F/P <H>

FORM APPROVED OMB No. 1004-0137

Form 3160-3 (June 2015)

Expires: January 31, 2018 **UNITED STATES** DEPARTMENT OF THE INTERIOR HOBBS OCD 5. Lease Serial No. NMNM136233 **BUREAU OF LAND MANAGEMENT** APPLICATION FOR PERMIT TO DRILL OR REPRITERS 2019 6. If Indian, Allotee or Tribe Name RECEIVED 7. If Unit or CA Agreement, Name and No. **✓** DRILL REENTER la. Type of work: Oil Well Gas Well Other 1b. Type of Well: 8. Lease Name and Well No. Ic. Type of Completion: Hydraulic Fracturing ✓ Single Zone Multiple Zone JUNIPER FED COM 2. Name of Operator 9. API Well No 372224 **AMEREDEV OPERATING LLC** 3b. Phone No. (include area code) 10. Field and Pool, or Explorator 5707 Southwest Parkway, Building 1, Suite 275 Austin TX (737)300-4700 JAL / WOLFCAMP WEST 11. Sec., T. R. M. or Blk. and Survey 4. Location of Well (Report location clearly and in accordance with any State requirements.*) SEC 3 / T26S / R36E / NMP At surface LOT D / 230 FNL / 330 FWL / LAT 32.0789485 / LONG -103.2604939 At proposed prod. zone LOT D / 50 FNL / 200 FWL / LAT 32.108459 / LONG -103.26091 12. County or Parish 13 State 14. Distance in miles and direction from nearest town or post office* 5 miles LEA NM 17. Spacing Unit dedicated to this well 15. Distance from proposed* 16. No of acres in lease 230 feet location to nearest property or lease line, ft. 1280 (Also to nearest drig, unit line, if any) 18. Distance from proposed location 19. Proposed Depth 20. BLM/BIA Bond No. in file to nearest well, drilling, completed, 8529 feet 12050 feet / 23022 feet FED: NMB001478 applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 23. Estimated duration 22. Approximate date work will start* 2992 feet 03/01/2019 90 days 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see Item 20 above) 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the BLM 25. Signature Name (Printed/Typed) 07/24/2018 (Electronic Submission) Christie Hanna / Ph: (737)300-4723 Title Senior Engineering Technician Date Approved by (Signature) Name (Printed/Typed) (Electronic Submission) Cody Layton / Ph: (575)234-5959 04/24/2019 Title Office **CARLSBAD** Assistant Field Manager Lands & Minerals Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction 5 CP lec 04/29/19

(Continued on page 2)

APPROVED WITH CONDITIONS

PPProval Date: 04/19/2019

*(Instructions on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: LOT D / 230 FNL / 330 FWL / TWSP: 26S / RANGE: 36E / SECTION: 3 / LAT: 32.0789485 / LONG: -103.2604939 (TVD: 0 feet, MD: 0 feet)

PPP: SWSW / 0 FSL / 144 FWL / TWSP: 25S / RANGE: 36E / SECTION: 27 / LAT: 32.09408 / LONG: -103.26156 (TVD: 12050 feet, MD: 17795 feet)

PPP: SWSW / 0 FSL / 214 FWL / TWSP: 25S / RANGE: 36E / SECTION: 34 / LAT: 32.07232 / LONG: -103.26155 (TVD: 12050 feet, MD: 15045 feet)

BHL: LOT D / 50 FNL / 200 FWL / TWSP: 25S / RANGE: 36E / SECTION: 27 / LAT: 32.108459 / LONG: -103.26091 (TVD: 12050 feet, MD: 23022 feet)

BLM Point of Contact

Name: Tenille Ortiz

Title: Legal Instruments Examiner

Phone: 5752342224 Email: tortiz@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: | Ameredev Operating, LLC

LEASE NO.: NMNM-136233

WELL NAME & NO.: Juniper Fed Com 25 36 34 121H

SURFACE HOLE FOOTAGE: | 0230' FNL & 0330' FWL

BOTTOM HOLE FOOTAGE | 0050' FNL & 0200' FWL Sec. 27, T. 25 S., R 36 E.

LOCATION: | Section 03, T. 26 S., R 36 E., NMPM

COUNTY: | County, New Mexico

Communitization Agreement

The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

☐ Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 3933612

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Alternative when using skid/walking rig
 The operator has proposed to drill multiple wells utilizing a skid/walking rig.
 Operator shall secure the wellbore on the current well, after installing and
 testing the wellhead, by installing a blind flange of like pressure rating to the
 wellhead and a pressure gauge that can be monitored while drilling is performed
 on the other wells.
- 4. Option Setting surface casing with Surface Rig
 - a. Notify the BLM when removing the Surface Services Rig.
 - b. Notify the BLM when moving in the H&P Flex Rig. Rig to be moved in within 60 days of notification that Surface Rig has left the location. Failure to notify or have rig on location within 60 days will result in an Incident of Non-Compliance.
 - c. Once the H&P Flex Rig is on location, it shall not be removed from over the hole without prior approval unless the production casing has been run and cemented or the well has been properly plugged. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
 - d. BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as H&P Flex Rig is rigged up on well. CIT for the surface casing shall be performed and results recorded on subsequent sundry pressure to be 1200 psi.
- 5. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.

6. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Capitan Reef

Possible water flows in the Castile, Salado, and Capitan Reef. Possible lost circulation in the Rustler, Red Beds, and Delaware.

Page 3 of 11

Abnormal pressures may be encountered within the 3rd Bone Spring and Wolfcamp Formations.

CASING DESIGN OPTION #1 (IF LOSS CIRCULATION OF 50% OR GREATER OCCURS ON THE 12-1/4" HOLE, OPERATOR WILL SWITCH TO THEIR CONTINGENCY FOUR STRING DESIGN):

- 1. The 13-3/8 inch surface casing shall be set at approximately 1888 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Formation below the 13-3/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

9-5/8" Intermediate casing shall be kept fluid filled while running into hole to meet BLM minimum collapse requirements.

IF LOSS CIRCULATION OF 50% OR GREATER OCCURS ON THE 12-1/4"
HOLE, OPERATOR WILL SWITCH TO THEIR CONTINGENCY FOUR

Page 4 of 11

STRING DESIGN

Special Capitan Reef requirements:

If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following in addition to switching to their four string contingency design:

- Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
- Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing, which shall be set at 10,670 feet, is:

Operator has proposed DV tool at depth of 5013', but will adjust cement proportionately if moved. DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

	Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage. Excess calculates to 9% - Additional cement may be required
	b. Second stage above DV tool:
	Cement to surface. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to Capitan Reef.
Test of pore	nation below the 9-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. to be done as a mud equivalency test using the mud weight necessary for the pressure of the formation below the shoe (not the mud weight required to ent dissolving the salt formation) and the mud weight for the bottom of the Report results to BLM office.
Centi	ralizers required through the curve and a minimum of one every other joint.
3. T	he minimum required fill of cement behind the 5-1/2 inch production casing is:
	Cement should tie-back at least 50 feet above the Capitan Reef (Top of Capitan Reef estimated at 3734'). Operator shall provide method of verification.
	TINGENCY CASING DESIGN OPTION #2 (IF LOSS CIRCULATION OF
	OR GREATER OCCURS ON THE 12-1/4" HOLE, OPERATOR WILL ICH TO THIS FOUR STRING DESING):

a. First stage to DV tool:____

a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of

six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Formation below the 13-3/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing, which shall be set at 5013 feet, is:

Operator has proposed DV tool at depth of 3262', but will adjust cement proportionately if moved. DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

a. First stage to DV tool:____

×	Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage.
b.	Second stage above DV tool:

Cement to surface. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to Capitan Reef.

Formation below the 9-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe (not the mud weight required to prevent dissolving the salt formation) and the mud weight for the bottom of the hole. Report results to BLM office.

7-5/8" Intermediate casing shall be kept fluid filled while running into hole to meet BLM minimum collapse requirements.

3. The minimum	required fill of cement behind the 7-5/8 inch intermediate casing is:
☐ Cemen	t to surface. If cement does not circulate, contact the appropriate BLM
office.	Excess calculates to 14% - Additional cement may be required
	the 7-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. a mud equivalency test using the mud weight necessary for the
pore pressure of	the formation below the shoe and the mud weight for the bottom of
the hole. Report	results to BLM office

- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **50 feet above the Capitan Reef** (Top of Capitan Reef estimated at 3734'). Operator shall provide method of verification.
- 5. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.

- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 3. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
 - e. Operator shall perform the 9-5/8" and 7-5/8" casing integrity tests to 70% of the casing burst. This will test the multi-bowl seals.
 - f. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi.)

10M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

4. The appropriate BLM office shall be notified a minimum of hours in advance for a representative to witness the tests.

- a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- a. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.
- b. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- c. The results of the test shall be reported to the appropriate BLM office.
- d. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- e. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- f. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the **Wolfcamp** formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

D. **DRILLING MUD**

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the **Wolfcamp** formation, and shall be used until production casing is run and cemented.

Page 10 of 11

E. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

F. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 041119

Page 11 of 11

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME: | AMERIDEV OPERATING LLC

LEASE NO.: | NMNM137804

WELL NAME & NO.: JUNIPER FED COM 25 36 34 121H

SURFACE HOLE FOOTAGE: 230'/N & 270'/W BOTTOM HOLE FOOTAGE 200'/N & 380'/W

LOCATION: | SECTION 3, T26S, R36E, NMPM

COUNTY: LEA

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

	General Provisions									
	Permit Expiration									
— П	Archaeology, Paleontology, and Historical Sites									
	Noxious Weeds									
— П	Special Requirements									
	Lesser Prairie-Chicken Timing Stipulations Ground-level Abandoned Well Marker Aplomado Falcon Cave/Karst VRM Cultural									
	Construction									
	Notification Topsoil Closed Loop System Federal Mineral Material Pits Well Pads Roads									
	Road Section Diagram									
	Production (Post Drilling)									
-	Well Structures & Facilities Pipelines Flootric Lines									

- \square Interim Reclamation
- ☐ Final Abandonment & Reclamation

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult

Page 3 of 15

with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

v. SPECIAL REQUIREMENT(S)

<u>Timing Limitation Stipulation / Condition of Approval for lesser prairie-chicken:</u>

Oil and gas activities including 3-D geophysical exploration, and drilling will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Additionally, no new drilling will be allowed within up to 200 meters of leks known at the time of permitting. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 feet from the source of the noise.

<u>Ground-level Abandoned Well Marker to avoid raptor perching</u>: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well. For more installation details, contact the Carlsbad Field Office at 575-234-5972.

This authorization is subject to your Certificate of Participation and/or Certificate of Inclusion under the New Mexico Candidate Conservation Agreement. Because it involves surface disturbing activities covered under your Certificate, your Habitat Conservation Fund Account with the Center of Excellence for Hazardous Materials Management (CEHMM) will be debited according to Exhibit B Part 2 of the Certificate of Participation.

Page 5 of 15

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the .

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

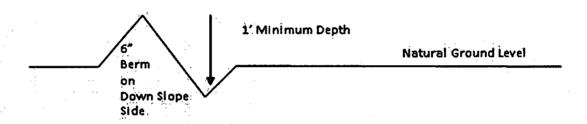
Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts


Page 8 of 15

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, leadoff ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Page 9 of 15

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Construction Steps

- 1. Salvage topsoil
- 3. Redistribute topsoil
- 2. Construct road 4. Revegetate slopes

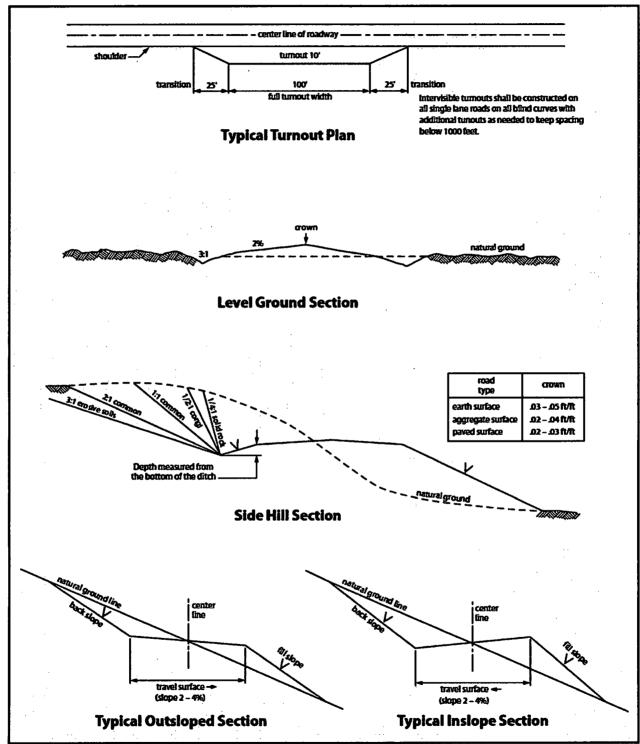


Figure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Page 12 of 15

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, **Shale Green** from the BLM Standard Environmental Color Chart (CC-001: June 2008).

VRM Facility Requirement

Low-profile tanks not greater than eight-feet-high shall be used.

- B. PIPELINES
- C. ELECTRIC LINES

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

Page 13 of 15

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well.

(Insert Seed Mixture Here)

Page 15 of 15

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

APD ID: 10400031755

Operator Name: AMEREDEV OPERATING LLC

Well Name: JUNIPER FED COM 25 36 34

Well Type: OIL WELL

Submission Date: 07/24/2018

Federal/Indian APD: FED

Well Number: 121H

Well Work Type: Drill

Show Final Text

Application

Section 1 - General

APD ID:

10400031755

Tie to previous NOS? 10400024490

Submission Date: 07/24/2018

BLM Office: CARLSBAD

User: Christie Hanna

Title: Senior Engineering Technician

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM136233

Lease Acres: 1280

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? NO

APD Operator: AMEREDEV OPERATING LLC

Operator letter of designation:

Operator Info

Operator Organization Name: AMEREDEV OPERATING LLC

Operator Address: 5707 Southwest Parkway, Building 1, Suite 275

Operator PO Box:

Zip: 78735

Operator City: Austin

State: TX

Operator Phone: (737)300-4700

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Master Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Approval Date: 04/19/2019

Page 1 of 24

Operator Name: AMEREDEV OPERATING LLC

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: JAL

Pool Name: WOLFCAMP

WEST

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, CO2, OIL

Describe other minerals:

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO

New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name:

Number: 121H

Well Class: HORIZONTAL

JUNIPER

Number of Legs: 1

Well Work Type: Drill

Well Type: OIL WELL

Describe Well Type:

Well sub-Type: INFILL

Describe sub-type:

Distance to town: 5 Miles

Distance to nearest well: 8529 FT

Distance to lease line: 230 FT

Reservoir well spacing assigned acres Measurement: 320 Acres

Well plat:

JUNIPER_FED_COM_25_36_34_121H___BLM_LEASE_MAP_20190204141230.pdf

JUNIPER FED COM 25 36 34 121H C 102 REV SIG 20190204141231.pdf

JUNIPER_FED_COM_25_36_34_121H___EXH_2AB_20190204141232.pdf

JUNIPER_FED_COM_25_36_34_121H___VICINITY_MAP_20190204141232.pdf

Juniper Fed Com 25 36 34 121H Gas Capture Plan 20190204141247.pdf

Well work start Date: 03/01/2019

Duration: 90 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88


Survey number: 18329

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	dvr
SHL Leg #1	230	FNL	330	FWL	268	36E	3	Lot D	32.07894 85	- 103.2604 939	LEA	MEXI	NEW MEXI CO			299 2	0	0

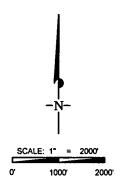
Approval Date: 04/19/2019

Page 2 of 24

LOCATION & ELEVATION VERIFICATION MAP

AMEREDEV

AMEREDEV OPERATING, LLC


LEASE NAME & WELL NO.: JUNIPER FED COM 25 36 34 121H

 SECTION
 3
 TWP
 26-S
 RGE
 36-E
 SURVEY
 N.M.P.M.

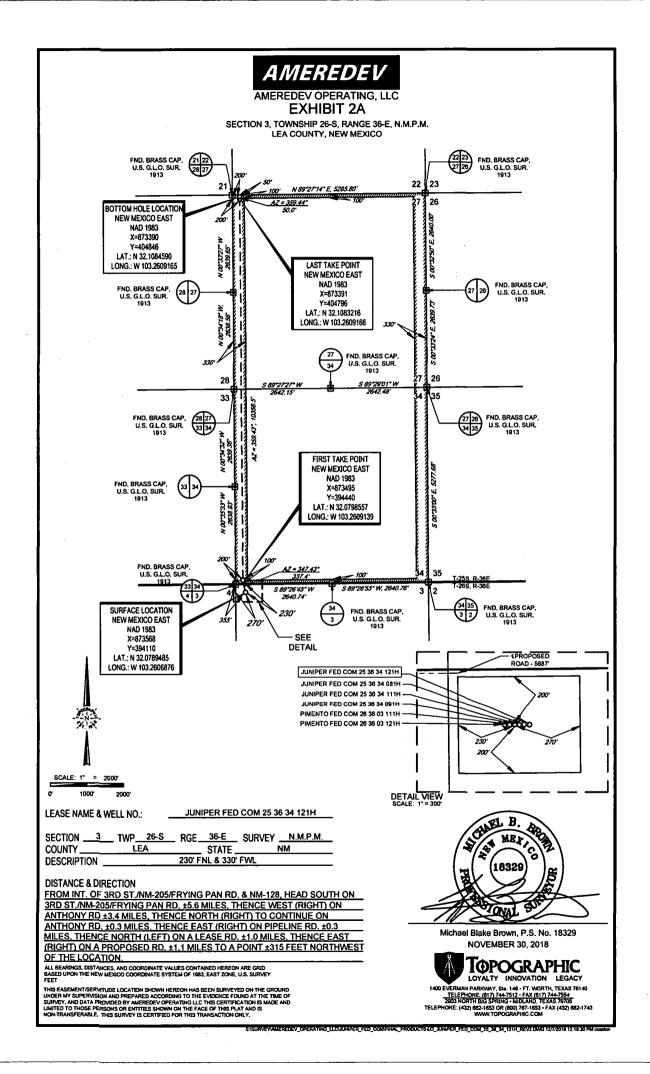
 COUNTY
 LEA
 STATE
 NM
 ELEVATION
 2992'

 DESCRIPTION
 230' FNL & 330' FWL

LATITUDE N 32.0789485 LONGITUDE W 103.2606876

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO STATE PLANE COORDINATE SYSTEM, EAST ZONE OF THE NORTH AMERICAN DATUM 1983, U.S. SURVEY FEET.


1400 EVERNAN PARKWAY, Sie. 146 · FT. WORTH, TEXAS 76140

TELEPHONE: (817) 744-7512 · FAX (817) 744-7554

2803 NORTH BIG SPRING · MIDLAND, TEXAS 78705

TELEPHONE: (432) 682-1653 OR (800) 767-1653 · FAX (432) 682-1743

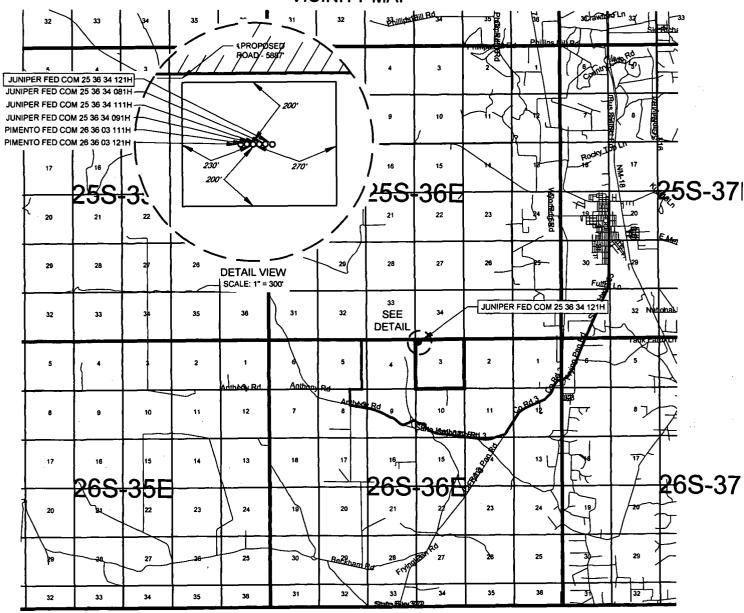
WWW.TOPOGRAPHIC.COM



EXHIBIT 2B

AMEREDEV OPERATING, LLC

SECTION 3, TOWNSHIP 26-S, RANGE 36-E, N.M.P.M. LEA COUNTY, NEW MEXICO


ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO STATE PLANE COORDINATE SYSTEM, EAST ZONE OF THE NORTH AMERICAN DATUM 1983, U.S. SURVEY FEET

THIS PROPOSED PAD SITE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

1400 EVERMAN PARKWAY, SIG. 197 - FT. WORTH, TEXAS 76140
TELEPHONE: (817) 744-7512 - FAX (817) 744-754
2003 NORTH BIG SPRING - MIDLAND, TEXAS 76705
TELEPHONE: (432) 682-1633 OR (800) 767-1653 - FAX (432) 682-1743
WWW.TOPOGRAPHIC.COM

EXHIBIT 2 VICINITY MAP

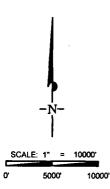
AMEREDEV

AMEREDEV OPERATING, LLC

LEASE NAME & WELL NO.: JUNIPER FED COM 25 36 34 121H

 SECTION
 3
 TWP
 26-S
 RGE
 36-E
 SURVEY
 N.M.P.M.

 COUNTY
 LEA
 STATE
 NM


 DESCRIPTION
 230' FNL & 330' FWL

DISTANCE & DIRECTION

FROM INT. OF 3RD ST./NM-205/FRYING PAN RD. & NM-128, HEAD SOUTH ON 3RD ST./NM-205/FRYING PAN RD. ±5.6 MILES, THENCE WEST (RIGHT) ON ANTHONY RD ±3.4 MILES, THENCE NORTH (RIGHT) TO CONTINUE ON ANTHONY RD. ±0.3 MILES, THENCE EAST (RIGHT) ON PIPELINE RD. ±0.3 MILES, THENCE NORTH (LEFT) ON A LEASE RD. ±1.0 MILES, THENCE EAST (RIGHT) ON A PROPOSED RD. ±1.1 MILES TO A POINT ±315 FEET NORTHWEST OF THE LOCATION.

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM of 1983, EAST ZONE, U.S. SURVEY FEET.

1400 EVERMAN PARKWAY, Ste. 146 · FT. WORTH, TEXAS 76140 TELEPHONE: (817) 744-7512 · FAX (817) 744-7545 2903 NORTH BIG SPRING · MIDLAND, TEXAS 78705 TELEPHONE: (432) 682-1653 OR (800) 767-1653 · FAX (432) 682-1743 WWW.TOPOGRAPHIC.COM

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

$\overline{}$														_				
	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	ΟVT
KOP Leg #1	537	FNL	617	FWL	26S	36E	3	Aliquot NWN W	32.07809 6	- 103.2595 7	LEA	NEW MEXI CO	NEW MEXI CO	lt.	NMNM 137804	- 855 8	115 72	115 50
PPP Leg #1	0	FSL	214	FWL	258	36E	34	Aliquot SWS W	32.07232	- 103.2615 5	LEA	i .	NEW MEXI CO	F	NMNM 136233	- 905 8	150 45	120 50
PPP Leg #1	0	FSL	144	FWL	25S	36E	27	Aliquot SWS W	32.09408	- 103.2615 6	LEA	I	NEW MEXI CO	F	NMNM 136232	- 905 8	177 95	120 50
EXIT Leg #1	50	FNL	200	FWL	258	36E	27	Lot D	32.10845 9	- 103.2609 1	LEA		NEW MEXI CO	F	NMNM 136232	- 905 8	230 22	120 50
BHL Leg #1	50	FNL	200	FWL	258	36E	27	Lot D	32.10845 9	- 103.2609 1	LEA	NEW MEXI CO	NEW MEXI CO	F		- 905 8	230 22	120 50

Drilling Plan

Section 1 - Geologic Formations

Formation		1	True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	RUSTLER	1254	1763	1763	ANHYDRITE	NONE	No
2	SALADO	-731	1985	1985	SALT	NONE	No
3	TANSILL	-2008	3262	3262	LIMESTONE	NONE	No
4	CAPITAN REEF	-2552	3806	3806	LIMESTONE	USEABLE WATER	No .
5	LAMAR	-3709	4963	4963	LIMESTONE	NONE	No
6	BELL CANYON	-3905	5159	5159	SANDSTONE	NATURAL GAS,OIL	No
7	BRUSHY CANYON	-5450	6704	6704	SANDSTONE	NATURAL GAS,OIL	No
8	BONE SPRING LIME	-6434	7688	7688	LIMESTONE	NONE	No
9	BONE SPRING 1ST	-8046	9300	9300	SANDSTONE	NATURAL GAS,OIL	No

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation
10	BONE SPRING 2ND	-8631	9885	9885	SANDSTONE	NATURAL GAS,OIL	No
11	BONE SPRING 3RD	-9291	10545	10545	LIMESTONE	NATURAL GAS,OIL	No
12	BONE SPRING 3RD	-9886	11140	11140	SANDSTONE	NATURAL GAS,OIL	No
13	WOLFCAMP	-10067	11321	11321	SHALE	NATURAL GAS,OIL	No
14	WOLFCAMP	-10471	11725	11725	SHALE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M

Rating Depth: 15000

Equipment: 10M BOPE SYSTEM WILL BE USED AFTER THE SURFACE CASING IS SET. A KELLY COCK WILL BE KEPT IN THE DRILL STRING AT ALL TIMES. A FULL OPENING DRILL PIPE STABBING VALVE WITH PROPER DRILL PIPE CONNECTIONS WILL BE ON THE RIG FLOOR AT ALL TIMES.

Requesting Variance? YES

Variance request: Co-Flex Choke Line, 5M Annular Preventer

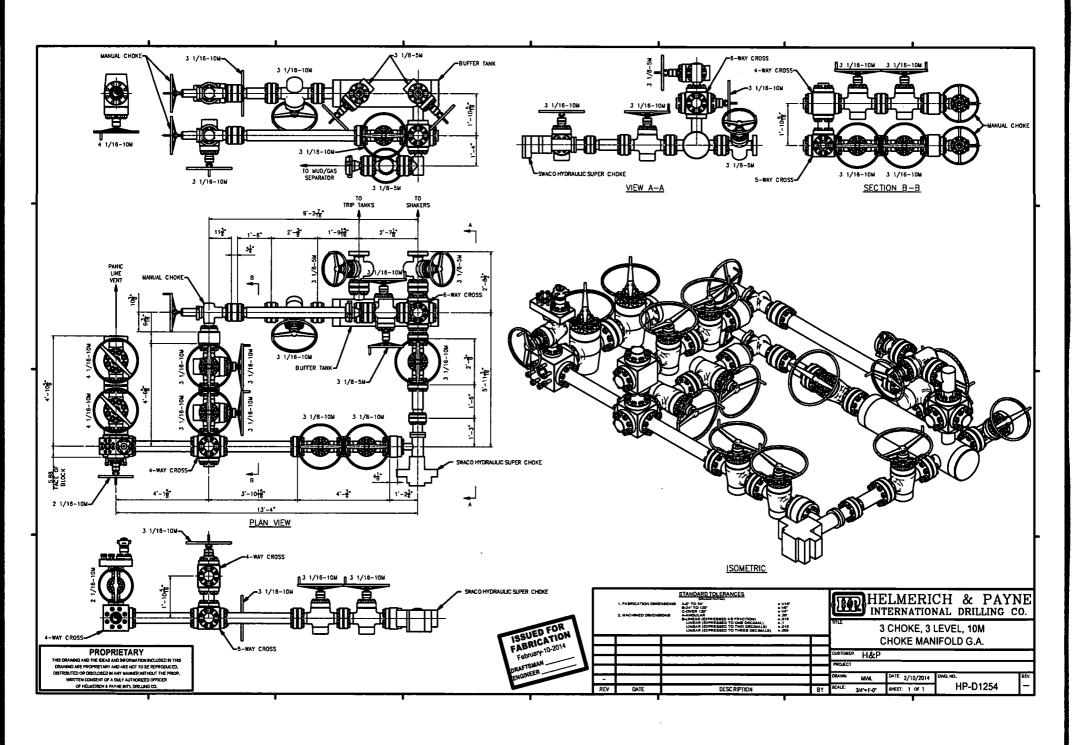
Testing Procedure: See Attachment

Choke Diagram Attachment:

10M Choke Manifold REV 20190204150648.pdf

BOP Diagram Attachment:

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190204150719.pdf


5M_BOP_System_20190204150720.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190204150720.pdf

4_String_MB_Ameredev_Wellhead_Drawing_net_REV_20190204150731.pdf

Approval Date: 04/19/2019

Page 4 of 24

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Open Hole	13-5/8	Drilling Fluid	Blind Rams	

All Drilling Components in 10M Environment will have OD that will allow full Operational RATED WORKING PRESSURE for system design. Kill line with minimum 2" ID will be available outside substructure with 10M Check Valve for OOH Kill Operations

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves
 Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

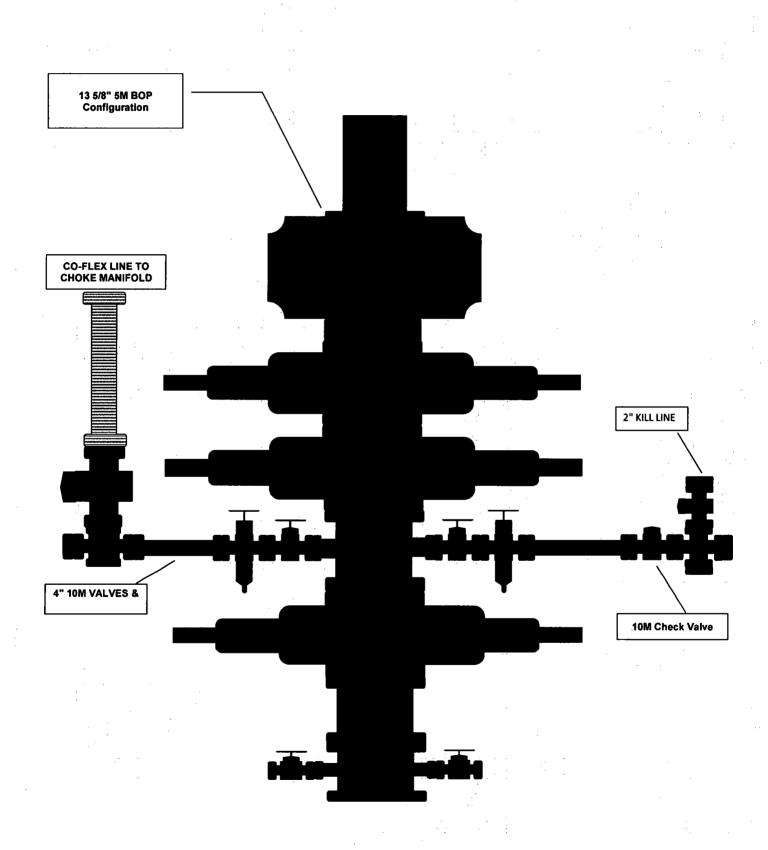
- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available


- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure
- *FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

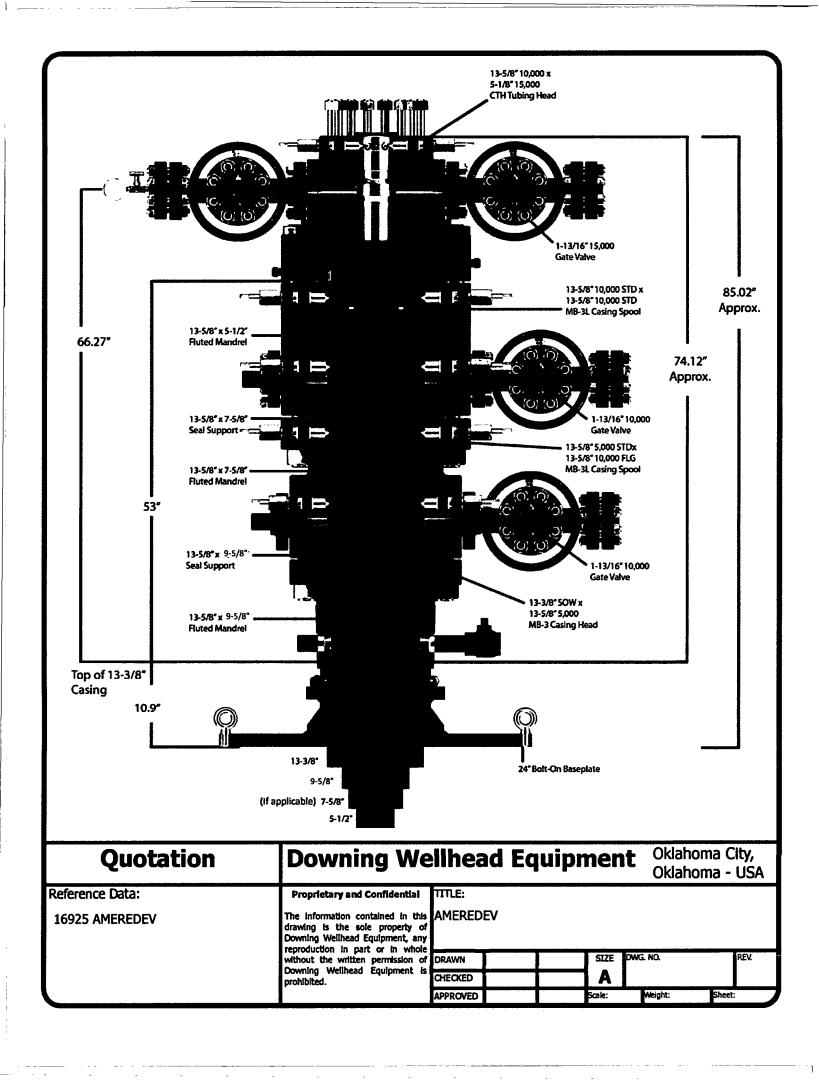
Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan


Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break
 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips
 and test same (Installation procedure witnessed and verified by a manufacturer's
 representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed
 and verified by a manufacturer's representative). Ameredev will test head to 70% casing design
 and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting
 completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a
 co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to
 API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications
 will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	בטיקיים
1	SURFACE	17.5	13.375	NEW	API	N	0	1888	0	1888	2992		1888	J-55	I -	OTHER - BTC	4.86	0.52	DRY	8.89	DRY	8.:
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	10670	0	10670			10670	HCL -80		OTHER - BTC	1.29	1.08	DRY	2.25	DRY	2.:
	PRODUCTI ON	8.5	5.5	NEW	API	N .	0	23022	0	12050			23022	OTH ER		OTHER - BTC	1.52	1.64	DRY	2.72	DRY	3.

