Pos	Tipo Prodotto	Fin	Descrizione	Dimensioni(mm)	Pezzi	Weight	Rif. Cli.	Colata	NIM	
Serial Number	Item	Product Type	L	Description	Dimensions(mm)	Pieces	(Kg)	Cust. Ref.	Heat		ļ
C47997 7-13882	22	COIL	2B		0.60 x 460.0	1	6040		0431359	310727	l
C54489 7-1-3887	· 27	NASTRI STRETTI	ВА		0.79 x 284.7	1	1290		0431741	324612	
	ł	}	1	i. •	}	l			1 !	i '	1

IL MATERIALE SOPRA ELENCATO E STATO DIMENSIONALMENTE E/O SUPERFICIALMENTE TRASFORMATO DA TERNINOX SEIZA ALTERARNE LE CARATTERISTICHE MECCANICHE E CHINICHE
THE MATERIAL DESCRIBED ABOVE HAS BEEN DIMENSIONALLY ANDIOR SUPERFICIALLY TRASFORMED BY TERNINOX WITHOUT CHANGING THE MECHANICAL AND CHEMICAL FEATURES

Analisi di colata/Chemical Composition

															
Colata/Heat	С%	Si %	Mn %	P %	S %	Cr %	Ni %	Mo%	N %	П%	Cu %	Nb %	В%	Al %	Co %
0431359	0.045	0.300	1.290	0.027	0.001	18.000	9.040	0.260	0.024		0.310				
0431741	0.048	0.310	1.420	0.029	0.001	18.090	9.050	0.320	0.019	· .	0.370				
		1	. :		İ								 		

Risultati delle prove/Test Result (1N/mm²=1 M Pa)

MIM	A 8 T B 8 %	Tours no		Caric. unit. s Yield st		Caric. unit. Rottura Tensile strength			Durezza Hardness	Bend To	Trat.termize Ricot, di solub.7 heat traciment of ennealing for solubiliz.	Resistenza alle corresione intergranulare secondo / Resistence to corresion intergranulare	Grano Grain	
	å	L	I	RpO2% N/mm²	Rp1% N/mm²	Rm N/mm²	Lo =2"	Lo =80	Lo ≃A5	HRB	:			
310727	7	Ŧ	7	245	271	607		80.7		70.5	,	1050	EN ISO 3651-2	
	lo	: 1	r	230	261	604	ĺ	62.8	}	66.0		. '		1
324612	1	٠ ٦	r	235	262	588		62.4		70.5		1050	EN ISO 3651-2	1 1
1	c	: 1	гļ	237	267	605	!	62.1	1	72.0		ł		
									-36	X	_			

I dati chimid e flati sopra riporati cono trati dal cardizano di qualtori dal notiro territore quellibado il cui originato e le cui, pressava e disposibile su richiteda. Chambasi and physical data riported storre are anticcad from quality cardicate entitad from our quatifiad supplier. Per original document le in our possese and 8 la

COMPLIES WITH ED 2000/53/EC

Certificato emesso automaticamente,

Data/Date

24/05/2012

R. GOVONI

STRIPWOUNDTUBE

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

No:QC-DB- 651 /2013 Page:

42 / 44

Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements BUDAPEST XII., NÉMETVÖLGYI ÚT 37-39.

1535 Budapest, Pf. 919 Telefon: 458-5800 Telefax: 458-5927

Ügyiratszám / File No.:

MKEH-MH/00287-003/2013/NY

Bizonyítványszám / Certificate No.:

NYO - 0008/2013

Hivatkozási szám / Reference No.:

32259470

Page 1/3 oldal Kiadva / Issued

Budapest, 2013. 01. 28. / 28 01 2013

KALIBRÁLÁSI BIZONYÍTVÁNY CALIBRATION CERTIFICATE

A kalibrálás tárgya:

villamos kimenőjelű nyomásmérő

Object of calibration:

electrical-output manometer

Gyártó / Manufacturer:

AFRISO-EURO-INDEX GmbH

Tipus / Type:

DMU03_HD 1518086

Azonosító szám / Serial No.: Műszaki adatok / Technical data:

(0...2500) bar méréstartomány / measuring range (0...2500) bar

(4...20) mA kimenöjel tartomány / output signal range (4...20) mA

Kalibrálásra bemutatta:

ContiTech Rubber Industrial Kft. 6728 Szeged, Budapesti út 10.

Customer:

Magyar Kereskedelmi Engedélyezési Hivatal

A kalibrálás helye és ideje: Place and date of calibration:

Hungarian Trade Licensing Office Metrológiai Hatóság, Mechanikai Mérések Osztály Metrology Authority, Section of Mechanical Measurements

Budapest, 2013.01.24.

A kalibrálást végezte:

Calibrated by:

Szaulich Dénes

metrológus / metrologist

A kalibrálásnál alkalmazott etalonok:

Standards used for the calibration:

Gyártó: Gyártási szám: Bizonyítvány szám: Megnevezés: Típus: Designation: Manufacturer: Serial No .: Certificate No.: Type: NYO-0001/2013 túlnyomás etalon / pressure standard Budenberg 283 20603 digitális multiméter / digital multimeter 2000 0597910 ELD-0014/2012 Keithley normál ellenállás / resistance standard ZIP P 331 117530 ELD-0021/2012 **GANZ MM** DTHI 33656 Hőm-0296/2012 hőmérő / temperature measuring instr.

A mérési eredmények a nemzeti (nemzetközi) etalonra visszavezetettek. The measuring results are traceable to national standards.

A kalibrálás módja:

Calibration method:

A kalibrálást a KE NYO-3-2002 számú kalibrálás eljárás alapján végeztük. The calibration was done according to the calibration procedure No.: KE NYO-3-2002.

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bipm.org).

No:QC-DB- 651 /2013

Page:

43 / 44

Section of Mechanical Measurements

Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály

Ügyiratszám / File No.:

MKEH-MH/00287-003/2013/NY

Bizonyítványszám / Certificate No.:

NYO - 0008/2013

Page 2/3 oldal

A kalibrálás körülményei:

Calibration conditions:

környezeti hőmérséklet / Ambient temperature

a kalibrált eszköz helyzete / Position of the calibrated manometer

a kalibrált eszköz tápfeszültsége / Supply voltage of the calibrated manometer

nyomóközeg / Pressure transfer medium

21.1 °C

függőleges / vertical

24V DC

olaj / oil

Mérési eredmények a (0...2500) bar nyomástartományban: Results of the measurements in the pressure range of (0...2500) bar:

Nyomás, névleges érték	Áram-kimenőjel, névleges érték	Áram-kimenőjel, mért eltérés a helyes értéktől	Nyomás, mért eltérés a helyes értéktől	Eredő mérési bizonytalanság
Pressure, nominal value	Current-Output, nominal value	Current-Output, measured deviation from the reference value	Pressure, measured deviation from the reference value	Expanded uncertainty of the measurement
bar	mA	mA	bar	bar
0	4,0	-0,0042	-0,7	
250	5,6	-0,0002	0,0	
500	7,2	0,0029	0,5	
750	8,8	0,0050	0,8	
1000	10,4	0,0063	1,0	
1250	12,0	0,0053	0,8	2,6
1500	13,6	0,0033	0,5	
1750	15,2	-0,0003	-0,1	
2000	16,8	-0,0052	-0,8	
2250	18,4	-0,0117	-1,8	
2500	20,0	-0,0192	-3,0	

Mérési bizonytalanság: A mérési eredmény(ek) mellett közölve.

Uncertainty of measurement: See next to the results of the measurements.

A közölt kiterjesztett mérési bizonytalanság a standard bizonytalanságnak k kiterjesztési tényezővel szorzott értéke (k = 2), amely normális (Gauss) eloszlás feltételezésével közelítőleg 95%-os fedési valószínűségnek felel meg.

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to coverage probability of approximately 95 %.

A mérési bizonytalanság tartalmazza az etalonból, a kalibrálás módszeréből, a környezeti feltételekből, a kalibrált mérőeszközből stb. eredő részbizonytalanságokat.

It contains the uncertainties of the standards, calibration method, environmental conditions, calibrated device etc.

A standard bizonytalanság meghatározása az EA-4/02 (Expression of the Uncertainty of Measurement in Calibration) kiadványnak megfelelően történt.

The standard uncertainty of measurement has been determined in accordance with the EA Publication EA 4/02 (Expression of the Uncertainty of Measurement in Calibration).

No:QC-DB- 651 /2013

Page:

44 / 44

MKEH
Metrológiai Hatóság/Metrology Authority

Mechanikai Mérések Osztály

Section of Mechanical Measurements

Ügyiratszám / File No.:

MKEH-MH/00287-003/2013/NY

Bizonyítványszám / Certificate No.:

NYO - 0008/2013

Page 3/3 oldal

Bélyegzés:

Calibration mark:

A kalibrált mérőeszközön K067662 azonosító számú kalibrálási bélyeget helyeztünk el.

We have placed a calibration stamp No.: K067662 on the calibrated instrument.

Megjegyzések:

Additional remarks:

Jelen bizonyítvány összhangban van a Nemzetközi Súly és Mértékügyi Bizottság (CIPM) Kölcsönös Elismerési Megegyezése (MRA) C függeléke által tartalmazott kalibrálási és mérési képességekkel (CMCs). Az MRA minden aláíró intézete elismeri egymás kalibrálási és mérési bizonyítványait a C függelék szerinti mennyiségfajtákra, azok értéktartományaival és mérési bizonytalanságaival (közelebbit lásd: http://www.bipm.org)

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bipm.org)

A kalibrálási bizonyítványban megadott értékek a mérőeszköznek a kalibrálás idejére és körülményeire jellemző adatai.

