							R,
Form 3160-3 (June 2015)				FORM OMB N Expires: Ja	APPRO 0. 1004- inuary 3	VED 0137 1, 2018	v /
UNITED STATI	ES			Lease Serial No.			$\langle H$
BUREAU OF LAND MAN	NAGEMEN	THORRS	5 OC	MMNM023199			$\mathbf{\mathbf{x}}$
APPLICATION FOR PERMIT TO	DRILL OR	REENTER 2 0	2019	6. If Indian, Allotee	or Tribe	Name	
Ia. Type of work:	REENTER	RECE	VED	7. If Unit or CA Ag	reement,	Name and No.	
Ib. Type of well:	Other		A. 1	8. Lease Name and	Well No		
Ic. Type of Completion: Hydraulic Fracturing	Single Zone		142	CAMELLIA FED 0 083H	ЮМ 26 В С Я	36 21 - 400)	
2. Name of Operator AMEREDEV OPERATING LLC (372-224)				9. API Weil No. 30-02	5-	49983	
ła. Address 5707 Southwest Parkway, Building 1, Suite 275 Austin T	3b. Phone N X (737)300-4	No. (include area coa 1700	le)	10. Field and Pool, 6 WC-025 G-08 S26	or Explo 3620C	LWR BONE SI	9
 Location of Well (Report location clearly and in accordance At surface LOT C / 670 FNL / 1960 FWL / LAT 32.01 	e with any State 968 / LONG -	e requirements.•) 103.27226		11. Sec., T. R. M. or SEC 28 / T26S / R	Blk. an 36E / N	d Survey or Area MP	
At proposed prod. zone LOT C / 50 FNL / 1980 FWL / 1	AT 32.05041	/LONG -103.2722	21				
 Distance in miles and direction from nearest town or post o 5 miles 	ffice*			12. County or Paris LEA	h	13. State NM	
 15. Distance from proposed* location to nearest property or lease line, ft. 	16. No of a 320	cres in lease	17. Spaci 320	ng Unit dedicated to this well			
(Also to nearest drig, unit line, if any)	10 Pros	ed Denth	BIA Bond No. in fla				
to nearest well, drilling, completed, applied for, on this lease, ft. 977 feet	10250 feet	: / 21674 feet	1B001478				
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 2911 feet	22. Approx 12/01/2019	imate date work will	start*	23. Estimated durati 90 days	on		
	24. Attac	chments					
The following, completed in accordance with the requirements as applicable)	of Onshore Oil	and Gas Ord er No. 1	l, and the F	lydraulic Fracturing r	ule per 4	13 CFR 3162.3-3	
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest Sys SUPO must be filed with the appropriate Forest Service Offi 	tem Lands, the cc).	 Bond to cover the Item 20 above). Operator certified Such other site space 	ne operation cation. pecific infor	is unless covered by an mation and/or plans as	n existing may be	g bond on file (see requested by the	
25 Signature	Name	BLM. (Printed/Typed)			Date	<u></u>	
(Electronic Submission)	Christ	tie Hanna / Ph: (73	7)300-472	3	06/13/	2018	
Title Senior Engineering Technician							
Approved by <i>(Signature)</i> (Electronic Submission)	Name Christ	e (Printed/Typed) topher Walls / Ph: ((575)234-2	2234	Date 05/15/	2019	
nue Petroleum Engineer	Office	e _SBAD					
Application approval does not warrant or certify that the application applicant to conduct operations thereon.	ant holds legal	or equitable title to the	hose rights	in the subject lease w	hich wo	uld entitle the	
warman or approver, it any, are associed.	make it a crim	e for any person know	wingly and within its	willfully to make to a jurisdiction.	iny depa	rtment or agency	
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, of the United States any false, fictitious or fraudulent statement	s or representat	uolis as to any matter					
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, of the United States any false, fictitious or fraudulent statement GCN Rec 05/20/19	s or representat	TH CONDIT	IONS	K2	2011	9	
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, of the United States any false, fictitious or fraudulent statement GCP Rec 05/20/19	s or representat	TH CONDIT	IONS	Ka	2011	9	

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

Approval Date: 05/15/2019

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: LOT C / 670 FNL / 1960 FWL / TWSP: 26S / RANGE: 36E / SECTION: 28 / LAT: 32.01968 / LONG: -103.27226 (TVD: 0 feet, MD: 0 feet) PPP: SESW / 0 FSL / 1969 FWL / TWSP: 26S / RANGE: 36E / SECTION: 21 / LAT: 32.02152 / LONG: -103.27221 (TVD: 10243 feet, MD: 11163 feet) BHL: LOT C / 50 FNL / 1980 FWL / TWSP: 26S / RANGE: 36E / SECTION: 16 / LAT: 32.05041 / LONG: -103.27221 (TVD: 10250 feet, MD: 21674 feet)

BLM Point of Contact

Name: Priscilla Perez Title: Legal Instruments Examiner Phone: 5752345934 Email: pperez@blm.gov

Approval Date: 05/15/2019

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Approval Date: 05/15/2019

(Form 3160-3, page 4)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Ameredev Operating LLC
LEASE NO.:	NMNM023199
WELL NAME & NO.:	Camellia Fed Com 26 36 21 083H
SURFACE HOLE FOOTAGE:	670'/S & 1960'/W
BOTTOM HOLE FOOTAGE	50'/N & 1980'/W
LOCATION:	Section 28, T.26 S., R.36 E., NMPM
COUNTY:	Lea County, New Mexico

COA

H2S	C Yes	• No	
Potash	None	Secretary	C R-111-P
Cave/Karst Potential	C Low	C Medium	
Variance	C None	Flex Hose	C Other
Wellhead	C Conventional	Multibowl	C Both
Other	☐ 4 String Area	Capitan Reef	F WIPP

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

- 1. The 13-3/8 inch surface casing shall be set at approximately 2025 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours

Page 1 of 9

after bringing cement to surface or 500 pounds compressive strength, whichever is greater.

- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
 - Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
 - Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

The minimum required fill of cement behind the 9-5/8 inch 1st intermediate casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Page 2 of 9

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Excess calculates to 21% - additional cement might be required.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef Top. Operator shall provide method of verification. Excess calculates to 23% additional cement might be required.

Alternate Casing Design:

2nd Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 3. The minimum required fill of cement behind the 7-5/8 inch 2nd intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.

In the case of lost circulation, operator has proposed to pump down 9 5/8" X 7 5/8" annulus. Operator must run a CBL from TD of the 7 5/8" casing to surface. Submit results to the BLM.

Pilot hole is required to have a plug at the bottom of the hole. If two plugs are set, the BLM is to be contacted (575-361-2822) prior to tag of bottom plug, which must be a minimum of 200' in length. Operator can set one plug from bottom of pilot hole to kick-off point and save the WOC time for tagging the first plug. Note plug tops on subsequent drilling report.

4. The minimum required fill of cement behind the 5-1/2 inch production casing is:

Cement should tie-back at least 50 feet on top of Capitan Reef Top.
 Operator shall provide method of verification. Excess calculates to 14%
 - additional cement might be required.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

Page 3 of 9

Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi.)

D. SPECIAL REQUIREMENT(S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

Page 4 of 9

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties
 Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 During office hours call (575) 627-0272.
 After office hours call (575)
 - Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log (one log per well pad is acceptable) run from TD to surface (horizontal well vertical portion of hole) shall

Page 5 of 9

be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

Page 6 of 9

- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.

Page 7 of 9

- a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, no tests shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

Page 8 of 9

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Waste Minimization Plan (WMP)

In the interest of resource development, submission of additional well gas capture development plan information is deferred but may be required by the BLM Authorized Officer at a later date.

NMK4292019

Page 9 of 9

263621M APD Camellia Fed Com 26 36 21 083H 30015 NMNM023199 Ameredev 12-55 03192019 NMK_ContigencyPlan

Cap SURFACE 13 3/8 surface csg in a 17 1/2 inch hole. **Design Factors** Body #/ft Grade Coupling Collapse Burst Segment Length Weight "A" 54.50 J 55 BUTT 8.13 1.31 1.12 1,925 104,913 "8" 0 0 **Tail Cmt** does not circ to sfc. 1,925 104.913 w/8.4#/g mud, 30min Sfc Csg Test psig: 1,071 Totals: Comparison of Proposed to Minimum Required Cement Volumes Hole Annular 1 Stage 1 Stage Min 1 Stage Drillina Calc Min Dist Rea'd Size Volume Cmt Sx **CuFt Cmt** Cu Ft % Excess Mud Wt MASP BOPE Hole-Cola 17 1/2 0.6946 1391 8.60 1345 2M 1.56 She girt in an antis 5 card at an A.C.A.M.B.A., natriound. 95/8 casing inside the 133/8 **Design Factors** INTERMEDIATE Segment #/ft Grade Coupling Body Collapse Burst Length Weight "A" 40.00 **HCL 80** BUTT 4.57 1.73 0.82 5.013 200,520 "B" Ö 0 w/8.4#/g mud, 30min Sfc Csg Test psig: Totals: 5.013 200.520 The cement volume(s) are intended to achieve a top of 0 ft from surface or a 1925 overlap. Hole Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc Rea'd **Min Dist** Size Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE Hole-Cplg 12 1/4 0.3132 look > 0 1684 9.40 4161 5M 0.81 D V Tool(s): 3262 Σ CuFt Σ%excess sum of sx 130 t by stage % : 315 37 1357 3882 Burst Frac Gradient(s) for Segment(s): A, B, C, D = 1.15, b, c, d Alt Burst = 1.38 > 1 All > 0.70, OK. A Buoyant Design Factors 7578 INTERMEDIATE casing inside the 9 5/8 Segment #/ft Grade Coupling Joint Collapse Burst Length Weight "A" 29.70 **HCL 80** BUTT 2.13 1.36 331,066 1.1 11,147 "B" 0 0 11,147 331,066 w/8.4#/g mud, 30min Sfc Csg Test psig: 2,452 Totals: The cement volume(s) are intended to achieve a top of Û 5013 overlap. ft from surface or a Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc **Min Dist** Hole Reg'd Size Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE Hole-Cplg 8 3/4 0.1005 683 1339 1172 14 10.50 3336 5M 0.56 Class 'H' tail cmt yld > 1.20 Alt Collapse = 1.65 > 1.125 Tail cmt <u>51/2</u> casing inside the 7 5/8 PRODUCTION **Design Factors** Length #/ft Grade Coupling Joint Collapse Burst Weight Segment 222.940 "A" 20.00 P 110 BUTT 1.44 2.15 2.57 11,147 "B" 2.29 20.00 P 110 BUTT œ 2.57 10,453 209,060 432,000 w/8.4#/g mud, 30min Sfc Csg Test psig: 2,255 Totals: 21,600 3.20 2.29 Alegment Design Factors would be: if it were a vertical wellbore. MTD Max VTD Csg VD Curve KOP Dogleg^o Severity MEOC No Pilot Hole Planned 10250 21600 10250 9800 90 6 11300 The cement volume(s) are intended to achieve a top of 0 ft from surface or a 11147 overlap. 1 Stage Drilling Hole Annular 1 Stage 1 Stage Min Calc Req'd **Min Dist** Volume Cu Ft % Excess Mud Wt MASP BOPE Size Cmt Sx CuFt Cmt Hole-Cpig 0.0835 1913 23 6 3/4 1751 2346 10.50 0.49 Class 'H' tail cmt yld > 1.20

Carlsbad Field Office

Approval Date: 05/15/2019

4/29/2019

263621M APD Camellia Fed Com 26 36 21 083H 30015 NMNM023199 Ameredev 12-55 03192019 NMK

Cap SURFACE 133/8 inch hole. surface csg in a 17 1/2 **Design Factors** Segment #/ft Grade Body Coupling Collapse Burst Length Weight BUTT "A" 68.00 137,700 J 55 7.77 2.21 0.8 2,025 "B" 0 0 circ to sfc. 137,700 Tail Cmt does not 2,025 w/8.4#/g mud, 30min Sfc Csg Test psig: 1,500 Totals: Comparison of Proposed to Minimum Required Cement Volumes Drilling Annular 1 Stage Min 1 Stage Calc Hole 1 Stage Req'd Min Dist Size Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE Hole-Cpla 17 1/2 0.6946 1460 1231 2083 43 8.40 2155 3M 1.56 Burst Frac Gradient(s) for Segment(s) A, B = , b All > 0.70, OK. INTERMEDIATE 95/8 casing inside the 13 3/8 **Design Factors** #/ft Coupling Burst Segment Grade Body Collapse Length Weight 40.00 "A" **HCL 80** 2.36 389,000 BUTT 0.99 1.03 9,725 "B" 0 0 9,725 389,000 w/8.4#/g mud, 30min Sfc Csg Test psig: Totals: 2025 The cement volume(s) are intended to achieve a top of 0 ft from surface or a overlap. 1 Stage Hole 1 Stage Annular 1 Stage Min Drilling Calc Req'd **Min Dist CuFt Cmt** BOPE Volume Cmt Sx Cu Ft Mud Wt MASP Hole-Cplg Size % Excess 3109 3336 5M 12 1/4 0.3132 0 0.81 look 🖌 8.50 D V Tool(s): 4991 sum of sx Σ CuFt Σ%excess 2564 21 5736 84 t by stage % : 152 Class 'H' tail cmt yld > 1.20 Alt Collapse = 1.49 > 1.125 Tail cmt PRODUCTION **Design Factors** 51/2 casing inside the 9 5/8 Grade Body Collapse Segment #/ft Coupling Burst Length Weight 20.00 2.21 "A" **HCP 110** BUTT 3.13 2.08 9,800 196,000 "B" 20.00 **HCP 110** BUTT 12.68 1.87 2,21 11,800 236,000 432,000 Totals: 21,600 w/8.4#/g mud, 30min Sfc Csg Test psig: 2,156 The cement volume(s) are intended to achieve a top of 0 9725 overlap. ft from surface or a Min 1 Stage Calc **Min Dist** Hole Annular 1 Stage 1 Stage Drilling Req'd **Hole-Cplg** Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE Size 5262 0.2291 23 8 1/2 4829 6471 10.50 1.23 Class 'H' tail cmt yld > 1.20 Ō 51/2 **Design Factors** Grade Coupling Joint Weight #/ft Collapse Burst Length Segment "A" Õ 0 "B" 0 Ò Õ 0 Totals: w/8.4#/g mud, 30min Sfc Csg Test psig: Cmt vol calc below includes this csg, TOC intended 0 ft from surface or a 21600 overlap. 1 Stage 1 Stage Drilling **Min Dist** Hole Annular 1 Stage Min Calc Req'd Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE **Hole-Cpig** Size 0 0 0

Carlsbad Field Office

Approval Date: 05/15/2019

4/29/2019

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie Hanna

Signed on: 04/05/2019

Operator Certification Data Report

05/16/2019

Title: Senior Engineering Technician

Street Address: 5707 Southwest Parkway, Building 1, Suite 275

State: TX

City: Austin

stin

Zip: 78735

Phone: (737)300-4723

Email address: channa@ameredev.com

Field Representative

Representative Name: Zachary Boyd

Street Address: 5707 SOUTHWEST PARKWAY, BLDG 1, STE. 275

State: TX

City: AUSTIN

ISTIN

Zip: 78735

Phone: (737)300-4700

Email address: zboyd@ameredev.com

VAFMSS U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Applica	ation Data Report 05/16/2019						
APD ID: 10400030726	Submissi	ion Date: 06/13/201	8						
Operator Name: AMEREDEV OPERATING	GLLC								
	Well Num	n ber: 083H	Show Final Text						
Well Type: OIL WELL	Well Wor	Well Work Type: Drill							
Section 1 - General									
APD ID: 10400030726	Tie to previous NOS?	10400028718	Submission Date: 06/13/2018						
BLM Office: CARLSBAD	User: Christie Hanna	Title:	Senior Engineering Technician						
Federal/Indian APD: FED	Is the first lease penet	rated for productio	n Federal or Indian? FED						
Lease number: NMNM023199	Lease Acres: 320								
Surface access agreement in place?	Allotted?	Reservation:							
Agreement in place? NO	Federal or Indian agree	ement:							
Agreement number:									
Agreement name:									
Keep application confidential? NO									
Permitting Agent? NO	APD Operator: AMERE	DEV OPERATING	LLC						
Operator Info									
Operator Organization Name: AMEREDE	/ OPERATING LLC								
Operator Address: 5707 Southwest Parkw	ay, Building 1, Suite 275	Zip: 78735							
Operator PO Box:		•							
Operator City: Austin State	: TX								
Operator Phone: (737)300-4700									
Operator Internet Address:									
Section 2 - Well Inform	ation								
Well in Master Development Plan? NO	Master Develo	opment Plan name	:						
Well in Master SUPO? NO	Master SUPO	name:							
Well in Master Drilling Plan? NO	Master Drillin	g Plan name:							
	Well Number	: 083H	Well API Number:						
Field/Pool or Exploratory? Field and Pool									
		·····	Page 1 of 3						

Page 2 of 3

1 895 2 01 3

Page 3 of 3

Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

WELLSITE DIAGRAM

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET.

LOYALTY INNOVATION LEGACY 1400 EVERMAN PARKWAY, Ste. 146 - FT. WORTH, TEXAS 76140 TELEPHONE: (41) 744-7512 + FAX (617) 744-7554 2903 NORTH BIG SPRING + MIDLAND, TEXAS 79705 TELEPHONE: (432) 682-1533 OR (800) 787-1653 + FAX (432) 682-1743 WWW.TOPOGRAPHIC.COM

SISURVEYAMEREDEV_OPERATING_LLCICAMELLIA_FED_COMFINAL_PRODUCTSILO_CAMELLIA_FED_COM_28_36_21_083H_REV2.DWG 3/4/2019 12:42:49 PM ccession

SISURVEYAMEREDEV_OPERATING_LLC/CAMELLIA_FED_COM/FINAL_PRODUCTS/LO_CAMELLIA_FED_COM_26_36_21_083H_REV2.DWG 3/4/2019 12:42:51 PM ccaston

.

AMEREDEV

AMEREDEV OPERATING, LLC

LEASE NAME & WELL NO .: CAMELLIA FED COM 26 36 21 083H

SECTION 28	_ TWP <u>26-S</u> _	RGE <u>36-E</u>	SURVEY	<u>N.M.P.M.</u>
COUNTY	LEA	STATE	_	NM
DESCRIPTION		670' FNL & 1960)' FWL	

DISTANCE & DIRECTION

FROM INT. OF NM-205 & NM-128, HEAD SOUTH ON NM-205 ±8.0 MILES, THENCE WEST (RIGHT) ON A PROPOSED RD. ±1.2 MILES, THENCE SOUTH (LEFT) ON A PROPOSED RD. ±460 FEET TO A POINT ±195 FEET NORTHWEST OF THE LOCATION.

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM of 1983, EAST ZONE, U.S. SURVEY FEET. -N--SCALE: 1" = 10000' 0' 5000' 10000'

SISURVEYAMEREDEV_OPERATING_LLCICAMELLIA_FED_COM/FINAL_PRODUCTSILO_CAMELLIA_FED_COM_26_36_21_083H_REV2.DWG 3/4/2019 12:42:49 PM cceston

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400030726

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 083H Well Work Type: Drill

Submission Date: 06/13/2018

Show Final Text

05/16/2019

Drilling Plan Data Report

Well Type: OIL WELL

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation	
1								
2								-
3								
4								
5								
6								17 - 11
7								• • •
8								:
9								
10								

Section 2 - Blowout Prevention

Requesting Variance? YES

محافظ والمعادي والمحافظ والمتعاد والمتعاد والمتعاد والمتعاد والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمح

Testing Procedure: See attachment

Choke Diagram Attachment:

10M_Choke_Manifold_REV_20190405131359.pdf

BOP Diagram Attachment:

Page 1 of 6

Operator Name: AMEREDEV OPERATING LLC Well Name: CAMELLIA FED COM 26 36 21

Well Number: 083H

10M_Choke_Manifold_REV_20190405131359.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190405131557.pdf

5M_BOP_System_20190405131557.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190405131557.pdf

4_String_MB_Ameredev_Wellhead_Drawing_net_REV_20190405131608.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE			NEW	API	N	0.		0		2911					OTHER - BTC		1.	DRY		DRY	
2	INTERMED IATE			NEW	API	N	0		0	<i>*</i>						OTHER - · · BTC			DRY		DRY	
3	PRODUCTI ON			NEW	API	N	0		0	, 						OTHER - BTC			DRY		DRY	

Casing Attachments

Casing ID: 1

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

13.375_68.00__J55_BTC_20190405131817.pdf

Camellia_Fed_Com_26_36_21_083H___Wellbore_Diagram_and_CDA_20190405131826.pdf

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

INTERMEDIATE

Lead

Well Number: 083H

Casing ID: 2	!	S	tring 1	Type:IN	NTERN	/EDIAT	E						
Inspection Do	cumer	nt:											
Spec Docume	ent:												
Tapered String	g Spec	:											
Casing Desig	n Assu	Imptio	ns and	l Works	sheet(s):							
Camellia	_Fed_	Com_2	6_36_	21_083	вн\	Vellbor	e_Diag	,ram_a	nd_CE	DA_2019040	513200	04.pdf	
9.625_40)_SeAl	H80HC	_4100	_Collap	ose_20	19040	513201	4.pdf					
Casing ID: 3		s	trina 1	[vpe :P	RODU					- 			
Inspection Do	cumer	nt:											
Spec Docume	nt:	·											
Tapered String	g Spec	:		i.									
	a Accu	motio	ne and	Work	shoot/	e).							
					sneeu	5) .							
5.5_20_1	-110H	P_Eagi	e_Srr	1_2019	04051	32129.					- 4 0 0 4 4		
Camellia	_Fed_	Com_2	6_36_	21_083	SH\	Nelibor	e_Diag	jram_a	nd_CL	DA_2019040	513213	37.pdf	
Section	4 - Ce	emen	t										
Ð		_			(x			a.		þe			
д Тур	Лail	e Toc	đ	W س	ıtity(s		ξ		ss%	ent ty			ives
Strinç	Lead	Stag(Deptl	Top ¹	Botto	Quan	Yield	Dens	CuF	Exce	Cemt	:		Addit
URFACE	Lead		(,	2628	· .	1.76		2240. 9	ر آر ۱	1,223,3(5		; i 	n i navna stranov na i navna stranov na ostala
	Toil	•••	106-12	ou e d									

2.47

Page 3 of 6

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 083H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
9725	1025 0	OIL-BASED MUD	10.5	12.5							
0	2412	WATER-BASED MUD	8.4	8.6							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5000

Anticipated Surface Pressure: 2745

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_20180607152046.pdf

Page 5 of 6

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 083H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Cam083_DR_20190405132950.pdf

Cam083_LLR_20190405132950.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190405133106.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190405133106.pdf

Other proposed operations facets description:

 $p_{\rm eff}(x) = 0$, the product of the second state of the secon

Other proposed operations facets attachment:

CAPITAN_PROTECTION_CONTINGENCY_PLAN_20190405133137.pdf

Other Variance attachment:

R616___CoC_for_hoses_12_18_17_20190405133201.pdf Requested_Exceptions___3_String_Revised_03252019_20190405133202.pdf

Page 6 of 6

.

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

• 13-5/8" 5M Annular

AMEREDE

- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier					
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams					
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams					
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams					
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams					
Open Hole	13-5/8	Drilling Fluid	Blind Rams						
All Drilling Components in 10M Environment will have OD that will allow full Operational RATED									
WORKING PRESSURE	for system design.	Kill line with minimu	m 2" ID will be availab	ole outside					

substructure with 10M Check Valve for OOH Kill Operations

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan

Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

PERFORMANCE DATA

API BTC

13.375 in

68.00 lbs/ft

J-55

Technical Data Sheet

I ubular Parameters				· .	
Size	13.375	in	Minimum Yield	55,000	psi
Nominal Weight	68.00	lbs/ft	Minimum Tensile	75,000	psi
Grade	J-55		Yield Load	1,069,000	lbs
PE Weight	66.10	lbs/ft	Tensile Load	1,458,000	lbs
Wall Thickness	0.480	in	Min. Internal Yield Pressure	3,500	psi
Nominal ID	12.415	in	Collapse Pressure	1,950	psi
Drift Diameter	12.259	in		•	l
Nom. Pipe Body Area	19.445	in²			

Connection Parameters						
Connection OD	14.375	in				
Coupling Length	10.625	in				
Threads Per Inch	5.000	in				
Standoff Thread Turns	1.000					
Make-Up Loss	4.513	_ in _				
Yield Load In Tension		lbs				
Min. Internal Yield Pressure	3,500	psi				

Printed on: February-13-2015

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 083H	Co. Well ID:	XXXXXX
SHL:	Sec. 28 26S-36E 670' FNL & 1960' FWL	AFE No.:	XXXX-XXX
BHL:	Sec. 16 26S-36E 50' FNL & 1980' FWL	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	2,911'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Second Bone Spring
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	10,250'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	21,674'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB: 27'
Tubina:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size		Formation Tops		Logs	Cemen	t	Mud Weight
17.5"		Rustler	2,287'		,475 Sacks OC 0'	00% Excess	8.4-8.6 ppg WBM
		13.3/3 00# J-33 BIC	2,412	<u> </u>		<u> </u>	
		Salado	2,357'				
		Tansill	3,177'				
		Capitan Reef	3,638'		S	ess	lsion
		Lamar	4,941'		Sacl	Ĕ	Emu
		DV Tool	4,991'		883 TOC	50%	Brine
12.25"							sel
		Bell Canyon	5,102'				Die
		Brushy Canyon	7,029'				9.4 ppg
		Bone Spring Lime	8,065'				- 2 - 6
		First Bone Spring	9,564'		cks	ess	· • •
					3 Sa : 0'	ЕXO	
		9.625" 40# L-80HC BTC	9,725'		1,72 TOC	50%	
8.5"		Second Bone Spring	10,201'				v
12° Build			· · ·				OBA
@							6dd
9,725' MD			04.074		<i>"</i>	.0	12.5
	5.5"	20# P-110CYHP BTC	21,6/4		acks	ces	2 -
11,204 (80	larget Secor	a Bone Spring 10250 TVD //	21674 MD	-	0. 00	Ж́ Ш	10.
L L					4,62	25%	

Casing Design and Safety Factor Check

Casing Specifications							
Segment Hole ID Depth OD Weight Grade Coupling							
Surface	17.5	2,412'	13.375	68	J-55	BTC	
Intermediate	12.25	9,725'	9.625	40	HCL-80	BTC	
Prod Segment A	8.5	9,725'	5.5	20	CYHP-110	BTC	
Prod Segment B	8.5	21,674'	5.5	20	CYHP-110	BTC	

Check Surface Casing						
OD Cpig	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
14.375	1,069	915	4,100	3,450		
	\$	afety Facto	ors			
1.56	6.52	5.58	3.80	0.73		
	Check I	ntermedia	te Casing			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
7.625	940	558	6700	9460		
	5	afety Facto	ors			
2.31	2.42	2.46	1.41	1.42		
	Check Pro	od Casing,	Segment A			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
	S	afety Facto	ors			
1.36	3.55	3.20	2.02	2.16		
	Check Pro	od Casing,	Segment B			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
	S	afety Facto	ors			
1.36	69.33	62.38	1.92	2.16		

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTION	•
MECHANICAL PROPERTIES	· · · · ·		
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
DIMENSIONS			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
SECTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
PERFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

 Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.

3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.

4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.

6) Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclai ms any and all expressed or implied warranties of fitness for any general or particular application. Manuel USS Product Data Sheet 2017 rev25 (April)

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064 1-877-893-9461 connections@uss.com www.usstubular.com

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 083H	Co. Well ID:	XXXXXX
SHL:	Sec. 28 26S-36E 670' FNL & 1960' FWL	AFE No.:	xxxx-xxx
BHL:	Sec. 16 26S-36E 50' FNL & 1980' FWL	API No.:	XXXXXXXXXX
	Lea, NM	GL:	2,911'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Second Bone Spring
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	10,250'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	21,674'
Xmas Tree:	2-9/16" 10M	Ria:	TBD KB : 27'
Tubina:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs	Cement		Mud Weight
17.5"	Rustler 2,287'		5 Sacks 0'	% Excess	-8.6 ppg WBM
	13.375" 68# J-55 BTC 2,412'		1,47 TOC	100	8.4
	Salado 2,357'	·.			
	Tansill 3,177'				
	Capitan Reef 3,638'		0	SS	lion
	Lamar 4,941'		Sack:	Exce	Emuls
	DV Tool 4,991'		100 100	50%	3rine
12.25"					iesel E
	Bell Canyon 5,102'				0 b
	Brushy Canyon 7,029'				.4 pl
	Bone Spring Lime 8,065				8.5 - 9
	First Bone Spring 9,564'		icks	ssa	
			23 Se C 0'	% Exc	
/	9.625" 40# L-80HC BTC 9,725		<u>1</u> 1 1	50%	
8.5"	Second Bone Spring 10,201'				5
12° Build					g OBI
@ 9.725' MD					5 pp
thru	5.5" 20# P-110CYHP BTC 21,674'	1	sks.	SS	- 12
11,264' MD	Target Second Bone Spring 10250 TVD // 21674 MD		3 Sac 0'	Exce	10.5
		P	1,62£ ГОС	25%	

Casing Specifications						
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling
Surface	17.5	2,412'	13.375	68	J-55	BTC
Intermediate	12.25	9,725'	9.625	40	HCL-80	BTC
Prod Segment A	8.5	9,725'	5.5	20	CYHP-110	BTC
Prod Segment B	8.5	21,674'	5.5	20	CYHP-110	BTC

Casing Design and Safety Factor Check

Check Surface Casing						
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
14.375	1,069	915	4,100	3,450		
	S	afety Facto	ors			
1.56	1.56 6.52 5.58 3.80		0.73			
	Check I	ntermedia	te Casing			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
7.625	940	558	6700	9460		
Safety Factors						
2.31	2.42	2.46	1.41	1.42		
Check Prod Casing, Segment A						
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
	S	afety Facto	ors			
1.36	3.55	3.20	2.02	2.16		
	Check Pro	od Casing,	Segment B			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
	S	afety Facto	ors			
1.36	69.33	62.38	1.92	2.16		

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 083H	Co. Well ID:	XXXXXX
SHL:	Sec. 28 26S-36E 670' FNL & 1960' FWL	AFE No.:	xxxx-xxx
BHL:	Sec. 16 26S-36E 50' FNL & 1980' FWL	API No.:	XXXXXXXXXXXX
	Lea, NM	GL:	2,911'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Second Bone Spring
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	10,250'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	21,674'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB: 27'
Tubina:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs Cement	Mud Weight
17.5"	Rustler 2,287	,475 Sacks OC 0' 00% Excess	8.4-8.6 ppg WBM
· · · · · · · · · · · · · · · · · · ·	<u>13.375 08# J-55 BTC 2,412</u>		
	Salado 2,357	n	
	Tansill 3,177	n .	
	Capitan Reef 3,638	s s s	sion
	Lamar 4,941	Sack Co.	Emu
	DV Tool 4,991	- 10(50%	rine
12 25"			iel B
	Bell Canyon 5,102	2	g Dies
	Brushy Canyon 7,029)'	9.4 pp
	Bone Spring Lime 8,065	5'	8.5 - (
	First Bone Spring 9,564	r s ss	
		723 Sa 0C 0' % Exc	
	9.625" 40# L-80HC BTC 9,725		
8.5"	Second Bone Spring 10,201		5
12° Build			OBI
@			6dd
9,725' MD			12.5
11 264' MD	5.5" 20# P-110CYHP BTC 21,0/4	ack ces	.5 -
	Target Second Bone Spring 10230 TVD // 21674 MD	ν C 28 S	10
		25° 1 6	

Casing Design and Safety Factor Check

		Casing :	Specificati	ons		
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling
Surface	17.5	2,412'	13.375	68	J-55	BTC
Intermediate	12.25	9,725'	9.625	40	HCL-80	BTC
Prod Segment A	8.5	9,725'	5.5	20	CYHP-110	BTC
Prod Segment B	8.5	21,674'	5.5	20	CYHP-110	BTC

	Chec	k Surface (Casing	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
14.375	1,069	915	4,100	3,450
	S	afety Facto	ors	
1.56	6.52	5.58	3.80	0.73
	Check I	ntermedia	te Casing	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
7.625	940	558	6700	9460
	S	afety Facto	ors	
2.31	2.42	2.46	1.41	1.42
	Check Pro	od Casing,	Segment A	L
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
5.777	728	655	12780	14360
	S	afety Facto	ors	
1.36	3.55	3.20	2.02	2.16
	Check Pro	od Casing,	Segment B	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
5.777	728	655	12780	14360
	S	afety Facto	ors	
1.36	69.33	62.38	1.92	2.16

40#

SEAH-80 HIGH COLLAPSE (SEAH-80 IS A NON HEAT TREATED PRODUCT)

Dimensions (Nominal)

<u>9.625"</u>

Outside Diameter	9.625	in.
Wall	0.395	in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.

<u>.395"</u>

Performance Properties

Collapse	4100	psi
Internal Yield Pressure at Minimum Yield		
PE	5750	psi
LTC	5750	psi
BTC	5750	psi
Yield Strength, Pipe Body	916	1000 lbs.
Joint Strength		
LTC	717	1000 lbs.
BTC	915	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

lbs./ft.

H₂S Drilling Operation Plan

- 1. <u>All Company and Contract personnel admitted on location must be trained by a qualified H₂S safety instructor to the following:</u>
 - a. Characteristics of H₂S
 - b. Physical effects and hazards
 - c. Principal and operation of H₂s detectors, warning system and briefing areas
 - d. Evacuation procedure, routes and first aid
 - e. Proper use of safety equipment and life support systems
 - f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- b. Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.
- 3. H₂S Detection and Alarm Systems:
 - a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
 - **b.** An audio alarm will be installed on the derrick floor and in the top doghouse.

4. Protective Equipment for Essential Personnel:

- a. Breathing Apparatus:
 - i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
 - ii. Two (SCBA) Units will be stored in safety trailer on location.
 - iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.
- b. Auxiliary Rescue Equipment:
 - i. Stretcher
 - ii. 2 OSHA full body harnesses
 - iii. 100 ft. 5/8" OSHA approved rope
 - iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- b. Windsock on the rig floor should be high enough to be visible.

6. <u>Communication:</u>

- a. While working under mask scripting boards will be used for communication where applicable.
- b. Hand signals will be used when script boards are not applicable.

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. <u>Drill Stem Testing:</u> No Planned DST at this time.

8. <u>Mud program:</u>

a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

9. Metallurgy:

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
- **b.** Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H_2S , the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
 - Have received training in the:
 - o Detection of H₂S and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating LLC – Emergency Phone 737-300-4799			
Key Personnel:			
Name	Title	Office	Mobile
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996
Blake Estrada	Construction Foreman		432-385-5831

Artesia	
Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283
Carlsbad	<u>.</u>
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
US Bureau of Land Management	575-887-6544
Santa Fe	
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
National	
National Emergency Response Center (Washington, D.C.)	800-424-8802
Medical	
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433
SB Air Med Service - 2505 Clark Carr Loon S E · Albuquerque NM	505-842-4949

CAM/AZ CAM/AZ #5SX Camellia 083H

Wellbore #1

Plan: Design #1

Standard Planning Report

05 March, 2019

AIVIEK	EDEV			Planning Rep	ort			
Database: Company: Project: Site: Well: Wellbore: Design:	EDM5000 Ameredev Opera CAM/AZ CAM/AZ #5SX Camellia 083H Wellbore #1 Design #1	ting, LLC.		Local Co-ord TVD Referen MD Referend North Refere Survey Calc	dinate Reference nce: ce: ence: ulation Method:	e: Well Ca KB @ 2 KB @ 2 Grid Minimur	mellia 083H 938.0usft 938.0usft n Curvature	
Project	CAM/AZ							
Map System: Geo Datum: Map Zone:	US State Plane 198 North American Dat New Mexico Easten	3 um 1983 n Zone		System Datur	n :	Mean Sea	Level	
Site	CAM/AZ #5SX							
Site Position: From: Position Uncertainty	Lat/Long :	0.0 usft	Northing: Easting: Slot Radlus:	372,51 870,19	13.64 usft Lati 93.17 usft Lon 13-3/16 "Grid	tude: gitude: I Convergence:		32° 1' 10.853 N 103° 16' 20.164 W 0.56 °
Well	Camellia 083H							
Well Position Position Uncertainty	+N/-S +E/-W	0.0 usft 0.0 usft 0.0 usft	Northing: Easting: Wellhead Elev	ation:	372,513.64 usft 870,193.17 usft	Latitude: Longitude: Ground Le	vel:	32° 1' 10.853 N 103° 16' 20.164 W 2,911.0 usft
Wellbore	Wellbore #1							
Magnetics	Model Name		Sample Date	Declinatio (°)	on 	Dip Angle (°)	50.00	Field Strength (nT)
[/15	3/3/2019		0.01			47,073.24423010
Design	Design #1					·		
Audit Notes: Version:			Phase:	PROTOTYPE	Tie On I	Depth:	0.0	
Vertical Section:		Depth F (L	rom (TVD) isft)	+N/-S (usft)	+E/-W (usft)		Direction (°)	
			0.0	0.0	0.0		359.52	

Plan	Survey Tool Prog	ram	Date 3/5/2019			
	Depth From (usft)	Depth To (usft)	Survey (Wellbore)	Tool Name	Remarks	
1	0.0	21,674.1	Design #1 (Wellbore #1)	MWD		
				OWSG MWD - Standard		

3/5/2019 12:19:33PM

Planning Report

				-
Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 083H	l
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2938.0usft	1
Project:	CAM/AZ	MD Reference:	KB @ 2938.0usft	1
Site:	CAM/AZ #5SX	North Reference:	Grid	l
Well:	Camellia 083H	Survey Calculation Method:	Minimum Curvature	1
Wellbore:	Wellbore #1			l
Design:	Design #1	i		

Г	
1	Plan Sections

feasured			Vertical			Dogleg	Build	Tum		
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/- W (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,300.0	6.00	186.00	2,299.5	-15.6	-1.6	2.00	2.00	0.00	186.00	
6,724.8	6.00	186.00	6,700.0	-475.6	-50.0	0.00	0.00	0.00	0.00	
7,024.8	0.00	0.00	6,999.5	-491.2	-51.6	2.00	-2.00	0.00	180.00	
9,725.3	0.00	0.00	9,700.0	-491.2	-51.6	0.00	0.00	0.00	0.00	
10,431.1	84.69	2.98	10,175.4	-58.5	-29.1	12.00	12.00	0.00	2.98	
11,211.0	84.69	2.98	10,247.5	717.0	11.3	0.00	0.00	0.00	0.00	
11,264.2	90.00	359.42	10,250.0	770.2	12.4	12.00	9.97	-6.69	-33.96	Cam083 FTP
21,674.1	90.00	359.42	10,250.0	11.179.5	-93.8	0.00	0.00	0.00	0.00	Carn083 BHL

3/5/2019 12:19:33PM

Page 3

Planning Report

				
Database:	EDM5000	Local Co-ordinate Reference:	Weil Camellia 083H	
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2938.0usft	
Project:	CAM/AZ	MD Reference:	KB @ 2938.0usft	
Site:	CAM/AZ #5SX	North Reference:	Grid	
Well:	Camellia 083H	Survey Calculation Method:	Minimum Curvature	
Wellbore:	Wellbore #1			
Design:	Design #1			
. =				