Casing Attachments

Casing ID: 1

String Type:SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

13.375_54.50_J55_SEAH_20190204150833.pdf

JUNIPER_FED_COM_25_36_34_121H___WELLBORE_AND_CDA_20190204150845.pdf

Well Name: JUNIPER FED COM 25 36 34 Well Number: 121H

Casing Attachments

Casing ID: 2

String Type:INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

JUNIPER_FED_COM_25_36_34_121H___WELLBORE_AND_CDA_20190204151000.pdf 9.625_40_SeAH80HC_4100_Collapse_20190204151008.pdf

Casing ID: 3

String Type:PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

TMK_UP_SF_TORQ____5.500in_x_20.00__P_110_CYHP_20190204151119.pdf

JUNIPER_FED_COM_25_36_34_121H___WELLBORE_AND_CDA_20190204151128.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead	,	0	1502	965	1.76	13.5	1697. 63	50	Class C	Bentonite, Accelerator, Kolseal, Defoamer, Celloflake
SURFACE	Tail		1502	1888	200	1.34	14.8	268	100	Class C	Salt

Approval Date: 04/19/2019

Wellbore Schematic

Well: Juniper Fed Com 25-36-34 121H

SHL: Sec. 03 26S-36E 230' FNL & 330' FWL BHL: Sec. 27 25S-36E 50' FNL & 200' FWL

Lea, NM

Wellhead: A - 13-5/8" 10M x 13-5/8" SOW

B - 13-5/8" 10M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

Tubing: 2-7/8" L-80 6.5# 8rd EUE

Co. Well ID: XXXXX

AFE No.: XXXX-XXX
API No.: XXXXXXXXXXX

GL: 2,992'

Field: Delaware

Objective: Wolfcamp B

TVD: 12,050' MD: 23,022'

Rig: TBD KB: 27'

E-Mail: Wellsite2@ameredev.com

rubing.	2-110 L-00 0.5# 0					ameredev.com
Hole Size		Formation Tops		Logs	Cement	Mud Weight
17.5"		Rustler	1,763'		1,165 Sacks TOC 0' 100% Excess	8.4 - 8.6 ppg WBM
		13.375" 54.5# J-55 BTC	1,888'		<u> </u>	 "
		Salado	1,985'			
		Tansill	3,262'	-		
		Capitan Reef	3,806'		is sees	 6
· · · · · · · · · · · · · · · · · · ·		Lamar	4,963'		886 Sacks TOC 0' 50% Excess	:mulsi
		DV Tool	5,013'		886 T 0,03	
12.25"		Bell Canyon	5,159'			8.5 - 9.4 ppg Diesel Brine Emulsion
		Brushy Canyon	6,704'			og Die
		Bone Spring Lime	7,688'			9.4 pt
· : .		First Bone Spring	9,300'			8.5 -
		Second Bone Spring	9,885'		cks	
		Third Bone Spring Upper	10,545'		1,723 Sacks TOC 0' 50% Excess	
	<u> </u>	9.625" 40# L-80HC BTC	10,670'		1,7	
0.5%		Third Bone Spring	11,140'			
8.5"		Wolfcamp A	11,321'			ppg OBM
12° Buil @	d	Wolfcamp B	11,725'			
11,571' thru 12,667'		5" 20# P-110CYHP BTC lfcamp B 12050 TVD // 23022 MD	23,022'		4,916 Sacks TOC 0' 25% Excess	10.5 - 12.5
					4,916 TOC 25%	

Casing Design and Safety Factor Check

	Casing Specifications										
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling					
Surface	17.5	1,888'	13.375	54.5	HCL-80	BTC					
Intermediate	12.25	10,670'	9.625	40	HCP-110	BTC					
Prod Segment A	8.5	11,571'	5.5	20	CYHP-110	BTC					
Prod Segment B	8.5	23,022'	5.5	20	CYHP-110	ВТС					

	Check Surface Casing							
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
14.375	853	915	4,100	2,730				
	S	afety Facto	ors					
1.56	8.29	8.89	4.86	0.52				
·	Check I	ntermedia	te Casing					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
7.625	940	558	6700	9460				
	S	afety Facto	ors					
2.31	2.20	2.25	1.29	1.08				
	Check Pro	od Casing,	Segment A	·				
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
	S	afety Facto	ors					
1.36	3.02	2.72	1.52	1.64				
	Check Pro	od Casing,	Segment B					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
		afety Facto	ors					
1.36	75.99	68.37	1.46	1.64				

SěAH

13-3/8" 54.50# .380 J-55

Dimensions (Nominal)

Outside Diameter	13.375	in.
Wall	0.380	in.
Inside Diameter	12.615	in.
Drift	12.459	in.
Weight, T&C	54.500	lbs/ft
Weight, PE	52.790	lbs/ft

Performance Ratings, Minimum

Collapse, PE	1130	psi
Internal Yields Pressure		•
PE	2730	psi
STC	2730	PSI
ВТС	2730	psi
Yield Strength, Pipe Body	853	1000 lbs
Joint Strength, STC	514	1000 lbs
Joint Strength, BTC	909	1000 lbs

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

SěAH

9.625"

<u>40#</u>

.395"

SEAH-80 HIGH COLLAPSE

(SEAH-80 IS A NON HEAT TREATED PRODUCT)

1000 lbs.

915

Dimensions (Nominal)

Outside Diameter	9.625	in.
Wall	0.395	in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.

Performance Properties

BTC

Collapse	4100	psi
Internal Yield Pressure at Minimum Yield		
PE	5750	psi
LTC	5750	psi
втс	5750	psi
Yield Strength, Pipe Body	916	1000 lbs.
Joint Strength		
LTC	717	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

U.S. Steel Tubular Products

Product Information 5.5 in. 20 lb/ft (0.361 in. wall) P-110 HC Casing STAR SEAL - CDC™

Grade(s)	P-110 HC		
MECHANICAL PROPERTIES	Violat Over eath	•	
	Yield Strength Minimum	110	lea:
	Minimum Maximum	110 140	ksi ksi
	Tensile Strength	140	KSI
	Minimum	125	ksi
PIPE PROPERTIES	WITHINGTO	120	KOI
Dimensions, Nominal	Pipe Outside Diameter	5.500	in.
	Wall	0.361	in.
	Pipe Inside Diameter	4.778	in.
	Pipe Drift		
	API	4.653	in.
	Special (If Applicable)	N/A	in.
	Weight, T&C	20.00	lbs/ft
	Weight, Plain End	19.83	lbs/ft
	Pipe Cross Sectional Area	5.828	sq. in.
Performance Properties	Minimum Pipe Body Yield Strength	641	1,000 lbs
•	Minimum Collapse Pressure	12,200	psi
	Minimum Internal Yield Pressure	12,640	psi
CONNECTION PROPERTIES			
Dimensions, Nominal	Connection Outside Diameter	6.050	in.
· · · · · · · · · · · · · · · · · · ·	Connection Inside Diameter	4.778	in.
•	Connection Drift		
	API	4.653	in.
	Special (If Applicable)	N/A	in.
	Makeup Loss	4.63	in.
	Critical Area	5.828	in.
	Joint Efficiency	100	%
Performance Properties	Joint Strength	667	1,000 lbs
	Compression Rating	400	1,000 lbs
	API Collapse Pressure Rating	12,200	psi
	API Internal Pressure Resistance	12,360	psi
	Maximum Uniaxial Bend Rating	57.2	deg/100 ft
Recommended Torque Values	Minimum Shoulder Torque	5,000	ft-lbs
	Maximum Shoulder Torque	7,500	ft-fbs
	Connection Yield Torque	16,100	ft-lbs

^{*} STAR SEAL - CDC (Casing Drilling Connection) is a Modified API Buttress threaded and coupled connection designed for field proven in drilling with casing applications. Star Seal is a registered trademark of U. S. Steel Corporation. All material contained in this publication is for general information only. This material should not therefore, be used or relied upon for any specific application without independent competent professional examination and verification of its accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U.S. Steel Tubular Products, Inc. 600 Grant Street Pittsburgh, PA 15219

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

String Type	Lead/Tail	Stage Tool Depth	Тор МD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
INTERMEDIATE	Lead	5013	0	4163	686	2.47	11.9	1694. 94	25	Class C	Salt, Bentonite, Kolseal, Defoamer, Celloflake, Anti-Settling Expansion Additive
INTERMEDIATE	Tail		4163	5013	200	1.33	14.8	266	25	Class C	Retarder
INTERMEDIATE	Lead	5013	5013	9414	1531	2.47	11.9	3780. 79	25	Class H	Bentonite, Salt, Kolseal, Defoamer, Celloflake, Retarder, Anti-Settling Expansion Additive
INTERMEDIATE	Tail		9414	1067 0	300	1.24	14.5	371.1	25	Class H	Salt, Bentonite, Retarder, Dispersant, Fluid Loss
PRODUCTION	Lead		0	2302 2	4916	1.34	14.2	6586. 9	25	Class H	Salt, Bentonite, Fluid Loss, Dispersant, Retarder, Defoamer

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary supplies (e.g. bentonite, cedar bark) for fluid control will be on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure, and pump rate.

Circulating Medium Table

Top Depth
Bottom Depth
Mud Type
Min Weight (Ibs/gal)
Max Weight (lbs/gal)
Density (lbs/cu ft)
Gel Strength (lbs/100 sqft)
Æ
Viscosity (CP)
Salinity (ppm)
Filtration (cc)
Additional Characteristics

Approval Date: 04/19/2019

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

	Top Depth	Bottom Depth	Mud Type	Min Weight (ibs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
	0	1888	WATER-BASED MUD	8.4	8.6					•		
1	888	1067 0	OTHER : Diesel Brine Emulsion	8.5	9.4							
1	067 0	1205 0	OIL-BASED MUD	10.5	14							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5000

Anticipated Surface Pressure: 2349

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_20180629084022.pdf

Approval Date: 04/19/2019

Page 8 of 24

H₂S Drilling Operation Plan

1. All Company and Contract personnel admitted on location must be trained by a qualified H₂S safety instructor to the following:

- a. Characteristics of H₂S
- b. Physical effects and hazards
- c. Principal and operation of H₂s detectors, warning system and briefing areas
- d. Evacuation procedure, routes and first aid
- e. Proper use of safety equipment and life support systems
- f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- b. Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

3. H₂S Detection and Alarm Systems:

- a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- **b.** An audio alarm will be installed on the derrick floor and in the top doghouse.

4. Protective Equipment for Essential Personnel:

a. Breathing Apparatus:

- i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
- ii. Two (SCBA) Units will be stored in safety trailer on location.
- iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.

b. Auxiliary Rescue Equipment:

- i. Stretcher
- ii. 2 OSHA full body harnesses
- iii. 100 ft. 5/8" OSHA approved rope
- iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- b. Windsock on the rig floor should be high enough to be visible.

6. Communication:

- While working under mask scripting boards will be used for communication where applicable.
- b. Hand signals will be used when script boards are not applicable.

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. <u>Drill Stem Testing:</u> No Planned DST at this time.

8. Mud program:

a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

9. Metallurgy:

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
- b. Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H₂S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
- Have received training in the:
 - o Detection of H₂S and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating	LLC - Emergency Phone 737-300	-4799	
Key Personnel:			
Name	Title	Office	Mobile
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996
Blake Estrada	Construction Foreman		432-385-5831

Artesia	
Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283
Carlsbad	
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
US Bureau of Land Management	575-887-6544
Santa Fe	
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
National	
National Emergency Response Center (Washington, D.C.)	800-424-8802
<u>Medical</u>	
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433
.'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, NM	505-842-4949

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Jun121_DR_20190204152517.pdf

Jun121_LLR_20190204152517.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190204152633.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190204152634.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

CAPITAN PROTECTION CONTINGENCY PLAN 20190322133457.pdf

Other Variance attachment:

R616___CoC_for_hoses_12_18_17_20190204152604.pdf

Requested_Exceptions___3_String_Revised_01312019_20190204152605.pdf

SUPO

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

JUNIPER_FED_COM_25_36_34_121H___WELL_PAD_ACCESS_MAP_REV_20190204152710.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

AMEREDEV

Ameredev Operating, LLC.

JUN/PIM JUN/PIM #1S Juniper 121H

Wellbore #1

Plan: Design #1

Standard Planning Report

14 January, 2019

Planning Report

Database:

EDM5000

Company:

Ameredev Operating, LLC.

Project:

JUN/PIM

Site:

JUN/PIM #1S

Well: Wellbore:

Design:

Juniper 121H Wellbore #1

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

Well Juniper 121H KB @ 3019.0usft KB @ 3019.0usft

North Reference: Grid

Survey Calculation Method:

Minimum Curvature

Project

JUN/PIM

Map System: Geo Datum:

US State Plane 1983

North American Datum 1983

System Datum:

Mean Sea Level

Map Zone:

New Mexico Eastern Zone

Site

JUN/PIM #1S

Site Position:

Northing:

394,110.55 usft

Latitude:

32° 4' 44,214 N

From:

Lat/Long

Easting: Slot Radius: 873,588.15 usft 13-3/16 "

Longitude: **Grid Convergence:** 103° 15' 38.243 W

Position Uncertainty:

0.0 usft

0.57

Well Well Position Juniper 121H

+E/-W

+N/-S

0.4 usft 40.0 usft Northing: Easting:

394,110.98 usft 873,628.17 usft

6.63

Latitude: Longitude:

32° 4' 44.215 N 103° 15' 37.778 W

Position Uncertainty

0.0 usft

Wellhead Elevation:

1/11/2019

Ground Level:

2,992.0 usft

Wellbore Magnetics Wellbore #1

Model Name Sample Date

IGRF2015

Declination (°)

Dip Angle (°)

Field Strength

(nT) 47,725.93084017

Design

Design #1

Audit Notes:

Version:

Phase:

PROTOTYPE

Tie On Depth:

0.0

358.72

Vertical Section:

Depth From (TVD)

(usft)

0.0

+N/-S (usft)

0.0

+E/-W (usft)

0.0

Direction (°)

59.96

Plan Survey Tool Program

1/14/2019 Date

Depth From (usft)

Depth To (usft)

Survey (Wellbore)

Tool Name

Remarks

0.0

23,022.5 Design #1 (Wellbore #1)

MWD

OWSG MWD - Standard

Planning Report

Database:

EDM5000

Company: Project:

Ameredev Operating, LLC.

JUN/PIM

Site: Weli: JUN/PIM #1S

Juniper 121H Wellbore: Wellbore #1 Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:** Well Juniper 121H

KB @ 3019.0usft KB @ 3019.0usft

Grid

Measured			Vertical			Dogleg	Build	Turn		
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,300.0	6.00	137.00	2,299.5	-11.5	10.7	2.00	2.00	0.00	137.00	
6,020.9	6.00	137.00	6,000.0	-295.9	276.0	0.00	0.00	0.00	0.00	
6,320.9	0.00	0.00	6,299.5	-307.4	286.7	2.00	-2.00	0.00	180.00	
11,571.5	0.00	0.00	11,550.0	-307.4	286.7	0.00	0.00	0.00	0.00	
12,270.7	83.94	321.15	12,024.5	25.0	18.9	12.00	12.00	0.00	321.15	
12,344.7	83.94	321.15	12,032.3	82.3	-27.2	0.00	0.00	0.00	0.00	
12,666.9	90.00	359.41	12,050.0	379.6	-133.4	12.00	1.88	11.87	82.38	Jun121 FTP2
23,022.5	90.00	359.41	12,050.0	10.734.6	-239.2	0.00	0.00	0.00	0.00	Jun121 BHL

Planning Report

Database:

EDM5000

Ameredev Operating, LLC.

Company: Project: Site:

JUN/PIM

Well: Wellbore: JUN/PIM #1S Juniper 121H Wellbore #1

Local Co-ordinate Reference:

Survey Calculation Method:

TVD Reference: MD Reference: North Reference: KB @ 3019.0usft KB @ 3019.0usft

Grid

Minimum Curvature

Well Juniper 121H

Design: Design #1

Measured			Vertical			Vertical	Dogleg	Bulld	Turn
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	. 0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0 1,900.0	0.00 0.00	0.00 0.00	1,800.0 1,900.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00
•									
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	2.00	137.00	2,100.0	-1.3	1.2	-1.3	2.00	2.00	0.00
2,200.0	4.00 6.00	137.00 137.00	2,199.8	-5.1	4.8	-5.2	2.00	2.00	0.00
2,300.0 2,400.0	6.00	137.00	2,299.5 2,398.9	-11.5 -19.1	10.7 17.8	-11.7 -19.5	2.00 0.00	2.00 0.00	0.00 0.00
2,500.0	6.00	137.00	2,498.4	-26.8	25.0	-27.3	0.00	0.00	0.00
2,600.0	6.00	137.00	2,597.8	-34.4	32.1	-35.1	0.00	0.00	0.00
2,700.0	6.00	137.00	2,697.3	- 4 2.1	39.2	-42.9	0.00	0.00	0.00
2,800.0	6.00	137.00	2,796.7	-49.7	46.3	-50.7	0.00	0.00	0.00
2,900.0	6.00	137.00	2,896.2	-57.3	53.5	-58.5	0.00	0.00	0.00
3,000.0	6.00	137.00	2,995.6	-65.0	60.6	-66.3	0.00	0.00	0.00
3,100.0	6.00	137.00	3,095.1	-72.6	67.7	-74.1	0.00	0.00	0.00
3,200.0	6.00	137.00	3,194.5	-80.3	74.9	-81.9	0.00	0.00	0.00
3,300.0	6.00	137.00	3,294.0	-87.9	82.0	-89.7	0.00	0.00	0.00
3,400.0	6.00	137.00	3,393.4	-95.6	89.1	-97.5	0.00	0.00	0.00
3,500.0	6.00	137.00	3,492.9	-103.2	96.2	-105.3	0.00	0.00	0.00
3,600.0	6.00	137.00	3,592.3	-110.9	103.4	-113.1	0.00	0.00	0.00
3,700.0	6.00	137.00	3,691.8	-118.5	110.5	-120.9	0.00	0.00	0.00
3,800.0	6.00	137.00	3,791.2	-126.1	117.6	-128.7	0.00	0.00	0.00
3,900.0	6.00	137.00	3,890.7	-133.8	124.8	-136.5	0.00	0.00	0.00
4,000.0	6.00	137.00	3,990.1	-141.4	131.9	-144.3	0.00	0.00	0.00
4,100.0	6.00	137.00	4,089.6	-149.1	139.0	-152.1	0.00	0.00	0.00
4,200.0	6.00	137.00	4,189.0	-156.7	146.2	-159.9	0.00	0.00	0.00
4,300.0	6.00	137.00	4,288.5	-164.4	153.3	-167.7	0.00	0.00	0.00
4,400.0	6.00	137.00	4,387.9	-172.0	160.4	-175.5	0.00	0.00	0.00
4,500.0	6.00	137.00	4,487.4	-179.7	167.5	-183.3	0.00	0.00	0.00
4,600.0	6.00	137.00	4,586.9	-187.3	174.7	-191.2	0.00	0.00	0.00
4,700.0	6.00	137.00	4,686.3	-195.0	181.8	-199.0	0.00	0.00	0.00
4,800.0	6.00	137.00	4,785.8	-202.6	188.9	-206.8	0.00	0.00	0.00
4,900.0	6.00	137.00	4,885.2	-210.2	196.1	-214.6	0.00	0.00	0.00
5,000.0	6.00	137.00	4,984.7	-217.9	203.2	-222.4	0.00	0.00	0.00
5,100.0	6.00	137.00	5,084.1	-225.5	210.3	-230.2	0.00	0.00	0.00
5,200.0	6.00	137.00	5,183.6	-233.2	217.4	-238.0	0.00	0.00	0.00

Planning Report

Database:

EDM5000

Ameredev Operating, LLC.

Company: Project:

JUN/PIM

Site: Well: Wellbore: JUN/PIM #1S Juniper 121H

Wellbore #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Juniper 121H

KB @ 3019.0usft KB @ 3019.0usft

Grid

esign:	Design #1		 						
lanned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
									· · · · · · · · · · · · · · · · · · ·
5,400.0	6.00	137.00	5,382.5	-248.5	231.7	-253.6	0.00	0.00	0.00
5,500.0	6.00	137.00	5,481.9	-256.1	238.8	-261.4	0.00	0.00	0.00
5,600.0	6.00	137.00	5,581.4	-263.8	246.0	-269.2	0.00	0.00	0.00
5,700.0	6.00	137.00	5,680.8	-271.4	253.1	-277.0	0.00	0.00	0.00
5,800.0 5,900.0	6.00 6.00	137.00 137.00	5,780.3 5,879.7	-279.0 -286.7	260.2 267.3	-284.8 -292.6	0.00 0.00	0.00 0.00	0.00 ⁻ 0.00
6,000.0	6.00	137.00	5,979.2	-294.3	274.5	-300.4	0.00	0.00	0.00
6,020.9	6.00	137.00	6,000.0	-295.9	276.0	-302.0	0.00	0.00	0.00
6,100.0	4.42	137.00	6,078.7	-301.2	280.9	-307.4	2.00	-2.00	0.00
6,200.0	2.42	137.00	6,178.6	-305.5	284.9	-311.8	2.00	-2.00	0.00
6,300.0	0.42	137.00	6,278.5	-307.4	286.6	-313.7	2.00	-2.00	0.00
6,320.9	0.00	0.00	6,299.5	-307.4	286.7	-313.7	2.00	-2.00	0.00
6,400.0	0.00	0.00	6,378.5	-307.4	286.7	-313.7	0.00	0.00	0.00
6,500.0	0.00	0.00	6,478.5	-307.4	286.7	-313.7	0.00	0.00	0.00
6,600.0	0.00	0.00	6,578.5	-307.4	286.7	-313.7	0.00	0.00	0.00
6,700.0	0.00	0.00	6,678.5	-307.4	286.7	-313.7	0.00	0.00	0.00
6,800.0	0.00	0.00	6,778.5	-307.4	286.7	-313.7	0.00	0.00	0.00
6,900.0	0.00	0.00	6,878.5	-307.4	286.7	-313.7	0.00	0.00	0.00
7,000.0	0.00	0.00	6,978.5	-307.4	286.7	-313.7	0.00	0.00	0.00
7,100.0	0.00	0.00	7,078.5	-307.4	286.7	-313.7	0.00	0.00	0.00
7,200.0	0.00	0.00	7,178.5	-307.4	286.7	-313.7	0.00	0.00	0.00
7,300.0	0.00	0.00	7,278.5	-307.4	286.7	-313.7	0.00	0.00	0.00
7,400.0	0.00	0.00	7,378.5	-307.4	286.7	-313.7	0.00	0.00	0.00
7,500.0	0.00	0.00	7,478.5	-307.4	286.7	-313.7	0.00	0.00	0.00
7,600.0	0.00	0.00	7,578.5	-307.4	286.7	-313.7	0.00	0.00	0.00
7,700.0	0.00	0.00	7,678.5	-307.4	286.7	-313.7	0.00	0.00	0.00
7,800.0	0.00	0.00	7,778.5	-307.4	286.7	-313.7	0.00	0.00	0.00
7,900.0	0.00	0.00	7,878.5	-307.4	286.7	-313.7	0.00	0.00	0.00
8,000.0	0.00	0.00	7,978.5	-307.4	286.7	-313.7	0.00	0.00	0.00
8,100.0	0.00	0.00	8,078.5	-307.4	286.7	-313.7	0.00	0.00	0.00
8,200.0	0.00	0.00	8,178.5	-307.4	286.7	-313.7	0.00	0.00	0.00
8,300.0	0.00	0.00	8,278.5	-307.4	286.7	-313.7	0.00	0.00	0.00
8,400.0	0.00	0.00	8,378.5	-307.4 -307.4	286.7	-313.7 -313.7	0.00	0.00	0.00
8,500.0	0.00	0.00	8,478.5	-307.4	286.7	-313.7	0.00	0.00	0.00
8,600.0	0.00	0.00	8,578.5	-307.4	286.7	-313.7	0.00	0.00	0.00
8,700.0	0.00	0.00	8,678.5	-307.4	286.7	-313.7	0.00	0.00	0.00
8,800.0	0.00	0.00	8,778.5	-307.4	286.7	-313.7	0.00	0.00	0.00
8,900.0	0.00	0.00	8,878.5	-307.4	286.7	-313.7 -313.7	0.00	0.00	0.00
9,000.0	0.00	0.00	8,978.5	-307.4	286.7	-313.7	0.00	0.00	0.00
9,100.0	0.00	0.00	9,078.5	-307.4	286.7	-313.7	0.00	0.00	0.00
9,200.0	0.00	0.00	9,178.5	-307.4	286.7	-313.7	0.00	0.00	0.00
9,300.0	0.00	0.00	9,278.5	-307.4	286.7	-313.7	0.00	0.00	0.00
9,300.0 9,400.0	0.00	0.00	9,278.5 9,378.5	-307.4 -307.4	286.7 286.7	-313.7 -313.7	0.00	0.00	0.00
9,400.0 9,500.0	0.00	0.00	9,376.5 9,478.5	-307. 4 -307.4	286.7 286.7	-313.7 -313.7	0.00	0.00	0.00
9,600.0	0.00	0.00	9,578.5	-307.4	286.7	-313.7	0.00	0.00	0.00
9,700.0	0.00	0.00	9,678.5	-307.4	286.7	-313.7	0.00	0.00	0.00
9,800.0	0.00	0.00	9,778.5	-307.4	286.7	-313.7	0.00	0.00	0.00
9,900.0	0.00	0.00	9,878.5	-307.4	286.7	-313.7	0.00	0.00	0.00
10,000.0	0.00	0.00	9,978.5	-307.4	286.7	-313.7	0.00	0.00	0.00
10,100.0	0.00	0.00	10,078.5	-307.4 -307.4	286.7	-313.7 -313.7	0.00	0.00	0.00
10,200.0	0.00	0.00	10,178.5	-307.4	286.7	-313.7	0.00	0.00	0.00
10,300.0	0.00	0.00	10,278.5	-307.4	286.7	-313.7	0.00	0.00	0.00
10,400.0 10,500.0	0.00 0.00	0.00 0.00	10,378.5 10,478.5	-307.4 -307.4	286.7 286.7	-313.7 -313.7	0.00 0.00	0.00 0.00	0.00 0.00

Planning Report

Database:

EDM5000

Ameredev Operating, LLC.

Company: Project:

JUN/PIM

Site: Well: JUN/PIM #1S Juniper 121H

Wellbore: Design: Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference:

Survey Calculation Method:

Well Juniper 121H

KB @ 3019.0usft KB @ 3019.0usft

Grid

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
10,600.0	0.00	0.00	10,578.5	-307.4	286.7	-313.7	0.00	0.00	0.00
10,700.0	0.00	0.00	10,678.5	-307.4	286.7	-313.7	0.00	0.00	0.00
10,800.0	0.00	0.00	10,778.5	-307.4	286.7	-313.7	0.00	0.00	0.00
10,900.0	0.00	0.00	10,878.5	-307.4	286.7	-313.7	0.00	0.00	0.00
11,000.0	0.00	0.00	10,978.5	-307.4	286.7	-313.7	0.00	0.00	0.00
11,100.0	0.00	0.00	11,078.5	-307.4	286.7	-313.7	0.00	0.00	0.00
11,200.0	0.00	0.00	11,178.5	-307.4	286.7	-313.7	0.00	0.00	0.00
11,300.0	0.00	0.00	11,278.5	-307.4	286.7	-313.7	0.00	0.00	0.00
11,400.0	0.00	0.00	11,378.5	-307.4	286.7	-313.7	0.00	0.00	0.00
11,492.5	0.00	0.00	11,471.0	-307.4	286.7	-313.7 -313.7	0.00	0.00	0.00
Sec 03	0.00	0.00	11,47 1.0	307.4	200.7	0.0.7	0.00	0.00	0.00
	0.00	0.00	11,478.5	-307.4	286.7	-313.7	0.00	0.00	0.00
11,500.0 11,571.5	0.00	0.00	11,478.5 11,550.0	-307.4 -307.4	286.7 286.7	-313.7 -313.7	0.00	0.00	0.00
Jun121 KOP		0.00	11,550.0	-307.4	200.7	-313.7	0.00	0.00	0.00
11,600.0	3.42	321.15	11,578.5	-306.7	286.1	-313.0	12.00	12.00	0.00
11,700.0	15.42	321.15	11,677.0	-294.0	275.9	-300.1	12.00	12.00	0.00
11,800.0	27.42	321.15	11,769.9	-265.6	253.0	-271.2	12.00	12.00	0.00
11,900.0	39.42	321.15	11,853.2	-222.8	218.5	-227.6	12.00	12.00	0.00
12,000.0	51.42	321.15	11,923.3	-167.4	173.9	-171.3	12.00	12.00	0.00
	63.43	321,15	11,977.0	-101.9	121.2	-104.6	12.00	12.00	0.00
12,100.0 12,200.0	63.42 75.42	321.15 321.15	11,977.0 12.012.1	-101.9 -29 .1	121.2 62.6	-104.6 -30.5	12.00 12.00	12.00 12.00	0.00
	75.42 83.94	321.15 321.15	12,012.1 12,024.5	-29.1 25.0	62.6 18.9	-30.5 24.6	12.00 12.05	12.00 12.05	0.00
12,270.7 12,300.0	83.94 83.94	321.15 321.15	12,024.5 12,027.6	25.0 47.7	18.9 0.7	24.6 47.7	12.05 0.00	0.00	0.00
12,300.0 12,344.7	83.94 83.94	321.15 321.15	12,027.6	47.7 82.3	-27.2	47.7 82.9	0.00	0.00	0.00
12,400.0	84.86	327.76	12,037.7	127.1	-59.2	128.4	12.00	1.66	11.94
12,500.0	86.69	339.66	12,045.1	216.3	-103.2	218.6	12.00	1.82	11.89
12,543.7	87.53	344.84	12,047.3	257.9	-116.5	260.4	12.00	1.94	11.86
Sec 34									
12,600.0	88.65	351.51	12,049.2	312.9	-128.1	315.7	12.00	1.99	11.84
12,616.2	88.98	353.42	12,049.5	329.0	-130.2	331.8	11.99	2.01	11.82
Jun121 FTP									
12,666.9	90.00	359.41	12,050.0	379.6	-133.4	382.4	11.99	2.02	11.82
Jun121 FTP2									
12,700.0	90.00	359.41	12,050.0	412.7	-133.7	415.5	0.00	0.00	0.00
12,800.0	90.00	359.41	12,050.0	512.6	-134.7	515.5	0.00	0.00	0.00
12,900.0	90.00	359.41	12,050.0	612.6	-135.8	615.5	0.00	0.00	0.00
13,000.0	90.00	359.41	12,050.0	712.6	-136.8	715.5	0.00	0.00	0.00
13,100.0	90.00	359.41	12,050.0	812.6	-137.8	815.5	0.00	0.00	0.00
13,200.0	90.00	359.41	12,050.0	912.6	-138.8	915.5	0.00	0.00	0.00
13,300.0	90.00	359.41	12,050.0	1,012.6	-139.8	1,015.5	0.00	0.00	0.00
13,400.0	90.00	359.41	12,050.0	1,112.6	-140.9	1,115.5	0.00	0.00	0.00
13,500.0	90.00	359.41	12,050.0	1,212.6	-141.9	1,215.5	0.00	0.00	0.00
13,600.0	90.00	359.41	12,050.0	1,312.6	-142.9	1,315.5	0.00	0.00	0.00
13,600.0	90.00	359.41 359.41	12,050.0	1,312.6 1,412.6	-142.9 -143.9	1,315.5 1,415.5	0.00	0.00	0.00
13,700.0	90.00	359.41 359.41	12,050.0	1,412.6	-145.9 -145.0	1,415.5	0.00	0.00	0.00
13,800.0	90.00	359.41 359.41	12,050.0	1,512.6	-145.0 -146.0	1,615.4	0.00	0.00	0.00
					-146.0 -147.0	1,615.4 1,715.4	0.00	0.00	0.00
14,000.0	90.00	359.41	12,050.0	1,712.6					
14,100.0	90.00	359.41	12,050.0	1,812.6	-148.0	1,815.4	0.00	0.00	0.00
14,200.0	90.00	359.41	12,050.0	1,912.6	-149.0	1,915.4	0.00	0.00	0.00
14,300.0	90.00	359.41	12,050.0	2,012.6	-150.1	2,015.4	0.00	0.00	0.00
14,400.0	90.00	359.41	12,050.0	2,112.6	-151.1	2,115.4	0.00	0.00	0.00
14,500.0	90.00	359.41	12,050.0	2,212.6	-152.1	2,215.4	0.00	0.00	0.00
14,600.0	90.00	359.41	12,050.0	2,312.6	-153.1	2,315.4	0.00	0.00	0.00

Planning Report

Database:

EDM5000

Company: Ameredev Operating, LLC.

Project:

Design:

JUN/PIM

Site: Well: Wellbore: JUN/PIM #1S Juniper 121H Wellbore #1

Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Juniper 121H

KB @ 3019.0usft KB @ 3019.0usft

Grid

Planned	Survey
---------	--------

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Bulid Rate (°/100usft)	Turn Rate (°/100usft)
14,700.0	90.00	359.41	12,050.0	2,412.5	-154.2	2,415.4	0.00	0.00	0.00
14,800.0	90.00	359.41	12,050.0	2,512.5	-155.2	2,515.4	0.00	0.00	0.00
14,900.0	90.00	359.41	12,050.0	2,612.5	-156.2	2,615.4	0.00	0.00	0.00
15,000.0	90.00	359.41	12,050.0	2,712.5	-157.2	2,715.4	0.00	0.00	0.00
15,100.0	90.00	359.41	12,050.0	2,812.5	-158.2	2,815.4	0.00	0.00	0.00
15,200.0	90.00	359.41	12,050.0	2,912.5	-159.3	2,915.3	0.00	0.00	0.00
15,300.0	90.00	359.41	12,050.0	3,012.5	-160.3	3,015.3	0.00	0.00	0.00
15,400.0	90.00	359.41	12,050.0	3,112.5	-161.3	3,115.3	0.00	0.00	0.00
15,500.0	90.00	359.41	12,050.0	3,112.5	-162.3	3,115.3	0.00	0.00	0.00
15,600.0	90.00	359.41	12,050.0	3,312.5	-163.4	3,315.3	0.00	0.00	0.00
15,700.0	90.00	359.41	12,050.0	3,412.5	-164.4	3,415.3	0.00	0.00	0.00
15,800.0	90.00	359.41	12,050.0	3,512.5	-165.4	3,515.3	0.00	0.00	0.00
15,900.0	90.00	359.41	12,050.0	3,612.5	-166.4	3,615.3	0.00	0.00	0.00
16,000.0	90.00	359.41	12,050.0	3,712.5	-167.4	3,715.3	0.00	0.00	0.00
16,100.0	90.00	359.41	12,050.0	3,812.5	-168.5	3,815.3	0.00	0.00	0.00
16,200.0	90.00	359.41	12,050.0	3,912.5	-169.5	3,915.3	0.00	0.00	0.00
16,300.0	90.00	359.41	12,050.0	4,012.5	-170.5	4,015.3	0.00	0.00	0.00
16,300.0	90.00	359.41	12,050.0	4,012.5	-170.5	4,115.3	0.00	0.00	0.00
16,500.0	90.00	359.41 359.41	12,050.0	4,112.5 4,212.5	-171.5 -172.5	4,115.3 4,215.3	0.00	0.00	0.00
16,600.0	90.00	359.41	12,050.0	4,312.4	-173.6	4,315.2	0.00	0.00	0.00
16,700.0	90.00	359.41	12,050.0	4,412.4	-174.6	4,415.2	0.00	0.00	0.00
16,800.0	90.00	359.41	12,050.0	4,512.4	-175.6	4,515.2	0.00	0.00	0.00
16,900.0	90.00	359.41	12,050.0	4,612.4	-176.6	4,615.2	0.00	0.00	0.00
17,000.0	90.00	359.41	12,050.0	4,712.4	-177.7	4,715.2	0.00	0.00	0.00
17,100.0	90.00	359.41	12,050.0	4,812.4	-178.7	4,815.2	0.00	0.00	0.00
17,200.0	90.00	359.41	12,050.0	4,912.4	-179.7	4,915.2	0.00	0.00	0.00
17,300.0	90.00	359.41	12,050.0	5,012.4	-180.7	5,015.2	0.00	0.00	0.00
17,400.0	90.00	359.41	12,050.0	5,112.4	-181.7	5,115.2	0.00	0.00	0.00
17,500.0	90.00	359.41	12,050.0	5,212.4	-182.8	5,215.2	0.00	0.00	0.00
17,600.0	90.00	359.41	12,050.0	5,312.4	-183.8	5,315.2	0.00	0.00	0.00
17,700.0	90.00	359.41	12,050.0	5,312.4 5,412.4	-184.8	5,415.2	0.00	0.00	0.00
•			•						
17,794.5	90.00	359.41	12,050.0	5,506.9	-185.8	5,509.6	0.00	0.00	0.00
Sec 27	00.00	050.44	40.050.0	5 540 A	405.0	F 545 0	0.00	0.00	0.00
17,800.0	90.00	359.41	12,050.0	5,512.4	-185.8	5,515.2	0.00	0.00	0.00
17,900.0	90.00	359.41	12,050.0	5,612.4	-186.9	5,615.2	0.00	0.00	0.00
18,000.0	90.00	359.41	12,050.0	5,712.4	-187.9	5,715.1	0.00	0.00	0.00
18,100.0	90.00	359.41	12,050.0	5,812.4	-188.9	5,815.1	0.00	0.00	0.00
18,200.0	90.00	359.41	12,050.0	5,912.4	-189.9	5,915.1	0.00	0.00	0.00
18,300.0	90.00	359.41	12,050.0	6,012.4	-190.9	6,015.1	0.00	0.00	0.00
18,400.0	90.00	359.41	12,050.0	6,112.4	-192.0	6,115.1	0.00	0.00	0.00
18,500.0	90.00	359.41	12,050.0	6,212.3	-193.0	6,215.1	0.00	0.00	0.00
18,600.0	90.00	359.41	12,050.0	6,312.3	-194.0	6,315.1	0.00	0.00	0.00
18,700.0	90.00	359.41	12,050.0	6,412.3	-195.0	6,415.1	0.00	0.00	0.00
18,800.0	90.00	359.41	12,050.0	6,512.3	-196.1	6,515.1	0.00	0.00	0.00
18,900.0	90.00	359.41	12,050.0	6,612.3	-197.1	6,615.1	0.00	0.00	0.00
19,000.0	90.00	359.41	12,050.0	6,712.3	-198.1	6,715.1	0.00	0.00	0.00
19,100.0	90.00	359.41	12,050.0	6,812.3	-199.1	6,815.1	0.00	0.00	0.00
19,200.0	90.00	359.41	12,050.0	6,912.3	-200.1	6,915.1	0.00	0.00	0.00
19,300.0	90.00	359.41	12,050.0	7,012.3	-201.2	7,015.0	0.00	0.00	0.00
19,400.0	90.00	359.41	12,050.0	7,112.3	-202.2	7,115.0	0.00	0.00	0.00
19,500.0	90.00	359.41	12,050.0	7,212.3	-203.2	7,215.0	0.00	0.00	0.00
19,600.0	90.00	359.41	12,050.0	7,312.3	-204.2	7,315.0	0.00	0.00	0.00
19,700.0	90.00	359.41	12,050.0	7,412.3	-205.3	7,415.0	0.00	0.00	0.00
19,800.0	90.00	359.41	12,050.0	7,512.3	-206.3	7,515.0	0.00	0.00	0.00

Planning Report

Database:

EDM5000

Design #1

Company:

Ameredev Operating, LLC.