The measurement results show the metrological properties of the device during the time of the calibration under the environmental conditions listed above.

Az újrakalibrálás időpontját a felhasználó dönti el a mérőeszköz használatának és állapotának függvényében.

The date of the next calibration is decided by the user. It depends on the usage and the condition of the device.

edelmi Engede

A bizonyítvány kiadható / Approved by:

Káloczi László / osztályvezető / Head of Section

Requested Exceptions

- Variance is requested to connect the BOP choke outlet to the choke manifold using a co-flex line (instead of using a 4" OD steel line) with a 10,000 psi working pressure that has been tested to 15,000 psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps.
- Variance is requested to allow Option of rig not capable of reaching TD presetting Surface,
 Drilling Plan will be same using Fresh Water fluid system.
- Variance is requested to wave any centralizer requirements on the 5-1/2" casing. Ameredev will
 utilize cement expansion additives in the cement slurry to maximize cement bond and zonal
 isolation.
- Variance is requested to wave any centralizer requirements on the 9-5/8" casing. Ameredev will
 utilize cement expansion additives in the cement slurry to maximize cement bond and zonal
 isolation.
- Variance is requested to allow Temporary Postponement of Operations on well to skid to adjacent well if multiple wells on drilling pad are drilled.
- Variance is requested to allow use of Multi-Bowl Well Head System.
- Variance is requested to allow adjustment of Casing Design Safety Factor on conditions that Ameredev keeps minimum of 1/3 casing capacity filled with OMW drilling fluids.
- Variance is requested to allow 5M Annular Preventer on 10M BOPE System to drill Production Interval. (Supporting Documentation Attached)

Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

JUNIPER_FED_COM_25_36_34_111H___WELL_PAD_ACCESS_MAP_REV_20190205083053.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

JUNIPER_FED_COM_25_36_34_111H___WELL_PAD_ACCESS_MAP_REV_20190205083120.pdf

Juniper_Pimento_Road_20190205083832.pdf

New road type: RESOURCE

Length: 4442

Feet

Width (ft.): 30

Max slope (%): 2

Max grade (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

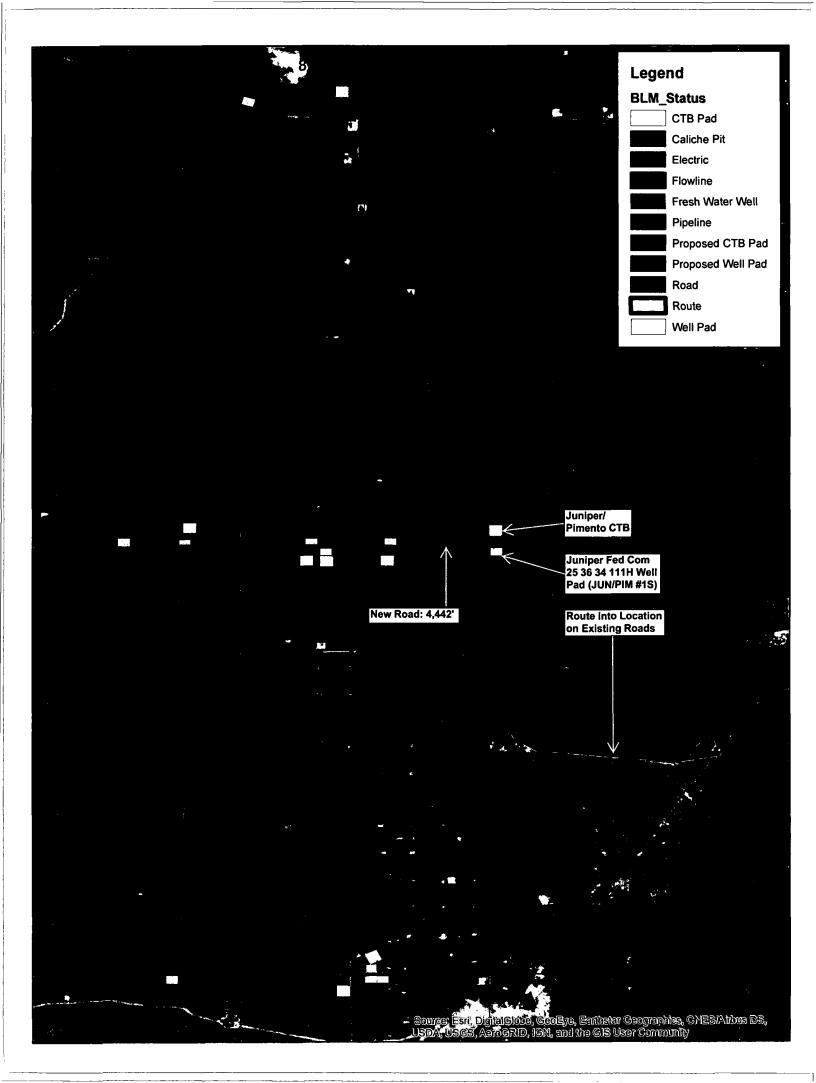
New road travel width: 20

New road access erosion control: Crowned and Ditched

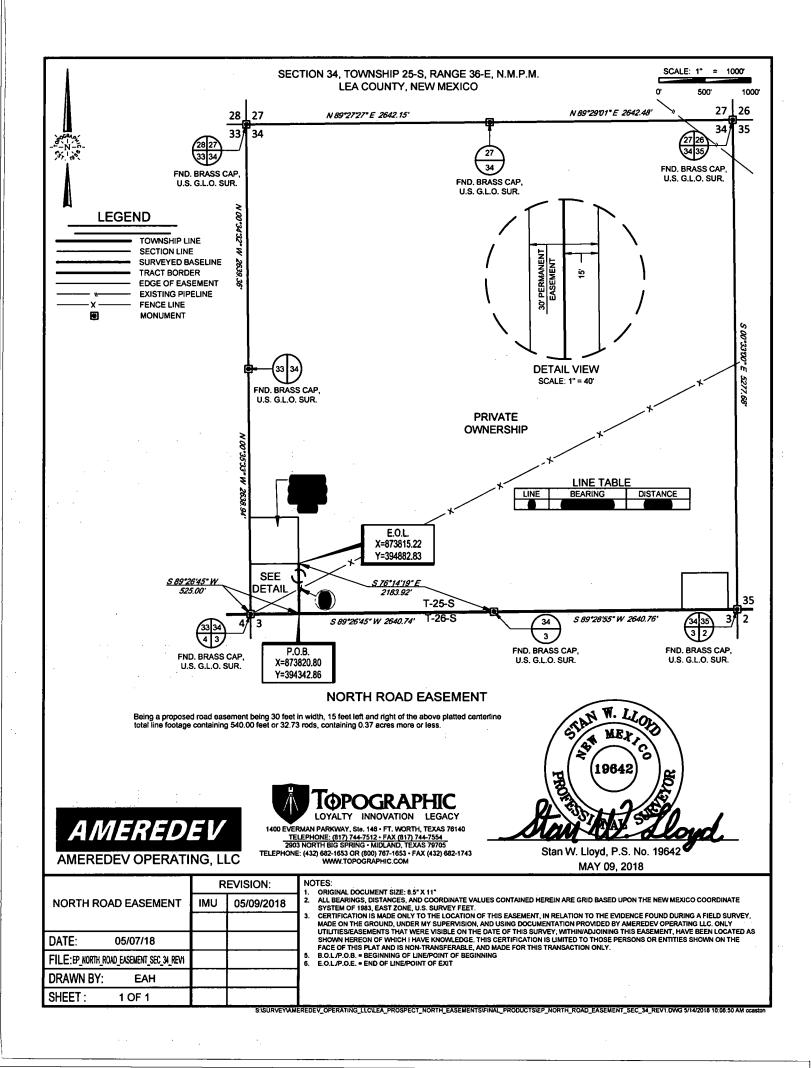
New road access plan or profile prepared? NO

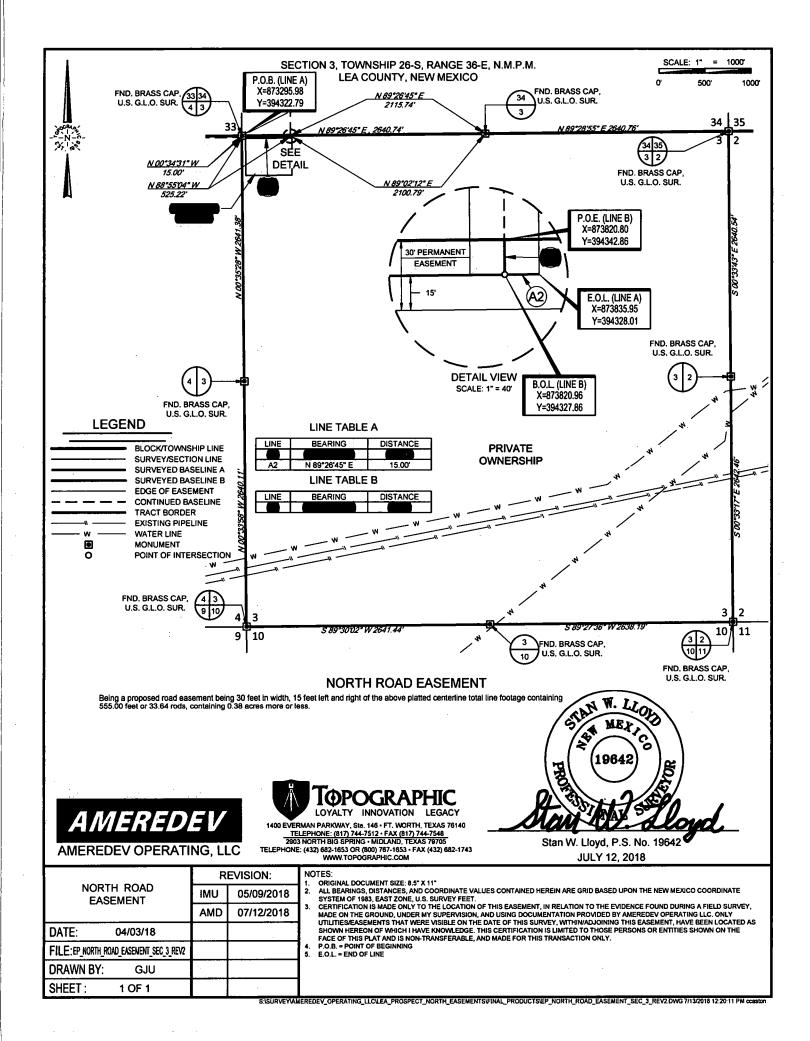
New road access plan attachment:

