Form 3160-3 (June 2015)	2		0		APPRO lo. 1004-4 anuary 31	0137	F/
Form 3160-3 (June 2015) UNITED STATE DEPARTMENT OF THE I BUREAU OF LAND MAN APPLICATION FOR PERMIT TO D	NTERIOR	BBS	19	5. Lease Serial No. NMNM023199			
APPLICATION FOR PERMIT TO D	RILL	REENTER	JED	6. If Indian, Alloted	e or Tribe	Name	
1a. Type of work: I DRILL	EENTER	SECE	~ ·	7. If Unit or CA Ag	reement,	Name and No.	
	ther	Multiple Zone	Ŕ.	8. Lease Name and	Well No		
1c. Type of Completion: Hydraulic Fracturing	ingle Zone	Multiple Zone	•	CAMELLIA FED (093H		36 21 <i>E</i> 400)	
2. Name of Operator AMEREDEV OPERATING LLC (372224)				9. API Well No. 30-0	zç y	49851	- 1
3a. Address 5707 Southwest Parkway, Building 1, Suite 275 Austin TX		No. <i>(include area coa</i> 700	le)	10. Field and Pool, WC-025 G-08 S20	•		8150)
4. Location of Well (Report location clearly and in accordance	with any State	requirements.*)		11. Sec., T. R. M. o		•	-
At surface LOT C / 670 FNL / 1980 FWL / LAT 32.019 At proposed prod. zone LOT C / 50 FNL / 1980 FWL / L/			21	SEC 28 / T26S / F	(30E / N	MP	
14. Distance in miles and direction from nearest town or post off			_	12. County or Paris	h	13. State	
5 miles 15. Distance from proposed* 670 feet	16. No of a	cres in lease	17. Spaci	LEA ng Unit dedicated to	this well	NM	:
location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any)	320		320				
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Propose 11509 feet	d Depth / 22971 feet		BIA Bond No. in file 18001478)		•
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approxi	imate date work will	start*	23. Estimated durat	tion	. <u> </u>	
2911 feet	12/01/2019 24. Attac		···	90 days			
The following, completed in accordance with the requirements o (as applicable) 1. Well plat certified by a registered surveyor.	f Onshore Oil			lydraulic Fracturing	-		
 A Drilling Plan. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office 		Item 20 above). 5. Operator certifie 6. Such other site s	cation.	mation and/or plans a			
25. Signature		BLM. (Printed/Typed)		<u> </u>	Date	<u> </u>	
(Electronic Submission) Title	Christ	lie Hanna / Ph: (73	7)300-472	3	06/04/	2018	
Senior Engineering Technician Approved by (Signature)	Name	(Printed/Typed)			Date		
(Electronic Submission)	Christ	topher Walls / Ph: (575)234-2	2234	05/15/	2019	•
Title Petroleum Engineer		SBAD		•			
Application approval does not warrant or certify that the applicar applicant to conduct operations thereon.	nt holds legal	or equitable title to the	hose rights	in the subject lease w	hich wou	ild entitle the	
Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, n	ake it a crim	e for any person kno	ningly and	willfully to make to	nny dena	tment or agency	
of the United States any false, fictitious or fraudulent statements					any depa	runent of agency	
GCP Rec 04/20/19	UEN WI	TH CONDIT	IONS	Kæ,	holl	9	
		: 05/15/2019		*(Ir	structio	ons on page 2)	۰.

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

Approval Date: 05/15/2019

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: LOT C / 670 FNL / 1980 FWL / TWSP: 26S / RANGE: 36E / SECTION: 28 / LAT: 32.01968 / LONG: -103.2722 (TVD: 0 feet, MD: 0 feet) PPP: SESW / 0 FSL / 1977 FWL / TWSP: 26S / RANGE: 36E / SECTION: 21 / LAT: 32.02152 / LONG: -103.27219 (TVD: 11506 feet, MD: 12461 feet) BHL: LOT C / 50 FNL / 1980 FWL / TWSP: 26S / RANGE: 36E / SECTION: 16 / LAT: 32.05041 / LONG: -103.27221 (TVD: 11509 feet, MD: 22971 feet)

BLM Point of Contact

Name: Priscilla Perez Title: Legal Instruments Examiner Phone: 5752345934 Email: pperez@blm.gov

Approval Date: 05/15/2019

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Approval Date: 05/15/2019

(Form 3160-3, page 4)

263628C APD Camellia Fed Com 26 36 21 093H 30015 NMNM023199 Ameredev 12-55 03192019 NMK

Сар 133/8 surface csg in a 17 1/2 inch hole. **Design Factors** SURFACE #/ft Grade Collapse Burst Weiaht Segment Coupling Body Length 68.00 BUTT 7.77 0.71 2,025 137,700 "A" J 55 2.21 "B" 0 0 137,700 w/8.4#/g mud, 30min Sfc Csg Test psig: 1,500 Tail Cmt does not circ to sfc. Totals: 2,025 Comparison of Proposed to Minimum Required Cement Volumes Annular 1 Stage 1 Stage 1 Stage Drilling Calc Min Dist Hole Min Rea'd Volume Cmt Sx **CuFt Cmt** Cu Ft % Excess Mud Wt MASP BOPE Hole-Cplg Size 17 1/2 1.56 0.6946 1475 2512 1460 72 8.40 2443 3M Burst Frac Gradient(s) for Segment(s) A, B = , b Ali > 0.70, OK. Alt Burst = 1.41 > 0.70 INTERMEDIATE 95/8 casing inside the 13 3/8 **Design Factors** #/ft Segment Grade Coupling Body Collapse Burst Length Weight "A" 40.00 **HCL 80** BUTT 2.08 0.87 0.92 11,025 441,000 "B" 0 0 w/8.4#/g mud, 30min Sfc Csg Test psig: Totals: 11.025 441.000 The cement volume(s) are intended to achieve a top of 0 ft from surface or a 2025 overlap. Hole Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc Reg'd Min Dist Size Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE Hole-Cplg 12 1/4 0.3132 look 🖌 0 3517 8.50 3746 5M 0.81 D V Tool(s): 4991 sum of sx Σ CuFt Σ%excess 2770 6245 78 21 t by stage % : 125 Class 'H' tail cmt yld > 1.20 Burst Frac Gradient(s) for Segment(s): A, B, C, D = 0.52, b, c, d Alt Burst = 1.54 > 1 & Alt Collapse = 1.31 > 1.125 <0.70 a Problem!! Tail cmt **Design Factors** PRODUCTION $\frac{1}{5}$ $\frac{1}{2}$ casing inside the 9 5/8 Coupling Segment #/ft Grade Body Collapse Burst Length Weight "A" 20.00 **HCP 110** BUTT 2.79 1.83 1.97 11,100 222.000 "B" **HCP 110** BUTT 1.68 1.97 20.00 12.88 11,871 237,420 459,420 w/8.4#/g mud, 30min Sfc Csg Test psig: 2,442 Totals: 22,971 The cement volume(s) are intended to achieve a top of 0 ft from surface or a 11025 overlap. Hole Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc Rea'd **Min Dist** CuFt Cmt Mud Wt BOPE Size Volume Cmt Sx Cu Ft % Excess MASP Hole-Cplg 8 1/2 0.2291 4905 6573 5617 17 10.50 1.23 Class 'H' tail cmt yld > 1.20 5 1/2 Δ Design actors Weight Segment #/ft Grade Coupling Joint Collapse Burst Length "A" 0 0 "B" 0 Ō 0 0 Totals: w/8.4#/g mud, 30min Sfc Csg Test psig: Cmt vol calc below includes this csg, TOC intended 0 22971 ft from surface or a overlap. 1 Stage Drilling **Min Dist** Hole Annular 1 Stage 1 Stage Min Calc Req'd Size Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE Hole-Cpig 0 0 O

Carlsbad Field Office

Approval Date: 05/15/2019

4/30/2019

263628C APD Camellia Fed Com 26 36 21 093H 30015 NMNM023199 Ameredev 12-55 03192019 NMK_ContigencyPlan

Cap SURFACE 17 1/2 13 3/8 surface csg in a inch hole. **Design Factors** Weight Body Segment #/ft Grade Coupling Collapse Burst Length "A" 54.50 BUTT 7.73 1.25 1.12 2,025 110,363 J 55 "**B**" 0 0 Tail Cmt does not circ to sfc. 2,025 110,363 w/8.4#/g mud, 30min Sfc Csg Test psig: 1,027 Totals: Comparison of Proposed to Minimum Required Cement Volumes Hole Annular 1 Stage 1 Stage Min 1 Stage Drillina Calc Req'd Min Dist Hole-Cplg Volume Size Cmt Sx **CuFt Cmt** Cu Ft % Excess Mud Wt MASP BOPE 17 1/2 0.6946 2512 1461 72 8.60 1345 1.56 1475 2M Site plat (give radius a B) or 112 F.C.A. Ballal not found. 13 3/8 95/8 casing inside the **Design Factors** INTERMEDIATE #/ft Coupling Body Segment Grade Length Weight Collapse Burst **HCL 80** 200,520 "A" 40.00 BUTT 4.57 1.73 0.82 5,013 "B" 0 0 5.013 200.520 w/8.4#/g mud, 30min Sfc Csg Test psig: Totals: The cement volume(s) are intended to achieve a top of 0 2025 overlap. ft from surface or a 1 Stage 1 Stage 1 Stage Drilling Min Hole Annular Calc Req'd Min Dist MASP Size Cmt Sx CuFt Cmt Mud Wt **BOPE** Hole-Cplg Volume Cu Ft % Excess 12 1/4 0.3132 1689 5M 0.81 look 🖌 Ω 9.40 4161 3262 Σ%excess D V Tool(s): Σ CuFt sum of sx 1357 3882 130 36 t by stage % : 315 Burst Frac Gradient(s) for Segment(s): A, B, C, D = 1.15, b, c, d Alt Burst = 1.38 > 1 All > 0.70, OK. 75/8 A Buoyant INTERMEDIATE 9 5/8 casing inside the **Design Factors** #/ft Coupling Weight Segment Grade Joint Collapse Burst Length "A" BUTT 2.13 1.36 331,066 29.70 **HCL 80** ---**1.1**--11,147 "B" 0 0 w/8.4#/g mud, 30min Sfc Csg Test psig: 2,452 Totals: 11,147 331,066 The cement volume(s) are intended to achieve a top of 0 ft from surface or a 5013 overlap. Hole 1 Stage **Min Dist** Annular 1 Stage 1 Stage Min Drilling Calc Reg'd CuFt Cmt Mud Wt Volume Cmt Sx Cu Ft % Excess MASP BOPE Hole-Cpig Size 0.1005 8 3/4 683 1339 1172 14 3746 5M 0.56 10.50 Class 'H' tail cmt yld > 1.20 Alt Collapse = 1.65 > 1.125 Tail cmt PRODUCTION casing inside the **Design Factors** 51/2 7 5/8 #/ft Coupling Joint Collapse Segment Grade **Burst** Length Weight "A" 20.00 P 110 BUTT 1.30 1.99 2.29 11,147 222,940 "B" 20.00 P 110 BUTT 90.47 2.04 2.29 11,824 236,480 w/8.4#/g mud, 30min Sfc Csg Test psig: 2,452 Totals: 22,971 459,420 Alegment Design Factors would be: 2.85 2.1 if it were a vertical wellbore. MTD Max VTD Csg VD Curve KOP Dogleg^o Severity^o MEOC No Pilot Hole Planned 11100 12561.1 22971 11509 11509 90 6 11147 The cement volume(s) are intended to achieve a top of 0 ft from surface or a overlap. 1 Stage Drilling Req'd Min Dist Hole Annular 1 Stage 1 Stage Min Calc Volume Mud Wt MASP BOPE Hole-Cpla Size Cmt Sx CuFt Cmt Cu Ft % Excess 6 3/4 0.0835 1751 2346 2027 16 10.50 0.49 Class 'H' tail cmt yld > 1.20