Project: Site:

Well:

Design:

JUN/PIM

JUN/PIM #1S Juniper 121H Wellbore #1 Wellbore:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference: Well Juniper 121H KB @ 3019.0usft KB @ 3019.0usft

Grid

Survey Calculation Method: Minimum Curvature

	•
ŀ	Measured
l	Depth
	(usft)

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
19,900.0	90.00	359.41	12,050.0	7,612.3	-207.3	7,615.0	0.00	0.00	0.00
20,000.0	90.00	359.41	12,050.0	7,712.3	-208.3	7,715.0	0.00	0.00	0.00
20,100.0	90.00	359.41	12,050.0	7,812.3	-209.3	7,815.0	0.00	0.00	0.00
20,200.0	90.00	359.41	12,050.0	7,912.3	-210.4	7,915.0	0.00	0.00	0.00
20,300.0	90.00	359.41	12,050.0	8,012.3	-211.4	8,015.0	0.00	0.00	0.00
20,400.0	90.00	359.41	12,050.0	8,112.3	-212.4	8,115.0	0.00	0.00	0.00
20,500.0	90.00	359.41	12,050.0	8,212.2	-213.4	8,215.0	0.00	0.00	0.00
20,600.0	90.00	359.41	12,050.0	8,312.2	-214.5	8,315.0	0.00	0.00	0.00
20,700.0	90.00	359.41	12,050.0	8,412.2	-215.5	8,414.9	0.00	0.00	0.00
20,800.0	90.00	359.41	12,050.0	8,512.2	-216.5	8,514.9	0.00	0.00	0.00
20,900.0	90.00	359.41	12,050.0	8,612.2	-217.5	8,614.9	0.00	0.00	0.00
21,000.0	90.00	359.41	12,050.0	8,712.2	-218.5	8,714.9	0.00	0.00	0.00
21,100.0	90.00	359.41	12,050.0	8,812.2	-219.6	8,814.9	0.00	0.00	0.00
21,200.0	90.00	359.41	12,050.0	8,912.2	-220.6	8,914.9	0.00	0.00	0.00
21,300.0	90.00	359.41	12,050.0	9,012.2	-221.6	9,014.9	0.00	0.00	0.00
21,400.0	90.00	359.41	12,050.0	9,112.2	-222.6	9,114.9	0.00	0.00	0.00
21,500.0	90.00	359.41	12,050.0	9,212.2	-223.6	9,214.9	0.00	0.00	0.00
21,600.0	90.00	359.41	12,050.0	9,312.2	-224.7	9,314.9	0.00	0.00	0.00
21,700.0	90.00	359.41	12,050.0	9,412.2	-225.7	9,414.9	0.00	0.00	0.00
21,800.0	90.00	359.41	12,050.0	9,512.2	-226.7	9,514.9	0.00	0.00	0.00
21,900.0	90.00	359.41	12,050.0	9,612.2	-227.7	9,614.9	0.00	0.00	0.00
22,000.0	90.00	359.41	12,050.0	9,712.2	-228.8	9,714.9	0.00	0.00	0.00
22,100.0	90.00	359.41	12,050.0	9,812.2	-229.8	9,814.8	0.00	0.00	0.00
22,200.0	90.00	359.41	12,050.0	9,912.2	-230.8	9,914.8	0.00	0.00	0.00
22,300.0	90.00	359.41	12,050.0	10,012.2	-231.8	10,014.8	0.00	0.00	0.00
22,400.0	90.00	359.41	12,050.0	10,112.1	-232.8	10,114.8	0.00	0.00	0.00
22,500.0	90.00	359.41	12,050.0	10,212.1	-233.9	10,214.8	0.00	0.00	0.00
22,600.0	90.00	359.41	12,050.0	10,312.1	-234.9	10,314.8	0.00	0.00	0.00
22,700.0	90.00	359.41	12,050.0	10,412.1	-235.9	10,414.8	0.00	0.00	0.00
22,800.0	90.00	359.41	12,050.0	10,512.1	-236.9	10,514.8	0.00	0.00	0.00
22,900.0	90.00	359.41	12,050.0	10,612.1	-238.0	10,614.8	0.00	0.00	0.00
22,972.5	90.00	359.41	12,050.0	10,684.7	-238.7	10,687.3	0.00	0.00	0.00
Jun121 LTP									
23,000.0	90.00	359.41	12,050.0	10,712.1	-239.0	10,714.8	0.00	0.00	0.00
23,022.5	90.00	359.41	12,050.0	10,734.6	-239.2	10,737.3	0.00	0.00	0.00

Planning Report

Database:

EDM5000

Company:

Ameredev Operating, LLC.

Project:

JUN/PIM

Site:

JUN/PIM #1S Juniper 121H

Weil: Wellbore: Design:

Wellbore #1 Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: **Survey Calculation Method:** Well Juniper 121H

KB @ 3019.0usft

KB @ 3019.0usft

Grid Minimum Curvature

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Sec 03	0.00	0.00	11,471.0	-5,054.4	-279.0	389,056.56	873,349.16	32° 3′ 54.231 N	103° 15' 41.604 V
- plan misses target of	enter by 478	0.6usft at 11	492.5usft M) (11471.0 TV	D, -307.4 N, 2	286.7 E)			
- Polygon									
Point 1			11,471.0	0.0	0.0	389,056.56	873,349.16		
Point 2			11,471.0	5,281.2	-53.3	394,337.76	873,295.86		
Point 3			11,471.0	5,330.6	5,227.9	394,387.16	878,577.06		
Point 4			11,471.0	47.9	5,279.4	389,104.46	878,628.56		
Sec 34	0.00	0.00	11,471.0	226.8	-332.3	394,337.79	873,295.83	32° 4′ 46.491 N	103° 15' 41.614 W
- plan misses target o	enter by 616	.2usft at 125	43.7usft MD	(12047.3 TVI	D, 257.9 N, -11	16.5 E)			
- Polygon									
Point 1			11,471.0	0.0	0.0	394,337.79	873,295.83		
Point 2			11,471.0	5,278.0	-53.8	399,615.79	873,242.03		
Point 3			11,471.0	5,326.9	5,230.6	399,664.69	878,526.43		
Point 4			11,471.0	49.4	5,281.3	394,387.19	878,577.13		
Sec 27	0.00	0.00	11,541.0	5,504.8	-386.2	399,615.80	873,242.02	32° 5' 38.720 N	103° 15' 41.630 W
- plan misses target o	enter by 547	.0usft at 177	94.5usft MD	(12050.0 TV	D, 5506.9 N, -1	185.8 E)			
- Polygon Point 1			44 544 0			000 045 00	070 040 00		
		-	11,541.0	0.0	0.0	399,615.80	873,242.02		
Point 2			11,541.0	5,278.0	-52.0	404,893.80	873,190.02		
Point 3			11,541.0	5,328.3	5,215.5	404,944.10	878,457.52		
Point 4			11,541.0	48.8	5,284.4	399,664.60	878,526.42		
Jun121 KOP	0.00	0.01	11,550.0	-307.4	286.7	393,803.57	873,914.84	32° 4' 41.145 N	103° 15′ 34.482 W
 plan hits target cent 	er								
- Point									
Jun121 FTP2	0.00	0.00	12,050.0	379.6	-133.4	394,490.55	873,494.80	32° 4' 47.983 N	103° 15' 39.284 W
 plan hits target cent Point 	er · ·		·			·			
Jun121 LTP	0.00	0.00	12,050.0	10,684.7	-237.2	404,795.66	873,390.96	32° 6' 29.958 N	103° 15' 39.300 W
 plan misses target o Point 	enter by 1.5u	usft at 22972	.5usft MD (1	2050.0 TVD,	10684.7 N, -23	38.7 E)	, , , , , , , , , , , , , , , , , , , ,		:
Jun121 BHL	0.00	0.00	12,050.0	10,734.7	-237.7	404,845.65	873,390.50	32° 6′ 30.452 N	103° 15' 39.299 W
 plan misses target o Point 	enter by 1.5u	usft at 23022	.5usft MD (1	2050.0 TVD,	10734.6 N, -23	39.2 E)	-		
Jun121 FTP	0.00	0.00	12,050.0	328.7	-133.4	394,439.73	873,494.80	32° 4' 47.481 N	103° 15' 39.290 V
 plan misses target o Point 	enter by 3.2u				329.0 N, -130.	•			

JUN/PIM JUN/PIM #1S Juniper 121H Wellbore #1

Plan: Design #1

Lease Penetration Section Line Foot

04 February, 2019

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site:

JUN/PIM JUN/PIM #1S

Well:

Juniper 121H Wellbore #1

Wellbore: Design:

Design #1

Local Co-ordinate Reference:

Survey Calculation Method:

TVD Reference:

MD Reference: North Reference: Well Juniper 121H KB @ 3019.0usft

KB @ 3019.0usft

Grid

Minimum Curvature EDM5000

Database:

JUN/PIM Project

Map System:

US State Plane 1983

Geo Datum: Map Zone:

North American Datum 1983 New Mexico Eastern Zone

System Datum:

Mean Sea Level

Site

From:

JUN/PIM #1S

Site Position:

Lat/Long

Northing:

394,110.55 usft 873,588.15 usft

Latitude: Longitude:

32° 4' 44.214 N 103° 15' 38.243 W

Position Uncertainty:

Easting: Slot Radius:

13-3/16"

Grid Convergence:

0.57

Well Juniper 121H

Well Position

+N/-S +E/-W 0.0 usft 0.0 usft

0.0 usft

Northing: Easting:

394,110.99 usft 873,628.17 usft

Latitude: Longitude: 32° 4' 44.215 N

Position Uncertainty

Wellhead Elevation:

usft

103° 15' 37.778 W

0.0 usft

Ground Level:

2,992.0 usft

Wellbore	Welibore #1			·	
Magnetics	Model Name	Sample Date	Declination	Dip Angle	Field Strength
			(°)	(°)	(nT)
	IGRE2015	1/11/2019	6.63	59.96	47 725 93084016

Design	Design #1					
Audit Notes:						
Version:		Phase:	PROTOTYPE	Tie On Depth:	0.0	
Vertical Section:		Depth From (TVD)	+N/-S	+E/-W	Direction	
		(usft)	(usft)	(usft)	(°)	
		0.0	0.0	0.0	358.72	

Survey Tool Program		Date 1/14/2019		
From (usft)	To (usft)	Survey (Wellbore)	Tool Name	Description
0.0	23,022.	5 Design #1 (Wellbore #1)	MWD	OWSG MWD - Standard

Planned Survey							
MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
0.0	0.00	0.00	0.0	-229.6	330.0	32° 4′ 44.215 N	103° 15' 37.778 W
100.0	0.00	0.00	100.0	-229.6	330.0	32° 4′ 44.215 N	103° 15' 37.778 W
200.0	0.00	0.00	200.0	-229.6	330.0	32° 4′ 44.215 N	103° 15' 37.778 W
300.0	0.00	0.00	300.0	-229.6	330.0	32° 4′ 44.215 N	103° 15' 37.778 W
400.0	0.00	0.00	400.0	-229.6	330.0	32° 4' 44.215 N	103° 15' 37.778 W
500.0	0.00	0.00	500.0	-229.6	330.0	32° 4' 44.215 N	103° 15' 37.778 W
600.0	0.00	0.00	600.0	-229.6	330.0	32° 4' 44.215 N	103° 15' 37.778 W
700.0	0.00	0.00	700.0	-229.6	330.0	32° 4′ 44.215 N	103° 15' 37.778 W
800.0	0.00	0.00	800.0	-229.6	330.0	32° 4' 44.215 N	103° 15' 37.778 W
900.0	0.00	0.00	900.0	-229.6	330.0	32° 4' 44.215 N	103° 15′ 37.778 W
1,000.0	0.00	0.00	1,000.0	-229.6	330.0	32° 4' 44.215 N	103° 15' 37.778 W
1,100.0	0.00	0.00	1,100.0	-229.6	330.0	32° 4′ 44.215 N	103° 15' 37.778 W

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site: JUN/PIM JUN/PIM #1S

Well: Wellbore: Design: Juniper 121H Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference:

Well Juniper 121H KB @ 3019.0usft KB @ 3019.0usft

North Reference: Grid

Survey Calculation Method: Minimum Curvature

Database: EDM5000

MD	Inc	Azi (azimuth)	TVD	+FSL/-FNL	+FWL/-FEL	Latitude	Longitude
(usft)	(°)	(°)	(usft)	(usft)	(usft)	Lautude	rongituda
1,200.0	0.00	0.00	1,200.0	-229.6	330.0	32° 4' 44.215 N	103° 15' 37.778
1,300.0	0.00	0.00	1,300.0	-229.6	330.0	32° 4' 44.215 N	103° 15' 37.778
1,400.0	0.00	0.00	1,400.0	-229.6	330.0	32° 4' 44.215 N	103° 15' 37.77
1,500.0	0.00	0.00	1,500.0	-229.6	330.0	32° 4' 44.215 N	103° 15' 37.77
1,600.0	0.00	0.00	1,600.0	-229.6	330.0	32° 4′ 44.215 N	103° 15' 37.77
1,700.0	0.00	0.00	1,700.0	-229.6	330.0	32° 4′ 44.215 N	103° 15' 37.77
1,800.0	0.00	0.00	1,800.0	-229.6	330.0	32° 4′ 44.215 N	103° 15' 37.77
1,900.0	0.00	0.00	1,900.0	-229.6	330.0	32° 4' 44.215 N	103° 15' 37.77
2,000.0	0.00	0.00	2,000.0	-229.6	330.0	32° 4′ 44.215 N	103° 15' 37.77
2,100.0	2.00	137.00	2,100.0	-230.8	331.2	32° 4′ 44.202 N	103° 15' 37.76
2,200.0	4.00	137.00	2,199.8	-234.7	334.8	32° 4' 44.164 N	103° 15' 37.72
2,300.0	6.00	137.00	2,299.5	-241.0	340.7	32° 4' 44.100 N	103° 15' 37.65
2,400.0	6.00	137.00	2,398.9	-248.7	347.9	32° 4′ 44.024 N	103° 15' 37.57
2,500.0	6.00	137.00	2,498.4	-256.3	355.0	32° 4' 43.947 N	103° 15' 37.49
2,600.0	6.00	137.00	2,597.8	-264.0	362.1	32° 4' 43.871 N	103° 15' 37.40
2,700.0	6.00	137.00	2,697.3	-271.6	369.2	32° 4' 43.795 N	103° 15' 37.32
2,800.0	6.00	137.00	2,796.7	-279.3	376.4	32° 4' 43.718 N	103° 15' 37.24
2,900.0	6.00	137.00	2,896.2	-286.9	383.5	32° 4' 43.642 N	103° 15' 37.16
3,000.0	6.00	137.00	2,995.6	-294.6	390.6	32° 4' 43.566 N	103° 15' 37.08
3,100.0	6.00	137.00	3,095.1	-302.2	397.8	32° 4' 43.489 N	103° 15' 36.99
3,200.0	6.00	137.00	3,194.5	-309.8	404.9	32° 4' 43.413 N	103° 15' 36.91
3,300.0	6.00	137.00	3,294.0	-317.5	412.0	32° 4' 43.337 N	103° 15' 36.83
3,400.0	6.00	137.00	3,393.4	-325.1	419.1	32° 4' 43.260 N	103° 15' 36.75
3,500.0	6.00	137.00	3,492.9	-332.8	426.3	32° 4' 43.184 N	103° 15′ 36.67
3,600.0	6.00	137.00	3,592.3	-340.4	433.4	32° 4' 43.108 N	103° 15′ 36.58
3,700.0	6.00	137.00	3,691.8	-348.1	440.5	32° 4' 43.031 N	103° 15' 36.50
3,800.0	6.00	137.00	3,791.2	-355.7	447.7	32° 4' 42.955 N	103° 15' 36.42
3,900.0	6.00	137.00	3,890.7	-363.4	454.8	32° 4' 42.878 N	103° 15' 36.34
4,000.0	6.00	137.00	3,990.1	-371.0	461.9	32° 4' 42.802 N	103° 15′ 36.26
4,100.0	6.00	137.00	4,089.6	-378.6	469.0	32° 4' 42.726 N	103° 15' 36.18
4,200.0	6.00	137.00	4,189.0	-386.3	476.2	32° 4' 42.649 N	103° 15' 36.09
4,300.0	6.00	137.00	4,288.5	-393.9	483.3	32° 4' 42.573 N	103° 15' 36.01
4,400.0	6.00	137.00	4,387.9	-401.6	490.4	32° 4' 42.497 N	103° 15' 35.93
4,500.0	6.00	137.00	4,487.4	-409.2	497.6	32° 4' 42.420 N	103° 15' 35.85
4,600.0	6.00	137.00	4,586.9	-416.9	504.7	32° 4' 42.344 N	103° 15' 35.77
4,700.0	6.00	137.00	4,686.3	-424.5	511.8	32° 4' 42.268 N	103° 15' 35.68
4,800.0	6.00	137.00	4,785.8	-432.2	518.9	32° 4' 42.191 N	103° 15' 35.60
4,900.0	6.00	137.00	4,885.2	-439.8	526.1	32° 4' 42.115 N	103° 15' 35.52
5,000.0	6.00	137.00	4,984.7	-447.5	533.2	32° 4' 42.039 N	103° 15' 35.44
	6.00	137.00	5,084.1	-447.3 -455.1	540.3	32° 4' 41.962 N	103° 15' 35.36
5,100.0 5,200.0							
5,200.0	6.00	137.00	5,183.6	-462.7 470.4	547.5	32° 4' 41.886 N	103° 15' 35.27
5,300.0 5,400.0	6.00 6.00	137.00 137.00	5,283.0 5,382.5	-470.4 -478.0	554.6 561.7	32° 4' 41.810 N 32° 4' 41.733 N	103° 15' 35.19 103° 15' 35.11
3,400.0			3,392.3				
5,500.0	6.00	137.00	5,481.9	-485.7	568.8	32° 4' 41.657 N	103° 15' 35.03

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site:

JUN/PIM

Well: Wellbore: JUN/PIM #1S Juniper 121H Wellbore #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method: Database:

Well Juniper 121H

KB @ 3019.0usft KB @ 3019.0usft

Grid

Minimum Curvature

/elibore: esign:	Wellbor Design			Database:	Iculation Method:	Minimum Curva EDM5000		A.TTT-04-7-MARIE
lanned Surv	еу							
MD (usft)		inc (°)	Azi (azimuth) (°)	TVD (usft)	+F\$L/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
	5,600.0	6.00	137.00	5,581.4	-493.3	576.0	32° 4' 41.581 N	103° 15' 34.950
	5,700.0	6.00	137.00	5,680.8	-501.0	583.1	32° 4' 41.504 N	103° 15' 34.868
5	5,800.0	6.00	137.00	5,780.3	-508.6	590.2	32° 4' 41.428 N	103° 15' 34.786
5	5,900.0	6.00	137.00	5,879.7	-516.3	597.4	32° 4' 41.352 N	103° 15' 34.704
€	5,000.0	6.00	137.00	5,979.2	-523.9	604.5	32° 4' 41.275 N	103° 15' 34.622
€	6,020.9	6.00	137.00	6,000.0	-525.5	606.0	32° 4' 41.259 N	103° 15' 34.605
e	6,100.0	4.42	137.00	6,078.7	-530.7	610.9	32° 4' 41.207 N	103° 15' 34.549
6	6,200.0	2.42	137.00	6,178.6	-535.1	614.9	32° 4' 41.163 N	103° 15' 34.502
6	6,300.0	0.42	137.00	6,278.5	-536.9	616.6	32° 4' 41.145 N	103° 15' 34.483
6	6,320.9	0.00	0.00	6,299.5	-537.0	616.7	32° 4′ 41.145 N	103° 15′ 34.482
6	6,400.0	0.00	0.00	6,378.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	5,500.0	0.00	0.00	6,478.5	-537.0	616.7	32° 4′ 41.145 N	103° 15' 34.482
	3,600.0	0.00	0.00	6,578.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	5,700.0	0.00	0.00	6,678.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
e	6,800.0	0.00	0.00	6,778.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	6,900.0	0.00	0.00	6,878.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	7,000.0	0.00	0.00	6,978.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	7,100.0	0.00	0.00	7,078.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	7,200.0	0.00	0.00	7,178.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	, 7,300.0	0.00	0.00	7,278.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	7,400.0	0.00	0.00	7,378.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	7,500.0	0.00	0.00	7,478.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	7,600.0 7,600.0	0.00	0.00	7,578.5	-537.0 -537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	7,700.0	0.00	0.00	7,678.5	-537.0 -537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	7,800.0	0.00	0.00	7,778.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	7,900.0	0.00	0.00	7,878.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	8,000.0	0.00	0.00	7,978.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	8,100.0 8,200.0	0.00 0.00	0.00 0.00	8,078.5 9,179.5	-537.0 -537.0	616.7 616.7	32° 4' 41.145 N 32° 4' 41.145 N	103° 15' 34.482 103° 15' 34.482
	8,200.0			8,178.5				
	8,300.0	0.00	0.00	8,278.5	-537.0	616.7	32° 4′ 41.145 N	103° 15' 34.482
	8,400.0	0.00	0.00	8,378.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	3,500.0	0.00	0.00	8,478.5	-537.0	616.7	32° 4′ 41.145 N	103° 15' 34.482
	3,600.0	0.00	0.00	8,578.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
ε	3,700.0	0.00	0.00	8,678.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
ε	3,800.0	0.00	0.00	8,778.5	-537.0	616.7	32° 4′ 41.145 N	103° 15' 34.482
ε	3,900.0	0.00	0.00	8,878.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
9	9,000.0	0.00	0.00	8,978.5	-537.0	616.7	32° 4′ 41.145 N	103° 15' 34.482
9	9,100.0	0.00	0.00	9,078.5	-537.0	616.7	32° 4′ 41.145 N	103° 15′ 34.482
8	9,200.0	0.00	0.00	9,178.5	-537.0	616.7	32° 4' 41.145 N	103° 15′ 34.482
g	9,300.0	0.00	0.00	9,278.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
9	9,400.0	0.00	0.00	9,378.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	5,500.0	0.00	0.00	9,478.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	9,600.0	0.00	0.00	9,578.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482
	9,700.0	0.00	0.00	9,678.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.482

Lease Penetration Section Line Footages

Company: Project:

Ameredev Operating, LLC.

Site:

JUN/PIM

Weil: Wellbore: JUN/PIM #1S Juniper 121H Wellbore #1

Design: Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method:

Database:

Well Juniper 121H

KB @ 3019.0usft KB @ 3019.0usft

Grid

Minimum Curvature

EDM5000

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
9,800.0	0.00	0.00	9,778.5	-537,0	616.7	32° 4' 41.145 N	103° 15′ 34.48
9,900.0	0.00	0.00	9,878.5	-537.0	616.7	32° 4' 41.145 N	103° 15′ 34.48
10,000.0	0.00	0.00	9,978.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
10,100.0	0.00	0.00	10,078.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
10,200.0	0.00	0.00	10,178.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
10,300.0	0.00	0.00	10,278.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
10,400.0	0.00	0.00	10,378.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
10,500.0	0.00	0.00	10,478.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
10,600.0	0.00	0.00	10,578.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
10,700.0	0.00	0.00	10,678.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
10,800.0	0.00	0.00	10,778.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
10,900.0	0.00	0.00	10,878.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
11,000.0	0.00	0.00	10,978.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
11,100.0	0.00	0.00	11,078.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
11,200.0	0.00	0.00	11,178.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
11,300.0	0.00	0.00	11,278.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
11,400.0	0.00	0.00	11,378.5	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
11,492.5	0.00	0.00	11,471.0	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
Sec 03	0.00	0.00	44 A70 E	-537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
11,500.0 11,571.5	0.00	0.00	11,478.5 11,550.0	-537.0 -537.0	616.7	32° 4' 41.145 N	103° 15' 34.48
Jun121 KOP	0.00	0.00	11,550.0	-337.0	010.7	32 4 41.143 N	100 10 04.40
11,600.0	3.42	321.15	11,578.5	-536.3	616.1	32° 4' 41.151 N	103° 15' 34.48
11,700.0	15.42	321.15	11,677.0	-523.6	605.9	32° 4' 41.278 N	103° 15′ 34.60
11,800.0	27.42	321.15	11,769.9	-495.2	583.0	32° 4' 41.561 N	103° 15' 34.86
11,900.0	39.42	321.15	11,853.2	-452.4	548.5	32° 4' 41.989 N	103° 15' 35.26
12,000.0	51.42	321.15	11,923.3	-397.0	504.0	32° 4' 42.541 N	103° 15' 35.77
12,100.0	63.42	321.15	11,977.0	-331.5	451.2	32° 4' 43.194 N	103° 15' 36.38
12,200.0	75.42	321.15	12,012.1	-258.7	392.6	32° 4' 43.920 N	103° 15' 37.0
12,270.7	83.94	321.15	12,024.5	-204.5	349.0	32° 4' 44.460 N	103° 15' 37.55
12,300.0	83.94	321.15	12,027.6	-181.9	330.7	32° 4' 44.686 N	103° 15' 37.76
12,344.7	83.94	321.15	12,032.3	-147.3	302.9	32° 4' 45.031 N	103° 15' 38.08
12,400.0	84.86	327.76	12,037.7	-102.5	270.9	32° 4' 45.478 N	103° 15' 38.45
12,500.0	86.69	339.66	12,045.1	-13.2	226.8	32° 4' 46.365 N	103° 15' 38.95
12,543.7	87.53	344.84	12,047.3	28.3	213.5	32° 4' 46.778 N	103° 15' 39.10
Sec 34							
12,600.0	88.65	351.51	12,049.2	83.4	202.0	32° 4' 47.323 N	103° 15' 39.23
12,616.2	88.98	353.42	12,049.5	99.4	199.8	32° 4' 47.483 N	103° 15' 39.25
Jun121 FTP			40.000		400.5	000 41 47 000 **	4000 451 00 00
12,666.9	90.00	359.41	12,050.0	150.0	196.6	32° 4' 47.983 N	103° 15' 39.28
Jun121 FTP2 12,700.0	90.00	359.41	12,050.0	183.1	196.3	32° 4′ 48.311 N	103° 15' 39.28
12,800.0	90.00	359.41	12,050.0	283.1	195.3	32° 4' 49.300 N	103° 15' 39.28
12,900.0	90.00	359.41	12,050.0	383.1	194.3	32° 4' 50.290 N	103° 15' 39.28
13,000.0	90.00	359.41	12,050.0	483.1	193.2	32° 4' 51.279 N	103° 15' 39.28

Lease Penetration Section Line Footages

Company: Project:

Ameredev Operating, LLC.

Site: Well: JUN/PIM JUN/PIM #1S

Wellbore:

Juniper 121H Wellbore #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Well Juniper 121H

KB @ 3019.0usft KB @ 3019.0usft

Grid

Minimum Curvature

esign: [Design #1		Database:		EDM5000		
anned Survey							
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
13,100.	.0 90.00	359.41	12,050.0	583.1	192.2	32° 4' 52.269 N	103° 15' 39.28
13,200.	.0 90.00	359.41	12,050.0	683.1	191.2	32° 4' 53.258 N	103° 15' 39.28
13,300.	.0 90.00	359.41	12,050.0	783.1	190.2	32° 4' 54.248 N	103° 15' 39.28
13,400.	.0 90.00	359.41	12,050.0	883.1	189.2	32° 4' 55.237 N	103° 15' 39.28
13,500.	.0 90.00	359.41	12,050.0	983.0	188.1	32° 4' 56.227 N	103° 15' 39.28
13,600.	.0 90.00	359.41	12,050.0	1,083.0	187.1	32° 4' 57.216 N	103° 15' 39.28
13,700.	.0 90.00	359.41	12,050.0	1,183.0	186.1	32° 4' 58.206 N	103° 15' 39.28
13,800.	.0 90.00	359.41	12,050.0	1,283.0	185.1	32° 4' 59.195 N	103° 15' 39.26
13,900.	.0 90.00	359.41	12,050.0	1,383.0	184.0	32° 5' 0.185 N	103° 15' 39.28
14,000.	.0 90.00	359.41	12,050.0	1,483.0	183.0	32° 5′ 1.174 N	103° 15′ 39.20
14,100.	.0 90.00	359.41	12,050.0	1,583.0	182.0	32° 5′ 2.164 N	103° 15' 39.2
14,200.	.0 90.00	359.41	12,050.0	1,683.0	181.0	32° 5′ 3.153 N	103° 15' 39.2
14,300.	.0 90.00	359.41	12,050.0	1,783.0	180.0	32° 5' 4.143 N	103° 15′ 39.2
14,400.	.0 90.00	359.41	12,050.0	1,883.0	178.9	32° 5′ 5.132 N	103° 15' 39.2
14,500.	.0 90.00	359.41	12,050.0	1,983.0	177.9	32° 5′ 6.122 N	103° 15' 39.2
14,600.	.0 90.00	359.41	12,050.0	2,083.0	176.9	32° 5' 7.111 N	103° 15' 39.2
14,700.	.0 90.00	359.41	12,050.0	2,183.0	175.9	32° 5′ 8.101 N	103° 15′ 39.2
14,800.	.0 90.00	359.41	12,050.0	2,283.0	174.8	32° 5′ 9.090 N	103° 15′ 39.2
14,900.	.0 90.00	359.41	12,050.0	2,383.0	173.8	32° 5′ 10.080 N	103° 15' 39.2
15,000.	.0 90.00	359.41	12,050.0	2,483.0	172.8	32° 5' 11.069 N	103° 15' 39.2
15,100.	.0 90.00	359.41	12,050.0	2,583.0	171.8	32° 5′ 12.059 N	103° 15' 39.2
15,200.	.0 90.00	359.41	12,050.0	2,683.0	170.8	32° 5′ 13.048 N	103° 15′ 39.2
15,300.	.0 90.00	359.41	12,050.0	2,783.0	169.7	32° 5′ 14.038 N	103° 15' 39.2
15,400.	.0 90.00	359.41	12,050.0	2,882.9	168.7	32° 5′ 15.027 N	103° 15' 39.2
15,500.	.0 90.00	359.41	12,050.0	2,982.9	167.7	32° 5′ 16.017 N	103° 15' 39.2
15,600.	.0 90.00	359.41	12,050.0	3,082.9	166.7	32° 5′ 17.006 N	103° 15' 39.2
15,700.	.0 90.00	359.41	12,050.0	3,182.9	165.6	32° 5′ 17.996 N	103° 15' 39.2
15,800.	.0 90.00	359.41	12,050.0	3,282.9	164.6	32° 5′ 18.985 N	103° 15′ 39.2
15,900.	.0 90.00	359.41	12,050.0	3,382.9	163.6	32° 5′ 19.975 N	103° 15′ 39.2
16,000.	.0 90.00	359.41	12,050.0	3,482.9	162.6	32° 5' 20.964 N	103° 15' 39.2
16,100.		359.41	12,050.0	3,582.9	161.6	32° 5′ 21.954 N	103° 15' 39.2
16,200.		359.41	12,050.0	3,682.9	160.5	32° 5′ 22.943 N	103° 15' 39.2
16,300.		359.41	12,050.0	3,782.9	159.5		103° 15' 39.2
16,400.		359.41	12,050.0	3,882.9	158.5	32° 5′ 24.922 N	103° 15' 39.2
16,500.	.0 90.00	359.41	12,050.0	3,982.9	157.5	32° 5' 25.912 N	103° 15' 39.2
16,600.	.0 90.00	359.41	12,050.0	4,082.9	156.4	32° 5' 26.901 N	103° 15′ 39.2
16,700.	.0 90.00	359.41	12,050.0	4,182.9	155.4	32° 5′ 27.891 N	103° 15' 39.2
16,800.	.0 90.00	359.41	12,050.0	4,282.9	154.4	32° 5′ 28.880 N	103° 15' 39.2
16,900.	.0 90.00	359.41	12,050.0	4,382.9	153.4	32° 5′ 29.870 N	103° 15' 39.2
17,000.	.0 90.00	359.41	12,050.0	4,482.9	152.4	32° 5' 30.859 N	103° 15' 39.29
17,100.	.0 90.00	359.41	12,050.0	4,582.9	151.3	32° 5′ 31.849 N	103° 15' 39.2
17,200.	.0 90.00	359.41	12,050.0	4,682.9	150.3	32° 5′ 32.838 N	103° 15′ 39.29
17,300.	.0 90.00	359.41	12,050.0	4,782.8	149.3	32° 5′ 33.828 N	103° 15' 39.29
17,400.	.0 90.00	359.41	12,050.0	4,882.8	148.3	32° 5′ 34.817 N	103° 15' 39.29
17,500.	.0 90.00	359.41	12,050.0	4,982.8	147.3	32° 5′ 35.807 N	103° 15' 39.30

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site: JUN/PIM JUN/PIM #1S

Well: Wellbore: Design: Juniper 121H Wellbore #1 Design #1

20,500.0

20,600.0

20,700.0

20,800.0

20,900.0

21,000.0

21,100.0

21,200.0

21,300.0

21,400.0

21,500.0

21,600.0

21,700.0

90.00

90.00

90.00

90.00

90.00

90.00

90.00

90.00

90.00

90.00

90.00

90.00

90.00

359.41

359.41

359.41

359.41

359.41

359.41

359.41

359.41

359.41

359.41

359.41

359.41

359.41

Local Co-ordinate Reference:

TVD Reference: MD Reference:

Database:

North Reference: Survey Calculation Method: Well Juniper 121H

KB @ 3019.0usft KB @ 3019.0usft

Grid

Minimum Curvature

32° 6' 5.492 N 103° 15' 39.309 W

103° 15' 39.310 W

103° 15' 39.310 W

103° 15' 39.310 W

103° 15' 39.311 W

103° 15' 39.311 W

103° 15' 39.311 W

103° 15' 39.311 W

103° 15' 39.312 W

103° 15' 39.312 W

103° 15' 39.312 W

103° 15' 39.313 W

103° 15' 39.313 W

32° 6' 6.481 N

32° 6' 7.471 N

32° 6' 8.460 N

32° 6' 9.450 N

32° 6' 10.439 N

32° 6' 11.429 N

32° 6' 12.418 N

32° 6' 13.408 N

32° 6' 14.397 N

32° 6' 15.387 N

32° 6' 16.376 N

32° 6' 17.366 N

EDM5000

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
17,600.0	90.00	359.41	12,050.0	5,082.8	146.2	32° 5′ 36.796 N	103° 15' 39.300 V
17,700.0	90.00	359.41	12,050.0	5,182.8	145.2	32° 5′ 37.786 N	103° 15' 39.300 W
17,794.5	90.00	359.41	12,050.0	5,277.3	144.2	32° 5′ 38.721 N	103° 15' 39.301 W
Sec 27							
17,800.0	90.00	359.41	12,050.0	5,282.8	144.2	32° 5′ 38.775 N	103° 15' 39.301 V
17,900.0	90.00	359.41	12,050.0	5,382.8	143.2	32° 5′ 39.765 N	103° 15' 39.301 V
18,000.0	90.00	359.41	12,050.0	5,482.8	142.1	32° 5′ 40.754 N	103° 15' 39.301 V
18,100.0	90.00	359.41	12,050.0	5,582.8	141.1	32° 5′ 41.744 N	103° 15' 39.302 V
18,200.0	90.00	359.41	12,050.0	5,682.8	140.1	32° 5′ 42.733 N	103° 15' 39.302 V
18,300.0	90.00	359.41	12,050.0	5,782.8	139.1	32° 5′ 43.723 N	103° 15′ 39.302 V
18,400.0	90.00	359.41	12,050.0	5,882.8	138.1	32° 5′ 44.712 N	103° 15' 39.303 V
18,500.0	90.00	359.41	12,050.0	5,982.8	137.0	32° 5' 45.702 N	103° 15' 39.303 \
18,600.0	90.00	359.41	12,050.0	6,082.8	136.0	32° 5′ 46.691 N	103° 15' 39.303 \
18,700.0	90.00	359.41	12,050.0	6,182.8	135.0	32° 5′ 47.681 N	103° 15' 39.304 \
18,800.0	90.00	359.41	12,050.0	6,282.8	134.0	32° 5′ 48.670 N	103° 15' 39.304 V
18,900.0	90.00	359.41	12,050.0	6,382.8	132.9	32° 5′ 49.660 N	103° 15' 39.304 \
19,000.0	90.00	359.41	12,050.0	6,482.8	131.9	32° 5′ 50.649 N	103° 15' 39.304 \
19,100.0	90.00	359.41	12,050.0	6,582.8	130.9	32° 5′ 51.639 N	103° 15' 39.305 '
19,200.0	90.00	359.41	12,050.0	6,682.7	129.9	32° 5' 52.628 N	103° 15' 39.305 '
19,300.0	90.00	359.41	12,050.0	6,782.7	128.9	32° 5′ 53.618 N	103° 15' 39.305
19,400.0	90.00	359.41	12,050.0	6,882.7	127.8	32° 5' 54.607 N	103° 15' 39.306 \
19,500.0	90.00	359.41	12,050.0	6,982.7	126.8	32° 5' 55.597 N	103° 15' 39.306 '
19,600.0	90.00	359.41	12,050.0	7,082.7	125.8	32° 5' 56.586 N	103° 15' 39.306 \
19,700.0	90.00	359.41	12,050.0	7,182.7	124.8	32° 5′ 57.576 N	103° 15' 39.307 \
19,800.0	90.00	359.41	12,050.0	7,282.7	123.7	32° 5′ 58.565 N	103° 15' 39.307 \
19,900.0	90.00	359.41	12,050.0	7,382.7	122.7	32° 5' 59.555 N	103° 15' 39.307 \
20,000.0	90.00	359.41	12,050.0	7,482.7	121.7	32° 6' 0.544 N	103° 15' 39.308 \
20,100.0	90.00	359.41	12,050.0	7,582.7	120.7	32° 6' 1.534 N	103° 15' 39.308 \
20,200.0	90.00	359.41	12,050.0	7,682.7	119.7	32° 6' 2.523 N	103° 15' 39.308 '
20,300.0	90.00	359.41	12,050.0	7,782.7	118.6	32° 6′ 3.513 N	103° 15′ 39.309 ′
20,400.0	90.00	359.41	12,050.0	7,882.7	117.6	32° 6' 4.502 N	103° 15' 39.309