Access road engineering design? NO


Access road engineering design attachment:

Access surfacing type: OTHER


Access topsoil source: ONSITE


Approval Date: 04/19/2019

Page 9 of 23

Well Name: JUNIPER FED COM 25 36 34 Well Number: 111H

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information: NM One Call (811) will be notified before construction starts.

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crowned and Ditched

Road Drainage Control Structures (DCS) description: Crowned and Ditched

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

JUNIPER_FED_COM_25_36_34_111H___ONE_MI_RAD_EXIST_WELLS_20190205083915.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: A multiple well pad will be located on section 3, and will measure 400'x500'. The top 6" of soil and brush will be stockpiled south of the well pad. A buried 4" poly flowline (750 psi maximum) will be run approximately 570' from the Juniper Fed Com 25 36 34 121H to the Juniper/Pimento CTB north of the well pad. A 20' pipeline ROW containing three buried 12" poly water lines (200 psi maximum) will be run from the Juniper/Pimento CTB to tie into existing water lines at the Firethorn CTB. The overall length of disturbance for the new water lines will be approximately 4,857'. A power line will be run parallel to the water line and will connect into the power line at the Firethorn CTB. The power line will be approximately 4,857'. The Juniper/Pimento CTB will be 500'x525' and will include a separator, heat exchanger, VRU, VRT, meter run and a tank battery. The new production facility will have a secondary containment structure that is constructed to hold the capacity of 1-1/2 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Production Facilities map:

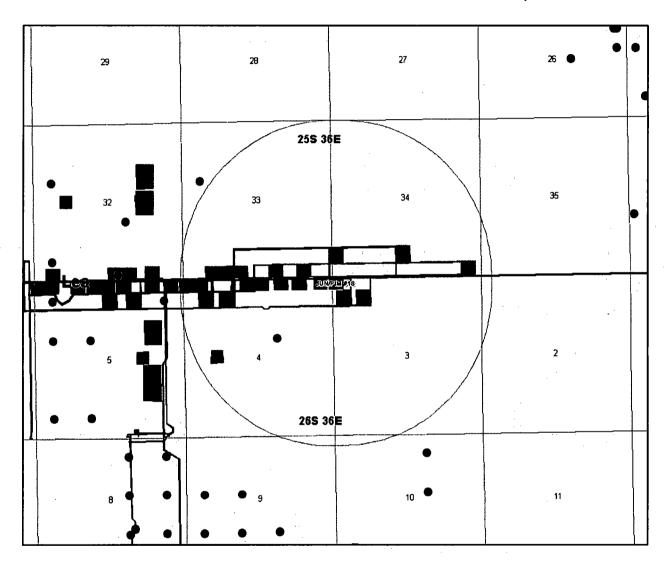
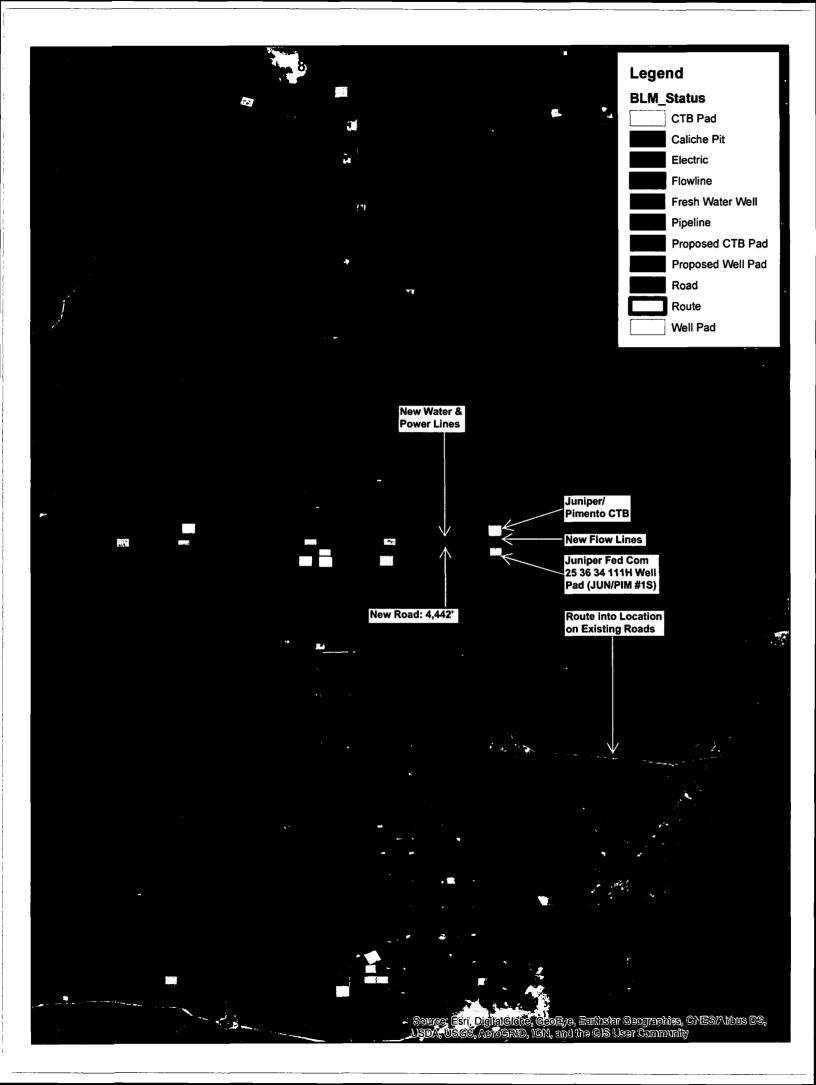
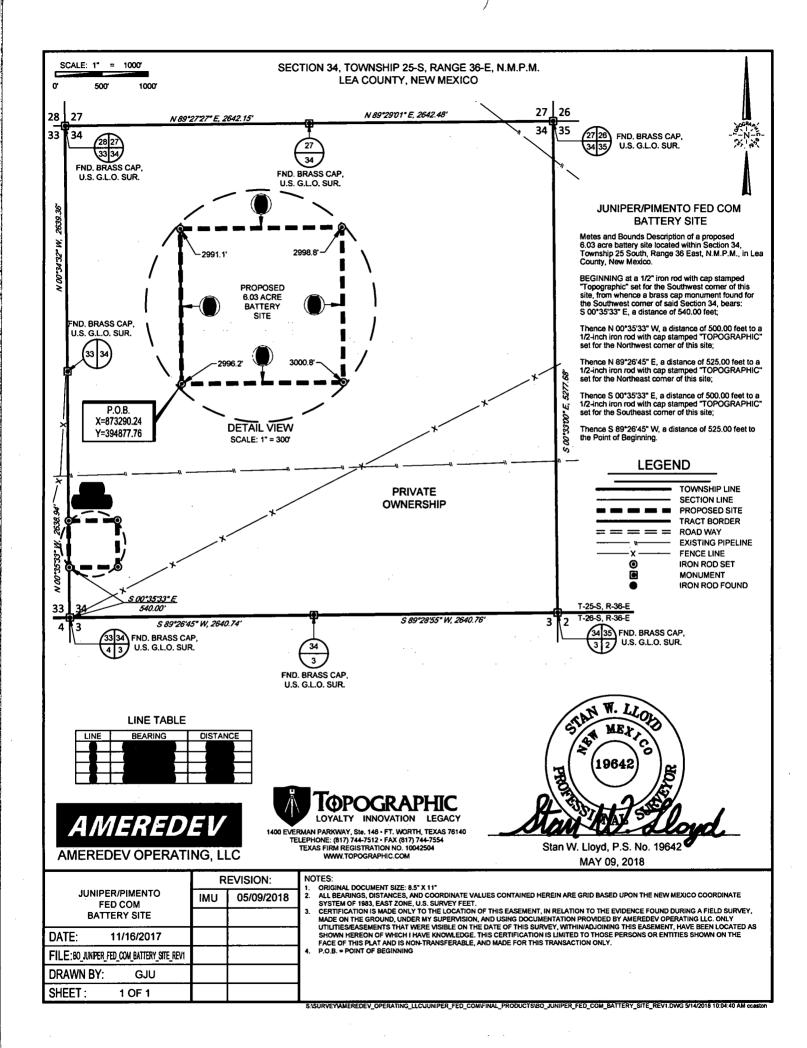
JUNIPER_FED_COM_25_36_34_111H___FACILITIES_MAP_REV_20190205084025.pdf