Carlsbad Field Office

Approval Date: 05/15/2019

4/30/2019

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Ameredev Operating LLC
LEASE NO.:	NMNM023199
WELL NAME & NO.:	Camellia Fed Com 26 36 21 093H
SURFACE HOLE FOOTAGE:	670'/S & 1980'/W
BOTTOM HOLE FOOTAGE	50'/N & 1980'/W
LOCATION:	Section 28, T.26 S., R.36 E., NMPM
COUNTY:	Lea County, New Mexico

СОА

H2S	C Yes		
Potash	• None	C Secretary	C R-111-P
Cave/Karst Potential	• Low	C Medium	C High
Variance	C None	Flex Hose	C Other
Wellhead	C Conventional	Multibowl	C Both
Other	E4 String Area	Capitan Reef	WIPP

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

- 1. The 13-3/8 inch surface casing shall be set at approximately 2025 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours

Page 1 of 9

after bringing cement to surface or 500 pounds compressive strength, whichever is greater.

- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
- Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
- Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 9-5/8 inch 1st intermediate casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Page 2 of 9

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Excess calculates to 21% - additional cement might be required.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef Top. Operator shall provide method of verification. Excess calculates to 17% additional cement might be required.

Alternate Casing Design:

2nd Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

3. The minimum required fill of cement behind the 7-5/8 inch 2nd intermediate casing is:

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Excess calculates to 14% - additional cement might be required.

In the case of lost circulation, operator has proposed to pump down 9 5/8" X 7 5/8" annulus. Operator must run a CBL from TD of the 7 5/8" casing to surface. Submit results to the BLM.

Pilot hole is required to have a plug at the bottom of the hole. If two plugs are set, the BLM is to be contacted (575-361-2822) prior to tag of bottom plug, which must be a minimum of 200' in length. Operator can set one plug from bottom of pilot hole to kick-off point and save the WOC time for tagging the first plug. Note plug tops on subsequent drilling report.

4. The minimum required fill of cement behind the 5-1/2 inch production casing is:

Cement should tie-back at least 50 feet on top of Capitan Reef Top.
 Operator shall provide method of verification. Excess calculates to 16%
 - additional cement might be required.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2.

Option 1:

Page 3 of 9

Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi.)

D. SPECIAL REQUIREMENT(S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

Page 4 of 9

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Chaves and Roosevelt Counties Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201. During office hours call (575) 627-0272. After office hours call (575)

Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).

b. When the operator proposes to set surface casing with Spudder Rig

- Notify the BLM when moving in and removing the Spudder Rig.
- Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
- BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log (one log per well pad is acceptable) run from TD to surface (horizontal well vertical portion of hole) shall

Page 5 of 9

be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

Page 6 of 9

- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.

Page 7 of 9

- a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, no tests shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

Page 8 of 9

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Waste Minimization Plan (WMP)

In the interest of resource development, submission of additional well gas capture development plan information is deferred but may be required by the BLM Authorized Officer at a later date.

NMK4292019

Page 9 of 9

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie Hanna

Signed on: 04/04/2019

Zip: 78735

perator Certification Data Report

05/16/2019

Title: Senior Engineering Technician

Street Address: 5707 Southwest Parkway, Building 1, Suite 275

State: TX

State:

City: Austin

Phone: (737)300-4723

Email address: channa@ameredev.com

Field Representative

Representative Name:

Street Address:

City:

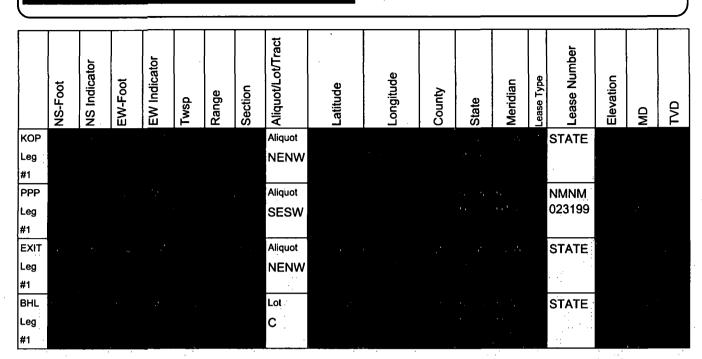
Phone:

Email address:

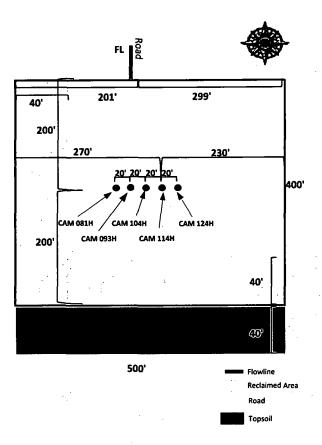
Zip:

VAFMSS U.S. Department of the interior BUREAU OF LAND MANAGEMENT	Application Data Report 05/16/2019
APD ID: 10400030569	Submission Date: 06/04/2018
Operator Name: AMEREDEV OPERATIN	GLLC
	Well Number: 093H Show Final Text
Well Type: OIL WELL	Well Work Type: Drill
Section 1 - General	·
PD ID: 10400030569	Tie to previous NOS? 10400028718 Submission Date: 06/04/2018
LM Office: CARLSBAD	User: Christie Hanna Title: Senior Engineering Technician
ederal/Indian APD: FED	Is the first lease penetrated for production Federal or Indian? FED
ease number: NMNM023199	Lease Acres: 320
urface access agreement in place?	Allotted? Reservation:
greement in place? NO	Federal or Indian agreement:
greement number:	
greement name:	
eep application confidential? NO	
ermitting Agent? NO	APD Operator: AMEREDEV OPERATING LLC
Operator Info Operator Organization Name: AMEREDE	
Operator Address: 5707 Southwest Parkv	
Operator PO Box:	Zip: 78735
-	e: TX
Dperator Phone: (737)300-4700	
Operator Internet Address:	
Section 2 - Well Inform	ation
ell in Master Development Plan? NO	Master Development Plan name:
ell in Master SUPO? NO	Master SUPO name:
	Master Drilling Plan name:
ell in Master Drilling Plan? NO	
Vell in Master Drilling Plan? NO	Well Number: 093H Well API Number:
Vell in Master Drilling Plan? NO ield/Pool or Exploratory? Field and Pool	Field Name: WC-025 G-08 Pool Name: LWR BONE S263620C SPRING
¹ A set of the s	Field Name: WC-025 G-08 Pool Name: LWR BONE

Operator Name: AMEREDEV OPERATING LLC

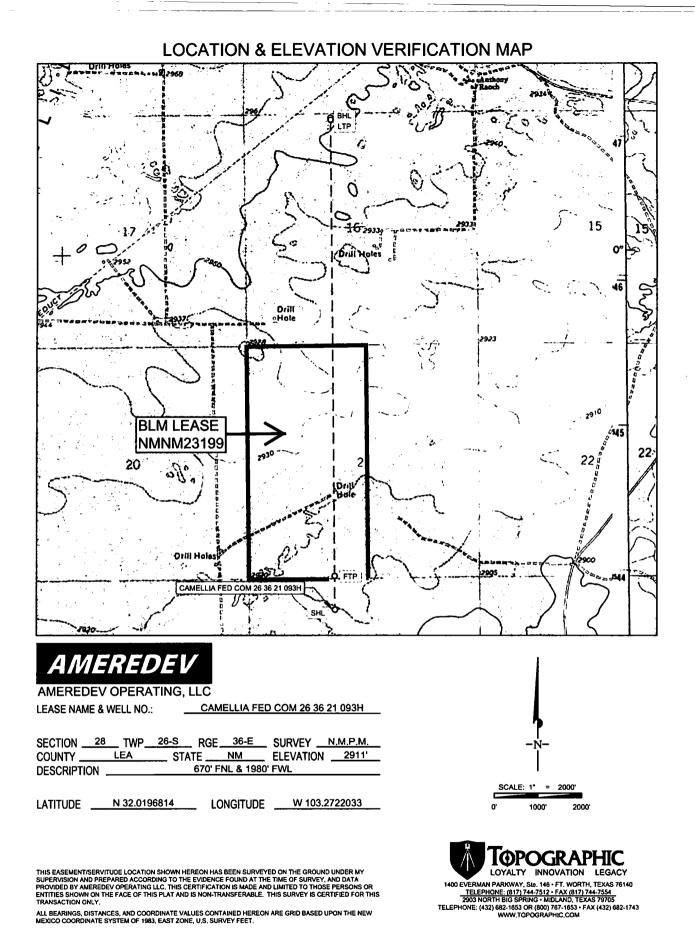

Well Number: 093H

													·		,		·
Describe d	other	miner	als:														
Is the prop	osed	well	in a H	elium	ı prod	uctio	n area?	N Use I	Existing W	/ell Pa	d? NO	Ne	ew :	surface o	distur	bance	?
Type of W	ell Pa	d: ML	JLTIPI	.E WE	ELL			$\alpha_{0} = 2$				с <u>.</u>		· ·		-	
Well Class	: HOF	RIZON	ITAL					Num	ber of Leg	s: 1			•				
Well Work	Туре	: Drill															
Well Type		NELL						•			·						
Describe \	Vell T	ype:						:									
Well sub-1	ype:	INFIL	L														
Describe s	ub-ty	pe:														•	
Distance t	o tow	n: 5 N	liles			Dis	tance to	nearest	well: 997 F	T							
Reservoir	well s	pacir	ng ass	signed	d acre	s Me	asureme	nt: 320 A	cres					····			
Well plat:	JE	FF_2	01904	04141	1441.p	odf											
	CA	MELI	LIA_FI	ED_C	OM_2	6_36	_21_093	HBLM	LEASE	MAP_2	01904	041414	159.	pdf			
	CA	MELI	LIA_FI	ED_C	OM_2	6_36	_21_093	HC_1	02_SIG_2	019040	41415	00.pdf					
	CA	MELI	IA_FI	ED_C	ОМ_2	6 <u>36</u>	_21_093	HEXH	I_2AB_201	90404	14150 ⁻	l.pdf					
	CA	MELI	LIA_FI	ED_C	ОМ_2	6_36	_21_093	HVICI		P_2019	04041	41501.	pdf				
	CA	MELI	LIA_FI	ED_C	ОМ_2	6_36	_21_093	HGAS	CAPTUR	RE_PL/	AN_201	90404	141	514.pdf			
en e								Dura	tion: 90 D/	AYS							
Sec	tion	3 - V	Vell	Loca	atior	n Tal	ole]									
Survey Ty	be: RE	ECTA	NGUL	AR													
Describe S	urvey	/ Тур	e:														
Datum: NA	D83							Vertio	cal Datum:	: NAVE	88						
·	•				•						•••						
NS-Foot	NS Indicator	EW-Foot	EW Indicator	b	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	te	Meridian	ease Type	Lease Number	Elevation		0
	SN	м Ш	Х Ш	Twsp	Rai	Sec	Alic	Lat	Lor	0 C	State	N N	Leas		Ele	ШШ	DVT
SHL Leg #1							Lot C							STATE			