Planned Survey

Depth Inclination Azimuth Depth +V/4 $\Psi = U_{V}$ Section Fate Rate Rate <t< th=""><th>Measured</th><th></th><th></th><th>Vertical</th><th></th><th></th><th>Vertical</th><th>Dogleg</th><th>Build</th><th>โนก</th></t<>	Measured			Vertical			Vertical	Dogleg	Build	โนก
(arth) (arth) (arth) (arth) (arth) (r/100arth) (r/100arth) (r/100arth) 0.0 0.00 0.00 0.0 0.0 0.0 0.0 0.00 <t< th=""><th>Denth</th><th>Inclination</th><th>Asimuth</th><th>Depth</th><th>AN/-S</th><th>AEI.M</th><th>Section</th><th>Rate</th><th>Rate</th><th>Rate</th></t<>	Denth	Inclination	Asimuth	Depth	AN/-S	AEI.M	Section	Rate	Rate	Rate
Land Land <thland< th=""> Land Land <thl< th=""><th>(usft)</th><th>/%</th><th>/º)</th><th>(usft)</th><th>tusfi)</th><th>(usft)</th><th>(usft)</th><th>(*/100usft)</th><th>(°/100usft)</th><th>(°/100usft)</th></thl<></thland<>	(usft)	/%	/º)	(usft)	tusfi)	(usft)	(usft)	(*/100usft)	(°/100usft)	(°/100usft)
0.0 0.00					(uait)	(4311)		(
100.0 0.00 100.0 0.00 <	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0 0.00 200.0 0.00 <	100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0 0.00 300.0 0.0 0.0 0.0 0.00	200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 500.0 0.00 0.00 500.0 0.00 <td< td=""><td>300.0</td><td>0.00</td><td>0.00</td><td>300.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td></td<>	300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
	400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0 0.00 <t< td=""><td>500.0</td><td>0.00</td><td>0.00</td><td>500.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
B0.03 0.04 0.04 0.05 0.05 0.05 0.06 <t< td=""><td>500.0</td><td>0.00</td><td>0.00</td><td>500.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0 0.00 <t< td=""><td>600.0</td><td>0.00</td><td>0.00</td><td>600.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0 0.00 <t< td=""><td>700.0</td><td>0.00</td><td>0.00</td><td>700.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0 0.00 0.00 1000.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.00 1100.0 1100.0 0.0	800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
	900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0 0.00 0.00 1,200.0 0.00	1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
	1.200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,300.0	0.00	0.00	1.300.0	0.0	0.0	0.0	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,400.0	0.00	0.00	1.400.0	0.0	0.0	0.0	0.00	0.00	0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4,500.0	0.00	0.00	4 500 0				0.00	0.00	0.00
1 1 0.000 0.000 1,700.0 0.000	1,500.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0 0.00 0.000 1,700.0 0.00 0.00 0.000 <t< td=""><td>1,600.0</td><td>0.00</td><td>0.00</td><td>1,600.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,100.0	2.00	186.00	2,100.0	-1.7	-0.2	-1.7	2.00	2.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 200 0	4.00	186.00	2,199.8	-6.9	-0.7	-6.9	2.00	2.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 300 0	6.00	186.00	2 299 5	-15.6	-16	-15.6	2.00	2.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,000.0	6.00	186.00	2 398 9	-26.0	-27	-26.0	0.00	0.00	0.00
$ \begin{bmatrix} 2,500.0 & 6.00 & 186.00 & 2,597.8 & -46.8 & -4.9 & -46.8 & 0.00 & 0.00 & 0.00 \\ 2,700.0 & 6.00 & 186.00 & 2,597.8 & -46.8 & -4.9 & -46.8 & 0.00 & 0.00 & 0.00 \\ 2,800.0 & 6.00 & 186.00 & 2,796.7 & -67.6 & -7.1 & -67.5 & 0.00 & 0.00 & 0.00 \\ 2,800.0 & 6.00 & 186.00 & 2,895.2 & -78.0 & -8.2 & -77.9 & 0.00 & 0.00 & 0.00 \\ 3,000.0 & 6.00 & 186.00 & 2,995.6 & -48.4 & -9.3 & -48.3 & 0.00 & 0.00 & 0.00 \\ 3,000.0 & 6.00 & 186.00 & 3,095.1 & -98.8 & -10.4 & -98.7 & 0.00 & 0.00 & 0.00 \\ 3,200.0 & 6.00 & 186.00 & 3,294.0 & -119.2 & -11.5 & -109.1 & 0.00 & 0.00 & 0.00 \\ 3,300.0 & 6.00 & 186.00 & 3,294.0 & -119.6 & -12.6 & -119.5 & 0.00 & 0.00 & 0.00 \\ 3,300.0 & 6.00 & 186.00 & 3,393.4 & -130.0 & -13.7 & -129.8 & 0.00 & 0.00 & 0.00 \\ 3,600.0 & 6.00 & 186.00 & 3,592.3 & -150.8 & -15.8 & -150.6 & 0.00 & 0.00 & 0.00 \\ 3,600.0 & 6.00 & 186.00 & 3,691.8 & -161.1 & -16.9 & -161.0 & 0.00 & 0.00 & 0.00 \\ 3,600.0 & 6.00 & 186.00 & 3,890.7 & -181.9 & -191.1 & -181.8 & 0.00 & 0.00 & 0.00 \\ 3,000.0 & 6.00 & 186.00 & 3,890.7 & -181.9 & -191.1 & -181.8 & 0.00 & 0.00 & 0.00 \\ 4,000.0 & 6.00 & 186.00 & 3,890.7 & -181.9 & -191.1 & -181.8 & 0.00 & 0.00 & 0.00 \\ 4,000.0 & 6.00 & 186.00 & 3,890.7 & -213.1 & -22.4 & -212.9 & 0.00 & 0.00 & 0.00 \\ 4,000.0 & 6.00 & 186.00 & 4,895.6 & -202.7 & -21.3 & -202.5 & 0.00 & 0.00 & 0.00 \\ 4,000.0 & 6.00 & 186.00 & 4,895.7 & -213.1 & -22.4 & -212.9 & 0.00 & 0.00 & 0.00 \\ 4,000.0 & 6.00 & 186.00 & 4,895.7 & -223.5 & -223.3 & 0.00 & 0.00 & 0.00 \\ 4,000.0 & 6.00 & 186.00 & 4,895.9 & -223.5 & -223.3 & 0.00 & 0.00 & 0.00 \\ 4,000.0 & 6.00 & 186.00 & 4,895.9 & -223.5 & -223.3 & 0.00 & 0.00 & 0.00 \\ 4,000.0 & 6.00 & 186.00 & 4,895.9 & -223.5 & -223.3 & 0.00 & 0.00 & 0.00 \\ 4,000.0 & 6.00 & 186.00 & 4,895.9 & -224.7 & -215.9 & 0.00 & 0.00 & 0.00 \\ 4,000.0 & 6.00 & 186.00 & 4,895.9 & -224.5 & -223.5 & -223.3 & 0.00 & 0.00 & 0.00 \\ 4,000.0 & 6.00 & 186.00 & 4,895.9 & -224.7 & -224.9 & 0.00 & 0.00 & 0.00 \\ 4,000.0 & 6.00 & 186.00 & 4,895.2 & -225.5 & -290 & -275.2 & 0.00 & 0.00 & 0.00 \\ 5,000.0 & 6.00 & 186.00 & 4,$	2,400.0	0.00	100.00	2,000.0	-20.0	-2.,	-20.0	0.00	0.00	0.00
$ \begin{bmatrix} 2,600, 6,00 & 186,00 & 2,597.8 & -46.8 & -4.9 & -46.8 & 0.00 & 0.00 & 0.00 \\ 2,700, 0 & 6,00 & 186,00 & 2,697.3 & -57.2 & -6.0 & -57.1 & 0.00 & 0.00 & 0.00 \\ 2,800, 0 & 6,00 & 186,00 & 2,896.2 & -78.0 & -8.2 & -77.9 & 0.00 & 0.00 & 0.00 \\ 3,000, 0 & 6,00 & 186,00 & 2,895.6 & -48.4 & -9.3 & -48.3 & 0.00 & 0.00 & 0.00 \\ 3,000, 0 & 6,00 & 186,00 & 3,095.1 & -98.8 & -104.4 & -98.7 & 0.00 & 0.00 & 0.00 \\ 3,200, 0 & 6,00 & 186,00 & 3,294.0 & -119.5 & -109.1 & 0.00 & 0.00 & 0.00 \\ 3,200, 0 & 6,00 & 186,00 & 3,294.0 & -119.6 & -12.6 & -119.5 & 0.00 & 0.00 & 0.00 \\ 3,300, 0 & 6,00 & 186,00 & 3,294.0 & -119.6 & -12.6 & -119.5 & 0.00 & 0.00 & 0.00 \\ 3,300, 0 & 6,00 & 186,00 & 3,393.4 & -130.0 & -13.7 & -122.8 & 0.00 & 0.00 & 0.00 \\ 3,500, 0 & 6,00 & 186,00 & 3,592.3 & -150.8 & -15.8 & -150.6 & 0.00 & 0.00 & 0.00 \\ 3,600, 0 & 6,00 & 186,00 & 3,691.4 & -161.4 & -16.9 & -161.0 & 0.00 & 0.00 \\ 3,600, 0 & 6,00 & 186,00 & 3,691.4 & -161.1 & -16.9 & -161.0 & 0.00 & 0.00 \\ 3,600, 0 & 6,00 & 186,00 & 3,791.2 & -171.5 & -18.0 & -171.4 & 0.00 & 0.00 & 0.00 \\ 3,800, 0 & 6,00 & 186,00 & 3,990.1 & -192.3 & -202.5 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6,00 & 186,00 & 3,990.1 & -192.3 & -202.5 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6,00 & 186,00 & 4,989.6 & -202.7 & -21.3 & -202.5 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6,00 & 186,00 & 4,989.6 & -202.7 & -21.3 & -202.5 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6,00 & 186,00 & 4,989.6 & -202.7 & -21.3 & -202.5 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6,00 & 186,00 & 4,989.6 & -202.7 & -21.3 & -202.5 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6,00 & 186,00 & 4,989.6 & -202.7 & -21.3 & -202.5 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6,00 & 186,00 & 4,989.6 & -202.7 & -21.3 & -202.5 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6,00 & 186,00 & 4,989.6 & -202.7 & -21.3 & -202.5 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6,00 & 186,00 & 4,989.6 & -202.7 & -21.3 & -202.5 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6,00 & 186,00 & 4,984.7 & -244.3 & -25.7 & -244.1 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6,00 & 186,00 & 4,984.7 & -296.3 & -311.1 & -286.6 & 0.00 & 0.00 & 0.$	2,500.0	6.00	186.00	2,498.4	-36.4	-3.8	-36.4	0.00	0.00	0.00
$ \begin{bmatrix} 2,700, 0 & 6.00 & 186.00 & 2,7967, 6.76 & -7.1 & 6.75, 0.00 & 0.00 & 0.00 \\ 2,800, 0 & 6.00 & 186.00 & 2,896, 2 & -78.0 & -8.2 & -77.9 & 0.00 & 0.00 & 0.00 \\ 3,000, 0 & 6.00 & 186.00 & 2,895, 6 & -88.4 & -9.3 & -88.3 & 0.00 & 0.00 & 0.00 \\ 3,100, 0 & 6.00 & 186.00 & 3,095, 1 & -98.8 & -10.4 & -98.7 & 0.00 & 0.00 & 0.00 \\ 3,200, 0 & 6.00 & 186.00 & 3,194, 5 & -109.2 & -11.5 & -109.1 & 0.00 & 0.00 & 0.00 \\ 3,200, 0 & 6.00 & 186.00 & 3,294, 0 & -119, 6 & -119.5 & 0.00 & 0.00 & 0.00 \\ 3,300, 0 & 6.00 & 186.00 & 3,294, 0 & -119, 6 & -12.6 & -119.5 & 0.00 & 0.00 & 0.00 \\ 3,600, 0 & 6.00 & 186.00 & 3,492, 9 & -140, 4 & -14.8 & -140, 2 & 0.00 & 0.00 & 0.00 \\ 3,600, 0 & 6.00 & 186.00 & 3,492, 9 & -140, 4 & -14.8 & -140, 2 & 0.00 & 0.00 & 0.00 \\ 3,600, 0 & 6.00 & 186.00 & 3,592, 3 & -150, 8 & -15, 8 & -150, 6 & 0.00 & 0.00 & 0.00 \\ 3,700, 0 & 6.00 & 186.00 & 3,691, 8 & -161, 1 & -16, 9 & -161, 0 & 0.00 & 0.00 \\ 3,700, 0 & 6.00 & 186.00 & 3,890, 7 & -181, 9 & -181, 1 & -181, 8 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6.00 & 186.00 & 3,990, 1 & -192, 3 & -20, 2 & -192, 2 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6.00 & 186.00 & 4,890, 6 & -20, 7 & -21, 3 & -202, 5 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6.00 & 186.00 & 4,289, 5 & -223, 5 & -233, 7 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6.00 & 186.00 & 4,387, 9 & -233, 9 & -24, 6 & -233, 7 & 0.00 & 0.00 \\ 4,000, 0 & 6.00 & 186.00 & 4,387, 9 & -233, 9 & -24, 6 & -233, 7 & 0.00 & 0.00 \\ 4,000, 0 & 6.00 & 186.00 & 4,387, 9 & -233, 9 & -24, 6 & -233, 7 & 0.00 & 0.00 \\ 4,000, 0 & 6.00 & 186.00 & 4,387, 9 & -233, 9 & -24, 6 & -233, 7 & 0.00 & 0.00 \\ 4,000, 0 & 6.00 & 186.00 & 4,387, 9 & -233, 9 & -24, 6 & -233, 7 & 0.00 & 0.00 \\ 4,000, 0 & 6.00 & 186.00 & 4,387, 9 & -233, 9 & -24, 6 & -233, 7 & 0.00 & 0.00 \\ 4,000, 0 & 6.00 & 186.00 & 4,387, 9 & -233, 9 & -24, 6 & -233, 7 & 0.00 & 0.00 \\ 4,000, 0 & 6.00 & 186.00 & 4,387, 9 & -233, 9 & -24, 6 & -233, 7 & 0.00 & 0.00 \\ 4,000, 0 & 6.00 & 186.00 & 4,386, 9 & -254, 7 & -26, 8 & -254, 5 & 0.00 & 0.00 & 0.00 \\ 4,000, 0 & 6.00 & 186.00 & 4,885, 2 & -285, 9 &$	2,600.0	6.00	186.00	2,597.8	-46.8	-4.9	-46.8	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,700.0	6.00	186.00	2,697.3	-57.2	-6.0	-57.1	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,800.0	6.00	186.00	2,796.7	-67.6	-7.1	-67.5	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,900.0	6.00	186.00	2,896.2	-78.0	-8.2	-77.9	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.000.0	6.00	186.00	2,995.6	-68.4	-9.3	-88.3	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 100.0	6.00	186.00	3,095,1	-98.8	-10.4	-98.7	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 200 0	6.00	186.00	3 194 5	-109.2	-11.5	-109.1	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 300 0	6.00	186.00	3 204 0	-110.6	-12.6	-110.1	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3,300.0	6.00	196.00	3 303 4	-130.0	-12.0	-113.3	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3,400.0	0.00	180.00	3,333.4	-130.0	-13.7	-125.0	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3,500.0	6.00	186.00	3,492.9	-140.4	-14.8	-140.2	0.00	0.00	0.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3,600.0	6.00	186.00	3,592.3	-150.8	-15.8	-150.6	0.00	0.00	0.00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3,700.0	6.00	186.00	3,691.8	-161.1	-16.9	-161.0	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,800.0	6.00	186.00	3,791.2	-171.5	-18.0	-171.4	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,900.0	6.00	186.00	3,890.7	-181.9	-19.1	-181.8	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 000 0	6.00	186 00	3,990,1	-192.3	-20.2	-192.2	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 100 0	6.00	186.00	4.089.6	-202.7	-21.3	-202.5	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4,100.0	6.00	186.00	4 189 0	-213 1	-22 4	-212.9	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4,200.0	6.00	196.00	4 299 5	202.5	-22.4	.223.3	0.00	0.00	0.00
4,400.0 6.00 186.00 4,31.3 -23.5 -24.0 -23.7 0.00 0.00 0.00 4,500.0 6.00 186.00 4,487.4 -244.3 -25.7 -244.1 0.00 0.00 0.00 4,600.0 6.00 186.00 4,586.9 -254.7 -26.8 -254.5 0.00 0.00 0.00 4,700.0 6.00 186.00 4,686.3 -265.1 -27.9 -264.9 0.00 0.00 0.00 4,800.0 6.00 186.00 4,785.8 -275.5 -29.0 -275.2 0.00 0.00 0.00 4,900.0 6.00 186.00 4,885.2 -285.9 -30.0 -285.6 0.00 0.00 0.00 5,000.0 6.00 186.00 4,885.2 -285.9 -30.0 -285.6 0.00 0.00 0.00 5,000.0 6.00 186.00 5,084.1 -306.7 -32.2 -306.4 0.00 0.00 0.00 5,200.0 6.00 186.00 5,183.6 -317.1 -33.3 -316.8 0.00	4,300.0	6.00	186.00	4,200.5	-223.5	-23.5	-223.3	0.00	0.00	0.00
4,500.0 6.00 186.00 4,487.4 -244.3 -25.7 -244.1 0.00 0.00 0.00 4,600.0 6.00 186.00 4,586.9 -254.7 -26.8 -254.5 0.00 0.00 0.00 0.00 4,700.0 6.00 186.00 4,686.3 -265.1 -27.9 -264.9 0.00 0.00 0.00 4,800.0 6.00 186.00 4,785.8 -275.5 -29.0 -275.2 0.00 0.00 0.00 4,900.0 6.00 186.00 4,885.2 -285.9 -30.0 -285.6 0.00 0.00 0.00 5,000.0 6.00 186.00 4,984.7 -296.3 -31.1 -296.0 0.00 0.00 0.00 5,000.0 6.00 186.00 5,084.1 -306.7 -32.2 -306.4 0.00 0.00 0.00 5,200.0 6.00 186.00 5,183.6 -317.1 -33.3 -316.8 0.00 0.00 0.00 <t< td=""><td>4,400.0</td><td>0.00</td><td>100.00</td><td>÷.106,F</td><td>-233.9</td><td>-24.0</td><td>-233.1</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	4,400.0	0.00	100.00	÷.106,F	-233.9	-24.0	-233.1	0.00	0.00	0.00
4,600.0 6.00 186.00 4,586.9 -254.7 -26.8 -254.5 0.00 0.00 0.00 4,700.0 6.00 186.00 4,686.3 -265.1 -27.9 -264.9 0.00 0.00 0.00 0.00 4,800.0 6.00 186.00 4,785.8 -275.5 -29.0 -275.2 0.00 0.00 0.00 4,900.0 6.00 186.00 4,885.2 -285.9 -30.0 -285.6 0.00 0.00 0.00 5,000.0 6.00 186.00 4,984.7 -296.3 -31.1 -296.0 0.00 0.00 0.00 5,000.0 6.00 186.00 5,084.1 -306.7 -32.2 -306.4 0.00 0.00 0.00 5,200.0 6.00 186.00 5,183.6 -317.1 -33.3 -316.8 0.00 0.00 0.00 5,300.0 6.00 186.00 5,283.0 -327.5 -344 -327.2 0.00 0.00 0.00 <td>4,500.0</td> <td>6.00</td> <td>186.00</td> <td>4,487.4</td> <td>-244.3</td> <td>-25.7</td> <td>-244.1</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	4,500.0	6.00	186.00	4,487.4	-244.3	-25.7	-244.1	0.00	0.00	0.00
4,700.0 6.00 186.00 4,686.3 -265.1 -27.9 -264.9 0.00 0.00 0.00 4,800.0 6.00 186.00 4,785.8 -275.5 -29.0 -275.2 0.00 0.00 0.00 4,900.0 6.00 186.00 4,885.2 -285.9 -30.0 -285.6 0.00 0.00 0.00 5,000.0 6.00 186.00 4,984.7 -296.3 -31.1 -296.0 0.00 0.00 0.00 5,000.0 6.00 186.00 5,084.1 -306.7 -32.2 -306.4 0.00 0.00 0.00 5,200.0 6.00 186.00 5,183.6 -317.1 -33.3 -316.8 0.00 0.00 0.00 5,200.0 6.00 186.00 5,283.0 -327.5 -344 -327.2 0.00 0.00 0.00	4,600.0	6.00	186.00	4,586.9	-254.7	-26.8	-254.5	0.00	0.00	0.00
4,800.0 6.00 186.00 4,785.8 -275.5 -29.0 -275.2 0.00 0.00 0.00 4,900.0 6.00 186.00 4,885.2 -285.9 -30.0 -285.6 0.00 0.00 0.00 5,000.0 6.00 186.00 4,984.7 -296.3 -31.1 -296.0 0.00 0.00 0.00 5,000.0 6.00 186.00 5,084.1 -306.7 -32.2 -306.4 0.00 0.00 0.00 5,200.0 6.00 186.00 5,183.6 -317.1 -33.3 -316.8 0.00 0.00 0.00 5,200.0 6.00 186.00 5,283.0 -327.5 -344 -327.2 0.00 0.00 0.00	4,700.0	6.00	186.00	4,686.3	-265.1	-27.9	-264.9	0.00	0.00	0.00
4,900.0 6.00 186.00 4,885.2 -285.9 -30.0 -285.6 0.00 0.00 0.00 5,000.0 6.00 186.00 4,984.7 -296.3 -31.1 -296.0 0.00 0.00 0.00 5,100.0 6.00 186.00 5,084.1 -306.7 -32.2 -306.4 0.00 0.00 0.00 5,200.0 6.00 186.00 5,183.6 -317.1 -33.3 -316.8 0.00 0.00 0.00 5,300.0 6.00 186.00 5,283.0 -327.5 -344 -327.2 0.00 0.00 0.00	4,800.0	6.00	186.00	4,785.8	-275.5	-29.0	-275.2	0.00	0.00	0.00
5,000.0 6.00 186.00 4,984.7 -296.3 -31.1 -296.0 0.00 0.00 0.00 5,100.0 6.00 186.00 5,084.1 -306.7 -32.2 -306.4 0.00 0.00 0.00 5,200.0 6.00 186.00 5,183.6 -317.1 -33.3 -316.8 0.00 0.00 0.00 5,300.0 6.00 186.00 5,283.0 -327.5 -344 -327.2 0.00 0.00 0.00	4,900.0	6.00	186.00	4,885.2	-285.9	-30.0	-285.6	0.00	0.00	0.00
5,100.0 6.00 186.00 5,084.1 -306.7 -32.2 -306.4 0.00 0.00 0.00 5,200.0 6.00 186.00 5,183.6 -317.1 -33.3 -316.8 0.00 0.00 0.00 5,300.0 6.00 186.00 5,283.0 -327.5 -344 -327.2 0.00 0.00 0.00	5.000 0	6.00	186.00	4.984.7	-296.3	-31 1	-296.0	0.00	0.00	0.00
5,200.0 6.00 186.00 5,183.6 -317.1 -33.3 -316.8 0.00 0.00 0.00 5.300.0 6.00 186.00 5,283.0 -327.5 -34.4 -327.2 0.00 0.00 0.00	5 100 0	6.00	186.00	5,084 1	-306 7	- 12 2	-306.4	0.00	0.00	0.00
5300.0 6.00 186.00 5.283.0 -327.5 -34.4 -327.2 0.00 0.00 0.00	5 200 0	0.00	186.00	5 183 6	-317 1	- 33 3	-316.8	0.00	0.00	0.00
	5 300 0	6.00	186.00	5,283.0	-327.5	-34.4	-327.2	0.00	0.00	0.00

3/5/2019 12:19:33PM

÷.,

Ameredev Operating, LLC

Planning Report

				A
Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 083H	5 die maare
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2938.0usft	ł
Project:	CAM/AZ	MD Reference:	KB @ 2938.0usft	
Site:	CAM/AZ #5SX	North Reference:	Grid	1
Well:	Camellia 083H	Survey Calculation Method:	Minimum Curvature	
Wellbore:	Wellbore #1	-		
Desian:	Desian #1			

.....

Planned Survey

	Measured			Vertical			Vertical	Dogleg	Build	Turn
	Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
	(usft)	(°)	(*)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
	5 400 0		406.00	E 202 E		25.5	207.0		0.00	0.00
	5,400.0	6.00	186.00	5,382.5	-337.9	-35.5	-337.6	0.00	0.00	0.00
	5,500.0	6.00	186.00	5,481.9	-348.3	-36.6	-347.9	0.00	0.00	0.00
	5,600.0	6.00	186.00	5,581.4	-358.7	-37.7	-358.3	0.00	0.00	0.00
	5,700.0	6.00	186.00	5,680.8	-369.1	-38.8	-368.7	0.00	0.00	0.00
	5,800.0	6.00	186.00	5,780.3	-379,5	-39.9	-379.1	0.00	0.00	0.00
	5,900.0	6.00	186.00	5,879.7	-389.8	-41.0	-389.5	0.00	0.00	0.00
	6 000 0	6.00	186.00	5 979 2	-400.2	-42 1	-399.9	0.00	0.00	0.00
	6 100 0	6.00	186.00	6 078 6	-410.6	-43.2	-410.3	0.00	0.00	0.00
	6 200 0	6.00	186.00	6 178 1	-421.0	-44.3	-420.6	0.00	0.00	0.00
	6 300 0	6.00	186.00	6 277 5	-431.4	-45.3	-431.0	0.00	0.00	0.00
	6,400.0	6.00	186.00	6.377.0	-441.8	-46.4	-441.4	0.00	0.00	0.00
	0,500,0	6.00	400.00	6 476 4	452.2	47 E	454 0	0.00	0.00	0.00
	6,500.0	6.00	100.00	0,470.4 6 575 0	-432.2	-47.5	-431.8	0.00	0.00	0.00
	6,000.0	6.00	100.00	6,373.9	472.0	-40.0	472.6	0.00	0.00	0.00
	6,700.0	6.00	100.00	6,073.3	-473.0	-49.7	-472.0	0.00	0.00	0.00
	0,724.8	6.00	186.00	6,700.0	-4/5.0	-50.0	-4/5.2	0.00	0.00	0.00
	6,800.0	4.50	186.00	6,774.9	-482.4	-50.7	-482.0	2.00	-2.00	0.00
	6,900.0	2.50	186.00	6,874.7	-488.5	-51.3	-488.0	2.00	-2.00	0.00
	7,000.0	0.50	186.00	6,974.7	-491.1	-51.6	-490.6	2.00	-2.00	0.00
	7,024.8	0.00	0.00	6,999.5	-491.2	-51.6	-490.7	2.00	-2.00	0.00
	7,100.0	0.00	0.00	7,074.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
1	7,200.0	0.00	0.00	7,174.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
	7.300.0	0.00	0.00	7.274.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
	7.400.0	0.00	0.00	7.374.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
	7 500 0	0.00	0.00	7 474 7	-491.2	-51.6	-490.7	0.00	0.00	0.00
	7 600 0	0.00	0.00	7 574 7	-491.2	-51.6	-490.7	0.00	0.00	0.00
	7,700.0	0.00	0.00	7,674.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
	7 000 0	0.00	0.00	7 774 7	401.2	51.6	400.7	0.00	0.00	0.00
	7,800.0	0.00	0.00	7,774.7	-491.2	-31.0	-490.7	0.00	0.00	0.00
	7,900.0	0.00	0.00	7,074.7	-491.2	-31.0	-490.7	0.00	0.00	0.00
	8,000.0	0.00	0.00	7,974.7	-491.2	-51.0	-490.7	0.00	0.00	0.00
1	8,100.0	0.00	. 0.00	8,074.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
í	8,200.0	0.00	0.00	8,174.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
	8,300.0	0.00	0.00	8,274.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
1	8,400.0	0.00	0.00	8,374.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
	8,500.0	0.00	0.00	8,474.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
	8,600.0	0.00	0.00	8,574.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
1	8,700.0	0.00	0.00	8,674.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
	8 800 0	0.00	0.00	8.774.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
1	8,900.0	0.00	0.00	8.874.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
1	9.000.0	0.00	0.00	8,974,7	-491.2	-51.6	-490.7	0.00	0.00	0.00
	9 100 0	0.00	0.00	9.074 7	-491.2	-51.6	-490.7	0.00	0.00	0.00
	9,200.0	0.00	0.00	9,174.7	-491.2	-51.6	-490.7	0.00	0.00	0.00
	0 200 0	0.00	0.00	0 274 7	401.2	51.6	400 7	0.00	0.00	0.00
	9,300.0	0.00	0.00	9 374 7	-491.2	-51.6	-490.7	0.00	0.00	0.00
	9,400.0	0.00	0.00	9,374.7	-491.2	-51.0	-490.7	0.00	0.00	0.00
i i	9,500.0	0.00	0.00	9,474.7	491.2	-51.6	-490.7	0.00	0.00	0.00
	9,000.0	0.00	0.00	9,3/4./	-491.2	-31.0	-480.7	0.00	0.00	0.00
	9,700.0	0.00	0.00	9,074.7	-491.2	-0.1G-	-490.7	0.00	0.00	0.00
	9,725.3	0.00	0.00	9,700.0	-491.2	-51.6	-490.7	0.00	0.00	0.00
	Cam083 KO	P								
ł	9,800.0	8.96	2.98	9,774.4	-485.4	-51.3	-484.9	12.00	12.00	0.00
1	9,900.0	20.96	2.98	9,870.8	-459.6	-50.0	-459.2	12.00	12.00	0.00
1	10,000.0	32.96	2.98	9,959.8	-414.5	-47.6	-414.0	12.00	12.00	0.00
	10,100.0	44.96	2.98	10,037.4	-351.8	-44.4	-351.4	12.00	12.00	0.00
	10,200.0	56.96	2.98	10,100.3	-274.4	-40.3	-274.0	12.00	12.00	0.00
·					-					

3/5/2019 12:19:33PM

Planning Report

REAL PROPERTY AND AND AND ADDRESS OF				
Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 083H	·
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2938.0usft	
Project:	CAM/AZ	MD Reference:	KB @ 2938.0usft	
Site:	CAM/AZ #5SX	North Reference:	Grid	
Well:	Camellia 083H	Survey Calculation Method:	Minimum Curvature	
Weilbore:	Wellbore #1	}		
Design:	Design #1	<u>.</u>		

Planned Survey

	Measured Depth (usft)		Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate (*/100ueft)	Turn Rate (*/100ustr)
				(2011)	lusir	(usit)	(45.1)		(/ 1000311)	
	10,300.0	68.96	2.98	10,145.6	-185.6	-35.7	-185.3	12.00	12.00	0.00
	10,400.0	80.96	2.98	10,171.5	-89.3	-30.7	-89.0	12.00	12.00	0.00
	10,431.1	84.69	2.98	10,175.4	-58.5	-29.1	-58.2	12.00	12.00	0.00
	10,500.0	84.69	2.98	10,181.8	10.0	-25.5	10.2	0.00	0.00	0.00
	10,600.0	84,69	2.98	10,191.0	109.5	-20.4	109.6	0.00	0.00	0.00
	10,700.0	84.69	2.98	10,200.3	208.9	-15.2	209.0	0.00	0.00	0.00
	10,800.0	84.69	2.98	10,209.5	308.3	-10.0	308.4	0.00	0.00	0.00
	10,900.0	84.69	2.98	10,218.8	407.8	-4.8	407.8	0.00	0.00	0.00
	11,000.0	84.69	2.98	10,228.0	507.2	0.3	507.2	0.00	0.00	0.00
{	11,100.0	84.69	2.98	10.237.3	606.6	5.5	606.6	0.00	0.00	0.00
1	11,163.0	84.69	2.98	10,243.1	669.3	8.8	669.2	0.00	0.00	0.00
	Cam083 Into	NMNM23199								
	11,200.0	84.69	2.98	10.246.5	706.1	10.7	706.0	0.00	0.00	0.00
ļ	11,211.0	84.69	2.98	10.247.5	717.0	11.3	716.9	0.00	0.00	0.00
ł	11,264.2	90.00	359.42	10.250.0	770.2	12.4	770.0	12.00	9.97	-6.69
	Cam083 FTP									
	11 200 0	00.00	250 42	10.250.0	905.0	12.0	905 9	0.00	0.00	0.00
1	11 400 0	90.00	309.42	10,250.0	6U3.9 005.0	12.0	8,CUB	0.00	0.00	0.00
ł	11,400.0	90.00	339.42	10,250.0	905.9	10.0	905.8	0.00	0.00	0.00
1	11,500.0	90.00	250 42	10,250.0	1,005.9	10.0	1,005.8	0.00	0.00	0.00
	11,000.0	90.00	359.42	10,230.0	1,105.9	0.9 7.0	1,105.6	0.00	0.00	0.00
	11,700.0	90.00	339.42	10,250.0	1,205.9	7.9	1,205.8	0.00	0.00	0.00
	11,800.0	90.00	359.42	10,250.0	1,305.9	6.9	1,305.8	0.00	0.00	0.00
	11,900.0	90.00	359.42	10,250.0	1,405.9	5.9	1,405.8	0.00	0.00	0.00
	12,000.0	90.00	359.42	10,250.0	1,505.9	4.9	1,505.8	0.00	0.00	0.00
	12,100.0	90.00	359.42	10,250.0	1,605.9	3.8	1,605.8	0.00	0.00	0.00
	12,200.0	90.00	359.42	10,250.0	1,705.9	2.8	1,705.8	0.00	0.00	0.00
	12,300.0	90.00	359.42	10,250.0	1,805.9	1.8	1,805.8	0.00	0.00	0.00
	12,400.0	90.00	359.42	10,250.0	1,905.9	0.8	1,905.8	0.00	0.00	0.00
	12,500.0	90.00	359.42	10,250.0	2,005.9	-0.2	2,005.8	0.00	0.00	0.00
	12,600.0	90.00	359.42	10,250.0	2,105.9	-1.3	2,105.8	0.00	. 0.00	0.00
	12,700.0	90.00	359.42	10,250.0	2,205.8	-2.3	2,205.8	0.00	0.00	0.00
	12,800.0	90.00	359.42	10.250.0	2.305.8	-3.3	2.305.8	0.00	0.00	0.00
	12,900.0	90.00	359.42	10.250.0	2.405.8	-4.3	2.405.8	0.00	0.00	0.00
	13,000.0	90.00	359.42	10.250.0	2.505.8	-5.3	2.505.8	0.00	0.00	0.00
1	13,100.0	90.00	359.42	10,250.0	2,605.8	-6.4	2,605.8	0.00	0.00	0.00
ł	13,200.0	90.00	359.42	10,250.0	2,705.8	-7.4	2,705.8	0.00	0.00	0.00
	13 300 0	90.00	359 42	10 250 0	2 805 8	-8.4	2 805 8	0.00	0.00	0.00
	13,400.0	90.00	359 42	10,250.0	2,905.8	-9.4	2 905 8	0.00	0.00	0.00
	13.500.0	90.00	359.42	10,250.0	3,005.8	-10.4	3,005,8	0.00	0.00	0.00
1	13.600.0	90.00	359.42	10,250.0	3,105.8	-11.5	3,105.8	0.00	0.00	0.00
	13,700.0	90.00	359.42	10,250.0	3,205.8	-12.5	3,205.8	0.00	0.00	0.00
1	13 800 0	90.00	350 42	10 250 0	3 305 8	-13.5	3 305 8	0.00	0.00	0.00
	13,000.0	90.00	350 42	10,250.0	3,305.8	-14.5	3,305.8	0.00	0.00	0.00
• •	14,000.0	90.00	350 42	10,250.0	3,405.0	-14.5	3,405.0	0.00	0.00	0.00
	14,000.0	90.00	359.42	10,250.0	3,505.8	-16.6	3,505.0	0.00	0.00	0.00
	14,200.0	90.00	359 42	10,250.0	3 705 8	-17.6	3 705 8	0.00	0.00	0.00
	44,200,0	00.00	050.42	10,200.0	0,000.0	-17.0	0,700.0	0.00	0.00	0.00
1	14,300.0	90.00	359.42	10,250.0	3,805.8	-18.6	3,805.8	0.00	0.00	0.00
ŀ	14,400.0	90.00	359.42	10,250.0	3,905.8	-19.6	3,905.8	0.00	0.00	0.00
	14,500,0	90.00	359.42	10,250.0	4,005.8	-20.6	4,005.8	0.00	0.00	0.00
1	14,000.0	90.00	359.42	10,250.0	4,105./	-21./	4,105.8	0.00	0.00	0.00
·	14,700.0	90.00	359.42	10,250.0	4,205.7	-22.7	4,205.8	0,00	0.00	0.00
	14,800.0	90.00	359.42	10,250.0	4,305.7	-23.7	4,305.8	0.00	0.00	0.00
	14,900.0	90.00	359.42	10,250.0	4,405.7	-24,7	4,405.8	0.00	0.00	0.00
	15,000.0	90.00	359.42	10,250.0	4,505.7	-25.7	4,505.8	0.00	0.00	0.00

3/5/2019 12:19:33PM

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Weil Camellia 083H	
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2938.0usft	
Project:	CAM/AZ	MD Reference:	KB @ 2938.0usft	
Site:	CAM/AZ #5SX	North Reference:	Grid	
Well:	Camellia 083H	Survey Calculation Method:	Minimum Curvature	
Weilbore:	Wellbore #1	-		
Design:	Design #1			

Planned Survey

	Measured			Vertical			Vertical	Dogleg	Build	Tum	
1	Depth	Inclination	Azimuth	Depth	+N/S	+FI-W	Section	Rate	Rate	Rate	
	(usft)	(*)	(°)	(usft)	(usft)	(usft)	(usft)	(*/100usft)	(°/100usft)	(*/100usft)	
· ·	15 100 0	00.00	350 42	10 250 0	A 605 7	26.9	4 605 9	0.00	0.00	0.00	
ļ	15,200.0	90.00	359.42	10,250.0	4,705.7	-20,8	4,005.8	0.00	0.00	0.00	
	15 300 0	00.00	350.42	10,250,0	4 905 7	20.0	4 905 9	0.00	0.00	0.00	
	15,300.0	90.00	359.42	10,250.0	4,003.7	-20.0	4,005.8	0.00	0.00	0.00	
	15 500 0	90.00	359 42	10,250.0	5 005 7	-25.0	5,005,8	0.00	0.00	0.00	
	15 600 0	90.00	359 42	10,250.0	5 105 7	-31.9	5 105 8	0.00	0.00	0.00	
	15,700.0	90.00	359.42	10,250.0	5,205.7	-32.9	5,205.8	0.00	0.00	0.00	
	15,800.0	90.00	359 42	10 250 0	5 305 7	-33.9	5 305 8	0.00	0.00	0.00	
	15,900.0	90.00	359 42	10,250.0	5,405.7	-34.9	5 405 8	0.00	0.00	0.00	
	16.000.0	90.00	359.42	10,250.0	5.505.7	-36.0	5,505.8	0.00	0.00	0.00	
	16,100.0	90.00	359.42	10.250.0	5.605.7	-37.0	5.605.8	0.00	0.00	0.00	
	16,200.0	90.00	359.42	10,250.0	5,705.7	-38.0	5,705.8	0.00	0.00	0.00	
	16,300.0	90.00	359.42	10.250.0	5.805.7	-39.0	5.805.8	0.00	0.00	0.00	
	16,400.0	90.00	359.42	10.250.0	5.905.7	-40.0	5,905.8	0.00	0.00	0.00	1
	16,500.0	90.00	359.42	10.250.0	6.005.6	-41.1	6.005.8	0.00	0.00	0.00	
	16,600.0	90.00	359.42	10.250.0	6,105.6	-42.1	6.105.8	0.00	0.00	0.00	
	16,700.0	90.00	359.42	10,250.0	6,205.6	-43.1	6,205.8	0.00	0.00	0.00	
	16,800.0	90.00	359.42	10.250.0	6.305.6	-44.1	6.305.8	0.00	0.00	0.00	
	16,900.0	90.00	359.42	10,250.0	6,405.6	-45.1	6.405.8	0.00	0.00	0.00	
	17,000.0	90.00	359.42	10,250.0	6,505.6	-46.2	6,505.8	0.00	0.00	0.00	
	17,100.0	90.00	359.42	10,250.0	6,605.6	-47.2	6.605.8	0.00	0.00	0.00	
	17,200.0	90.00	359.42	10,250.0	6,705.6	-48.2	6,705.8	0.00	0.00	0.00	
	17,300.0	90.00	359.42	10,250.0	6,805.6	-49.2	6,805.8	0.00	0.00	0.00	
	17,400.0	90.00	359.42	10,250.0	6,905.6	-50.2	6,905.8	0.00	0.00	0.00	
	17,500.0	90.00	359.42	10,250.0	7,005.6	-51.3	7,005.8	0.00	0.00	0.00	
	17,600.0	90.00	359.42	10,250.0	7,105.6	-52.3	7,105.8	0.00	0.00	0.00	
	17,700.0	90.00	359,42	10,250.0	7,205.6	-53.3	7,205.8	0.00	0.00	0.00	Í
	17,800.0	90.00	359.42	10,250.0	7,305.6	-54.3	7,305.8	0.00	0.00	0.00	
	17,900.0	90.00	359.42	10,250.0	7,405.6	-55,3	7,405.8	0.00	0.00	0.00	
	18,000.0	90.00	359.42	10,250.0	7,505.6	-56.4	7,505.8	0.00	0.00	0.00	
	18,100.0	90.00	359.42	10,250.0	7,605.6	-57.4	7,605.8	0.00	0.00	0.00	
	18,200.0	90.00	359.42	10,250.0	7,705.6	-58.4	7,705.8	0.00	0.00	0.00	
	18,300.0	90.00	359.42	10,250.0	7,805.6	-59.4	7,805.8	0.00	0.00	0.00	
	18,400.0	90.00	359.42	10,250.0	7,905.6	-60.4	7,905.8	0.00	0.00	0.00	
	18,500.0	90.00	359.42	10,250.0	8,005.5	-61.5	8,005.8	0.00	0.00	0.00	
	18,600.0	90.00	359.42	10,250.0	8,105.5	-62.5	8,105.8	0.00	0.00	0.00	
	18,700.0	90.00	359.42	10,250.0	8,205.5	-63.5	8,205.8	0.00	0.00	0.00	
	18,800.0	90.00	359.42	10,250.0	8,305.5	-64.5	8,305.8	0.00	0.00	0.00	
	18,900.0	90.00	359.42	10,250.0	8,405.5	-65.5	8,405.8	0.00	0.00	0.00	
	19,000.0	90.00	359.42	10,250.0	8,505,5	-66.6	8,505.8	0.00	0.00	0.00	
	19,100.0	90.00	359.42	10,250.0	8,605.5	-67.6	8,605.8	0.00	0.00	0.00	
	19,200.0	90.00	359.42	10,250.0	8,705.5	-68.6	8,705.8	0.00	0.00	0.00	
	19,300.0	90.00	359.42	10,250.0	8,805.5	-69.6	8,805.8	0.00	0.00	0.00	
	19,400.0	90.00	359.42	10,250.0	8,905.5	-70.6	8,905.8	0.00	0.00	0.00	
	19,500.0	90.00	359.42	10,250.0	9,005.5	-71.7	9,005.8	0.00	0.00	0.00	
	19,600.0	90.00	359.42	10,250.0	9,105.5	-72.7	9,105.8	0.00	0.00	0.00	í
	19,700.0	90.00	359.42	10,250.0	9,205.5	-73.7	9,205.8	0.00	0.00	0.00	
	19,800.0	90.00	359,42	10,250.0	9,305.5	-74.7	9,305.8	0.00	0.00	0.00	
	19,900.0	90.00	359.42	10,250.0	9,405.5	-75.7	9,405.8	0.00	0.00	0.00	
	20,000.0	90.00	359.42	10,250.0	9,505.5	-76.8	9,505.8	0.00	0.00	0.00	
	20,100.0	90.00	359.42	10,250.0	9,605.5	-77.8	9,605.8	0.00	0.00	0.00	
	20,200.0	90.00	359.42	10,250.0	9,705.5	-78.8	9,705.8	0.00	0.00	0.00	
	20,300.0	90.00	359.42	10,250.0	9,805.5	-79.8	9,805.8	0.00	0.00	0.00	ŀ
	20,400.0	90.00	359.42	10.250.0	9.905.4	-80.8	9 905.8	0.00	0.00	0.00	