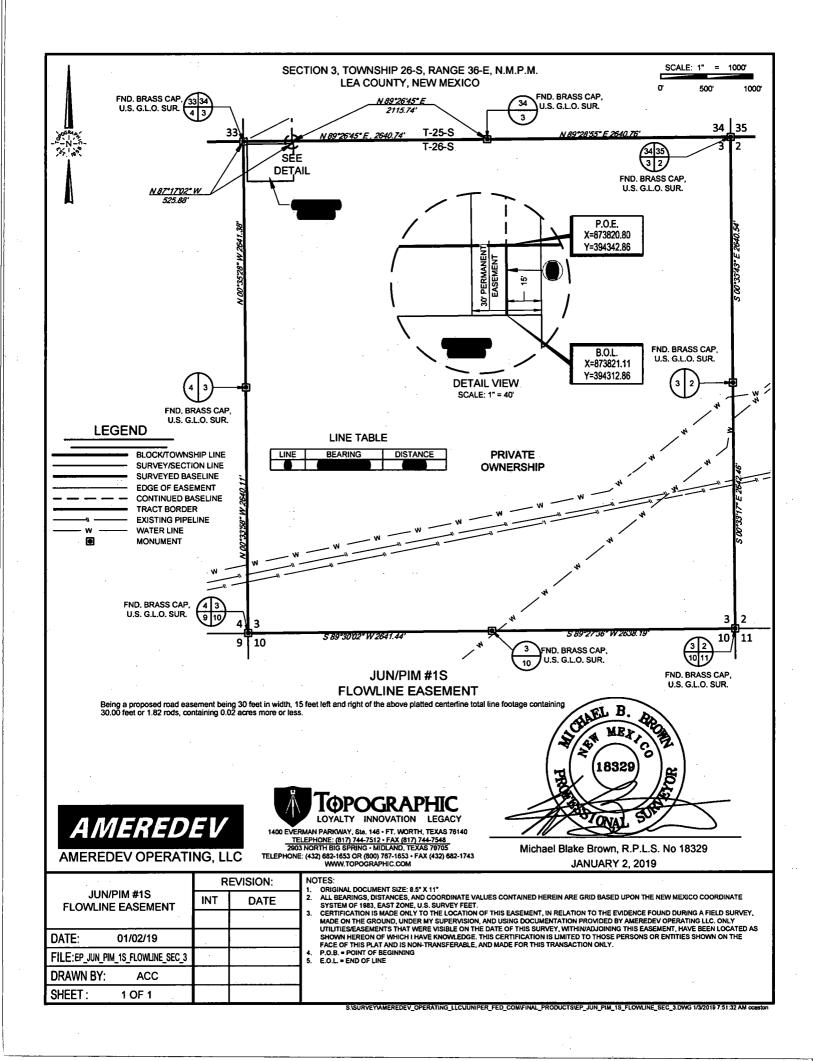
Approval Date: 04/19/2019

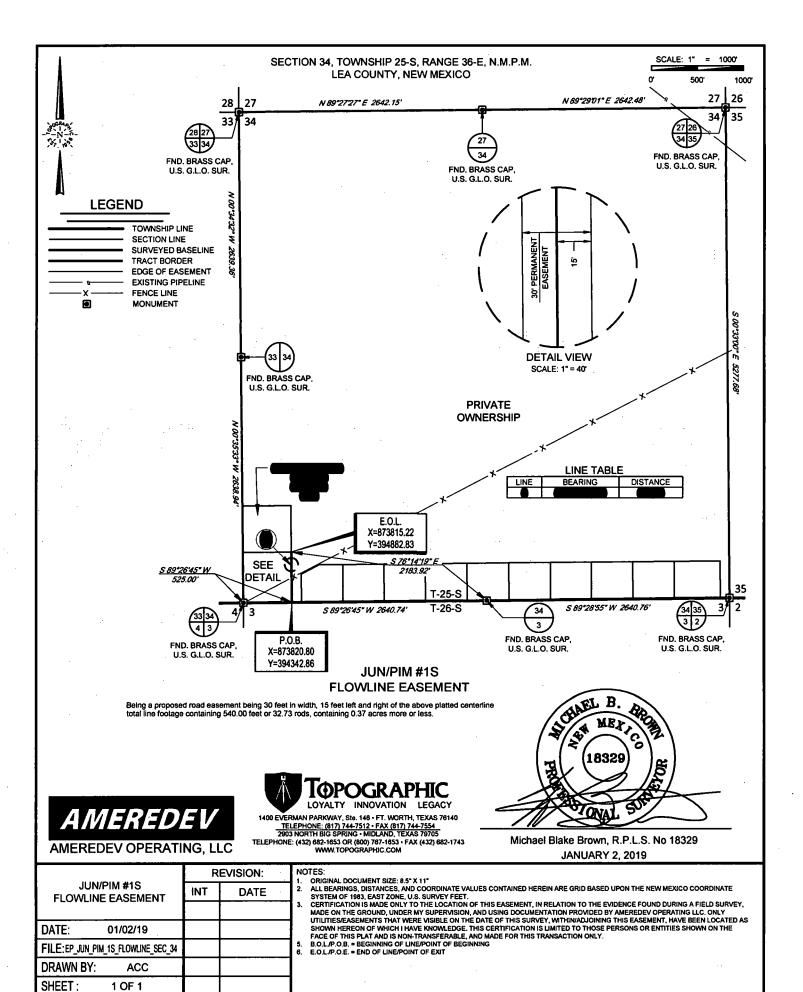
Page 10 of 23

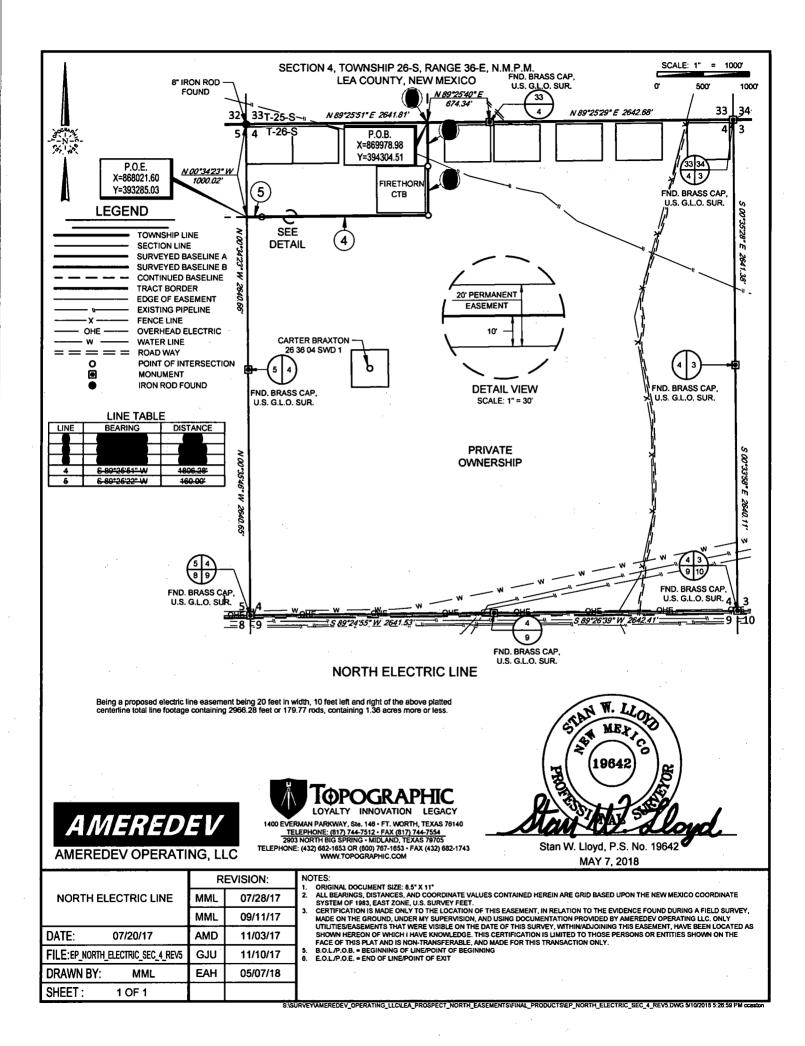
<u>Section 3 – Location of Existing Wells</u>