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

12,050.0

7,982.7

8,082.7

8,182.7

8,282.7

8,382.7

8,482.7

8,582.6

8,682.6

8,782.6

8,882.6

8,982.6

9,082.6

9,182.6

116.6

115.6

114.5

113.5

112.5

111.5

110.5

109.4

108.4

107.4

106.4

105.3

104.3

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site:

JUN/PIM JUN/PIM #1S

Well: Wellbore: Design:

Juniper 121H Wellbore #1 Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method: Database:

Well Juniper 121H

KB @ 3019.0usft KB @ 3019.0usft

Grid

Minimum Curvature

EDM5000

Plai	hann	Surve	v

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
21,800.0	90.00	359.41	12,050.0	9,282.6	103.3	32° 6′ 18.355 N	103° 15' 39.313
21,900.0	90.00	359.41	12,050.0	9,382.6	102.3	32° 6′ 19.345 N	103° 15' 39.314
22,000.0	90.00	359.41	12,050.0	9,482.6	101.3	32° 6' 20.334 N	103° 15′ 39.314
22,100.0	90.00	359.41	12,050.0	9,582.6	100.2	32° 6' 21.324 N	103° 15' 39.314
22,200.0	90.00	359.41	12,050.0	9,682.6	99.2	32° 6′ 22.313 N	103° 15' 39.315
22,300.0	90.00	359.41	12,050.0	9,782.6	98.2	32° 6′ 23.303 N	103° 15' 39.315
22,400.0	90.00	359.41	12,050.0	9,882.6	97.2	32° 6′ 24.292 N	103° 15' 39.315
22,500.0	90.00	359.41	12,050.0	9,982.6	96.2	32° 6' 25.282 N	103° 15′ 39.316
22,600.0	90.00	359.41	12,050.0	10,082.6	95.1	32° 6' 26.271 N	103° 15' 39.316
22,700.0	90.00	359.41	12,050.0	10,182.6	94.1	32° 6′ 27.261 N	103° 15' 39.316
22,800.0	90.00	359.41	12,050.0	10,282.6	93.1	32° 6′ 28.250 N	103° 15' 39.317
22,900.0	90.00	359.41	12,050.0	10,382.6	92.1	32° 6' 29.240 N	103° 15' 39.317
22,972.5	90.00	359.41	12,050.0	10,455.1	91.3	32° 6′ 29.958 N	103° 15' 39.317
Jun121 LTP							
23,000.0	90.00	359.41	12,050.0	10,482.5	91.0	32° 6′ 30.229 N	103° 15' 39.317
23,022.5	90.00	359.41	12,050.0	10,505.1	90.8	32° 6′ 30.452 N	103° 15′ 39.317
Jun121 BHL							

Ameredev Drilling Plan: 3 String with 4 String Contingency

- Contingency Plan If Losses Exceed 50% in Intermediate Interval
 - We will utilize a MB4 wellhead that will enable us to convert a 3 string design to a 4 string design. (Schematic Attached)
 - We will displace well with FW and drill or condition to run 9-5/8" Casing at the Lamar Limestone, we will utilize DV Tool w/ ACP @ the Tansill to Isolate Capitan Reef and cement to surface.
 - Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- 7.625 Casing will be Additional 4th String
 - o Drill remaining hole section to 10,670'
 - o Run 7.625 29.7# HCL80 FJM Casing

4-String Contingency Wellbore Schematic

(Well Name) Well: SHL:

BHL:

Tubing:

(SHL) (BHL)

Lea, NM

Wellhead: A - 13-5/8" 10M x 13-5/8" SOW

B - 13-5/8" 10M x 13-5/8" 10M

C - 13-5/8" 10M x 13-5/8" 10M Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

2-7/8" L-80 6.5# 8rd EUE

Co. Well ID:

AFE No.:

API No.:

XXXX-XXX XXXXXXXXXXXX

XXXXXX

(Elevation)'

GL: Field:

Delaware

Objective:

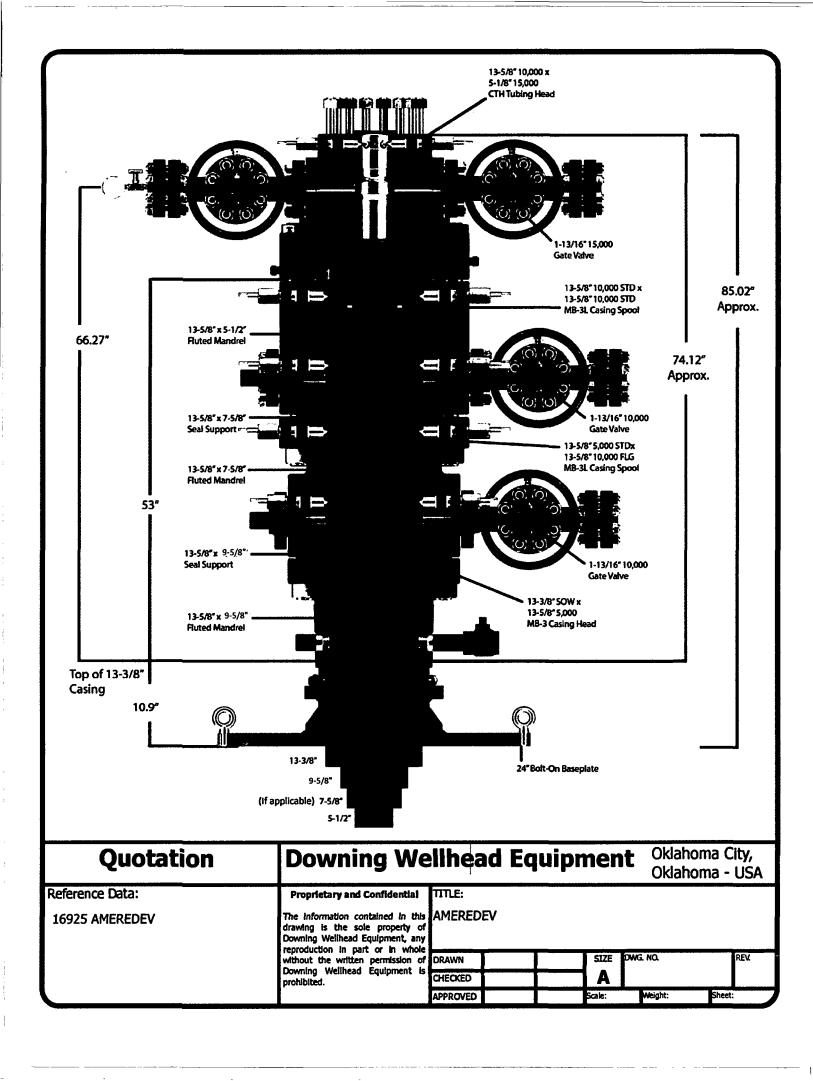
TVD:

Wolfcamp B

(TVD)' (MD)'

MD:

Rig: TBD KB 27'


E-Mail: Wellsite2@ameredev.com

	Formation Tops	Logs	Cement	Mud Weight
17.5"	Rustler 125' below 13.375" 54.5# J-55 BTC Rustler		TOC 0' 100% Excess	8.4-8.6 ppg WBM
	Salado DV Tool with ACP At Tansill		TOC 0' 50% Excess	sh Water
12.25"	Tansill Capitan Reef Lamar 50' below 9.625" 40# L-80HC BTC Lamar		TOC 0' 50% Excess	8.3-10.2 Fresh Water
8.75"	Bell Canyon Brushy Canyon Bone Spring Lime First Bone Spring Second Bone Spring Third Bone Spring Upper 125' below 7.625" 29.7# L-80HC FJM TBSG Upper		TOC 0' 25% Excess	8.5-9.4 Diesel Brine Emulsion
6.75" 12° Build @ KOP	Third Bone Spring Wolfcamp Wolfcamp B (If Applicable) 5.5" 20# P-110CYHP TMK UP SF TORQ (MD) Target Wolfcamp B TVD // MD		TOC 0' 25% Excess	10.5-14 ppg OBM

Contingency Casing Design and Safety Factor Check

		Casing .	Specificati	ons		
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling
Surface	17.5	1,888'	13.375	54.5	J-55	BTC
Int #1	12.25	5,013'	9.625	40	HCL-80	BTC
Int #2	8.75	11,147'	7.625	29.7	HCL-80	FJM
Prod Segment A	6.75	11,147'	5.5	20	CYHP-110	TMK UPSF
Prod Segment B	6.75	22,496'	5.5	20	CYHP-110	TMK UPSF

	Chec	k Surface (Casing	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
14.38	853	909	1,130	2,730
	5	afety Facto	ors	······································
1.56	8.29	8.83	1.15	0.91
	Che	ck Int #1 C	asing	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
10.625	916	1042	4230	5750
	S	afety Facto	ors	
0.81	4.57	5.20	1.41	0.95
	Che	ck Int #2 C	asing	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
7.625	940	558	6700	9460
	S	afety Facto	ors	
0.56	2.84	1.96	1.10	1.24
	Check Pro	od Casing, .	Segment A	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
5.777	728	655	12780	14360
		afety Facto	ors	
0.49	3.11	2.79	1.77	1.89
•	Check Pro	od Casing,	Segment B	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
5.777	728	655	12780	14360
		afety Facto		
0.49	63.53	57.16	1.68	1.89

	i	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		17.5	13.375	1888		1.76	13.5	
		Bbl/Sk bbls				0.31372549 419.402246		
	i	Stage Tool Depti	h		<u> </u>	N/A		
		Top MD of Segm				0		
		Bottom MD of S	egment			1502		
		Cement Type				С		
Stage 1 Lead		Additves	Bentonite, Accel	erator, Kolseal, Defo	oamer, Celloflake			
× -		Quantity (sks)				1,337		
		Yield (cu ft/sk)				1.76		
		Density (lbs/gal)				13.5		
	1	Volume (cu ft)				2,352.85		
	1	Percent Excess				100%	Target %	100
		Column Height				3,389.88		
			Target TOC Calc TOC calc vol	0 -1888 0.12372195	bbl 233.587041	25% Excess 291.9838012	100% 467.174082	
				·				
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		17.5	13.375	1888	'	1.34	14.8	
		Bbl/Sk				0.23885918		
		bbls				47.77183601		
		Top MD of Segm				1502		
		Bottom MD of So	egment			1888		
		Cement Type		• •		<u>c</u>		
Stage 1 Tall		Additives						
Sta		Quantity (sks)				200		
		Yield (cu ft/sk)				1.34		
		Density (lbs/gal)				14.8		
		Volume (cu ft)				268		
		Percent Excess				100%		
		Column Height				386.1225606		

SURFACE CEMENT

1	l							
	1	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
1	1	12.25	9.625	5013		3.5	9	
Stage 1 Lead		Bbl/Sk bbls Stage Tool Deptl Top MD of Segm Bottom MD of S. Cement Type Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height	n ent egment Bentonite,Salt,Ko	5013	lloclake	3.5 0.623885918 372.0365733 N/A 0 4163 C 596 3.5 9 2,087.13 50% 6,669.49	9 Target %	50%
		Hole Size	Target TOC Calc TOC calc vol Casing Size	0 -2506.5 0.055781888	bbl 279.6346021 Sacks	25% Excess 349.5432526 Yield	50% 419.4519031 Density	
		12.25	9.625	5013	1	1.33	14.8	
Stage 1 Tail		Bbl/Sk bbls Top MD of Segm Bottom MD of Sc Cement Type Additives Quantity (sks) Yield (cu ft/sk) Density (lbs/gal)	egment			0.237076649 47.41532977 4163 5013 C		
1	-	Volume (cu ft)				266		
1	-	Percent Excess				25%		
1						850.013004		

INTERMEDIATE 1 CEMENT - STAGE 1

Stage 2 Lead	Hole Size 12.25 Bbi/Sk bbls Stage Tool Depth Top MD of Segm Bottom MD of Sc Cement Type		Depth 3262	Sacks	Yield 3.5 0.623885918	Density 9	
Stage 2 Lead	Bbl/Sk bbls Stage Tool Depth Top MD of Segm Bottom MD of Se		3262		0.623885918	9	
Stage 2 Lead	bbls Stage Tool Depth Top MD of Segm Bottom MD of Se						
		gment	olseal,Defoamer,Cel	llocłake	225.5254458 N/A 0 2412 C 361 3.5 9 1,265.20 50% 4,042.99	Target %	50%
	Hole Size	Target TOC Calc TOC calc vol Casing Size	0 -1631 0.055781888	bbi 181.960517 Sacks	25% Excess 227.4506463 Yield	50% 272.9407756 Density	
1 1	12.25	9.625	3262	<u> </u>	1.33	14.8	
	Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type				0.237076649 47.41532977 2412 3262 C		
l I	Additives		·				
Stage 2 Tall							
×	Quantity (sks)	_			200		
	Yield (cu ft/sk) Density (lbs/gal)				1.33		
	Volume (cu ft)				266		
	Percent Excess				25%		
	Column Height				850.013004		

INTERMEDIATE 1 CEMENT - STAGE 2

				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
I		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
ł	i	8.75	7.625	10670		2.47	9	
Stage 1 Lead		Bbl/Sk bbls Stage Tool Deptl Top MD of Segm Bottom MD of S. Cement Type Additves Expansion Addit Quantity (sks) Yield (cu ft/sk)	h ient egment Bentonite,Retard ive	ler, Kolseal, Defoam	ier,Celloflake, Ant	0.440285205 168.6309595 N/A 0 6755 H ti-Settling		
1	J	Density (lbs/gal)				946.02		
		Volume (cu ft) Percent Excess				25%	Target %	25%
		Column Height				9,422.97	raiget 76	23/0
		Hole Size 8.75	Calc TOC calc vol Casing Size 7.625	-2667.5 0.01789574 Depth 10670	bbl 190.9475483 Sacks	25% Excess 238.6844354 Yield 1.31	25% 238.6844354 Density 14.2	
		Bbl/Sk				0.233511586		
		bbls				70.05347594		
	1	Top MD of Segm				6755		
		Bottom MD of Se	egment			10670		
		Cement Type Additves	Salt Rentonite Re	tarder, Dispersant,	Fluid Loss	Н Н		
Stage 1 Tail		Additives	Januarine	tarder, Dispersont,	11010 2033			
Sta _l		Quantity (sks)				300		
		Yield (cu ft/sk)				1.31		
		Density (lbs/gal)				14.2		
		Volume (cu ft)				393		
		Percent Excess				25%		
		Column Height				3914.533571		

INTERMEDIATE 2 CEMENT

	T						
	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	6.75	5.5	22496		1.34	14.2	
				_			
	Bbl/Sk	`			0.23885918		
	bbls -				418.2897805		
	Stage Tool Dep				N/A		
	Top MD of Seg				0		
	Bottom MD of Cement Type	Segment			22496 H		
	Additves	Calt Bostonito	Fluid Loss, Dispers	ant Patardar Dal			
Stage 1 Lead	Additves	Sait, Bentonite,	riulu Loss, Dispers	ant, Retarder, Der	Oalilei		
Sta a							
	Quantity (sks)				1,751		
	Yield (cu ft/sk)				1.34		
	Density (lbs/ga	i)			14.2		
l	Volume (cu ft)				2,346.61		
Į.	Percent Excess				25%	Target %	259
1	Column Height				28,120.00		
	1	Target TOC	0				
1		Calc TOC	-5624	bbl	25% Excess	25%	
L		calc vol	0.01487517	334.6318244	418.2897805	418.2897805	
						· · · · · · · · · · · · · · · · · · ·	
	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
ı	6.75	5.5	22496	0	0	0	
ı	DEL/CI.						
	Bbl/Sk bbls				0		
1	Top MD of Seg	ment			22496		
ı	Bottom MD of				22496		
i	Cement Type	DeBinent			H		
1	Additives	 			<u>''</u>		
Stage 1 Tail	1.00.0763						
tage Tail							
l °	Quantity (sks)				0		
1	Yield (cu ft/sk)				0		
	Density (lbs/ga	ıl)			0		
	Volume (cu ft)			0		
	Percent Exces						
	Column Heigh	t			0		
	i						

PRODUCTION CEMENT

HALLIBURTON

Permian Basin, Ft Stockton

Lab Results- Lead

Job Infor		8456/2		Rig Name					Date	18/DEC/20	18
Submitted By	- •	lon Briers		Job Type		Interme	diate Casing	_	Bulk Plant	.0,220,20	
Customer		eredev		Location		Lea		•	Well		
Well Info	rmation		·								
Casing/Liner	Size 7.6	25 in	•	Depth MD		5013 ft		1	BHST	165°F	
Hole Size	8.7	5 in		Depth TVI)	5013 ft		1	внст	130°F	
Cement In	formatio	n - Lead D	Design								2
Conc UO	<u> Ce</u>	ment/Additive	:						Ceme	ent Propertie	×s
100 % F	BWOC Ne	oCem						Slurry D	ensity	9	lbm/gal
14.68 gal/	/sack He	ated Fresh Wat	er					Slurry Y	ield	3.5	ft3/sack
								Water Re	equirement	14.68	gal/sack
		Request ID					·				
· · · · · ·		uest Test		100	60		30	6	3		Cond Time
Temp (degF)	300	200	J	100	ου		30	0	3		(min)
80 (up)	82	67	4	19	42		39	36	28	3	0
80 (down)	82	59		35	26		18	10	9		0
80 (avg.)	82	63	4	12	34		29	23	19	•	0
PV (cP) & YP ((lbs/100ft2):	61.73	22.32	(Least-square	es metho	d)					
'V (cP) & YP ((lbs/100ft2):	60	22	(Traditional	method ((300 & 100	rpm based))				
Generalized He	rschel-Bulkle	y 4: YP(lbf/10	0ft2)=20.3	3 MuInf(cP)=5	52.39	m=0.81	n=0.81				
API Rheo	logy, Req	uest Test	D:3566	5341							
Temp (degF)	300	200	100	60		30	6	3		Cond Time (min)	Cond Temp (degF)
134 (up)	63	47	29	21		15	7	6		30	134
134 (down)	63	46	29	21		14	7	4		30	134
134 (avg.)	63	47	29	21		15	7	5		30	134
PV (cP) & YP ((lbs/100ft2):	57.12	7.98	(Least-square	es metho	d)					
V (cP) & YP ((lbs/100ft2):	51	12	(Traditional	method ((300 & 100	rpm based))				
Generalized He	rschel-Bulkle	y 4: YP(lbf/10	0ft2)=2.26	MuInf(cP)=3	30.64	m=0.41	n=0.41				
API Fluid	Loss, Re	quest Test	ID:356	65342							
Test Temp (de	egF) Test	Pressure (psi)	Test Ti	me (min)	Meas. V	ol.	Calculated min)	i FL (≪30	Conditionia (min)	•	onditioning Tem
134	1000		9.12		52		189		30	13	4

This report is the property of Halliburton Energy Services and neither it nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

Free Fluid A	API 10B-2,	Request Test	ID:356653	43	-		
Con. Temp (deg	F) Cond.	Time (min)	Static T. (F)	Static	time (min)	Incl. (deg)	% Fluid
134	30		80	120		0	0
Pilot Test R	esults Requ	est ID 25041	16/5				
Thickening	Time - ON-	OFF-ON, R	equest Test	ID:35852392	2		
Test Temp (degF)	Pressure (psi) Reached in	(min) 70 Bc (h	h:min) Start E	le		
126	5800	40	6:18	16		·	
UCA Comp	. Strength,	Request Test	ID:358523	94		· · · · · · · · · · · · · · · · · · ·	
End Temp (degF)	Pressure (psi)	50 psi (hh:mm)	500 psi (hh:mm)	12 hr CS (psi)	24 hr CS (psi)	48 hr CS (psi)	
159	4000	8:55	12:23	456	749	681	

This report is the property of Halliburton Energy Services and neither it nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

U. S. Steel Tubular Products

7.625" 29.70lbs/ft (0.375" Wall) HCL80 USS-LIBERTY FJM®

		· · · · · · · · · · · · · · · · · · ·	
MECHANICAL PROPERTIES	Pipe	USS-LIBERTY FJM®	
Minimum Yield Strength	110,000		psi
Maximum Yield Strength	140,000	-	psi
Minimum Tensile Strength	125,000	-	psi
DIMENSIONS	Pipe	USS-LIBERTY FJM®	
Outside Diameter	7.625	7.625	in.
Wall Thickness	0.375	-	in.
Inside Diameter	6.875	6.789	in.
Standard Drift	6.750	6.750	in.
Alternate Drift	_	= ′	in.
Nominal Linear Weight, T&C	29.70	-	lbs/ft
Plain End Weight	29.06	. –	lbs/ft
SECTION AREA	Pipe	USS-LIBERTY FJM®	
Critical Area	8.541	5.074	sq. in.
Joint Efficiency		59.4	%
PERFORMANCE	Pipe	USS-LIBERTY FJM®	
Minimum Collapse Pressure	6,700	6,700	psi
Minimum Internal Yield Pressure	9,460	9,460	psi
Minimum Pipe Body Yield Strength	940,000	-	lbs
Joint Strength	_	558,000	lbs
Compression Rating		558,000	Ibs
Reference Length	-	12,810	ft
Maximum Uniaxial Bend Rating		39.3	deg/100 ft
Make-Up Loss	-	3.92	in.
Minimum Make-Up Torque	_	10,800	ft-lbs
Maximum Make-Up Torque		15,250	ft-lbs

^{1.} Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness and Specified Minimum Yield Strength (SMYS).

Legal Notice

USS-LIBERTY FJM® is a trademark of U. S. Steel Corporation. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U.S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

^{2.} Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.

^{3.} Unlaxial bending rating shown is structural only, and equal to compression efficiency.

^{4.} USS-LIBERTY FJM™ connections are optimized for each combination of OD and wall thickness and cannot be interchanged.

^{5.} Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

^{6.} Reference length is calculated by joint strength divided by nominal plain end weight with 1.5 safety factor.

Connection external pressure leak resistance has been verified to 100% API pipe body collapse pressure following the guidelines of API 5C5 Cal III.

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTION	
MEGRANICAL PROPERTIES			
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
EXIOIEVEIO			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
SECTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
PERFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes

- Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).
- 2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.
- 4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).
- 5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.
- 6) Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

Manuel USS Product Data Sheet 2017 rev25 (April)

Requested Exceptions

- Variance is requested to connect the BOP choke outlet to the choke manifold using a co-flex line (instead of using a 4" OD steel line) with a 10,000 psi working pressure that has been tested to 15,000 psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps.
- Variance is requested to allow Option of rig not capable of reaching TD presetting Surface,
 Drilling Plan will be same using Fresh Water fluid system.
- Variance is requested to wave any centralizer requirements on the 5-1/2" casing. Ameredev will
 utilize cement expansion additives in the cement slurry to maximize cement bond and zonal
 isolation.
- Variance is requested to wave any centralizer requirements on the 9-5/8" casing. Ameredev will
 utilize cement expansion additives in the cement slurry to maximize cement bond and zonal
 isolation.
- Variance is requested to allow Temporary Postponement of Operations on well to skid to adjacent well if multiple wells on drilling pad are drilled.
- Variance is requested to allow use of Multi-Bowl Well Head System.
- Variance is requested to allow adjustment of Casing Design Safety Factor on conditions that Ameredev keeps minimum of 1/3 casing capacity filled with OMW drilling fluids.
- Variance is requested to allow 5M Annular Preventer on 10M BOPE System to drill Production Interval. (Supporting Documentation Attached)

QUALITY CONTROL	No.: QC-DB- 651 / 2013
	Page: 1 / 44
Hose No.:	Revision: 0
66551, 66552, 66553, 66554	Date: 14. November 2013.
	Prepared by: Scala Jandon
	Appr. by:

CHOKE AND KILL HOSES

id.: 3" 69 MPa x 35 ft (10,67 m)

DATA BOOK

Purchaser: H&P STOCK

Purchaser Order No.:

ContiTech Rubber Order No.: 537587

ContiTech Oil & Marine Corp. Order No.:

4500370505

NOT DESIGNED FOR WELL TESTING

CONTITECH RUBBER Industrial Kft.

No.: QC- DB- 651 / 2013 Page: 2 / 44

CONTENT

		<u>Page</u>
1.	API QMS Certificate (No.: 0760)	3.
2.	American Petroleum Institute Certificate of Authority To Use the Official API Monogram (No.: 16C-0004)	4.
3.	Quality Control Inspection and Test Certificates (No.: 1905, 1906, 1907, 1908)	5-8.
4.	Hose Data Sheet	9.
5.	Metal Parts	
5.1.	Raw Material Quality Certificates (No.: TR070687, EUR-265844, 86989/13-0)	10-13.
5.2 .	Hardness Test Reports (No.: 561/13, 562/13)	14-15.
5.3.	Ultrasonic Test Reports (No.: 513/13, 514/13, 515/13)	16-18.
5.4.	NDT Examiner Certificate (Name: Tóth Ákos József)	19-20.
5.5.	Welding Procedure Specification (No.: 140-71)	21-24.
5.6.	Welding Procedure Qualification Record (No.: BUD 0700002/1)	25-26 .
5.7.	Welder's Approval Test Certificate (No.: RK1825997.R1)	27-28.
5.8 .	Welding Log Sheet (No.: 2013/2898)	29.
5.9.	Visual Examination Record (No.: 813/13)	30.
5.10.	NDT Examiner Certificate (Name: Kis Gábor Balázs)	31-32.
5.11. 5.40	Radiographic Test Certificates (No.: 2431/13, 2430/13)	33-34.
5.12.	NDT Examiner Certificate (Name: Ménesi István)	35-36.
5.13. 5.14.	MP Examination Record (No.: 1222/13) NDT Examiner Certificate (Name: Oravecz Gábor)	37.
5.14.	NDT Examiner Certificate (Name. Oravecz Gabor)	38-39.
6.	Steel Cord	•
6.1.	Inspection Certificate (No.: 4046181212)	40.
7.	Outside Stripwound Tube	
7.1.	Inspection Certificate (No.: 63892/2012)	41.
8.	Certificate of Calibration (Manometer Serial No.: 1518086)	42-44.

desc quela

ContiTech Rubber Industrial Kft. Quality Control Dept. (1) CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

Certificate of Registration

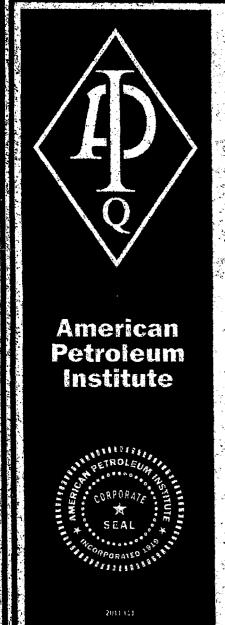
APIQR REGISTRATION NUMBER 0760

This certifies that the quality management system of

CONTITECH RUBBER INDUSTRIAL LTD. **Budapesti ut 10** Szeged Hungary

bas been assessed by the American Petroleum Institute Quality Registrar (APIQR®) and found it to be in conformance with the following standard:

ISO 9001:2008


The scope of this registration and the approved quality management system applies to the Design and Manufacture of High Pressure Hoses

> APIQR® approves the organization's justification for excluding: No Exclusions Identified as Applicable

Effective Date: October 15, 2013 Expiration Date: October 15, 2016 Registered Since: October 15, 2007

Certificate of Authority to use the Official API Monogram License Number: 16C-0084 ORIGINAL

The American Petroleum Institute hereby grants to

CONTITECH RUBBER INDUSTRIAL LTD Budapesti út 10 Szeged Hungary

the right to use the Official API Monogram® on manufactured products under the conditions in the official publications of the American Petroleum Institute entitled API Spec Q1[®] and API Spec 16C and in accordance with the provisions of the License Agreement.

In all cases where the Official API Monogram is applied, the API Monogram should be used in conjunction with this certificate number:

16C-0004

The American Petroleum Institute reserves the right to sevoke this authorization to use the Official API Monogram for any reason satisfactory to the Board of Directors of the American Petroleum Institute.

The scope of this license includes the following product: Flexible Charle and Kill Lines

QMS Exclusions: No Exclusions Identified as Applicable

Effective Date: OCTOBER 15, 2013
Expiration Date: OCTOBER 15, 2016

To verify the authenticity of this license, go to wave apliorg/compositelist.

American Petroleum Institut

Director of Global Industry Services

CONTITECH RUBBER Industrial Kft:

No:QC-DB- 651 /2013

Page:

5/44

QUA INSPECTION	LITY COI		CATE		CERT.	N°:	1905	
PURCHASER:	ContiTech	Oil & Marine	Corp.		P.O. Nº	•	4500370505	j
CONTITECH RUBBER order	v∘: 537587	HOSE TYPE:	3"	ID		Choke and	d Kill Hose	
HOSE SERIAL N°:	66551	NOMINAL / A	CTUAL LI	ENGTH:		10,67 m	/ 10,75 m	
W.P. 68,9 MPa 1	0000 psi	T.P. 103,4	MPa	1500	() psi	Duration:	60	min.
Pressure test with water at ambient temperature							-	
·		See attachr	nent. ('	1 page)			
		·						
↑ 10 mm = 10 Mir → 10 mm = 25 MP		i.						
COUPLINGS TY	pe	Ser	ial Nº		C	uality	Heat N	0
3" coupling wit	h	8084	808	3	AIS	SI 4130	24613	3
4 1/16" 10K API Flan	nge end	}			AIS	SI 4130	03493	9
NOT DESIGN	IED FOR V	VELL TESTI	NG			Α	PI Spec 16	С
All motel parts are fautase						Temp	erature rate	:"B"
All metal parts are flawless WE CERTIFY THAT THE ABOV INSPECTED AND PRESSURE 1						H THE TERMS	OF THE ORDER	1
STATEMENT OF CONFORMIT conditions and specifications of accordance with the referenced s	the above Pur	chaser Order and	that these s and meet	items/eq	uipment v ant accept	were fabricated	I inspected and t	ested in
Date:	Inspector		Qualit	y Contro	Const	Tech Rubber ustrial Kft. Control Dept		

Page: 1/1

1								. ,									c	ل ma	N M	4	S B. E
15		a 0					000) }u	i H	đ V	Co	tal Kf
8D	+2	9-6		\prod		1	20 20	010	3					-	T			1		1	4
GH RD	- 141	- 0	j G	П	H	1	اعدا			1					\perp	1		1		ij	
RD	+2		7 9	31	!	Ш	20		9			1		ì			!	1		17	1
肚			b	1			20					!	H	į			:	1	1	1	
	+20	. de	90	П		T	Σø	Đ,		П		1	; ;				- 	T	. ;	\Box	1
	+1	5 1 5 1	be	id		1	20	91)			1	,		}		,		Н	1	
GN On		-9	90	H	1	╢	112	ш	₩	H	+++	H	++	نت	+	+	ij	+	+	┼	1
	+20	53	Þ		$\{I\}$		19	56 56		2 } 5 }		1	H	: [. '	1		1	1
	1420		90	-	++	-	1.5			: 1	1	+	#	;;	4	-	<u>;</u>	1	÷	ļi	_
RD EL	+10	- 87 - 26 55	90				19	į	1			:	H	11		-					
GN	91915	3						66						: ;		i,	! !		;	! !	i
GN RD	+26		90		: ;		19					11	:	! !			П	-	T	1	1
B	112	59.	Do.	1		W	19	1		:				1	11		:		!		ļ
RO	120			1	++			50	1	•	+ +	+	+	+	Ħ	+	٠.	1	÷	+	ļ
BLL .	+10	-10 64	þo		•		19	20		١,		! !	i l		1		:		;	;	
			1	Ļ	1	-	1	+	!	H	: 1	∺	1 !	: +	H	Ŧ	i	H	÷	Щ	
	1.2	013 655	. 1	3:	10			11			i ;		1	1	11	1	:				
				1	••	Ħ		11	1		1:	\perp		<u> }</u>	Li		i		أ		
					1	∃H		L				1	įΤ			1			1		
	D	2 b		3D	4	4	.	SP.		60	: ;	7þ	1	: 6	þ		5	0	1	Qζ)
	μ		7	T			1		1		11	\top	+	1		1:	+	+	ij	\forall	
! !	1 : ! !		111					%			; :		: !	. :			:	38	898		

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page: 6/44

	INSP		UALITY ON AND				ATE		CERT. I	No:	1906				
PURC	HASER:		Conti	Tech (Oil & I	Marine (Corp.		P.O. Nº	:	45003705	05			
CONTI	TECH RUE	BBER or	der Nº: 537	587	HOSE	TYPE:	3"	ID	Choke and Kill Hose						
HOSE	SERIAL N	lo:	665	52	NOM	NAL / AC	TUAL L	ENGTH:	H: 10,67 m / 10,73 m						
W.P.	68,9	MPa	10000	psi	T.P. 103,4 MPa 15000 psi Duration		Duration:	60	min.						
E .	ire test wit nt temper		at	:											
·.															
				;	See a	ttachm	ent. (1 page)						
			:	:											
	0 mm = 0 mm =	10 25	Min: MPa												
•	COU	PLINGS	S Type			Seria	l N°		C	luality	Hea	t N°			
	3° c	oupling	g with		- 80	88	808	85	Als	81 4130	246	513			
4	4 1/16" 10	K API	Flange end						AIS	SI 4130	034	939			
	NOT	DES	IGNED FO	OR W	ELL	TESTIN	IG				API Spec 1	6 C			
All month		a flauda							•	Temp	erature ra	ite:"B"			
WE CE		T THE A	BOVE HOSE							H THE TERM	S OF THE ORD	ER			
STATE	MENT OF (CONFOR	ns of the abov	nereby cores a	ertify the haser O and spe-	at the abo	ve items hat these and mee	/equipmer e items/e t the relev	nt supplied quipment v	were fabricate	conformity with ad inspected an and design requ	d tested in			
Date:			Inspec	tor		• •	Quali	ty Contro	ol						
13.	Novemb	er 201 	3.				Bell	ا نهود	Indus Quality (ech Rubber strial Kft. Control Dept.	Yaca (7			