3/5/2019 12:19:33PM

i i

1

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camelila 083H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2938.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2938.0usft
Site:	CAM/AZ #5SX	North Reference:	Grid
Well:	Camellia 083H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Weilbore #1		
Design:	Design #1		

Planned Survey

Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
20,500.0	90.00	359.42	10,250.0	10,005.4	-81.9	10,005.8	0.00	0.00	0.00
20,600.0	90.00	359.42	10,250.0	10,105.4	-82.9	10,105.8	0.00	0.00	0.00
20,700.0	90.00	359.42	10,250.0	10,205.4	-83.9	10,205.8	0.00	0.00	0.00
20,800.0	90.00	359.42	10,250.0	10,305.4	-84.9	10,305.8	0.00	0,00	0.00
20,900.0	90.00	359.42	10,250.0	10,405.4	-85.9	10,405.8	0.00	0.00	0.00
21,000.0	90.00	359.42	10,250.0	10,505.4	-87.0	10,505.8	0.00	0.00	0.00
21,100.0	90.00	359.42	10,250.0	10,605.4	-88.0	10,605.8	0.00	0.00	0.00
21,200.0	90.00	359.42	10,250.0	10,705.4	-89.0	10,705.8	0.00	0.00	0.00
21,300.0	90.00	359.42	10,250.0	10,805.4	-90.0	10,805.8	0.00	0.00	0.00
21,400.0	90.00	359.42	10,250.0	10,905.4	-91.0	10,905.8	0.00	0.00	0.00
21,500.0	90.00	359.42	10,250.0	11,005.4	-92.1	11,005.8	0.00	0.00	0.00
21,600.0	90.00	359.42	10,250.0	11,105.4	-93.1	11,105.8	0.00	0.00	0.00
Cam083 LTP									
21,674.1	90.00	359.42	10,250.0	11,179.5	-93.8	11,179.9	0.00	0.00	0.00
Cam083 BHL									

Design Targets

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Cam083 KOP - plan hits target ce - Point	0.00 nter	0.00	9,700.0	-491.2	-51.6	372,022.44	870,141.54	32° 1' 5.998 N	103° 16' 20.820 W
Cam083 BHL - plan hits target ce - Point	0.00 nter	0.00	10,250.0	11,179.5	-93.8	383,693.15	870,099.32	32° 3' 1.480 N	103° 16' 19.978 W
Cam083 LTP - plan misses targe - Point	0.00 t center by 24.1	0.00 Iusft at 2160	10,250.0 0.0usft MD (11,129.5 10250.0 TVD,	-93.4 11105.4 N, -9	383,643.13 3.1 E)	870,099.82	32° 3' 0.985 N	103° 16' 19.978 W
Cam083 FTP - plan hits target ce - Point	0.00 nter	0.00	10,250.0	770.2	12.4	373,283.81	870,205.53	32° 1' 18.472 N	103° 16' 19.933 W

	Plan Annotations					
	Measured	Vertical	Local Coor	dinates		
L	Depth	Depth	+N/-S	+E/-W		
l	(usft)	(usft)	(usft)	(usft)	Comment	
ľ	11,163.0	10,243.1	669.3	8.8	3 Cam083 into NMNM23199	-

3/5/2019 12:19:33PM

CAM/AZ CAM/AZ #5SX Camellia 083H Wellbore #1

Plan: Design #1

Lease Penetration Section Line Foot

05 March, 2019

Lease Penetration Section Line Footages

Company: Ameredev Operating, LLC. Local Co-ordinate Reference: Well Camellia 083H Project: CAM/AZ TVD Reference: KB @ 2938.0usft Site: CAM/AZ #SSX MD Reference: KB @ 2938.0usft Well: Camellia 083H North Reference: Grid	
Project: CAM/AZ TVD Reference: KB @ 2938.0usft Site: CAM/AZ #5SX MD Reference: KB @ 2938.0usft Well: Camellia 083H North Reference: Grid	
Site: CAM/AZ #5SX MD Reference: KB @ 2938.0usft Well: Camellia 083H North Reference: Grid	
Well: Camellia 083H North Reference: Grid	
Wellbore: Wellbore #1 Survey Calculation Method: Minimum Curvature	
Project CAM/AZ	
Map System: US State Plane 1983 System Datum: Mean Sea Level	
Geo Datum: North American Datum 1983	
Map Zone: New Mexico Eastern Zone	
Site CAM/AZ #5SX	
Site Position: Northing: 372,513.64 usft Latitude:	32° 1' 10.853 N
From: Lat/Long Easting: 870,193.17 usft Longitude:	103° 16' 20.164 W
Position Uncertainty: 0.0 usft Slot Radius: 13-3/16" Grid Convergence:	0.56 °
Well Camellia 083H	
Well Position +N/S 0.0 usit Northing: 372.513.64 usit Latitude:	32° 1' 10 853 N
+F/-W 0.0 usit Hording. 572,515,04 usit Lautude.	103° 16' 20 164 W
Partition Description 0.0 usin Laburgin 0.0 usin Wellbard Elevation:	2 911 Oueft
	2,311.0431
Wellbore Wellbore #1	
Magnetics Model Name Sample Date Declination Dip Angle Field (°) (°)	Strength (nT)
IGRF2015 3/5/2019 6.61 59.90 47	,675.24429610
Design Design #1	
audit Notas	
Version: Phase: PROTOTYPE Tie On Denth: 0.0	
Vertical Section: Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°)	
0.0 0.0 0.0 359.52	
Survey Tool Program Date 3/5/2019	
From To (usft) (usft) Survey (Wellbore) Tool Name Description	
0.0 21.674.1 Design #1 (Wellbore #1) MWD OWSG MWD - Standard	
Planned Survey	
	Longitude
MD Inc Azi (azimuth) TVD +FSL/-FNL +FWL/-FEL Latitude (usft) (°) (°) (usft) (usft) (usft)	N 103° 16' 20 164 W
MD Inc Azi (azimuth) TVD +FSL/-FNL +FWL/-FEL Latitude (usft) (°) (usft) (usft) (usft) 0.0 0.00 0.0 -670.0 1.960.0 32° 1' 10.853	
MD Inc Azl (azimuth) TVD +FSL/-FNL +FWL/-FEL Latitude (usft) (°) (°) (usft) (usft) (usft) 0.0 0.00 0.00 0.0 -670.0 1,960.0 32° 1' 10.853 100.0 0.00 0.00 100.0 -670.0 1.960.0 32° 1' 10.853	N 103º 16' 20.164 W
MD Inc Azl (azimuth) TVD +FSL/-FNL +FWL/-FEL Latitude (usft) (°) (°) (usft) (usft) (usft) (usft) 0.0 0.00 0.00 0.0 -670.0 1,960.0 32° 1' 10.853 100.0 0.00 0.00 100.0 -670.0 1,960.0 32° 1' 10.853 200.0 0.00 0.00 200.0 -670.0 1,960.0 32° 1' 10.853	N 103° 16' 20.164 W N 103° 16' 20.164 W
MD Inc Azl (azimuth) TVD +FSL/-FNL +FWL/-FEL Latitude (usft) (°) (°) (usft) (usft) (usft) (usft) 0.0 0.00 0.00 0.00 -670.0 1,960.0 32° 1' 10.853 100.0 0.00 0.00 100.0 -670.0 1,960.0 32° 1' 10.853 200.0 0.00 0.00 200.0 -670.0 1,960.0 32° 1' 10.853 300.0 0.00 0.00 300.0 -670.0 1,960.0 32° 1' 10.853	N 103° 16' 20.164 W N 103° 16' 20.164 W N 103° 16' 20.164 W
MD Inc Azl (azimuth) TVD +FSL/-FNL +FWL/-FEL Latitude (usft) (°) (°) (usft) (usft) (usft) (usft) 0.0 0.00 0.00 0.00 -670.0 1,960.0 32° 1' 10.853 100.0 0.00 0.00 100.0 -670.0 1,960.0 32° 1' 10.853 200.0 0.00 0.00 200.0 -670.0 1,960.0 32° 1' 10.853 300.0 0.00 0.00 300.0 -670.0 1,960.0 32° 1' 10.853 400.0 0.00 0.00 400.0 -670.0 1,960.0 32° 1' 10.853	N 103° 16' 20.164 W N 103° 16' 20.164 W N 103° 16' 20.164 W N 103° 16' 20.164 W N 103° 16' 20.164 W
MD Inc Azl (azimuth) TVD +FSL/-FNL +FWL/-FEL Latitude (usft) (°) (°) (°) (usft) (usft) (usft) (usft) Latitude 0.0 0.00 0.00 0.00 0.0 -670.0 1,960.0 32° 1' 10.853 100.0 0.00 0.00 100.0 -670.0 1,960.0 32° 1' 10.853 200.0 0.00 0.00 200.0 -670.0 1,960.0 32° 1' 10.853 300.0 0.00 0.00 300.0 -670.0 1,960.0 32° 1' 10.853 400.0 0.00 0.00 400.0 -670.0 1,960.0 32° 1' 10.853 500.0 0.00 0.00 500.0 670.0 1,960.0 32° 1' 10.853	N 103° 16' 20.164 W N 103° 16' 20.164 W N 103° 16' 20.164 W N 103° 16' 20.164 W N 103° 16' 20.164 W
MD Inc Azl (azimuth) TVD +FSL/-FNL +FWL/-FEL Latitude (usft) (°) (°) (°) (usft) (usft) (usft) Latitude 0.0 0.00 0.00 0.00 0.0 -670.0 1,960.0 32° 1' 10.853 100.0 0.00 0.00 100.0 -670.0 1,960.0 32° 1' 10.853 200.0 0.00 0.00 200.0 -670.0 1,960.0 32° 1' 10.853 300.0 0.00 0.00 300.0 -670.0 1,960.0 32° 1' 10.853 400.0 0.00 0.00 300.0 -670.0 1,960.0 32° 1' 10.853 500.0 0.00 0.00 500.0 -670.0 1,960.0 32° 1' 10.853 500.0 0.00 0.00 500.0 -670.0 1,960.0 32° 1' 10.853 600.0 0.00 0.00 500.0 -670.0 1,960.0 32° 1' 10.853	N 103° 16' 20.164 W N 103° 16' 20.164 W
MD Inc Azl (azimuth) TVD +FSL/-FNL +FWL/-FEL Latitude (usft) (*) (*) (usft) (usft) (usft) Latitude 0.0 0.00 0.00 0.00 0.0 -670.0 1,960.0 32° 1' 10.853 100.0 0.00 0.00 100.0 -670.0 1,960.0 32° 1' 10.853 200.0 0.00 0.00 200.0 -670.0 1,960.0 32° 1' 10.853 300.0 0.00 0.00 200.0 -670.0 1,960.0 32° 1' 10.853 400.0 0.00 0.00 300.0 -670.0 1,960.0 32° 1' 10.853 500.0 0.00 0.00 400.0 -670.0 1,960.0 32° 1' 10.853 600.0 0.00 0.00 500.0 -670.0 1,960.0 32° 1' 10.853 600.0 0.00 0.00 500.0 -670.0 1,960.0 32° 1' 10.853 600.0 0.00 0.00 500.0 -670.0 1,96	N 103° 16' 20.164 W N 103° 16' 20.164 W
MD Inc Azl (azimuth) TVD +FSL/-FNL +FWL/-FEL Latitude (usft) (°) (°) (°) (usft) (usft) (usft) Latitude 0.0 0.00 0.00 0.00 0.0 -670.0 1,960.0 32° 1' 10.853 100.0 0.00 0.00 100.0 -670.0 1,960.0 32° 1' 10.853 200.0 0.00 0.00 200.0 -670.0 1,960.0 32° 1' 10.853 300.0 0.00 0.00 300.0 -670.0 1,960.0 32° 1' 10.853 400.0 0.00 0.00 300.0 -670.0 1,960.0 32° 1' 10.853 500.0 0.00 0.00 500.0 -670.0 1,960.0 32° 1' 10.853 600.0 0.00 0.00 600.0 -670.0 1,960.0 32° 1' 10.853 700.0 0.00 0.00 700.0 -670.0 1,960.0 32° 1' 10.853 700.0 0.00 0.00 700.0 -670.0<	N 103° 16' 20.164 W N 103° 16' 20.164 W
MD Inc Azl (azimuth) TVD +FSL/-FNL +FWL/-FEL Latitude (usft) (°) (°) (usft) (usft) (usft) Latitude 0.0 0.00 0.00 0.00 0.0 -670.0 1,960.0 32° 1' 10.853 100.0 0.00 0.00 100.0 -670.0 1,960.0 32° 1' 10.853 200.0 0.00 0.00 200.0 -670.0 1,960.0 32° 1' 10.853 300.0 0.00 0.00 200.0 -670.0 1,960.0 32° 1' 10.853 400.0 0.00 0.00 300.0 -670.0 1,960.0 32° 1' 10.853 500.0 0.00 0.00 500.0 -670.0 1,960.0 32° 1' 10.853 600.0 0.00 0.00 600.0 -670.0 1,960.0 32° 1' 10.853 700.0 0.00 0.00 700.0 -670.0 1,960.0 32° 1' 10.853 800.0 0.00 0.00 800.0 -670.0 1,96	N 103° 16' 20.164 W N 103° 16' 20.164 W
MD (usft) Inc (*) Azl (azimuth) (*) TVD (*) +FSL/-FNL (usft) +FWL/-FEL (usft) Latitude (usft) 0.0 0.00 0.00 0.00 0.0 -670.0 1,960.0 32° 1' 10.853 100.0 0.00 0.00 100.0 -670.0 1,960.0 32° 1' 10.853 200.0 0.00 0.00 200.0 -670.0 1,960.0 32° 1' 10.853 300.0 0.00 0.00 200.0 -670.0 1,960.0 32° 1' 10.853 400.0 0.00 0.00 300.0 -670.0 1,960.0 32° 1' 10.853 500.0 0.00 0.00 500.0 -670.0 1,960.0 32° 1' 10.853 600.0 0.00 0.00 500.0 -670.0 1,960.0 32° 1' 10.853 700.0 0.00 0.00 600.0 -670.0 1,960.0 32° 1' 10.853 800.0 0.00 0.00 800.0 -670.0 1,960.0 32° 1' 10.853 900.0 0.00 0.00 900.0	N 103° 16' 20.164 W N 103° 16' 20.164 W
MD (usft) Inc (*) Azl (azimuth) (*) TVD (*) +FSL/-FNL (usft) +FWL/-FEL (usft) Latitude (usft) 0.0 0.00 0.00 0.00 0.0 -670.0 1,960.0 32° 1' 10.853 100.0 0.00 0.00 100.0 -670.0 1,960.0 32° 1' 10.853 200.0 0.00 0.00 200.0 -670.0 1,960.0 32° 1' 10.853 300.0 0.00 0.00 200.0 -670.0 1,960.0 32° 1' 10.853 400.0 0.00 0.00 300.0 -670.0 1,960.0 32° 1' 10.853 500.0 0.00 0.00 500.0 -670.0 1,960.0 32° 1' 10.853 600.0 0.00 0.00 600.0 -670.0 1,960.0 32° 1' 10.853 700.0 0.00 0.00 700.0 -670.0 1,960.0 32° 1' 10.853 800.0 0.00 0.00 800.0 -670.0 1,960.0 32° 1' 10.853 900.0 0.00 0.00 900.0	N 103° 16' 20.164 W N 103° 16' 20.164 W

3/5/2019 12:19:54PM

Lease Penetration Section Line Footages

Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Camellia 083H
Project:	CAM/AZ	TVD Reference:	KB @ 2938.0usft
Site:	CAM/AZ #5SX	MD Reference:	KB @ 2938.0usft
Well:	Camellia 083H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Design #1	Database:	EDM5000

Planned Survey

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
1,2	00.0 0.00	0.00	1,200.0	-670.0	1,960.0	32° 1' 10.853 N	103° 16' 20.164 W
1,3	00.0 0.00	0.00	1,300.0	-670.0	1,960.0	32° 1' 10.853 N	103° 16' 20.164 W
1,4	00.0 0.00	0.00	1,400.0	-670.0	1,960.0	32° 1' 10.853 N	103° 16' 20.164 W
1,5	00.0 0.00	0.00	1,500.0	-670.0	1,960.0	32° 1' 10.853 N	103° 16' 20.164 W
1,6	00.0 0.00	0.00	1,600.0	-670.0	1,960.0	32° 1' 10.853 N	103° 16' 20.164 W
1,7	00.0 0.00	0.00	1,700.0	-670.0	1,960.0	32° 1' 10.853 N	103° 16' 20.164 W
1,8	00.0 0.00	0.00	1,800.0	-670.0	1,960.0	32° 1' 10.853 N	103° 16' 20.164 W
1,9	0.00	0.00	1,900.0	-670.0	1,960.0	32° 1' 10.853 N	103° 16' 20.164 W
2,0	00.0 0.00	0.00	2,000.0	-670.0	1,960.0	32° 1' 10.853 N	103° 16' 20.164 W
2,1	00.0 2.00) 186.00	2,100.0	-671.7	1,959.8	32° 1' 10.836 N	103° 16' 20.166 W
2,2	00.0 4.00	186.00	2,199.8	-676.9	1,959.3	32° 1' 10.784 N	103° 16' 20.173 W
2,3	00.0 6.00) 186.00	2,299.5	-685.6	1,958.4	32° 1' 10.699 N	103° 16' 20.185 W
2,4	00.0 6.00) 186.00	2,398.9	-696.0	1,957.3	32° 1' 10.596 N	103° 16' 20.199 W
2,5	00.0 6.00) 186.00	2,498.4	-706.4	1,956.2	32° 1' 10.493 N	103° 16' 20.213 W
2,6	00.0 6.00) 186.00	2,597.8	-716.8	1,955.1	32° 1' 10.391 N	103° 16' 20.227 W
2,7	00.0 6.00) 186.00	2,697.3	-727.2	1,954.0	32° 1' 10.288 N	103° 16' 20.240 W
2,8	00.0 6.00) 186.00	2,796.7	-737.6	1,952.9	32° 1' 10.185 N	103° 16' 20.254 W
2,9	00.0 6.00) 186.00	2,896.2	-748.0	1,951.8	32° 1' 10.082 N	103° 16' 20.268 W
3,0	00.0 6.00) 186.00	2,995.6	-758.4	1,950.7	32° 1' 9.979 N	103° 16' 20.282 W
3,1	00.0 6.00) 186.00	3,095.1	-768.8	1,949.6	32° 1' 9.877 N	103° 16' 20.296 W
3,2	00.0 6.00	186.00	3,194.5	-779.2	1,948.5	32° 1' 9.774 N	103° 16' 20.310 W
3,3	00.0 6.00	186.00	3,294.0	-789.6	1,947.4	32° 1' 9.671 N	103° 16' 20.324 W
3,4	00.0 6.00) 186.00	3,393.4	-800.0	1,946.3	32° 1' 9.568 N	103° 16' 20.338 W
3,5	00.0 6.00	186.00	3,492.9	-810.4	1,945.2	32° 1' 9.466 N	103° 16' 20.351 W
3,6	00.0 6.00) 186.00	3,592.3	-820.8	1,944.2	32° 1' 9.363 N	103° 16' 20.365 W
3.7	00.0 6.00	186.00	3,691.8	-831.1	1,943.1	32° 1' 9.260 N	103° 16' 20.379 W
3.8	00.0 6.00) 186.00	3,791.2	-841.5	1,942.0	32° 1' 9.157 N	103° 16' 20.393 W
3,9	00.0 6.00) 186.00	3,890.7	-851.9	1,940.9	32° 1' 9.055 N	103° 16' 20.407 W
4,0	00.0 6.00) 186.00	3,990.1	-862.3	1,939.8	32° 1' 8.952 N	103° 16' 20.421 W
4,1	00.0 6.00) 186.00	4,089.6	-872.7	1,938.7	32° 1' 8.849 N	103° 16' 20.435 W
4,2	00.0 6.00) 186.00	4,189.0	-883.1	1,937.6	32° 1' 8.746 N	103° 16' 20.449 W
4,3	00.0 6.00) 186.00	4,288.5	-893.5	1,936.5	32° 1' 8.644 N	103° 16' 20.462 W
4,4	00.0 6.00) 186.00	4,387.9	-903.9	1,935.4	32° 1' 8.541 N	103° 16' 20.476 W
4,5	00.0 6.00	186.00	4,487.4	-914.3	1,934.3	32° 1' 8.438 N	103° 16' 20.490 W
4,6	00.0 6.00	186.00	4,586.9	-924,7	1,933.2	32° 1' 8.335 N	103° 16' 20.504 W
4,7	00.0 6.00	186.00	4,686.3	-935.1	1,932.1	32° 1' 8.233 N	103° 16' 20.518 W
4.8	00.0 6.00	186.00	4,785.8	-945.5	1,931.0	32° 1' 8.130 N	103° 16' 20.532 W
4,9	00.0 6.00	186.00	4,885.2	-955.9	1,930.0	32° 1' 8.027 N	103° 16' 20.546 W
5.0	00.0 6.00) 186.00	4,984.7	-966.3	1,928.9	32° 1' 7.924 N	103° 16' 20.560 W
5.1	00.0 6.00) 186.00	5,084.1	-976.7	1,927.8	32° 1' 7.822 N	103° 16' 20.573 W
52	0.00) 186.00	5,183,6	-987 1	1.926 7	32° 1' 7.719 N	103° 16' 20.587 W
53	0.00	186.00	5 283 0	-997 5	1,925.6	32° 1' 7.616 N	103° 16' 20.601 W
5,3	00.0 6.00) 186.00	5,382.5	-1,007.9	1,924.5	32° 1' 7.513 N	103° 16' 20.615 W
5,5	00.0 6.00) 186.00	5,481.9	-1,018.3	1,923.4	32° 1' 7.411 N	103° 16' 20.629 W

3/5/2019 12:19:54PM

Lease Penetration Section Line Footages

Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Camellia 083H
Project:	CAM/AZ	TVD Reference:	KB @ 2938.0usft
Site:	CAM/AZ #5SX	MD Reference:	KB @ 2938.0usft
Well:	Camellia 083H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Design #1	Database:	EDM5000

Planned Survey

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
5,600.0	6.00	186.00	5,581.4	-1,028.7	1,922.3	32° 1' 7.308 N	103° 16' 20.643 W
5,700.0	6.00	186.00	5,680.8	-1,039.1	1,921.2	32° 1' 7.205 N	103° 16' 20.657 W
5,800.0	6.00	186.00	5,780.3	-1,049.5	1,920.1	32° 1' 7.102 N	103° 16' 20.671 W
5,900.0	6.00	186.00	5,879.7	-1,059.8	1,919.0	32° 1' 7.000 N	103° 16' 20.684 W
6,000.0	6.00	186.00	5,979.2	-1,070.2	1,917.9	32° 1' 6.897 N	103° 16' 20.698 W
6,100.0	6.00	186.00	6,078.6	-1,080.6	1,916.8	32° 1' 6.794 N	103° 16' 20.712 W
6,200.0	6.00	186.00	6,178.1	-1,091.0	1,915.7	32° 1' 6.691 N	103° 16' 20.726 W
6,300.0	6.00	186.00	6,277.5	-1,101.4	1,914.7	32° 1' 6.589 N	103° 16' 20.740 W
6,400.0	6.00	186.00	6,377.0	-1,111.8	1,913.6	32° 1' 6.486 N	103° 16' 20.754 W
6,500.0	6.00	186.00	6,476.4	-1,122.2	1,912.5	32° 1' 6.383 N	103° 16' 20.768 W
6,600.0	6.00	186.00	6,575.9	-1,132.6	1,911.4	32° 1' 6.280 N	103° 16' 20.782 W
6,700.0	6.00	186.00	6,675.3	-1,143.0	1,910.3	32° 1' 6.178 N	103° 16' 20.795 W
6,724.8	6.00	186.00	6,700.0	-1,145.6	1,910.0	32° 1' 6.152 N	103° 16' 20.799 W
6,800.0	4.50	186.00	6,774.9	-1,152.4	1,909.3	32° 1' 6.084 N	103° 16' 20.808 W
6,900.0	2.50	186.00	6,874.7	-1,158.5	1,908.7	32° 1' 6.025 N	103° 16' 20.816 W
7,000.0	0.50	186.00	6,974.7	-1,161.1	1,908.4	32° 1' 5.999 N	103° 16' 20.820 W
7,024.8	0.00	0.00	6,999.5	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
7,100.0	0.00	0.00	7,074.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
7,200.0	0.00	0.00	7,174.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
7,300.0	0.00	0.00	7,274.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
7,400.0	0.00	0.00	7,374.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
7,500.0	0.00	0.00	7,474.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
7,600.0	0.00	0.00	7,574.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
7,700.0	0.00	0.00	7,674.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
7,800.0	0.00	0.00	7,774.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
7,900.0	0.00	0.00	7,874.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
8,000.0	0.00	0.00	7,974.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
8,100.0	0.00	0.00	8,074.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
8,200.0	0.00	0.00	8,174.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
8,300.0	0.00	0.00	8,274.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
8,400.0	0.00	0.00	8,374.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
8,500.0	0.00	0.00	8,474.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
8,600.0	0.00	0.00	8,574.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
8,700.0	0.00	0.00	8,674.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
8,800.0	0.00	0.00	8,774.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
8,900.0	0.00	0.00	8,874.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
9,000.0	0.00	0.00	8,974.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
9,100.0	0.00	0.00	9,074.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
9,200.0	0.00	0.00	9,174.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
9,300.0	0.00	0.00	9,274.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
9,400.0	0.00	0.00	9,374.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
9,500.0	0.00	0.00	9,474.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
9,600.0	0.00	0.00	9,574.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
9,700.0	0.00	0.00	9,674.7	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W

3/5/2019 12:19:54PM

Lease Penetration Section Line Footages

Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Camellia 083H
Project:	CAM/AZ	TVD Reference:	KB @ 2938.0usft
Site:	CAM/AZ #5SX	MD Reference:	KB @ 2938.0usft
Well:	Camellia 083H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Design #1	Database:	EDM5000

Planned Survey

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
9,725.3	0.00	0.00	9,700.0	-1,161.2	1,908.4	32° 1' 5.998 N	103° 16' 20.820 W
Cam083 KOP							
9,800.0	8.96	2.98	9,774.4	-1,155.4	1,908.7	32° 1' 6.055 N	103° 16' 20.815 W
9,900.0	20.96	2.98	9,870.8	-1,129.6	1,910.0	32° 1' 6.310 N	103° 16' 20.797 W
10,000.0	32.96	2.98	9,959.8	-1,084.5	1,912.4	32° 1' 6.757 N	103° 16' 20.765 W
10,100.0	44.96	2.98	10,037.4	-1,021.8	1,915.6	32° 1' 7.377 N	103° 16' 20.720 W
10,200.0	56.96	2.98	10,100.3	-944.4	1,919.7	32° 1' 8.142 N	103° 16' 20.664 W
10,300.0	68.96	2.98	10,145.6	-855.6	1,924.3	32° 1' 9.020 N	103° 16' 20.600 W
10,400.0	80.96	2.98	10,171.5	-759.3	1,929.3	32° 1' 9.972 N	103° 16' 20.531 W
10,431.1	84.69	2.98	10,175.4	-728.5	1,930.9	32° 1' 10.277 N	103° 16' 20.509 W
10,500.0	84.69	2.98	10,181.8	-660.0	1,934.5	32° 1' 10.955 N	103° 16' 20.460 W
10 600 0	84 69	2.98	10,191.0	-560.5	1,939.6	32° 1' 11 938 N	103° 16' 20 388 W
10,700,0	84.69	2.98	10,200.3	-461 1	1,944.8	32° 1' 12,921 N	103° 16' 20.317 W
10,800,0	84 69	2.00	10,209,5	-361.7	1,950.0	32° 1' 13 905 N	103° 16' 20 245 W
10,000.0	84.69	2.00	10 218 8	-262.2	1 955 2	32° 1' 14 888 N	103° 16' 20 174 W
11 000 0	84 69	2.98	10 228 0	-162.8	1,960.3	32° 1' 15 872 N	103° 16' 20 102 W
11,000.0	01.00	2.00		102.0	1,000.0		
11,100.0	84.69	2.98	10,237.3	-63.4	1,965.5	32° 1° 16.855 N	103° 16' 20.031 W
11,163.0	84.69	2.98	10,243.1	-0.7	1,968.8	32° 1' 17.475 N	103° 16' 19.986 W
Cam083 Into NM	NM23199	0.00	10.040 5	20.4	4 070 7	008 41 47 000 N	4000 401 40 050 14
11,200.0	84.69	2.98	10,246.5	30.1	1,970.7	32" 1" 17.838 N	103° 16° 19.959 W
11,211.0	84.69	2.98	10,247.5	47.0	1,9/1.3	32° 1° 17.947 N	103° 16' 19.952 W
11,264.3	90.00	359.42	10,250.0	100.2	1,9/2.4	32° 1° 18.472 N	103° 16' 19,933 W
Cam083 FTP							
11,300.0	90.00	359.42	10,250.0	135.9	1,972.0	32° 1' 18.826 N	103° 16' 19.933 W
11,400.0	90.00	359.42	10,250.0	235.9	1,971.0	32° 1' 19.816 N	103° 16' 19.933 W
11,500.0	90.00	359.42	10,250.0	335.9	1,970.0	32° 1' 20.805 N	103° 16' 19.934 W
11,600.0	90.00	359.42	10,250.0	435.9	1,968.9	32° 1' 21.795 N	103° 16' 19.934 W
11,700.0	90.00	359.42	10,250.0	535.9	1,967.9	32° 1' 22.784 N	103° 16' 19.935 W
11,800.0	90.00	359.42	10,250.0	635.9	1,966.9	32° 1' 23.774 N	103° 16' 19.935 W
11,900.0	90.00	359.42	10,250.0	735.9	1,965.9	32° 1' 24.763 N	103° 16' 19.935 W
12,000.0	90.00	359.42	10,250.0	835.9	1,964.9	32° 1' 25.753 N	103° 16' 19.936 W
12,100.0	90.00	359.42	10,250.0	935.9	1,963.8	32° 1' 26.742 N	103° 16' 19.936 W
12,200.0	90.00	359.42	10,250.0	1,035.9	1,962.8	32° 1' 27.732 N	103° 16' 19.937 W
12,300.0	90.00	359.42	10.250.0	1.135.9	1.961.8	32° 1' 28.721 N	103° 16' 19.937 W
12,400.0	90.00	359.42	10,250.0	1,235.9	1,960.8	32° 1' 29.711 N	103° 16' 19.938 W
12,500.0	90.00	359.42	10,250.0	1.335.9	1.959.8	32° 1' 30.700 N	103° 16' 19.938 W
12,600.0	90.00	359.42	10,250.0	1.435.9	1.958.7	32° 1' 31.690 N	103° 16' 19.939 W
12,700.0	90.00	359.42	10,250.0	1,535.8	1,957.7	32° 1' 32.679 N	103° 16' 19.939 W
12 800 0	00.00	250 42	10.250.0	1 625 9	1 056 7	228 11 22 660 N	103º 16' 10 030 W
12,000.0	90.00	350.42	10,250,0	1,035.0	1,950.7	32° 1' 34 659 N	103 16 19.939 W
12,900.0	90.00	359.42	10,200.0	1,700.0	1,900.7	32 1 34.000 N	103 10 19.940 W
13,000.0	90.00	350.42	10,250.0	1,000.0	1,554.7	32 1 33,040 N	103 10 19.940 W
13,100.0	90.00	350.42	10,250.0	1,900.0 2 035 P	1,953.0	32" 1 30.037 N	103 10 13.041 W
13,200.0	90.00	333.42	10,200.0	2,033.0	1,932.0	52 1 57.027 N	100 10 10.041 99
13,300.0	90.00	359.42	10,250.0	2,135.8	1,951.6	32° 1' 38.616 N	103° 16' 19.942 W
13,400.0	90.00	359.42	10,250.0	2,235.8	1,950.6	32° 1' 39.606 N	103° 16' 19.942 W

3/5/2019 12:19:54PM

Lease Penetration Section Line Footages

Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Camellia 083H
Project:	CAM/AZ	TVD Reference:	KB @ 2938.0usft
Site:	CAM/AZ #5SX	MD Reference:	KB @ 2938.0usft
Well:	Camellia 083H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Design #1	Database:	EDM5000

Planned Survey

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
13,500.0	90.00	359.42	10,250.0	2,335.8	1,949.6	32° 1' 40.596 N	103° 16' 19.942 W
13,600.0	90.00	359.42	10,250.0	2,435.8	1,948.5	32° 1' 41.585 N	103° 16' 19.943 W
13,700.0	90.00	359.42	10,250.0	2,535.8	1,947.5	32° 1' 42.575 N	103° 16' 19.943 W
13,800.0	90.00	359.42	10,250.0	2,635.8	1,946.5	32° 1' 43,564 N	103° 16' 19,944 W
13,900.0	90.00	359.42	10,250.0	2,735.8	1,945.5	32° 1' 44.554 N	103° 16' 19.944 W
14,000.0	90.00	359.42	10,250.0	2,835.8	1,944.5	32° 1' 45.543 N	103° 16' 19.945 W
14,100.0	90.00	359.42	10,250.0	2,935.8	1,943.4	32° 1' 46.533 N	103° 16' 19.945 W
14,200.0	90.00	359.42	10,250.0	3,035.8	1,942.4	32° 1' 47.522 N	103° 16' 19.946 W
14,300.0	90.00	359.42	10,250.0	3,135.8	1,941.4	32° 1' 48.512 N	103° 16' 19.946 W
14,400.0	90.00	359.42	10,250.0	3,235.8	1,940.4	32° 1' 49.501 N	103° 16' 19.946 W
14,500.0	90.00	359.42	10,250.0	3,335.8	1,939.4	32° 1' 50.491 N	103° 16' 19.947 W
14,600.0	90.00	359.42	10,250.0	3,435.7	1,938.3	32° 1' 51.480 N	103° 16' 19.947 W
14,700.0	90.00	359.42	10,250.0	3,535.7	1,937.3	32° 1' 52.470 N	103° 16' 19.948 W
14,800.0	90.00	359.42	10,250.0	3,635.7	1,936.3	32° 1' 53,459 N	103° 16' 19,948 W
14,900.0	90.00	359.42	10,250.0	3,735.7	1,935.3	32° 1' 54.449 N	103° 16' 19.949 W
15,000.0	90.00	359.42	10,250.0	3,835.7	1,934.3	32° 1' 55.438 N	103° 16' 19.949 W
15,100.0	90.00	359.42	10,250.0	3,935.7	1,933.2	32° 1' 56.428 N	103° 16' 19.950 W
15,200.0	90.00	359.42	10,250.0	4,035.7	1,932.2	32° 1' 57.417 N	103° 16' 19.950 W
15,300.0	90.00	359.42	10,250.0	4,135.7	1,931.2	32° 1' 58.407 N	103° 16' 19.950 W
15,400.0	90.00	359.42	10,250.0	4,235.7	1,930.2	32° 1' 59.396 N	103° 16' 19.951 W
15,500.0	90.00	359.42	10,250.0	4,335.7	1,929.2	32° 2' 0.386 N	103° 16' 19.951 W
15,600.0	90.00	359.42	10,250.0	4,435.7	1,928.1	32° 2' 1.375 N	103° 16' 19.952 W
15,700.0	90.00	359.42	10,250.0	4,535.7	1,927.1	32° 2' 2.365 N	103° 16' 19.952 W
15,800.0	90.00	359.42	10,250.0	4,635.7	1,926.1	32° 2' 3.354 N	103° 16' 19.953 W
15,900.0	90.00	359.42	10,250.0	4,735.7	1,925.1	32° 2' 4.344 N	103° 16' 19.953 W
16,000.0	90.00	359.42	10,250.0	4,835.7	1,924.0	32° 2' 5.333 N	103° 16' 19.954 W
16,100.0	90.00	359.42	10,250.0	4,935.7	1,923.0	32° 2' 6.323 N	103° 16' 19.954 W
16,200.0	90.00	359.42	10,250.0	5,035.7	1,922.0	32° 2' 7.312 N	103° 16' 19.954 W
16,300.0	90.00	359.42	10,250.0	5,135.7	1,921.0	32° 2' 8.302 N	103° 16' 19.955 W
16,400.0	90.00	359.42	10,250.0	5,235.7	1,920.0	32° 2' 9.291 N	103° 16' 19.955 W
16,500.0	90.00	359.42	10,250.0	5,335.6	1,918.9	32° 2' 10.281 N	103° 16' 19.956 W
16,600.0	90.00	359.42	10,250.0	5,435.6	1,917.9	32° 2' 11.270 N	103° 16' 19.956 W
16,700.0	90.00	359.42	10,250.0	5,535.6	1,916.9	32° 2' 12.260 N	103° 16' 19.957 W
16,800.0	90.00	359.42	10,250.0	5,635.6	1,915.9	32° 2' 13.249 N	103° 16' 19.957 W
16,900.0	90.00	359.42	10,250.0	5,735.6	1,914.9	32° 2' 14.239 N	103° 16' 19.957 W
17,000.0	90.00	359.42	10,250.0	5,835.6	1,913.8	32° 2' 15.229 N	103° 16' 19.958 W
17,100.0	90.00	359.42	10,250.0	5,935.6	1,912.8	32° 2' 16.218 N	103° 16' 19.958 W
17,200.0	90.00	359.42	10,250.0	6,035.6	1,911.8	32° 2' 17.208 N	103° 16' 19.959 W
17,300.0	90.00	359.42	10,250.0	6,135.6	1,910.8	32° 2' 18.197 N	103° 16' 19.959 W
17,400.0	90.00	359.42	10,250.0	6,235.6	1,909.8	32° 2' 19.187 N	103° 16' 19.960 W
17,500.0	90.00	359.42	10,250.0	6,335.6	1,908.7	32° 2' 20.176 N	103° 16' 19.960 W
17,600.0	90.00	359.42	10,250.0	6,435.6	1,907.7	32° 2' 21.166 N	103° 16' 19.961 W
17,700.0	90.00	359.42	10,250.0	6,535.6	1,906.7	32° 2' 22.155 N	103° 16' 19.961 W
17,800.0	90.00	359.42	10,250.0	6,635.6	1,905.7	32° 2' 23.145 N	103° 16' 19.961 W