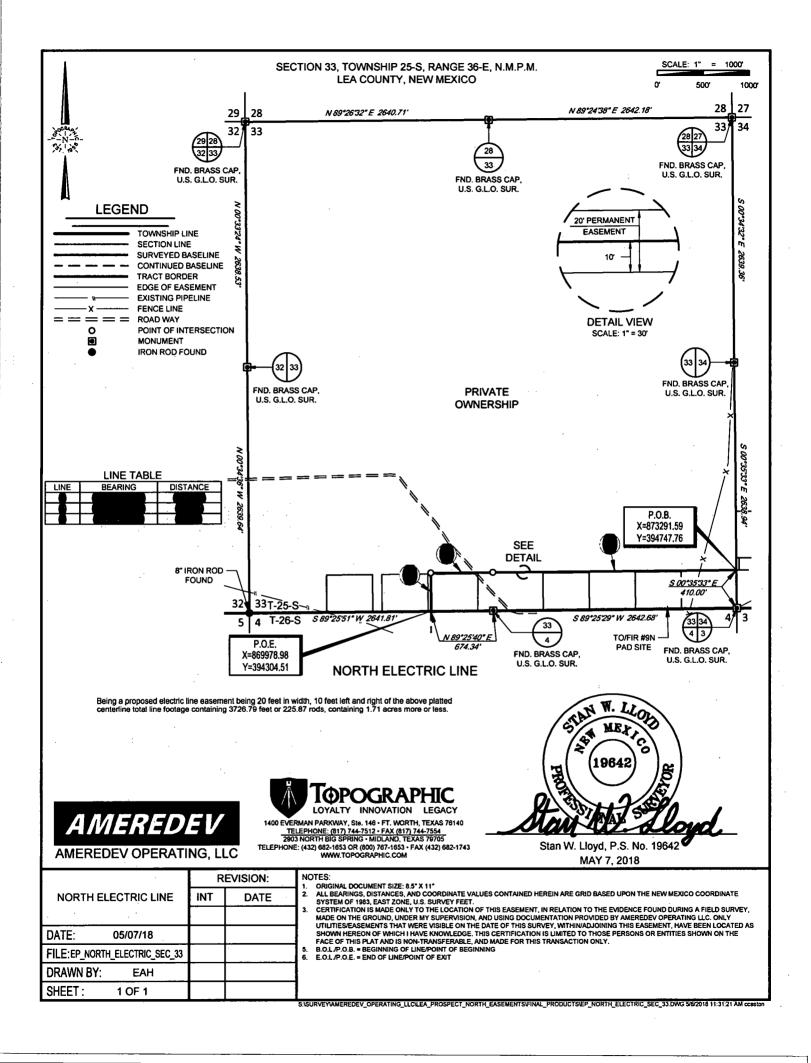
Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Juniper Fed Com 25 36 34 111H. See Exhibit 2a – One Mile Radius Wells List for a list of wells depicted.