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

7/44

QUA INSPECTION	LITY				ATE		CER	T. N	l°:	1907	
PURCHASER:	Cont	Tech	Oil & I	Marine (Corp.	_	P.O.	Nº:		450037050	05
CONTITECH RUBBER order	v: 537	7587	HOSI	E TYPE:	3"	ID			Choke and	l Kill Hose	
HOSE SERIAL Nº:	66	553	NOM	INAL / AC	TUAL L	ENGTH:		_	10,67 m	/ 10,745 m	
W.P. 68,9 MPa 1	0000	psi	T.P.	103,4	MPa	1500	0 I	isc	Duration:	60	min.
Pressure test with water at ambient temperature			I								
									· ':.		
		;	See a	ıttachm	ent. (1 page)				
					•		•				
							-	:			
10 mm = 10 Min) .				·	·					
→ 10 mm = 25 MP	а									- <u> </u>	
COUPLINGS Ty	pe			Seria	l Nº	_		Q	uality	Heat	N°
3" coupling wit	h		80	089	808	37		AIS	1 4130	23171	24613
4 1/16" 10K API Flan	ge end							AIS	I 4130	0349	939
NOT DESIGN	ED F	OR W	ELL	TESTIN	1G				A	Pl Spec 1	6 C
4									Temp	erature ra	te:"B"
All metal parts are flawless WE CERTIFY THAT THE ABOV	E HOSE	HAS RE	EN MAI	NIFACTI	PED IN A	CCORDA	NCE \	A/ITI	THE TERMS	OF THE ORDI	ED
INSPECTED AND PRESSURE 1									Erdec	OF THE ORD	<u> </u>
STATEMENT OF CONFORMITY conditions and specifications of accordance with the referenced s	the abo	ve Purc	haser O	order and t	hat these	items/ea	julpme	nt v	vere fabricated	inspected and	d tested in
		1	COUNT	RY OF OR	IGIN HUI	IGARY/E	U				
Date:	Inspe	ctor			Qualit	y Contro	1				
13. November 2013.				er.			1	ndı	Pertudir film natural de la film Control Des	er Can	

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

8/44

					<u></u>	· ·			· —————		
QUALI INSPECTION A	ITY CON			ATE		CERT.	N°:	1908			
PURCHASER:	ContiTech (Oil & N	Marine (Corp.		P.O. N	•	450037050	5		
CONTITECH RUBBER order No:	537587	HOSE TYPE: 3" ID				<u> </u>	Choke an	d Kill Hose	l Kill Hose		
HOSE SERIAL Nº:	66554	NOM	NAL / AC	TUAL L	ENGTH:		10,67 r	n / 10,71 m			
W.P. 68,9 MPa 100)00 psi	T.P.	103,4	MPa	1500)() psi	Duration:	60	min.		
Pressure test with water at							:				
ambient temperature							·				
		٠.									
,		S00 0	ttachm	ont (1 naga			-			
	·:	oee a	luaciiii	ent. (ı paye	;)		:			
·									- *		
,								.*	·:		
10 mm = 10 Min.											
→ 10 mm = 25 MPa							·	<u> </u>			
COUPLINGS Type			Seria				Quality	Heat I			
3" coupling with		80	090	808	36	Al	SI 4130	23171	24613		
4 1/16" 10K API Flange	e end					Al	SI 4130	03493	39		
NOT DESIGNE	D FOR W	ELL .	TESTIN	1G				API Spec 16	C		
							Temp	erature rat	e:"B"		
All metal parts are flawless WE CERTIFY THAT THE ABOVE I	IOSE HAS BE	EN MAI	NUFACTU	RED IN A	CCORD	NCE WI	TH THE TERM	S OF THE ORDE	R		
INSPECTED AND PRESSURE TES	STED AS ABO	VE WIT	H SATISF	ACTORY	RESULT	•					
STATEMENT OF CONFORMITY: conditions and specifications of th accordance with the referenced star	e above Purci	haser O	rder and t	that these	tems/e	quipment	were fabricate	d inspected and	tested in		
· .		COUNT	RY OF OR	IGIN HU!	NGARY/E	U			:		
Date:	nspector			Quali	y Contro	ol					
13. November 2013.				Bell	Jug''	ſ	ndustrial Kft lity Control D	. /	<u>)</u>		

Page: 1/1

		ContiTech Rul
6		fadustriel K Gurlity Control (1)
60 +19.92 9 R0 +19.92 9 BL +1949 h	dr	
RD +19.84 9	0 17:10 dr 17:10	
RO +19.80 9 BLJ 1052) b	0 17 60 70 8D 90	100
RD +19.77 9 BL +1953 b	C 16150 16150 16850	
RD +19.78 9 BL +1055 E	C 16 40	
RD +19.73 °	C 16:30	
RD H19.78 9	16120	
2		
12-11-2013. 66552-66553.	66534 16 00	
[]][[] []		

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	9 / 44

Hose Data Sheet

CRI Order No.	537587
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500370505
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVE
Type of coupling other end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVE
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL RESISTANT
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

Printed: TIRETECH2\CsontosG - 2013.11.04 13:21:20

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

10 / 44

Body

Customer: Order Number: ContiTech Rubber Industrial Kft 32258500

4205160045

8064201

Part Number:

Certificate Number:

11th February 2013 TR070687/(Rev. 18/06/2013)

Approved Signatories:

R M Greaves A Cocking J Jarvis A Pears 5 Selman

8083 - 8088

3451- 3466

42 0516 00 45

Description

CERTIFICATE OF CONFORMITY

Heat Treatment

AISI4130/BLACK ROLLED BAR, HEAT TREATED & TESTED TO 197-238 BHN, 655MPA MIN TENSILE, 517MPA MIN YIELD, 18% MIN ELONGATION, CHARPY IMPACT TESTING 27J MIN @ -30C (OR COLDER) LATERAL EXPANSION 0.38 MIN. ROLLING REDUCTION 3:1 MIN. NI 1% MAX & CE 0.82 MAX, TESTS MAY BE TAKEN FROM A 4" SQR QTC AS PER API 6A/PSL 3 QTC SIZE. MECHANICAL TEST SPECIMEN TO ASTM A370 NACE MR0175/ISO15158 APPLIES

APPROX 20 TONNES 210 MM DIA

CERTS TO EN10204 3.1

HARDENED FROM 860°C FOR 5:30 HOURS (WATER QUENCH) TEMPERED AT 670°C FOR 10 HOURS (AIR COOL) WATER TEMPERATURE BEFORE QUENCH, 28°C, AFTER, 35°C. TEMP. MEASUREMENT, FURNACE ATMOSPHERE THERMOCOUPLE COMPONENT HARDNESS E10 - 211 HBW10/3000 TEST COUPON - 4" SQ X 8" LONG, TESTED AT 1/4 T LOCATION

REDUCTION RATIO - 6,2

REDUCTION RATIO & HT APPLY TO BOTH JOB & TEST PIECE FURNACE CALIBRATION: APISA 20th ed, annex M C/E = 0.693

					CAST	24613					
C	Si	Mn	S .	P	N	er	Mo	AJ	Cu	Sn	Nb
0.3200	0.2590	0.5680	0.0090	0.0100	0.1660	1.0560	0.2350	0.0200	0.1420	0.0070	0.0010
V	Ta	Ti	Nb+Ta	Co	N	В	w	Ce	Fe	As	Sb
0.0010		0.0010		· .	0.0079	0.0001					
Pb	Ca	H (ppm)	CEV				1				
		1.20	0.69			L					<u> </u>

TEST SPECIFICATION 517 N/mm2 MIN YIELD Temperature Rp 0.2 Řm Z % Impact Temp. Hardness 517.000

				TEST R	ESULTS				Charpy	
Test Number	Dir./Temp.	Re	Rр	Rm	A %_	Z %		Joules	Direction)
ST22561N	20.0°C		524.000	696.000	G/L 50.00mm 27.60	67.70	KCV 46°C	60 50 78	LONG	211_
Specimen Ø 12.500ms	n						KCV -80°C	50 50 46	LONG	
							% Shor	s Surface		-

62.0% 52.0% 80.0% 0.840 0.740 1.020 LONG

For and on Behalf of TM Steels Ltd.

A locking

industrial Kft. CERTIFICATE ACCEPTABLE OC INSPECTOR DATE: /4- DG - 2

Contilech Rubber

TM Stees Ltd

Foxwood Was

841 9RA

Steel for the Oil and Engineering Industries

Machining and Boring Facilities

Tel +44 (0)1248 268312

es Fax +44 (0)1246 268313

ctan Fax +44 (0)1248 269841

Co Reg No: 3523526 Vat No: GB 706 2814 57

Page: No:QC-DB- 651 /2013

Carbrook Street

Sheffield S9 2JN

Telephone: +44 114 244 6711 Facsimile: +44 114 244 7469

70:
CONTITECH RUBBER INDUSTRIAL KFT
H-6728,
SZEGED,
BUDAPESTI UT 10, K-/S62 -- K-/S75
HUNGARY,
HUNGARY
42-0.516-0.045

420516 0045

Customer Order Test Number 32252193 - 01 402483 Number Customer Order Date Part Number 27Feb12 4205160045 Sales Order Cast Number EUR-352087-1 (23171) Number Report Date 25Sep12 Cert Number EUR-265844 Quantily 14 Pos 17402 Kgs 210 mm Dia

Test Certificate

Description AISI 4130 75KSI .2% PS API QTC Steel Type **ALLOY 4130**

Material	Specifical	lon	AISI4130	/							,																	
Heat Tre	atment S	98C	197-237	BHN				Test Spec 517N/MM2MIN.Y					ZMIN.YLC)				Test !	Spec	Т								
Melt Pre	ctice		EF/V0				F	rodu	ction N	lethoo	1	FORG	ED															
He	at Treatm	ent	Temp(°C)		· S	oak			Coals	ent	Ch	arge Ref.	Init	Max(°C)	B	toh	Тетр п	corded us	ing	CC	NTAC	T THER	MOCOL	PLE			
HARDE	N _		860		зн	AS			WATI	ER QI	JENCH	SHF	158284	20	30	0912	91308	Nature	of T/P		Se	parate)					
TEMPE	R		650		4 H	RS			TABI.	ΕCO	QL.	SHF-	158284	1		1012	91319	Qto siz	e 4inch	SQX	6inch i	ONG						
							•															Re	rq. Min/N	lax ·			Achieveo	
												1		T^{-}				Hardne	es on T/P	,		197	237	HBW	2	29	229	HBW
					T							Ţ		\top				Hardne	ss on Ma	tertel	1	197	237	HBW	2	18	235	WBH
Tensile -																Impac	g -											
L	ocation		Directio	217		R	0.209	*		Pin	n	I	A%		Z%		Location		Direc	tion	\perp		CVN		Let E	ф. (тт		% Shear
	1/4T	L	LONGITUE	ANE	<u> </u>	5	17 Min] •	655 to	800	18	Min (4d)		0 Min		1/4T		LONGITY	JDINA	<u> </u>	27 1	evA nik		0.38	00 Min		0
Results	(N/mm2)				\perp		580			76	6	25	(50.0mm)	84.0	(12.56ma) Resu	ta (Joules	"	-30 Cen	ligrade	,	106	104 102		1.44	1.42 1.4		40 40 40
			<u>-</u> -		-				+							Resu												
Results	 								ل			<u> </u>				nesu	w											
Correst	on ·																											
Pitting I	Resistanci	, ,	$\perp \Box$		F	errite	•	\perp								Micros	tructure			\Box	•							
Carbon	Equivaler	rt.	1				-		.871					Gra	n Size	Min		6	Max		6	}	1					
G	.81	Ma	9		-	-	, ,	Mo	1	#	Cu		T		•		Γ –	1	T		$\neg 1$				T		\neg	

0.2920 0.5370 0.0110 Certs to BSEN10204.2004 3.1 NACE MR-01-75

FE = BAL REDUCTION RATIO 6.5:1

Industrial Kit. CERTIFICATE ACCEPTABLE OC INSPECTOR

0.2430

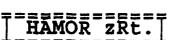
0.2290 0.1860

All furnace Cafforation conforms to API6A 20th Edition ANNEX M. Hardness load/penetration depth - HBW 10 diameter (mm)/3000 kgf test force per ASTM E10.

Third party inspection :

Names of Approved Signatories: S.Maxted G.Smith S.Suter P.Rogers M.Brown This report is not to be reproduced without written approval.

0.0050 1.0620


Page 1 of 1

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

12 / 44

Lange

2082-8030 FORGING, MACHINING, HEAT-TREATING

1386 4205140284

ÉMI - TÜV ISO9001

H-3531 Miskolc, Kiss Ernö u. 17. Phone: 36/46/401-033 Fax: 36/46/379-199

INSPECTION CERTIFICATE

ACCEPTANCE ACCORDING EN 10204-05/3.1

Date of issue: 2013.03.27 | Hámor No.: 98-39B5263 | Order No.: 32259784/13/2

Customer: Contitech Rubber Industrial Kft.

6728 Szeged Budapesti út 10

Quality: AISI 4130/CONTI Spec.No.: API 6A PSL3 315/131 × 182

Dimension: MSO-100597-002/A/H mm

Final dim.: MSO-100597-002/A(4 1/16") Heat-treatment: Quenched & tempered

Quantity: 30 pcs | Weight: 73.0 kg/pc | Total weight:

.nomination of product: Forged, machined disc

Chemical analysis %

Heat No.: (034939)

Steelmaker: CELSA Hutaostrowiec POLA

Test Min. No. Max. 0.45 1.80 1.00 0.025 0.025 2.75 1.500 0.300 0.82	Spec.	С	MN	sı	₽	s	CR	МО	V	Се
	• 1 .									0.82

Result | 0.28 | 0.56 | 0.20 | 0.006 | 0.003 | 0.99 | 0.170 | 0.003 | 0.62 |

Mechanical properties:

Test	Spec. value Min. Max.	HB 197 238	Rp0.2 MPa 517	Rm MPa 655	A5 % 18	KV-J -30°C 27
L13314	Result Result	235 238	525	662	19.50	35 52 82

ContiTech Rubber Industrial Kft. CENTIFICATE ACCEPTABLE اسيا

Test bar from product.

Dimensional and visual control: passed

Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory

Steel making (melting) process: UHP-ASEA vacuum-treated.

NACE MR 0175/ISO 15156+API 17K + API 6A PSL3.

HB-E10, Mechanika: ASTM A370 acc.

Grade Of forging: 9.81

.. 30 pc/series.

Executive

namor zki. linőség ellenőrzé Osztály

Expert

C/c

ALKA FEET

CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

13 / 44

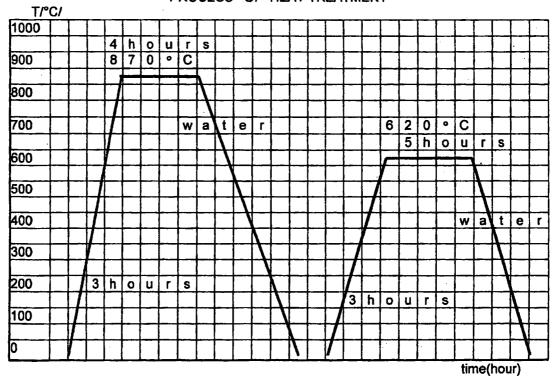
MISKOLC Kiss Emő u. 17. sz. H-3531

tel:36/46/401-033

fax:36/46/379-199

e-mail: hamor@t-online,hu

PROTOCOL NUMMER: 98-39B5263


HEAT-TREAT	MENT PROTOC	OL
BUYER: CONTITECH RUBBER INDUSTRIAL Kft. Szeged Budapesti út 10. sz.		o. of Buyer: 9784/13/2
Budapesii ut 10. Sz.	Work No. of Buyer:	
PRODUCT:	QUANTITY: PIECE	No. of drawing:
forged	30	MSO-100597-002/A/H
MATERIAL QUALITY: AISI 4130 CONTI API 6A PSL3	Charge No.: 34939	Test No.:

<u>HEAT-TREATMENT</u>: quenching and tempering

Typ of furnace: electric furnace

Hardening medium: water

PROCESS OF HEAT-TREATMENT

Miskolc, Hámor ZRt. 2013-03-26.

head of heat-treatment

Hámor zRt. Ilnőség ellenőrzés Osztály CONTITECH RUBBER Industrial Kft.

No:QC-DB- 651 /2013

Page:

14 / 44

Felado :

61344

gamma controll kft

19/18/13 12:54 Lap: 2

HARDNESS TEST REPORT

Report No: 561/13.

CLIENT:

JE-ZO KFT. SZEGED, KÜLTERÜLET, 01408/22.

TEST EQUIPMENT;

TH 160-D Hardness tester

PROCEDURE:

QCP-45-R1

DESCRIPTION OF COUPLING: coupling(s) after PWHT

DRAWING NUMBER:

MT-3121-3000

SERIAL NUMBER:

8083; 8084; 8085; 8086

Brinell Hardness Requirement	SERIAL NO OF COUPLING	PART OF THE COUPLING	ACTUAL HARDNESS RESULT (HB)
Min HB 197 Max HB 238	√ 8083	body weld flange connection face	224 222 236 238
	√ 8084	body weld flange connection face	213 208 220 238
·	√ 8085	body weld flange connection face	214 214 219 222
	√8086	body weld flange connection face	232 237 238 197

The coupling(s) conform to API Spec 6A requirements.

DATE:

PREPARED:

APPROVER ONTROLL KFT.
6750 Algyo, Koltertilet 018847(A. brsz.
Addiszám, 1907-894-2-5

2013. október 30.

Ménesi istván

QCP-03 HB/11

No:QC-DB-651/2013

Page:

15 / 44

Pelado

61344

gamma controll kft

19/10/13 12:54

HARDNESS TEST REPORT

Report No: 562/13,

CLIENT:

JE-ZO KFT. SZEGED, KÜLTERÜLET, 01408/22.

TEST EQUIPMENT:

TH 160-D Hardness tester

PROCEDURE:

QCP-45-R1

DESCRIPTION OF COUPLING: coupling(a) after PWHT

DRAWING NUMBER:

MT-3121-3000

SERIAL NUMBER:

8087; 8088; 8089; 8090

BRINELL HARDNESS REQUIREMENT	SERIAL NO OF COUPLING	PART OF THE COUPLING	ACTUAL HARDNESS RESULT (HB)
Min HB 197 Max HB 238	✓ 8087	body weld flange connection face	213 216 220 225
	√ 8088	body weld flange connection face	229 212 223 213
	√ 8089	body weld flange connection face	219 229 231 238
	8090	body weld flange connection face	207 210 226 234

The coupling(s) conform to API Spec 6A requirements.

DATE:

PREPARED:

2013. október 30.

Ménesi István

APPROMEDIONTROLL KET.

750 Algyo, Külterület 01454/14. hrsz. Agószanis 11054014 9.06 Warges Wildows

QCP-03 HB/11

No:QC-DB- 651 /2013

Page:

16 / 44

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

Vizsgálati szám: Report No.:

www.gamme-controll.hu 6750 Algyō, kitterület 0188414. hrsz. Tel/Fax.: +38 62/517-400 / 61344 A NAT diba RAT-1-1407/2018 actiono aktuadziti vizugibbi

ULTRASONIC EXAMINATION REPORT

513/13

Vizsgálat tárgy	a / Objec	t of tes	t		Cou	pling (Body)
Gyártó Manufacturer				Megrendelő Customer	JE-ZO	Kft. Szeged
Gyáriszám Serial-No.				Rendelési s Order-No.	szám	
Azonosító jel 8	Identification 8083-8088				ny nt	ASTM A388
Geometriai kialakítás / Ra Geometric configuration /		420		Vizagálati h Test heat tr		előtt prior
MT-3121-3000 Anyagminőség Material	 	AISI 413	0xø70x491	Letapogatá: Direction of	•	axiális és radiális
Adagszám Heat-No.		24613	/			
Vizsgálati felület állapota Surface condition		forgácsolt machined		Vizsgálati te Exted of Te	-	100%
Vizsgált darabszám Testing pieces	.*	6 db				
	Vizs	gálati s	datok / I	xamina	tion data	
Készülék típusa Type of US-equipment	·	USM25		Készülék gy Serlai-No. C	yári száma Of US-equipment	7875f
Vizsgálófej(ek) Searc unit(s)		SEB-2, SEB4H		Frekvencia(Frequency(i	• /	2 MHz 4 MHz MHz
Kalibrációs blokk Calibration standard identi	ication	E	T1,ET2	Erősítés(ek) Gain	axiálisan	dB dB
Csatoló közeg Couplant		olaj oil		Hanggyeng Attenuation	ülés	dB/m
Értékelés / észlelt	kijelzések	/ Evalua	tion / recor	dable indi	ications	
Ertékelés Evaluation	Х	megfelel satisfact			nem megfele	lő / not acceptable
Megjegyzés(ek) Remark(s)						
Hety / keit Place / date Gamma-Controll Kft. Algyö, 2013.10.17			Vizsgál:	tot végezte	6750 Algy Adós www Te	vegete (1844) hrsz. 2007 1094614-2-06 vegete (1844) hrsz. 2007 1094614-2-06 vegete (1844) hrsz. 2007 184640 Approved by to Péter - Felelős vezetőh.

No:QC-DB- 651 /2013

Page:

17 / 44

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

Vizsgálati szám: Report No.:

ULTRASONIC EXAMINATION REPORT

514/13

Vizsgálat tárgy	7a / Obje	ct of te	st		Coup	pling (Body	D
Gyertó Manufacturer				Megrendelå Customer	JE-ZO	(ft. Szeged	
Gyáriszám				Rendelési s	zám		
Serial-No.				Order-No.			
Azonosító jei				Követelmén	ny		
Identification	089-8090			Requiremen	nt	ASTM A	388
Geometriai kialakitás / Ra	jzszám	:		Vizsgálati h	őkezelés	eið	itt
Geometric configuration /	Drawing-No.	•	.*	Test heat to	reatment	prie	OF
MT-3121-3000		ø2	00xø70x491	İ		•	
Anyagminőség	Myanminficán			Letapogatás	si irányok		
Asterial AISI 4			130 /	Direction of	scanning	axiális és	radialis
Adagszam		00454		—			
Heat-No.	•	23171		I			
Vizsgálati felület állapota		forgácso	lt	Vizsgálati te	erjedelem		
Surface condition		machine		Exted of Te	st	100%	
Vizsgátt darabszám							
Testing pieces		2 db		1			
	Vi2	sgálati	adatok / E	xaminat	tion data		
Készülék típusa				Készülék gy	vári száma		
		USM25	ism25		Of US-equipment	7875f	
Vizsgálófej(ek)	Type of US-equipment			Frekvencia(2 MHz
Searc unit(s)		SEB-2, SEB4H		Frequency(i	• •		4 MHz
Codic Brill(s)		OLDTII	COTI		, , , , , , , , , , , , , , , , , , , ,		MHz
				1			MHz
Kalibrációs blokk				Erősítés(ek)) axiálisan		18 dB
Calibration standard ident	Scation		ET1,ET2	Gain	, axiangan		dB
Campiation stations were	III-BUOII			Gain .			dB
				1	radiálisar		6 dB
Csatoló közec		olaj		Hanggyeng		<u></u>	0 00
Couplant		oil		Attenuation			dB/m
Értékelés / észlel	t kilelzésel		ation / recor				
Értékelés Evaluation	X	megfel satisfa			nem megfelel	lő / not acce	ptable
Megjegyzés(ek)							
Remark(s)							
Hely / kelt			~		CAMI	MA - CONTRO	LL KFI
Place / date			() (. 01	1 /200 41	ACT LES TOTOLS AT	184/14. hrsz.
Gamma-Controll Kft.			1,61	سراا		A A CHARLES A STATE OF THE PARTY	4-2-00
			\flan=41-	ereriis NA erese dad salamanda	··· v	THICK BOWNING COM	MH:DU.
Aigyö, 2	013.10.17		_	tot végezte	·Í	Tel Of Strates	2540
· · · · · · · · · · · · · · · · · · ·				ted by		Approved by	74.
				T2010309030	7 Benke	5 Péter - Felelős v	ezetőh.

No:QC-DB- 651 /2013

Page:

18 / 44

ULTRAHANG VIZSGÁLATI **JEGYZŐKÖNYV**

Vizagálati azám: Report No.:

ULTRASONIC EXAMINATION REPORT

515/13

Vizsgálat tárgy	a / Obje	ct of test		Flange			
Gyértó			Megrendelò	7 70 VA 0			
Manufacturer			Cnatowies	E-ZO Kft. Szeged			
Gyáriszem			Rendelési szám				
Serial-No.			Order-No.				
Azonositó jel	083-8090		Követelmeny	ASTM A388			
Identification	000-0000		Réquirement	ASIM A360			
Geometriai kielakitės / Ra	jzezém		Vizsgátzti hőkezetés	előti			
Geometric configuration /	Drawing-No.		Test hest treatment	prior			
MT-3121-3000		ø315x85xø190x94xs	70				
Anyagminôség		AISI 4130 /	Letepogatási irányok	axiális és radiális			
Material		A101 4100 /	Direction of scanning	CAMID CO INVAIS			
Adegsक्रांग Heat-No		034939 /					
Vizsaálati felület állapota		fornácsolt	Vzsgálati terjedelem				
Surface condition		machined	Exted of Test	100%			
Vizagát darabszám							
Testing pieces		8 db					
	Vi	rsgálati adatok /	Examination da	ta			
Készülék tipusa		HOMO	Készülék gyári száma	Készülék gyári száma			
Type of US-equipment		USM25	Serial-No. Of US-equip	ment 7875f			
Vizsgálófej(ek)		SEB-2,	Freitvencia(k)	2 MHz			
Searc unit(s)		SEB4H	Frequency(les)	4 MHz			
				MHz			
				MHz			
Kalibrációs blokk		ET1,ET2		dåßsan 6 dB			
Calibration standard Ident	fication		Gain	ø8			
				dB			
Cestolò kázea		olai	Itanggyengulés	diálisan 6 dB			
Couplant		oli	Attenuation	dB/m			
	t kijelsése		ordable indications				
Ertèkelés Evaluation	X	megfelelö satisfactory	nem m	egfelelő / not acceptable			
Megjegyzés(ek) Remark(s)							
Hely / kelt		· · · · · · · · · · · · · · · · · · ·		-72 0			
Piace / date			10 au	GAMBIATACOSTEBULI KEL			
Gamma-0	Controll Kft.	<i></i>	ا الملا	alth. Maco. Authority (1984) 14, how			
	013.10.17	Viza	gélatot végezte	tot vegezte Advisor 1004/14.200			
		1	Tested by	Approved to:			

No:QC-DB- 651 /2013

A tanúsított személy aláírása

(The signature of the certificated individual)

19 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

Azonosító szám: UT20103090307 (Identification No.): A tanúsított neve: Tóth Ákos József

(The name and forename of the certificated individual): Születési hely/idő: Hódmezőváráshely, 1987. 09. (Place and date of birth):

Vizsgálati eljárás(ok): Ultrahangos anyagvizsgálat (The NDT method(s): (Ultrasonic testing)

> Készülékek, berendezések, létesítmények vizsgálata EM Ipari terület: (Industrial sector): (Pre and in-service testing of equipment, plant and structure)

Termék terület(ek): (c)+Fv, (w)+Fv, (wp)+Fv, (f)+Fv Product sector(s):

A minositės fokozata: Ŭ72 (The level of certification)

A tanúsítás és kiadásának időpontja:

Budapest, 2009. 12. 07. (The date of certification and it's issue):

A tanúsítás érvényes: (The date upon which certification expires):

2014. 12. 06.

Az ipart és/vagy termék terdelet érvényesség kiterjészéve:
(The industrial and/or product sector bas

Datum (Date): 😃

MD reuge 057/2004

ST and Waterin

izsgáztató

A tanúsítás érvényessége

(Renewed the validity of the certification until (MSZ EN 473 9.):)

Dátum (Date):

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint a Nemzeti Akkreditáló Testülét által a NAT-5-0013/2006 számon akkreditált tanásító testület az MSZ EN 473 számú szabvány szerint eredményes vizsgája alapján a nevezett személyt tánúsítja a fentiek szerinit:

(The Hungarian Association of Welding Technology and Material Testing as an accredited by the National Accreditation Board (under No. NAT-5-0013/2006) cestification body, on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifics the named individual according to the above.)

-ig megújítva (MSZ EN 473 9.):

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakított termékek (wought products); p - műanyag termékek (plastics products); k - kompozitok (composites products).

CONTITECH RUBBER	
Industrial Kft.	

No:QC-DB- 651 /2013 Page:

20 / 44

UT20103090307

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatálmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN 473 3.21) 1978年,海季

(The holder of this certificate has been authorised to perform tests and take responsibility for the test results. (MSZ EN 473 3.21)

GAMMA - CONTROLL KFT

6722 Szeged Gyertyárnös u. 10-6/A

Munkáltató aláírása - Adazán Trusch - 10-6/A

(Signature of the employer) Thank 11-36063/20405154

www.gamma-controll hu

Tel.: 06 30 218-2640

Dátum: 4000 . 12 07

	Folyamatos munkavěgz (Evidence of continued v	és igazolása (MSZ EN 473 9.) vork activity (MSZ EN 473 9.))	
Sorsz.:		"GAMMA-CONTIROL.	Dátum (Date)
r i	MULLIN	Mindesgellendese KOLL	100.01.04.
21.	The sale	TION OF PARTY.	20N. Ol. 06.
3,	INDER	Cathard 101	no 12 01.09.
A	1000	-GAMMA TOWN	1013-01-09
3.		Anyagotassia di Bindissilandra Kfi	
estat de te Officiale i Newson. National de Tarin de la company		A STATE OF THE STA	
9			
9,			
10.			

Kiegészítések

^{*} A tanúsítvány a munkáltató aláírásávál érvényes (This certificate is valid with the signature of the employer.)

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 21 / 44

- PHOENIX	TECHNI	CAL D	ATA SHEET		TDS	Page	
PHOENIX RUBBER INDUSTRIAL LTD. W.	WELDING PROCEDURE SPECIFICATION			TION	WPS	Nº 1 of 2	
CLIENT	THIS SPE	CIFICAT	TION IS BASED WPS N° 140-71 REV 4			REV 4	
IDENTITY CODE	ON ASM	Æ CODE	SECTION IX SUPPORTING PQR N°			R N°	
ITEM Qty	WELDING PR	OCESS: G	TAW-SMAW				
DATA FOR ACCEPTANCE TYPES: MANUAL				WELDER'S	S STAMP		
JOINTS (QW-402) Appr. 1.5	B		Sequences	of weld see	~2.5	ndum	
JOINT DESIGN	BACKING: YE	S/NO	WELD SEQUE	NCE			
BASE METALS (QW-403)			PART "A	,"	PAR	Ĕ	
DRW N°							
GRADE:	WNo	.:1.7220	ASTM A 322-9	1: AISI 413 EN 10083-		Mo4 (MSZ	
CARBON EQUIVALENT	max.C _e	=	0.82		0.	82	
MECHANICAL PROPERTIES: Tensile Strend	STH N/mm²	min.	655		6:	55	
DUCTILITY	%	min.	18		1	8	
Hardness	HB	max.	238		2:	38	
IMPACT TEST -:	30°C J .	Average	27		2	7	
THICKNESS: t	= 5-38 mm		OUTSIDE DIAMETER: ØD = 60-280 mm			280 mm	
FILLER METALS (QW-404)	1					1	
WELD MATERIAL DIAMETE				NDARD	······································	SUPPLIER	
Rod 2.4 mm	EMI		AWS A5.11			Böhler	
Electrode 3.2; 4.0	T-PUT Nin		AWS A 5.5-96:	E 10018-D	2 (mod.)	Böhler	
LAPSE BETWEEN OF PASSES	MIN./mi	<u>n</u>		-			
Positions (QW-405)	Preheat (QW-406)						
1	POSITIONS: IG Rotated (horizontal)				PREHEAT TEMP.: 300-330 ℃		
WELDING PROGRESSION: V			INTERPASS TEMP.: max. 350 °C			• • •	
n Position of fillet	ear to the top		PREHEAT MAINTENANCE: Till the begining of postweld heat threating				
OTHER			METHOD OF PR	EHEATING:	Furnace		

CONTITECH RUBBER No:QC Industrial Kft. Page:

No:QC-DB- 651 /2013 Page: 22 / 44

·		.,					
CONTINUA	ATION OF WPS	Nº 140-71 Rev			Pa	ige N° 2 of 2	
POSTWELI	DHEAT TREATA	LENT (QW-407))	Gas (QW	–408)		
HOLDIN	G TEMP. RANG	620 +20 / -	0 C°	SHIELDI	NG GAS A	gon for root	:
HOLDIN	G TEMP. TIME	4 HR					
HEATING	G RATE MAX.:			PERCEN'	TAGE COMPOS	ION (MIXTUR	E)
Cooline	G RATE MAX.:	80 °C/HR			9 9	.995 %	
LOCATIO	ON OF THERMO	COUPLE		FLOW R	ATE 10	-12 LITRES	/min.
				GASBAC	CKING: Argon	(for 1st and	2nd passes)
FURNAC	E ATMOSPHERE	Air	•	FLOW RA	ATE 7-9	2 Litres/min	
TYPE:	·		·· · · · · · · · · · · · · · · · · · ·	TRAILIN	G SHIELDING O	AS COMP.	·
ELECTRICA CURRENT		LISTICS (QW-40	9)	ELECTROE	DE POLARITY :	1st 2nd-28th	pass: - passes: +
TUNGSTEA	N ELEKTRODE S	IZE/TYPE: Ø3.2	mm thoriated	tungsten			_
MODE OF	TRANSFER FOR	GMAW					
ELECTRO	DE / WIRE FEED	SPEED RANGE					
WELD	PROCESS	FILLER	METAL	Cui	RRENT	VOLT	HEAT
LAYERS		CLASS	DIAMETER	TYPE	AMP.	RANGE	INPUT
	- OTANI	77.07.6	2.4	POLAR.	RANGE	11.15	(KJ/cm)
1 2-3	GTAW SMAW	EML 5 T-PUT	2.4 mm 3.2 mm	+	110-130 120-140	11-12 24-26	5-8.4 12-19.6
		NiMo 100	0.2.52.6				12.510
4-28	SMAW	T-PUT NiMo 100	4.0 mm	+	150-170	26-30	16.2-27.5
TRAVEL SI	PEED RANGE	100-130 n	nm/min	<u></u>	<u> </u>	<u> </u>	
	ле (QW-410)						
	R WEAVE BEAD			ORIPACE C	OR GAS CUP SIZ	E Ø9mm	
INITAL/INI	TERPASS CLEAN	ING: Brushing,	Grinding				···
	ITS FOR WELDIN			 		· 	
OTHER:					<u>-</u>		
EXAMIN	ATION		1	REMARKS			·
		eptance instruct	1		y CMo3 (MS	Z 61)	
1	Nº MIO-FB 2 I	Based on ASME	SIX.	- ** Ni con	- ** Ni content less than 1 %		
				- Before we 350 ℃	elding bake ele	ectrodes for	2 hours at
В	Y DATE	TECH	NICAL D	ATA SHI	EET		
Desig. &	26 14.06.	WELDING P	ROCEDUI	RE SPECIF	ICATION	HoseTe	CHNICAL
Appr. 🗸 🕻	1 1/2 2	UBJECT: Butt	weld of hose	coupling for	H2S service;	DEPAR	RTMENT
Chek'd			Strenght	75K		WPS Nº 14	0-71 Rev.4
		· · · · · · · · · · · · · · · · · · ·					

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	23 / 44	

PHOENIX RUBBER Industrial Ltd.	Nº:	WPS 140-71 Addendum
Hose Division	Revision:	4
	Page No:	1/2
	Date:	2007-06-12
ADDENDUM	Designed:	Buisn W
for the approved wall thickness range 5-38 mm	Checked:	11.
Based on WPS 140-71 Rev.4, PQR No.: BUD 0700002/1	Approval:	C Sefer

No.	Wall thickness [mm]	Weld layers		Electrode Ø [mm]
1.	5-7		l 2	3,2 3,2
2.	7-9		1 2-3	3,2 3,2
3.	9-11		1 2-3 4-5	3,2 3,2 4,0
3. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	11-13		1 2-3 4-6	3,2 3,2 4,0
5.	13-15		l 2-3 4-8	3,2 3,2 4,0
6.	15-18		l 2-3 4-10	3,2 3,2 4,0
7.	18-20		1 2-3 4-11	3,2 3,2 4,0
8.	20-22,22		1 2-3 4-15	3,2 3,2 4,0
9.	22,2-26		l 2-3 4-19	3,2 3,2 4,0

No:QC-DB- 651 /2013

Page:

24 / 44

PHOENIX RUBBER Industrial Ltd.

ADDENDUM

for the approved wall thickness range 5-38 mm Based on WPS 140-71Rev.4, PQR No.: BUD 0700002/1

Nº:		WPS 140-71 Addendum
Rev	ision:	4
Pag	e N°:	2/2

No.	Wall thickness [mm]	Weld layers		Electrode Ø [mm]
10.	26-29		1 2-3 4-19	3,2 3,2 4,0
11.	29-32		i 2-3 4-23	3,2 3,2 4,0
12.	32-35		l 2-3 4-24	3,2 3,2 4,0
13.	35-38	20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	i 2-3 4-28	3,2 3,2 4,0

No:QC-DB-651 /2013

Page:

25 / 44

Certificate no: Page 1 of 2

BUD 0700002/1

Welding Procedure Qualification Record (POR) ASME IX

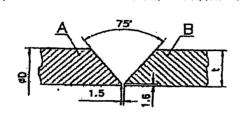
Energy and Transportation

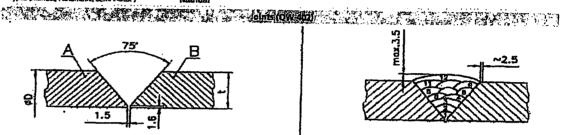
Company Name Phoenix Rubber Gumlipart Kft; SZEGED

Procedure Qualification Record No.