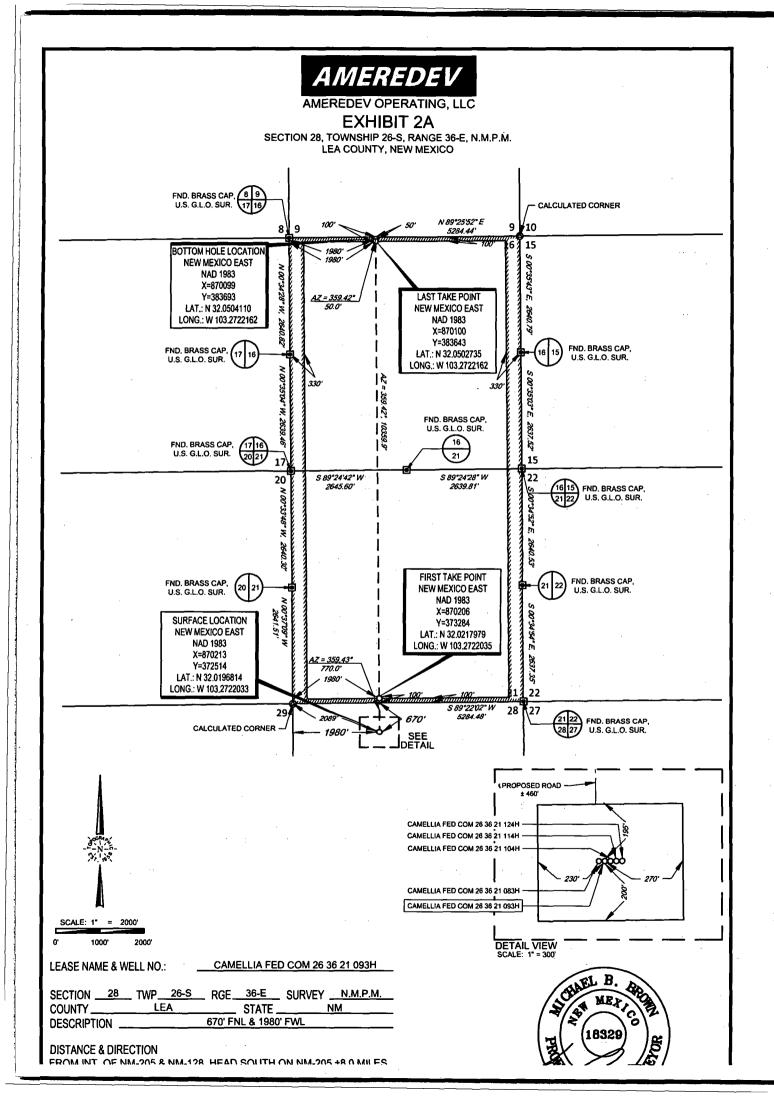

Page 2 of 3

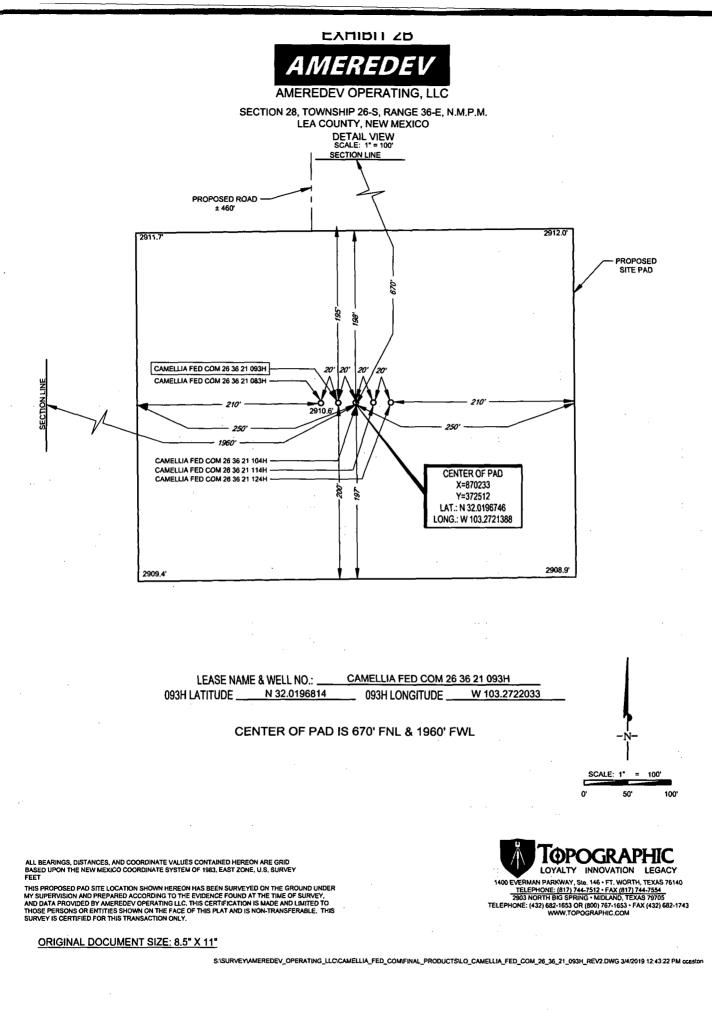
Operator Name: AMEREDEV OPERATING LLC

Well Number: 093H

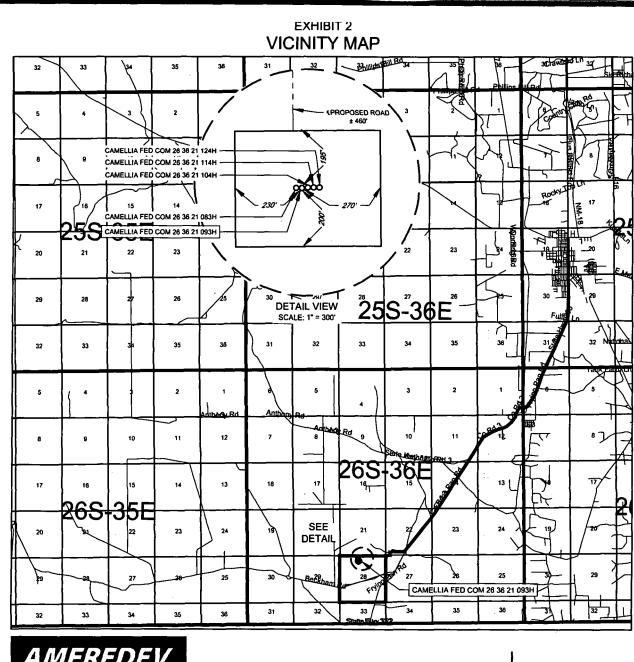


Page 3 of 3




Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

WELLSITE DIAGRAM



S\SURVEYAMEREDEV_OPERATING_LLC\CAMELLA_FED_COMFINAL_PRODUCTS\LO_CAMELLIA_FED_COM_28_36_21_093H_REV2.DWG 3/4/2019 12:43:21 PM ccession

.

AMEREDEV

AMEREDEV OPERATING, LLC CAMELLIA FED COM 26 36 21 093H LEASE NAME & WELL NO .:

SECTION28	_ TWP	RGE <u>36-E</u>	SURVEY <u>N.M.P.M.</u>
COUNTY	LEA	STATE	NM
DESCRIPTION		670' FNL & 1980	'FWL

DISTANCE & DIRECTION

FROM INT. OF NM-205 & NM-128, HEAD SOUTH ON NM-205 ±8.0 MILES, THENCE WEST (RIGHT) ON A PROPOSED RD. ±1.2 MILES, THENCE SOUTH (LEFT) ON A PROPOSED RD. ±460 FEET TO A POINT ±197 FEET NORTHWEST OF THE LOCATION.

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC, THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM of 1983, EAST ZONE, U.S. SURVEY FEET.

SCALE: 1" 10000 10000 5000' ď

TELEPHONE: (432) 682-1653 OR (800) 767-1653 · FAX (432) 682-1743 WWW.TOPOGRAPHIC.COM

S:\SURVEYAMEREDEV_OPERATING_LLC\CAMELLIA_FED_COM/FINAL_PRODUCTS\LO_CAMELLIA_FED_COM_26_36_21_093H_REV2.DWG 3/4/2019 12:43:21 PM ocession

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400030569

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 093H

Submission Date: 06/04/2018

Show Final Text

05/16/2019

Drilling Plan Data Report

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation		Depth	Lithologies	Mineral Resources	Producin Formatio
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
					. ,	· · · ·	
Sect	ion 2 - Blowout I	Preventio	'n				
· · ·							

a a serie de la La serie de la s

Requesting Variance? YES

A start provide the providence of the start providence of the sta

Testing Procedure: See attachment

Page 1 of 6

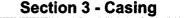
Operator Name: AMEREDEV OPERATING LLC

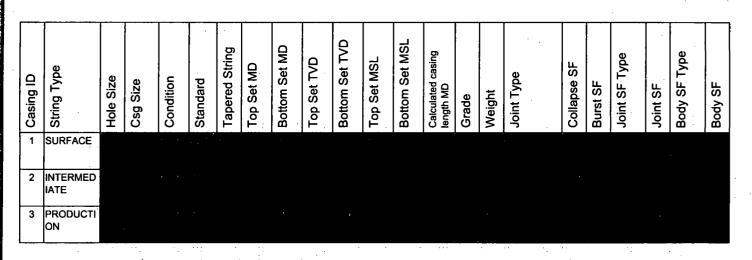
Well Name: CAMELLIA FED COM 26 36 21

Well Number: 093H

Choke Diagram Attachment:

10M_Choke_Manifold_REV_20190404143646.pdf


BOP Diagram Attachment:


5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190404143734.pdf

5M_BOP_System_20190404143734.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190404143735.pdf