3/5/2019 12:19:54PM

Lease Penetration Section Line Footages

Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Camellia 083H	
Project:	CAM/AZ	TVD Reference:	KB @ 2938.0usft	
Site:	CAM/AZ #5SX	MD Reference:	KB @ 2938.0usft	
Well:	Carnellia 083H	North Reference:	Grid	
Weilbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature	
Design:	Design #1	Database:	EDM5000	

Planned Survey

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
17,900.0	90.00	359.42	10,250.0	6,735.6	1,904.7	32° 2' 24.134 N	103° 16' 19.962 W
18,000.0	90.00	359.42	10,250.0	6,835.6	1,903.6	32° 2' 25.124 N	103° 16' 19.962 W
18,100.0	90.00	359.42	10,250.0	6,935.6	1,902.6	32° 2' 26.113 N	103° 16' 19.963 W
18,200.0	90.00	359.42	10,250.0	7,035.6	1,901.6	32° 2' 27.103 N	103° 16' 19.963 W
18,300.0	90.00	359.42	10,250.0	7,135.6	1,900.6	32° 2' 28.092 N	103° 16' 19.964 W
18,400.0	90.00	359.42	10,250.0	7,235.6	1,899.6	32° 2' 29.082 N	103° 16' 19.964 W
18,500.0	90.00	359.42	10,250.0	7,335.5	1,898.5	32° 2' 30.071 N	103° 16' 19.964 W
18,600.0	90.00	359.42	10,250.0	7,435.5	1,897.5	32° 2' 31.061 N	103° 16' 19.965 W
18,700.0	90.00	359.42	10,250.0	7,535.5	1,896.5	32° 2' 32.050 N	103° 16' 19.965 W
18,800.0	90.00	359.42	10,250.0	7,635.5	1,895.5	32° 2' 33.040 N	103° 16' 19.966 W
18,900.0	90.00	359.42	10,250.0	7,735.5	1,894.5	32° 2' 34.029 N	103° 16' 19.966 W
19,000.0	90.00	359.42	10,250.0	7,835.5	1,893.4	32° 2' 35.019 N	103° 16' 19.967 W
19,100.0	90.00	359.42	10,250.0	7,935.5	1,892.4	32° 2' 36.008 N	103° 16' 19.967 W
19,200.0	90.00	359.42	10,250.0	8,035.5	1,891.4	32° 2' 36.998 N	103° 16' 19.968 W
19,300.0	90.00	359.42	10,250.0	8,135.5	1,890.4	32° 2' 37.987 N	103° 16' 19.968 W
19,400.0	90.00	359.42	10,250.0	8,235.5	1,889.4	32° 2' 38.977 N	103° 16' 19.968 W
19,500.0	90.00	359.42	10,250.0	8,335.5	1,888.3	32° 2' 39.966 N	103° 16' 19.969 W
19,600.0	90.00	359.42	10,250.0	8,435.5	1,887.3	32° 2' 40.956 N	103° 16' 19.969 W
19,700.0	90.00	359.42	10,250.0	8,535.5	1,886.3	32° 2' 41.945 N	103° 16' 19.970 W
19,800.0	90.00	359.42	10,250.0	8,635.5	1,885.3	32° 2' 42.935 N	103° 16' 19.970 W
19,900.0	90.00	359.42	10,250.0	8,735.5	1,884.3	32° 2' 43.924 N	103° 16' 19.971 W
20,000.0	90.00	359.42	10,250.0	8,835.5	1,883.2	32° 2' 44,914 N	103° 16' 19.971 W
20,100.0	90.00	359.42	10,250.0	8,935.5	1,882.2	32° 2' 45.903 N	103° 16' 19.971 W
20,200.0	90.00	359.42	10,250.0	9,035.5	1,881.2	32° 2' 46.893 N	103° 16' 19.972 W
20,300.0	90.00	359.42	10,250.0	9,135.5	1,880.2	32° 2' 47.882 N	103° 16' 19.972 W
20,400.0	90.00	359.42	10,250.0	9,235.4	1,879.2	32° 2' 48.872 N	103° 16' 19.973 W
20,500.0	90.00	359.42	10,250.0	9,335.4	1,878.1	32° 2' 49.861 N	103° 16' 19.973 W
20,600.0	90.00	359.42	10,250.0	9,435.4	1,877.1	32° 2' 50.851 N	103° 16' 19.974 W
20,700.0	90.00	359.42	10,250.0	9,535.4	1,876.1	32° 2' 51.840 N	103° 16' 19.974 W
20,800.0	90.00	359.42	10,250.0	9,635.4	1,875.1	32° 2' 52.830 N	103° 16' 19.975 W
20,900.0	90.00	359.42	10,250.0	9,735.4	1,874.1	32° 2' 53.819 N	103° 16' 19.975 W
21,000.0	90.00	359.42	10,250.0	9,835,4	1,873.0	32° 2' 54,809 N	103° 16' 19.975 W
21,100.0	90.00	359.42	10,250.0	9,935.4	1,872.0	32° 2' 55.799 N	103° 16' 19.976 W
21,200.0	90.00	359.42	10,250.0	10,035.4	1,871.0	32° 2' 56.788 N	103° 16' 19,976 W
21,300.0	90.00	359.42	10,250.0	10,135.4	1,870.0	32° 2' 57.778 N	103° 16' 19.977 W
21,400.0	90.00	359.42	10,250.0	10,235.4	1,869.0	32° 2' 58.767 N	103° 16' 19.977 W
21,500.0	90.00	359.42	10,250.0	10,335.4	1,867.9	32° 2' 59.757 N	103° 16' 19.978 W
21,600.0	90.00	359.42	10,250.0	10,435.4	1,866.9	32° 3' 0.746 N	103° 16' 19.978 W
Cam083 LTP 21,674.1	90.00	359.42	10,250.0	10,509.5	1,866.2	32° 3' 1.480 N	103° 16' 19.978 W
Cam083 BHL							

3/5/2019 12:19:54PM

AMEREDEV			Ameredev Operating, LLC Lease Penetration Section Line Footages			1	
Company: Project: Site: Well: Wellbore: Design:	any: Ameredev Operating, LLC. ct: CAM/AZ CAM/AZ #5SX Camellia 083H ore: Wellbore #1 n: Design #1			Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Database:		Well Camellia 083H KB @ 2938.0usft KB @ 2938.0usft Grid Minimum Curvature EDM5000	
Plan Annotatio	ons						
	Measured Depth (usft)	Vertical Depth (usft)	Local Coor +N/-S (usft)	dinates +E/-W (usft)	Comment		
	11,163.0	10,243.1	669.3	8.8	Cam083 into NMNM23199		
Checked By	r:	· ,	Арр	roved By:		Date:	

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier				
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams				
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams				
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams				
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams				
Open Hole	13-5/8	Drilling Fluid	Blind Rams	-				
All Drilling Components in 10M Environment will have OD that will allow full Operational RATED								
WORKING PRESSURE for system design. Kill line with minimum 2" ID will be available outside								
substructure with 10	M Check Valve for (OOH Kill Operations						

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan

Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

Ameredev Drilling Plan: 3 String with 4 String Contingency

- Contingency Plan If Losses Exceed 50% in Intermediate Interval
 - We will utilize a MB4 wellhead that will enable us to convert a 3 string design to a 4 string design. (Schematic Attached)
 - We will displace well with FW and drill or condition to run 9-5/8" Casing at the Lamar Limestone, we will utilize DV Tool w/ ACP @ the Tansill to Isolate Capitan Reef and cement to surface.
 - Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- 7.625 Casing will be Additional 4th String
 - Drill remaining hole section to 10,670'
 - o Run 7.625 29.7# HCL80 FJM Casing

4-String Contingency Wellbore Schematic

Weil:	(Well Name)	Co. Well ID:	XXXXXX
SHL:	(SHL)	AFE No.:	XXXX-XXX
BHL:	(BHL)	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	(Elevation)'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp B
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	(TVD)'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	(MD)'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs	Cement	Mud Weight
17.5"	Rustler 125' below 13.375" 54.5# J-55 BTC Rustler		TOC 0' 100% Excess	8.4-8.6 ppg WBM
	Salado DV Tool with ACP At Tansill		TOC 0' 50% Excess	esh Water
12.25"	Capitan Reef Lamar 9.625" 40# L-80HC BTC Lamar		TOC 0' 50% Excess	8.3-10.2 Fr
8.75"	Bell Canyon Brushy Canyon Bone Spring Lime First Bone Spring Second Bone Spring Third Bone Spring Upper 125' below 7.625" 29.7# L-80HC FJM TBSG Upper		TOC 0' 25% Excess	8.5-9.4 Diesel Brine Emulsion
6.75" 12° Build @ KOP	Third Bone Spring Wolfcamp Wolfcamp B (If Applicable) 5.5" 20# P-110CYHP TMK UP SF TORQ (MD) Target Wolfcamp B TVD // MD		TOC 0' 25% Excess	10.5-14 ppg OBM

.

Contingency Casing Design and Safety Factor Check

	Casing Specifications									
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling				
Surface	17.5	1,888'	13.375	54.5	J-55	BTC				
Int #1	12.25	5,013'	9.625	40	HCL-80	BTC				
Int #2	8.75	11,147'	7.625	29.7	HCL-80	FJM				
Prod Segment A	6.75	11,147'	5.5	20	CYHP-110	TMK UPSF				
Prod Segment B	6.75	22,496'	5.5	20	CYHP-110	TMK UPSF				

	Chec	k Surface (Casing	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
14.38	853	909	1,130	2,730
	S	afety Facto	ors	
1.56	8.29	8.83	1.15	0.91
	Che	ck int #1 C	asing	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
10.625	916	1042	4230	5750
	S	afety Facto	ors	
0.81	4.57	5.20	1.41	0.95
	Che	ck int #2 C	asing	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
7.625	940	558	6700	9460
	S	afety Facto	ors	
0.56	2.84	1.96	1.10	1.24
	Check Pro	od Casing,	Segment A	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
5.777	728	655	12780	14360
	S	afety Facto	ors	
0.49	3.11	2.79	1.77	1.89
	Check Pro	od Casing,	Segment B	
OD Cplg	Body	Joint	Collapse	Burst
inches	1000 lbs	1000 lbs	psi	psi
5.777	728	655	12780	14360
	S	afety Facto	ors	
0.49	63.53	57.16	1.68	1.89

		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		17.5	13.375	1888	No 537	1.76	13.5		
	ł	abi/sk				0 31372549			
		hhis				419 402246			
		Stage Tool Dept	h			N/A			
		Top MD of Segm	ent			0			
		Bottom MD of S	egment			1502			
		Cement Type	-			с			
		Additves	Bentonite, Accele	erator, Kolseal, Def	oamer, Celloflake				
ead									
2 1									
		Quantity (sks)				1,337			
		Yield (cu ft/sk)				1.76			
		Density (lbs/gal)				13.5			
		Volume (cu ft)			<u></u>	2,352.85			
		Percent Excess				100%	Target %	100%	ur .
1		Column Height				3,389.88			
			Target TOC	_٥	<u> </u>				
			Calc TOC	-1888	bbl	25% Excess	100%		
			calc vol	0.12372195	233.587041	291.9838012	467.174082		
		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		17.5	13.375	1888	· · ·	1.34	14.8		•
		Bbi/Sk				0.23885918			
		bbls				47.77183601			
		Top MD of Segm	ent			1502			
		Bottom MD of Se	egment			1888			
	[Cement Type	<u> </u>			c			
		Additives			·				
8 =									
1 2									
۳ ا		Quantity (sks)				200			
		Yield (cu ft/sk)				1.34			
		Density (lbs/gal)				14.8			
		Volume (cu ft)				268			
		Percent Excess				100%			
		Column Height				386.1225606			

SURFACE CEMENT

		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		12.25	9.625	5013	ĸ	3.5	9		
		Bbl/Sk bbls				0.623885918 372.0365733			
i –		Stage Tool Depth	1			<u>N/A</u>			
		Top MD of Segm	ent			0			
		Bottom MD or Se	egment			4163			
_		Additures	Bentonite Salt K	niseal Defoamer C	allociaka	<u> </u>			
ត្ត ឆ្ល		Additives	Bentonite, Salt, K	Jiseal, Deroamer, C	enociake				
Star Le Star									
		Quantity (sks)				596			
		Yield (cu ft/sk)				3.5			
	1	Density (lbs/gal)				9			
1	1	Volume (cu ft)				2,087.13			
		Percent Excess				50%	Target %	50%	· · · · · · · · · · · · · · · · · · ·
		Column Height				6,669.49			
			Target TOC	٥_					
			Calc TOC	-2506.5	bbl	25% Excess	50%		
<u> </u>	L		calc vol	0.055781888	279.6346021	349.5432526	419.4519031		
		Lucia Sina	Conting Cine	0	Casha	Viald	Density		
		12 25	0 6 3 5	5013	Jacks	1 22	14.9		
ł		12.23	3.025	5015		1.33	14.0		
		Bbl/Sk				0.237076649			
		bbls				47.41532977			
	ł	Top MD of Segm	ent			4163			
		Bottom MD of Se	gment			5013			
		Cernent Type				<u> </u>			
-		Additives							
Tal 88						·			
· ۳		Quantity (sks)				200			
		Yield (cu ft/sk)				1.33			1
		Density (lbs/gal)				14.8			
		Volume (cu ft)	······			266			
		Percent Excess				25%			
		Column Height				850.013004			
	1								
l I									
[1								
	1								

INTERMEDIATE 1 CEMENT - STAGE 1

1	Halo Sizo	Casing Size	Death	Sacke	Viold	Density	
	Hole Size	Casing Size	2262	Sacks	71010	Density	
	12.25	9.625	3262		3.5	9	
1	Bbl/Sk				0.623885918		
	bbis	·			225.5254458		
	Stage Tool Dept	h			N/A		
	Top MD of Segn	nent			Ö		
	Bottom MD of S	egment			2412		
	Cement Type				<u> </u>		
ā ē	Additves	Bentonite,Salt,Ko	olseal, Defoamer, Ce	lloclake	<u></u>		
Lea Lea							
Ś	Quantity (sks)				361		
	Vield (cu ft/sk)				35		
	Density (lbs/gal						
	Volume (cu ft)				1.265.20		
	Percent Excess	······	• • • • • • • • • • • • • • • • • • • •		50%	Target %	50%
	Column Height				4,042.99	-	
			···				
		Target TOC	0				
		Calc TOC	-1631	bbl	25% Excess	50%	
		calc vol	0.055781888	181.960517	227.4506463	272.9407756	
	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	12.25	9.625	3262		1.33	14.8	
	BPI/25				0 237076649		
	bbls				47.41532977		
	Ten MD of Som				2412		
	I I I I I I I I I I I I I I I I I I I	ient			4744		
	Bottom MD of Segr	egment			3262		
	Bottom MD of Segn Cement Type	egment			3262 C		
	Bottom MD of Segn Bottom MD of S Cement Type Additives	egment			3262 C		
ge 2 ail	Bottom MD of S Cement Type Additives	egment			3262 C		
Stage 2 Tail	Bottom MD of S Cement Type Additives	egment			3262 C		
Stage 2 Tail	Bottom MD of S Cement Type Additives Quantity (sks)	egment			200		
Stage 2 Tail	Quantity (sks) Yield (cu ft/sk)				200 1.33		
Stage 2 Tail	Quantity (sks) Yield (cu ft/sk) Density (lbs/gal	egment			200 1.33 14.8 200		
Stage 2 Tail	Quantity (sks) Yield (cu ft/sk) Volume (cu ft)	egment			200 1.33 200 1.33 14.8 266 200		
Stage 2 Tail	Quantity (sks) Yield (cu ft/sk) Density (lbs/gal Volume (cu ft) Percent Excess	egment			200 1.33 200 1.33 14.8 266 25% 850 012021		
Stage 2 Tail	Quantity (sks) Yield (cu ft/sk) Density (lbs/gal Volume (cu ft) Percent Excess Column Height	egment			2000 1.33 14.8 266 25% 850.013004		
Stage 2 Tail	Quantity (sks) Yield (cu ft/sk) Density (lbs/gal Volume (cu ft) Percent Excess Column Height	egment			2000 1.33 14.8 266 25% 850.013004		
Stage 2 Tail	Quantity (sks) Yield (cu ft/sk) Density (lbs/gal Volume (cu ft) Percent Excess Column Height	egment			2000 1.33 14.8 266 25% 850.013004		

INTERMEDIATE 1 CEMENT - STAGE 2

		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		8.75	7.625	10670		2.47	9		
		Bhl/Sk				0 440285205			
		hhis				168 6309595			
		Stage Tool Depth	1			N/A			
		Top MD of Segm	ent			0			
		Bottom MD of Se	gment			6755			
		Cement Type				н			
- <u>-</u>		Additves	Bentonite,Retard	ler, Kolseal, Defoar	ner,Celloflake, Ant	ti-Settling			
age	ſ	Expansion Additi	ve						
1 2 1									
		Quantity (sks)				383			
		Yield (cu ft/sk)				2.47			
		Density (lbs/gal)				9			
		Volume (cu ft)		· · ·		946.02			
		Percent Excess				25%	Target %	25%	
ł		Column Height				9,422.97			
			Target TOC	0					
			Calc TOC	-2667.5	bbl	25% Excess	25%		
			calc vol	0.01789574	190.9475483	238.6844354	238.6844354		
		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		Hole Size 8.75	Casing Size 7.625	Depth 10670	Sacks	Yield 1.31	Density 14.2		
		Hole Size 8.75 Bbl/Sk	Casing Size 7.625	Depth 10670	Sacks	Yield 1.31	Density 14.2		
		Hole Size 8.75 Bbl/Sk bbls	Casing Size 7.625	Depth 10670	Sacks	Yield 1.31 0.233511586 70.05347594	Density 14.2		
		Hole Size 8.75 Bbl/Sk bbls Top MD of Segme	Casing Size 7.625	Depth 10670	Sacks	Yield 1.31 0.233511586 70.05347594 6755	Density 14.2		
		Hole Size 8.75 Bbl/Sk bbls Top MD of Segme Bottom MD of Se	Casing Size 7.625 ent gment	Depth 10670	Sacks	Yield 1.31 0.233511586 70.05347594 6755 10670	Density 14.2		
		Hole Size 8.75 Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type	Casing Size 7.625 ent gment	Depth 10670	Sacks	Yield 1.31 0.233511586 70.05347594 6755 10670 H	Density 14.2		
		Hole Size 8.75 Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type Additves	Casing Size 7.625 ent gment Salt,Bentonite,Re	Depth 10670	Sacks	Yield 1.31 0.233511586 70.05347594 6755 10670 H	Density 14.2		
je 1 II		Hole Size 8.75 Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type Additves	Casing Size 7.625 ent gment Salt,Bentonite,Re	Depth 10670 starder,Dispersant	Sacks	Yield 1.31 0.233511586 70.05347594 6755 10670 H	Density 14.2		
itage 1 Tall		Hole Size 8.75 Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type Additves	Casing Size 7.625 ent gment Salt,Bentonite,Re	Depth 10670 etarder,Dispersant	Sacks	Yield 1.31 0.233511586 70.05347594 6755 10670 H	Density 14.2		
Stage 1 Tall		Hole Size 8.75 Bbl/Sk bbls Top MD of Segmi Bottom MD of Se Cement Type Additves Quantity (sks)	Casing Size 7.625 ent gment Salt,Bentonite,Re	Depth 10670 etarder,Dispersant	Sacks	Yield 1.31 0.233511586 70.05347594 6755 10670 H 300	Density 14.2		
Stage 1 Tall		Hole Size 8.75 Bbl/Sk bbls Top MD of Segmi Bottom MD of Se Cement Type Additves Quantity (sks) Yield (cu ft/sk)	Casing Size 7.625 ent gment Salt,Bentonite,Re	Depth 10670 starder,Dispersant	Sacks	Yield 1.31 0.233511586 70.05347594 6755 10670 H 300 1.31	Density 14.2		
Stage 1 Tall		Hole Size 8.75 Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal)	Casing Size 7.625 ent gment Salt,Bentonite,Re	Depth 10670 starder,Dispersant	Sacks	Yield 1.31 0.233511586 70.05347594 6755 10670 H 300 1.31 14.2	Density 14.2		
Stage 1 Tall		Hole Size 8.75 Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft)	Casing Size 7.625 ent gment Salt,Bentonite,Re	Depth 10670	Sacks	Yield 1.31 0.233511586 70.05347594 6755 10670 H 	Density 14.2		
Stage 1 Tail		Hole Size 8.75 Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess	Casing Size 7.625 ent gment Salt,Bentonite,Re	Depth 10670	Sacks	Yield 1.31 0.233511586 70.05347594 6755 10670 H 	Density 14.2		
Stage 1 Tall		Hole Size 8.75 Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height	Casing Size 7.625 ent gment Salt,Bentonite,Re	Depth 10670	Sacks	Yield 1.31 0.233511586 70.05347594 6755 10670 H 300 1.31 14.2 393 25% 3914.533571	Density 14.2		
Stage 1 Tall		Hole Size 8.75 Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height	Casing Size 7.625 ent gment Salt,Bentonite,Re	Depth 10670	Sacks	Yield 1.31 0.233511586 70.05347594 6755 10670 H 300 1.31 14.2 393 25% 3914.533571	Density 14.2		
Stage 1 Tall		Hole Size 8.75 Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height	Casing Size 7.625 ent gment Salt,Bentonite,Re	Depth 10670	Sacks	Yield 1.31 0.233511586 70.05347594 6755 10670 H 300 1.31 14.2 393 25% 3914.533571	Density 14.2		
Stage 1 Tall		Hole Size 8.75 Bbl/Sk bbls Top MD of Segm Bottom MD of Se Cement Type Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height	Casing Size 7.625 ent gment Salt,Bentonite,Re	Depth 10670	Sacks	Yield 1.31 0.233511586 70.05347594 6755 10670 H 300 1.31 14.2 393 25% 3914.533571	Density 14.2		

INTERMEDIATE 2 CEMENT

	Hole Size	Casing Size	Denth	Sacks	Vield	Density		
	6.75	55	22496	Jucks	1 34	14.2		
Stage 1 Lead	6.75 Bbl/Sk bbls Stage Tool Depti Top MD of Segm Bottom MD of S Cement Type Additves	h egment Salt, Bentonite, I	22496	acts	1.34 0.23885918 418.2897805 N/A 0 22496 H oamer	14.2		
i i	Quantity (sks)				1,/51			
	Density (lbs/gal)				1.34			
	Volume (cu ft)			·····	2.346.61			
	Percent Excess				25%	Target %	25%	1
	Column Height				28,120.00			
		Target TOC Calc TOC calc voi	0 -5624 0.01487517	bbl 334.6318244	25% Excess 418.2897805	25% 418.2897805		
	Hole Size	Casing Size	Death	Sacks	Viold	Density		
	6 75	5 5	22496	0	0	0		
19 11	Bbl/Sk bbls Top MD of Segm Bottom MD of S Cement Type Additives	egment			0 0 22496 22496 H			
Stat Ta	Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height	· ·			0 0 0 0			

PRODUCTION CEMENT

HALLIBURTON

Permian Basin, Ft Stockton

Lab Results- Lead

D									_
Request/Slur	'ry 2	2488456/2	1	Rig Name			Date	18/DEC	/2018
Submitted By	y I	Dillon Briers		lob Type	Intermediate Casing		Bulk Plant		
Customer		Ameredev		Location	Lea		Well		
Well Info	ormatio	n							
Casing/Liner	Size 7	7.625 in	1	Depth MD	5013 ft	*	BHST	165°F	
Hole Size	8	3.75 in		Depth TVD	5013 ft		внст	130°F	
Cement In	iformat	ion - Lead D	lesign						st.
Conc UC	<u>M</u>	Cement/Additive	1				Cei	ment Prope	rties
1 00 % I	BWOC	NeoCem				Slurry D	ensity	9	lbm/gal
14.68 gal	/sack	Heated Fresh Wat	er			Slurry Y	ïeld	3.5	ft3/sack
						Water R	equirement	14.68	gal/sack
Pilot Test	Results	: Request ID	2488456/	1		· · ·			
	logy D	aquast Tast 1	D.256652	40					
	10gy, IC	equest rest i	10.330033					<u> </u>	
l'emp (degF)	300	200	100	60	30	6		3	Cond Time (min)
									()
(un)	87	67	49	. 42	30	16		79	Δ
i0 (down)	82	59	35	26	18	10		9	0
0 (avg)	82	63	47	34	20	10			0
					29	43		19	- 0
				54	29	25		19 1.	· 0
v (cP) & YP ((lbs/100ft2): 61.73	22.32 (I	east-squares meth	nod)	23		19	· U
V (cP) & YP (V (cP) & YP ((lbs/100ft2) (lbs/100ft2)): 61.73): 60	22.32 (I 22 (T	east-squares meth	29 10d) 1 (300 & 100 rpm based))	23		19	Ū
V (cP) & YP (V (cP) & YP (eneralized He	(lbs/100ft2 (lbs/100ft2 rschel-Bul): 61.73): 60 kley 4: XP(lbf/10	22.32 (I 22 (1	ceast-squares meth	29 nod) 1 (300 & 100 rpm based)) m=0 81 n=0 81	23		19 ;.	.0
V (cP) & YP (V (cP) & YP (eneralized He API Rheo	(lbs/100ft2 (lbs/100ft2 rrschel-Bull): 61.73): 60 kley 4: YP(lbf/10 equest Test]	22.32 (I 22 (T 0ft2)=20.33 M D:356653	Least-squares meth Fraditional method Iulnf(cP)=52.39	29 nod) i (300 & 100 rpm based)) m=0.81 n=0.81				.0
V (cP) & YP (V (cP) & YP (eneralized He API Rheo Gemp (degF)	(lbs/100ft2 (lbs/100ft2) rschel-Bull logy, R (): 61.73): 60 kley 4: YP(lbf/10 equest Test 1 200	22.32 (1 22 (1 0ft2)=20.33 M D:356653	ceast-squares methor Fraditional method fulnf(cP)=52.39	29 nod) 1 (300 & 100 rpm based)) m=0.81 n=0.81			19 Cond Ti	U me Cond Tem
V (cP) & YP (V (cP) & YP (eneralized He API Rheo Temp (degF)	(lbs/100ft2) (lbs/100ft2) erschel-Bull logy, R(300): 61.73): 60 kley 4: YP(lbf/10 equest Test 1 200	22.32 (I 22 (1 0ft2)=20.33 M D:356653 100	ceast-squares method Fraditional method lulnf(cP)=52.39 60	29 nod) 1 (300 & 100 rpm based)) m=0.81 n=0.81 30 6			Cond Ti (min)	me Cond Tem (degF)
V (cP) & YP (V (cP) & YP (eneralized He API Rheo Temp (degF) 34 (up)	(lbs/100ft2) (lbs/100ft2) rrschel-Bull logy, Rd 300): 61.73): 60 kley 4: YP(lbf/10 equest Test] 200 47	22.32 (I 22 (1 0ft2)=20.33 M D:356653 100 29	ceast-squares meth Fraditional method lulnf(cP)=52.39 60 21	29 nod) i (300 & 100 rpm based)) m=0.81 n=0.81 30 6 15 7			Cond Ti (min) 30	U me Cond Tem (degF) 134
V (cP) & YP (v (cP) & YP (eneralized He API Rheo Femp (degF) 34 (up) 34 (down)	(lbs/100ft2 (lbs/100ft2) rrschel-Bull logy, Rd 300 63 63): 61.73): 60 kley 4: YP(lbf/10 equest Test 1 200 47 46	22.32 (I 22 (1 0ft2)=20.33 M D:356653 100 29 29	Least-squares meth Fraditional method fulnf(cP)=52.39 41 60 21 21 21	29 nod) i (300 & 100 rpm based)) m=0.81 n=0.81 30 6 15 7 14 7			Cond Ti (min) 30 30	me Cond Tem (degF) 134 134
V (cP) & YP (v (cP) & YP (eneralized He API Rheo Femp (degF) 34 (up) 34 (up) 34 (avg.)	(lbs/100ft2 (lbs/100ft2) rrschel-Bull logy, Rd 300 63 63 63): 61.73): 60 kley 4: YP(lbf/10 equest Test 1 200 47 46 47	22.32 (I 22 (1 0ft2)=20.33 M D:356653 100 29 29 29 29	Least-squares method Traditional method tulnf(cP)=52.39 141 60 21 21 21 21 21	29 nod) i (300 & 100 rpm based)) m=0.81 n=0.81 30 6 15 7 14 7 15 7			Cond Ti (min) 30 30 30	0 me Cond Tem (degF) 134 134 134
V (cP) & YP (v (cP) & YP (eneralized He API Rheo Femp (degF) 134 (up) 134 (down) 134 (avg.) V (cP) & YP ((lbs/100ft2) (lbs/100ft2) rrschel-Bull logy, Rd 300 63 63 63 (lbs/100ft2)): 61.73): 60 kley 4: YP(lbf/10 equest Test 1 200 47 46 47 46 47 57.12	22.32 (I 22 (T 0ft2)=20.33 M D:356653 100 29 29 29 29 29 29 29	ceast-squares method fraditional method fulnf(cP)=52.39 60 21 21 21 21 21 21 21 21 21	29 nod) 1 (300 & 100 rpm based)) m=0.81 n=0.81 30 6 15 7 14 7 15 7 nod)	23	5 5	Cond Ti (min) 30 30 30	0 me Cond Tem (degF) 134 134 134 134
V (cP) & YP (v (cP) & YP (ieneralized He API Rheo Femp (degF) 134 (up) 134 (down) 134 (avg.) V (cP) & YP (V (cP) & YP ((lbs/100ft2) (lbs/100ft2) rrschel-Bull logy, Rd 300 63 63 63 (lbs/100ft2) (lbs/100ft2)): 61.73): 60 kley 4: YP(lbf/10 equest Test 1 200 47 46 47 46 47): 57.12): 51	22.32 (1 22 (1 0ft2)=20.33 M D:3566533 100 29 29 29 29 29 29 29 29 29 29 29 29	ceast-squares method fraditional method fulnf(cP)=52.39 60 21 21 21 21 21 21 21 21 21 21 21 21 21	29 nod) i (300 & 100 rpm based)) m=0.81 n=0.81 30 6 15 7 14 7 15 7 14 7 15 7 nod) i (300 & 100 rpm based))			Cond Ti (min) 30 30 30	0 me Cond Tem (degF) 134 134 134
V (cP) & YP (V (cP) & YP (eneralized He API Rheo Femp (degF) 134 (up) 134 (down) 134 (avg.) V (cP) & YP (eneralized He	(lbs/100ft2) (lbs/100ft2) erschel-Bull logy, Rd 300 63 63 63 (lbs/100ft2) (lbs/100ft2) erschel-Bull): 61.73): 60 kley 4: YP(lbf/10 equest Test] 200 47 46 47 46 47): 57.12): 51 kley 4: YP(lbf/10	22.32 (I 22 (1 0ft2)=20.33 M D:356653 100 29 29 29 29 29 29 29 29 29 29 29 29 29	ceast-squares method fraditional method fulnf(cP)=52.39 60 21 21 21 21 21 21 21 21 ceast-squares method fraditional method fulnf(cP)=30.64	1 (300 & 100 rpm based)) $m=0.81 n=0.81$ 30 6 15 7 14 7 15 7 14 7 15 7 nod) 1 (300 & 100 rpm based)) m=0.41 n=0.41		5 5 5	Cond Ti (min) 30 30 30	0 me Cond Tem (degF) 134 134 134
V (cP) & YP (V (cP) & YP (ieneralized He API Rheo Femp (degF) 134 (up) 134 (down) 134 (avg.) V (cP) & YP (V (cP) & YP (ieneralized He API Fluid	(lbs/100ft2) (lbs/100ft2) erschel-Bull 10gy, Rd 300 63 63 63 (lbs/100ft2) (lbs/100ft2) erschel-Bull Loss, F): 61.73): 60 kley 4: YP(lbf/10 equest Test 1 200 47 46 47 46 47): 57.12): 51 kley 4: YP(lbf/10 Request Test	22.32 (I 22 (T 0ft2)=20.33 M D:356653 100 29 29 29 29 29 29 29 29 29 29 29 29 29	ceast-squares method fraditional method fulnf(cP)=52.39 (41 60 21 21 21 21 21 21 21 21 21 21 21 21 21	$\frac{29}{100}$ nod) $\frac{1}{100 \text{ (300 & 100 rpm based)}}{\text{m}=0.81}$ $\frac{30}{6}$ $\frac{15}{14}$ $\frac{7}{15}$ $\frac{7}{14}$ $\frac{7}{14}$ $\frac{7}{15}$ $\frac{7}{14}$ $\frac{7}{14$		5 5	Cond Ti (min) 30 30 30	0 me Cond Tem (degF) 134 134 134
V (cP) & YP (V (cP) & YP (eneralized He API Rheo Femp (degF) 34 (up) 34 (down) 34 (down) 34 (avg.) V (cP) & YP (v (cP) & YP (v (cP) & YP (eneralized He API Fluid Fest Temp (down)	(lbs/100ft2) (lbs/100ft2) rrschel-Bull logy, Rd 300 63 63 63 (lbs/100ft2) (lbs/100ft2) (lbs/100ft2) (lbs/100ft2) rrschel-Bull Loss, F egF) Te): 61.73): 60 kley 4: YP(lbf/10 equest Test] 200 47 46 47 46 47): 57.12): 51 kley 4: YP(lbf/10) Request Test rst Pressure (psi)	22.32 (I 22 (T 0ft2)=20.33 M D:3566553 100 29 29 29 29 29 29 29 29 29 29 29 29 29	cast-squares method fraditional method fulnf(cP)=52.39 (41) 60 21 21 21 21 21 21 21 21 21 21 21 21 21	29 nod) 1 (300 & 100 rpm based)) m=0.81 n=0.81 30 6 15 7 14 7 15 7 nod) 1 (300 & 100 rpm based)) m=0.41 n=0.41 Vol. Calculata min)	23	Condition	Cond Ti (min) 30 30 30	0 me Cond Tem (degF) 134 134 134 134
V (cP) & YP (V (cP) & YP (eneralized He API Rheo Femp (degF) 134 (up) 134 (down) 134 (down) 134 (avg.) V (cP) & YP (eneralized He API Fluid Fest Temp (do 34	(lbs/100ft2) (lbs/100ft2) rrschel-Bull logy, Rd 300 63 63 63 (lbs/100ft2) (lbs/100ft2) rrschel-Bull Loss, F egF) Te 10): 61.73): 60 kley 4: YP(lbf/10 equest Test J 200 47 46 47 46 47 57.12): 51 kley 4: YP(lbf/10 Request Test ist Pressure (psi) 00	22.32 (I 22 (T 0ft2)=20.33 M D:356653 100 29 29 29 29 29 29 29 29 29 29 29 29 29	ceast-squares meth Fraditional method fulnf(cP)=52.39 441 60 21 21 21 21 21 ceast-squares method fulnf(cP)=30.64 (342 (min) Meas. 52	29 nod) 1 (300 & 100 rpm based)) m=0.81 n=0.81 30 6 15 7 14 7 15 7 nod) 1 (300 & 100 rpm based)) m=0.41 n=0.41 Vol. Calculate min) 189	23 (0 24 5d FL (<30	Condition (min) 30	Cond Ti (min) 30 30 30	U me Cond Tem (degF) 134 134 134 134 134 134
V (cP) & YP (v (cP) & YP (eneralized He API Rheo Femp (degF) 134 (up) 134 (down) 134 (avg.) V (cP) & YP (eneralized He API Fluid Test Temp (do 34	(lbs/100ft2) (lbs/100ft2) erschel-Bull logy, Rd 300 63 63 63 (lbs/100ft2) (lbs/100ft2) erschel-Bull Loss, F egF) Te 10): 61.73): 60 kley 4: YP(lbf/10 equest Test J 200 47 46 47 57.12): 57.12): 51 kley 4: YP(lbf/10 Request Test ressure (psi) 00	22.32 (I 22 (T 0ft2)=20.33 M D:356653 100 29 29 29 29 29 29 29 29 29 29 29 29 29	ceast-squares method fraditional method fulnf(cP)=52.39 041 60 21 21 21 21 21 21 21 21 21 21 21 21 21	29 nod) 1 (300 & 100 rpm based)) m=0.81 n=0.81 30 6 15 7 14 7 15 7 14 7 15 7 nod) 1 (300 & 100 rpm based)) m=0.41 n=0.41 Vol. Calculate min) 189	23 	Condition (min) 30	Cond Ti (min) 30 30 30	The Cond Tem (degF) 134 134 134 134 134 134 134 Conditioning Ter (degF) 134
V (cP) & YP (V (cP) & YP (eneralized He API Rheo Femp (degF) 34 (up) 34 (down) 34 (avg.) V (cP) & YP (V (cP) & YP (V (cP) & YP (eneralized He API Fluid Set Temp (de 34	(lbs/100ft2) (lbs/100ft2) erschel-Bull logy, Rd 300 63 63 63 (lbs/100ft2) (lbs/100ft2) erschel-Bull Loss, F egF) Te 10): 61.73): 60 kley 4: YP(lbf/10 equest Test] 200 47 46 47 57.12): 51 kley 4: YP(lbf/10 Request Test sst Pressure (psi) 00	22.32 (I 22 (T 0ft2)=20.33 M D:356653 100 29 29 29 29 29 29 29 29 29 29 29 29 29	cast-squares method fraditional method fulnf(cP)=52.39 041 60 21 21 21 21 21 21 21 21 21 21 21 21 21	1 (300 & 100 rpm based)) $m=0.81$ $m=0.81$ 30 6 15 7 14 7 15 7 14 7 16 7 16 7 100 rpm based)) $m=0.41$ $m=0.41$ $m=0.41$ $m=0.41$ 189	23	Condition (min) 30	Cond Ti (min) 30 30 30	The Cond Tem (degF) 134 134 134 134 134 134 Conditioning Ten (degF) 134
V (cP) & YP (V (cP) & YP (eneralized He API Rheo Femp (degF) 34 (up) 34 (down) 34 (down) 34 (avg.) V (cP) & YP (v (cP) & YP (v (cP) & YP (API Fluid cest Temp (de 34	(lbs/100ft2) (lbs/100ft2) erschel-Bull logy, Rd 300 63 63 63 (lbs/100ft2) (lbs/100ft2) erschel-Bull Loss, F egF) Te 10): 61.73): 60 kley 4: YP(lbf/10 equest Test] 200 47 46 47 46 47 57.12): 51 kley 4: YP(lbf/10 Request Test ressure (psi) 00	22.32 (I 22 (1 0ft2)=20.33 M D:356653 100 29 29 29 29 29 29 29 29 29 29 29 29 29	cast-squares method fraditional method fulnf(cP)=52.39 041 60 21 21 21 21 21 21 21 21 21 21 21 21 21	29 nod) i (300 & 100 rpm based)) m=0.81 n=0.81 30 6 15 7 14 7 15 7 nod) i (300 & 100 rpm based)) m=0.41 n=0.41 Vol. Calculate min) 189	23	Condition (min) 30	Cond Ti (min) 30 30 30	0 me Cond Tem (degF) 134 134 134 134 134 134 Conditioning Ten (degF) 134

Is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

Global Customer Report

Page 1 of 2

Free Fluid	API 10B-2,	Request Tes	t ID:356653	343				
Con. Temp (de	egF) Cond.	Time (min)	Static T. (F)	Static	time (min)	Incl. (deg)	% Fluid	
134	30		80	120		0	0	
Pilot Test I	Results Requ	est ID 25041	16/5					
Thickening	g Time - ON-	-OFF-ON, R	equest Tes	t ID:3585239	2			
Test Temp (degF)	Pressure (psi) Reached in	(min) 70 Bc (hh:min) Start	Bc			
126	5800	40	6:18	16				
UCA Com	p. Strength,	Request Tes	t ID:35852	394				
End Temp (degF)	Pressure (psi)	50 psi (hh:mm)	500 psi (hh:mm)	12 hr CS (psi)	24 hr CS (psi)	48 hr CS (psi)		
159	4000	8.55	17.73	456	740	691		

This report is the property of Halliburton Energy Services and neither it nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

Global Customer Report

Page 2 of 2

U. S. Steel Tubular Products

7.625" 29.70lbs/ft (0.375" Wall) HCL80 USS-LIBERTY FJM®

IECHANICAL PROPERTIES Minimum Yield Strength Maximum Yield Strength Minimum Tensile Strength IMENSIONS Outside Diameter Wall Thickness Inside Diameter Standard Drift	Pipe 110,000 140,000 125,000 Pipe 7.625 0.375 6.875	USS-LIBERTY FJM [®] USS-LIBERTY FJM [®] 7.625 6.790	psi psi psi in.
Minimum Yield Strength Maximum Yield Strength Minimum Tensile Strength MENSIONS Outside Diameter Wall Thickness Inside Diameter Standard Drift	110,000 140,000 125,000 Ptpe 7.625 0.375 6.875	 USSLIBERTY FIM® 7.625 	psi psi psi in.
Maximum Yield Strength Minimum Tensile Strength IMENSIONS Outside Diameter Wall Thickness Inside Diameter Standard Drift	140,000 125,000 Ptpe 7.625 0.375 6.875	 USSHLIELERITY (FUX) [®] 7.625 	psi psi in.
Minimum Tensile Strength IMENSIONS Outside Diameter Wall Thickness Inside Diameter Standard Drift	125,000 Pipe 7.625 0.375 6.875	 USS-LIBERTY FM [®] 7.625 6.700	psi in.
DIMENSIONS Outside Diameter Wall Thickness Inside Diameter Standard Drift	Pipe 7.625 0.375 6.875	USSALIBERTY FAX [®] 7.625 6.790	in.
Outside Diameter Wall Thickness Inside Diameter Standard Drift	7.625 0.375 6.875	7.625	in.
Wall Thickness Inside Diameter Standard Drift	0.375 6 875		in.
Inside Diameter Standard Drift	6 875	0.700	
Standard Drift	0.010	0.789	in.
	6.750	6.750	in.
Alternate Drift			in.
Nominal Linear Weight, T&C	29.70		lbs/ft
Plain End Weight	29.06		lbs/ft
ECTION AREA	Pipe	USS-LIBERTY FULL®	
Critical Area	8.541	5.074	sq. in.
Joint Efficiency		59.4	%
ERFORMANCE	Plpe	USSALDERTY FIM ¹¹	
Minimum Collapse Pressure	6,700	6,700	psi
Minimum Internal Yield Pressure	9,460	9,460	psi
Minimum Pipe Body Yield Strength	940,000	-	lbs
Joint Strength	-	558,000	lbs
Compression Rating		558,000	lbs
Reference Length	-	12,810	ft
Maximum Uniaxial Bend Rating		39.3	deg/100 ft
Make-Up Loss		3.92	in.
Minimum Make-Up Torque		10,800	ft-lbs
Maximum Make-Up Torque	-	15,250	ft-lbs
	1		

4. USS-LIBERTY FJM™ connections are optimized for each combination of OD and wall thickness and cannot be interchanged. 5. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

6. Reference length is calculated by joint strength divided by nominal plain end weight with 1.5 safety factor.

7. Connection external pressure leak resistance has been verified to 100% API pipe body collapse pressure following the guidelines of API 5C5 Cal III.