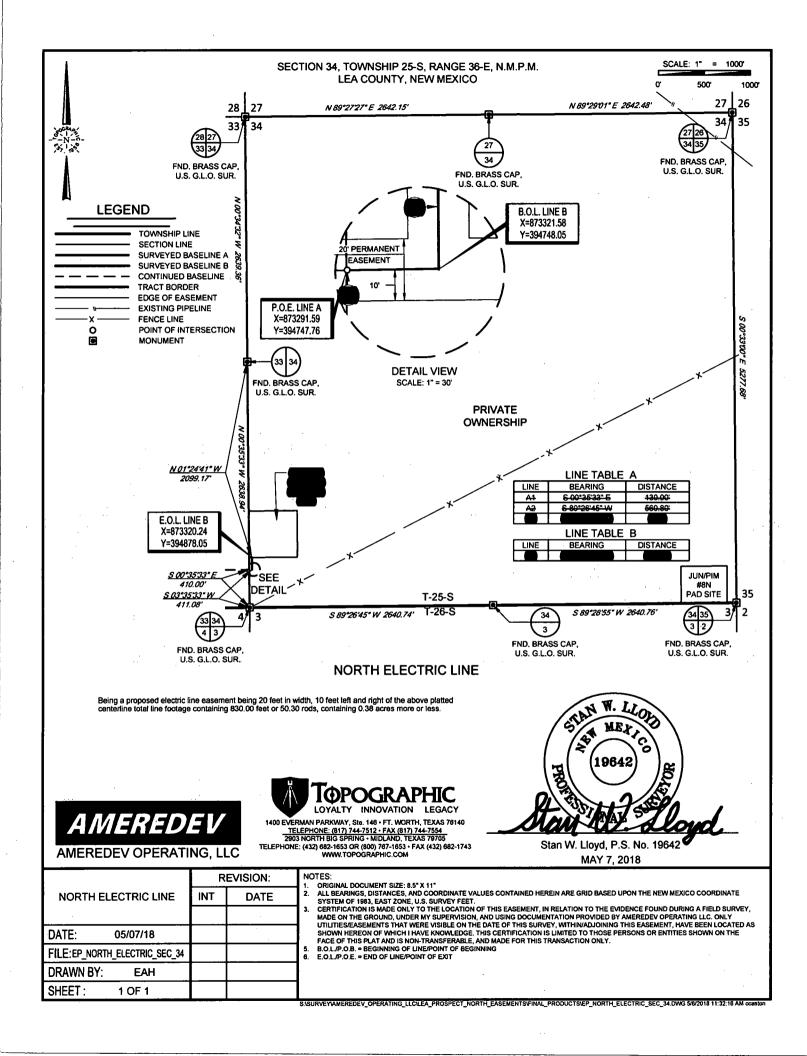




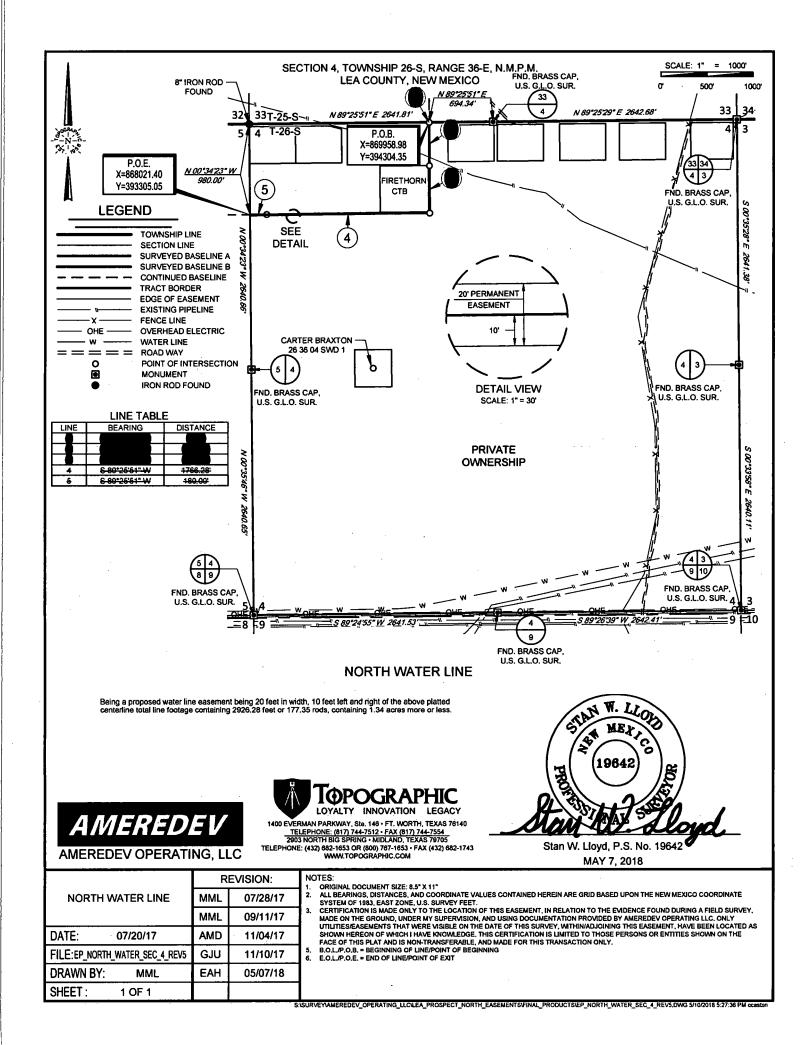

Exhibit 2 - One Mile Radius Existing Wells

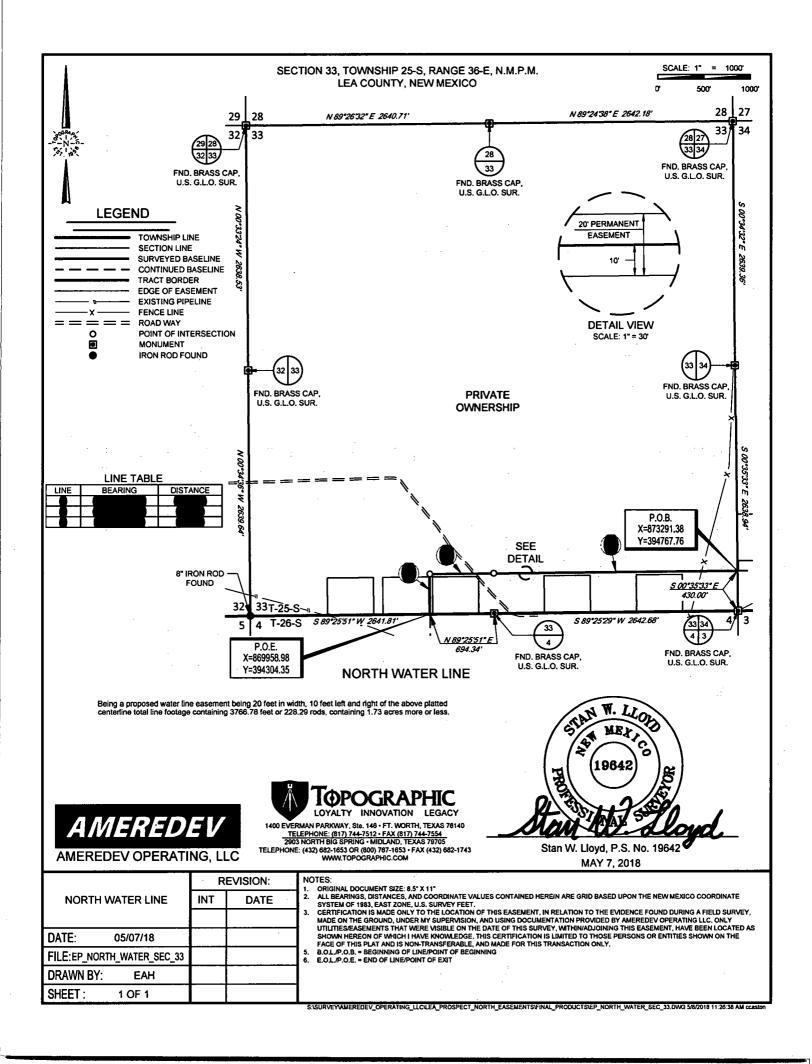

API	WELL NAME	STATUS	TD
30025208430000	SOUTHWEST JALIT-FED 1	PLUGGAS	13505

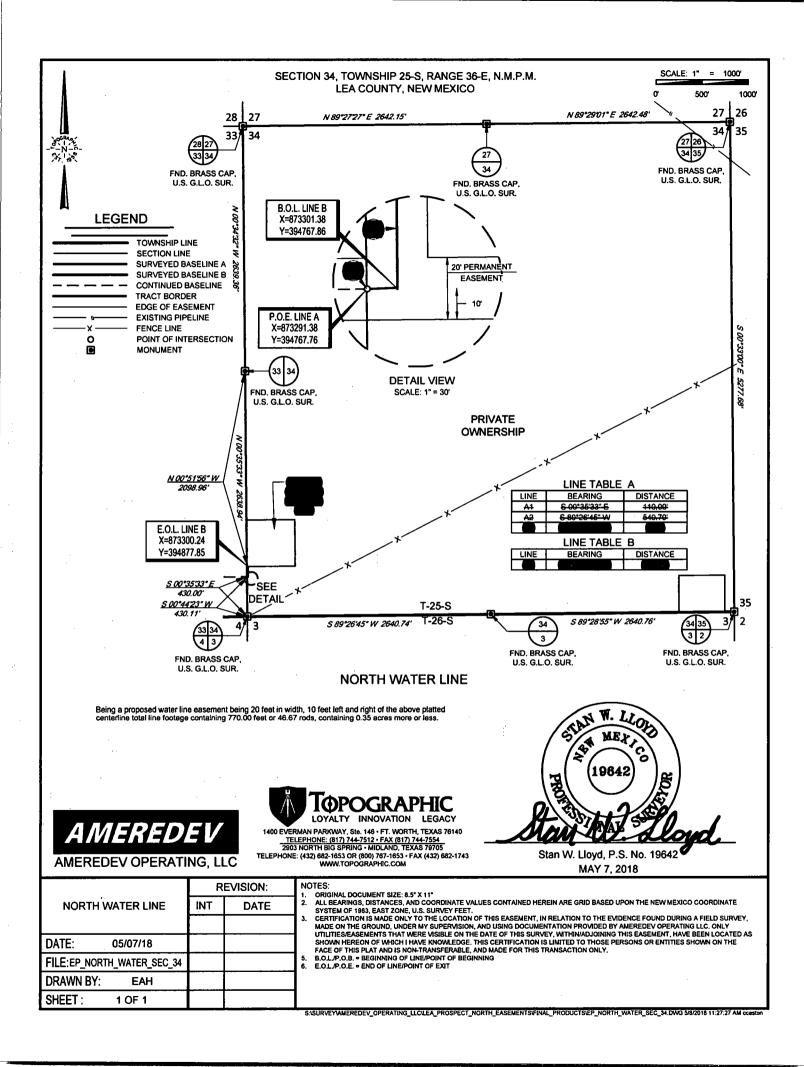

Exhibit 2a – One Mile Radius Existing Wells List











Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

BO_JUNIPER_FED_COM_BATTERY_SITE_REV1_20190205084100.pdf

EP_JUN_PIM_1S_FLOWLINE_SEC_34_S_20190205084103.pdf EP_JUN_PIM_1S_FLOWLINE_SEC_3_S_20190205084102.pdf

Juniper_CTB_Electric_20190205084105.pdf Juniper_CTB_Water_20190205084107.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: DUST CONTROL,

Water source type: GW WELL

INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE

CASING

Describe type:

Source longitude:

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: PRIVATE

Water source transport method: PIPELINE, TRUCKING

Source transportation land ownership: FEDERAL

Water source volume (barrels): 20000

Source volume (acre-feet): 2.577862

Source volume (gal): 840000

Water source and transportation map:

JUNIPER_FED_COM_25_36_34_111H___WATER_WELLS_LIST_20190205084202.pdf
JUNIPER_FED_COM_25_36_34_111H___WATER_WELLS_MAP_REV_20190205084203.pdf

Water source comments: Water will be trucked or surface piped from existing water wells on private land. See attached list of available wells.

New water well? NO

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well depth (ft):

Well casing type:

Well casing outside diameter (in.):

Well casing inside diameter (in.):

New water well casing?

Used casing source:

Approval Date: 04/19/2019

Page 11 of 23

Well Name: JUNIPER FED COM 25 36 34

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Cuttings area length (ft.)

Cuttings area width (ft.)

Well Number: 111H

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

JUNIPER_FED_COM_25_36_34_111H___WELL_SITE_DIAGRAM_20190205084420.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: JUNIPER

Multiple Well Pad Number: 111H

Recontouring attachment:

JUNIPER_FED_COM_25_36_34_111H___WELL_SITE_DIAGRAM_20190205084439.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Approval Date: 04/19/2019

Page 13 of 23

Well Name: JUNIPER FED COM 25 36 34 Well Number: 111H

Well pad proposed disturbance

(acres): 4.59

Road proposed disturbance (acres):

3.06

Powerline proposed disturbance

(acres): 2.23

Pipeline proposed disturbance

(acres): 0.39

Other proposed disturbance (acres):

6.03

Total proposed disturbance: 16.3

Well pad interim reclamation (acres):

0.79

Road interim reclamation (acres): 0

Powerline interim reclamation (acres): Powerline long term disturbance

Pipeline interim reclamation (acres): 0

Other interim reclamation (acres): 0

Total interim reclamation: 0.79

Well pad long term disturbance

(acres): 3.8

Road long term disturbance (acres):

(acres): 2.23

Pipeline long term disturbance

(acres): 0.39

Other long term disturbance (acres):

6.03

Total long term disturbance: 15.51

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 17% (.79 acre) by removing caliche and reclaiming 40' wide swaths on the south and west sides of the pad. This will leave 3.8 acres for producing three wells, with tractor-trailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. New road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled.

Soil treatment: None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Approval Date: 04/19/2019

Page 14 of 23

Well Name: JUNIPER FED COM 25 36 34

Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed source:

Well Number: 111H

Seed name:

Source name:

Source address:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Proposed seeding season:

 Seed Summary	
Seed Type	Pounds/Acre

Total pounds/Acre:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name:

Last Name:

Phone:

Email:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Pit closure description: No pit

Approval Date: 04/19/2019

Page 15 of 23

Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

USFS Ranger District:

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: NEW ACCESS ROAD
Describe:
Surface Owner: PRIVATE OWNERSHIP
Other surface owner description:
BIA Local Office:
BOR Local Office:
COE Local Office:
DOD Local Office:
NPS Local Office:
State Local Office:
Military Local Office:
USFWS Local Office:
Other Local Office:
USFS Region:

Disturbance type: PIPELINE

USFS Forest/Grassland:

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Approval Date: 04/19/2019

Page 16 of 23

Well Name: JUNIPER FED COM 25 36 34	Well Number: 111H	
Military Local Office:		-
USFWS Local Office:		
Other Local Office:		
USFS Region:		
USFS Forest/Grassland:	USFS Ranger District:	
Disturbance type: WELL PAD		
Describe:		
Surface Owner: PRIVATE OWNERSHIP		
Other surface owner description:		
BIA Local Office:		
BOR Local Office:		
COE Local Office:		
DOD Local Office:		
NPS Local Office:		
State Local Office:		
Military Local Office:		
USFWS Local Office:		
Other Local Office:		
USFS Region:		
USFS Forest/Grassland:	USFS Ranger District:	
	·	
Disturbance type: OTHER		
Describe: Powerline		

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:
BOR Local Office:

Approval Date: 04/19/2019

Page 17 of 23

Operator Name: AMEREDEV OPERATING LLC
Well Name: JUNIPER FED COM 25 36 34 Well Number: 111H

COE Local Office:

DOD Local Office:
NPS Local Office:
State Local Office:
USFWS Local Office:
Other Local Office:

Section 12 - Other Information

Right of Way needed? NO

Use APD as ROW?

USFS Ranger District:

ROW Type(s):

USFS Region:

USFS Forest/Grassland:

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: On-site inspection was held with Jeff Robertson (BLM) on 11/28/17. Ameredev made a donation with the MOU fund in lieu of an archaeology report.

Other SUPO Attachment

JUNIPER_FED_COM_25_36_34_111H___Owner_Agreement_Letter_20190205084732.pdf . JUNIPER_FED_COM_25_36_34_111H___SUPO_REV_20190204_20190205084734.pdf

PWD

Approval Date: 04/19/2019

Page 18 of 23

6/27/2018

To whom it may concern:

Ameredev Operating, LLC is negotiating a private surface owner agreement with EOG Resources Inc. (P.O. Box 267 Midland, TX 79702; 432-425-1204) for a power line, flowline, saltwater disposal line, roads, central production facility, and pad for the Juniper Fed Com 25-36-34 111H well in section 3 of T26S, R36E.