4_String_MB_Ameredev_Wellhead_Drawing_net_REV_20190404143745.pdf

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

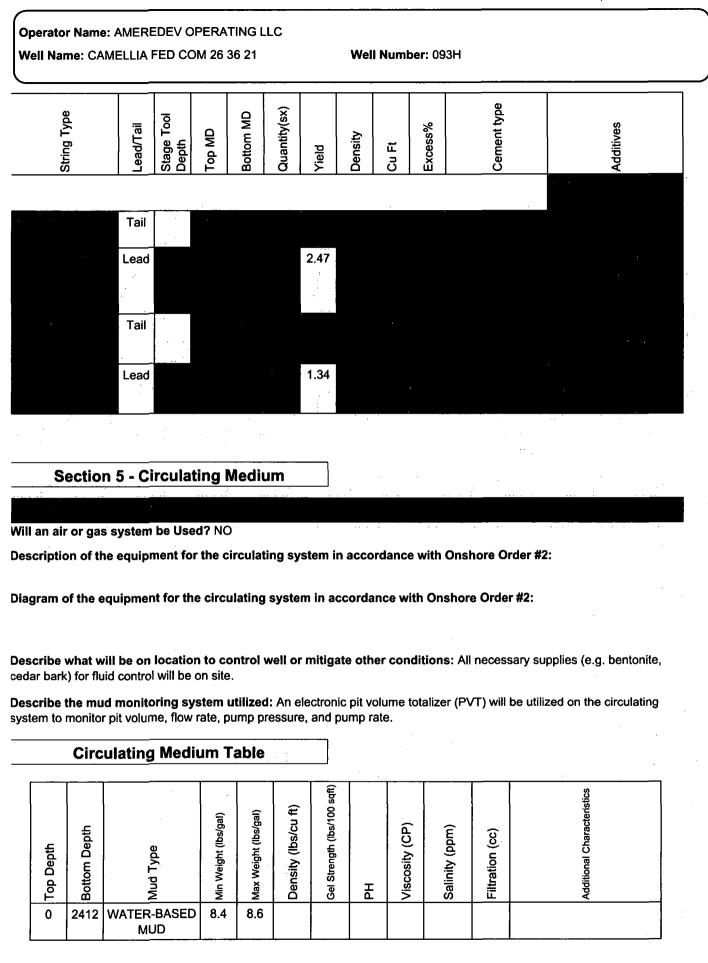
13.375_68.00__J55_BTC_20190404143943.pdf

Camellia_Fed_Com_26_36_21_093H___Wellbore_Diagram_and_CDA_20190404143958.pdf

Page 2 of 6

erator Name: AMEREDEV C ell Name: CAMELLIA FED CC		LC	We	ll Numl	per: 09	ЗН					
sing Attachments											
	tring Type:IN	TERMED	DIATE								
Inspection Document:						·					
Spec Document:									·		
Tapered String Spec:										`	
Casing Design Assumption	ns and Works	heet(s):									
Camellia_Fed_Com_2			lbore_Dia	gram_a	nd_CD	A_2019	04041	44022.pc	if :		
9.625_40_SeAH80HC	_4100_Collaps	se_20190	040414403	88.pdf			: •				
Casing ID: 3 S	tring Type: PF	RODUCT	ION				•		• •		
Inspection Document:											
Spec Document:		· · ·									
Tapered String Spec:	:					·		·			
Casing Design Assumption 5.5_20_P110HP_Eagle			53 ndf	۰.							·
Camellia_Fed_Com_2				gram_a	nd_CD	A_2019	04041	44206.pc	If		
Section 4 - Cemen	· · ·										
	<u> </u>		·	· ·]]
String Type Lead/Tail Stage Tool	Top MD Bottom MD	Quantity(sx).	Y leid Density	Cu Ft	Excess%		Cement type		Additives		

1.76


2.47

Lead

Tail

Lead

Page 3 of 6

Page 4 of 6

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 093H

tap Depth 2415	Bottom Depth 1102	OTHER : Diesel Brine Emulsion	& Min Weight (Ibs/gal)	ଦ Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Ha	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1102 5	1150 9	OIL-BASED MUD	10.5	12.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling, and a mud log/geologic lithology log will be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5000

Anticipated Surface Pressure: 2468.02

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S Plan 20180524160243.pdf

Page 5 of 6

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 093H

· · :.

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Cam093_DR_20190404144934.pdf

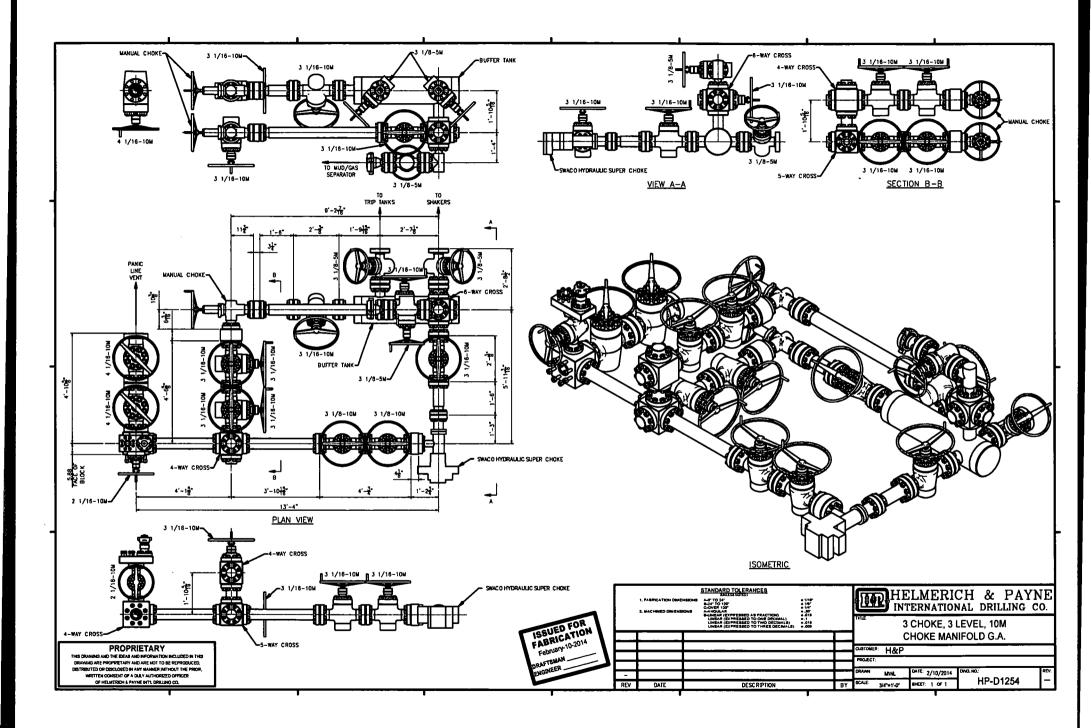
Cam093_LLR_20190404144934.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190404144953.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190404144954.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:


CAPITAN_PROTECTION_CONTINGENCY_PLAN_20190404145014.pdf

Other Variance attachment:

R616___CoC_for_hoses_12_18_17_20190404145034.pdf

Requested_Exceptions___3_String_Revised_03252019_20190404145035.pdf

Page 6 of 6

AMEREDEV

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Open Hole	13-5/8	Drilling Fluid	Blind Rams	
	for system design.	Kill line with minimu	at will allow full Opera m 2″ ID will be availab	

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

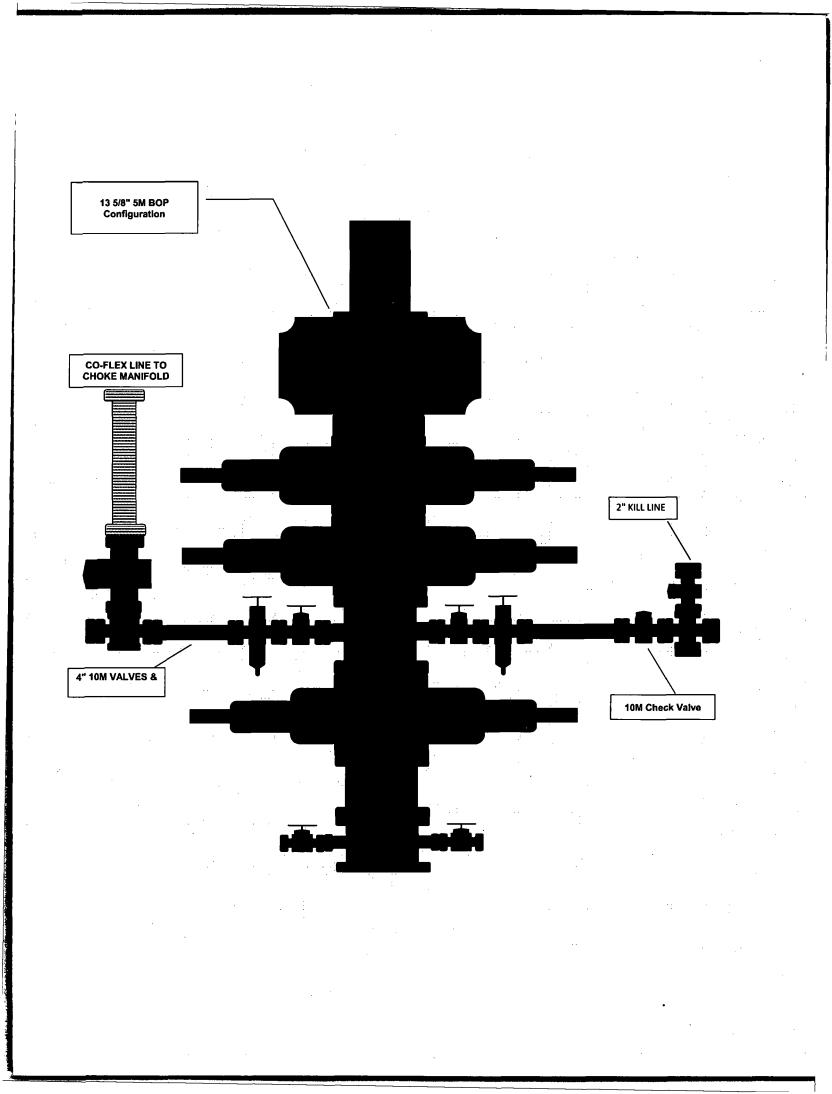
Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure


*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

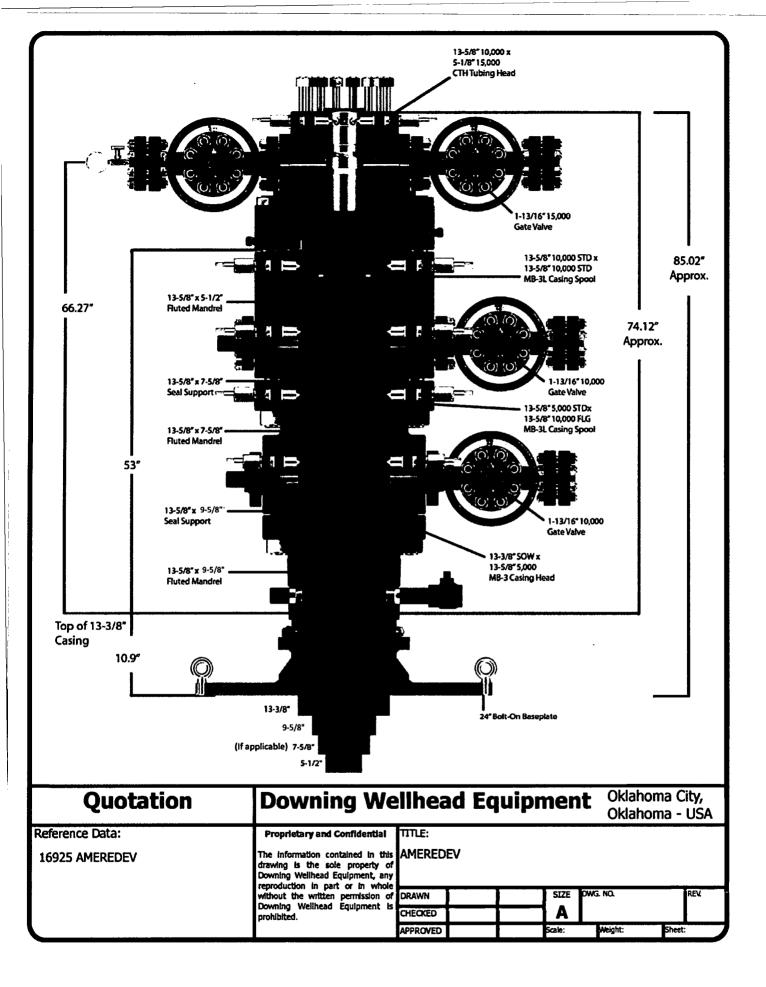
Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan


Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

PERFORMANCE DATA

API BTC

13.375 in

68.00 lbs/ft

J-55

Technical Data Sheet

Tubular Parameters			· · · · · · · · · · · · · · · · · · ·		•
Size	13.375	in	Minimum Yield	55,000	psi
Nominal Weight	68.00	lbs/ft	Minimum Tensile	75,000	psi
Grade	J-55		Yield Load	1,069,000	lbs
PE Weight	66.10	lbs/ft	Tensile Load	1,458,000	lbs
Wall Thickness	0.480	in	Min. Internal Yield Pressure	3,500	psi
Nominal ID	12.415	in	Collapse Pressure	1,950	psi
Drift Diameter	12.259	in		1	
Nom. Pipe Body Area	19.445	in²			
· · ·	• •				
Connection Parameters					
Connection OD	14.375	in			
Coupling Length	10.625	in	· · · · ·		
Threads Per Inch	5.000	in	··· ·		,
Standoff Thread Turns	1.000				
Make-Up Loss	4.513	in 🗄			
Yield Load In Tension		lbs			
Min. Internal Yield Pressure	3,500	psi			

Printed on: February-13-2015

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 093H	Co. Well ID:	XXXXXX
SHL:	Sec. 28 26S-36E 670' FNL & 1980' FWL	AFE No.:	xxxx-xxx
BHL:	Sec. 16 26S-36E 50' FNL & 1980' FWL	API No.:	xxxxxxxxxx
	Lea, NM	GL:	2,911'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Third Bone Spring
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	11,509'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	22,971'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB : 27'
Tubina:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size			Formation Tops		Logs	Cemen	t	Mud Weight
17.5"			Rustler	2,287'		1,475 Sacks TOC 0'	100% Excess	8.4-8.6 ppg WBM
	<u> </u>		13.375" 68# J-55 BTC	2,412'		μ	5	
			Salado	2,357'				
			Tansill	3,177'				· .
			Capitan Reef	3,639'		S	ess	Б
			Lamar	4,941'		883 Sacks TOC 0'	50% Excess	
1			DV Tool	4,991'		883 TO	50'	e l
12.25"			Bell Canyon	5,102'	:			8.5 - 9.4 ppg Diesel Brine Emulsion
			Brushy Canyon	7,029'				pg Die
			Bone Spring Lime	8,065'				9.4 pl
			First Bone Spring	9,564'				8.5 -
			Second Bone Spring	10,201'		cks	ess	· ·
			Third Bone Spring Upper	10,860'		1,723 Sacks TOC 0'	50% Excess	
			9.625" 40# L-80HC BTC	11,025'		1,7	20	
8.5"			Third Bone Spring	11,459'				Σ
12º Buil	d 📗							10.5 - 12.5 ppg OBM
@ 11,025' N								2 bl
thru		5:5" 2	20# P-110CYHP BTC	22,971'		ks Ks	SS	- 12
12,561' N	ID -		Bone Spring 11509 TVD // 2			4,905 Sacks TOC 0'	25% Excess	0.5.
		<u> </u>			•	4,905 S TOC 0'	ш %	
	L			······		4,6 10	25	

.

Casing Design and Safety Factor Check

Casing Specifications						
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling
Surface	17.5	2,412'	13.375	68	J-55	BTC
Intermediate	12.25	11,025'	9.625	40	HCL-80	BTC
Prod Segment A	8.5	11,025'	5.5	20	CYHP-110	BTC
Prod Segment B	8.5	22,971'	5.5	20	CYHP-110	BTC

Check Surface Casing						
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
14.375	1,069	915	4,100	3,450		
Safety Factors						
1.56	6.52	5.58	3.80	0.64		
	Check Intermediate Casing					
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
7.625	940	558	6700	9460		
Safety Factors						
2.31	2.13	2.17	1.24	1.27		
	Check Pro	od Casing,	Segment A			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
	S	afety Facto	ors			
1.36	3.16	2.85	1.79	1.92		
	Check Pro	od Casing,	Segment B	}		
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
	S	afety Facto	ors			
1.36	75.21	67.67	1.71	1.92		

AMEREDEV

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 093H	Co. Well ID:	xxxxxx
SHL:	Sec. 28 26S-36E 670' FNL & 1980' FWL	AFE No.:	xxxx-xxx
BHL:	Sec. 16 26S-36E 50' FNL & 1980' FWL	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	2,911'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Third Bone Spring
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	11,509'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	22,971'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB: 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs	6 Cement	Mud Weight
17.5"	Rustler 2,287		1,475 Sacks TOC 0' 100% Excess	8.4-8.6 ppg WBM
	13.375" 68# J-55 BTC 2,412'		1,475 S TOC 0' 100% E	8.4
	Salado 2,357'			
	Tansill 3,177'			
	Capitan Reef 3,639'		s ss	Ę
	Lamar 4,941'		883 Sacks TOC 0' 50% Excess	mulsic
	DV Tool 4,991'		883 Sat TOC 0' 50% Ex	ine Er
12.25"	Bell Canyon 5,102'			8.5 - 9.4 ppg Diesel Brine Emulsion
	Brushy Canyon 7,029'		· ·	og Die
	Bone Spring Lime 8,065'		· .	9.4 pr
	First Bone Spring 9,564'			8.5 -
	Second Bone Spring 10,201'		ss ss	
	Third Bone Spring Upper 10,860'		1,723 Sacks TOC 0' 50% Excess	
	9.625" 40# L-80HC BTC 11,025"		1,723 S TOC 0' 50% Ex	
8.5"	Third Bone Spring 11,459'			5
12° Build				g OB
@ 11,025' MD		Z		10.5 - 12.5 ppg OBM
thru	5.5" 20# P-110CYHP BTC 22,971'		acks	5 - 1
12,561' MD	Target Third Bone Spring 11509 TVD // 22971 MD		4,905 Sacks TOC 0' 25% Excess	- 0
L			4,9 10	

	Casing Specifications					
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling
Surface	17.5	2,412'	13.375	68	J-55	BTC
Intermediate	12.25	11,025'	9.625	40	HCL-80	BTC
Prod Segment A	8.5	11,025'	5.5	20	CYHP-110	BTC
Prod Segment B	8.5	22,971'	5.5	20	CYHP-110	BTC

Casing Design and Safety Factor Check

	Chec	k Surface	Casing		
OD Cplg	Body	Joint	Collapse	Burst	
inches	1000 lbs	1000 lbs	psi	psi	
14.375	1,069	915	4,100	3,450	
Safety Factors					
1.56	6.52	5.58	3.80	0.64	
	Check I	ntermedia	te Casing		
OD Cplg	Body	Joint	Collapse	Burst	
inches	1000 lbs	1000 lbs	psi	psi	
7.625	940	558	6700	9460	
Safety Factors					
2.31	2.13	2.17	1.24	1.27	
	Check Pro	od Casing,	Segment A		
OD Cpig	Body	Joint	Collapse	Burst	
inches	1000 lbs	1000 lbs	psi	psi	
5.777	728	655	12780	14360	
	S	afety Facto	ors		
1.36	3.16	2.85	1.79	1.92	
	Check Pro	od Casing,	Segment B		
OD Cplg	Body	Joint	Collapse	Burst	
inches	1000 lbs	1000 lbs	psi	psi	
5.777	728	655	12780	14360	
	S	afety Facto	ors		
1.36	75.21	67.67	1.71	1.92	

40#

SEAH-80 HIGH COLLAPSE (SEAH-80 IS A NON HEAT TREATED PRODUCT)

Dimensions (Nominal)

<u>9.625"</u>

Outside Diameter	9.625	in.
Wall	0.395	in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.

.395"

Performance Properties

Collapse	4100	psi
Internal Yield Pressure at Minimum Yield		۰.
PE	5750	psi
LTC	5750	psi
BTC	5750	psi
Yield Strength, Pipe Body	916	1000 lbs.
Joint Strength		
LTC	717	1000 lbs.
BTC	915	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTION	
ECHANICAL PROPERTIES		· · · · · · · · · · · · · · · · · · ·	
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
MENEIONS			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
GTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
RFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

 Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.

3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.

4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.

6) Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application. Manuel USS Product Data Sheet 2017 rev25 (April)

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064

1-877-893-9461 connections@uss.com www.usstubular.com

AMEREDEV

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 093H	Co. Well ID:	xxxxxx
SHL:	Sec. 28 26S-36E 670' FNL & 1980' FWL	AFE No.:	xxxx-xxx
BHL:	Sec. 16 26S-36E 50' FNL & 1980' FWL	API No.:	XXXXXXXXXXXX
	Lea, NM	GL:	2,911'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Third Bone Spring
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	11,509'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	22,971'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB: 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size	Formation Tops		Logs Cement Mud Weight
			T T T
17.5"	Rustler	2,287'	1,475 Sacks TOC 0' 100% Excess 8.4-8.6 ppg WBM
	13.375" 68# J-55 BTC	2,412'	1,4 <u>1</u> 100 8.4
	Salado	2,357'	
	Tansill	3,177'	
	Capitan Reef	3,639'	s se u
	Lamar	4,941'	883 Sacks TOC 0' 50% Excess ie Emulsion
	DV Tool	4,991'	883 50%
12.25"	Bell Canyon	5,102'	883 Sacks TOC 0' 50% Excess 8.5 - 9.4 ppg Diesel Brine Emulsion
	Brushy Canyon	7,029'	Die Contraction Contraction
	Bone Spring Lime	8,065'	9.4 pl
	First Bone Spring	9,564'	8.5 -
	Second Bone Spring	10,201'	es ss
	Third Bone Spring Upper	10,860'	1,723 Sacks TOC 0' 50% Excess
	9.625" 40# L-80HC BTC	11,025'	50% 50%
8.5"	Third Bone Spring	11,459'	5
12° Build			Sacks 0 Excess 10.5 - 12.5 ppg OBM
@ 11,025' MD	· · · · · · · · · · · · · · · · · · ·		25 pp
thru	5.5" 20# P-110CYHP BTC	22,971'	icks icks 5 - 12
12,561' MD	Target Third Bone Spring 11509 TVD // 22	971 MD	4,905 Sacks TOC 0' 25% Excess 10.5 - 1
			4,905 S TOC 0' 25% Ex 10

.