BUD 0700007/1

Date


·不同學數學的數學數學。 28 February 2007


WPS No. 140-71 Welding Process(es)

GTAW/SMAW

Types (Manual, Automatic, Semi-Auto.)

Manual

Groove Design for Test Coupon (For combination qualifications,

ions, the deposited weld metal thickness shall be recorded for each titler metal or process used.)

AISI 4130

Base Metals (OW-403)

ASTM A 322-91, AISI 4130

Particulal Heart Treatment (COV-407) 620 +20-0 °C

Material Spec. Tybe or Grade

AISI 4130

Temperature

4 hours

P.No.

AISI 4130

Time

Other

Thickness of Test Coupon 👙 Diameter of Test Coupon

to P-No.

CONCRETE TO THE PROPERTY OF TH stablines lan

Shielding

(Harris

Percent Compositio Constant (Manure) Flow Rate Ar 99.95%

10-12 l/min 7-9 Vmln

Filter Metals (CNV-404) GTAW SMAW Electrical Chi SFA Specification

ER 705-3 A5.18

6

E 10018-G A5.5

Backing Ar 99.95% Current DC

Sic (1W-400)

AWS Chadlestion Filler Metal F-No. Weld Metal Analysis A-No.

Weld Metal Thickness

Polarity GTAW DCEN, SMAW DCEP Layer 1 120, Arres. Layer 2-3 127,

Lavor 1 11-12. Later 2-2 2426.

Size of Filler Metal

3.2, 4.0 mm

16 mm

Legar 4-12 156 Tungsten Electrode Size

Single or Multiple Electrodes

Lavor 4-12 25-30

3 mm

Travel Speed

Technic OWA10 Layer 1-11 100-150 Layer 12 ngu/min

3.2 mm

Pesition (CNP-405) Posttion of Groove 1G rotated Weld Progression (Uphill, Downhill)

Layer 1-11 String Layer 12 Weave SMAW Multipass or Single Pass (per side) M

Other

Preheat (CVV-406) 300-330 °C

Layer 1 6.0-8.6 KI/cm Langua 2-3 14.1-19.8 Elfons Lover 4-12 193-29-1 KI/m

Preheat Temp. mex 350 °C Interpass Temp

Other

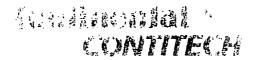
bloyd's Register, its offiliates and substitutes and their respective officers, employees or agents are, individually and collectively, referred to in this clause as the 'bloyd's Register Group'. The Lloyd's Register Group assumes no responsibility and shall not be liable to any person for any loss, damage or expense caused by reliance on the information or advice in this document or however provided, unless that person has signed a contract with the relevant Lloyd's Register Group antity for the provision of this information or advice and in that cases any responsibility or liability is exclusively on the terms and conditions set out in that contract.

FORM 4106 (2006,12)

No:QC-DB- 651 /2013

Page:

26 / 44


Certificate no:

BUD 0700002/1

						Page 2 of 2		
Sex 1		I I I		Jensie Test		LIFE DE	PQR No.	BUD 0700002/1
Specimen No.	Width rom	Thickness rura	Area mm²	Ultimate Total Load kN	Ultimate Unit Stress MPa	Type of Failure & Loca	rtion	
39/1 39/2	18.9	15.8 15.7	PANER!		657 664	Base material Base material	eng.	:
						1		
Gurded-Benc Type and Figure					esults		17147.27 145.2282	
180° Berid ro	ler dla. 36 mr	n 2+2 pcs.	CONTRACTOR		atisfactory	TO PROM		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	43,113,34	A Miles	A CONTRACTOR		i de la composition della comp	er keski ha	4000	etter by
Tolefinesite	de de contractor de	macula training	Specimen			Value		
Specimen No.	Notch L	ocation	mm 10x10x5	*C	ap.	% Shear	Mis Biologicis	Drop Weight Break (YAN)
39 39	S (1994) S (1994)	Kindika di kacamatan da kacamata Kindika di kacamatan da kacamata	10x10x5	-30	49	ARNOGE VVIII 1 10 Leader evens		
39	HAZ	anan sa sa sa Mga sa sa 1944	10x10x5	3 -30	38			學的學術學
39 39	HAZ HAZ		10x10x5	WAR 1 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	97 62	horpide y	對領導	学的最大的。
Aug (we gr					網門所得得	外,中心的	MOST WA	3 6. 排列。2011
	粉斗量的	hipany d	seimosos	Nadan)	Maria Made		tana a	网络阿尔 克克克
Comments:	Riskus.		\$4.19.866b				Water We	
			****	tekation whowasians a specie				
DAY TO THE	Articulated magnetic schill	AND REAL PROPERTY.	*					
Result- Salisfactor Macro - Results	y: Ye:		No 🛘	Penetration	into Parent Metal:	Yes	·	6
Type of Test Deposit Analysis	Hardr	ess test			je.			
Other		- Satisfacto - Satisfacton						
Welder's Name	Tivade	r Szabo DC-i	L 378258	Clock No.	(BC 15)	Stamp No.		
Test Conducted By	PKG E	AST Anyagv	zsgalati Labor.	Laborator	y Test No: T	MO 007-7/07 V.K 12	07/2007	· •
We certify that to requirements of	he statements Section IX of th	in this record :	we correct and th	nat the test weld:	s were prepared, i	welded, and tested in	accordance w	ith the
Onto Issued:		bruary 2007	-		loyd's Register	mg -		
	Ra-	5 .a. s		ļ		Lloy	īs	
Manufacturer's Rep		atario Bajust			Laszlo Penzes	V Kegs	er	
Manufacturer	Phoenix Rubber	Gumiipad Kft, S	EGED	_	Surveyor to U	oyd's Register EMEA	••••	

A member of the Lloyd's Register Group

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 27 / 44

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Designation ASME IX: GTAW / SMAW Pipe BW s19 1G

Welder's name: Tivadar Szabó (BC15)

Identification card No: 517278EA

Date and place of birth: 19. August 1949; SZEGED

- · · · · · · · · · · · · · · · · · · ·		Weld test de	tails	Range of a	рргоуа	Photo (if required)
Welding process	3	GTAW/SMA	W			
	Туре	Rod / Electro	ode	1		
Filler metal	Designation	AWS 5.18; ER AWS 5.5; E9				
Parent metal gro	pup(s)	ASTM A 322-91 4130	I; AISI	ASTM A 322 4130	•	
Plate or pipe	1	Pipe		Pipe/Pi	late	
Welding position	1	1G		1G/FI	at	
Outside diamete	rį̇́ (mm)	72 mm		> 25 m	າກາ	Identification of test
Test piece thick	ness (mm)	19		Max to be	welded	pieces:
Single/ both side	welding	Single				WPS No.:
Gouging/ backin	g					140-60 Rev.4
Joint type		Groove		Groove /	Fillet	Testing standard:
Shlelding/ backing	ng gas(ses)	Argon (99,95	5%)			ASME IX
Welding carried	out, place:	szeged	Dat	e: Iding Engineer:	29 April 20 László Bai	110 USZ Barrer
Type of test		Performed and accepted		Not required		e and date:
Visual	Ac	cepted (Vjk-1739/10)				Szeged, 18-Jun-2010
Radiography	Ac	cepted (Vjk-1739/10)]	
Ultrasonic				+	Sun	reyor:
Magnetic particle	•			+		Péter Szabó
Penetrant				+		on and einember s
Macro				+	Sian	np and signature
Fracture						
Bend						A THE TANK OF THE PARTY OF THE
bend				+	1	Z-1 T/Y

CONTITECH RUBBER	No:QC-DB- 651 /2013					
	Page:	28 / 44				

CONTITECH

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Welder's name: Tivadar Szabó (BC15)

Identification card No.: 517278AE

Date and place of birth: 19. August 1949; SZEGED

PROLONGATION OF APPROVAL BY EMPLOYER												
Place	Date	Name/ position/ title	Stamp and signature									
Szeged	29.10.2010.	Laselo Bajusz / Welling bedung logist	Boered									
Szeged	29.04.2011.	Lasto Bojusz / Welding telundoj is	Berrel									
Szeged	29 10. 2011	Lasto Bajun Welding Jedus Osist	Beerel									
Sreged	29.04.2012.	Casilo Baiun (Welding Lecteralgot	Burl									
Szejeck		Cassle Dairen / Mabling La le wolg ix										
Szgal	29. 04. 20B	lando Bajun Wakling balendajest	Bourel									
Sigel	28.10.2013	(as 16 baies / Weblie falous good	Bootel									
-												
-												
<u></u>												
<u> </u>			······································									

No:QC-DB- 651 /2013 Page: 29 / 44

Adószám	20 KFT. ilterület 01408/2 : 13341039-2-06 számlaszám:	' J		ELDIN				ET		2013.	2890	f
0670 0€	\$15.4654-beiltur	۱۸۱							PAGE /c	idal 1/	1	
CLIENT	-	רודאכ	TECH R	UBBER I	ndustri	al Kft.		CH.ORDER delésszám	Nº. 3	1261592	8.	
Kötéssz				XL/JOB N ^O . i m.szám	2898	2898 - 2905. WPS No. Heg.ut.száma HD -71. Rev.						4.1.7
	F WEDED PAR atrész megneve	-	Body	(+ F)	onae.			DRWG N	41	3121-	3000 .	
	ü. OF WELDEF 5 neve és száma		Szabo	livador	lószl	5. B.C	15.	LOCATIO Munkavég	N/SHOP	A		szele G .
DATE Dátum	2013.10.2	5	QUANT		8.			SERIAL N		s 8083 ^	80 90_	
1. MATE	RIAL	_	JECT 1	boo		MATERIA	uL	AISI . 413	CA	ST Nº.	24613	1 80 PS-80
	egfelelőség	Targ	y 1 JECT 2			Anyag MATERIA		MS1.413		agszám IST N ^Q .	27.17	1, 8085-8
azonosit	ésa 	Tâng		-Dan	ge	Anyag		<u> </u>	1	egszám	034	939 .
	R METAL a minőség		D LAYER! tszám	s 		1.	2	?-3.	4	-#.		
és mére	t	TYPE			In.	5.	NIH	0. 100 .	HIN	0. 100		
	Atms FILL Elek 3. ELECTRICAL CHARACTERISTICS		DIAMETER Atmérő FILLER CAST N ^Q .			4.	32.		4.			
			r.adagaz	ám	800303.		1124075		1127750		<u> </u>	<u> </u>
			POLAR	Polaritás		•		+	+			
Elektron	nos adatok		VOLT (V) AMPERE (A)			3.		24 _.		26.		
		Щ.					40 .	1	80.			
	EAT TREATME da felhasználás					300 .		C°		8 .		Hours
	ED SHILDING G azott védőgáz	AS T	TYPE Tipus Ar	qon.	Percentage Composition Flow Rat Tisztaság . 99 % . % Aramlási I/min						8	
6. HEAT	TREATMENT (p				7. POS Helyz		Forg	atott .		, 0,11,11		
8. SPEEL	OF TRAVELS	יסמו	÷130	mm/min		SE BEETW			8			min
10.POST	ztési sebesség WELD HEAT	T	Ttn	ne	Te	tfelrakési s mperature	ZUNGU	Fumac	e atmos			ling rate
TREAT Utóhók	MENT rezelési adatok		1d 240.	-		merseklet 20 .	C°	Leve	öközeg 170 .		Hulesi 8(sebesség). C°/H
	OGRAPHIC TES grafial vizag, biz			2410	115,	2451	14					
REPAIR Javitás	YES/ ige	n				X	NO/ N	em				
	PLACE OF DEI Hiba helye	FECT				TYPE Hiba t		EFECT				
	METHOD OF R			· ·		 						···
VISUAL II Szemrevé	NSPECTION . telezés	H	egfele)	å / 50	hsfoct	ory.						
REMARK: Megjegyzi	ės		onius.	Magic	. Ika	EGESZÍ	600				JE-ZO) KFT.
	of coling down to rûlês vêge	me	W	MINOSIT KOVKERI	- C- K-11	i <u>Mi</u> Conori	. , .	3C) INSI	ECTOR Zus No	6728 Szeg Add		rület 01408/

No:QC-DB-651/2013

Page:

30 / 44

Felado :

61344

gamma controll kft

19/18/13 12:50

Gamma-Controll Kft. Algy6, 2013.10.30. (10h)

SZEMREVÉTELEZÉSES VIZSGÁLATI JEGYZŐKÖNYV

Record No. Jegyzőkönyv száma:

9999-gamma-corectinu 6760 Algrid, intioritet 01594/14. hvaz. ToU/Ru.: +09 62/517-400 / 01344

VISUAL EXAMINATION REPORT

813/13

Object Tárgy	Coupling welding Cantlakozó hegesztés	Serial No. Gydri szám	8083-8090
Customer Megrendel	JE-ZO Kft. Szeged	Orawing No. Rajzszám	r-3121-3000
Job Nr. Munkaszá	002/13	Material/Dimension Anyagminöség/méret	AISI 4130 115/77
Quantity Mennyleé	8 db	Extent of examination Vizagalat terjedelme	100%
Requirements Követelmények	ASME code VIII/1	Heat treatment Hökezelés	after PWHT
Written Procedure N Vizsgálati eljárás sz	· · · · · · · · · · · · · · · · · · ·	Welder Hegesztő	BC15

Technique Direct visual Mödszer instrument Készülék Visual aids 3x magnifying lens Segédeszközök

Measurement / Mérés Equipment Készülék Instrument Készülék Lighting intensity Surface temperature Surface condition 20 °C machined 1000lx Paltitat A felület Megvilágítás Allapota hömérséklete Test results SATISFACTORY Eredmenyek : megfelelő......8 pc(s)/db not accepted pc(s)/db nem megícielő......0 Vizsgálat helye és ideje: Vizsgálatot végezje: Áttekintette és jóváhagyta: Reviewed and approved by T. GAMMA - CONTRACT BY T. 6750 Algo, Kulotto Quyana Managara Adocara 110 4646 200 Place and date of test: Tested by:

Kis Zábor

VT20/03130102

Tel F064162 1842690

No:QC-DB- 651 /2013 Page:

31 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő: (Place and date of birth):

Kis Gábor Balázs

Szeged, 1980. 02. 29.

Azonosító szám: VT20103130102

A tanúsítotí s

Vizagálati eljárás(ok): (The NUT method(s):

Szemrevételezéses anyagyizsgáló

(Visual testing)

Ipari terillet: (Industrial sector):

Készűlékek, berendezések, létesítmények vizsgálata EM (Pre and in-service testing of equipment, plant and structure)

Termék terület(ek): Product sector(s):

(c), (w), (wp), (f)

A minosités fokozata: (The level of certification):

VT2

A tanúsítás és kiadásának időpontja: (The date of certification and it's issue):

Budapest, 2013. 02, 19.

A tanúsítás érvényes: (The date upon which certification expires):

2018, 02, 18.

(On behalf of certifying

Tamistió Testillet ne

Az inari és/vagy termék terü-let érvényesség kiterjesztve: (The industria) and/or product sector has been expanded to):

Dátum (Date):

Tamisitó Testillet nevében (On behalf of certifying body)

-ig inegájítva (MSZ EN ISO 9712 10.): n umil (MSZ EN ISO 9712 10.):) A tamisítás érvényessége (Renewed the validity of the o

Dátnin

(Date):

Tamisító Testfilet nevében (On behalf of certification body)

[°]c - ömtvények (castings); f - kovácsolt termékek (forgings); w - hegesztett és forrasztott termékek (welded products); t - csövek és csővezetékek (tubes); wp - alakhiott termékek (wrought products); k - kompozit anyagok (composites products).

CONTITECH	RUBBER
Industria	l Kft.

No:QC-DB- 651 /2013 Page: 32 / 44

VT20103130102

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanúsúvány tulajdonosát, hogy vizsgálatokat végezzen és zzok eredményéért felelősséget vállaljon. (MSZ EN ISO 9712 3.21)
(The holder of this oblikutakin hom nethanisada nethan tots and take mineralidik for the text and to a constant and take mineralidik for the text and take the second an

(MSZ EN ISO 9712 3.21)

(The holder of this additional town experient in perform tests and take responsibility for the test results. (MSZ EN ISO 9712 3.21))

6726 Szeked, Túzok n. 8/A

Munikáltató aláírásari dószámi 11/9acítá 2.00

(Signature of the camboff I) P Bank: 11335003-01500134

Www.gamma-controll.hu

Sorsz.:	Municalistó alátrása (Signature of the employer)	work entitity (MSZ EN ISO 9712 10.)) Ph. "GAMPIA GONFITOLL."	Dátum (Ogte)
1.		Anjogeljegáló és Minőségellenőrső Kfi	7011.02.06
2.			
3.			
4.			
5.			
6.			
7.			
8.			
9.			
10.			

Kiegészítések: (Additional remarks:)

A tamúsítvány a munkáltató aláírásával érvényes (This cortificats is valid with the signature of the employer.)

No:QC-DB- 651 /2013

Page:

33 / 44

Felado :

61344

gamma controll kft

19/18/13 12:54 Lap: 1

RADIOGRÁFIAI VIZSGÁLATI **JEGYZŐKÖNYV**

Jegyzökönyv szám: Report No.: 2431/13

RADIOGRAPHIC EXAMINATION REPORT

Kiállítás dánumu; Date of report:

2013.10.30

													<u></u>	EU 10. 10.	,JU
Vizzgálat	Linner							Mean	endelő:						
Object	. 			•	Coupling	B		Cilen				JE-20 Kft. Szeged			
Munkasz	Am;							Renduldsi solan:							
Job No.:							_	Order No:						_	
Rajeszám				MT	-3121-3	000		Anyagmináség:					21 A	14130	
Drawing					7.2.			Material:						14130	
Vizsgálot Tertina si	i spabydny	•		C)CP-13-	ŧ		Vizagalat terjedelma: Extent of teating:					10	00%	
	inozia: Avetelmén	-						Hoke		ng:					
	co criteria:	,		A	STM E9	4				t condition:			After	PWHT	
Kód:								_	zki jele:				6		
Code:			MSZ EN ISO 6520-1						z stamp				_ U	CIS	
Borondez			GAMMAMAT							lző típusa;			ASTM	set B typ	
	quipment:		G/2011/10/2011						rio:	•			ואונטת	er B typ	ξ
Sugarforn	fe :		Tr192							elző holye:				F	
Source:	la mérete:								tent of l képmin						
Source six				3	x1,5mm							2% (2-2T)			
Aktivitta:								Required KJI:							
Activity.			0,4 TBq						Film Type:				FON	IA R5	
Filmkidol	gozás mád	80	Kézi: Automato:				w	Foliafi	jta ės v	astagság:				0.027	
Film proc	essing:		Manual:		Automit	α		Screen	týpo ar	d thick:				U ₁ U & 1	
	i	l	زو	1	Fin dt. e tány suptants ledds odestot: Distance han source side of object to film:	1		1	۱	<u></u>		Hibák/			
	[]}	l Hr w	e s	1	Ι.	43	Oue of test	Ciáz	Salak	Kütés	Gyök	Repodés	Polate
	1	1 1		II		Ι.	١, ا	두 집 및	ľ	Porosity	Slag	Lack of Suites	Lack of	Crack	Surfa
# <u>5</u>	1	111	1 5 4	真質	8 8	(.5	K 28	, i	I A	В	С	D	Ε	F
2 3		1 # 8	1 1 1	H T		يزا	18.8	1 4 3	I	1		_	1		
Megnevezés Designation	Meret	Febriteisk some. Number of codingraphs	Asugazott sayagyastagsig: Penetisted Aictores:	Sogiethnis film tivologe Sourcette-film dismose	For the e bing neglands for contains for contains. Distance from source side of copect to the	Februadis. Density.	Megyilágstási údk Expos. Timer.	Uzkites: A-meglelek VA-tom meglelek Beset: A-tommed: NA-tot serensi	Vazgalas iddyontje;	200	300	401	402	100	500
≱ઢા	Siza Siza	を見り	141	33	E 8 8 8	22	1 3 T								ĺ
	0	db	mm	mm	व्याण		min	Vakinis: A-magkiek NA-nom magkieki Resut: A-nommed: NA-not nomme		1 . 1					
8083	115/77	4	19	96	19	2,4	0,5	A	10,30						
					 -	-	<u> </u>	 	10,38					<u> </u>	
8084	11 <i>5/77</i>	4	19	96	. 19	2,4	0,5	. A	105						
8085	115/77	4	19	96	19	2.4	0.5	· A	iup Iumo						
8086	115/77	4	19	96	19	2,4	0,5	Α.	10,55						
8087	115/77	4	19	96	19	2,4	0,5	A	10.30,						
8088	115/77	4	19	96	19	2,4	0,5	A	10.30.	-					
									105						
										k terheli.	•	1			
pe mm	bers of t	ne film	s and we	ids ar	e identic	al, the	or ide	ntifica	tion is	the task o	I the cos	tumer,			
		-													

Vizsgálatot végezte:

6750 Algyō,

Gamma-Controll Kft. Telephely

Performed by:

Ménesi I. - Szabó T.

Vicepilet helye:

Place of test:

Énékelte: Evaluated by:

Ménesi István RT20101120107 Joythacytia - CONTROLL KFT AMMIA - CONTROLL KFT AMMIA - CONTROLL KFT Adoszánt 1189461/2 n Adoszánt 1189461/2 n Ammia - CONTROLL KFT AMM

Ez a jegyzőkönyv részleteiben nem másnihutól / Copying details is prohibitedi

No:QC-DB- 651 /2013

Page:

34 / 44

Felado :

61344

gamma controll kft

19/10/13 12:48 Lap: 1

RADIOGRÁFIAI VIZSGÁLATI JEGYZŐKÖNYV

Jegyzőkényv szám: Report No.:

2430/13

RADIOGRAPHIC EXAMINATION REPORT

Klállitás dítuma: Date of report: 2013.10.30

Also Also Also Also Also Also Also Also	Vizzgálat Úbioct	tárgya:			(Coupling	g		Megn	indelä;				IP.20	VA 0	
ch No.: Order No.:		A-0:											JR-20 KIL Szeged			
Imposedment Proving No.: Imposed Interdective: I		mı.				_										
Material: Material: Mater																
Vizagilisti szubwiny: Corp. 13-1 Filter		-			MI	`-3121-3	000							AIS	14130	
Cesting standard: ACT PWHY Indexenter of besting: ASTM R94 Indexenter of besting: ACT PWHY ACT			:						Vizsaálut teriedelme:							
ARTM R94 Iffile zelds: Ident treatment condition: After PWHT			,		()CP-13-	j							16	ю%	
Item treatment condition: After PWHT			v:								****					
Add:			•		٨	STM ES	14		lient t	CHUNCO	t condition:			After	PWHT	
Welder stamp: Welder stamp: Kdpmindsdgizho Upusa: Type of equipment: Ugdrfornds: KAd:														- 1		
Exemple of Opinion of Quipment: Upper of Quipment: Upper of Opinion of Quipment of Opinion of Opi	Code:			V	15Z E	in iso	65ZU-			•				(B	C15/	
Type of equipment: In 192 Can	Berendezé	o tinusa:		,												
Ingerformers: Ingerformers:					GA	MMAM	AT							ASTM:	set B typ	.
Phocement of NOI: Phocement of NOI: Phoce						. 100					elző helye:					
Required IQI: Required IQI: Power State	Source:					17192									F	
Required IQI: Required IQI: Power State	Sugarform	bi márata:				-4.5-			i Mint	képmáv	ledg:					
Relividas: extivity: O.4 TBq Film tipus: Film type: FOMA R5 Imhidologozzás módja: Manual: Automatic: X Folialique às vestagesig: Pb 0,627 Improcessing: Manual: Automatic: X Folialique às vestagesig: Pb 0,627 Improcessing: Manual: Automatic: X Folialique às vestagesig: Pb 0,627 Improcessing: Manual: Automatic: X Folialique às vestagesig: Pb 0,627 Improcessing: Manual: Automatic: X Folialique às vestagesig: Pb 0,627 Improcessing: Manual: Automatic: X Folialique às vestagesig: Pb 0,627 Improcessing: Tiput	Source sta				3	מונסכ, ו צ	1	•			•			2%	(2- 2 T)	
Improcessing: Manual: Automatic: X Folialajia ès vastagsdg: Pb 0,027 Hibák/Defocis Gláz: Salak Kotés Gydk Repedés Feinle Leda of Loch	Aktivitis:								l'ilm t	pus:						
Improcessing: Manual: Automatic: X Sursur type and thick: Pb 0,027	Activity:				(A TBq			Film T	урс:				FON	fa R5	
STANDED TO	ilmkidolg	ozás mód	a:									'''''''''''''''''''''''''''''''''''''				
The state of the s	Him proce	ssine:		Manual:		Automati	ia:	<u> </u>								
6 db aam rpm rpm rpm rpm rpm rpm rpm rpm rpm rp			l			ğ	1						HIBAK/	Defocts		
6 db aam rpm rpm rpm rpm rpm rpm rpm rpm rpm rp	- 1		l	1 Z	y	2 2	ļ			9	Gáz.	Salak	Kötés	Gvők	Kenedés	Felület
6 db aam rpm rpm rpm rpm rpm rpm rpm rpm rpm rp			1 #	{ ∦	불	E S	<u>ا</u>	Ì	1.78	å.	Damala		Lack of			
6 db aam rpm rpm rpm rpm rpm rpm rpm rpm rpm rp	.R		⊌ ∰	Šp. ¥i	28		i	ë	医全多	å						
6 db aam rpm rpm rpm rpm rpm rpm rpm rpm rpm rp	B 15 [1 1 1	6.3	ā		1	E v	医岩	į	A	В	C	D	E	F
6 db aam rpm rpm rpm rpm rpm rpm rpm rpm rpm rp	5 6		결절	Rã	별길		基.	多 是	[€ 4 , 2	Į.	i l					
6 db aam rpm rpm rpm rpm rpm rpm rpm rpm rpm rp	₽ ¥	£ 8	₹ 4	#6	复氮	14 B B B	1 6	Č E	i i i i	3	200	300	401	402	100	500
3089 11577 4 19 96 19 2,4 0,5 A 10.30 108 109 11577 4 19 96 19 2,4 0,5 A 10.30 108 108 109 11577 4 19 96 19 2,4 0,5 A 10.30 108 108 108 108 108 108 108 108 108 10	žὄ	23	ほ見	38	44	2 4 5 4	28	7 2		4.	i i					l
3089 115/77 4 19 96 19 2,4 0,5 A 10,10 10 10 10 10 10 10 10 10 10 10 10 10 1		ø	امها	asm I	dam	mm	· '	min	医多角	12	!				·	
3090 115/77 4 19 % 19 2,4 0,5 A 10x	,									1020	· · · · · · · · · · · · · · · · · · ·					
filmszámok és varratszámok azonosak, beazonosításuk a megrendelőt terheli.	8089	115/77	4	19	96	19	2,4	0,5	A		l i] 1	ŀ	ļ
filmszámok és varratszámok azonosak, beazonosításuk a megrendelőt terheli.	, -		-							10.00	 					
filmszámok és varratszámok azonosak, beazonosításuk a megrendelőt terheli.	8090	115/77	4	19	96	19	2,4	0,5	A		l 1		1			
filmszámok és varratszámok azonosak, beazonosításuk a megrendelőt terheli.			\vdash	\vdash			<u> </u>	-								
	-	•	-	-	-	-	•	-	-	• .	-		- 1	•	- 1	-
	 }				_			···	_	 -	 					
	1		[[1								i				
						——					├──					
	ł											i				
					- <u>-</u> -											
	1		[]			i .]					
	إسروح		لبسبا	لبيبا				4001			A 4 1'		ــــــــــــــــــــــــــــــــــــــ			
												_				
ne numbers of the films and welds are identical, their identification is the task of the costumer.	he numi	bers of ti	he film	s and we	ids ar	e identic	al, the	ir ide	ntifica	ion is	the task o	f the cos	tumer.			

Vizagálatot végezte:

Ménesi I. - Szabó T.

Performed by:

Virsgålat helye: Place of test: Értékelte: Evaluated by:

Jóváhagy

6750 Algyő,

Ménesi István RT20101120107 Jovahagyu:

Approvidana - CONTROLL, KFT

6750 Algyo, Kalegolia 0182418, hpsz

Adogram, Willia 2-96

Very papina och della 1

Gamma-Controll Kft. Telephely

lik a jegyziktinyv részkreihen nem másothatól / Chpying details is prohibited!

No:QC-DB- 651 /2013 Page:

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

Azonosító szám: RT20101120107 (Identification No.):

A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő: (Place and date of birth):

Ménesi István

Szentes, 1988. 09. 06.

A tanúsított személy aláírása (The signature of the certificated individual)

Vizsgálati eljárás(ok): (The NDT method(s):

Radiográfiai anyagvitsgálat

Ipari terület; (Industrial sector): (Radiographic testing)

Készülékek, berendezések, létesítmények vizsgáluta EM (Pre and in-service testing of equipment, plant and structure) The said the said of the said

Termék tertilet(ek): Product sector(s):

(c), (w)

A minősítés fokozata: (The level of certification): RT2

A tanúsítás és kiadásának időpontja: (The date of certification and it a issue):

Budapest, 2012. 03. 28.

A tanúsítás érvényes: (The date upon which conflication expires):

2017. 03. 27.

15. Es 4 Tamisito Testillet peyeben (On behalf of certifying fody)

Az ipari és/vagy termék terü-let érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to):

Dátum (Da and Mater

ig megújítva (MSZ EN 473 9.): A tanúsítás érvényessége (Renewed the validity of the certification until (MSZ EN 473 9.):)

Dátum (Date):

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsító szervezet" a nevezett személyt tanúsítja az MSZ EN 473 szerint eredményes vizsgája alapján a fentiek szerint: (The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by National Accreditation Board (under No. NAT-5-013/2010", on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakított termékek (wrought products); p - milanyag termékek (plastics products); k - kompozitok (composites products).

No:QC-DB- 651 /2013 36 / 44

Page:

RT20101120107

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING)

(Certification Body) (IVIDA EIN 473 3.21)
(The holder of this certificate the PAN Autorope of the protein distribution of the protein distribution described by SZEREN, (1994614-2-06
Adoszám: 11094614-2-06
Adoszám: 11094614-2-06
Adoszám: 11094614-2-06 Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. Adoszam: 110940142-0000154 OTPBank: 11735005-20106154 Www.gauring. Munkáltató aláírása: (Signature of the employer.) (Date:) Folyamatos municavégzés igazolása (MSZ EN 473 9.) (Evidence of continued work activity (MSZ EN 473 9.)) Munkáltató aláírása Sorsz.: Datum (Signature of the employer) (Date) Anyagola -012. 04.19. Ampagolas 2. 1013.01.09 3. 4. 5. 6. . 7. 8.

Kiegészítések: (Additional remarks:)

9.

10.

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 37 / 44

ContiTech Rubber	Examinat	tion record		Record No.								
Industrial Kft.	Vizsgálati	jegyzőköny	v	Jegyzőkönyv								
Szeged/Hungary	_			száma: 1222/13								
	Liquid penetra		on									
	Festékdiffúzi	_										
	🔀 Magnetic par	ticle examina	tion									
	Mágneses re	pedésvizsgál	at									
Manufacturer JE-ZO Kft. Serial No. 8083-8090												
Gyártó		Gyári szám										
Customer Conti	Tech Rubber	Drawing No).	MT 3121-3000								
Megrendelő Ind	lustrial Kft.	Rajzszám										
Object co	oupling(s)	Material		AISI 4130								
Tárgy		Anyagminö	ség									
Quantity	8 pc(s)	Extent of ex	aminat	ion 100 % outside								
Mennyiség	,	Vizsgálat te	rjedelm	e								
Requirements As	STM E 709	Heat treatm		yes								
Követelmények		Hőkezelés		Ĭ								
Written Procedure No.	QCP-11-1	Welder:		Szabó T.								
Vizsgálati eljárás száma		Hegesztő:										
		<u> </u>										
Liquid penetrant examination /Folyadékbehatolásos vizsgálat												
Penetrant	Remover		Develop									
Behatoló anyag	Tisztító	· · · · · · · · · · · · · · · · · · ·	Előhívó									
Dwell time	Drying			ping time								
Behatolási idő Surface temperature	Szárítás Surface condition		Előhívá:	intensity								
A felület hőmérséklete	Felület állapota		Megvilá									
Magnetic part	icle examination/	Mágnesezhe	tõ pore	os vizsgálat								
Equipment type TSW 1000	Testing material	MR 76F	zing current 1000 A									
Készülék típusa Black light type Superlight C	Vizsgáló anyag Field strength checki	na Berthold	Field str	ező áram								
UV-A lámpa típusa 10A-HE	Térerőmérő	disc	Térerô	4,2 kA/m								
Surface temperature	Surface condition	machined ·	Lighting	intensity 1000 μW/cm²								
A reluiet nomersexiete	Felület állapota	macinieu ,	Megvilá	gítás roud pvercin								
Test results												
Eredmények :	satisfactory	_										
	megfelelö	8	pc(s)/c	ib								
	not accepted											
	nem megfelelő	·····	pc(s)/c	D •								
												
Performed by NDE Level II.	Care Revis	sed by Q.C. r	nanage	C OTTO E Bubbon								
Vizsgálatot végezte	C By Tallen	örizte – MEC) vezető	ContiTech Rubber Industrial Kft.								
4 tave Us	000 8 8 1			OC 1								
Signature 'Oravecz Gáb	or 📆 🍇 🎖 Signa		arkó Lá	iszló / / //								
Aláírás	Revise Ellen			64/11								
Kelt Szeged, 04.11.20)13. Kelt	S76	n hane	4.11.2013								

No:QC-DB- 651 /2013

Page:

38 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY

(Certificate of NDT personnel)

Azonosító szám: MT20103010506Ú

A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő:

(Place and date of birth):

Oravecz Gábor

Szeged, 1958. 07. 07.

A tanúsított személy aláírása (The signature of the certificated individual)

Vizsgálati eljárás(ok): (The NDT method(s):

Mágnesezhető poros anyagvizsgáló

(Magnetic particle testing)

Ipari terület:

Fémfeldolgozás MM (Metal manufacturing)

Termék terület(ek):

(c), (f), (w), (wp)

A minősítés szintje: (The level of certification):

MT2

A tanúsítás és kiadásának időpontja: (The date of certification and it's issue):

Budapest, 2012. 02. 21.

A tanúsítás érvényes: (The date upon which certification expires):

2017. 02. 20.

Vizsgáztató (Examiner)

Az ipari és/vagy termék terület érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to):

Dátum (Date):

Tamúsító Testület nevében
(On behalf of certifying body)

A tanúsítás érvényessége -ig megújítva (MSZ EN 473 9.): (Renewed the validity of the certification until (MSZ EN 473 9.):)

Datum (Date): ___

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsító szervezet" a nevezett személyt tanúsítja az MSZ EN 473 szerint eredményes vizsgája alapján a fentiek szerint: (The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by National Accreditation Board (under No. NAT-5-013/2010", on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakított termékek (wrought products); p - milanyag termékek (plastics products); k - kompozitok (composites products).

No:QC-DB- 651 /2013

Page:

39 / 44

MT20103010506Ú

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN 473 3.21)
(The holder of this certificate has been authorised to perfect tests and take responsibility for the test results. (MSZ EN 473 3.21))

Munkáltató aláírása: (Signature of the employer:)

Dátum: 2012. 02. 21.

	Folyamatos munks (Evidence of conti	avégzés igazolása (MSZ EN 473 9.) nued work activity (MSZ EN 473 9.))			
Sorsz.:	Munkáltató aláírása (Signature of the employer)	Ph.	Dátum (Date)		
1.	Back Crai	Industrial Kft. Quality Control Dept.	2013. 01. 24.		
2.		(I)			
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					

Klegészítések: (Additional remarks:)

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

No:QC-DB- 651 /2013 Page:

40 / 44

505760

Bekaert Hlohovee a.s.

Mierová 2317

92028 Hilohovec / Slovakla

Tel:: Fax: 00421337383111 00421337422742

STEELCORD

MANUFACTURER: BKHL

Page: 1 / 1

Certificate of Analysis

Delivery No. : 4048181212

Contitech Rubber Industrial Kft. CONTITECH RUBBER IND SZEGED

Budapesti út 10 H-6728 SZEGED Sales Order

3046059220/10

Purchase Order

32260330

Inspection lot

090000200865/000001

Batch

3500245379

Date produced

01.07.2013

Date CQA

09.08.2013

Spools

32 delivered from a batch of 32 produced

Units

18 delivered from a batch of 16 produced

Spec customer Your code

Confitech Rubber Industrial KR. 14-18-07/1

Delivery net Qty.

10517 KG

Your spec

Our Spec

REV.3 / 15.01.2002 H207297 / 28.10.2012 Material Description

Zinc coated steelcord 1X24DW/3.6 NT 20/36 ZZ 8850

5000 M

Lay direction Lay length

ZŻ.