Thank you,

Julia Steger
Engineer

Surface Use Plan of Operations

Introduction

The following Surface Use Plan of Operations will be implemented by Ameredev Operating, LLC (Ameredev), after APD approval. No disturbance will be created other than those described in this surface use plan. If any additional surface disturbance becomes necessary after APD approval, the appropriate BLM approved sundry notice or right of way application will be acquired prior to such disturbance. This Surface Use Plan includes Ameredev's well pad, battery site, electrical, water and flow lines, and access roads.

Before any surface disturbance is created, stakes or flagging will be installed to mark boundaries of permitted areas of disturbance, including soil storage areas. As necessary, slope, grade, and other construction control stakes will be placed to ensure construction is in accordance with the surface use plan. All boundary markers will be maintained in place until final construction cleanup is completed. If disturbance boundary markers are displaced, they will be replaced before construction proceeds. Adjacent operators will be contacted before construction starts to mark adjacent pipelines.

Directions to proposed pad:

At the intersection of 3rd St/NM-205/Frying Pan Rd & NM-128, head south on 3rd St/NM-205/Frying Pan Road approximately 5.6 miles. Turn right on Anthony Road and proceed west approximately 3.4 miles. Continue North (right) on Anthony Road and proceed north approximately 0.3 miles. Turn right on Pipeline Road and proceed east approximately 0.3 miles. Turn left on lease road and proceed north approximately 1 mile. Turn right on unnamed lease road and proceed east for approximately 1.1 miles to the north side of the location.

See Exhibit 1 - Well Pad Access for a map of the route.

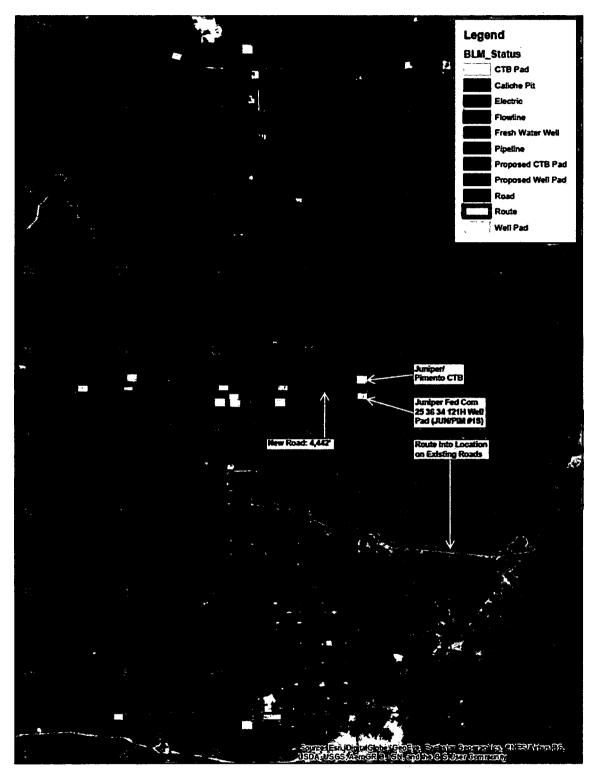
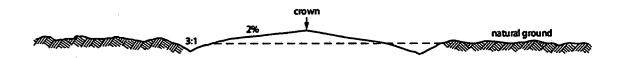


Exhibit 1 – Well Pad Access



Section 1 - Existing Roads

- A. The existing access road route to the proposed project is depicted on *Exhibit 1 Well Pad Access*. Improvements to the driving surface will be done where necessary. No new surface disturbance will be done, unless otherwise noted in the New or Reconstructed Access Roads section of this surface use plan.
- B. Right-Of-Way will be acquired before construction begins.
- C. The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattle guards, other range improvement projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use.
- D. Operator will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

Section 2 - New or Reconstructed Access Roads

- **A.** A section of new access road will be needed for this proposed project. See *Exhibit 1 Well Pad Access*, for locations.
- **B.** The length of new access road needed to be constructed for this proposed project is approximately 4,442 feet.
- C. New access road will be constructed with 6 inches of compacted caliche.
- D. The maximum driving width of the access road will be 20 feet. The maximum width of surface disturbance when constructing the access road will not exceed 30 feet. All areas outside of the driving surface will be revegetated.
- E. When the road travels on fairly level ground, the road will be crowned and ditched with a maximum 2% slope from the tip of the road crown to the edge of the driving surface. Ditches will be constructed on each side of the road. The ditches will be 3 feet wide with 3:1 slopes. See road cross section diagram below:

- F. No turnouts will be constructed on the new portions of access road.
- **G.** No cattle guards will be installed on the new portions of access road.
- H. Right-Of-Way will be acquired before construction begins.
- I. No culverts or low water crossings will be constructed for the new portions of access road.
- J. Since the access road is on level ground, no lead-off ditches will be constructed for the new portions of access road.
- K. Any sharp turns in the in the new road will be rounded to facilitate turning by trucks.

- L. Newly constructed or reconstructed roads, on surface under the jurisdiction of the Bureau of Land Management, will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road.
- M. All topsoil and fragmented rock removed in excavation will be used as directed in approved plan.

<u>Section 3 – Location of Existing Wells</u>

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Juniper Fed Com 25 36 34 111H. See Exhibit 2a – One Mile Radius Wells List for a list of wells depicted.

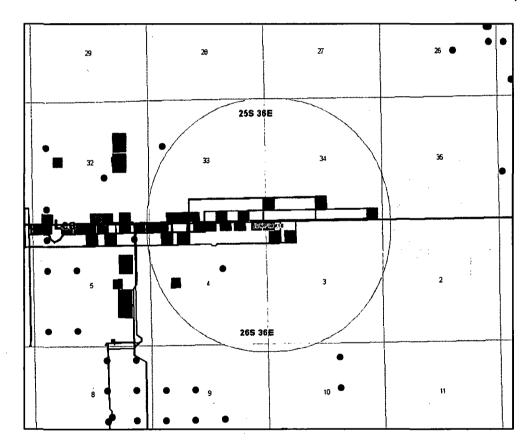


Exhibit 2 – One Mile Radius Existing Wells

API	WELL NAME	STATUS	TD
30025208430000	SOUTHWEST JALIT-FED 1	PLUGGED	13505

Exhibit 2a - One Mile Radius Existing Wells List

Section 4 - Location of Existing and/or Proposed Production Facilities

- A. The multiple well pad will be located on Section 3, and will measure 400'x500'. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location.
- **B.** Production from the proposed well will be transported to a new production facility named Juniper/Pimento CTB, north of the well pad.
- C. A buried 4" poly flowline (750 psi maximum) will be run approximately 570' from the Juniper Fed Com 25 36 34 111H to the Juniper/Pimento CTB north of the well pad. A 20' pipeline ROW containing three buried 12" poly water lines (200 psi maximum) will be run from the Juniper/Pimento CTB to tie into existing water lines at the Firethorn CTB. The overall length of disturbance for the new water lines will be approximately 4,857'. A power line will be run parallel to the water line and will connect into the power line at the Firethorn CTB. The power line will be approximately 4,857'. The Juniper/Pimento CTB will be 500'x525' and will include a separator, heat exchanger, VRU, VRT, meter run and a tank battery. The new production facility will have a secondary containment structure that is constructed to hold the capacity of 1-1/2 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.
- D. All permanent (lasting more than six months) above ground structures including but not limited to pump jacks, storage tanks, barrels, pipeline risers, meter housing, etc., that are not subject to safety requirements will be painted a non-reflective paint color, Shale Green, from the BLM Standard Environmental Colors chart, unless another color is required in the APD Conditions of Approval.
- E. If any plans change regarding the production facility or other infrastructure (pipeline, electrical lines, etc.), Ameredev will submit a sundry notice or right-of-way (if applicable) prior to installation or construction.

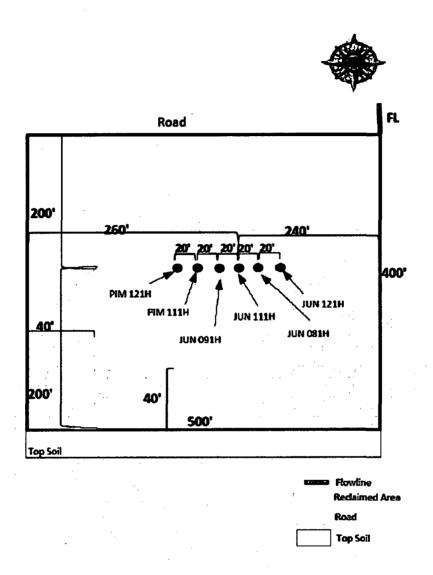
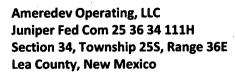



Exhibit 3 - Well Site Diagram

Section 5 - Location and Types of Water Supply

A. This location will be drilled using a combination of water and mud systems (outlined in the Drilling Program). The water will be obtained from preexisting water wells, by running a pump directly to the drilling rig. See Exhibit 4 - Water Wells, for a list of available water wells. In cases where a polyline is used to transport water for drilling or completion purposes, the existing and proposed roads into location will be utilized.