Casing Specifications										
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling				
Surface	17.5	2,412'	13.375	68	J-55	BTC				
Intermediate	12.25	11,025'	9.625	40	HCL-80	BTC				
Prod Segment A	8.5	11,025'	5.5	20	CYHP-110	BTC				
Prod Segment B	8.5	22,971'	5.5	20	CYHP-110	BTC				

Casing Design and Safety Factor Check

Check Surface CasingOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi14.3751,0699154,1003,450Safety Factors1.566.525.583.800.64Check Intermediate CasingOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi7.62594055867009460								
inches 1000 lbs 1000 lbs psi psi 14.375 1,069 915 4,100 3,450 Safety Factors 1.56 6.52 5.58 3.80 0.64 Check Intermediate Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi								
14.375 1,069 915 4,100 3,450 Safety Factors 1.56 6.52 5.58 3.80 0.64 Check Intermediate Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi								
Safety Factors1.566.525.583.800.64Check Intermediate CasingOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi								
1.56 6.52 5.58 3.80 0.64 Check Intermediate Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi								
Check Intermediate Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi								
OD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi								
inches 1000 lbs 1000 lbs psi psi								
7.625 940 558 6700 9460								
Safety Factors								
2.31 2.13 2.17 1.24 1.27								
Check Prod Casing, Segment A								
OD Cplg Body Joint Collapse Burst								
inches 1000 lbs 1000 lbs psi psi								
5.777 728 655 12780 14360								
Safety Factors								
1.36 3.16 2.85 1.79 1.92								
Check Prod Casing, Segment B								
OD Cplg Body Joint Collapse Burst								
inches 1000 lbs 1000 lbs psi psi								
inches 1000 lbs 1000 lbs psi psi								
5.777 728 655 12780 14360								

H₂S Drilling Operation Plan

- 1. <u>All Company and Contract personnel admitted on location must be trained by a qualified H₂S</u> safety instructor to the following:
 - a. Characteristics of H₂S
 - **b.** Physical effects and hazards
 - c. Principal and operation of H₂s detectors, warning system and briefing areas
 - d. Evacuation procedure, routes and first aid
 - e. Proper use of safety equipment and life support systems
 - f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- **b.** Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

3. H₂S Detection and Alarm Systems:

- a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- b. An audio alarm will be installed on the derrick floor and in the top doghouse.

4. Protective Equipment for Essential Personnel:

- a. Breathing Apparatus:
 - i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
 - ii. Two (SCBA) Units will be stored in safety trailer on location.
 - iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.

b. Auxiliary Rescue Equipment:

- i. Stretcher
- ii. 2 OSHA full body harnesses
- iii. 100 ft. 5/8" OSHA approved rope
- iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- **b.** Windsock on the rig floor should be high enough to be visible.

6. <u>Communication:</u>

- a. While working under mask scripting boards will be used for communication where applicable.
- b. Hand signals will be used when script boards are not applicable.

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. Drill Stem Testing: No Planned DST at this time.

8. Mud program:

a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

9. <u>Metallurgy:</u>

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
- b. Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H₂S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
- Have received training in the:
 - o Detection of H₂S and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating LLC – Emergency Phone 737-300-4799 Key Personnel:								
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810					
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996					
Blake Estrada	Construction Foreman		432-385-5831					

Artesia	
Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283
Carlsbad	
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
US Bureau of Land Management	575-887-6544
Santa Fe	
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
National	
National Emergency Response Center (Washington, D.C.)	800-424-8802
Medical	· · · · · · · · · · · · · · · · · · ·
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433
.'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, NM	505-842-4949

AMEREDEV

Ameredev Operating, LLC.

CAM/AZ CAM/AZ #5SX Camellia 093H

Wellbore #1

Plan: Design #1

Standard Planning Report

05 March, 2019

.

.

AMER	EDEV		Ame	eredev Operat Planning Rep			
Deteberer Companys Project: Silos Wellte Wellborer Deet[Th:	EDM5000 Ameredev Oper CAM/AZ CAM/AZ #5SX Camellia 093H Wellbore #1 Design #1	ating, LLC.		TVD Referen MD Referenc North Refere	08	Well Camellia 093H KB @ 2938.0usft KB @ 2938.0usft Grid Minimum Curvature	
[Project	CAM/AZ						
Map System: Geo Datum: Map Zone:	US State Plane 19 North American Da New Mexico Easte	atum 1983		System Datum		Mean Sea Level	
SIG	CAM/AZ #5SX						
Site Position: From: Position Uncertainty:	Lat/Long	0.0 usft	Northing: Easting: Slot Radius:	870,19	3.64 usft Latitude: 3.17 usft Longitud 13-3/16 "Grid Cor		32° 1' 10.853 N 103° 16' 20.164 W 0.56 °
Well	Camellia 093H						
Well Position Position Uncertainty	+N/-S +E/-W	0.2 usft 20.0 usft 0.0 usft	Northing: Easting: Wellhead Ele		372,513.84 usft 870,213.16 usft	Latitude: Longitude: Ground Level:	32° 1′ 10.853 N 103° 16' 19.932 W 2,911.0 usft
Wellborg	Wellbore #1						
Magnetics	Model Name)	Samplo Dato	Decilitatio (P)) מ	DipAnglo (P)	Feld Strength (FD)
	IGRF	2015	3/5/2019		6.61	59.90	47,675.25085866
Deelyn	Design #1						
Audit Notes:							
Version:			Phase:	PROTOTYPE	Tie On Dept		
Vortleel Section:			iam (IVQ) ISÎI)	4114S (LEEA)	(UEE)	· Direction (P)	0
			0.0	0.0	0.0	359.42	•
Flan Survey Tool Pro Depth Arom (USA)	Depth To)eto 35/2 0 rvey (Welle		്രറിവണ്ത	Rema	t 9	

3/5/2019 12:22:22PM

0.0

1

22,971.0 Design #1 (Wellbore #1)

MWD

OWSG MWD - Standard

COMPASS 5000.15 Build 90

.

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Cameilia 093H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2938.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2938.0usft
Site:	CAM/AZ #5SX	North Reference:	Grid
Well:	Camellia 093H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Plan Sections

Veasured			Vertical			Dogleg	Build	Turn		
Depth Inc (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,300.0	6.00	174.00	2,299.5	-15.6	1.6	2.00	2.00	0.00	174.00	
6,724.8	6.00	174.00	6,700.0	-475.6	50.0	0.00	0.00	0.00	0.00	
7,024.8	0.00	0.00	6,999.5	-491.2	51.6	2.00	-2.00	0.00	180.00	
11,025.3	0.00	0.00	11,000.0	-491.2	51.6	0.00	0.00	0.00	0.00	
11,756.1	87.69	357.29	11,477.1	-33.5	29.9	12.00	12.00	0.00	357.29	
12,534.9	87.69	357.29	11,508.5	743.8	-6.9	0.00	0.00	0.00	0.00	
12,561.1	90.00	359.42	11,509.0	770.0	-7.6	12.00	8.83	8.13	42.66	Cam093 FTP
22.971.0	90.00	359.42	11,509.0	11,179.3	-113.8	0.00	0.00	0.00	0.00	Cam093 BHL

3/5/2019 12:22:22PM

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 093H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2938.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2938.0usft
Site:	CAM/AZ #5SX	North Reference:	Grid
Well:	Camellia 093H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (*)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (*/100usft)	Turn Rate (°/100usft)
0.0	0,00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0				0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0						
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0					0.0		2.00	2.00	0.00
2,100.0	2.00	174.00	2,100.0	-1.7	0.2	-1.7 -6.9	2.00	2.00	0.00
2,200.0	4.00	174.00	2,199.8	-6.9			2.00		
2,300.0	6.00	174.00	2,299.5	-15.6	1.6	-15.6		2.00	0.00
2,400.0	6.00	174.00	2,398.9	-26.0	2.7	-26.0	0.00	0.00	0.00
2,500.0	6.00	174.00	2,498.4	-36.4	3.8	-36.4	0.00	0.00	0.00
2,600.0	6.00	174.00	2,597.8	-46.8	4.9	-46.8	0.00	0.00	0.00
2,700.0	6.00	174.00	2,697.3	-57.2	6.0	-57.2	0.00	0.00	0.00
2,800.0	6.00	174.00	2,796.7	-67.6	7.1	-67.7	0.00	0.00	0.00
2,900.0	6.00	174.00	2,896.2	-78.0	8.2	-78.1	0.00	0.00	0.00
3,000.0	6.00	174.00	2,995.6	-88.4	9.3	-88.5	0.00	0.00	0.00
3,100.0	6.00	174.00	3,095.1	-98.8	10.4	-98.9	0.00	0.00	0.00
3,200.0	6.00	174.00	3,194.5	-109.2	11.5	-109.3	0.00	0.00	0.00
3,300.0	6.00	174.00	3,294.0	-119.6	12.6	-119.7	0.00	0.00	0.00
3,400.0	6.00	174.00	3,393.4	-130.0	13.7	-130.1	0.00	0.00	0.00
3,500.0	6.00	174.00	3,492.9	-140.4	14.8	-140.5	0.00	0.00	0.00
3,600.0	6.00	174.00	3,592.3	-150.8	15.8	-150.9	0.00	0.00	0.00
3,700.0	6.00	174.00	3,691.8	-161.1	16.9	-161.3	0.00	0.00	0.00
3,800.0	6.00	174.00	3,791.2	-171.5	18.0	-171.7	0.00	0.00	0.00
3,900.0	6.00	174.00	3,890.7	-181.9	19.1	-182.1	0.00	0.00	0.00
4,000.0	6.00	174.00	3,990.1	-192.3	20.2	-192.5	0.00	0.00	0.00
4,100.0	6.00	174.00	4,089.6	-202.7	21.3	-202.9	0.00	0.00	0.00
4,100.0	6.00	174.00	4,189.0	-213.1	22.4	-202.3	0.00	0.00	0.00
4,300.0	6.00	174.00	4,189.5	-223.5	23.5	-223.7	0.00	0.00	0.00
4,400.0	6.00	174.00	4,387.9	-233.9	24.6	-234.2	0.00	0.00	0.00
				-244.3	25.7	-244.6	0.00	0.00	0.00
4,500.0	6.00	174.00	4,487.4						
4,600.0	6.00	174.00	4,586.9	-254.7	26.8	-255.0	0.00	0.00	0.00
4,700.0	6.00	174.00	4,686.3	-265.1	27.9	-265.4	0.00	0.00	0.00
4,800.0	6.00	174.00	4,785.8	-275.5	29.0	-275.8	0.00	0.00	0.00
4,900.0	6.00	174.00	4,885.2	-285.9	30.0	-286.2	0.00	0.00	0.00
5,000.0	6.00	174.00	4,984.7	-296.3	31.1	-296.6	0.00	0.00	0.00
5,100.0	6,00	174.00	5,084.1	-306.7	32.2	-307.0	0.00	0.00	0.00
5,200.0	6.00	174.00	5,183.6	-317.1	33.3	-317.4	0.00	0.00	0.00
5,300.0	6.00	174.00	5,283.0	-327.5	34.4	-327.8	0.00	0.00	0.00