Legal Notice

USS-LIBERTY FJM[®] is a trademark of U.S. Steel Corporation. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U.S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> U. S. Steel Tubular Products 1-877-893-9461 10343 Sam Houston Park Dr., #120 Houston, TX 77064

connections@uss.com www.usstubular.com

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTION	
ECHANICAL PROPERTIES		, ,	
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
INTENETONS			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
ETTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
RFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength	:	631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

 Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.

3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.

4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.

6) Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application. Manuel USS Product Data Sheet 2017 rev25 (April)

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064 1-877-893-9461 connections@uss.com www.usstubular.com

QUALITY CONTROL	No.: QC-DB- 651 / 2013					
	Page : 1 / 44					
Hose No.:	Revision : 0					
66551, 66552, 66553, 66554	Date: 14. November 2013.					
	Prepared by : Scala Landon					
	Appr. by: Delan Sand					

CHOKE AND KILL HOSES

id.: 3" 69 MPa x 35 ft (10,67 m)

DATA BOOK

Purchaser: H&P STOCK Purchaser Order No.: ContiTech Rubber Order No.: 537587 ContiTech Oil & Marine Corp. Order No.: 4500370505

NOT DESIGNED FOR WELL TESTING

ontiTech Rubber Industrial Kit. Budapesti út 10., Szeged H-6728 P.O.Box 152 Szeged H-6701 Hungary

+38 62 566 737 Fax +38 62 566 738 e-mail: info@fluid.contitech.hu Internet: www.contitech-rubber.hu

The Court of Csongrad County as Registry Court Registry Court No: HU 06-09-002502 EU VAT No: HU11087209 Bank data Commercial and Creditbank Szeged 10402805-28014250-00000000

CONTITECH RUBBER	No.: QC- DB- 651 / 2013					
Industrial Kft.	Page:	2/44				

CONTENT

1.	API QMS Certificate (No.: 0760)	<u>Page</u> 3.
2.	American Petroleum Institute Certificate of Authority To Use the Official API Monogram (No.: 16C-0004)	4.
3.	Quality Control Inspection and Test Certificates (No.: 1905, 1906, 1907, 1908)	5-8 .
4.	Hose Data Sheet	9.
5. 5.1.	Metal Parts Raw Material Quality Certificates (No.: TR070687, EUR-265844, 86989/13-0)	10-13.
5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9. 5.10. 5.11. 5.12. 5.13. 5.14.	 86989/13-0) Hardness Test Reports (No.: 561/13, 562/13) Ultrasonic Test Reports (No.: 513/13, 514/13, 515/13) NDT Examiner Certificate (Name: Tóth Ákos József) Welding Procedure Specification (No.: 140-71) Welding Procedure Qualification Record (No.: BUD 0700002/1) Welder's Approval Test Certificate (No.: RK1825997.R1) Welding Log Sheet (No.: 2013/2898) Visual Examination Record (No.: 813/13) NDT Examiner Certificate (Name: Kis Gábor Balázs) Radiographic Test Certificates (No.: 2431/13, 2430/13) NDT Examiner Certificate (Name: Ménesi István) MP Examination Record (No.: 1222/13) NDT Examiner Certificate (Name: Oravecz Gábor) 	14-15. 16-18. 19-20. 21-24. 25-26. 27-28. 29. 30. 31-32. 33-34. 35-36. 37. 38-39.
6. 6.1 <i>.</i>	Steel Cord Inspection Certificate (No.: 4046181212)	40.
7. 7.1.	Outside Stripwound Tube Inspection Certificate (No.: 63892/2012)	41.
8.	Certificate of Calibration (Manometer Serial No.: 1518086)	42-44.

ContiTech Rubber Industrial Kft. Quality Control Dept. (1)

CONTITECH RUBBER	No:QC-DB- 651 /2013					
Industrial Kft.	Page:	3/44				

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft:	Page:	5 / 44

QUAL INSPECTION A	ITY CON ND TEST	TROL F CERTIFIC	ATE	CERT. I	1 °:	1905	
PURCHASER:	ContiTech	Oil & Marine C	orp.	P.O. Nº:		4500370505	
CONTITECH RUBBER order N°:	537587	HOSE TYPE:	3" ID		Choke and	I Kill Hose	
HOSE SERIAL Nº:	66551	NOMINAL / AC	TUAL LENGT	H:	10,67 m	i / 10,75 m	<u> </u>
W.P. 68,9 MPa 100)00 psi	T.P. 103,4	MPa 15	000 psi	Duration:	60	min.
Pressure test with water at ambient temperature	S	See attachme	ent. (1 pag	je)	· .		
10 mm = 10 Min.					•.		
→ 10 mm = 25 MPa	r					1	
3" coupling with		8084	N° 8083			Heat N°	
4 1/16" 10K API Flange	e end	0004	0000	AIS	il 4130	034939	
NOT DESIGNE	D FOR W	ELL TESTIN	G		A	PI Spec 16 C	
All metal parts are flawless					Temp	erature rate:'	' B "
WE CERTIFY THAT THE ABOVE H INSPECTED AND PRESSURE TES	HOSE HAS BE	EN MANUFACTUR	ED IN ACCOR	DANCE WIT	H THE TERMS	OF THE ORDER	
STATEMENT OF CONFORMITY: conditions and specifications of th accordance with the referenced star	We hereby o e above Purch ndards, codes a	ertify that the above aser Order and the and specifications a	re items/equipm nat these items and meet the rel	ent supplied /equipment v evant accept	by us are in o were fabricated ance criteria ar	conformity with the t I inspected and test ad design requireme	erms, ted in nts.
COUNTRY OF ORIGIN HUNGARY/EU							
Date: 13. November 2013.	nspector		Quality Cont	rol Ind Quality	Tech Rubber ustrial Kft. Control Dept	taca (yos	
ContilTech Rubber Industrial Kit. Phone: Rudapesti (r. 10., Szaged H-6726 Fac: 0.Box 152 Szaged H-6701 e-mail: Ameenu	+38 62 568 737 +38 62 566 738 Info@fluid.contitech.i	The Court of Registry Cour Nu Registry Cour	Ceongrád County as t t No: HU 06-09-0025	Benk data Commeda 02 Szeged	al and Creditbank		

ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE No: 1904, 1905 Page: 1/1

15	.10		de		l								0	I	ida ity (enn Anri Con	al R troi
RD	+28.	25 7-	eC Par			202););	20 20							Ţ		
	+19- +28. +184		90 90 60			2020		10 10 10		Ť			11				
	+19- +28- +185	97 Ø9 1•	90 90 50 F	↓ 		2020) 4 () 4 () 4 (88 89 89									
	+20. +20.	81 17 3-	90 90 11 1			19		50 50 50									
	+20. +20. +105	26 36	eC bar					10 10						++			
	+19- +20- +105	99 17 9	90 90 154 1			19)); ;); ;);;;;;;;;;;;;;;;;;;;;;;;;;;;;										
	+20- +20- +106	05 10 4	90 90 100 1					200					++				
2	11.20 11.66	13.	191 191	10 10					<u> </u> -								
					E			Ľ	++			t					

QUA INSPECTION	LITY CON AND TES	TROL T CERTIFIC	ATE	CERT. N	V° :	1906		
PURCHASER:	ContiTech	Oil & Marine C	orp.	P.O. Nº:	: 4	4500370505		
CONTITECH RUBBER order N°: 537587 HOSE TYPE: 3" ID Choke and Kill Hose								
HOSE SERIAL Nº:	66552	NOMINAL / AC	TUAL LENGTH	:	10,67 m	/ 10,73 m		
W.P. 68,9 MPa 1	0000 psi	Т.Р. 103,4	MPa 150	00 psi	Duration:	60	min.	
Pressure test with water at ambient temperature		<u>k,</u>						
	:	See attachme	ent. (1 page	e)				
$ \uparrow 10 \text{ mm} = 10 \text{ Min} $ $ \rightarrow 10 \text{ mm} = 25 \text{ MP} $	3							
COUPLINGS Ty)e	Serial	N°	Q	uality	Heat N°		
3° coupling with	ו	8088	8085	AIS	SI 4130	24613		
4 1/16" 10K API Flan	ge end			AIS	5l 4130	034939		
NOT DESIGN	ED FOR W	ELL TESTIN	G		AF	PI Spec 16 C		
All motal parts are flowless					Tempe	rature rate:"	B"	
WE CERTIFY THAT THE ABOVE	HOSE HAS BE		ED IN ACCORD	ANCE WIT	H THE TERMS	of the order		
STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.								
COUNTRY OF ORIGIN HUNGARY/EU								
Date: 13. November 2013.	. November 2013.							
ContiTech Rubber Industrial Kit. Phon Budapesti úr 10., Szeged H-6728 Fax. PO.Box 152 Szeged H-6701 e-mai Hungary Interr	e: +36 62 568 737 +38 62 568 738 1: Info@fuid.contitech at: www.contitech-rubi	The Court of Registry Cou hu Registry Cou ber.hu EU VAT No: H	Csongråd County as t t No: HU 06-09-00250 (U1 1087209	Bank data Commercia 12 Szeged 10402805-	al and Creditbank -26014250-00000000	, ,		

CONTITECH RUBBER	No:QC-DI	B- 651 /2013
Industrial Kft.	Page:	7/44

QUAI INSPECTION	LITY CON AND TES		CERT. N	10:	1907			
PURCHASER:	ContiTech	Oil & Marine C	Corp.		P.O. Nº:		45003705	05
CONTITECH RUBBER order N°: 537587 HOSE TYPE: 3" ID Choke and Kill Hose								
HOSE SERIAL Nº:	66553	NOMINAL / AC		NGTH:		10,67 m	/ 10,745 m	1
W.P. 68,9 MPa 10)000 psi	T.P. 103,4	MPa	1500	0 psi	Duration:	60	min.
Pressure test with water at ambient temperature								
		See attachmo	ent. (1	page)			
	·					:		
↑ 10 mm = 10 Min. → 10 mm = 25 MPa	I							
COUPLINGS Typ	e	Seria	I Nº		Quality Heat N°			
3" coupling with		8089	8087		AIS	1 4130	23171	24613
4 1/16" 10K API Flang	je end				AIS	939		
NOT DESIGN	ED FOR W	ELL TESTIN	IG			A	PI Spec 1	6 C
All metal parts are flawless						Tempo	erature ra	ite:"B"
WE CERTIFY THAT THE ABOVE	HOSE HAS BE	EN MANUFACTUR	RED IN AC			H THE TERMS	OF THE ORD	ER
STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.								
COUNTRY OF ORIGIN HUNGARY/EU								
Date:	Inspector	· · ·	Quality	Contro	 Conti	lest Robiet		
13. November 2013.			Rel.	re	Indi Quality	Control Drof	Bocn () 29)
Contiliach Rubber Industrial Kit. Phone Budapesti út 10., Szeged H-6728 Fax: P.O.Box 152 Szeged H-6701 e-mail Hungary Interne	- +36 62 568 737 +36 62 566 738 : info@fuid.contitech. :t: www.contitech-rubb	The Court of Registry Cou Inu Registry Cou Jethu EU VAT No: I	Ceongrád Cou rt rt No: HU 08-0 HU11087209	nty 88 9-002502	Bank date Commercia Szeged 10402805-	al end Creditbank 28014250-0000000	0	3

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	8/44

QUALIT INSPECTION AN	Y CONT D TEST	ROL CERTIFIC	ATE	CERT. I	1 °:	1908			
PURCHASER: CO	ntiTech O	il & Marine C	Corp.	P.O. N°:		45003705	05		
CONTITECH RUBBER order N°: 5	537587 I	HOSE TYPE:	3" ID	 .	Choke and	d Kill Hose			
HOSE SERIAL Nº: 6	6554 1	NOMINAL / AC	TUAL LENGTH	ł:	10,67 m	n / 10,71 m			
N.P. 68,9 MPa 10000) psi	T.P. 103,4	MPa 150)00 psi	Duration:	60	mir		
Pressure test with water at Imbient temperature			, <u></u> ,		· ·		-		
	S	ee attachme	ent. (1 pag	e)	:				
10 mm ≈ 10 Min.									
→ 10 mm = 25 MPa									
2" coupling with		Senal 8000	8086		uainy 	Hea	t Nº 		
4 1/16" 10K API Flange e	nd	0000	0000	AIS	si 4130	034	939		
NOT DESIGNED FOR WELL TESTING API Spec 16 C									
All metal parts are flawless									
VE CERTIFY THAT THE ABOVE HO	SE HAS BEEI ED AS ABOVE	N MANUFACTUR E WITH SATISFA	RED IN ACCORE	DANCE WIT	H THE TERMS	OF THE ORL)ER		
TATEMENT OF CONFORMITY: W onditions and specifications of the a ccordance with the referenced standa	Ve hereby cer above Purcha ards, codes an	tify that the above ser Order and the specifications and the specifications and the specifications and the specification of the specifi	ve items/equipm hat these items/ and meet the rele	ent supplied equipment v evant accept	l by us are in were fabricate ance criteria a	conformity with d inspected ar nd design requ	the terms d tested in irements.		
· · · · · · · · · · · · · · · · · · ·	CC		GIN HUNGARY/	ÊU					
late: Ins	pector		Quality Cont	rol Cun In	tiTech Rubh dustrial Kft.		\mathcal{I}		

ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE No:1906, 1907, 1908

;

Page: 1/1

	Macn Las
	Endustrial Kft.
RD +19.92 4C 17:20 SL +19.42 idr 17:20 GN +19.45 idr 17:20	
ICU III IV IV B1 +1056 bar 1710 10 G4 +19.63 42 17100 10 G4 +19.63 42 17100 10 R0 +19.63 42 17100 10	
0 BL 19.10520 b030 10 17 599 60 70 80 90 	:100
Git H15-51 9C 16:49 RD +19.78 9C 16:49 BL +1255 Edm 16:49 CN +16.59 16:49	
RD +19.73 9C 16:30 BL +1056. bar 16:30 CH +19.53 9C 16:30	
RU #19.78 -C 16720 BL +1862- bdr 16720	
Ŋ 12-11-2013-16:00 66552-66553,66554 €	

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	9/44

Ontinental & CONTITECH

Hose Data Sheet

CRI Order No.	537587
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500370505
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVE
Type of coupling other end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVE
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL RESISTANT
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

				Г	CONT	ITECH		BER	No:QC	-DB- 6	51 /20	13
					lr	ndustri	al Kft.		Page:		10/4	4
	ustamer: Inder Number aur Rot: ate: entificate N pproved St	er: :: umbor: gnatories:	ContiT	ech Rubb 11ti 070687(1	er Indus 32 4205 S(h Februar Rev. 18/0	trial Kft 258500 160045 084201 ry 2013 6/2013)	Bod 8083	y) - 8088 451-	- JU	66		
	RMG	ireaves A	Cocking	J Jarvis A	Pears S	Selman	42	051	6 00	45		
	Oescripti	on			CERTI	FICATE	OF CONF	ORMITY			Heat	Treatment
19 Mi (O RE TA ME NA	7-238 BHN, N ELONGA R COLDER EDUCTION IKEN FROM ECHANICAL ICE MR0171 PROX 20 T	, 655MPA M TION, CHAI) LATERAL 3:1 MIN, NI I A 4° SQR (. TEST SPE 5/ISO15156 ONNES 21	IIN TENSILE RPY IMPAC EXPANSION 1% MAX & (QTC AS PEC CIMEN TO APPLIES 0 MM DIA	, 517MPA M T TESTING N 0.38 MIN, CE 0.62 MA R API 8A/PS ASTM A370	AIN YIELD, 1 27J Min @ ROLLING X, TESTS M SIL 3 OTC SI	18% -30C IAY BE ZE.	TEMPERED WATER TEM TEMP. MEA: COMPONEN TEST COUP REDUCTION REDUCTION FURNACE (C/E = 0.683	AT 670°C F APERATUR SUREMENT IT HARDNE ON - 4" SQ I RATIO - 6, I RATIO 5 F CALIBRATIC	FOR 10 HOL E BEFORE I T. FURNACE ESS E 10 - 21 X 8° LONG, 2 IT APPLY T IN: APIGA 20	IRS (AIR CC QUENCH, 2 ATMOSPH 1 HBW10/3 TESTED A O BOTH JO Xth ed, anne	DOL) B*C, AFTEH LERE THER DOD T ½ T LOC B & TEST I x M	R, 35°C. Imocouple Ation Piece
CE	RTS TO EA	N10204 3.1			- <u>-</u>		T 24642		<u> </u>	· · · · · ·		
11	C	Si	Mn	s	P	Ni	1 24013	Mo	Al	Cu	8n	Nb
	0 3200	0.2590	0.5680	0.0090	0.0100	0.1660	1.0560	0.2350	0.0200	0.1420	0.0070	0.0010
	V	Ta	ті	Nb+Ta	Co	N	B	W	Ce	Fa	As	Sb
	0.0010		0.0010			0.0079	0.0001					
	Pb	Ca	H (ppm)	CEV			1					
		· ·	1.20	0.69		L	<u> </u>		l		l	
	-	emneratu	ra	TES	T SPECIF	ICATION Rm	517 N/m	m2 MIN Y		let.	Temo	Hardnast
		RT			517.000			-~			. citip.	
	L			8/m/n2	N4mm2	Minuer 2	40					
	Tool Mum			8-	Bo	TEST F	RESULTS	7 %	10	ulae	Charpy	
	ST22561	N	20.010		524.000	696.000	GA 50.80mm	67.70	KCV	60 50 78	LONG	HBW100060
	Specimen 6	2 12.500mm							KCV	50 50 46	LONG	
									% Shear Su 62.0% 5	face 2 0% 80 0%		. .
												1
									0.840 0	.740 1.020	LONG	
· -											L.,]
F	or and on	Behalf of	TM Steels	Lid. 7	<i>4. [d</i>	σcK	ng			IntiTech Rub Industrial Kh CERTIFICATI ACCEPTABLI D	ber L. E R	
				/	,				DATI	1.06.	21.	
1	A Steen Lid										Tel •4	4 (0)1248 268312
т											Sales Fax +4	4 (0)1246 288313
TK FC Er	www.cod Way					-				Prent	reben Fax +4	4 (D)1248 260841
TK Fo Fo	uxwood Way newood Road hestorfield				Steel for t	he Oil and	Enginaertn	g Industrie	5	Produ	email salo	4 (0)1248 269841 s@imsieela.co.uk

· · ·

				~ ~		07 4	^									_	_		the second s			_	
KOWCO METALS MANAGEMENT				8		50 J	U			Custome Number	or Order		322	52193 - 0	1	Test N	umber				402483		_
Carbrook Street Sheffield S9 2JN			To: CONTI	TECH RUI	BBER IND	USTRI	AL KIFT			Custome Date	ar Order		2	7Feb12		Part N	umber			42	0516004	5	
Telephone: +44 114 24 Facsimile: +44 114 24	44 671 1 4 7469		SZEGE	មិ រាស់ រាស់	IQ KI	562	-KI	571		Sales Ol Number	rder		EUF	-352067	-1	Cast N	lumbei			(23171)	
Contraction of the second s			HUNG	ARY, ARY .						Report I	Date		2	5Sep12		Cert N	lumber			EU	R-2858	A)	
				L	1205	16	2045	5		Quantity	·	14 Pc	s 1740	2 Kgs 210) mm Dia								
Certific Anizon			Desar	ption AISI	4130 75KI	31.2%	PS API Q1	rc				_				Steel	Турө	AL	LOY 4	130		- <u></u> .	
Results quoted only refer to	the items test	8¢/																					
Material Specification	AISI4130 /					<u> </u>	<u> </u>								<u>.</u>								
Heat Treatment Spec	197-2378HN		1			Te	st Spec 8	517N/A	MM2	MIN.YLD			<u> </u>		Test Sp	×							
Mell Practice	EF/VU		PTOOU	cuan Mem	00	HOH	12D			_													
Heat Treatment	Temp(°C)	Soa	k	Co	nlant	Ch	arge Ref.	//	ปไ	Max(°C)	Ba	tah	Төтр п	econdad (Ising	CONT/	ACT TI	ERMOC	OUPLE	: 			
HARDEN	860	3 HRS	_	WATER	DUENCH	SHF	158284	2	0	30	09120	91308	Nature	of T/P		Separa	i e te						
TEMPER	850	4 HAS		TABLE C	001	SHF	158284	Γ			10120	91319	Qto siz	e 4lno	h SQ X 6in	ch LON	G						
·																	Raq. M	lin/Max			Achi	eved	
		ļ											Hardin	968 on T)	P	197	23	87 HE	3W	229	2	29	HBW
													Hardn	ess on M	aterial	197	23	37 HE	3W	218	2	35	HBW
Tensile -											Impaot												
Location	Direction	Rp 0	20%	1	ហា		A%		_	Z%	 	Location		Din	ection		CVN		La	. Еф. ((mm)	%	Shear
1/4T L	ONGITUDINA	L 517	Min	655	to 800	16	1 Min (4d)		0) Min		1/4T		LONG	TUDINAL.	2	7 Min A	we	ļ	0.380 M	§n		0
Results (N/num2)		5	80	·'	65	25	(50.0mm)	- 64		12.56mm)	Resur	a (noniod	, 	-30 Ce	nagrace	10	6 104	102	1.4	44 1.42	1.4	40	40 40
Results	<u> </u>			+		┼──					Result	8								<u> </u>			
Compsion	Terre and the second				ند برداده . در ا	<u></u>													L			_	
Pitting Resistance		Ferrite	<u> </u>							·]	Micros	nucture			<u> </u>	·							
Carbon Equivalent	1		·	.871				G	hain	Size	Min	<u> </u>	. 6	Max		6	<u> </u>						
C SI Mn	P	s Cr	Mo	N	Cu									T	1		T.						T
0.2940 0.2920 0.5370	a.0110 a.0	050 1.0620	0.2290	0.1850	0.2430	_			-								ŀ						
Cents to BSEN10204.2004 NACE MR-01-75 FF = 8AL REDUCTION RATIO 6.5:1	1 9.1						Industrial CERTIFIC ACCEPTA	KIT. ATE BLE							All furnace Hardness I force per A Third part	Calibrat oad/pen STM E1	ton con etration 0. ction :	ndepth -	API6A HBW 1	20th E 0 diam	dition Af eter (mn	NEX M)/3000	kgf test
Names of Approved Sig This report is not to be rep	natories : S.M Iróduced witho	axted G.Sml ut written ap	th S.Sute proval.	ar P.Rogen	9 M.Brown				تن	-				Signature	Me	82				Page	1 of 1		_

Bod

Test Certificate

$\begin{array}{c c c c c c c c c c c c c c c c c c c $									D 054 /00		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							CH RUBBEI	R NO:QC-L	0B- 651 /20	<u>13</u>	
$\begin{array}{c} \hline \\ \hline $						11005		Page:	12/4	4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
Image: State 1 (1 4.43?) FORGING, MACHINING, HEAT-TREATING 1386 FORGING, MACHINING, HEAT-TREATING (1054)024 H-3531 Miskolc, Kiss Ernő u. 17. Phone: 36/46/401-033 Fax: 36/46/379-199 INSPECTION CERTIFICATE ACCEPTANCE ACCORDING EN 10204-05/3.1 Certificate No.: 86999/13-0 Date of issue: 2013.03.27 Hámor No.: 98-3985263 Order No.: 32259784/13/2 Customer: Contitech Rubber Industrial Kft. G728 Szeged Budapesti út 10 Quality: AISI 4130/CONTI Spec.No.: API 6A PSL3 315//51×/82 Dimension: MSO-100597-002/A/H mm Final dim.: MSO-100597-002/A/H mm Heat-treatment:Quenched & tempered Quantity: 30 pcs Weight: 73.0 kg/pc Total weight: 2190.00 kg Inomination of product: Forged, machined disc Chemical analysis % Meat No.: (034939) Steelmaker:: CEISA Huteostrowice POLA Mechanical properties: Steelmaker:: CEISA Huteostrowice POLA Machanical properties: Steelmaker:: CEISA Huteostrowice POLA Machanical properties: Steel	್ ಇ					FI	$\overline{}$				
Imamor 2xtt. ggg. 80.0 1386 Emi-röv FORGING, MACHINING, HEAT-TREATING (105140284 IS09001 H-3531 Miskolc, Kiss Ernő u. 17. Phone: 36/46/401-033 Fax: 36/46/379-199 INSPECTION CERTIFICATE ACCEPTANCE ACCORDING EN 10204-05/3.1 Certificate No.: (85989/13-0) Date of issue: 2013.03.27 Hámor No.: 98-3985263 Order No.: 32259784/13/2 Customer: Contitech Rubber Industrial Kt. 6728 Szegd Budgesti út 10 Quality: AISI 4130/CONTI Spec.No.: API 6A PSL3 \1 1/151 × 182 Dimension: MSO-100597-002/A/H mm Prinal dim :MSO-100597-002/A(4 1/15") Heat-treatment:Quenched & tempered Quantity: 30 pcs Weight: 73.0 kg/pc Total weight: 2190.00 kg Inomination of product: Forged, machined disc Chemical analysis % Heat No.: (034939) Celture Min. No. No. No. Steelmaker: CELSA Hutaostrowiec POLA Centice Min. Steelmaker: CELSA Hutaostrowiec POLA Cent	₹	-		:8==T		rlang	e				
FORGING, MACHINING, HEAT-TREATING (10 5 / 40 2 2 4 1809001 H-3531 Miskolc, Kiss Ernó u. 17. Phone: 36/46/401-033 Fax: 36/46/379-199 INSPECTION CERTIFICATE ACCEPTANCE ACCORDING EN 10204-05/3.1 Certificate No.: (86989/13-0) Date of issue: 2013.03.27 Hámor No.: 98-3985263 Order No.: 32259784/13/2 Customer: Contitech Rubber Industrial Kft. 6728 Szeged Budapesti út 10 Quality: AISI 4130/CONTI Spec.No.: API 6A PSL3 315//51×/82 Dimension: MSO-100597-002/A/H mm Final dim.:MSO-100597-002/A/H mm Final dim.:MSO-100597-002/A/4 1/16") Heat-treatment:Quenched & tempered Quantity: 30 pcs Weight: 73.0 kg/pc Total weight: 2190.00 kg Inomination of product: Forged, machined disc Chemical analysis % Heat No.: (034939) Steelmaker: CELSA Rutaostrowiec POLA Mechanical properties: No. Machanical properties: Centificate Mibber Mechanical properties: Centificate No.: 621 Mechanical properties: No.	1)K 2 ====	RC.	808	2-80.90	1180	· [ÉMI - TŨV]	
H-3531 Miskolc, Kiss Ernd u. 17. Phone: 36/46/401-033 Fax: 36/46/379-199 INSPECTION CERTIFICATE ACCEPTANCE ACCORDING EN 10204-05/3.1 Certificate No.: 66989/13-0 Date of issue: 2013.03.27 Hámor No.: 98-3395263 Order No.: 32259784/13/2 Customer: Contitech Rubber Industrial Kft. 6728 Szeged Budapesti út 10 Quality: AISI 4130/CONTI Spec.No.: API 6A PSL3 J15//51 × (& Dimension: MSO-100597-002/A/H mm Final dim.:MSO-100597-002/A (4 1/16") Heat-treatment:Quenched & tempered Quantity: 30 pcs Weight: 73.0 kg/pc Total weight: 2190.00 kg nomination of product: Forged,machined disc Chemical analysis % Heat No.: (034939) Steelmaker: CELSA Rutaostrowiec POLA Test Min. No. Max. 0.45 1.80 1.00 0.025 0.025 2.75 1.500 0.300 0.82 Result 0.28 0.56 0.20 0.006 0.003 0.99 0.170 0.003 0.62] Mechanical properties: Test Min. No. Max. 238 525 662 19.50 35 827 L13314 Result 235 25 662 19.50 35 827 L13314 Result 235 25 662 19.50 35 827 No. Max. 100 205 27 95 35 827 No. Max. 100 205 275 10.500 205 275 35 200 Noterial Rubber Muber Max 200 No. Max 2	FORG	ING, MA	CHININ	IG, HEAT	-TREA	ATING	420514	0284 1	IS09001	1	
INSPECTION CERTIFICATE ACCEPTANCE ACCORDING EN 10204-05/3.1 Certificate No.: (86989/13.0) Date of issue: 2013.03.27 Hámor No.: 98-39B5263 Order No.: 32259784/13/2 Customer: Contitech Rubber Industrial Kft. 6728 Szeged Budapesti út 10 Quality: AISI 4130/CONTI Spec.No.: API 6A PSL3 $15/(5) \neq 182$ Dimension: MSO-100597-002/A(4 1/16") Heat-treatment:Quenched & tempered Quantity: 30 pcs Weight: 73.0 kg/pc Total weight: 2190.00 kg nomination of product: Forged,machined disc Chemical analysis % Heat No.: (034939) Steelmaker: CELSA Rutacostrowiec POLA Value Min. No. Max. 0.45 1.80 1.00 0.025 2.75 1.500 0.300 0.82 IRESULT (0.28 0.56 0.20 0.006 0.003 0.99 0.170 0.003 0.62 Mechanical properties: Centificate Mubar No. Steelmaker: CELSA Rutacostrowiec POLA Chemical analysis % Centificat Mubar No.	H-3531	Miskol	c, Kie	s Ernô	u. 17	7. Pho	ne: 36/46	/401-033 I	ax: 36/4	6/379-199	
ACCEPTANCE ACCORDING EN 10204-05/3.1 <u>Certificate No.:</u> (86989/13-0) Date of issue: 2013.03.27 Hámor No.: 98-39B5263 Order No.: 32259784/13/2 Customer: Contitech Rubber Industrial Kft. 6728 Szeged Budapesti út 10 Quality: AISI 4130/CONTI Spec.No.: API 6A PSL3]1.5/451×182 Dimension: MSO-100597-002/A/H mm Final dim.:MSO-100597-002/A/H mm Spec. C MN SI P S CR MO V Ce Value Min. 0.45 1.80 1.00 0.025 0.025 2.75 1.500 0.300 0.82 Result 0.28 0.56 0.20 0.006 0.003 0.99 0.170 0.003 0.62 Mechanical properties:			IN	SPEC	FIO	N CE	RTIFIC	ATE			
Date of issue: 2013.03.27 Hámor No.: 98-39B5263 Order No.: 32259784/13/2 Customer: Contitech Rubber Industrial Kft. 6728 Szeged Budapesti út 10 Quality: AISI 4130/CONTI Spec.No.: API 6A PSL3 315//51×182 Dimension: MSO-100597-002/A(4 1/16") Heat-treatment:Quenched & tempered Quantity: 30 pcs Weight: 73.0 kg/pc Total weight: 2190.00 kg nomination of product: Forged,machined disc Chemical analysis % Heat No.: 034939 Steelmaker: CELSA Hutaostrowiec POLA Spec. C MN SI P S CR MO V Ce Min. 0.455 1.80 1.00 0.025 0.025 2.75 1.500 0.300 0.82 Result 0.28 0.56 0.20 0.006 0.003 0.99 0.170 0.003 0.62 Mechanical properties: Test Min. 197 517 655 18 27 L13314 Result 238 525 662 19.50 35 L13314 Result 238 525 662 19.50 35 Barbarowski Steelmaker State Sta	ACCEPTA	NCE ACC	ORDING	G EN 102	204-05	 5/3.1		Certificat	e No.: 8	6989/13-0)	
Customer: Contitech Rubber Industrial Kft. 6728 Szeged Budapesti út 10 Quality: AISI 4130/CONTI Spec.No.: API 6A PSL3 $15/451 \neq 182$ Dimension: MSO-100597-002/A/H mm Final dim.:MSO-100597-002/A(4 1/16") Heat-treatment:Quenched & tempered Quantity: 30 pcs Weight: 73.0 kg/pc Total weight: 2190.00 kg nomination of product: Forged,machined disc Chemical analysis % Heat No.: 034939 Steelmaker: CELSA Rutacstrowiec POLA $Spec. C MN SI P S CR M0 V Ce Min. 0.45 1.80 1.00 0.025 0.025 2.75 1.500 0.300 0.82 Result 0.28 0.56 0.20 0.006 0.003 0.99 0.170 0.003 0.62 Mechanical properties: \frac{Spec. Value Min. 197 517 655 18 27 Centifical Rubber Result 235 238 525 662 19.50 35 22 23 0.007 35 23 23 35 23 35 23 35 35$	Date of	issue:	2013.	03.27	Hámo	or No.:	98-39B52	63 Order N	Jo.: 3225	9784/13/2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Custome	r: Cont:	 Ltech	Rubber	Indus	strial	Kft.				
Quality: AISI 4130/CONTI Spec.No.: API 6A PSL3 $11 \frac{1}{151 \times 182}$ Dimension: MSO-100597-002/A(4 mm Final dim.:MSO-100597-002/A(4 1/16") Heat-treatment:Quenched & tempered Quantity: 30 pcs Weight: 73.0 kg/pc Total weight: 2190.00 kg Quantity: 30 pcs Weight: 73.0 kg/pc Total weight: 2190.00 kg .nomination of product: Forged,machined disc Chemical analysis % Heat No.: (034939) Steelmaker: CELSA Hutaostrowiec POLA Value Min. Max. 0.45 1.80 1.00 0.025 0.025 2.75 1.500 0.300 0.82 IRESULT 0.28 0.56 0.20 0.006 0.003 0.99 0.170 0.003 0.62 Mechanical properties: Value Min. 197 517 655 18 27 Centified Rubber Material KI. No. Mesult 235 238 525 662 19.50 35 52 82 L13314 Result 235 238 525 662 19.50 35 52 82		6728	Szege	d Budar	esti	út 10					
Dimension: MSO-100597-002/A/H mm Final dim.:MSO-100597-002/A(4 1/16") Heat-treatment:Quenched & tempered Quantity: 30 pcs Weight: 73.0 kg/pc Total weight: 2190.00 kg nomination of product: Forged,machined disc Chemical analysis % Heat No.: 034939 Steelmaker: CELSA Hutaostrowiec POLA Spec. C MN SI P S CR MO V Ce Value Min. No. Max. 0.45 1.80 1.00 0.025 0.025 2.75 1.500 0.300 0.82 Result 0.28 0.56 0.20 0.006 0.003 0.99 0.170 0.003 0.62 Mechanical properties: Spec. HB Rp0.2 Rm A5 KV-J No. Max. 238 525 662 19.50 35 L13314 Result 235 L13314 Resu	Quality	: AISI 4	130/0	ONTI	Spec.	No.: A	PI 6A PSL	3 325/1	53×182		
Quantity: 30 pcs Weight: 73.0 kg/pc Total weight: 2190.00 kg nomination of product: Forged, machined disc Heat No.: (034939) Chemical analysis % Heat No.: (034939) Steelmaker: CELSA Hutaostrowiec POLA Value Min. 0.45 1.80 1.00 0.025 0.25 2.75 1.500 0.300 0.82 Result 0.28 0.56 0.20 0.006 0.003 0.99 0.170 0.003 0.62 Machanical properties: Continech Rubber No. Max. 238 517 655 18 27 Continech Rubber Motor Max. No. Mechanical properties: Continech Rubber Mechanical 235 Steel MB Result 235 662 19.50 35 Steelmaker: Continech Rubber Li3314 Result 235 662 19.50 35 Steelmaker: Steelmaker: Steelmakeris	Dimensi Final d	on: MSO im.:MSO	-10059 -10059	7-002/A 7-002/A	./H mn .(4 1/	1 '16")	Heat-trea	atment:Quer	ched & to	 empered	
In ommination of product: Forged, machined disc In ommination of product: Forged, machined disc Chemical analysis % Heat No.: (034939) Steelmaker: CELSA Rutaostrowiec POLA Test MO V Ce Min. 0.45 1.80 1.00 0.025 0.225 2.75 1.500 0.300 0.82 Result 0.28 0.56 0.20 0.006 0.003 0.99 0.170 0.003 0.62 Mechanical properties: Continect Rubber Mechanical properties: Continect Rubber Max. 238 S25 G62 19.50 35 Li3314 Result 235 25 662 19.50 35 Li3314 Result 235 25 662 19.50 35 Li3314 Result 235 25 662 19.50 35 Li3314 Result 235	Ouantit	 y: 30) pcs	Weigh		73.0	ka/pc 7	Total weigh	nt:	2190.00 kg	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ation of		uct: Fo		machin					
Reat No.: (03133) Steelmaker: CELSA Hutaostrowiec POLA Spec. C MN SI P S CR MO V Ce Test Min. 0.45 1.80 1.00 0.025 0.025 2.75 1.500 0.300 0.82 Result 0.28 0.56 0.20 0.006 0.003 0.99 0.170 0.003 0.62 Mechanical properties: Spec. HB Rp0.2 Rm A5 KV-J Test Min. 197 517 655 18 27 Contified Rubbet Industriel Kf. CENTIFICATE ACCEFTABLE L13314 Result 235 25 662 19.50 35 52 82 82 52 662 19.50 35				ucc. Io	raca,	14001111		in the second	24929		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Cuemrca		Автв е			Steelma	ker: CELSA	Hutaostro	owiec POLA	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Spec.	C	MN S	I	P	S CR	MO V	Ce		
No. Max. 0.45 1.80 1.00 0.025 0.025 2.75 1.500 0.300 0.82 Result 0.28 0.56 0.20 0.006 0.003 0.99 0.170 0.003 0.62 Mechanical properties: Contifact Rubber No. MB Rp 0.2 Rm A5 -30°C Test Min. 197 517 655 18 Contifact Rubber No. MPa % -30°C Contifact Rubber Industrial Kff. Centifact Rubber No. MPa % -30°C Contifact Rubber Industrial Kff. Centificate No. Result 235 32 662 19.50 35 52 662 19.50 35 52 <th colspan<="" td=""><td>Toot</td><td>value Min</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Toot</td> <td>value Min</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Toot	value Min								
Result 0.28 0.56 0.20 0.006 0.003 0.99 0.170 0.003 0.62 Mechanical properties: Spec. HB Rp0.2 Rm A5 KV-J value MPa % -30°C Industrial Kr. Test Min. 197 517 655 18 27 Contilech Rubber No. Max. 238 525 662 19.50 35 52 L13314 Result 525 662 19.50 35 52 82	No.	Max.	0.45	1.80 1.	00 0.	025 0.	025 2.75 3	1.500 0.300	0.82		
Mechanical properties:Spec.HBRp0.2RmA5KV-JvalueMPaMPa $\$$ -30°CIndustrial KI.TestMin.1975176551827Contifech RubberNo.Max.2382381827Contifech RubberL13314Result23523852566219.5035L2314Result52566219.5035S2828282828282		Result	0.28	0.56 0.	20 0.	006 0.	003 0.99 0	0.170 0.003	0.62		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Mechanic	al pr	opertie	 8:						
value MPa MPa % -30°C Test Min. 197 517 655 18 27 No. Max. 238 655 18 27 L13314 Result 235 662 19.50 35 L13314 Result 525 662 19.50 35		Spec. (нв	Rp0.2	 Rm	 A5	 KVT				
Test Min. 197 517 655 18 27 Industrial AL CENTIFICATE ACCEPTABLE No. Max. 238 238 35 35 $1000000000000000000000000000000000000$		value		MPa	MPa	8	-30°C	ContiTech Rubb	81		
L13314 Result 235 Result 525 662 19.50 35 82	Test No.	Min. Max.	197 238	517	655	18	27	CERTIFICATE			
L13314 Result 525 662 19.50 35 82 82		 Regult	235	:: !			 	Dird	<u>.</u>		
L13314 Result 525 662 19.50 35 52 82			238					DATE: 11.01.2	9		
82	L13314	Result		525	662	19.50	35 52				
]	82				
	Test ba Dimens:	ar from ional an	produ d vis	ct. ual con	trol:	passed	1				
Test bar from product. Dimensional and visual control: passed	Ultras	onic tes	t acc	. to SE	P 192	1-84 sp	ec. is sa	tisfactory	C/c		
Test bar from product. Dimensional and visual control: passed Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory C/c	NACE 1	naking (MR 0175/	melti ISO 1	ng) pro 5156+AP	cess: I 17K	UHP-AS + API	SEA vacuum 6A PSL3.	n-treated.			
Test bar from product. Dimensional and visual control: passed Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory C/c Steel making (melting) process: UHP-ASEA vacuum-treated. NACE MR 0175/ISO 15156+API 17K + API 6A PSL3.	HB-E10	, Mechani	ka:AS	IM A370	acc.						
Test bar from product. Dimensional and visual control: passed Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory C/c Steel making (melting) process: UHP-ASEA vacuum-treated. NACE MR 0175/ISO 15156+API 17K + API 6A PSL3. HB-E10, Mechanika: ASTM A370 acc.	Grade (Ji iorgi	ng: 9	.81			30	pc/series.			
Test bar from product. Dimensional and visual control: passed Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory C/c Steel making (melting) process: UHP-ASEA vacuum-treated. NACE MR 0175/ISO 15156+API 17K + API 6A PSL3. HB-E10,Mechanika:ASTM A370 acc. Grade Of forging: 9.81 30 pc/series.	<	\bigcirc	<u> </u>					Jan .	2-2-2-2-2-2-	-1	
Test bar from product. Dimensional and visual control: passed Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory C/c Steel making (melting) process: UHP-ASEA vacuum-treated. NACE MR 0175/ISO 15156+API 17K + API 6A PSL3. HB-E10,Mechanika:ASTM A370 acc. Grade Of forging: 9.81 30 pc/series.		E	xecut	ive n	 ám		_	······	Expèrt	• • • • •	
Test bar from product. Dimensional and visual control: passed Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory C/c Steel making (melting) process: UHP-ASEA vacuum-treated. NACE MR 0175/ISO 15156+API 17K + API 6A PSL3. HB-E10,Mechanika:ASTM A370 acc. Grade Of forging: 9.81 30 pc/series. Executive Dame Executive Dame Expert				`línő	ség ell	ZKL					
Test bar from product. Dimensional and visual control: passed Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory C/c Steel making (melting) process: UHP-ASEA vacuum-treated. NACE MR 0175/ISO 15156+API 17K + API 6A PSL3. HB-E10,Mechanika:ASTM A370 acc. Grade Of forging: 9.81 30 pc/series. Executive hamor 2hi. Executive hamor 2hi. Expert			:		Osztál	-1101Zé, V		MÜ	-4-10/1/0	o ·	
Test bar from product. Dimensional and visual control: passed Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory C/c Steel making (melting) process: UHP-ASEA vacuum-treated. NACE MR 0175/ISO 15156+API 17K + API 6A PSL3. HB-E10,Mechanika:ASTM A370 acc. Grade Of forging: 9.81 30 pc/series. Executive namor zhi. Osztály MU-4-10/1/km								— (MOR ZRA) .	
Test bar from product. Dimensional and visual control: passed Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory C/c Steel making (melting) process: UHP-ASEA vacuum-treated. NACE MR 0175/ISO 15156+API 17K + API 6A PSL3. HB-E10, Mechanika:ASTM A370 acc. Grade Of forging: 9.81 30 pc/series. Executive Namor zhi. Oształy MU-4-10/1/86 HÁMOR zRt								FIAL	CA FEDE C	•	
Test bar from product. Dimensional and visual control: passed Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory C/c Steel making (melting) process: UHP-ASEA vacuum-treated. NACE MR 0175/ISO 15156+API 17K + API 6A PSL3. HB-E10, Mechanika: ASTM A370 acc. Grade Of forging: 9.81 30 pc/series. Executive Mamor Zhi. Osztály MU-4-10/1/96 HÁM@R zRt. F/ALKA FFOR 2											
Test bar from product. Dimensional and visual control: passed Ultrasonic test acc. to SEP 1921-84 spec. is satisfactory C/c Steel making (melting) process: UHP-ASEA vacuum-treated. NACE MR 0175/ISO 15156+API 17K + API 6A PSL3. HB-E10, Mechanika: ASTM A370 acc. Grade Of forging: 9.81 30 pc/series. Executive Namor Zhi. NOSE ellenőrzé. MU-4-10/1/b6 HÁMOR ZRI. F/ALKA Fror 2											