		•
Permit #	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04′14.32″ N, 103°12′32.30″ W
CP 1378	S. Eppenour	32°05′40.62″ N, 103°13′ 35.26″ W
CP 1285	Sec. 5	32°03′56.50″ N, 103°17′37.04″ W
CP 857	Capped	32°04′39.70″ N, 103°16′51.13″ W
C 2287	#1	32°03′59.0″ N, 103°33′16.8″ W
C 2286	#2	32°03′59.2″ N, 103°33′15.2″ W
C 2290	#3	32°04′1.0″ N, 103°33′ 12.6″ W
C 2285	#4	32°04′3.7″ N, 103°33′9.7″ W
C 2288	#5	32°04′0.5″ N, 103°33′8.4″ W
C 2294	Garden	32°03′3.2″ N, 103°32′38.1″ W
C 2293	House	32°03′2.3″ N, 103°32′36.8″ W
J-11-S-3	Farm Well #2	32°03′08.4″ N, 103°16′35.2″ W
J-11-S-2	Farm Well #3	32°03′11.5″ N, 103°17′02.0″ W
J-11-S	Farm Well #4	32°03′24.6″ N, 103°17′02.1″ W
CP 1170 POD 1	CB 1	32°03′57.2″ N, 103°18′45.3″ W
CP 1170 POD 5	. : **.	32°07′17.1″ N, 103°17′48.0″ W
CP 1263 POD 5	CB 2	32°03′56.27″ N, 103°18′27.4″ W
CP 1263 POD 3	CB 3	32°03′54.90″ N, 103°18′16.74″ W
CP 1351 POD 1	CB 4	32°03′57.16″ N, 103°17′45.13″ W
CP 1351 POD 2	CB 5	32°03′30.70″ N, 103°17′45.70″ W
J 26	Ryan	32°01′20.41″ N, 103°15′49.46″ W
J3		32°02′41.5″ N, 103°18′55.8″ W
		•

Exhibit 4 - Water Wells

Section 6 – Construction/Construction Materials

- A. Caliche will be obtained from the caliche pit located at Lat: 32° 6'28.78"N, Long: 103°16'58.77"W or the caliche pit at Lat: 32° 6'33.14"N, Long: 103°18'44.16"W or the caliche pit at Lat: 32° 3'8.30"N, Long: 103°13'57.00"W.
- B. Caliche utilized for the drilling pad will be obtained either from the locations listed above, an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "flipping" the well location. A mineral material permit will be obtained from the BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "flipping" a well location is as follows:
 - 1. An adequate amount of topsoil/root zone (usually top 6 inches of soil) will be stripped from the proposed well location and stockpiled along the side of the well location as depicted on the Exhibit 3 Well Site Diagram.
 - 2. An area will be used within the proposed well site dimensions to excavate caliche.
 - 3. Subsoil will be removed and stockpiled within the surveyed well pad dimensions.
 - 4. Once caliche/surfacing mineral is found, the mineral material will be excavated and stock piled within the approved drilling pad dimensions.
 - 5. Subsoil will then be pushed back in the excavated hole and caliche will be spread accordingly across the entire well pad and road (if available).
 - 6. Neither caliche, nor subsoil will be stockpiled outside of the well pad dimensions. Topsoil will be stockpiled along the edge of the pad as depicted in *Exhibit 5 Enlarged Well Site Diagram*.
 - 7. In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. A BLM mineral material permit will be acquired prior to obtaining any mineral material from BLM pits or federal land.

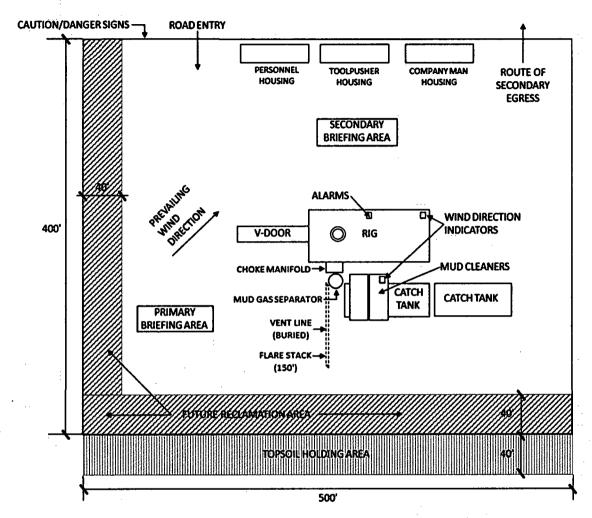


Exhibit 5 - Enlarged Well Site Diagram

Section 7 - Methods of Handling Waste

- A. Drill cuttings, mud, salts and other chemicals will be properly disposed of into steel tanks on site and hauled to a State approved commercial disposal facility.
- **B.** Garbage and trash produced during drilling and completion operations will be collected in a portable metal trash container and disposed of properly at a state approved disposal facility. All trash on and around the well site will be collected for disposal.
- C. Human waste and grey water will be properly contained and disposed of properly at a state approved disposal facility.
- D. After drilling and completion operations, trash, chemicals, salts, frac sand and other waste material will be removed and disposed of properly at a state approved disposal facility.

Section 8 - Ancillary Facilities

A. No ancillary facilities will be needed for the proposed project.

Section 9 - Well Site Layout

- **A.** See *Exhibit 3 Well Site Diagram* and *Exhibit 5 Enlarged Well Site Diagram*. The following information is presented:
 - 1. Reasonable scale
 - 2. Well pad dimensions/orientation
 - 3. Drilling rig components/layout
 - 4. Proposed access road
 - 5. Topsoil stockpile
- B. The proposed drilling pad was staked and surveyed by a professional surveyor. The attached survey plat of the well site depicts the drilling pad layout as staked.
- C. Topsoil salvaging
 - 1. Grass, forbs, and small woody vegetation such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and re-spread evenly on the site following topsoil re-spreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

<u>Section 10 - Plans for Final Surface Reclamation</u>

Reclamation Objectives

- A. The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil, to control erosion, and to minimize habitat and forage loss, visual impact, and weed infestation during the life of the well or facilities.
- B. The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources, and wildlife habitats. To ensure that the long-term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning, and vegetative productivity.

- C. The BLM will be notified at least 3 days prior to the commencement of any reclamation procedures.
- D. If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged. Ameredev will gain written permission from the BLM if more time is needed.
- E. Interim reclamation will be performed on the well site after the well is drilled and completed. Exhibit 3 – Well Site Diagram and Exhibit 5 – Enlarged Well Site Diagram depict the location and dimension of the planned interim reclamation for the well site.

Interim Reclamation Procedures (if performed)

- A. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production.
- **B.** In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. The areas planned for interim reclamation will then be contoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to reseeding will not be steeper than a 3:1 Ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be re-contoured to the above ratios during interim reclamation.
- D. Topsoil will be evenly re-spread and aggressively revegetated over the entire disturbed area not needed for all-weather operations, including cuts and fills. To seed the area, the proper BLM mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- **E.** Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Final Reclamation Procedures (well pad, buried pipelines, etc.)

- A. Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- **B.** All surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be re-contoured to the contour existing prior to initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to re-contouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation.

- D. After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BLM seed mixture, free of noxious weeds. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. All unused equipment and structures including pipelines, electric line poles, tanks, etc. that serviced the well will be removed.
- **G.** All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not re-disturbed, and that erosion is controlled.

Section 11 - Surface Ownership

A. EOG has surface ownership for proposed project area.

Section 12 - Other Information

- A. There are no dwellings within 1 mile of this location.
- B. An on-site meeting for the Juniper Fed Com 25 36 34 111H well was held on Nov. 28, 2017.
- C. The well pad described in this document Juniper/Pimento (JUN/PIM #1S) will contain 6 wells that produce into a central tank battery (CTB) located north of the well pad. The wells share a common pad access road, and the six total flowlines from the individual wells will share a common corridor that terminates into the CTB. The CTB will be tied into a shared pipeline and electrical corridor. The wells that share the pad are:
 - Juniper Fed Com 25 36 34 081H, APD ID# 10400031765
 - Juniper Fed Com 25 36 34 091H, APD ID# 10400031762
 - Juniper Fed Com 25 36 34 111H, APD ID# 10400031759
 - Juniper Fed Com 25 36 34 121H, APD ID# 10400031755
 - Pimento Fed Com 26 36 03 111H, APD ID# 10400031732
 - Pimento Fed Com 26 36 03 121H, APD ID# 10400031733

Ameredev field representative:

Ameredev office contact:

Zac Boyd, Operations Supervisor

Christie Hanna, Regulatory Coordinator

Cell: (432) 385-6996

Direct: (737) 300-4723

Email: zboyd@ameredev.com

Email: channa@ameredev.com

Ameredev Operating, LLC Address: 5707 Southwest Parkway Building 1, Suite 275 Austin, Texas 78735

Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Approval Date: 04/19/2019

Page 19 of 23

Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Approval Date: 04/19/2019

Page 20 of 23

Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number:

Injection well name:

Assigned injection well API number?

Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Other PWD type description:

Approval Date: 04/19/2019

Page 21 of 23

Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Bond Info

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Operator Certification

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie Hanna Signed on: 03/22/2019

Title: Senior Engineering Technician

Street Address: 5707 Southwest Parkway, Building 1, Suite 275

City: Austin State: TX Zip: 78735

Phone: (737)300-4723

Email address: channa@ameredev.com

Approval Date: 04/19/2019

Page 22 of 23

Well Name: JUNIPER FED COM 25 36 34

Well Number: 111H

Field Representative

Representative Name:

Street Address:

City:

State:

Zip:

Phone:

Email address:

Payment Info

Payment

APD Fee Payment Method: PAY.GOV

pay.gov Tracking ID:

26B5EJE4