3/5/2019 12:22:22PM

Planning Report

Database:	EDM5600	Local Co-ordinate Reference:	Well Camellia 093H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2938.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2938.0usft
Site:	CAM/AZ #5SX	North Reference:	Grid
Well:	Camellia 093H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
5,400.0	6.00	174.00	5,382.5	-337.9	35.5	-338.2	0.00	0.00	0.00
5,500.0	6.00	174.00	5,481.9	-348.3	36.6	-348.6	0.00	0.00	0.00
5,600.0	6.00	174.00	5,581.4	-358.7	37.7	-359.0	0.00	0.00	0.00
5,700.0	6.00	174.00	5,680.8	-369.1	38.8	-369.4	0.00	0.00	0.00
5,800.0	6.00	174.00	5,780.3	-379.5	39.9	-379.8	0.00	0.00	0.00
5,900.0	6.00	174.00	5,879.7	-389.8	41.0	-390.2	0.00	0.00	0.00
6,000.0	6.00	174.00	5,979.2	-400.2	42.1	-400.7	0.00	0.00	0.00
6,100.0	6.00	174.00	6,078.6	-410.6	43.2	-411.1	0.00	0.00	0.00
6,200.0	6.00	174.00	6,178.1	-421.0	44.3	-421.5	0.00	0.00	0.00
6,300.0	6.00	174.00	6,277.5	-431.4	45.3	-431.9	0.00	0.00	0.00
6,400.0	6.00	174.00	6,377.0	-441.8	46.4	-442.3	0.00	0.00	0.00
6,500.0	6.00	174.00	6,476.4	-452.2	47.5	-452.7	0.00	0.00	0.00
6,600.0	6.00	174.00	6,575.9	-462.6	48.6	-463.1	0.00	0.00	0.00
6,700.0	6.00	174.00	6,675.3	-473.0	49.7	-473.5	0.00	0.00	0.00
6,724.8	6.00	174.00	6,700.0	-475.6	50.0	-476.1	0.00	0.00	0.00
6,800.0	4.50	174.00	6,774.9	-482.4	50.0	-482.9	2.00	-2.00	0.00
6,900.0	2.50	174.00	6,874.7	-488.5	51.3	-489.0	2.00	-2.00	0.00
7,000.0	0.50	174.00	6,974.7	-491.1	51.6	-491.6	2.00	-2.00	0.00
7,024.8	0.00	0.00	6,999.5	-491.2	51.6	-491.7	2.00	-2.00	0.00
7,100.0	0.00	0.00	7,074.7	-491.2	51.6	-491.7	0.00	0.00	0.00
7,200.0	0.00	0.00	7,174.7	-491.2	51.6	-491.7	0.00	0.00	0.00
7,300.0	0.00	0.00	7,274.7	-491.2	51.6	-491.7	0.00	0.00	0.00
7,400.0	0.00	0.00	7,374.7	-491.2	51.6	-491.7	0.00	0.00	0.00
7,500.0	0.00	0.00	7,474.7	-491.2	51.6	-491.7	0.00	0.00	0.00
7,600.0	0.00	0.00	7,574.7	-491.2	51.6	-491.7	0.00	0.00	0.00
7,700.0	0.00	0.00	7,674.7	-491.2	51.6	-491.7	0.00	0.00	0.00
7,800.0	0.00	0.00	7,774.7	-491.2	51.6	-491.7	0.00	0.00	0.00
7,900.0	0.00	0.00	7,874.7	-491.2	51.6	-491.7	0.00	0.00	0.00
8,000.0	0.00	0.00	7,974.7	-491.2	51.6	-491.7	0.00	0.00	0.00
8,100.0	0.00	0.00	8,074.7	-491.2	51.6	-491.7	0.00	0.00	0.00
8,200.0	0.00	0.00	8,174.7	-491.2	51.6	-491.7	0.00	0.00	0.00
8,300.0	0.00	0.00	8,274.7	-491.2	51.6	-491.7	0.00	0.00	0.00
8,400.0	0.00	0.00	8,374.7	-491.2	51.6	-491.7	0.00	0.00	0.00
8,500.0	0.00	0.00	8,474.7	-491.2	51.6	-491.7	0.00	0.00	0.00
8,600.0	0.00	0.00	8,574.7	-491.2	51.6	-491.7	0.00	0.00	0.00
8,700.0	0.00	0.00	8,674.7	-491.2	51.6	-491.7	0.00	0.00	0.00
8,800.0	0.00	0.00	8,774,7	-491.2	51.6	-491.7	0.00	0.00	0.00
8,900.0	0.00	0.00	8,874.7	-491.2	51.6	-491.7	0.00	0.00	0.00
9,000.0	0.00	0.00	8,974.7	-491.2	51.6	-491.7	0.00	0.00	0.00
9,100.0	0.00	0.00	9,074.7	-491.2	51.6	-491.7	0.00	0.00	0.00
9,200.0	0.00	0.00	9,174.7	-491.2	51.6	-491.7	0.00	0.00	0.00
9,300.0	0.00	0.00	9,274.7	-491.2	51.6	-491.7	0.00	0.00	0.00
9,400.0	0.00	0.00	9,374.7	-491.2	51.6	-491.7	0.00	0.00	0.00
9,500.0	0.00	0.00	9,474.7	-491.2	51.6	-491.7	0.00	0.00	0.00
9,600.0	0.00	0.00	9,574.7	-491.2	51.6	-491.7	0.00	0.00	0.00
9,700.0	0.00	0.00	9,674.7	-491.2	51.6	-491.7	0.00	0.00	0.00
9,800.0	0.00	0.00	9,774.7	-491.2	51.6	-491.7	0.00	0.00	0.00
9,900.0	0.00	0.00	9,874.7	-491.2	51.6	-491.7	0.00	0.00	0.00
10.000.0	0.00	0.00	9,974.7	-491.2	51.6	-491.7	0.00	0.00	0.00
10,100.0	0.00	0.00	10,074.7	-491.2	51.6	-491.7	0.00	0.00	0.00
10,100.0	0.00	0.00	10,074.7	-491.2	51.6	-491.7	0.00	0.00	0.00
10,200.0	0.00	0.00	10,274.7	-491.2	51.6	-491.7	0.00	0.00	0.00
10,300.0	0.00	0.00	10,274.7	-491.2	51.6	-491.7	0.00	0.00	0.00
10,400.0	0.00	0.00	10,374.7	-491.2	51.6	-491.7	0.00	0.00	0.00

3/5/2019 12:22:22PM

Planning Report

				222
Database:	EDM5000	Local Co-ordinate Reference:	Weil Camellia 093H	Í
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2938.0usft	
Project:	CAM/AZ	MD Reference:	KB @ 2938.0usft	1
Site:	CAM/AZ #5SX	North Reference:	Grid	
Well:	Camellia 093H	Survey Calculation Method:	Minimum Curvature	1
Wellbore:	Wellbore #1			
Design:	Design #1]

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(*/100usft)	(°/100usft)	(°/100usft)
10,600.0	0.00	0.00	10,574.7	-491.2	51.6	-491.7	0.00	0.00	0.00
10,700.0	0.00	0.00	10,674.7	-491.2	51.6	-491.7	0.00	0.00	0.00
10,800.0	0.00	0.00	10,774.7	-491.2	51.6	-491.7	0.00	0.00	0.00
10,900.0	0.00	0.00	10,874.7	-491.2	51.6	-491.7	0.00	0.00	0.00
11,000.0	0.00	0.00	10,974.7	-491.2	51.6	-491.7	0.00	0.00	0.00
11,025.3	0.00	0.00	11,000.0	-491.2	51.6	-491.7	0.00	0.00	0.00
		0.00	11,000.0		01.0		0.00	0.00	0.00
Cam093 KOF 11,100.0	8.96	357.29	11,074.4	-485.4	51.4	-485.9	12.00	12.00	0.00
11,200.0	20.96	357.29	11,170.8	-459.6	50.1	-460.1	12.00	12.00	0.00
11,300.0	32.96	357.29	11,259.8	-414.4	48.0	-414.9	12.00	12.00	0.00
11,400.0	44.96	357.29	11,337.4	-351.7	45.0	-352.2	12.00	12.00	0.00
11,500.0	56.96	357.29	11,400.3	-274.3	41.4	-274.7	12.00	12.00	0.00
11,600.0	68.96	357.29	11,445.6	-185.5	37.1	-185.9	12.00	12.00	0.00
11,700.0	80.96	357.29	11,471.5	-89.2	32.6	-89.5	12.00	12.00	0.00
11,756.1	87.69	357.29	11,477.1	-33.5	29.9	-33.8	12.00	12.00	0.00
11,800.0	87.69	357,29	11,478.8	10.3	27.9	10.1	0.00	0.00	0.00
11,900.0	87.69	357.29	11,482.9	110.1	23.1	109.9	0.00	0.00	0.00
12,000.0	87.69	357.29	11,486.9	210.0	18.4	209.8	0.00	0.00	0.00
12,100.0	87.69	357.29	11,490.9	309.8	13.7	309.6	0.00	0.00	0.00
12,200.0	87.69	357.29	11,495.0	409.6	9.0	409.5	0.00	0.00	0.00
12,300.0	87.69	357.29	11,499.0	509.4	4.2	509.3	0.00	0.00	0.00
12,400.0	87.69	357.29	11,503.0	609.2	-0.5	609.2	0.00	0.00	0.00
12,461.0	87.69	357.29	11,505.5	670.1	-3.4	670.1	0.00	0.00	0.00
Cam093 into		007120	.,						
	87.69	357.29	11,507.1	709.0	-5.2	709.0	0.00	0.00	0.00
12,500.0		357.29	11,508.5	743.8	-3.2 -6.9	743.9	0.00	0.00	0.00
12,534.9	87.69								
12,561.1	90.00	359.42	11,509.0	770.0	-7,6	770,0	12.00	8.83	8.13
Cam093 FTP									
12,600.0	90.00	359.42	11,509.0	808.9	-8.0	808.9	0.00	0.00	0.00
12,700.0	90.00	359.42	11,509.0	908.9	-9.0	908.9	0.00	0.00	0.00
12,800.0	90.00	359.42	11,509.0	1,008.9	-10.1	1,008.9	0.00	0.00	0.00
12,900.0	90.00	359.42	11,509.0	1,108.9	-11.1	1,108.9	0.00	0.00	0.00
13,000.0	90.00	359.42	11,509.0	1,208.9	-12.1	1,208.9	0.00	0.00	0.00
13,100.0	90.00	359.42	11,509.0	1,308.9	-13.1	1,308.9	0.00	0.00	0.00
13,200.0	90.00	359.42	11,509.0	1,408.9	-14.1	1,408.9	0.00	0.00	0.00
13,300.0	90.00	359.42	11,509.0	1,508.9	-15.2	1,508.9	0.00	0.00	0.00
13,400.0	90.00	359.42	11,509.0	1,608.9	-16.2	1,608.9	0.00	0.00	0.00
13,500.0	90.00	359.42	11,509.0	1,708.9	-17.2	1,708.9	0.00	0.00	0.00
13,600.0	90.00	359,42	11,509.0	1,808.8	-18.2	1,808.9	0.00	0.00	0.00
13,700.0	90.00	359.42	11,509.0	1,908.8	-19.2	1,908.9	0.00	0.00	0.00
13,800.0	90.00	359.42	11,509.0	2,008.8	-20.3	2,008.9	0.00	0.00	0.00
13,900.0	90.00	359.42	11,509.0	2,108.8	-21.3	2,108.9	0.00	0.00	0.00
14,000.0	90.00	359.42	11,509.0	2,208.8	-22.3	2,208.9	0.00	0.00	0.00
14,100.0	90.00	359.42	11,509.0	2,308.8	-23.3	2,308.9	0.00	0.00	0.00
14,200.0	90.00	359.42	11,509.0	2,408.8	-24.3	2,408.9	0.00	0.00	0.00
14,300.0	90.00	359.42	11,509.0	2,508.8	-25.4	2,508.9	0.00	0.00	0.00
14,400.0	90.00	359.42	11,509.0	2,608.8	-26.4	2,608.9	0.00	0.00	0.00
14,400.0	90.00	359.42	11,509.0	2,708.8	-20.4	2,708.9	0.00	0.00	0.00
14,500.0	90.00	359.42	11,509.0	2,808.8	-27.4 -28.4	2,808.9	0.00	0.00	0.00
•				•				0.00	0.00
14,700.0	90.00	359.42	11,509.0	2,908.8	-29.4	2,908.9	0.00		
14,800.0	90.00	359.42	11,509.0	3,008.8	-30.5	3,008.9	0.00	0.00	0.00
14,900.0	90.00	359.42	11,509.0	3,108.8	-31.5	3,108.9	0.00	0.00	0.00
15,000.0	90.00	359.42	11,509.0	3,208.8	-32.5	3,208.9	0.00	0.00	0.00