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industriai Kft.	Page:	13 / 44

	PROTO	COL NUMMER: 98-39E						
HEAT-TREAT	MENT PROTOC	OL						
BUYER: CONTITECH RUBBER INDUSTRIAL Kft. Szeged	Order No. of Buyer: 32259784/13/2							
Budapesii ut 10. sz.	Work No. of Buyer:							
PRODUCT:	QUANTITY: PIECE	No. of drawing:						
forged	30	MSO-100597-002/A/I						
MATERIAL QUALITY: AISI 4130 CONTI API 6A PSL3	Charge No.: 34939	Test No.:						

Miskolc, Hámor ZRt. 2013-03-26.

Kando

head of heat-treatment

flámor zRt. ^{vlinoség ellenőrzés} **Osztály**

winword/doc/HOKEZ-K\CONTITEC/4130-620

5

Elle Adaptic Gast Liden a Such

		Industrial	KUBBER Kft.	Page:	14/44
Felado :	61344	gama controll	kft	19/18/13	12:54 Lap: 2
	EAMMA-LONTINGLE Provide prime control to a provide the prime control to a prime provide the prime control to a prime but may - on control to prime	HARDNE	SS TEST ORT	Report N	lo: 561/13.
	CLIENT: TEST EQUIPMENT: PROCEDURE:	JE-20 KFT. S TH 160-D Har QCP-45-R1	ZEGED, KULT dness tester	ERULET, 014	108/22.
	DESCRIPTION OF COUPI DRAWING NUMBER: SERIAL NUMBER:	LING: coupling(s) NT-3121-300 8083; 8084; 8	after PWHT 0 085; 8086		
	BRINELL HARDNESS REQUIREMENT	SERIAL NO OF COUPLING	PART OF	f the Ing	ACTUAL HARDNESS RESULT (HB)
• •					
•	Min HB 197 Max HB 238	√ 8083	bod weid flang connectio	y d je in face	224 222 236 238
		√ 8084	bod weld flang connectio	y t je je face	213 208 220 238
		/ 8085	body wek flang	y j	214 214 219
		/ 8086	body welc flang	y j e	232 232 237 238
			connectio	n face	197
	The coupling(s) conform t	o API Spec 6A requ	irements.	l	
	DATE: 2013. október 30.	PREPARED:		APPROX 6750 Algyo, Ados	ECONTROLL KFT. Kalternie 0188474. brsz drit Tuosas 4-2-6 contra-control ba
	QCP-03 HB/11	Ménesi I	stván		

	1	CONTITECH F	UBBER	No:QC-D	B- 651 /2013		
		Industrial	Kft.	Page:	15 / 44		
felado :	61344	ganna controll k	ft	19/10/13	12:54 Lap: 3		
	GAMMA-CONTRUCT	HARDNES	SS TEST	Report N	o: 562/13.		
	CTAD AUGO, LINANCIA PULLANIA, IVEL TRAFFIC, 400 CESTI-COL / DIDAS	18 70 KET 6	PCPD VDV	FEDIU FT ALA	hens		
	TEST EQUIPMENT: PROCEDURE: DESCRIPTION OF COUPL	TH 160-D Hard QCP-45-R1 JNG: coupling(8) a	iness tester after PWHT	ERULEI, UN			
	DRAWING NUMBER:	MT-3121-3000					
:	BRINELL HARDNESS REQUIREMENT	SERIAL NO OF COUPLING	PART C COUP	IF THE LING	ACTUAL HARDNESS RESULT (HB)		
	Min HB 197 May HB 238	√ 8087	bo we flan connecti	dy id ge on face	213 216 220 225		
		√ 8068 -	body weld flange		229 212 223		
		·	connecti	on face	213		
		√ 8089	body weld flange connection face		219 229 231 238		
		× 8090	body weld flange		207 210 226 234		
			oon in con				
	The coupling(s) conform	to API Spec 6A requ	irements.		<u></u>		
	DATE:	PREPARED:		APPROM	EDCONTROLL KFT.		
	2013. október 30.	160	e-	6750 Alayo, Külmetise OHESH/14, hrsz. Adoszanin 1100-001+0-06			

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	16 / 44

GAMMA-CONTROLL

 $(1,1,2,1) \in \Omega \to (1,1,2,1)$

www.genurse-controll.hu 6750 Algyd, külterület 01684/14. kmsz. Tai /Faz.: +38 62/517-400 / 81344 A KUR álza HXX-1-1140/2018 száman utóradási utorgálákoz

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

ULTRASONIC EXAMINATION REPORT

513/13

Vizsgálati szárn: Report No.:

Vizsgálat tárgya / Object of test				(Coupling (Body))			
Gyártó Manufacturer		· · · · · · · · · · · · · · · · · · ·	Megrendelő JE-ZO Kft. Szeged				
Gyáriszám Serial-No.			Rendelési : Order-No.	Rendelési szám Order-No.			
Azonositó jel Identification	8083-8088		Követelmér Requireme	ny nt	ASTM A388		
Geometriai kialakítás / i Geometric configuration MT-3121-3000	Rajzszám 1 / Drawing-No.	ø200xø70x491	Vizsgálati h Test heat t	nőkezelés reatment	előtt prior		
Anyagminőség Material	nyagminőség AISI 41 laterial AISI 41		Letapogatá Direction of	si irányok fscanning	axiális és radiális		
Adagszám Heat-No.		24613 🖌					
Vizsgálati felület állapot Surface condition	Izsgálati felülat állapota forgácso urface condition machine		Vizsgálati tr Exted of Te	erjedelem ast	100%		
Vizsgált darabszám 6 db Testing pieces		6 db					
	Vizs	gálati adatok /	Examina	tion data			
Készülék típusa Type of US-equipment USM2		USM25	Készülék g Serial-No. (Készülék gyári száma 7875f Serial-No. Of US-equipment			
Vizsgálófej(ek) Searc unit(s)	SEB-2, SEB4H	Frekvencia Frequency((k) īes)	2 MHz 4 MHz MHz MHz			
Kalibraciós blokk Calibration standard Identification		ET1,ET2	Erősítés(ek Gain) axlálisan	18 dB dB dB 6 dB		
Csatoló közeg claj		claj oli	Hanggyeng Attenuation	Hanggyengülés Attenuation			
Értékelés / észle	lt kijelzések	/ Evaluation / reco	rdable indi	lcations			
Ertékelés Evaluation	X	megfelelő satisfactory		nem megfelele	o / not acceptable		
Megjegyzés(ek) Remark(s)							
Hely / kelt Piace / date Gamma Algyő,	Vizsgå	Vizsgálatot végezte Tested by		GAMMA CONTROLL KT. 6750 Algya Water (1994) hrsz. Adószam 1094614-2-06 www.gamgas.controll.hu Tel.: 06.30-218-2640 Approved by			
Ez a jonyzákányy rászlatalhan n			UT2010309030	7 Benkő	Péter - Felelős vezetőh.		

3.változat 2013.07.16

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	17 / 44		

GAMMA-CONTROLL

21 (46)(136) (J. 63) (C. 65) (C. 65) (C. 67)

www.geomea-controllin 6750 Algyd, ktitertiet 01694/14. krsz. Tel/Fex: +38 62/517-400 / 81344 Not étal NAT-1160/2010 szánon etimetálá vizgetőlék

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

ULTRASONIC EXAMINATION REPORT

514/13

Vizsgálati szám: Report No.:

Vizsgálat tár	gya / Obje	ct of te	:st			oupling (Ba	ody)	
Gyártó Manufacturer				Megrendelő JE-ZO Kft. Szeged			d	
Gváriszám				Rendelési	szám	·····		
Serial-No.				Order-No.		—		
Azonosító jel				Követelmér	nv			
Identification	8089-8090			Requireme	nt	ASTM	A388	
Geometrial kialakítás /	Rajzszám			Vizsgálati h	lőkezelés		előtt	
Geometric configuratio	n / Drawing-No.	•		Test heat tr	reatment		prior	
MT-3121-3000		Ø	200xø70x491		· · · · · · · · · · · · · · · · · · ·			
Anyagminőség	agminőség		130 /	Letapogatá	Letapogatási irányok		aviálie és radiálie	
Material				Direction of	scanning	ng axialis de la		
Adagszám		22474	1					
Heat-No.		20111						
Vizsgálati felület állapo	ta	forgáceo	at in the second s	Vizsgálati ti	Vizsgálati terjedelem 1009/			
Surface condition		machine	d Exted of		st	100 /0		
Vizsgált darabszám		2 db						
Testing pieces		Z UD						
	Vi	zsgálati	adatok / I	Examina	tion data	•		
Készülék típusa				Készülék g	yári száma			
Type of US-equipment		USM2	5.	Serial-No. C	Of US-equipmer	nt 7875f		
Vizsgálófel(ek) SEB-2.				Frekvencla(k)			2 MHz	
Searc unit(s)		SEB4H	Frequency(ies)			4 MHz		
							MHz	
							MHz	
Kalibrációs blokk				Erősítés(ek) axiáli	82N	18 dB	
Calibration standard id	entfication		ET1,ET2	Gain			dB	
							dB	
					radiái	lisan	6 dB	
Csatoló közeg		olai		Hanogyeng	ülés			
Couplant oil				Attenuation			dB/m	
Értékelés / észl	elt kijelzése	k / Evan	nation / recon	rdable indi	lcations			
Ertékelés Evaluation	X	megfel	megfelelő		nem megf	nem megfelelő / not acceptable		
Lyaionyzés (ok)		194 (1914			1			
Romark/s)								
r tomantoj								
Helv / kelt			~~~~		o	AMMA - CONT	ROLL KFT.	
Place / date					57	5750 Alsvo Halterute (7138/14. hrsz. Allos Art 2004 14. 2-06		
Gamma-Controll Kft			1 hole [['					
			VizsoAlatot vécezte		··· '	WWW.gamma-connutrinu		
Algyo, 2013.10.17			Toétad hy			Tel: 000 300 2040		
			Táth Ákos UT2010300307		7	Banká Dátar - Eoloiño vozeták		
	Enalise	lithmax aland		hatal / Com/	u delaile la eschi	jaiku retel - relek ibitadi	S TOLELUII.	
	EZ A Jegyzi	akonyv reszli	susiden nem masol	nator / Copying	a decada is pron	ILINGED!		

		CONTI		No:QC-	DB- 651 /2013
		Inc	lustrial Kft.	Page:	18/44
		·	<u></u>		
GAMMA-CON	TROLL	ULTRAHA	ANG VIZSGÁ VZŐKÖNYV	LATI	Vizsgálati szárn: Report No.:
		ULTRASON	NIC EXAMINA	TION	516/13
6750 Algob Millerotel (1786 186/Rez 38 62517400 ANAT Gan 643-1-156269 calmen alfred	1/14 1992 1/8 1994 181 62:5800000000		REPORT		a analysis and a set of a set
Vizsgálat tárgys	ı / Obje	ct of test	(Flange	
Gyano Manufacturar			Megrendelo JE	ZO Kft. Sze	ged
Gyáriszán Sanal No		· · · · · · · · · · · · · · · · · · ·	Rendsiesi szám		
Azonositó jet 80	83-8090		Kävateimäny	AST	M A388
Geometriai kialakitos / Rajz	62Åm	• •	Vizsgálati hőkezelés		eiőtt
Geometric configuration / D MT-3121-3000	rawing-No.	#315x85x#190x94x#7	Test heat treatment		prior
Anyagminöség Material		AISI 4130 /	Letepogetasi Iranyok Direction of scanning	axiál	is és radiális
Adegszári Heet-No.		034939 /	1		
Vizsgélati felület Allapota Sudace condition		forgicsolt	Vzzegálati terjedelem Evted of Test	100%	6
Vizsgát darabszám Testing nisces		db 8			········
	Vi	zagálati adatok / I	Examination dat	a.	
Készülék típusa		USM25	Készülék gyári száma	7875	f
Vizsgálófej(ek)		SEB-2,	Frekvencia(k)		2 MHz
Searc und(s)		SEB4H	Frequency(les)		4 MHz MHz
Kalibrációs blokk Calibration standard identific	ation	ET1,ET2	Erösités(ek) axi Gein	lisan	6 dB 68
			rad	alisan	ê dB
Controlo közeg Couplant		olaj oli	Hanggyongülés Attenuation		dB/m
Ertékelés / ésslelt	kijelsése	k / Evaluation / reco	rdable indications	······	
Evaluation	<u> </u>	satisfactory	nem me	gfelelő / not	acceptable
Megjegyzés(ek) Remark(e)					
Hely / ket		6	of	17	0.9
Piace / date Gamma-Co	ontroll Kft.	Itx	hl	GANINIATA	BETHERLE NEL
Algyő, 20	13.10.17	Vizegå	latot végezte	www.gam	and the second her
		I 70	a fant hu		and the second se

3.változat 2013.07.16

				20/44
			Page:	20 / 44
				·
<u> </u>				UT201030903
	HUNGARIAN ASSOC	I ESTECHNIKALES ANYAG IATION OF WELDING TECHNOLO	GY AND MATER	EGYESULES IAL TESTING)
		(Certification Body)		
Meghatalmazzu (MSZ EN 473 3.	k a tanúsítvány tulajdon 21)	osát, hogy vizsgálatokat végezzen és az	ok eredményéért f	etelősséget vállaljon.
(The holder of this c	GAMMA - CONTR	perform tests and take responsibility for the test	results. (MSZ EN 473	3.21)
Munkáltató aláírás	5722 Szeged, Gyertyamos		Dátum:000	.12.07.
(Signature of the employed	Tel: 06 30 314	20406154 All hu	(Date.)	
	Enterna	tas minkovársá lászalása (1167 UN	472 0	
	r oryanna) (Evid	lence of continued work activity (MSZ EN 473 S))) 	
Sorsz.:	Munkál (Signature	of the employer)		LJAUIII (Date)
1.	P T	Minister Hendrich	BLL OU	1. 01.04.
3,				12.01.09.
Å		SAL GANMATON	12	3.01.09
5.		Anyour Hendr	5 K /1	and the second se
o. 7.				
8.				
9,				
<u>I. 10.</u>				n an
Kiegészítések				
(Audultonai jemans)				
				•
· •	1999 - A.			
			; ·	
* .		· · ·		•
:				
	1 1 7 5			
	e Line te provincia de la composición de	NATTAN TIN		

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	21 / 44		

•								
	- PHOENIX		TECHNIC	CAL D		TDS	Page	
	Phoenix Rubber Industrial LTD.	WEL	DING PRO	CEDUR	E SPECIFICA	TION	WPS	Nº 1 of 2
	CLIENT THIS SPECIFICATI				ION IS BASED WPS Nº 140-71 REV			REV 4
:	IDENTITY CODE ON ASME COI			E CODE	SECTION IX SUPPORTING PQR 1			R N°
	ļ			BL	JD 0700002/1			
	ITEM	Qty	WELDING PR	OCESS: G	TAW-SMAW	PERFORME	DBY:	
	LODITE (OW 402)	ANCE	TYPES: MAN		I	WELDER'S	STAMP	
		75 r. 1.5	- B 		Sequences	of weld see	on addet	ndum
Sugar to day and	JOINT DESIGN	B	ACKING: YE	<u>\$</u> /NO	WELD SEQUEN	ICE		
	BASE METALS (QW-403)			PART "A	'n	PAR	Т "В"
	DRW Nº							
	GRADE:	_	WNo.:	:1.7220	ASTM A 322-9	I: AISI 413 EN 10083-1	0/34C rl)*	Mo4 (MSZ
	CARBON EQUIVAL	max.C _e =		0.82		0.82		
	MECHANICAL PRO	PERTIES:					_	
	TENSI	LE STRENGTH	N/mm*	min.	655		6	55
	DUCT			min.	18			8
	HARD	Tror 209		max.	238			38
ļ Č	THICKNESS	t= 5	<u> </u>	verage			D = 60.2	280 mm
	FILLER METALS (O	₩_404)			COTADE DIANEI			
1	WELD MATERIAL	DIAMETER	Bran	D	STAI	DARD		SUPPLIER
	Rod	2.4 mm	EML	5	AWS A5.18	-01: ER705	5-3	Böhler
	Electrode	3.2; 4.0	T-PUT NiM	o 100**	AWS A 5.5-96: I	E 10018-D2	(mod.)	Böhler
	LAPSE BETWEEN OF	PASSES	MIN./mir) 				
	POSITIONS (QW-4	05)			PREHEAT (QW-406)			
:	POSITIONS: IG R	lotated (horiz	contal)		PREHEAT TEMP.: 300-330 °C			
	WELDING PROGRE	ession: Weld	d flat at or		INTERPASS TEM	P.: max. 35	0°C	
	1	near	to the top		PREHEAT MAIN	TENANCE: T	ill the be	gining of
	POSITION OF FILLI	ET			postweld he	at threating		
1	OTHER			_	METHOD OF PRE	EHEATING: F	rumace	

,

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	22 / 44

		CONTINUATION OF WPS Nº 140-71 Rev.4							Pa	ige N° 2 of 2	
		Postwe	ELD HE/	T TREAT	IMENT (QW-407))	GAS (QW	-408)			
		Hold	ING TEN	AP. RAN	G 620 +20 / -	0 C°	SHIELDI	NG GAS A	rgon for root		
		Hold	ING TEN	MP. TIME	4 HR						
		HEATING RATE MAX.:				PERCEN	TAGE COMPOS	ION (MIXTUR	E)		
		COOLING RATE MAX.: 80 °C/HR					99	9.995 %			
		LOCATION OF THERMOCOUPLE				FLOW R	ate 10)-12 LITRES	/min.		
					<u>.</u>		GASBA	CKING: Argor	n (for 1st and	2nd passes)	
		FURN	ACE AT	Mosphei	RE Air		FLOW R.	ate 7-	9 Litres/min		
		TYPE:					TRAILIN	G SHIELDING (JAS COMP.		
		ELECTR CURREN	ICAL CI	iaracti DC	eristics (QW-40	9)	ELECTRO	DE POLARITY	lst : 2nd-28th	pass: - passes: +	
		TUNGST	TEN ELE	KTRODE	SIZE/TYPE: Ø3.2	mm thoriated	d tungsten				
		MODE C	F TRAN	ISFER FO	RGMAW						
1	9. da .	ELECTR	ODE / V	VIRE FEE	D SPEED RANGE						
		Well		ROCESS	FILLER	METAL	Cu	CURRENT		HEAT	
		LAYER	IS		CLASS	DIAMETER		AMP.	RANGE	INPUT	
			-	GTAW	EMIL 5	2.4 mm		110-130	11-12	5-84	
	· · ·	2-3		SMAW	T-PUT NiMo 100	3.2 mm	+	120-140	24-26	12-19.6	
		4-28		SMAW	T-PUT NiMo 100	4.0 mm	+	150-170	26-30	16.2-27.5	
		TRAVEL SPEED RANGE 100-130 mm/min									
		TECHNIQUE (QW-410)									
		STRING	OR WEA	VE BEA	D		ORIFACE	ORIFACE OR GAS CUP SIZE Ø9mm			
		INITAL/INTERPASS CLEANING: Brushing, Grinding									
		Equipments for welding:									
ł		OTHER:									
		EXAMI	NATIO	DN -			REMARKS	REMARKS			
			Acc.	to the ac	ceptance instruct	ion	- * Former	ly CMo3 (MS	Z 61)		
			Nº M	10-FB 2	itent less than	1%	2 hours at				
			, <u> </u>			- Before w 350 ℃	- Before welding bake electrodes for 2 hours at 350 °C				
			BY	DATE	TECH	NICAL I	DATA SHI	EET			
		Desig.	Bozle	14.06.	WELDING P	ROCEDU	RE SPECIF	ICATION	HOSETE	CHNICAL	
		Appr. C	fater	2007	SUBJECT: Butt	weld of hose	e coupling for	H2S service;	DEPAR	TMENT	
		Chek'd				Strengh	t 75K	75K WPS Nº 140-71 Rev.4			

			CONTITECH RUBE Industrial Kft.	BER	No:C Page	QC-DB- 65 e:	51 /2013 23 / 44
	P	HOENIX RU Ho	BBER Industrial Ltd. e Division	N°: Revis Page	ion: Nº:	WPS 140-71	Addendum
		ADDENDUM				2007-06-12 Bai	let
E	for the ap lased on WPS	proved wal 5 140-71 Re	thickness range 5-38 mm v.4, PQR No.: BUD 0700002/1	Check	Checked: Approval: C. Sedemi		_f
	No.	Wall thickn c ss [mm]	Weld layers			Electrode Ø [mm]	
	1.	5-7	<u>`</u>		1 2	3,2 3,2	
	2.	7-9			i 2-3	3,2 3,2	
	3.	9-11			1 2-3 4-5	3,2 3,2 4,0	
	4	11-13		, · · ·	1 2-3 4-6	3,2 3,2 4,0	
	5.	13-15			1 2-3 4-8	3,2 3,2 4,0	
- - -	6.	15-18		,	l 2-3 4-10	3,2 3,2 4,0	
	7.	18-20			1 2-3 4-11	3,2 3,2 4,0	
	8.	20-22,22			1 2-3 4-15	3,2 3,2 4,0	
	9.	22,2-26			l 2-3 4-19	3,2 3,2 4,0	

Remarks: - Process for layer No1 GTAW with Ø3,2 mm thoriated tangsten electrode and Ø2,4 mm Rod EML 5; for the others: SMAW with electrode T-PUT NiMo 100

CONTITECH RUBBER	No:QC-DI	3- 651 /2013
Industrial Kft.	Page:	24 / 44

PHOENIX RUBBER Industrial Ltd.	N°:	WPS 140-71 Addendum
ADDENDUM	Revision:	4
for the approved wall thickness range 5-38 mm Based on WPS 140-71Rev.4, PQR No.: BUD 0700002/1	Page N°:	2/2

No.	Wall thickness [mm]	Weld layers		Electrode Ø [mm]
10.	26-29		1 2-3 4-19	3,2 3,2 4,0
11.	29-32		i 2-3 4-23	3,2 3,2 4,0
~ 学校 (1998年1971年1971年1971年1971年1971年1971年1971年	32-35		l 2-3 4-24	3,2 3,2 4,0
13.	35-38		i 2-3 4-28	3,2 3,2 4,0

.

			Industri	al Kft.	Page:	26/44
:			L	<u> </u>	L	
				c	• ertificate no: 81	ID 0700002/1
				Pi	age 2 of 2	
	W	th Thickness	,Tenfile Test (Q	Utimate Unit	R	R ND. BUD 0700002/1
	39/1:00 20. 20 18.	• mm *** 95.35 1 5.8 53,555€5	earnum Load Ion 9	Stress MPa	ase material	
	39/2 18.	9 15.7	1997) - 1997 - 1997 1997) - 1997 - 1997	564 Ba	ase material	
	1000 - 1000					
	Gildes Bend Jos	BIOW 160				
	180° Berici rollet d	ila. 36 mm 2+2 pcs.	Sat	lsfactory		
					dest fan se	
	National discontinuous data in		i i i	1919-1911 - Chan Strain - Strain - Walt of Hu	-	MARKA MAN ALA ANA ANA ANA ANA ANA ANA ANA ANA A
	Specimen No.	Note: Location	Specimen Size Test Term	p. Impact Valu		Drop Weight Break
			mm "C 10x10x55 -30		% Shear	
	39 39	s A Soliday and Andrea	10x10x55 -30 10x10x55 -30	49 (1) (4)		會會制度在於今日期目
	39 - 19	HAZ	10x10x55 -30	38 38		ANTER ANTER ANTER ANTER ANTER ANTER ANTER
	39 	HAZ MAZ AN Římské stantova stantova	10x10x55 -30	62 - 122 - 143 1489 - 1489 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 1489 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1 1489 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 - 1499 -	erek elektropika I	ana na anti-ana ana ana ana ana ana ana ana ana ana
	。1941年1月17日年代各省		eres all de calego de Mar	ayaran kasaran s		
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
				West Restleter	d des Albada	
	Constructs				et et sold Market Marine Marketson	andra an
	Connents		n (1997) (1997) George Charles (1998) George Charles (1998)	na se anganan Na seria na seri Na seria na s	(* 143) - 1784 († 1949 - 1949 († 1940) 1949 - 1949 († 1940)	anna an
	Considents: Considents: Result-Satisfactory: Macro - Results	1945 EDD - 1945	Penetostion i	into Parent Metal:	Yes 🖸	No []
	Comments: Comments: Result-Satisfactory: Macro - Results Control - Results Type of Test	Yes No Hardness test	Penetration (into Parent Metal:	(* ***********************************	No 🗌
	Comments: FEIRE Watel Result- Satsfactory: Maco - Results Other Test Deposit Analysis Other	Vis No Vis No Hardness test Macro - Satisfactory	C Penetostion i	Into Parent Metal:	(* * * * * * * * * * * * * * * * * * *	Mo 📄
	Comments: Elline Wate Transit Result - Satisfactory: Macro - Results On Macro - Results On Macro - Results Other Type of Test Deposit Analysis Other Webder's Name	Vis No Vis No Hardness test Macro - Satisfactory X-ray - Satisfactory Tivadar Szabo DC-II. 378	Penetration i	(BC 15)	Yes []	No ()
	Comments: Comments: Filler Watelfractory: Macro - Results Control	Vis No Hardness test Macro - Satisfactory X-ray - Satisfactory Tivadar Szabo DC-II. 376 DKG EAST Anyagvizsgai	Penetration i Penetration i 2258 Clock No. Laboratory	(BC 15) Test Ho: TTMQ	Yes [] Stamp Na. 9 007-7/07 V.K 1207	No ()
	Comments: Result-Satisfactory: Macro - Results Children Value Type of Test Deposit Analysis Other Welder's Name Test Conducted By: We certify that the s	Vis No Vis No Hardness test Macro - Satisfactory X-ray - Satisfactory Tivadar Szabo DC-II. 378 DKG EAST Anyagvizsgai	Penetration i Penetration i S258 Clock No. Lati Labor. Laboratory mrect and that the test welds	(BC 15) Test No: TMC	Yes Stamp Na. 9 007-7/07 VJK 1207 ded, and tested in ac	No () 72007
	Comments: Result-Satisfactory: Maco - Results Children Jose Type of Test Deposit Analysis Other Welder's Name Test Conducted By: We certify that the s requirements of Sec Date Issued:	Vis [] No Vis [] No Hardness test Macro - Satisfactory X-ray - Satisfactory Tivadar Szabo DC-II. 376 DKG EAST Anyagvizsgai statements in this record are co tion IX of the ASME Code. 28 February 2007	Penetration i Penetration i 2258 Clock No. lati Labor. Laboratory mrect and that the test welds	(BC 15) Test No: TMC were prepared, weld	Ves Stamp No. 9 007-7/07 VJK 1207 dect, and tested in aco	Mo D
	Comments: Filing Availability Result - Satisfactory: Macro - Results Constantiation Type of Test Deposit Analysis Other Welder's Name Test Conducted By: We certify that the s requirements of Sec Data Issued:	Vis No Vis No Hardness test Macro - Satisfactory X-ray - Satisfactory Tivadar Szabo DC-II. 378 DKG EAST Anyagvizsgai Statements in this record are co tion IX of the ASME Code. 28 February 2007 Rocza A.J.	Penetration i Penetration i 2258 Clock No. lati Labor. Laboratory mrect and that the test welds	(BC 15) Test Ho: TMC were prepared, well ord's Hogisto	Yes Stamp No. 0 007-7/07 VSK 1207 ded, and tested in aco	No Yz007 ardance with the
	Comments: Ellie Availents: Ressit - Satisfactory: Macro - Results Content of Test Deposit Analysis Other Welder's Name Test Conducted By: We certify that the s requirements of Sec Date Issued: Manufacturer's Represent	Vis No Vis No Hardness test Macro - Satisfactory X-ray - Satisfactory Tivadar Szabo DC-II. 378 DKG EAST Anyagvizsgal statements in this record are co tion IX of the ASME Code. 28 February 2007 <u>Bace Con</u> entative Lasto Batus	Penetration Penetration S258 Clark No. Lati Labor. Laboratory mrect and that the test welds	(BC 15) Test No: TMC were prepared, well oynt's Hogisty Lange utage Control of the Laszlo Pennes	Yes Stamp No. 0 007-7/07 VJK 1207 ded, and tested in ac Reposit	No
	Comments: Comments: Result-Satisfactory: Macro - Results Children Lease Type of Test Deposit Analysis Other Welder's Name Test Conducted By: We certify that the s requirements of Sec Date Issued: Manufacturer's Represe Manufacturer Pro-	Yes No Hardiness test Macro - Satisfactory Kearo - Satisfactory Xearo - Satisfactory Xearo - Satisfactory Tivadar Szabo DC-II. 378 DKG EAST Anyagvizsgat Satements in this record are contion IX of the ASME Code. 28 February 2007 Bace Content of the ASME Code. 28 February 2007 Bace Content of the ASME Code. Bace Content of the ASME Code. Satements Batter of the ASME Code. Bace Content of the ASME Code. Satements Batter of the ASME Code. Bace Content of the ASME Code. Satements Batter of the ASME Code. Bace Content of the ASME Code. Satements Batter of the ASME Code. Bace Content of the ASME Code. Satements Batter of the ASME Code. Bace Content of the ASME Code. Satements Batter of the ASME Code. Bace Content of the ASME Code. Satements Batter of the ASME Code. Bace Content of the ASME Code. Satements Batter of the ASME Code. Bace Content of the ASME Code. Satements Batter of the ASME Code. Bace Content of the ASME Code. Satements Batter of the ASME Code. Bace Content of the ASME Code. Satements Batter of the ASME Code. Bace Content of the ASME Code. Satements Batter of the ASME Code.	Penetration Penetration 2258 Clock No. Lati Labor. Laboratory mrect and that the test welds	(BC 15) Test No: TMC were prepared, well copyrt's Hogisty Laczlo Pences Surveyor to Lloyd	Yes Ves Stamp No. O 007-7/07 VJK 1207 ded, and tested in act Kepticife F Register EMEA	No
	Comments Result-Satisfactory: Macro - Results Other Type of Test Deposit Analysis Other Welder's Name Test Conducted By: We certify that the s requirements of Sec Date Issued: Manufacturer's Repress Manufacturer Pho	Yes No Hardiness test Macro - Satisfactory Kray - Satisfactory Tivadar Stabo DC-IL 376 DKG EAST Anyagvizsgal Statements in this record are contion IX of the ASME Code. 28 February 2007 Bace Code. 28 February 2007 Bace Code. Bace Code. Code Code. Statements in this record are contion IX of the ASME Code. Code. 28 February 2007 Bace Code. Bace Code. Code Code. Statements Rubber Gumilparit Kth, SZEGED Code.	Penetration i Penetration i 2258 Clock No. Lati Labor. Laboratory prect and that the test welds	(BC 15) (BC 15) Test Mo: TMC were prepared, well over a frequency of the Leszlo Penzes Surveyor to Lloyd A member of the	Ves Stamp Ne. Stamp Ne. OO7-7/07 VJK 1207 ded, and tested in ac	No 72007 rardance with the
	Comments: Result Satisfactory: Macro - Results Type of Test Deposit Analysis Other Welder's Name Test Conducted By: We certify that the s requirements of Sec Date Issued: Manufacturer's Repress Manufacturer Pro	Vis No Hardness test Macro - Satisfactory X-ray - Satisfactory Tivadar Szabo DC-II. 376 DKG EAST Anyagvizsgai statements in this record are co tion IX of the ASME Code. 28 February 2007 <u>Back Col</u> entative Lassio Bajust pente Rubber Gumipari Kft, SZEGED	Penetration i Penetration i 2558 Clock No. lati Labor. Laboratory meet and that the test welds	(BC 15) Test No: TMC Were prepared, weld over a prepared, weld ove	Yes Stamp No. Stamp No. D 007-7/07 V/K 1207 dect, and tested in acc Lioy de Register EMEA Lloyd's Register Group	No

.

. . .