20/36

Tests			Specs		Results			
Test	Procedure	Unit	Alm	Min. Max.	Avg. N	Min ind Max ind		
Cord diameter	RA12-100	HB11	3,6000	3,4200 3,7800	3,6845 6	3,6840 3,8930		
Linear density	RA30-110	g/m	65,000	61,700 68,300	65,632 6	65,300 65,870		
Cord breaking strength	RA30-203	N		17900,0	19337,0 6	19087,0 19584,0		
Cord elongation at break	RA30-203	%		2,50	2,98 6	2,80 3,15		
Zinc D1	RA40-741	g/m2	,	32,000	40,057 6	37,870 44,630		
Zinc D2	RA40-741	g/m2		44,000	48,788 6	45,350 56,100		
Residual torsions	RA30-160	Nt	0,000	-3,000 3,000	-0,250 6	-0,500 0,000		

D1: 0,64

D2: 0,73

%P: <0.012

Nominal Chemical composition of High Grade Oxysteel:

%Carbon: 0.70-0.90 %Manganese: 0.40-0.60 %Silicon: <0.230 %S: <0.011

Microstructure/Texture: Metallurgically the texture is known as a high drawn, fine perlitic structure.

Electronically Signed by Quality Manager (Nagy Marcel)

According DIN EN 10204 3.1

Azienda con sistema di , gestione certificato da IGQ secondo ISO 9001

PAG 1/1

Conforme a EN 10204/ 3.1

63892/2012 n°: Cliente/Customer: ACCIAI VENDER S.P.A.

Specifica/Specification:

Destinatario/Receiver: ACCIAI VENDER S.P.A.

EN 10088-2

VIA A. NOBEL. 3/A

VIA A.NOBEL, 4/A Q.RE IND.LE S.P.I.P

43100 PARMA

43100 PARMA

Accialo/Steel: 304PS

DD1/DEL. NOTE: 10/53 DELIOF: 24/05/2012	Orgine	order Terninox :		P04249	Ora, Clientercus	stomer :				
Matricola Serial Number	Pos Item	Tipo Prodotto Product Type	Fin	Descrizione Description	Dimensioni(mm) Dimensions(mm)	1	Weight (Kg)	Rif. Cli. Cust. Ref.	Colata Heat	NIM
CA7997 7-13882	22	COIL	2B		0.60 x 460.0	1	6040		0431359	310727
C54489 T-12887	· 27	NASTRI STRETTI	ВА		0.79 x 284.7	1	1290		0431741	324612
L	i	L	L	<u> </u>	1					

IL MATERIALE SOPRA ELENCATO E STATO DIMENSIONALMENTE EM SUPERFICIALMENTE TRASFORMATO DA TERNINOX SENZA ALTERARNE LE CARATTERISTICHE MECCANICHE E CHINICHE
THE MATERIAL DESCRIBED ABOVE HAS BEEN DIMENSIONALLY ANDOR SUPERFICIALLY TRASFORMED BY TERNINOX WITHOUT CHANGING THE MECHANICAL AND CHEMICAL FEATURES

Analisi di colate/Chemical Composition

Colata/Heat	C %	Si %	Mn %	P%	S %	Cr %	Ni %	Mo %	N %	T1 %	Cu %	Nb %	В%	Al %	Co %
0431359	0.045	0.300	1:290	0.027	0.001	18.000	9.040	0.260	0.024		0.310				
0431741	0.048	0.310	1.420	0.029	0.001	18.090	9.050	0.320	0.019		0.370				
		ł	1		}			,			Ì				l

Riguitati delle prove/Test Regult (1N/mm²=1 M Pa)

NIM	# L	Bounds	N TO E	, 1	;	Caric. unit. snervamento Yield strenght		Caric, unit. Rottura Tensile strength	Allungamento a rottura Ultimate elongation (%)					Durezza Hardness	Piega a Bend To 180°	Ricot di solub./ heat trestment of annealing for solubilit.	Resistenza alla corrosione intergranultare secondo / Resistance to corrosion intergranulare	Grano Grain
	ě		RpO2% N/mm²	Rp1% N/mm²	Rm N/mm²	Lo ≖2"	Lo =80	Lo ≃A5	HRB	:		· 						
310727	TŦ	T	245	271	607		60.7		70.5		1050	EN ISO 3851-2	,					
	c	T	230	261	604		62.8		66.0				1					
324612	Т	ĮΤ	235	· 262	588		62.4		70.5	ı	1050	EN ISO 3651-2						
	\c	Т	237	267	605		62.1	!	72.0		1							
				ľ					1									

I data change a field soons operations and dat conflicted of qualitar dat control to handle qualificate I and originate of in ms. possesses a Capacitate ou national.

COMPLIES WITH ED 2000/53/EC

Certificato emesso automaticamente

Data/Date

24/05/2012 R. GOVONI

STRIPWOUNDTUBE

CONTITECH RUBBER Industrial Kft. Page:

No:QC-DB- 651 /2013 4

No:QC-DB-651/2013 Page:

42 / 44

Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements

BUDAPEST XII., NÉMETVÖLGYI ÚT 37-39. 1535 Budapest, Pf. 919

Telefon: 458-5800 Telefax: 458-5927

Ügyiratszám / File No.:

MKEH-MH/00287-003/2013/NY

Bizonyítványszám / Certificate No.:

NYO - 0008/2013

Hivatkozási szám / Reference No.:

32259470

Page 1/3 oldal Kiadva / Issued

Budapest, 2013. 01. 28. / 28 01 2013

KALIBRÁLÁSI BIZONYÍTVÁNY **CALIBRATION CERTIFICATE**

A kalibrálás tárgya:

Object of calibration:

Gyártó / Manufacturer: Tipus / Type:

Azonosító szám / Serial No.:

villamos kimenőjelű nyomásmérő

electrical-output manometer

AFRISO-EURO-INDEX GmbH

DMU03_HD 1518086

Müszaki adatok / Technical data:

(0...2500) bar méréstartomány / measuring range (0...2500) bar

(4...20) mA kimenőjel tartomány / output signal range (4...20) mA

Kalibrálásra bemutatta:

Customer:

ContiTech Rubber Industrial Kft. 6728 Szeged, Budapesti út 10.

A kalibrálás helye és ideje:

Place and date of calibration:

Magyar Kereskedelmi Engedélyezési Hivatal

Hungarian Trade Licensing Office

Metrológiai Hatóság, Mechanikai Mérések Osztály Metrology Authority, Section of Mechanical Measurements

Budapest, 2013.01.24.

A kalibrálást végezte:

Calibrated by:

Szaulich Dénes metrológus / metrologist

A kalibrálásnál alkalmazott etalonok:

Standards used for the calibration:

Megnevezés: Gyártó: Típus: Gyártási szám: Bizonyítvány szám: Designation: Manufacturer: Serial No.: Certificate No .: Type: túlnyomás etalon / pressure standard Budenberg 283 20603 NYO-0001/2013 digitális multiméter / digital multimeter 2000 0597910 Keithley ELD-0014/2012 normál ellenállás / resistance standard ZIP P 331. 117530 ELD-0021/2012 hőmérő / temperature measuring instr. **GANZ MM** DTHI 33656 Hőm-0296/2012

A mérési eredmények a nemzeti (nemzetközi) etalonra visszavezetettek. The measuring results are traceable to national standards.

A kalibrálás módja:

Calibration method:

A kalibrálást a KE NYO-3-2002 számú kalibrálás eljárás alapján végeztük. The calibration was done according to the calibration procedure No.: KE NYO-3-2002.

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bipm.org).

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

No:QC-DB- 651 /2013

Page:

43 / 44

Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements Ügyiratszám / File No.:

MKEH-MH/00287-003/2013/NY

Bizonyítványszám / Certificate No.:

NYO - 0008/2013

Page 2/3 oldal

A kalibrálás körülményei:

Calibration conditions:

környezeti hőmérséklet / Ambient temperature

a kalibrált eszköz helyzete / Position of the calibrated manometer

a kalibrált eszköz tápfeszültsége / Supply voltage of the calibrated manometer

nyomóközeg / Pressure transfer medium

21,1 °C

függőleges / vertical

24V DC

olaj / oil

Mérési eredmények a (0...2500) bar nyomástartományban: Results of the measurements in the pressure range of (0...2500) bar:

Nyomás, névleges érték	Áram-kimenőjel, névleges érték	Áram-kimenőjel, mért eltérés a helyes értéktől	Nyomás, mért eltérés a helyes értéktől	Eredő mérési bizonytalanság	
Pressure, nominal value	Current-Output, nominal value	Current-Output, measured deviation from the reference value	Pressure, measured deviation from the reference value	Expanded uncertainty of the measurement	
bar	mA	mA	bar	bar	
0	4,0	-0,0042	-0,7		
250	5,6	-0,0002	0,0		
500	7,2	0,0029	0,5		
750	- 8,8	0,0050	0,8	1	
1000	10,4	0,0063	1,0		
1250	12,0	0,0053	0,8	2,6	
1500	13,6	0,0033	0,5		
1750	15,2	-0,0003	-0,1		
2000	16,8	-0,0052	-0,8		
2250	18,4	-0,0117	-1,8		
2500	20,0	-0,0192	-3,0		

Mérési bizonytalanság: A mérési eredmény(ek) mellett közölve.

Uncertainty of measurement: See next to the results of the measurements.

A közölt kiterjesztett mérési bizonytalanság a standard bizonytalanságnak k kiterjesztési tényezővelszorzott értéke (k = 2), amely normális (Gauss) eloszlás feltételezésével közelítőleg 95%-os fedési valószínűségnek felel meg.

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to coverage probability of approximately 95 %.

A mérési bizonytalanság tartalmazza az etalonból, a kalibrálás módszeréből, a környezeti feltételekből, a kalibrált mérőeszközből stb. eredő részbizonytalanságokat.

It contains the uncertainties of the standards, calibration method, environmental conditions, calibrated device etc.

A standard bizonytalanság meghatározása az EA-4/02 (Expression of the Uncertainty of Measurement in Calibration) kiadványnak megfelelően történt.

The standard uncertainty of measurement has been determined in accordance with the EA Publication EA 4/02 (Expression of the Uncertainty of Measurement in Calibration).

No:QC-DB- 651 /2013

Page:

44 / 44

MKEE

Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements Ügyiratszám / File No.:

MKEH-MH/00287-003/2013/NY

Bizonyítványszám / Certificate No.:

NYO - 0008/2013

Page 3/3 oldal

Bélyegzés:

Callbration mark:

A kalibrált mérőeszközön K067662 azonosító számú kalibrálási bélyeget helyeztünk el. We have placed a calibration stamp No.: K067662 on the calibrated instrument.

Megjegyzések:

Additional remarks:

Jelen bizonyítvány összhangban van a Nemzetközi Súly és Mértékügyi Bizottság (CIPM) Kölcsönös Elismerési Megegyezése (MRA) C függeléke által tartalmazott kalibrálási és mérési képességekkel (CMCs). Az MRA minden aláíró intézete elismeri egymás kalibrálási és mérési bizonyítványait a C függelék szerinti mennyiségfajtákra, azok értéktartományaival és mérési bizonyítalanságaival (közelebbit lásd: http://www.bipm.org)

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bipm.org)

A kalibrálási bizonyítványban megadott értékek a mérőeszköznek a kalibrálás idejére és körülményeire jellemző adatai.

The measurement results show the metrological properties of the device during the time of the calibration under the environmental conditions listed above.

Az újrakalibrálás időpontját a felhasználó dönti el a mérőeszköz használatának és állapotának függvényében.

Engede

The date of the next calibration is decided by the user. It depends on the usage and the condition of the device.

A bizonyítvány kiadható / Approved by:

osztály

Kálóczi László
osztályvezető / Head of Section

Operator Name: AMEREDEV OPERATING LLC

Well Name: JUNIPER FED COM 25 36 34 Well Number: 121H

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

Juniper_Pimento_Road_20190204152810.pdf

JUNIPER_FED_COM_25_36_34_121H___WELL_PAD_ACCESS_MAP_REV_20190204152823.pdf

New road type: RESOURCE

Length: 4442

Feet

Width (ft.): 30

Max slope (%): 2

Max grade (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 20

New road access erosion control: Crowned and Ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Grader

Access other construction information: NM One Call (811) will be notified before construction starts.

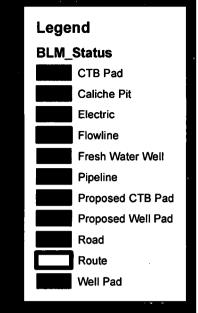
Access miscellaneous information:

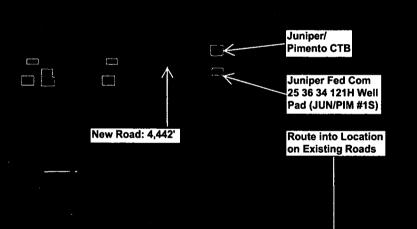
Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER


Drainage Control comments: Crowned and Ditched


Road Drainage Control Structures (DCS) description: Crowned and Ditched

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Approval Date: 04/19/2019

Operator Name: AMEREDEV OPERATING LLC

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

JUNIPER_FED_COM_25_36_34_121H___ONE_MI_RAD_EXIST_WELLS_20190204153005.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: A multiple well pad will be located on section 3, and will measure 400'x500'. The top 6" of soil and brush will be stockpiled south of the well pad. A buried 4" poly flowline (750 psi maximum) will be run approximately 570' from the Juniper Fed Com 25 36 34 121H to the Juniper/Pimento CTB north of the well pad. A 20' pipeline ROW containing three buried 12" poly water lines (200 psi maximum) will be run from the Juniper/Pimento CTB to tie into existing water lines at the Firethorn CTB. The overall length of disturbance for the new water lines will be approximately 4,857'. A power line will be run parallel to the water line and will connect into the power line at the Firethorn CTB. The power line will be approximately 4,857'. The Juniper/Pimento CTB will be 500'x525' and will include a separator, heat exchanger, VRU, VRT, meter run and a tank battery. The new production facility will have a secondary containment structure that is constructed to hold the capacity of 1-1/2 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Production Facilities map:

JUNIPER_FED_COM_25_36_34_121H___FACILITIES_MAP_REV_20190204153046.pdf
BO_JUNIPER_FED_COM_BATTERY_SITE_REV1_20190204153110.pdf
EP_JUN_PIM_1S_FLOWLINE_SEC_3_S_20190204153110.pdf
EP_JUN_PIM_1S_FLOWLINE_SEC_34_S_20190204153111.pdf
Juniper_CTB_Electric_20190204153112.pdf
Juniper_CTB_Water_20190204153114.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: DUST CONTROL,

Water source type: GW WELL

INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE

CASING

Describe type:

Source longitude:

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

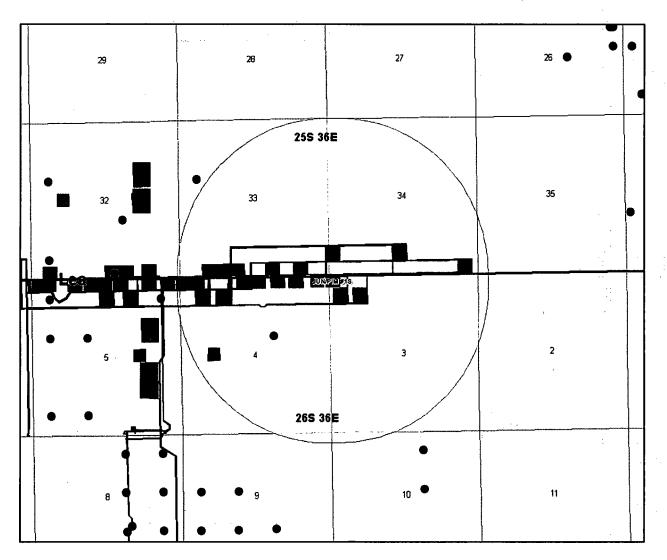
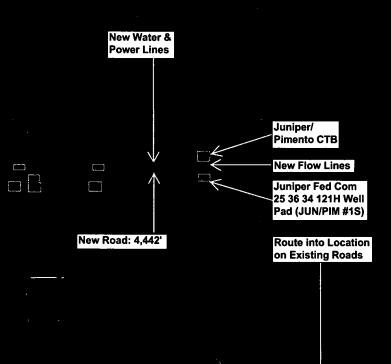
Approval Date: 04/19/2019

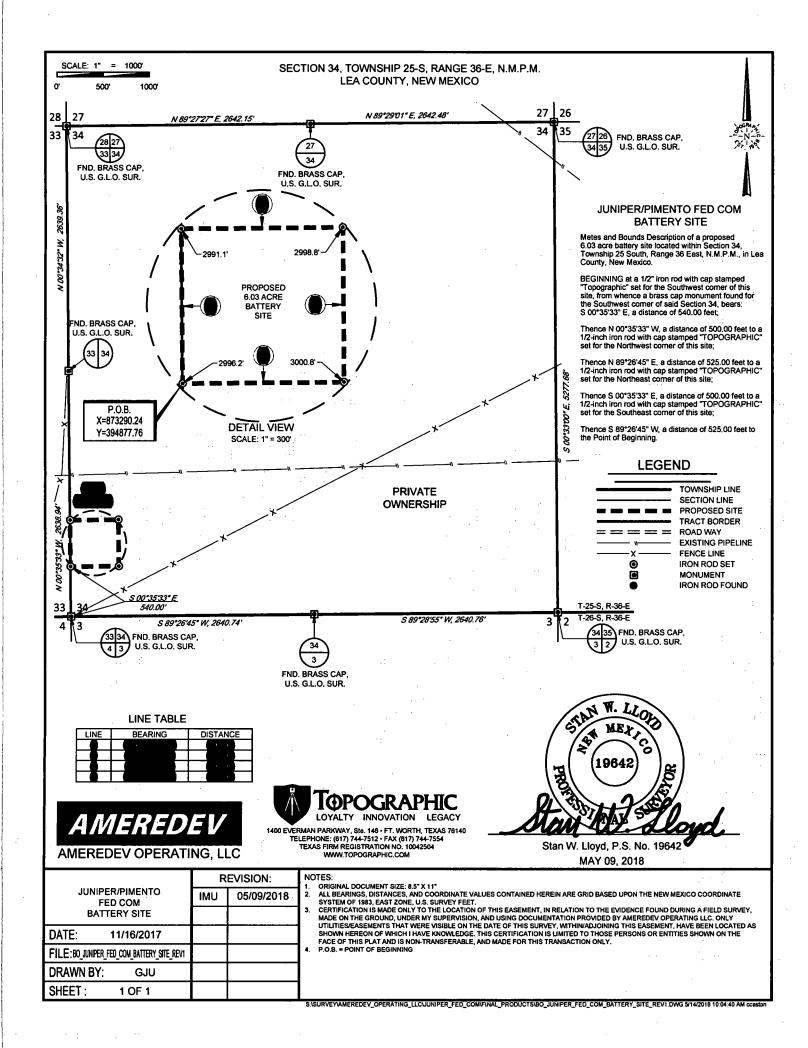
Page 11 of 24

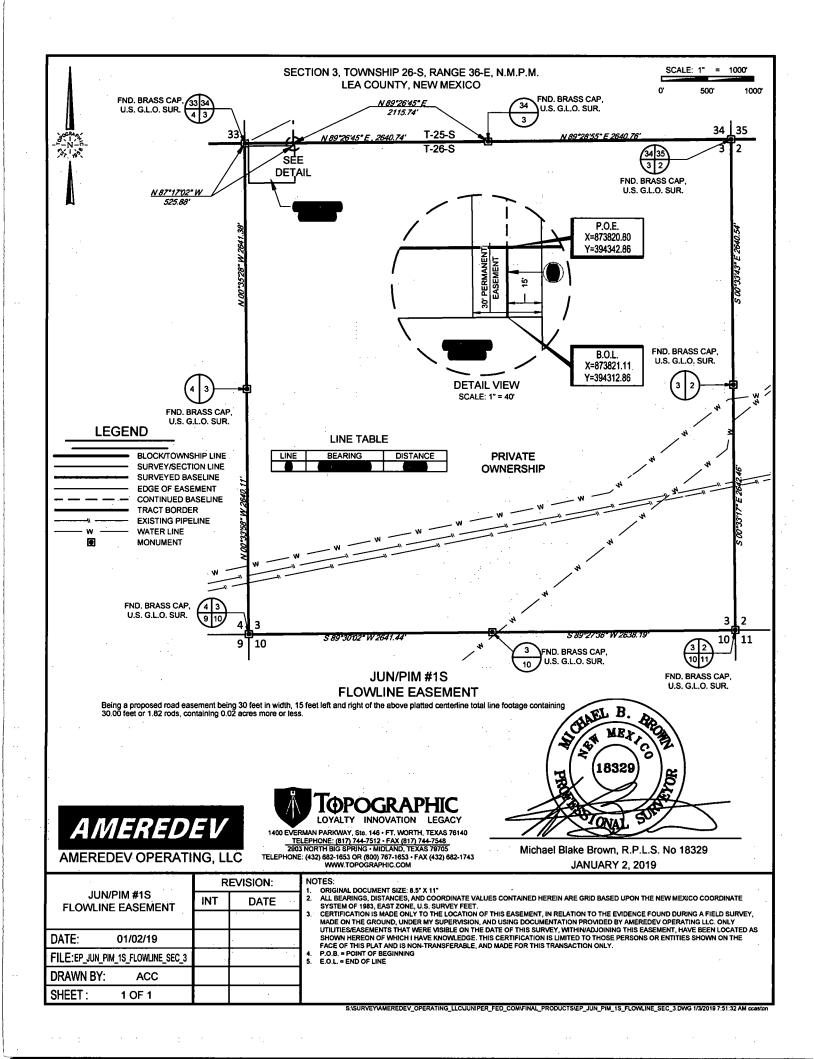
Ameredev Operating, LLC
Juniper Fed Com 25 36 34 121H
Section 34, Township 25S, Range 36E
Lea County, New Mexico

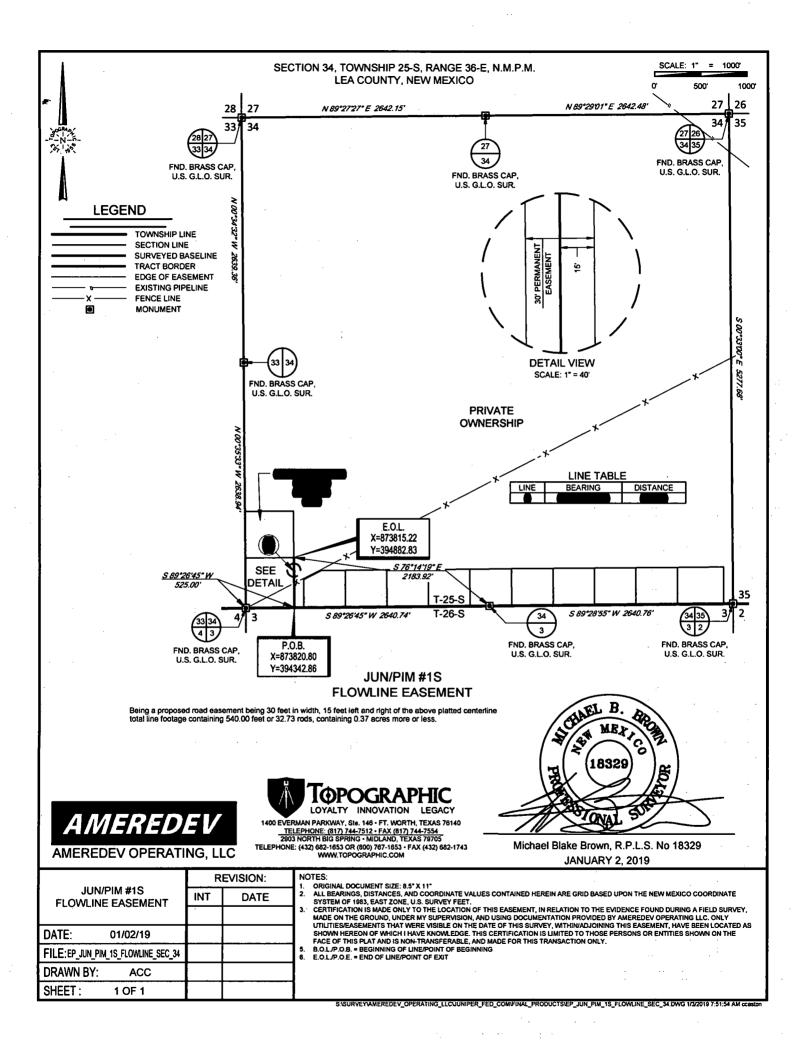
<u>Section 3 – Location of Existing Wells</u>

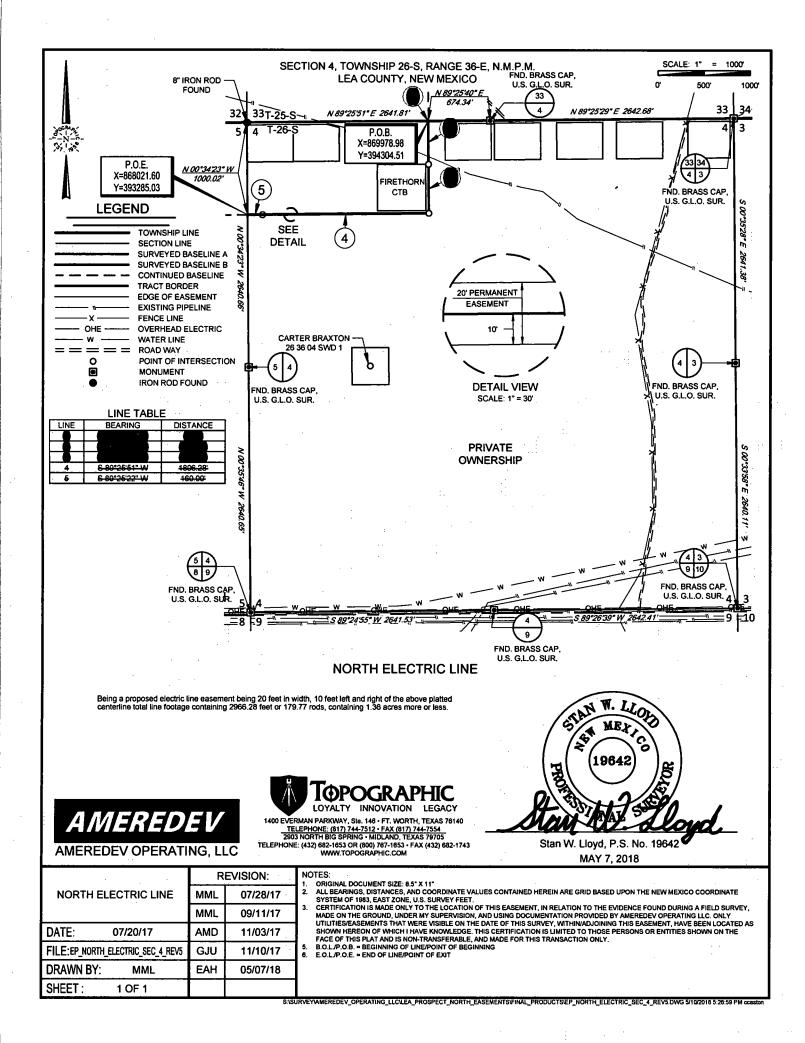
Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Juniper Fed Com 25 36 34 121H. See Exhibit 2a – One Mile Radius Wells List for a list of wells depicted.

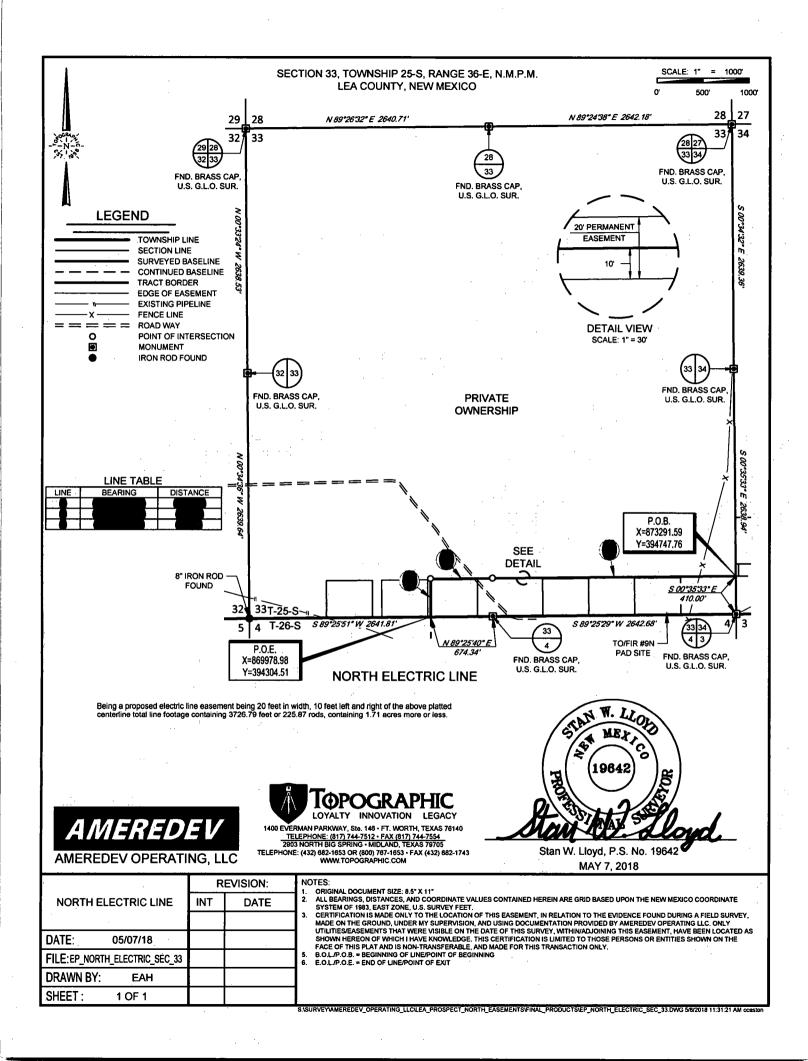



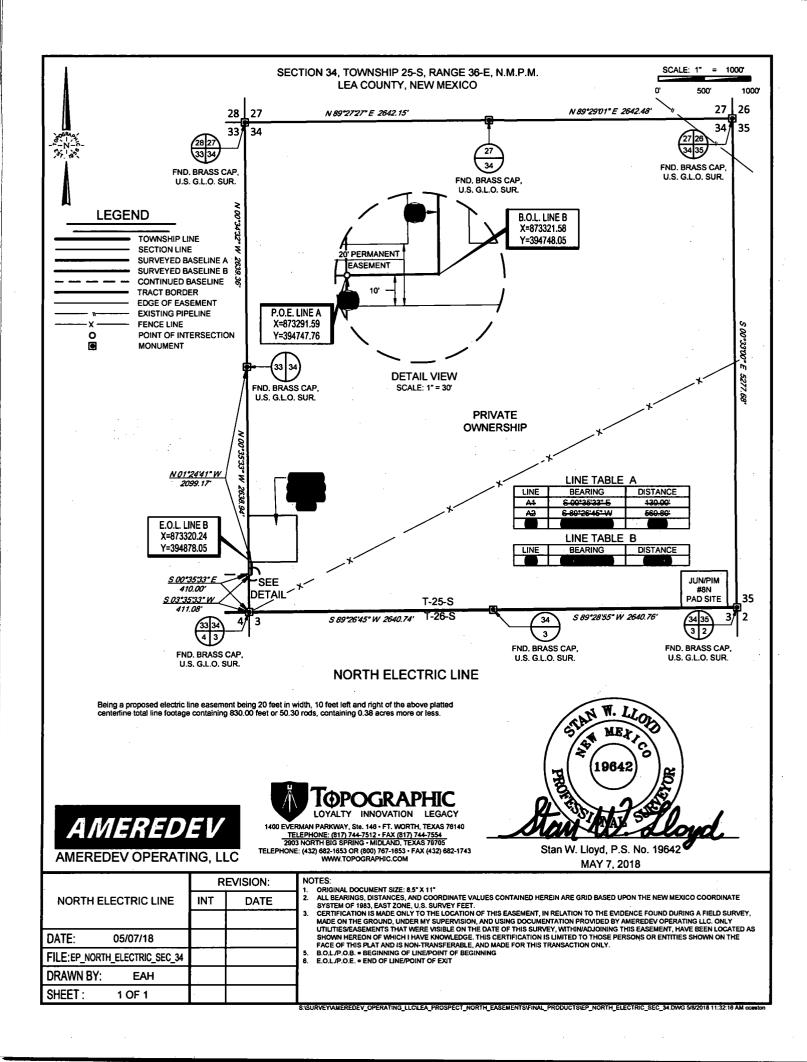

Exhibit 2 - One Mile Radius Existing Wells

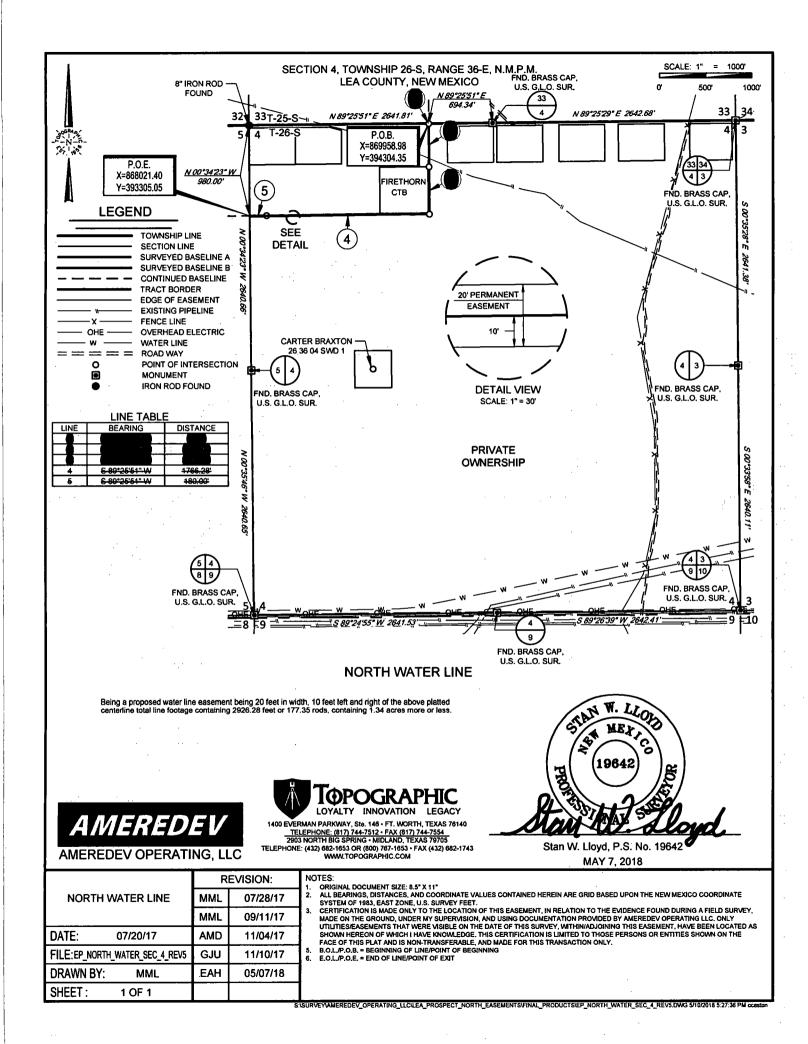

API	WELL NAME	STATUS	TD
30025208430000	SOUTHWEST JALIT-FED 1	PLUGGAS	13505

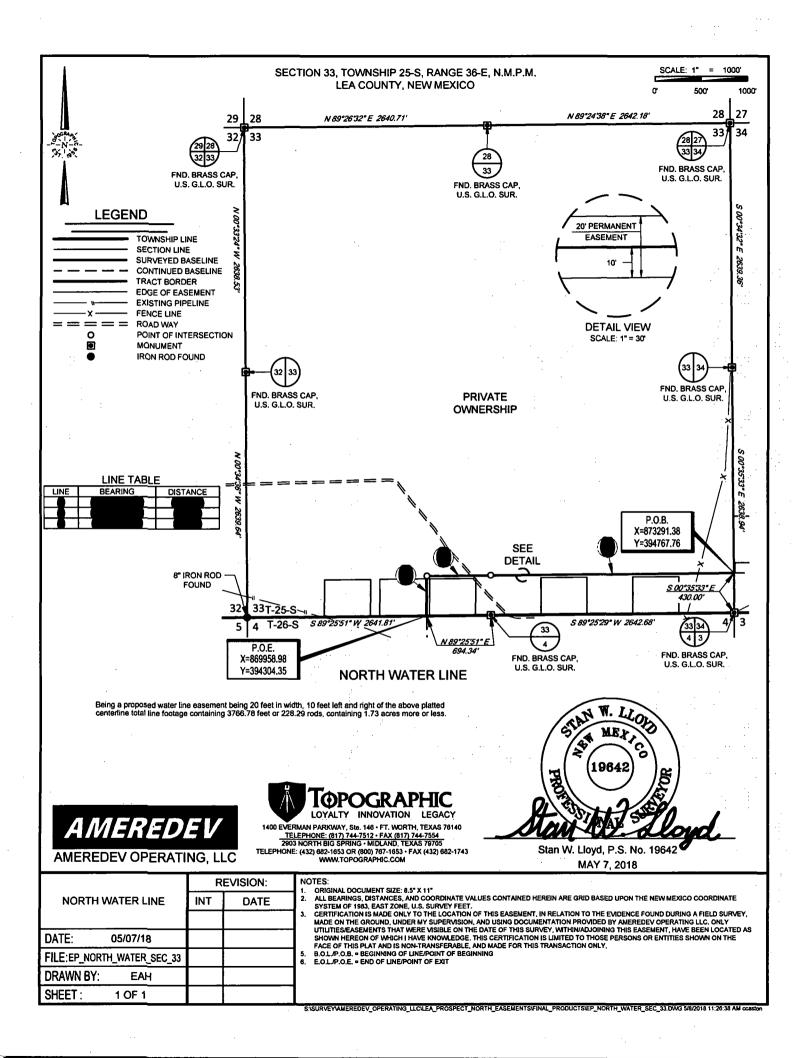

Exhibit 2a - One Mile Radius Existing Wells List

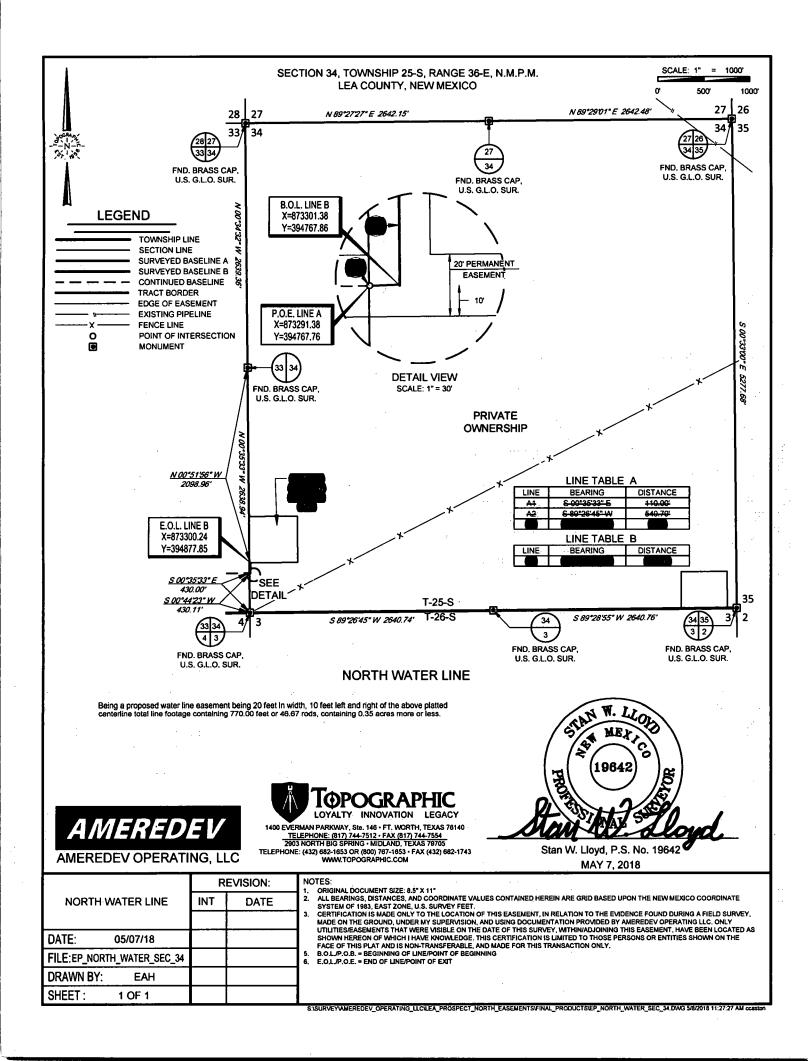

Legend BLM_Status CTB Pad Caliche Pit Electric Flowline Fresh Water Well Pipeline Proposed CTB Pad Proposed Well Pad Road Route Well Pad











Well Name: JUNIPER FED COM 25 36 34 Well Number: 121H

Source land ownership: PRIVATE

Water source transport method: PIPELINE, TRUCKING

Source transportation land ownership: FEDERAL

Water source volume (barrels): 20000

Source volume (acre-feet): 2.577862

Source volume (gal): 840000

Water source and transportation map:

JUNIPER_FED_COM_25_36_34_121H___WATER_WELLS_MAP_REV_20190204153212.pdf JUNIPER_FED_COM_25_36_34_121H___WATER_WELLS_LIST_20190204153228.pdf

Water source comments: Water will be trucked or surface piped from existing water wells on private land. See attached list of available wells.