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	27 / 44		

Acceleration CONTIFECES

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Designation ASME IX: GTAW / SMAW Pipe BW s19 1G

Welder's name: Tivadar Szabó (BC15)

Identification card No: 517278EA

Date and place of birth: 19. August 1949; SZEGED

Welding process		Weld test deta	Weld test details		pprovai	Photo (if required)	
		GTAW/SMAV	N				
	Туре	Rod / Electrode					
Filler metal	Designation	AWS 5.18; ER70 AWS 5.5; E90	0S-3 18				
Parent metal group(s)		ASTM A 322-91; AIS 4130		ASTM A 322 4130	-91; AISI		
Plate or pipe		Pipe		Pipe/Pl	ate		
Welding position	n	1G		1G/Fla	at		
Outside diameter	er (mm)	72 mm		> 25 m	ກ	Identification of test	
Test piece thick	ness (mm)	19		Max to be v	velded	pieces.	
Single/ both side	e welding	Single				WPS No.:	
Gouging/ backir	ng					140-60 Rev.4	
Joint type		Groove		Groove /	Fillet	Testing standard:	
Shielding/ backi	ing gas(ses)	Argon (99,95%)				ASME IX	
Welding carried	out, place: Sze	:ged	Dat	e: dina Engineer:	29 April 20 László Bai	10 USZ Berry	
Type of test	Pe	rformed and		Not required		e and date:	
Visual	Accer	oted (Vjk-1738/10)				Stored 18 Jun 2010	
Radiography	Accer	oted (Vjk-1739/10)			°	szegeu, 10-5un-2010	
Ultrasonic				+	Sun	/eyor:	
Magnetic particl	e			+		Péter Szabó	
Penetrant				+			
Macro				+	Star	np and some provide	
Fracture				+			
				+		A THE AND A DE THE THE THE	
Additional tests				+		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
See attached pa	age(s) for prolo	ngation by employer	· every	6 months			
				···		· · · · · · · · · · · · · · · · · · ·	

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	28 / 44	

Continental + CONTITECH

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Welder's name: Tivadar Szabó (BC15)

Identification card No.: 517278AE

Date and place of birth: 19. August 1949; SZEGED

Place	Date	Name/ position/ title	Stamp and signature
Szeged	29, 10.2010.	Laselo Bajuse / Welling technologist	Barred
Szequel	29.04.2011.	Lass Lo Boyusz / welding telenologits-	Berrel
Szeged	29,10.2011	Lasslo Barien Welding Jedens byist	Beerer
Sreged	29.04.2012	Caselo Bainon (Webling Lecterolgit	Barr
>z.eject	29. 10. 2017.	12526 Dairen / Ubblig Lale walgig	Beach
Szegeel	29. 04. 20 13 .	laselo Baiun Weblicy Ladeudagest	Baral
Segul	28, 10, 2013	las 16 baien / Weblie Jale wolgest	Beercel
· · ·			· · · · · · · · · · · · · · · · · · ·
· · · ·			· · · · · · · · · · · · · · · · · · ·
			<u> </u>
			·····

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	29 / 44	

JE-	ZO KFT. ülterület 01408/2	2 h >2	W			00 8	HEE	T	WLS N	2013	1 2 8 9 6	1
Adószán Bank	1: 13341039-2-06 (számlaszám: 1015 7(1771,041100)	, 1711	HE	BESZI	rési	MUN	KAL	AP	PAGE /	oldal 1/	<u>/ -0,0</u> 1	•
CLIENT	Cí delő	ONTI	TECH R	UBBER II	ndustri	al Kft.	PUR	CH.ORDE	RNº.	2261592	P .	
CONTR Kötéssz	ACT N ⁰ . 2ém		SPO(Uzern	DL/JOB N ^o . I m.szá m	2898	-2905		WPS N ^C Heg.ut.s	o száma	HD -71	. Rev. 4	r. <i>1</i> .7
NAME (Heg. ali	OF WEDED PAR atrész megneve	TS zése	Bad	r + Fle	onge			DRWG Rajzszá	m ^o . Wi	5 3121 -	3000 .	
NAME/ Hegesz	N ^Q . OF WELDEF to neve és számi	₹ 8	Stabo	livador	lószle	<u>5. B.C</u>	15.	LOCATI	ON/SHO égzés hel	ye Szegeo	I. Tope	szele 6.
DATE Dátum	2013.10.2	5	QUAN	TTY zám	8.	r		SERIAL Sorszán	NUMBEF	<u>8085 ~</u>	80 90	60.01 . 100
1. MATE	ERIAL OL	SUE	NECT 1 By 1	000	ty	MATERI/ Anyag		AISI . 41	50. A	AST N ^o . dagszám	2217	8083-80
azonosi	negretelőség lása	SUB	NECT 2 av 2	Flan	qe.	MATERIA Anvag	L f	ası. bi	50. A	AST N ^Q . dagszám	0340	739 .
2. FILLE Elektród	R METAL a minöség	WEI	D LAYER: atszám	S		1.	2	3.		r - H .		
és mére	at	TYP Tipu	E s		Fh2.	5.	NIH	0. 100	NIP	10. IDD .		
		DIAI Atmi	METER Brő		2	4.		3.2.		4.		
		FILL Elek	ER CAST tr.adagaz	N ⁰ . tám	800)303 .	112	4075	112	.7750.		
3. ELEC CHARA	TRICAL ACTERISTICS	TYP	E POLAR	Polaritás	-	•		+		+		
Elektro	mos adatok	AMP	FRE (A)		12 2h			26.		·		
4. PRE H	EAT TREATME	I NT OF	ELECTR	ODES	.0	300.		C°		<u>я</u>		Hours
5. APPLI Alkelm	ED SHILDING G Nazott védőgáz	AS	TYPE Tipus Ar	2000	Percent Tisztas	tage Comp	osition Gi	ـــــــــــــــــــــــــــــــــــــ	%	Flow Rate Aramiási	e seb	?.
6. HEAT	TREATMENT (p	re-wel	^{d)} 300.		7. POS	ITION	Force	atatt .	•			
8. SPEEL	D OF TRAVELS	100)+130	mm/min	9. LAPS	E BEETW	EN OF	PASSES	6			min
10.POST	WELD HEAT	-	Ttr	ne	Te Hő	mperature mérséklet	Zunete	Fuma H	ace atmos Otőközeg	iph.	Cool Hülési	ing rate sebesség
Utóhói	kezelési adatok		240	min	620 c° Lei		eveqo.		80	. C%H		
11. RADI Radio	OGRAPHIC TES pgráfiai vizeg. biz	ST CEI	RT. N ^Q . Na	2450	115,	2451	145					
REPAIR Javítás	YES/ Ige	n				X	NO/ Ne	in .		· · · · ·		
PLACE OF DEFECT TYPE OF DEFECT Hiba helye Hiba tipusa												
	METHOD OF R Javitási módsz	REPAI	3			L			···			
VISUAL I Szemreve	NSPECTION .	١	tegfele)	å 50	hsfact	ory.						
REMARK Megiegyz	S \$8	Ŧ	ionius.	Magic	. Ika	WC	600	<u> </u>			JE-ZO	KET.
Date, end	l of coling down t huites vere	ime	W	KAVE RI	ETT H	TÁRSASÁ	<u>s (</u>		SPECTO	6728 Szeg Adó	ed, Külter	alet 01408/2 341039-2-06
Détum, ki			, m	6/55/320	ged, 14	Je szele o.			//13_N	<u>nvn k</u> v	Bhold A	Aszam.

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	30 / 44	

Felado :

61344

gamma controll kft

19/18/13 12:58 Lap: 1

GAMMA-CONTROLL	SZEMREVÉTELEZÉSES VIZSGÁLATI JEGYZŐKÖNYV	Record No. Jegyzőkönyv száma:
Www.gurnes-control.hu GYD-Alogd, failubert of 454/44, http: Total/Fail: 429 22517-420 / 61344 A MAY 452 NA ⁻¹ -1149299 estens allogated workfailed with	VISUAL EXAMINATION REPORT	813/13

Object	Coupling welding	Serial No.	8083-8090
Customer Megrendel	JE-20 Kft. Szeged	Orawing No. Rajzszám	TT-3121-3000
Job Nr. Munkaszá	002/13	Material/Dimension Anyagminös é g/méret	AISI 4130 118/77
Quantity Mennyisé	8 db	Extent of examination Vizsgalat terjedelme	100%
Requirements Követelmények	ASME code VIII/1	Heat treatment Hökezelés	after PWHT
Written Procedure I Vizsgálati eljárás sz	^{Vo.} QCP-09-1 áma	Welder Hegesztő	BC15
	Visual examination / Sec	mrevételezéses vizsgálat	

Technique Módszer	Direct visual	•
Instrument Kénzőlák	•	-
Visual aids Scrédcszközök	3x magnifiying lens	•

Measurement / Mérés

Equipment		· · · · · · · · · · · · · · · · · · ·	
Készülék		-	
Instrument			1
Készülék			•
Surface temperature		Surface	Lighting intensity
A felület hômérséklete	20 °C	Felûlet machined Allapota	1 Megvilágítás 1000lx
Teat results			· · ·
Eredmények :		SATISFACTORY	
		megfelelö8	pc(a)/db
		not accepted nem megfelelū0	pc(s)/db
·····		· · · · · · · · · · · · · · · · · · ·	
Vizsgálat helye és ideje:		Vizsgálatot végezte:	Áttekintette és jóváhagyta:
Place and date of test:		Tested by:	GAMMA - CONTRIEL BETA
Gamma-Controll Kfi Algyő, 2013.10.30. (10	t. Dh)	Kis zábor VT20203130102	Advant Up 11-2-2-5 Www.putitie-control for Tel Posense Isaas

ts a jagyzlichtyr részletelben nem minolhutól / Onoving dotalbi bi prohibitett

1.viture 2013.07.10

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	31 / 44	

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY (Certificate of NDT personnel)

Azonosító szám: VT20103130102 (Identification No.): A tanúsított neve: (The name and forename of the certificated individual): Kis Gábor Balázs Születési hely/idő: nely alátiasa A tanúsitoti s Szeged, 1980. 02. 29. (Place and date of birth): (The signature of the d individual) Vizsgálati eljárás(ok): (The NDT method(s): Stemrevételezéses anyagvizsgáló ۰. (Visual testing) Ipari terület: (Industrial scotor): Készülékek, berendezések, létesítmények vizsgálata EM (Pre and in-service testing of equipment, plant and structure). Termék terület(ek): Product sector(s): (c), (w), (wp), (f) A minősítés fokozata: VT2 (The level of certification): A tanúsítás és kiadásának időpontja: Budapest, 2013, 02, 19. (The date of certification and it's issue): A tanúsítás érvényes: 2018, 02, 18. (The date upon which certification expires); Close Tanúsító Testület nev (On behalf of certifying b izsgáztató (Exeminer) Az ipari és/vagy termék terü-let érvényesség kitárjesztve: (The industrial and/or product soctor has been expanded to): Dátum (Date): Tanúsító Testület novében (On behalf of certifying body) A tanúsítás érvényessége -ig megújítva (MSZ EN ISO 9712 10.): (Ronewed the validity of the certification until (MSZ EN ISO 9712 10.):) (Renewed the validity of the certi Dátam (Date): Tanúsító Testület nevében (On behalf of certification body) c - öntvények (castings); f - kovácsolt termékek (forgings); w - begesztett és forrasztott termékek (welded products); t - csövek és csővezetékek (tubcs); wp - alakított termékek (wrongitt products); k - kompozit anyagok (composites products).

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	32 / 44	

Sec. 1

V120103130102 MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanásítvány tulajdonosát, hogy vizsgálatokat végezzen és zzok credményéért felelősséget vállaljon. (MSZ EN ISO 9712 3.21) (The holder of this obtiling high contracts and take responsibility for the test results. (MSZ EN ISO 9712 3.21)) 0726 Szeged, Túzok n. 8/A. Munikáltató aláírásar dőszánt 11094614.2.049

	WWW.gamma-control.hu/ It. Charles Control.hu/	(Date) -	<u>05.01.0(-</u>
Sorsz.:	Evidence of continue Municalitato aláirása (Signature of the employer)	а <u>най на </u>	Dátom
1	LA	Anyngebiegelio és Minőségellenőreő K/i	John 03 64
2			
3.			· · · · · · · · · · · · · · · · · · ·
4			<u></u>
5.		<u> </u>	
6			
7.		· · · · · · · · · · · · · · · · · · ·	
8.			
9.			· · · · · · · · · · · · · · · · · · ·
10.			

· . .

Kiegészítések: (Additional semarks:)

A tanúsítvány a munkáltató aláirásával érvényes (This certificate is valid with the signature of the employer.)

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	33 / 44

Felado :

61344

gamma controll kft

RADIOGRÁFIAI VIZSGÁLATI JEGYZŐKÖNYV 2231/13 Report No.: 2431/13 Ktálláds dátuttu: Dite of report: 2013.10.30

Vizigálai Object:	l tángya:		Coupling				Megrendelő: Client: JE-20 Kft. Szeged				ed				
Munkour	Am;	n;				Rendelėsi sotor:									
Liob No.:								Order	Order No:						
Drawing	n No ·			MT	-3121-3	000		Maler	uninuse Ial:	8:			AIS	1 4130	
VizseAlat	i szabvány:				00.12			Vizag	alat terje	delme:					
Terting s	landard:	_			ĮCP-13-	1		Exten	of testi	ng:	_		3(10%	
Arveteli k	nvetoimén	γ. 			STM ES	24		Hoke	zhia:				After	PWHT	
Accepton	ce criteria:							Heat t	readiment	t condition:					
Code:			N	ASZ E	in ISO	6520-	ł	Wetde	ZEI JOIC: 7 SLEITED	•			(B	CIS	1
Borondeza Torre of A	és tipusa:			GA	MMAM	AT		Képmi	indiségie	lző típusa;			ASTM	set B typ	e
Sugarform	Ás:							Kenni	nôsća j	etző helve:	<u> </u>				
Source:					16192			Places	ternt of l	01:				r 	
Signition	bi mérete;			3	x1.Smm			Libin	képmin	http:			2%	(2-2T)	
Abaindata	20:							Kequir Film 1	ed Kyl:						
Activity				1).4 TBo			Film T	VDC:				FON	IA R5	
Filmkidol	gozás módj	π	Kezi:		Automate	r	v	Foliafi	jta da v	ustagsåg;			D1- 4	0.027	
Film proc	cssing:		Manual:		Automut	α.	<u></u>	Screun	ιγρο απ	d thick:			FU		
	i		5	l. '		ł	Į .					Hibák/	Defects		
		¥ I		1 2 8	8			4	5	Ciêz	Salak	Kötés	Gyök	Repedèr	Pelaiet
.2 -			68].		유 집 집	, and a second sec	Porosity	Slag	Austre	punatradam	Crack	Surface
	ŧ	1		E .	1 8 8 H	ł	3		Į į		В	С	D	E	F
	1 1	N N	11	1 T T	1 2 2 2 3 2 2 4 2 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	اير ا∛	日月		Å.						
2 B	1 2 8	11	28	月日		III	j š š		E I	200	300	401	402	100	500
	20	E 7.	~ 2	<i>.</i>	2 2 2 2 2	μų α	жщ 						1		
0002	0	4	10	- mm	10	24	0.5		10,30						
8085		4	19			2,4 	0,5	A	401						
8084	115/77	4	19	96	19	2,4	0,5	. A	104						
8085	115/77	4	19	96	19	2.4	0.5	A	10,10 10,10						
8086	115/77	4	19	96	19	2,4	0,5	. A	10,30) (0)	· · ·					
8087	115/77	4	19	96	19	2,4	0,5	A	10.30. 19h						
8088	115/77	4	19	96	19	2,4	0,5	A	10,30						
A filmer	ámok és	varrate	zómok a	7000	ak here	nost	Asuk -	meor	endel/	t terheli					
	harr of s		e and su	lde er	e Identic	al the	de ida	atificat	tion le	the task o	f the cos	numer			
	And unforce	44 1111G		al									_		
v izsgala Dorforma	wivegez Miller	AC.								Ménesi I.	- Szabó	Т.			
Vicentiat helper								lováhac vé	1:						
Mass of text: Bysluated by:				المبر	ر ال			GAM	MA - CO	INTROL	A. KFT				
				1 lbl	Ľ			-6750 ⁻ A	gyo, Nulle dószánt. –	1094614					
	6750	Algyő		j			M	iénesi	lstván			-	www.	As interal	ւպ լ
Gamm	na-Contre	ul KA.	Telepho	ly			RT	201 01	12010	7			CAR I HAVE	A57820	•
_															
Ez a jegyzőkönyv részleteiben nem másolhatól / Copying demits is prohibitedt															

8. változat.2013.07.16

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	34 / 44

Felado :

1000

61344

ganna controll kft

19/10/13 12:49 Lap: 1

RADIOGRÁFIAI VIZSGÁLATI JEGYZŐKÖNYV 82411: Report No.: 2430/13 Kidilitás dáturnu: Date of report: 2430/13 Kidilitás dáturnu: Date of report: 2013.10.30

Auskander:	Gamm	6750 na-Contro	Algyō, bil Kft.	Telephe	ły.		Ménesi István RT20101120107					1	Terleos	CONSIGNATION OF THE CONSIG		
Manisagnin:	vezgania naryo: Ertekcito: Phose of test: Evaluated by:				Ĥ	\sim			Approv 41	i MA - CO Igyô, Kulu dószám: L	NTROI	L KFT				
Muskaprån:	Performe	ed by: where:				Endkoln	.						Incharte			
Mankaganan:	Vizsgála	tot végez	te:								Ménesi I.	- Szabó	τ.			
Markazzán: - Randelski rodm: - - Jah Ne: MT-3121-3000 Maryaminšký: A1SI 4130 Drawing No: MT-3121-3000 Maryaminšký: A1SI 4130 Drawing No: MT-3121-3000 Maryaminšký: A1SI 4130 Drawing No: MT-3121-3000 Maryaminšký: A1SI 4130 Vzaglál uvávhry: QCP-13-1 Extent of tysting: 100% Arvingi listwich ASTM F84 Hiteci tragment ornátian; After PWHT Kód: MSZ EN ISO 6520-1 Hiteci tragment ornátian; After PWHT Berendenšti ljusa: GAMMAMAT Kdpminšký jošti holyt: BC15 Starter GAMMAMAT Kdpminšký jošti holyt: F Jugdfernit Ir192 Harmani (KU: F Source star: Jati ASmm Requilated 10t: FOMA R5 Source star: Jati Asmanité: X Foldiklja á vrangság: Po 0,627 Vativitá: Marunatité: X Saturo type and thick: Pb 0,627 Starter Marunatité: X Saturo type and thick: Do 0,627 Starter Marun	The num	bers of th	te films	and we	lds an	e Identica	al, the	ir idei	ntificat	ion is	the task o	f the cos	tumer.			
Mankazzahn: Joh No::	filmsz	ámok és	varrats	amok a	zonos	ak, beaza	onosit	ásuk a	megn	endelő	t terhell.			I		
Maintaszden:						•										
Matekandra: Coder No: Director No: John No:: MT-3121-3000 Arryminologi: AISI 4130 Drawing No:: MT-3121-3000 Material: AISI 4130 Drawing No:: QCP-13-1 Extend of basting: 100% Texting standart: QCP-13-1 Extend of basting: 100% Arrytack is downlowing: ASTM F94 Heat resting standard: After PWHT Acceptance effective: MSZ EN ISO 6520-1 Heat resting standard: BC15 Derawderds tipuas: CAMMAAMAT Type of (Q): ASTM set B type Type of equipacent: GAMMAMAT Type of (Q): ASTM set B type Surgerifierine: Ir192 Kdominologizabi bipus: F Surgerifierine: Ir192 Kdominologizabi bipus: F Surgerifierine: Stil.Stam Requiled 101: F Surgerifierine: Stil.Stam Plant tipus: F Surgerifierine: OA TBG Film Type: POMA R5 Timkidologizels nobij: Kdz: Automatic: X Surgerifiering tipus Material: Material: A B C D Starter Material: A B C D E Starter Starter Starter </td <td></td>																
Multikasizan: Ida No: Rendeliki rozm: Order No: Discover No: Jahozan: MT-3121-3000 Anyrognindség: AlSI 4130 Drawing No: MT-3121-3000 Material: AlSI 4130 Drawing No: QCP-13-1 Extend ticked: AlSI 4130 Drawing No: QCP-13-1 Extend ticked: AlSI 4130 Drawing No: QCP-13-1 Extend ticked: Ido % Arviadi követelmény: ASTM E94 IMicredia: AlSI 4130 Arviadi követelmény: ASTM E94 IMicredia: After PWHT Icent treatment ondition: After PWHT BC15 Berendezés lípusa: CAMIMAMAT Type of QL: BC15 Derendezés lípusa: GAMIMAMAT Type of QL: ASTM set B type Sugaforbrin indrate: St I, Saam Idlin tepmindség: 2% (2-2T) Mutoriata: Automata: Automata: Saran type and Hick: Porosity Stag Mutoriata: Automata: A B C D F Saran get	i												· · · ·	i		
Multikasztán: Joh No: – Randelski szán: Order Na; – Randelski szán: Order Na; – Augyminőség: Alssadán: Ausyminőség: Alssadán: Alssi 4 130 Randelski szán: Order Na; – Order Na; – – Randelski szán: Order Na; – – Order Na; – Randelski szán: Alsi 1 4 130 – Marzini i Alsi 1 4 130 Vizsgálat szabetny: QCP-13-1 Estent of testing: 100% Arstrag standard: ASTM E94 Hátczalás: 100% Arstrag standard: MSZ EN ISO 6520-1 Welder stang: BC15 Beresekst gusst: GAMIMAMAT Kópminőségiező típusa: ASTM set B type Type of equipacat: GAMIMAMAT Kópminőségiező típusa: ASTM set B type Saugefurnst: Ir192 Kápminőségiező típusa: ASTM set B type Saugefurnst: Ir192 Kápminőségiező típusa: ASTM set B type Saugefurnst: Sat I, Sam Regninőségiező típusa: ASTM set B type Saugefurnst: Vizge af test Sat I, Sanda Porosity Slag Late of Late o	-	•	•	-	-	-		-	-	• .	-	-	•	-	-	-
Multikaszdan: Joh No: Director first badgets Joh No: MT-3121-3000 Anyagmin054g: Anyagmin054g: AISI 4130 Darwing No: MT-3121-3000 Material: IO0% Vizsgåladi szabvány: QCP-13-1 Pizstoni of batting: AISI 4130 Vizsgåladi szabvány: QCP-13-1 Pizstoni of batting: IO0% Andreif i Serietenhenty: ASTM E94 Hikkezuća: IO0% Adosptance criteria: ASTM E94 Hikkezuća: After PWHY Accest MSZ EN ISO 6520-1 Hieguskań Jeth: BC15 Berendezis Higuss: CAMMMAMAT Type of GU: ASTM set B type Starte: GAMMAMAT Kópmin0ségizből Úpasa: ASTM set B type Sugárfiorrás: Ir192 Puermanu of K0: F Sugárfiorrás: Ir192 Puermanu of K0: F Sugárfiorrás: O.4 TBg Film Type: FOMA R5 Timbidogezis radáji: Maruel Automatic: X Silak Kotés Qyók k Repelés Felüllet Sugárfiorrás: II A B C D E F Sugárfiorrás:	8090	115/77	4	19	96	19	2,4	0,5	A	10.30. 105						
Multikaszdan:	8089	115/77	4	19	96	19	2,4	0,5	A	10.30. 104						
Mutukaszdan: Rendetici szám: Direct Mit Boegla Joh No.: MT-3121-3000 Anyagmin3ség: AISI 4130 Drawing No.: MT-3121-3000 Material: ISI 4130 Drawing No.: MT-3121-3000 Material: IO0% Drawing No.: MT-3121-3000 Material: IO0% Drawing No.: MT-3121-3000 Material: IO0% Drawing No.: QCP-13-1 Extent of batting: IO0% Arvitali Boretchnetry: ASTM E94 Hat treatment condition: After PWHT Kdd: MSZ EN ISO 6520-1 Welder stamp: BC15 Berndezés tipusa: CAMIMAMAT Type of QD1 ASTM set B type Sugarfarits: Ir192 Hat treatment condition: F Sugarfarits: Ir192 Placemet QD1 ASTM set B type Sugarfarits: Ir192 Placemet QD1 2% (2-2T) Sugarfarits: Ir192 Placemet QD2 Placemet QD2 Sugarfarits: Ord TBg Film Type: Pb 0,027 Material: Y Y Y Y Y Suboratin: X Saturat type and thick: Pb 0,027 Virtubal Y Y Y Y Y Y <t< td=""><td>Des Des</td><td>° Mé</td><td>B Yend</td><td>hay E</td><td>dina And And And And And And And And And And</td><td></td><td>Febra Deur</td><td>nin</td><td>NENGERS NATORNI A-POSEDI</td><td>Vingthe</td><td>100</td><td>300</td><td></td><td>402</td><td>3</td><td>200</td></t<>	Des Des	° Mé	B Yend	hay E	dina And And And And And And And And And And		Febra Deur	nin	NENGERS NATORNI A-POSEDI	Vingthe	100	300		402	3	200
Munkasznan: Image: Conder Nu: Image: Conder Nu: Joh No:: MT-3121-3000 Anyugmin0ség: AISI 4130 Drawing No: MT-3121-3000 Anyugmin0ség: AISI 4130 Vizagálati szabvány: QCP-13-1 Vizagálast terjedelme: 100% Extend at af szting: 100% Ifficzetás: AISI 4130 Vizagálast szabvány: QCP-13-1 Vizagálast terjedelme: 100% Arvdtali követelmény: ASTM F94 Ifficzetás: Aftor PWHY Acceptionce criteria: MSZ EN ISO 6520-1 Iffeguéza jeté: BC15 Berendezős típusa: CAMIMAMAT Type of equípacent: ASTM set B type Source: Ir192 Képminőségielző típusa: F Source: Ir192 Képminőségi jetző helye: F Jugárförnis márate: 3x1,5mm Requirá fúlt: 2% (2-2T) Vizagálas: Automatic: X Requirá fúlt: Porosity Source: 0.4 TBq Film týpe: Porosity Stag Manual: Automatic: X Rollafajús és vésagség: Pb 0.627 Vitar tás Manual: Automatic: X Rollafajús és vésagség: Pb 0.627	gneve	۲.		draot w	1419	* 3 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	¥.			ija od 190	200	200		407	100	F 600
Munkaszdan: Randcićsi i zdan: Order No; Joh Na.: MT-3121-3000 Anyugminöšćg: AISI 4130 Drawing No.: MT-3121-3000 Material: Ioo% Vizagálali iszabvány: QCP-13-1 Vizagálati terjedelme: 100% Vizagálati szabvány: QCP-13-1 Extender (tage) 100% Arvitati i követelmény: ASTM E94 Idaterial: 100% Actor PWHT Barendezi at terjedelme: 100% Kóde: MSZ EN ISO 6520-1 Ileguézaß jelé: BC15 Berendezia tipusa: GAMIMAMAT Type of equipanent: NSTM set B type Sugárfornis: Ir192 Kdominőségi jebő helye: F Sugárfornis: Ir192 Kdominőségi: 2% (2-2T) Vizigálati szabvána: ARS NASTM set B type Sugárfordi Kiel Kejűtel K	% 5	}			la the	anuta Di guera			is Res Press Diffect	Å.	Porosity	Slag	Lack of Enton),ech of penetratine	Crack	Surface
Munkaszadan: Rendeldsi rodan: Order Nu:		Į	L H	¥.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				, r r r r r	5	Gáz.	Salak	Kötés	Győk	kepedés	Fciülei
Munkaszadan: Rendekksi redam: Order No: Joh Na.: Order No: Order No: Rajzodan: MT-3121-3000 Anyagminöség: AISI 4130 Vizzgálati szabvány: QCP-13-1 Vizzgálati terjedelme: 100% Vizzgálati szabvány: QCP-13-1 Extend af ésating: 100% Arvítati követelmény: ASTM E94 Haterial: 100% Avotati követelmény: ASTM E94 Haterial: 100% Berendezés típusa: MSZ EN ISO 6520-1 Hegyézelő térise: BC15 Berendezés típusa: GAMIMAMAT Type of fúli: BC15 Sugárfornés: Ir 192 Kópminőség: ASTM set B type Sugárfornés: Ir 192 Vizzgálati képitélő típusa: 2% (2-2T) Vizitás: Vizitás: Vizitás: Vizitás: Vizitás: Vizitás: Vizitás: 2% (2-2T) Vizitás: Vizitás: Vizitás: Vizitás: Vizitás: Vizitás: Vizitás: FOMA R5 Timutidógozás raódja: Kezt: Automan: FOHAR5	'ilm proc	essing:	r	Manual:		Automati	<u>a:</u>	<u> </u>	Sensen	type an	d thick:		10.467	PD	0,627	
Munkasznan: Instant Press Press Press Joh No.: Order No.; Order No.; Darwing No.: MT-3121-3000 Anyngmin05452; Darwing No.: MT-3121-3000 Material: Drawing No.: MT-3121-3000 Material: Drawing No.: QCP-13-J Vizzgálast terjedelmo: Terting standard: QCP-13-J Extend of keyting: Acceptationes criterio: IMKezelón: 100% Acceptationes criterio: MSZ EN ISO 6520-1 Welder stamp: Berenderds tipusa: CAMIMAMAT Kópmindségiziót tipusa: BC15 Dype of equipment: Ir192 Képmindségi jebő helye: F Sugarianta mérate: 3x1,5mm Required 101: 2% (2-2T) Ketvitás: Vizze Size: Vizze Size: Vizze Size:	Activity:	gozás módj	a:	Kćzi:		Automate	Ľ	v	Film T Fósiala	ype: jta és v	ezreñag:			FUN	1A R5	
Munkasznám:	Aktivitäs						·		Film t	pus:						
Munkasznám: Rendelčsí rozm: Order No: Joh No.: MT-3121-3000 Anyagminöstę: A1SI 4130 Praving No.: MT-3121-3000 Material: 100% Vizsgálati szabvány: QCP-13-1 Vizsgálati terjedelme: 100% Vizsgálati szabvány: QCP-13-1 Extunt of besting: 100% Avdatei követelmény: ASTM F94 Hent terjetelmen: 100% Acceptance eriteriu: MSZ EN ISO 6520-1 Hegyeszál jelé: BC15 Barenderés tipusa: GAMMAMAT Kópminőségielző tipusa: ASTM set B type Type of equipanent: Ir192 Placemant of kyst F	Sugarfor	ûn méroto; m			3	x1,500m			196trt	kepmin	લક્ષેદ્ર:			2%	(2-2T)	
Munkasznám: Rendelési rozan: Order Nu:	Sugarlan Source:	ts :				lr192			Képmi Plucon	nöség j nant of j	obvā helye: KOI:				F	
Munkaszatan: Rendelčki jezani: Franco Krit Octegia Jah Na.: Order Na; Order Na; Rajzodani; MT-3121-3000 Anyagmin0stę; AISI 4130 Drawing No.: MT-3121-3000 Material: AISI 4130 Vizsgálati szabvány: QCP-13-1 Vizsgálat tejedelme: 100% Arvátoli követelmény: ASTM F94 Henti trentment condition; After PWHY Kód: MSZ EN ISO 6520-1 Heguezal jelé: BC15	Berendez Type of e	da Upusa: quip <u>ment:</u>			GA	MMAM	AT		Корлі Туре о	inðsógji of (QI;	ilző típusa:			ASTM	set B typ	8
Munkasznám: Radiciśsi rozam: Joh No.: Order No; Joh No.: Order No; Rajzostan: Order No; Drawing No.: MT-3121-3000 Material: AISI 4130 Vizzgálisti szabyłany: QCP-13-1 Extra of assting: 100% Arvitadi követelmény: ASTM E94 Idea trentment condition; Aftor PWHY	Kod; Code;			N	ASZ E	IN ISO	520-	l ·	l leguid Welde	við jelé: T slamp	: 			B	C15)	
Munkasznim: Rendelčsi ježin: Joh No.: Order No; Joh No.: Order No; Drawing No.: MT-3121-3000 Material: AISI 4130 Vizagálati szabvány: QCP-13-J Vizagálati szabvány: I00%	Acceptor	coverentieria:	y.	·	٨	STM E9	4		Heat to	elea: rentinez	It condition;			After	PWHT	
Munkaszden: Joh No.: Rajszoden: Drawing No.: MT-3121-3000 Material: Viseofed instruction Viseofed instruction	Testing s	tinderd;				2CP-13-	1		Extun	L of test	ing:			10	ю%	
Munkaszdon: Rendelési (zdan): Joh No.: Order No; Salasza (zdan): A symmiofisio:	Drawing	No.:			MJ	-3121-3	000		Mater	ial:	-B-			AIS	14130	
Munkaszden: Rendelési szám:	Joh No.: Raissoain	a:		_					Order	No; minās	e.					
Object JR.70 Kft. Synned	Object Munkasz	vian;			•			. <u></u>	Rende	i: ilcxi szz	knj:		JE-ZO KR. Szeged			

.

8. változat.2013.07.16

CONTITECH RUBBER	No:QC-DE	8- 651 /2013
Industrial Kft.	Page:	35 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body) RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY (Certificate of NDT personnel) Azonosító szám: (Identification No.): RT20101120107 A tanúsított neve: (The name and forename of the certificated individual): Ménesi István A tanúsított személy aláírása Születési hely/idő: Szentes, 1988. 09. 06. (The signature of the certificated individual) (Place and date of birth): and the states Ň set a list of the program Radiográfiai anyagvizsgálat (Radiographic testing) Vizsgálati eljárás(ok): (The NDT method(s): Készülékek, berendezések, létesítmények vizsgálata EM Ipari terület; (Industrial sector): (Pre and in-service testing of equipment, plant and structure) Termék terület(ek): (c), (w) Product sector(s): A minősítés fokozata: RT2 (The level of certification): A tapúsítás és kiadásának kiőpontja: (The date of certification and it i issue): . موجد من Budapest, 2012. 03. 28. A tanúsítás érvényes: 2017. 03. 27. (The date upon which certification expires): vic ÉS Tamisito Testulet n (On behalf of certifyi ecs21/ Az ipari és/vagy termék teril-let érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to): IN ESA 9/2001 GM 067/2004 GRA Dátum (Da ad Mater -ig megújítva (MSZ EN 473 9.): A tanúsítás érvényessége (Renewed the validity of the certification until (MSZ EN 473 9.).) Dátum (Date): Tanúsító Testület nevében (On behalf of pertification body) A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsító szervezet" a nevezett személyt tanúsítja az MSZ EN 473 szerint credményes vizsgája alapján a fentiek szerint: (The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by National Accreditation Board (under No. NAT-5-013/2010", on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above:) c - öntvények (castings); f - kovácsolt termékek (forgíngs); w - begesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakított termékek (wrought products); p - milanyag termékek (plastics products); k - kompozitok (composites products).

			Industrial Kft.	Page:	36 / 44	
					RT20101120	3107
	NN	MAGYAR HEGESZTÉ	STECHNIKAI ÉS ANYA	GVIZSGÁLA	TI EGYESÜLÉS	
		HUNGARIAN ASSOCIATI	ON OF WELDING TECHNOL (Certification Body)	NGY AND MA	TERIAL TESTING)	
	Manhatab			·		
	(MSZ EN	473 3.21) CONTRO	LL KE 1.	azok eredinenye	ert tesetosseget vananjote	
	(The holder o	of this certificate the been further sector and the	for Brists and take responsibility for the ta	est results. (MSZ EN	473 3.21))	
	Munkáltató :	aláirása: Adoszám: 110940	-20406154 Dát		64 / 9.	
	(Signature of the	www.gaume.com	2640	Date:)		
	[Folyamatos m	unkavégzés igazolása (MSZ EN 47	39.)	1	
	Sorsz.:	(Evidence of Munkáltató aláírása	continued work activity (MSZ EN 473 9.) Ph)	Dátum	
		(Signature of the employer)	-GAMMACONTRO		(Date)	
	1	Name	Minoster	F01	2. 04.19.	
	2.	1 AD	GAM Anyagolasgeld &	. Jon	3.01.09	· · · ·
		$\sim \mathcal{E} $	Minosigollendero N			
	.					
	4.					
· •	5.					
						•
· · · · · · · · · · · · · · · · · · ·	0.					. • •
	、7.					
	8.					. •.
	0					
				<u> </u>		
	10.			<u> </u>		
:	Kiegészítések				· •	
	(Additional remar	k s:)				
			•			
			- ° ,			
		r				
	.:	. .	<i>4</i> /			
					:	
		1				

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	37 / 44

ContiTech Rubber Industrial Kft. Szeged/Hungary	Examinat Vizsgálati j Liquid penetra Festékdiffúzl X Magnetic par Mágneses re	tion record jegyzőköny ant examinati lós vizsgálat ticle examina pedésvizsgál	V on ation at	Record No. Jegyzőkönyv száma : 1222/13		
Manufacturer JE Gvártó	E-ZO Kft.	Serial No. Gvári szám		8083-8090		
Customer Conti Megrendelő Ind	Tech Rubber ustrial Kft.	Drawing No Raizszám).	MT 3121-3000		
Object co Tárgy	upling(s)	Material Anvagminö	séa	AISI 4130		
Quantity Mennyiség	8 pc(s)	Extent of ex Vizsgálat te	aminat rjedelm	ion 100 % outside ie		
Requirements AS Követelmények	STM E 709	Heat treatm Hőkezelés	ent	yes		
Written Procedure No. Vizsgálati eljárás szárna	QCP-11-1	Welder: Hegesztő:		Szabó T.		
Liquid penetra	nt examination /I	Folyadékbel	natolás	os vizsgálat		
Penetrant	Remover	· · · · · · · · · · · · · · · · · · ·	Develop)er		
Behatoló anyag	Tisztító		Előhívó			
Dwell time Robatolási idő	Drying		Develop	si Mā		
Surface temperature	Surface condition		Lighting	Intensity		
A felület hőmérséklete	Felület állapota		Megvilá	gítás		
Magnetic parti	cle examination/	Mágnesezhe	ető por	os vizsgálat		
Equipment type TSW 1000 Készülék típusa	Testing material Vizsgáló anyag	MR 76F	Magneti Mágnes	izing current 1000 A ező áram		
Black light type Superlight C UV-A lámpa típusa 10A-HE	Field strength checki Térerőmérő	ng Berthold disc	Field str Térerő	ength 4,2 kA/m		
A felület hőmérséklete 23 °C	Felület állapota	machined	Megvilá	intensity 1000 μW/cm ²		
Test results Eredmények :	satisfactory megfelelönot not accepted nem megfelelö	8	pc(s)/c pc(s)/c	dt		
Performed by NDE Level II. Vizsgálatot végezte Signature Aláírás Place/Date Revised by Q.C. manager Ellenőrizte – MEO vezető Signature Markó László Place/Date						

QCP-12-1-MPT/07

CONTITECH RUBBER	No:QC-DI	3- 651 /2013
Industrial Kft.	Page:	38 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY (Certificate of NDT personnel)

Azonosító szám: MT20103010506Ú (Identification No.):

A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő: (Place and date of birth):

Szeged, 1958. 07. 07.

Oravecz Gábor

A tanúsított személy aláírása (The signature of the certificated individual)

Vizsgálati eljárás(ok): (The NDT method(s):

Ipari terület:

(Industrial sector):

Mágnesezhető poros anyagvizsgáló (Magnetic particle testing) Fémfeldolgozás MM (Metal manufacturing)

Termék terület(ek): (c), (f), (w), (wp) Product sector(s);

A minősítés szintje: MT2 (The level of certification):

A tanúsítás és kiadásának időpontja: (The date of certification and it's issue);

A tanůsítás érvényes: (The date upon which certification expires):

2017. 02. 20.

Budapest, 2012. 02. 21.

Az ipari és/vagy termék terü-let érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to);

Dátum (Date):

1216 Vizsgáztató (Examiner)

Tanúsító Testület nevében (On behalf of certifying body)

ig megújítva (MSZ EN 473 9.): A tanúsítás érvényessége (Renewed the validity of the certification until (MSZ EN 473 9.):)

Dánm (Date):

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsltó szervezet" a nevezett személyt tanúsítja az MSZ EN 473 szerint eredményes vizsgája alapján a fentiek szerint: (The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by National Accreditation Board (under No. NAT-5-013/2010", on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakított termékek (wrought products); p - milanyag termékek (plastics products); k - kompozitok (composites products).

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	39 / 44		

MT20103010506Ú

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN 473 3.21)

(The holder of this certificate has been authorised to garface tests and take responsibility for the test results. (MSZ EN 473 3.21))

Munkáltató aláírása: (Signature of the employer.)

a: Jacn y	Dátum:	2012.	02.	2/
Folyamatos munka	végzés igazolása (MSZ EN 473 9.)	<u> </u>		
Munkáltató aláírása	Ph.		Dátur	. <u></u> 1
(Signature of the employer)	ContiTisterBubber		(Date)	-

Sorsz.:	Munkáltató aláírása (Signature of the employer)	Ph.	Dátum (Date)
1.	Back Jas	Industrial Kft. Quality Control Dayt.	2013.01.24.
2.	· · · · · ·	(1)	
3.			
4.	:		
5.			
6.			
7.			
8.			
9.		·	
10.			

Kiegészítések: (Additional remarks:)

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

		CONTI	TECH R	UBBER	No:QC-E)B- 651 /2013
	L	ln.	dustrial I	Kft.	Page:	40 / 44
Bekaert Hiohovec a.s. Mierová 2317 g2028 Hiohovec / Słovakia Tel:: 00421337383111 Fesc:: 00421337422742				Cartific	the of Airsheig	505760
STEELCORD MANUFACTURER : BKHL	Page:1 /	1		Defiven	/ No. : (404618121	2)
Contitech Rubber Industrial Kft. CONTITECH RUBBER IND SZEGED Budapesti út 10 H-6728 SZEGED			Sales Purch Inspec Batch Date p Date C	Order see Order dion lot roduced XOA	3046059220/10 32260330 090000200665/ 3500245379 01.07.2013 09.08.2013	000001
Spec customer Contitech Rubber Ind Your code 14-18-07/1 Your spec REV.3 / 15.01.2002 Qur Spec H207297 / 28.10.201	lustrial KfL 2		Spools Units Delive: Materia Lav dir	ry net Qty. al Description	32 delivered fro 18 delivered fro 10517 KG Zinc coated stee 5000 M 72	m a batch of 32 produced m a batch of 16 produced licord 1X24DW/3.6 NT 20/36
			Lay len	igth	20/38	
Tests			Speca	·	Results	
Test	Procedure	Unit	Alm	Min.	Avg.	Min ind
Cord diameter	RA12-100	mm	3,6000	3,4200 3,7 <u>800</u>	3,6845	3,6840 3,8930
Linear density	RA30-110	g/m	65,000	61,700 68,300	65,632 6	65,300 65,870
Cord breaking strength	RA30-203	N		17900,0	19337,0	19087,0 19584,0
Cord elongation at break	RA30-203		<u></u>	2,50	2,98 6 40.057	2,80 3,15 37,870
Zinc D2	RA40-741			44.000	<u>8</u> 48.788	<u>44,630</u> 45,350
Residual tonsions	RA30-160	Nt	0,000	-3,000	6 -0,250	<u>55,100</u> -0,500
Comments : D1: 0,64 D2: 0,73 Nominal Chemical composition of High 9 %Carbon : 0.70-0.90 %Manganase: 0.40-0.60	Grada Oxystael:	_ _		<u>. 3,000</u>	[6	
%Sillcon: <0.230 %S: <0.011 %P: <0.012		- 61-6				
Microstructure/Texture: Metallurgically (drawn, fine perfitic structure.	he texture is know	m as a higly	1			
					.÷	
			•			

Electronically Signed by Quality Manager (Nagy Marcel)

According DIN EN 10204 3.1

CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page: 42 / 44

MKEH Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements BUDAPEST XII., NÉMETVÖLGYI ÚT 37-39. 1535 Budapest, Pf. 919 Telefon: 458-5800 Telefax: 458-5927 Úgyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013 Hivatkozási szám / Reference No.: 32259470 Page 1/3 oldal

Kiadva / Issued Budapest, 2013. 01. 28. / 28 01 2013

KALIBRÁLÁSI BIZONYÍTVÁNY CALIBRATION CERTIFICATE

A kalibrálás tárgya:	villamos kimenőjelű nyomásmérő
Object of calibration:	electrical-output manometer
Gyártó / Manufacturer:	AFRISO-EURO-INDEX GmbH
Típus / Type:	<u>_DMU03 HD</u>
Azonosító szám / Serial No.:	1518086
Műszaki adatok / Technical data:	(02500) bar méréstartomány / measuring range (02500) bar
·	(420) mA kimenőjel tartomány / output signal range (420) mA
Kalibrálásra bemutatta:	ContiTech Rubber Industrial Kft.
Customer:	6728 Szeged, Budapesti út 10.
A kalibrálás helye és ideje:	Magyar Kereskedelmi Engedélyezési Hivatal
Place and date of calibration:	Hungarian Trade Licensing Office
	Metrológiai Hatóság, Mechanikai Mérések Osztály
	Metrology Authority, Section of Mechanical Measurements
	Budapest, 2013.01.24.
A kalibrálást végezte:	little and
Calibrated by:	Szaulich Dénes

metrológus / metrologist

A kalibrálásnál alkalmazott etalonok:

Standards used for the calibration:				
Megnevezés:	Gyártó:	Típus:	Gyártási szám:	Bizonyítvány szám:
Designation:	Manufacturer:	Type:	Serial No.:	Certificate No .:
túlnyomás etalon / pressure standard	Budenberg	283	20603	NYO-0001/2013
digitális multiméter / digital multimeter	Keithley	2000	0597910	ELD-0014/2012
normál ellenállás / resistance standard	ZIP	P 331	117530	ELD-0021/2012
hômérő / temperature measuring instr.	GANZ MM	DTHI	33656	Hőm-0296/2012

A mérési eredmények a nemzeti (nemzetközi) etalonra visszavezetettek. The measuring results are traceable to national standards.

A kalibrálás módja:

Calibration method:

A kalibrálást a KE NYO-3-2002 számú kalibrálás eljárás alapján végeztük. The calibration was done according to the calibration procedure No.: KE NYO-3-2002.

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see <u>http://www.blpm.orgl</u>.

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 43 / 44

МКЕН

Metrológiai Hatóság/*Metrology Authority* Mechanikai Mérések Osztály Section of Mechanical Measurements Úgyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013

Page 2/3 oldal

A kalibrálás körülményei:

Calibration conditions:

környezeti hőmérséklet / Ambient temperature

a kalibrált eszköz helyzete / Position of the calibrated manometer a kalibrált eszköz tápfeszültsége / Supply voltage of the calibrated manometer

nyomóközeg / Pressure transfer medium

Mérési eredmények a (0...2500) bar nyomástartományban: Results of the measurements in the pressure range of (0...2500) bar:

21,1 °C ftiggőleges / vertical ometer 24V DC olaj / oil

Nyomás, névleges érték	Áram-kimenőjel, névleges érték	Áram-kimenőjel, mért eltérés a helyes értéktől	Nyomás, mért eltérés a helyes értéktől	Eredő mérési bizonytalanság
Pressure, nominal value	Current-Output, nominal value	Current-Output, measured deviation from the reference value	Pressure, measured deviation from the reference value	Expanded uncertainty of the measurement
bar	mA	mA	bar	bar
0	4,0	-0,0042	-0,7	
250	5,6	-0,0002	0,0	
500	7,2	0,0029	0,5	
750	8,8	0,0050	0,8	
1000	10,4	0,0063	1,0	
1250	12,0	0,0053	0,8	2,6
1500	13,6	0,0033	0,5	
1750	15,2	-0,0003	-0,1	
2000	16,8	-0,0052	-0,8	
2250	18,4	-0,0117	-1,8	
2500	20,0	-0,0192	-3,0	

Mérési bizonytalanság: A mérési eredmény(ek) mellett közölve.

Uncertainty of measurement: See next to the results of the measurements.

A közölt kiterjesztett mérési bizonytalanság a standard bizonytalanságnak k kiterjesztési tényezővel szorzott értéke (k = 2), amely normális (Gauss) eloszlás feltételezésével közelítőleg 95%-os fedési valószínűségnek felel meg.

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to coverage probability of approximately 95 %.

A mérési bizonytalanság tartalmazza az etalonból, a kalibrálás módszeréből, a környezeti feltételekből, a kalibrált mérőeszközből stb. eredő részbizonytalanságokat.

It contains the uncertainties of the standards, calibration method, enviromental conditions, calibrated device etc.

A standard bizonytalanság meghatározása az EA-4/02 (Expression of the Uncertainty of Measurement in Calibration) kiadványnak megfelelően történt.

The standard uncertainty of measurement has been determined in accordance with the EA Publication EA 4/02 (Expression of the Uncertainty of Measurement in Calibration).

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	44 / 44

MKEH Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements Ügyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013 Page 3/3 olda!

Bélyegzés:

Calibration mark:

A kalibrált mérőeszközön K067662 azonosító számú kalibrálási bélyeget helyeztünk el. We have placed a calibration stamp No.: K067662 on the calibrated instrument.

Megjegyzések:

Additional remarks:

Jelen bizonyítvány összhangban van a Nemzetközi Súly és Mértékügyi Bizottság (CIPM) Kölcsönös Elismerési Megegyezése (MRA) C függeléke által tartalmazott kalibrálási és mérési képességekkel (CMCs). Az MRA minden aláíró intézete elismeri egymás kalibrálási és mérési bizonyítványait a C függelék szerinti mennyiségfajtákra, azok értéktartományaival és mérési bizonytalanságaival (közelebbit lásd: <u>http://www.bipm.org</u>)

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bipm.org)

A kalibrálási bizonyítványban megadott értékek a mérőeszköznek a kalibrálás idejére és körülményeire jellemző adatai.

The measurement results show the metrological properties of the device during the time of the calibration under the environmental conditions listed above.

Az újrakalibrálás időpontját a felhasználó dönti el a mérőeszköz használatának és állapotának függvényében.

The date of the next calibration is decided by the user. It depends on the usage and the condition of the device.

A bizonyítvány kiadható / Approved by:

A bizonyitvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

Requested Exceptions

- Variance is requested to connect the BOP choke outlet to the choke manifold using a co-flex line (instead of using a 4" OD steel line) with a 10,000 psi working pressure that has been tested to 15,000 psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps.
- Variance is requested to allow Option of rig not capable of reaching TD presetting Surface, Drilling Plan will be same using Fresh Water fluid system.
- Variance is requested to allow Temporary Postponement of Operations on well to skid to adjacent well if multiple wells on drilling pad are drilled.
- Variance is requested to allow use of Multi-Bowl Well Head System.
- Variance is requested to allow adjustment of Casing Design Safety Factor on conditions that Ameredev keeps minimum of 1/3 casing capacity filled with OMW drilling fluids.
- Variance is requested to allow 5M Annular Preventer on 10M BOPE System to drill Production Interval. (Supporting Documentation Attached)

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400030726

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Type: OIL WELL

Well Number: 083H Well Work Type: Drill

Submission Date: 06/13/2018

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

CAMELLIA_FED_COM_26_36_21_083H___SITE_ACCESS_MAP_20190405133737.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

SUPO Data Report

05/16/2019

Show Final Text

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

CAMELLIA_FED_COM_26_36_21_083H___SITE_ACCESS_MAP_20190405133841.pdf CAM_AZE_5SX_ROAD_20190405133855.pdf

New road type: RESOURCE

Length: 455 Feet Width (ft.): 30

Max slope (%): 2

Max grade (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 20

New road access erosion control: Crowned and Ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Page 1 of 12

Operator Name: AMEREDEV OPERATING	IG LLC	
Well Name: CAMELLIA FED COM 26 36 2	21 Well Number: 083H	
Access road engineering design? NO		
Access road engineering design attachn	ment:	
Access surfacing type: OTHER		
Access topsoil source: ONSITE		
Access surfacing type description: Calich	he	
Access onsite topsoil source depth: 6		. •
Offsite topsoil source description:		
Onsite topsoil removal process: Grader		
Access other construction information: N	NM One Call (811) will be notified before construction starts.	· .
Access miscellaneous information:		
Number of access turnouts:	Access turnout map:	•
Drainage Control		
New Yoad Grainage crossing. OTHER	d Ditchod	
Road Drainage Control Structures (DCS)	description: Crowned and Ditched	·
Road Drainage Control Structures (DCS)	attachment:	1
Access Additional Attac	inments	
Additional Attachment(s):	· · · ·	
Section 2 Now or Deco	notructed Access Deede	
Section 2 - New of Reco	Instructed Access Roads	
Will new roads be needed? YES		
CAMELLIA_FED_COM_26_36_21_083H CAM_AZE_5SX_ROAD_20190405133855.r	_SITE_ACCESS_MAP_20190405133841.pdf ndf	
New road type: RESOURCE		
Length: 455 Feet	Width (ft.): 30	
Max slope (%): 2	Max grade (%): 2	
Army Corp of Engineers (ACOE) permit re	equired? NO	
ACOE Permit Number(s):		
New road travel width: 20		
New road access erosion control: Crowne	ed and Ditched	
New road access plan or profile prepared	1? NO	

Operator Name: AMER	REDEV OPERATING LLC			
Well Name: CAMELLIA	A FED COM 26 36 21	Well Number: 0	83H	
New road access plan	attachment:			
Access road engineeri	ng design? NO			:
Access road engineer	ing design attachment:		•	
Access surfacing type:	: OTHER			
Access topsoil source:	ONSITE			
Access surfacing type	description: Caliche			
Access onsite topsoil a	source depth: 6		÷	
Offsite topsoil source o	description:			
Onsite topsoil removal	process: Grader			
Access other construct	tion information: NM Or	ne Call (811) will be notified be	fore construction starts.	
Access miscellaneous	information:	· · · ·		
Number of access turn	outs: Ac	ccess turnout map:		
Drainage C	Control			
New road drainage cro	ssing: OTHER			
Drainage Control com	ments: Crowned and Ditc	hed		
Road Drainage Control	Structures (DCS) desci	ription: Crowned and Ditched		
Road Drainage Control	Structures (DCS) attac	hment:		
Access Ac	ditional Attachme	ents		
Additional Attachment	(s):			
Section 2	- New or Reconstr	ucted Access Roads		
Will new roads be need	led? YES			
New Road Map:				
CAMELLIA_FED_COM_ CAM_AZE_5SX_ROAD	_26_36_21_083HSITE _20190405133855.pdf	E_ACCESS_MAP_201904051	33841.pdf	
New road type: RESOU	JRCE			
_ength: 455	Feet	Width (ft.): 30		
Max slope (%): 2		Max grade (%): 2		÷
Army Corp of Engineer	rs (ACOE) permit require	ed? NO		
ACOE Permit Number(s):		:	
New road travel width:	20	. н.		
New road access erosi	on control: Crowned and	Ditched	:	

Page 3 of 12

Operator Name: AMEREDEV OPERATING	
Well Name: CAMELLIA FED COM 26 36 21	Well Number: 083H
New road access plan or profile prepared?	
New road access plan attachment:	· · ·
Access road engineering design? NO	
Access road engineering design attachme	ent:
Access surfacing type: OTHER	
Access topsoil source: ONSITE	
Access surfacing type description: Caliche	
Access onsite topsoil source depth: 6	
Offsite topsoil source description:	
Onsite topsoil removal process: Grader	
Access other construction information: NM	I One Call (811) will be notified before construction starts.
Access miscellaneous information:	
Number of access turnouts:	Access turnout map:
Drainage Control	
New road drainage crossing: OTHER	
	Ditchod

Road Drainage Control Structures (DCS) description: Crowned and Ditched

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

CAMELLIA_FED_COM_26_36_21_083H___1_MILE_RADIUS_WELLS_20190405134007.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Production from the proposed well will be transported to an existing production facility named Camellia CTB, northwest of the well pad, via a buried 4" poly flowline (700 psi maximum) that runs approximately 2,614'.

Operator Name: AMEREDEV OPERATING LLC Well Name: CAMELLIA FED COM 26 36 21 Well Num	nber: 083H
Production Facilities map:	
BO_CAMELLIA_FED_COM_BATTERY_SITE_REV1_20190405134127.	pdf
CAM_AZE_5SX_FLOWLINE_20190405134129.pdf	
BO_CAM_AZE_3A3_FAD_3HE_REV1_20190403134203.FDF	
Section 5 - Location and Types of Water Sup	ply
Water Source Table	
Water source use type: DUST CONTROL, INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE	Water source type: GW WELL E
CASING Describe type:	Source longitude:
Source latitude:	
Source datum:	
Water source permit type: PRIVATE CONTRACT	
Source land ownership: PRIVATE	
Source transportation land ownership: FEDERAL	
Water source volume (barrels): 20000	Source volume (acre-feet): 2.577862
Source volume (gal): 840000	· · · · · · · · · · · · · · · · · · ·
·	
Water source and transportation map:	
CAMELLIA_FED_COM_26_36_21_083HWATER_MAP_201904051	34608.pdf
CAMELLIA_FED_COM_26_36_21_083HWATER_WELLS_LIST_20	190405134609.pdf
New water well? NO	
New Water Well Into	
Well latitude: Well Longitude:	Well datum:
Well target aquifer:	
Est. depth to top of aquifer(ft): Est thickness of	aquifer:
Aquifer comments:	
Aquifer documentation:	
well depth (ft): well casing type:	
Well depth (ft): well casing type: Well casing outside diameter (in.): Well casing inside	diameter (in.):
Well depth (ft): Well casing type: Well casing outside diameter (in.): Well casing inside New water well casing? Used casing source	diameter (in.): :e:

Page 5 of 12

Operator Name: AMEREDEV OPERATING LLC Well Name: CAMELLIA FED COM 26 36 21	C Well Number: 083H		
Grout material:	Grout depth:		
Casing length (ft.):	Casing top depth (ft.):		
Vell Production type:	Completion Method:		
Vater well additional Information:			
itate appropriation permit:			
dditional information attachment:			
Section 6 - Construction Mate	erials		
			n de see n ∦ n de see n de see
construction Materials source location attach	ment:		
AMELLIA_FED_COM_26_36_21_083HCAL	ICHE_MAP_20190405134800.pdf		
Section 7 - Methods for Handling	Waste		•
Vaste type: DRILLING			
Vaste content description: Drill cuttings, mud, s	salts, and other chemicals		
mount of waste: 2000 barrels			
Vaste disposal frequency : Daily			
			· · · ·
afe containmant attachment:			
	Disposal location ownership: COMME	ERCIAL	
Disposal type description:	· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·
	 Strangersteiner and Strangersteiner auf die Strangersteiner der Strange Strangersteiner der Strangersteiner der Stran Strangersteiner der Strangersteiner der Strangersteiner	· · ·	
			· · ·
Reserve P	it		<i></i>
	efg. Dan		
	· · · · · · · · · · · · · · · · · · ·		:
		· .	
		Page	e 6 of 12

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 083H

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Cuttings area length (ft.)

Cuttings area depth (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

CAMELLIA_FED_COM_26_36_21_083H___WELL_SITE_DIAGRAM_20190405135114.pdf Comments:

Section 10 - Plans for Surface Reclamation

and the second secon

Recontouring attachment:

CAMELLIA_FED_COM_26_36_21_083H___WELL_SITE_DIAGRAM_20190405135134.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well Name: CAMELLIA FED COM 26 3	36 21 Well Number : 083⊢	1
Well pad proposed disturbance (acres): 4.53 Road proposed disturbance (acres): 0.313 Powerline proposed disturbance (acres): 0 Pipeline proposed disturbance	Well pad interim reclamation (acres): 0.79 Road interim reclamation (acres): 0 Powerline interim reclamation (acres): 0 Pipeline interim reclamation (acres): 0	Well pad long term disturbance (acres): 3.74 Road long term disturbance (acres): 0.313 Powerline long term disturbance (acres): 0 Pipeline long term disturbance
(acres): 1.8 Other proposed disturbance (acres): (Total proposed disturbance: 6.643	Other interim reclamation (acres): 0) Total interim reclamation: 0.79	(acres): 1.8 Other long term disturbance (acres): 0 Total long term disturbance: 5.853

Soil treatment: None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Operator Name:	AMEREDEV	OPERATING	LLC
-----------------------	----------	-----------	-----

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 083H

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed name:

Source name:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Seed source:

Source address:

Total pounds/Acre:

Seed Summary
Seed Type Pounds/Acre

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Zachary

Phone: (580)940-5054

Email: zboyd@ameredev.com

Last Name: Boyd

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Pt dat he de adpacet (*)

Page 9 of 12

Operator	Name:	AMEREDE	V OPERAT	ING LLC

Well Name: CAMELLIA FED COM 26 36 21 Well Nu

Well Number: 083H

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: NEW ACCESS ROAD

Page 10 of 12
Operator Name: AMEREDEV OPERATING LLC **Well Name:** CAMELLIA FED COM 26 36 21

Well Number: 083H

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: PIPELINE

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Use APD as ROW?

Section 12 - Other Information

Right of Way needed? NO

ROW Type(s):

ROW Applications

SUPO Additional Information:

Page 11 of 12

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 083H

Use a previously conducted onsite? YES

Other SUPO Attachment

CAMELLIA_FED_COM_26_36_21_083H___SUPO_REV_20190405135459.pdf

Page 12 of 12

.

AMEREDEV

Ameredev Operating, LLC Camellia Fed Com 26 36 21 083H Section 28, Township 26S, Range 36E Lea County, New Mexico

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Camellia Fed Com 26 36 21 083H. See Exhibit 2a – One Mile Radius Wells List for a list of wells depicted.

Exhibit 2 - One Mile Radius Existing Wells

API	WELL NAME	STATUS	TD
30025257020000	LEA /7406/ 2	PLUGOIL	3340
30025257780000	QUANAH PARKER 1	PLUGOIL	3310
30025257840000	LEA 7406 JV-S 3	DRY	887
30025258290000	LEA 7406 JV-S 4	PLUGOIL	3268
30025259230000	HORSE BACK 4	JNK	748
30025259530000	NEW MEXICO `CV` STAT 1	PLUGOIL	3239
30025259540000	HORSE BACK 4Y	JNK	749
30025260230000	QUANAH PARKER 3	ABDNLOC	0
30025260480000	NEW MEXICO `CV` STAT 2	PLUGOIL	3400
30025098560000	SAND HILLS UNIT 6	JNK	1257
30025098570000	SAND HILLS UNIT A 1	DHSO	3349
30025098580000	FEDERAL 1	DHSO	3940
30025258410000	PARKER QUANAH 2	JNK	284
30025258900000	LEA 7406 JV-S 5	OIL	3266
30025259090000	LEA 7406 JV-S 6	PLUGOIL	3250
30025259110000	PARKER QUANAH 2-Y	PLUGOIL	3258
30025259200000	LEA 7406 JV-S 7	PLUGOIL	3270
30025259300000	LEA 7406 JV-S 8	PLUGOIL	3270
30025259570000	LEA WD-1	DHSO	3420
30025260560000	LEA 7406-JV-S 9	DRY	3268
30025260680000	LEA 7406-JV-S 9-Y	PLUGOIL	3270
30025261310000	WILSON /21/-FEDERAL 1	OIL	3340
30025261320000	WILSON /21/ FED 2	OIL	3500
30025261330000	WILSON `21`-FEDERAL 3	OIL	3797
30025261340000	WILSON 21-FEDERAL 4	OIL	3575
30025261350000	WILSON 21-FEDERAL 5	OIL	3800
30025261360000	WILSON '21' FEDERAL 6	JNK	1682
30025261370000	WILSON /21-FED/ 7	OIL	3700
30025261380000	WILSON /21/ FED 8	OIL	3700
30025267180000	WILSON /21/ FED 6-Y	OIL	3750
30025268770000	BUFFALO HUMP 1	PLUGOIL	3585
30025269870000	BUFFALO HUMP 2	PLUGOIL	3545
30025270000000	LEA /21/ 7406 JV-S 1	OIL	3668
30025270280000	LEA /21/7406 JV-S 2	OIL	3658
30025270290000	LEA /21/7406 JV-S 3	OIL	3598

30025270300000	LEA /21/7406 JV-S 4	JNK
30025270410000	LEA `21` 7406 JV-S 6	OIL
30025270420000	LEA `21` 7406 JV-S 7	OIL
30025270430000	LEA /21/7406 JV-S 8	OIL
30025271290000	BUFFALO HUMP 8	PLUGOIL
30025271630000	AMERICAN EAGLE 1	PLUGOIL
30025272070000	LEA /21/ 7406 JV-S 4-Y	OIL
30025388850000	EAGLE FEATHER FEDERA 2	GAS
30025401700000	GOOD CHIEF STATE 1	OIL
30025269880000	QUANAH PARKER 3	ABDNLOC
30025269890000	QUANAH PARKER 4	ABDNLOC
30025442020000	AMEN CORNER 26 36 27 111H	PERMIT
30025441050100	AZALEA 26-36-28 STAT 121H	JNK
30025444390000	MAGNOLIA 26-36-22 ST 111H	PERMIT
30025444720000	MAGNOLIA 26-36-22 ST 101H	PERMIT
30025441050000	AZALEA 26-36-28 STAT 121H	AT-TD

Exhibit 2a – One Mile Radius Existing Wells List

.

.

.

AMEREDEV

<u>Permit #</u>	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04'14.32" N, 103°12'32.30" W
CP 1378	S. Eppenour	32°05'40.62" N, 103°13' 35.26" W
CP 1285	Sec. 5	32°03'56.50" N, 103°17'37.04" W
CP 857	Capped	32°04′39.70″ N, 103°16′51.13″ W
C 2287	#1	32°03'59.0" N, 103°33'16.8" W
C 2286	#2	32°03'59.2" N, 103°33'15.2" W
C 2290	#3	32°04'1.0" N, 103°33' 12.6" W
C 2285	#4	32°04'3.7" N, 103°33'9.7" W
C 2288	#5	32°04'0.5" N, 103°33'8.4" W
C 2294	Garden	32°03'3.2" N, 103°32'38.1" W
C 2293	House	32°03'2.3" N, 103°32'36.8" W
J-11-S-3	Farm Well #2	32°03'08.4" N, 103°16'35.2" W
J-11-S-2	Farm Well #3	32°03′11.5″ N, 103°17′02.0″ W
J-11-S	Farm Well #4	32°03'24.6" N, 103°17'02.1" W
CP 1170 POD 1	CB 1	32°03′57.2″ N, 103°18′45.3″ W
CP 1170 POD 5		32°07'17.1" N, 103°17'48.0" W
CP 1263 POD 5	СВ 2	32°03'56.27" N, 103°18'27.4" W
CP 1263 POD 3	СВ 3	32°03'54.90" N, 103°18'16.74" W
CP 1351 POD 1	CB 4	32°03'57.16" N, 103°17'45.13" W
CP 1351 POD 2	CB 5	32°03'30.70" N, 103°17'45.70" W
J 26	Ryan	32°01'20.41" N, 103°15'49.46" W
13		32°02'41.5" N, 103°18'55.8" W

Exhibit 4 – Water Wells

AMEREDE

Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

Exhibit 3 – Well Site Diagram

AMEREDEV

Ameredev Operating, LLC Camellia Fed Com 26 36 21 083H Section 28, Township 26S, Range 36E Lea County, New Mexico

Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

Exhibit 3 – Well Site Diagram

AMEREDEV

Surface Use Plan of Operations

Introduction

The following Surface Use Plan of Operations will be implemented by Ameredev Operating, LLC (Ameredev), after APD approval. No disturbance will be created other than those described in this surface use plan. If any additional surface disturbance becomes necessary after APD approval, the appropriate BLM approved sundry notice or right-of-way application will be acquired prior to such disturbance. This Surface Use Plan includes Ameredev's well pad, battery site, electrical, water and flow lines, and access roads.

Before any surface disturbance is created, stakes or flagging will be installed to mark boundaries of permitted areas of disturbance, including soil storage areas. As necessary, slope, grade, and other construction control stakes will be placed to ensure construction is in accordance with the surface use plan. All boundary markers will be maintained in place until final construction cleanup is completed. If disturbance boundary markers are displaced, they will be replaced before construction proceeds. Adjacent operators will be contacted before construction starts to mark adjacent pipelines.

Directions to proposed pad:

At the intersection of NM-205 and NM-128, head south on NM-205 approximately 8 miles. Turn west (right) on lease road and proceed approximately 1.2 miles. Turn south (left) on lease road and proceed approximately 460', to the northwest of the well pad. See *Exhibit 1 – Well Pad Access* for a map of the route.

Exhibit 1 - Well Pad Access

Section 1 – Existing Roads

- A. The existing access road route to the proposed project is depicted on *Exhibit 1 Well Pad Access*. Improvements to the driving surface will be done where necessary. No new surface disturbance will be done, unless otherwise noted in the New or Reconstructed Access Roads section of this surface use plan.
- **B.** Any required right-of-way will be acquired before construction begins.
- **C.** The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattle guards, other range improvement

projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use.

D. Operator will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

AMEREDE

Section 2 – New or Reconstructed Access Roads

- A. A section of new access road will be needed for this proposed project. See Exhibit 1 Well Pad Access, for locations.
- **B.** The length of new access road needed to be constructed for this proposed project is approximately 455 feet.
- C. New access road will be constructed with 6 inches of compacted caliche.
- D. The maximum driving width of the access road will be 20 feet. The maximum width of surface disturbance when constructing the access road will not exceed 30 feet. All areas outside of the driving surface will be revegetated.
- E. When the road travels on fairly level ground, the road will be crowned and ditched with a maximum 2% slope from the tip of the road crown to the edge of the driving surface. Ditches will be constructed on each side of the road. The ditches will be 3 feet wide with 3:1 slopes. See road cross section diagram below:

mown natural ground

- F. No turnouts will be constructed on the new portions of access road.
- G. No cattle guards will be installed on the new portions of access road.
- H. Right-of-way will be acquired before construction begins.
- I. No culverts or low water crossings will be constructed for the new portions of access road.
- J. Since the access road is on level ground, no lead-off ditches will be constructed for the new portions of access road.
- K. Any sharp turns in the in the new road will be rounded to facilitate turning by trucks.
- L. Newly constructed or reconstructed roads, on surface under the jurisdiction of the Bureau of Land Management, will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road.
- **M.** All topsoil and fragmented rock removed in excavation will be used as directed in approved plan.

Section 3 – Location of Existing Wells

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Camellia Fed Com 26 36 21 083H. See *Exhibit 2a – One Mile Radius Wells List* for a list of wells depicted.

AMEREDEV

API	WELL NAME	STATUS	TD
30025257020000	LEA /7406/ 2	PLUGOIL	3340
30025257780000	QUANAH PARKER 1	PLUGOIL	3310
30025257840000	LEA 7406 JV-S 3	DRY	887
30025258290000	LEA 7406 JV-S 4	PLUGOIL	3268
30025259230000	HORSE BACK 4	JNK	748
30025259530000	NEW MEXICO 'CV' STAT 1	PLUGOIL	3239
30025259540000	HORSE BACK 4Y	JNK	749
30025260230000	QUANAH PARKER 3	ABDNLOC	0
30025260480000	NEW MEXICO `CV` STAT 2	PLUGOIL	3400
30025098560000	SAND HILLS UNIT 6	JNK	1257
30025098570000	SAND HILLS UNIT A 1	DHSO	3349
30025098580000	FEDERAL 1	DHSO	3940
30025258410000	PARKER QUANAH 2	JNK	284
30025258900000	LEA 7406 JV-S 5	OIL	3266
30025259090000	LEA 7406 JV-S 6	PLUGOIL	3250
30025259110000	PARKER QUANAH 2-Y	PLUGOIL	3258
30025259200000	LEA 7406 JV-S 7	PLUGOIL	3270
30025259300000	LEA 7406 JV-S 8	PLUGOIL	3270
30025259570000	LEA WD-1	DHSO	3420
30025260560000	LEA 7406-JV-S 9	DRY	3268
30025260680000	LEA 7406-JV-S 9-Y	PLUGOIL	3270
30025261310000	WILSON /21/-FEDERAL 1	OIL	3340
30025261320000	WILSON /21/ FED 2	OIL	3500
30025261330000	WILSON `21`-FEDERAL 3	OIL	3797
30025261340000	WILSON 21-FEDERAL 4	OIL	3575
30025261350000	WILSON 21-FEDERAL 5	OIL	3800
30025261360000	WILSON '21' FEDERAL 6	JNK	1682
30025261370000	WILSON /21-FED/ 7	OIL	3700
30025261380000	WILSON /21/ FED 8	OIL	3700
30025267180000	WILSON /21/ FED 6-Y	OIL	3750
30025268770000	BUFFALO HUMP 1	PLUGOIL	3585
30025269870000	BUFFALO HUMP 2	PLUGOIL	3545
30025270000000	LEA /21/ 7406 JV-S 1	OIL	3668
30025270280000	LEA /21/7406 JV-S 2	OIL	3658
30025270290000	LEA /21/7406 JV-S 3	OIL	3598
30025270300000	LEA /21/7406 JV-S 4	JNK	1060
30025270410000	LEA `21` 7406 JV-S 6	OIL	3495
30025270420000	LEA `21` 7406 JV-S 7	OIL	3525
30025270430000	LEA /21/7406 JV-S 8	OIL	3570
30025271290000	BUFFALO HUMP 8	PLUGOIL	3606

5 | P a g e

30025271630000	AMERICAN EAGLE 1	PLUGOIL	3550
30025272070000	LEA /21/ 7406 JV-S 4-Y	OIL	3550
30025388850000	EAGLE FEATHER FEDERA 2	GAS	13179
30025401700000	GOOD CHIEF STATE 1	OIL	3873
30025269880000	QUANAH PARKER 3	ABDNLOC	
30025269890000	QUANAH PARKER 4	ABDNLOC	
30025442020000	AMEN CORNER 26 36 27 111H	PERMIT	
30025441050100	AZALEA 26-36-28 STAT 121H	JNK	3561
30025444390000	MAGNOLIA 26-36-22 ST 111H	PERMIT	
30025444720000	MAGNOLIA 26-36-22 ST 101H	PERMIT	
30025441050000	AZALEA 26-36-28 STAT 121H	AT-TD	13600

Exhibit 2a – One Mile Radius Existing Wells List

Section 4 - Location of Existing and/or Proposed Production Facilities

- A. The multiple well pad will be located on section 28, and will measure 395'x500'. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location.
- **B.** Production from the proposed well will be transported to an existing production facility named Camellia CTB, northwest of the well pad, via a buried 4" poly flowline (700 psi maximum) that runs approximately 2,614'.
- C. All permanent (lasting more than six months) above ground structures including but not limited to pump jacks, storage tanks, barrels, pipeline risers, meter housing, etc., that are not subject to safety requirements will be painted a non-reflective paint color, Shale Green, from the BLM Standard Environmental Colors chart, unless another color is required in the APD Conditions of Approval.
- D. If any plans change regarding the production facility or other infrastructure (pipeline, electrical lines, etc.), Ameredev will submit a sundry notice or right-of-way (if applicable) prior to installation or construction.

AMEREDEV

Ameredev Operating, LLC Camellia Fed Com 26 36 21 083H Section 21, Township 26S, Range 36E Lea County, New Mexico

Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

Exhibit 3 – Well Site Diagram

Section 5 - Location and Types of Water Supply

A. This location will be drilled using a combination of water and mud systems (outlined in the Drilling Program). The water will be obtained from preexisting water wells, by running a pump directly to the drilling rig. See *Exhibit 4 - Water Wells*, for a list of available water wells. In cases where a polyline is used to transport water for drilling or completion purposes, the existing and proposed roads into location will be utilized.

AMEREDE

<u>Permit #</u>	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04'14.32" N, 103°12'32.30" W
CP 1378	S. Eppenour	32°05′40.62″ N, 103°13′ 35.26″ W
CP 1285	Sec. 5	32°03'56.50" N, 103°17'37.04" W
CP 857	Capped	32°04'39.70" N, 103°16'51.13" W
C 2287	#1	32°03'59.0" N, 103°33'16.8" W
C 2286	#2	32°03'59.2" N, 103°33'15.2" W
C 2290	#3	32°04'1.0" N, 103°33' 12.6" W
C 2285	#4	32°04'3.7" N, 103°33'9.7" W
C 2288	#5	32°04'0.5" N, 103°33'8.4" W
C 2294	Garden	32°03'3.2″ N, 103°32'38.1″ W
C 2293	House	32°03'2.3" N, 103°32'36.8" W
J-11-S-3	Farm Well #2	32°03'08.4" N, 103°16'35.2" W
J-11-S-2	Farm Well #3	32°03′11.5″ N, 103°17′02.0″ W
J-11-S	Farm Well #4	32°03'24.6" N, 103°17'02.1" W
CP 1170 POD 1	CB 1	32°03'57.2" N, 103°18'45.3" W
CP 1170 POD 5	··· :	32°07'17.1" N, 103°17'48.0" W
CP 1263 POD 5	CB 2	32°03'56.27" N, 103°18'27.4" W
CP 1263 POD 3	CB 3	32°03'54.90" N, 103°18'16.74" W
CP 1351 POD 1	CB 4	32°03'57.16" N, 103°17'45.13" W
CP 1351 POD 2	CB 5	32°03'30.70" N, 103°17'45.70" W
J 26	Ryan	32°01′20.41″ N, 103°15′49.46″ W
13		32°02'41.5" N, 103°18'55.8" W

Exhibit 4 – Water Wells

Section 6 – Construction/Construction Materials

A. Caliche will be obtained from the caliche pit located at Lat: 32° 8'0.90"N, Long: 103°16'45.05" or the caliche pit at Lat: 32° 6'28.34"N, Long: 103°16'58.48"W or the caliche pit at Lat: 32° 1'1.28"N, Long: 103°15'15.83"W.

AMEREDE

- B. Caliche utilized for the drilling pad will be obtained either from the locations listed above, an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "flipping" the well location. A mineral material permit will be obtained from the BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "flipping" a well location is as follows:
 - 1. An adequate amount of topsoil/root zone (usually top 6 inches of soil) will be stripped from the proposed well location and stockpiled along the side of the well location as depicted on the *Exhibit 3 Well Site Diagram*.
 - 2. An area will be used within the proposed well site dimensions to excavate caliche.
 - 3. Subsoil will be removed and stockpiled within the surveyed well pad dimensions.
 - 4. Once caliche/surfacing mineral is found, the mineral material will be excavated and stock piled within the approved drilling pad dimensions.
 - 5. Subsoil will then be pushed back in the excavated hole and caliche will be spread accordingly across the entire well pad and road (if available).
 - Neither caliche, nor subsoil will be stockpiled outside of the well pad dimensions. Topsoil will be stockpiled along the south edge of the pad as depicted in *Exhibit 3 – Well Site Diagram*.
 - 7. In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. A BLM mineral material permit will be acquired prior to obtaining any mineral material from BLM pits or federal land.

Section 7 - Methods of Handling Waste

- A. Drill cuttings, mud, salts and other chemicals will be properly disposed of into steel tanks on site and hauled to a State approved commercial disposal facility.
- **B.** Garbage and trash produced during drilling and completion operations will be collected in a portable metal trash container and disposed of properly at a state approved disposal facility. All trash on and around the well site will be collected for disposal.
- **C.** Human waste and grey water will be properly contained and disposed of properly at a state approved disposal facility.
- **D.** After drilling and completion operations, trash, chemicals, salts, frac sand and other waste material will be removed and disposed of properly at a state approved disposal facility.

AMEREDE

Section 8 - Ancillary Facilities

A. No ancillary facilities will be needed for the proposed project.

Section 9 - Well Site Layout

- A. See Exhibit 3 Well Site Diagram. The following information is presented:
 - 1. Reasonable scale
 - 2. Well pad dimensions/orientation
 - 3. Proposed access road
 - 4. Topsoil stockpile
- **B.** The proposed drilling pad was staked and surveyed by a professional surveyor. The attached survey plat of the well site depicts the drilling pad layout as staked.
- **C.** Topsoil salvaging
 - 1. Grass, forbs, and small woody vegetation such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and re-spread evenly on the site following topsoil re-spreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

Section 10 - Plans for Final Surface Reclamation

Reclamation Objectives

- A. The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil, to control erosion, and to minimize habitat and forage loss, visual impact, and weed infestation during the life of the well or facilities.
- B. The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources, and wildlife habitats. To ensure that the long-term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning, and vegetative productivity.
- **C.** The BLM will be notified at least 3 days prior to the commencement of any reclamation procedures.

D. If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged. Ameredev will gain written permission from the BLM if more time is needed.

AMEREDE

E. Interim reclamation will be performed on the well site after the well is drilled and completed. Exhibit 3 – Well Site Diagram depicts the location and dimension of the planned interim reclamation for the well site.

Interim Reclamation Procedures (if performed)

- A. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production.
- **B.** In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. The areas planned for interim reclamation will then be contoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to reseeding will not be steeper than a 3:1 Ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be re-contoured to the above ratios during interim reclamation.
- D. Topsoil will be evenly re-spread and aggressively revegetated over the entire disturbed area not needed for all-weather operations, including cuts and fills. To seed the area, the proper BLM mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Final Reclamation Procedures (well pad, buried pipelines, etc.)

- A. Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- **B.** All surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- **C.** All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be re-contoured to the contour existing prior to initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to re-contouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. All topsoil remaining at the battery will be reseeded in place for the life of the battery.
- **D.** After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BLM seed mixture, free of noxious weeds. Final seedbed preparation will consist of

contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.

AMEREDE

- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- **F.** All unused equipment and structures including pipelines, electric line poles, tanks, etc. that serviced the well will be removed.
- **G.** All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not re-disturbed, and that erosion is controlled.

Section 11 - Surface Ownership

A. New Mexico State Land Office has surface ownership for proposed project area.

Section 12 - Other Information

- A. There are no dwellings within 1 mile of this location.
- B. An on-site meeting for Ameredev's Camellia Fed Com 26 36 21 083H well was held on March 29, 2018. Attendees included Jeff Robertson (BLM), Shane McNeely (Ameredev), and Ged Adams (Topographic).
- C. The well pad described in this document Camellia (CAM #5SX) will contain 5 wells that
- produce into an existing central tank battery (CTB) located northwest of the well pad. The wells share a common pad access road, and the five flowlines from the individual wells will share a common corridor that will terminate into the CTB. The wells that share the pad are:
 - Camellia Fed Com 26 36 21 083H, APD ID# 10400030726
 - Camellia Fed Com 26 36 21 093H, APD ID# 10400030569
 - Camellia Fed Com 26 36 21 104H, APD ID# 10400030326
 - Camellia Fed Com 26 36 21 114H, APD ID# 10400030038
 - Camellia Fed Com 26 36 21 124H, APD ID# 10400030103

Ameredev field representative:

Zac Boyd, Operations Supervisor

Cell: (432) 385-6996

Email: <u>zboyd@ameredev.com</u>

<u>Ameredev office contact:</u> Christie Hanna, Regulatory Coordinator

Direct: (737) 300-4723

Email: channa@ameredev.com

Ameredev Operating, LLC Address: 5707 Southwest Parkway Building 1, Suite 275 Austin, Texas 78735

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

PWD Data Report

. . .

.

. . .

· .

.

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

PWD disturbance (acres):

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Bond Info Data Report