New water well? NO

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well depth (ft):

Well casing type:

Well casing outside diameter (in.):

Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method:

Drill material:

Grout material:

Grout depth:

Casing length (ft.):

Casing top depth (ft.):

Well Production type:

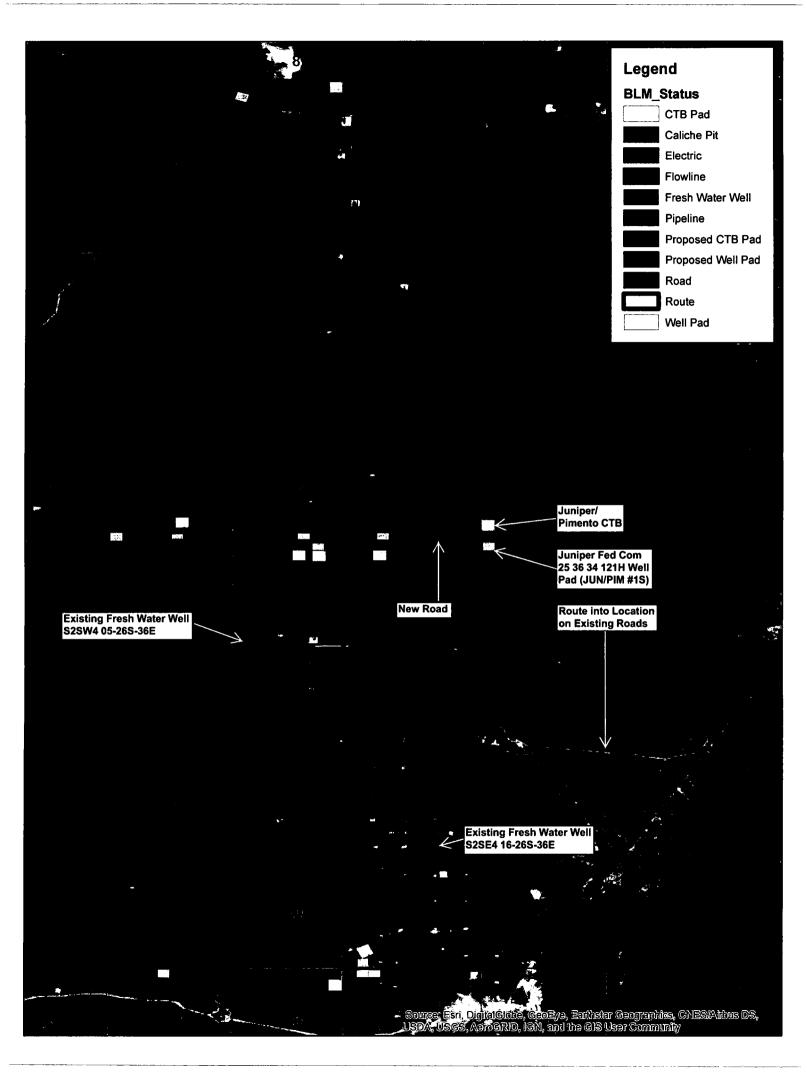
Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials


Construction Materials description: NM One Call (811) will be notified before construction start. Top 6" of soil and brush will be stockpiled south of the pad. V-door will face west. Closed loop drilling system will be used. Caliche will be hauled from an existing caliche pit on private (EOG) land in N2NE4 29-25S-36E or an existing caliche pit on private (Beckham) land in S2SW4 19-25S-36E or a proposed caliche pit on state land in S2SE4 11-26S-36E.

Construction Materials source location attachment:

JUNIPER_FED_COM_25_36_34_121H___CALICHE_MAP_REV_20190204153306.pdf

Approval Date: 04/19/2019

Page 12 of 24

PERMIT#	WELL NAME	LOCATION (LAT/LON)
CP 1049 POD 2	Bennett	32°04′14.32″ N, 103°12′32.30″ W
CP 1378	S. Eppenour	32°05′40.62″ N, 103°13′ 35.26″ W
CP 1285	Sec. 5	32°03′56.50″ N, 103°17′37.04″ W
CP 857	Capped	32°04′39.70″ N, 103°16′51.13″ W
C 2287	#1	32°03′59.0″ N, 103°33′16.8″ W
C 2286	#2	32°03′59.2″ N, 103°33′15.2″ W
C 2290	#3	32°04′1.0″ N, 103°33′ 12.6″ W
C 2285	#4	32°04′3.7″ N, 103°33′9.7″ W
C 2288	#5	32°04′0.5″ N, 103°33′8.4″ W
C 2294	Garden	32°03′3.2″ N, 103°32′38.1″ W
C 2293	House	32°03′2.3″ N, 103°32′36.8″ W
J-11-S-3	Farm Well #2	32°03′08.4″ N, 103°16′35.2″ W
J-11-S-2	Farm Well #3	32°03′11.5″ N, 103°17′02.0″ W
J-11-S	Farm Well #4	32°03′24.6″ N, 103°17′02.1″ W
CP 1170 POD 1	CB 1	32°03′57.2″ N, 103°18′45.3″ W
CP 1170 POD 5		32°07′17.1″ N, 103°17′48.0″ W
CP 1263 POD 5	CB 2	32°03′56.27″ N, 103°18′27.4″ W
CP 1263 POD 3	CB 3	32°03′54.90″ N, 103°18′16.74″ W
CP 1351 POD 1	CB 4	32°03′57.16″ N, 103°17′45.13″ W
CP 1351 POD 2	CB 5	32°03′30.70″ N, 103°17′45.70″ W
J 26	Ryan	32°01′20.41″ N, 103°15′49.46″ W
J3		32°02′41.5″ N, 103°18′55.8″ W

Exhibit 4 – Water Wells

Legend

BLM_Status

CTB Pad

Caliche Pit

Electric

Flowline

Fresh Water Well

Pipeline

Proposed CTB Pad

Proposed Well Pad

Road

Route

Well Pad

Juniper/ Pimento CTB

Juniper Fed Com 25 36 34 121H Well Pad (JUN/PIM #1S)

Route into Location on Existing Roads

Existing Caliche Pit FE-35 E2 11-26S-36E

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

JUNIPER FED COM 25 36 34 121H WELL SITE DIAGRAM 20190204153307.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000

barrels

Waste disposal frequency: Daily

Safe containment description: Steel tanks

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL

Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: R360's state approved (NM-01-0006) disposal site at Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

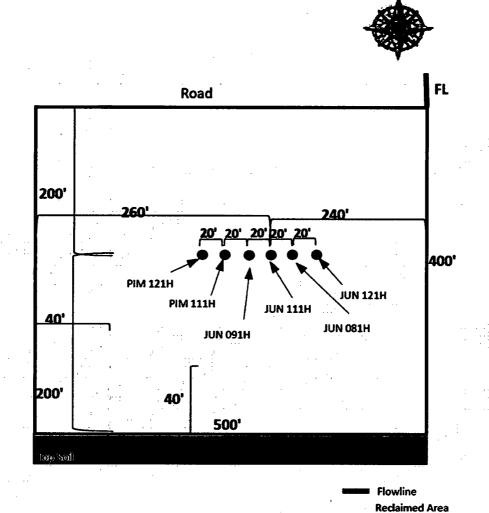
Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?


WCuttings area liner

Cuttings area liner specifications and installation description

Approval Date: 04/19/2019

Page 13 of 24

Road Top Soil

Exhibit 3 – Well Site Diagram

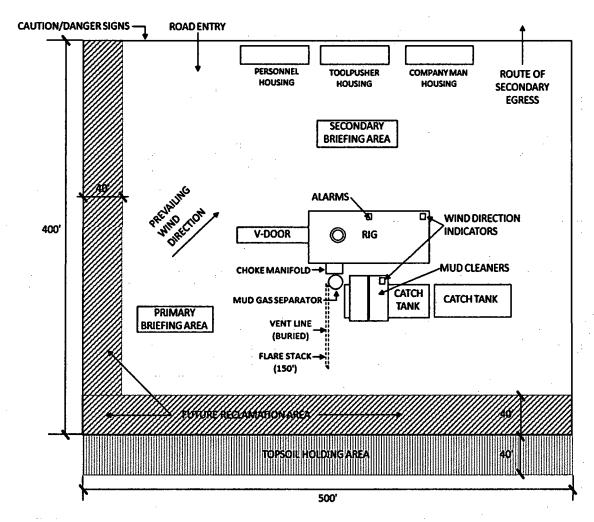


Exhibit 5 - Enlarged Well Site Diagram

Well Name: JUNIPER FED COM 25 36 34 Well Number: 121H

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

JUNIPER_FED_COM_25_36_34_121H___WELL_SITE_DIAGRAM_20190204153420.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: JUNIPER

Multiple Well Pad Number: 121H

Recontouring attachment:

JUNIPER_FED_COM_25_36_34_121H___WELL_SITE_DIAGRAM_20190204153435.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance

(acres): 4.59

Road proposed disturbance (acres):

3.06

Powerline proposed disturbance

(acres): 2.23

Pipeline proposed disturbance

(acres): 0.39

Other proposed disturbance (acres):

6.03

Total proposed disturbance: 16.3

Well pad interim reclamation (acres):

0.79

Road interim reclamation (acres): 0

Powerline interim reclamation (acres):

. 0

Pipeline interim reclamation (acres): 0

Other interim reclamation (acres): 0

Total interim reclamation: 0.79

Well pad long term disturbance

(acres): 3.8

Road long term disturbance (acres):

3.06

Powerline long term disturbance

(acres): 2.23

Pipeline long term disturbance

(acres): 0.39

Other long term disturbance (acres):

6.03

Total long term disturbance: 15.51

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 17% (.79 acre) by removing caliche and reclaiming 40' wide swaths on the south and west sides of the pad. This will leave 3.8 acres for producing three wells, with tractor-trailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. New road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled.

Approval Date: 04/19/2019

Page 14 of 24

Operator Name: AMEREDEV OPERATING LLC	
Well Name: JUNIPER FED COM 25 36 34	Well Number: 121H
Soil treatment: None	
Existing Vegetation at the well pad:	
Existing Vegetation at the well pad attachment:	
Existing Vegetation Community at the road:	
Existing Vegetation Community at the road attachment	ent:
Existing Vegetation Community at the pipeline:	
Existing Vegetation Community at the pipeline attac	hment:
Existing Vegetation Community at other disturbance	es:
Existing Vegetation Community at other disturbance	es attachment:
Non native seed used? NO	
Non native seed description:	
Seedling transplant description:	
Will seedlings be transplanted for this project? NO	
Seedling transplant description attachment:	
Will seed be harvested for use in site reclamation?	NO .
Seed harvest description:	

Seed Management

Seed harvest description attachment:

Seed Table

Seed type:

Seed source:

Seed name:

Source name:

Source address:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Approval Date: 04/19/2019

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

Seed Summary

Total pounds/Acre:

Seed Type

Pounds/Acre

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name:

Last Name:

Phone:

Email:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Pit closure description: No pit

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

Vell Name: JUNIPER FED COM 25 36	34 Well N	lumber: 121H
tate Local Office:		
ilitary Local Office:		
SFWS Local Office:		
ther Local Office:	•	
SFS Region:		
SFS Forest/Grassland:	Here	Ranger District:
SPS PoresvGrassiand:	; USFS	Ranger District:
isturbance type: PIPELINE		
escribe:		
urface Owner: PRIVATE OWNERSHIF	•••	
ther surface owner description:		
IA Local Office:		
OR Local Office:		
OE Local Office:		
OD Local Office:		
PS Local Office:		4.
tate Local Office:		
ilitary Local Office:		:
SFWS Local Office:		
ther Local Office:		:.
SFS Region:		Ranger District:

Disturbance type: WELL PAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

Approval Date: 04/19/2019

Well Name: JUNIPER FED COM 25 36 34	Well Number: 121H	
BOR Local Office:		-
COE Local Office:		
DOD Local Office:	•	
NPS Local Office:		
State Local Office:		
Military Local Office:		
USFWS Local Office:		
Other Local Office:		
USFS Region:		
USFS Forest/Grassland:	USFS Ranger District:	
Disturbance type: OTHER		
Describe: Powerline		.:
Surface Owner: PRIVATE OWNERSHIP	•	
Other surface owner description:		
BIA Local Office:		
BOR Local Office:		
COE Local Office:		
DOD Local Office:		· · · · · · · · · · · · · · · · · · ·
NPS Local Office:		•
State Local Office:		
Military Local Office:		
USFWS Local Office:		:
Other Local Office:		٠.
USFS Region:		
USFS Forest/Grassland:	USFS Ranger District:	

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

Section 12 - Other Information

Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: On-site inspection was held with Jeff Robertson (BLM) on 11/28/17. Ameredev made a donation with the MOU fund in lieu of an archaeology report.

Other SUPO Attachment

Juniper_Fed_Com_25_36_34_121H___Owner_Agreement_Letter_20180629085356.pdf JUNIPER_FED_COM_25_36_34_121H___SUPO_REV_20190204_20190204153718.pdf

PWD

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Approval Date: 04/19/2019

Page 19 of 24

6/27/2018

To whom it may concern:

Julia Steger

Ameredev Operating, LLC is negotiating a private surface owner agreement with EOG Resources Inc. (P.O. Box 267 Midland, TX 79702; 432-425-1204) for a power line, flowline, saltwater disposal line, roads, central production facility, and pad for the Juniper Fed Com 25-36-34 121H well in section 3 of T26S, R36E.

Thank you,

Julia Steger Engineer

Surface Use Plan of Operations

Introduction

The following Surface Use Plan of Operations will be implemented by Ameredev Operating, LLC (Ameredev), after APD approval. No disturbance will be created other than those described in this surface use plan. If any additional surface disturbance becomes necessary after APD approval, the appropriate BLM approved sundry notice or right of way application will be acquired prior to such disturbance. This Surface Use Plan includes Ameredev's well pad, battery site, electrical, water and flow lines, and access roads.

Before any surface disturbance is created, stakes or flagging will be installed to mark boundaries of permitted areas of disturbance, including soil storage areas. As necessary, slope, grade, and other construction control stakes will be placed to ensure construction is in accordance with the surface use plan. All boundary markers will be maintained in place until final construction cleanup is completed. If disturbance boundary markers are displaced, they will be replaced before construction proceeds. Adjacent operators will be contacted before construction starts to mark adjacent pipelines.

Directions to proposed pad:

At the intersection of 3rd St/NM-205/Frying Pan Rd & NM-128, head south on 3rd St/NM-205/Frying Pan Road approximately 5.6 miles. Turn right on Anthony Road and proceed west approximately 3.4 miles. Continue North (right) on Anthony Road and proceed north approximately 0.3 miles. Turn right on Pipeline Road and proceed east approximately 0.3 miles. Turn left on lease road and proceed north approximately 1 mile. Turn right on unnamed lease road and proceed east for approximately 1.1 miles to the north side of the location.

See Exhibit 1 – Well Pad Access for a map of the route.

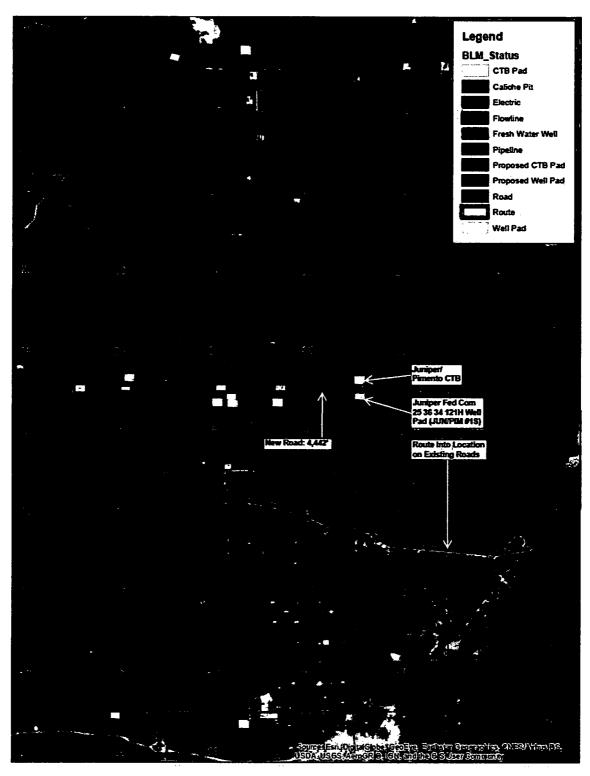
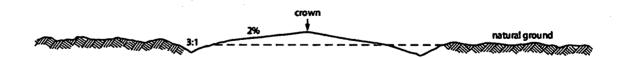


Exhibit 1 – Well Pad Access



Section 1 - Existing Roads

- A. The existing access road route to the proposed project is depicted on Exhibit 1 Well Pad Access. Improvements to the driving surface will be done where necessary. No new surface disturbance will be done, unless otherwise noted in the New or Reconstructed Access Roads section of this surface use plan.
- B. Right-Of-Way will be acquired before construction begins.
- C. The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattle guards, other range improvement projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use.
- D. Operator will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

Section 2 - New or Reconstructed Access Roads

- **A.** A section of new access road will be needed for this proposed project. See *Exhibit 1 Well Pad Access*, for locations.
- **B.** The length of new access road needed to be constructed for this proposed project is approximately 4,442 feet.
- **C.** New access road will be constructed with 6 inches of compacted caliche.
- D. The maximum driving width of the access road will be 20 feet. The maximum width of surface disturbance when constructing the access road will not exceed 30 feet. All areas outside of the driving surface will be revegetated.
- E. When the road travels on fairly level ground, the road will be crowned and ditched with a maximum 2% slope from the tip of the road crown to the edge of the driving surface. Ditches will be constructed on each side of the road. The ditches will be 3 feet wide with 3:1 slopes. See road cross section diagram below:

- F. No turnouts will be constructed on the new portions of access road.
- G. No cattle guards will be installed on the new portions of access road.
- H. Right-Of-Way will be acquired before construction begins.
- I. No culverts or low water crossings will be constructed for the new portions of access road.
- Since the access road is on level ground, no lead-off ditches will be constructed for the new portions of access road.
- K. Any sharp turns in the in the new road will be rounded to facilitate turning by trucks.

- L. Newly constructed or reconstructed roads, on surface under the jurisdiction of the Bureau of Land Management, will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road.
- M. All topsoil and fragmented rock removed in excavation will be used as directed in approved plan.

Section 3 – Location of Existing Wells

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Juniper Fed Com 25 36 34 121H. See Exhibit 2a – One Mile Radius Wells List for a list of wells depicted.

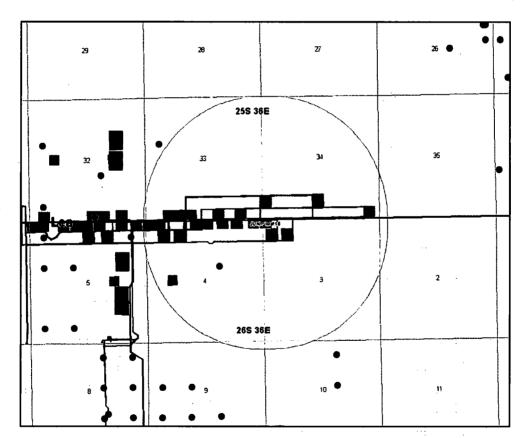


Exhibit 2 - One Mile Radius Existing Wells

API	WELL NAME	STATUS	TD
30025208430000	SOUTHWEST JALIT-FED 1	PLUGGED	13505

Exhibit 2a - One Mile Radius Existing Wells List

Section 4 - Location of Existing and/or Proposed Production Facilities

- A. The multiple well pad will be located on Section 3, and will measure 400'x500'. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location.
- **B.** Production from the proposed well will be transported to a new production facility named Juniper/Pimento CTB, north of the well pad.
- C. A buried 4" poly flowline (750 psi maximum) will be run approximately 570' from the Juniper Fed Com 25 36 34 121H to the Juniper/Pimento CTB north of the well pad. A 20' pipeline ROW containing three buried 12" poly water lines (200 psi maximum) will be run from the Juniper/Pimento CTB to tie into existing water lines at the Firethorn CTB. The overall length of disturbance for the new water lines will be approximately 4,857'. A power line will be run parallel to the water line and will connect into the power line at the Firethorn CTB. The power line will be approximately 4,857'. The Juniper/Pimento CTB will be 500'x525' and will include a separator, heat exchanger, VRU, VRT, meter run and a tank battery. The new production facility will have a secondary containment structure that is constructed to hold the capacity of 1-1/2 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.
- D. All permanent (lasting more than six months) above ground structures including but not limited to pump jacks, storage tanks, barrels, pipeline risers, meter housing, etc., that are not subject to safety requirements will be painted a non-reflective paint color, Shale Green, from the BLM Standard Environmental Colors chart, unless another color is required in the APD Conditions of Approval.
- E. If any plans change regarding the production facility or other infrastructure (pipeline, electrical lines, etc.), Ameredev will submit a sundry notice or right-of-way (if applicable) prior to installation or construction.

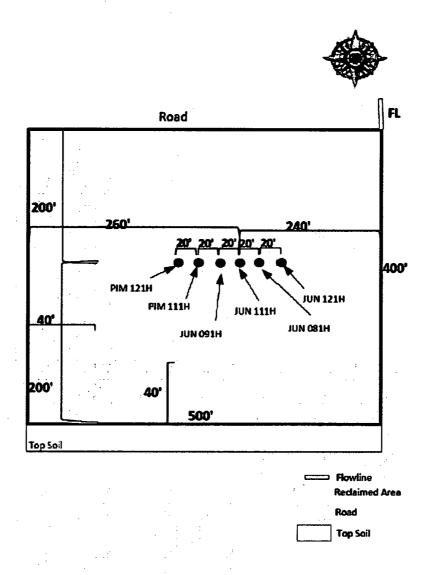


Exhibit 3 - Well Site Diagram

Section 5 - Location and Types of Water Supply

A. This location will be drilled using a combination of water and mud systems (outlined in the Drilling Program). The water will be obtained from preexisting water wells, by running a pump directly to the drilling rig. See *Exhibit 4 - Water Wells*, for a list of available water wells. In cases where a polyline is used to transport water for drilling or completion purposes, the existing and proposed roads into location will be utilized.

Permit #	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04′14.32″ N, 103°12′32.30″ W
CP 1378	S. Eppenour	32°05′40.62″ N, 103°13′ 35.26″ W
CP 1285	Sec. 5	32°03′56.50″ N, 103°17′37.04″ W
CP 857	Capped	32°04′39.70″ N, 103°16′51.13″ W
C 2287	#1	32°03′59.0″ N, 103°33′16.8″ W
C 2286	#2	32°03′59.2″ N, 103°33′15.2″ W
C 2290	#3	32°04′1.0″ N, 103°33′ 12.6″ W
C 2285	#4	32°04'3.7" N, 103°33'9.7" W
C 2288	#5	32°04′0.5″ N, 103°33′8.4″ W
C 2294	Garden	32°03′3.2″ N, 103°32′38.1″ W
C 2293	House	32°03′2.3″ N, 103°32′36.8″ W
J-11-S-3	Farm Well #2	32°03'08.4" N, 103°16'35.2" W
J-11-S-2	Farm Well #3	32°03′11.5″ N, 103°17′02.0″ W
J-11-S	Farm Well #4	32°03′24.6″ N, 103°17′02.1″ W
CP 1170 POD 1	CB 1	32°03′57.2″ N, 103°18′45.3″ W
CP 1170 POD 5		32°07′17.1″ N, 103°17′48.0″ W
CP 1263 POD 5	CB 2	32°03′56.27″ N, 103°18′27.4″ W
CP 1263 POD 3	CB 3	32°03′54.90″ N, 103°18′16.74″ W
CP 1351 POD 1	CB 4	32°03′57.16″ N, 103°17′45.13″ W
CP 1351 POD 2	CB 5	32°03′30.70″ N, 103°17′45.70″ W
J 26 Ryan	32	°01′20.41″ N, 103°15′49.46″ W
13	32	°02'41.5" N, 103°18'55.8" W

Exhibit 4 – Water Wells

<u>Section 6 – Construction/Construction Materials</u>

- A. Caliche will be obtained from the caliche pit located at Lat: 32° 6'28.78"N, Long: 103°16'58.77"W or the caliche pit at Lat: 32° 6'33.14"N, Long: 103°18'44.16"W or the caliche pit at Lat: 32° 3'8.30"N, Long: 103°13'57.00"W.
- B. Caliche utilized for the drilling pad will be obtained either from the locations listed above, an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "flipping" the well location. A mineral material permit will be obtained from the BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "flipping" a well location is as follows:
 - 1. An adequate amount of topsoil/root zone (usually top 6 inches of soil) will be stripped from the proposed well location and stockpiled along the side of the well location as depicted on the Exhibit 3 Well Site Diagram.
 - 2. An area will be used within the proposed well site dimensions to excavate caliche.
 - 3. Subsoil will be removed and stockpiled within the surveyed well pad dimensions.
 - 4. Once caliche/surfacing mineral is found, the mineral material will be excavated and stock piled within the approved drilling pad dimensions.
 - 5. Subsoil will then be pushed back in the excavated hole and caliche will be spread accordingly across the entire well pad and road (if available).
 - 6. Neither caliche, nor subsoil will be stockpiled outside of the well pad dimensions. Topsoil will be stockpiled along the edge of the pad as depicted in *Exhibit 5 Enlarged Well Site Diagram*.
 - 7. In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. A BLM mineral material permit will be acquired prior to obtaining any mineral material from BLM pits or federal land.

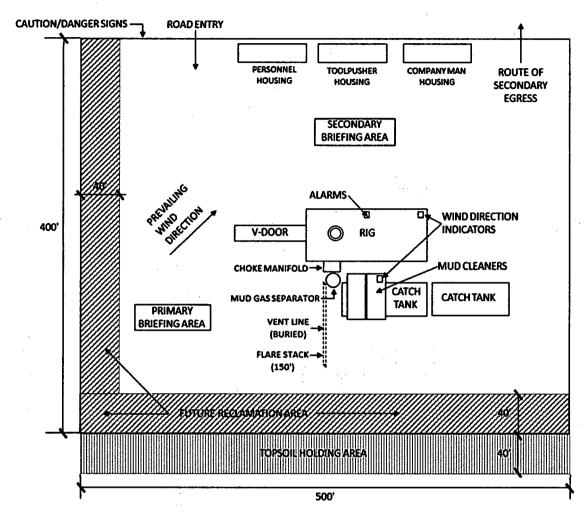


Exhibit 5 - Enlarged Well Site Diagram

Section 7 - Methods of Handling Waste

- A. Drill cuttings, mud, salts and other chemicals will be properly disposed of into steel tanks on site and hauled to a State approved commercial disposal facility.
- B. Garbage and trash produced during drilling and completion operations will be collected in a portable metal trash container and disposed of properly at a state approved disposal facility. All trash on and around the well site will be collected for disposal.
- C. Human waste and grey water will be properly contained and disposed of properly at a state approved disposal facility.
- D. After drilling and completion operations, trash, chemicals, salts, frac sand and other waste material will be removed and disposed of properly at a state approved disposal facility.

Section 8 - Ancillary Facilities

A. No ancillary facilities will be needed for the proposed project.

Section 9 - Well Site Layout

- **A.** See *Exhibit 3 Well Site Diagram* and *Exhibit 5 Enlarged Well Site Diagram*. The following information is presented:
 - 1. Reasonable scale
 - 2. Well pad dimensions/orientation
 - 3. Drilling rig components/layout
 - 4. Proposed access road
 - 5. Topsoil stockpile
- B. The proposed drilling pad was staked and surveyed by a professional surveyor. The attached survey plat of the well site depicts the drilling pad layout as staked.
- C. Topsoil salvaging
 - 1. Grass, forbs, and small woody vegetation such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and re-spread evenly on the site following topsoil re-spreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

Section 10 - Plans for Final Surface Reclamation

Reclamation Objectives

- A. The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil, to control erosion, and to minimize habitat and forage loss, visual impact, and weed infestation during the life of the well or facilities.
- B. The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources, and wildlife habitats. To ensure that the long-term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning, and vegetative productivity.

- C. The BLM will be notified at least 3 days prior to the commencement of any reclamation procedures.
- D. If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged. Ameredev will gain written permission from the BLM if more time is needed.
- E. Interim reclamation will be performed on the well site after the well is drilled and completed. Exhibit 3 – Well Site Diagram and Exhibit 5 – Enlarged Well Site Diagram depict the location and dimension of the planned interim reclamation for the well site.

Interim Reclamation Procedures (if performed)

- A. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production.
- **B.** In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. The areas planned for interim reclamation will then be contoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to reseeding will not be steeper than a 3:1 Ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be re-contoured to the above ratios during interim reclamation.
- D. Topsoil will be evenly re-spread and aggressively revegetated over the entire disturbed area not needed for all-weather operations, including cuts and fills. To seed the area, the proper BLM mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- **E.** Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Final Reclamation Procedures (well pad, buried pipelines, etc.)

- A. Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- **B.** All surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be re-contoured to the contour existing prior to initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to re-contouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation.

- D. After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BLM seed mixture, free of noxious weeds. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- **E.** Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. All unused equipment and structures including pipelines, electric line poles, tanks, etc. that serviced the well will be removed.
- **G.** All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not re-disturbed, and that erosion is controlled.

Section 11 - Surface Ownership

A. EOG has surface ownership for proposed project area.

Section 12 - Other Information

- A. There are no dwellings within 1 mile of this location.
- B. An on-site meeting for the Juniper Fed Com 25 36 34 121H well was held on Nov. 28, 2017.
- C. The well pad described in this document Juniper/Pimento (JUN/PIM #1S) will contain 6 wells that produce into a central tank battery (CTB) located north of the well pad. The wells share a common pad access road, and the six total flowlines from the individual wells will share a common corridor that terminates into the CTB. The CTB will be tied into a shared pipeline and electrical corridor. The wells that share the pad are:
 - Juniper Fed Com 25 36 34 081H, APD ID# 10400031765
 - Juniper Fed Com 25 36 34 091H, APD ID# 10400031762
 - Juniper Fed Com 25 36 34 111H, APD ID# 10400031759
 - Juniper Fed Com 25 36 34 121H, APD ID# 10400031755
 - Pimento Fed Com 26 36 03 111H, APD ID# 10400031732
 - Pimento Fed Com 26 36 03 121H, APD ID# 10400031733

Ameredev field representative:

Ameredev office contact:

Zac Boyd, Operations Supervisor

Christie Hanna, Regulatory Coordinator

Cell: (432) 385-6996

Direct: (737) 300-4723

Email: zboyd@ameredev.com

Email: channa@ameredev.com

Ameredev Operating, LLC Address: 5707 Southwest Parkway Building 1, Suite 275 Austin, Texas 78735

Operator Name: AMEREDEV OPERATING LLC Well Name: JUNIPER FED COM 25 36 34 Well Number: 121H **Produced Water Disposal (PWD) Location:** PWD disturbance (acres): PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: **Lined pit Monitor description: Lined pit Monitor attachment:** Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment: Section 3 - Unlined Pits Would you like to utilize Unlined Pit PWD options? NO **Produced Water Disposal (PWD) Location:** PWD surface owner: PWD disturbance (acres): Unlined pit PWD on or off channel: Unlined pit PWD discharge volume (bbl/day):

Approval Date: 04/19/2019

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Page 20 of 24

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number:

Injection well name:

Assigned injection well API number?

Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Approval Date: 04/19/2019

Page 21 of 24

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Bond Info

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Approval Date: 04/19/2019

Page 22 of 24

Well Name: JUNIPER FED COM 25 36 34

Well Number: 121H

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Operator Certification

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie Hanna

Signed on: 03/22/2019

Title: Senior Engineering Technician

Street Address: 5707 Southwest Parkway, Building 1, Suite 275

City: Austin

State: TX

Zip: 78735

Phone: (737)300-4723

Email address: channa@ameredev.com

Field Representative

Representative Name:

Street Address:

City:

State:

Zip:

Phone:

Email address:

Payment Info

Payment

APD Fee Payment Method:

PAY.GOV

pay.gov Tracking ID:

26B5EJD2

Approval Date: 04/19/2019

Page 23 of 24