3/5/2019 12:22:22PM

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 093H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2938.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2938.0usft
Site:	CAM/AZ #5SX	North Reference:	Grid
Well:	Camellia 093H	Survey Calculation Method:	Minimum Curvature
Welibore:	Wellbore #1		
Design:	Design #1		

Planned Survey

	easured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	15,100.0	90.00	359.42	11,509.0	3,308.8	-33.5	3,308.9	0.00	0.00	0.00
	15,200.0	90.00	359.42	11,509.0	3,408.8	-34.5	3,408.9	0.00	0.00	0.00
		90.00	359.42	11,509.0	3,508.8	-35.6	3,508.9	0.00	0.00	0.00
	15,300.0					-35.6	3,508.9	0.00	0.00	0.00
	15,400.0	90.00 90.00	359.42 359.42	11,509.0 11,509.0	3,608.8 3,708.7	-30.0 -37.6	3,608.9	0.00	0.00	0.00
	15,500.0 15,600.0	90.00	359.42	11,509.0	3,808.7	-37.6	3,808.9	0.00	0.00	0.00
	15,700.0	90.00	359.42	11,509.0	3,908.7	-39.6	3,908.9	0.00	0.00	0.00
	15,800.0	90.00	359.42	11,509.0	4,008.7	-40.7	4,008.9	0.00	0.00	0.00
	15,900.0	90.00	359.42	11,509.0	4,108.7	-41.7	4,108.9	0.00	0.00	0.00
	16,000.0	90.00	359.42	11,509.0	4,208.7	-42.7	4,208.9	0.00	0.00	0.00
	16,100.0	90.00	359.42	11,509.0	4,308.7	-43.7	4,308.9	0.00	0.00	0.00
	16,200.0	90.00	359.42	11,509.0	4,408.7	-44.8	4,408.9	0.00	0.00	0.00
	16,300.0	90.00	359.42	11,509.0	4,508.7	-45.8	4,508.9	0.00	0.00	0.00
	16,400.0	90.00	359.42	11,509.0	4,608.7	-46.8	4,608.9	0.00	0.00	0.00
1	16,500.0	90.00	359.42	11,509.0	4,708.7	-47.8	4,708.9	0.00	0.00	0.00
	16,600.0	90.00	359.42	11,509.0	4,808.7	-48.8	4,808.9	0.00	0.00	0.00
	16,700.0	90.00	359.42	11,509.0	4,908.7	-49.9	4,908.9	0.00	0.00	0.00
	16,800.0	90.00	359.42	11,509.0	5,008.7	-50.9	5,008.9	0.00	0.00	0.00
	16,900.0	90.00	359.42	11,509.0	5,108.7	-50.9	5,008.9	0.00	0.00	0.00
	17,000.0	90.00	359.42	11,509.0	5,208.7	-52.9	5,208.9	0.00	0.00	0.00
	17,100.0	90.00	359.42	11,509.0	5,308.7	-53.9	5,208.9	0.00	0.00	0.00
	17,200.0	90.00	359.42	11,509.0	5,408.7	-55.0	5,408.9	0.00	0.00	0.00
	17,300.0	90.00	359.42	11,509.0	5,508.7	-56.0	5,508.9	0.00	0.00	0.00
	17,400.0	90.00	359.42	11,509.0	5,608.6	-57.0	5,608.9	0.00	0.00	0.00
	17,500.0	90.00	359.42	11,509.0	5,708.6	-58.0	5,708.9	0.00	0.00	0.00
	17,600.0	90.00	359.42	11,509.0	5,808.6	-59.0	5,808.9	0.00	0.00	0.00
	17,700.0	90.00	359.42	11,509.0	5,908.6	-60.1	5,908.9	0.00	0.00	0.00
	17,800.0	90.00	359.42	11,509.0	6,008.6	-61.1	6,008.9	0.00	0.00	0.00
	17,900.0	90.00	359.42	11,509.0	6,108.6	-62.1	6,108.9	0.00	0.00	0.00
	18,000.0	90.00	359.42	11,509.0	6,208.6	-63.1	6,208.9	0.00	0.00	0.00
	18,100.0	90.00	359.42	11,509.0	6,308.6	-64.1	6,308.9	0.00	0.00	0.00
	18,200.0	90.00	359.42	11,509.0	6,408.6	-65.2	6,408.9	0.00	0.00	0.00
	18,300.0	90.00	359.42	11,509.0	6,508.6	-66.2	6,508.9	0.00	0.00	0.00
	18,400.0	90.00	359.42	11,509.0	6,608.6	-67.2	6,608.9	0.00	0.00	0.00
	18,400.0	90.00	359.42	11,509.0	6,708.6	-68.2	6,708.9	0.00	0.00	0.00
	18,600.0	90.00	359.42	11,509.0	6,808.6	-69.2	6,808.9	0.00	0.00	0.00
	18,700.0	90.00	359.42	11,509.0	6,908.6	-70.3	6,908.9	0.00	0.00	0.00
	18,800.0	90.00	359.42	11,509.0	7,008.6	-71.3	7,008.9	0.00	0.00	0.00
	18,900.0	90.00	359.42	11,509.0	7,108.6	-72.3	7,108.9	0.00 0.00	0.00 0,00	0.00 0.00
	19,000.0	90.00	359.42 359.42	11,509.0	7,208.6 7,308.6	-73.3 -74.3	7,208.9 7,308.9	0.00	0.00	0.00
	19,100.0 19,200.0	90.00 90.00	359.42	11,509.0 11,509.0	7,308.6	-74.3 -75.4	7,308.9	0.00	0.00	0.00
	19,300.0	90.00	359.42	11,509.0	7,508.5	-76.4	7,508.9	0.00	0.00	0.00
	19,400.0	90.00	359.42	11,509.0	7,608.5	-77.4	7,608.9	0.00	0.00	0.00
	19,500.0	90.00	359.42	11,509.0	7,708.5	-78.4	7,708.9	0.00	0.00	0.00
	19,600.0	90.00	359.42	11,509.0	7,808.5	-79.4	7,808.9	0.00	0.00	0.00
	19,700.0	90.00	359.42	11,509.0	7,908.5	-80.5	7,908.9	0.00	0.00	0.00
· ·	19,800.0	90.00	359.42	11,509.0	8,008.5	-81.5	8,008.9	0.00	0.00	0.00
	19,900.0	90.00	359.42	11,509.0	8,108.5	-82.5	8,108.9	0.00	0.00	0.00
	20,000.0	90.00	359.42	11,509.0	8,208.5	-83.5	8,208.9	0.00	0.00	0.00
	20,100.0	90.00	359.42	11,509.0	8,308.5	-84.5	8,308.9	0.00	0.00	0.00
	20,200.0	90.00	359.42	11,509.0	8,408.5	-85.6	8,408.9	0.00	0.00	0.00
	20,300.0	90.00	359.42	11,509.0	8,508.5	-86.6	8,508.9	0.00	0.00	0.00
	20,300.0	90.00	359.42	11,509.0	8,608.5	-87.6	8,608.9	0.00	0.00	0.00

3/5/2019 12:22:22PM

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 093H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2938.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2938.0usft
Site:	CAM/AZ #5SX	North Reference:	Grid
Well:	Camellia 093H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
20,500.0	90.00	359.42	11,509.0	8,708.5	-88.6	8,708.9	0.00	0.00	0.00
20,600.0	90.00	359.42	11,509.0	8,808.5	-89.6	8,808.9	0.00	0.00	0.00
20,700.0	. 90.00	359.42	11,509.0	8,908.5	-90.7	8,908.9	0.00	0.00	0.00
20,800.0	90.00	359.42	11,509.0	9,008.5	-91.7	9,008.9	0.00	0.00	0.00
20,900.0	90.00	359.42	11,509.0	9,108.5	-92.7	9,108.9	0.00	0.00	0.00
21,000.0	90.00	359.42	11,509.0	9,208.5	-93.7	9,208.9	0.00	0.00	0.00
21,100.0	90.00	359.42	11,509.0	9,308.5	-94.7	9,308.9	0.00	0.00	0.00
21,200.0	90.00	359.42	11,509.0	9,408.4	-95.8	9,408.9	0.00	0.00	0.00
21,300.0	90.00	359.42	11,509.0	9,508.4	-96.8	9,508.9	0.00	0.00	0.00
21,400.0	90.00	359.42	11,509.0	9,608.4	-97.8	9,608.9	0.00	0.00	0.00
21,500.0	90.00	359.42	11,509.0	9,708.4	-98.8	9,708.9	0.00	0.00	0.00
21,600.0	90.00	359.42	11,509.0	9,808.4	-99.8	9,808.9	0.00	0.00	0.00
21,700.0	90.00	359.42	11,509.0	9,908.4	-100.9	9,908.9	0.00	0.00	0.00
21,800.0	90.00	359.42	11,509.0	10,008.4	-101.9	10,008.9	0.00	0.00	0.00
21,900.0	90.00	359.42	11,509.0	10,108.4	-102.9	10,108.9	0.00	0.00	0.00
22,000.0	90.00	359.42	11,509.0	10,208.4	-103.9	10,208.9	0.00	0.00	0.00
22,100.0	90.00	359.42	11,509.0	10,308.4	-104.9	10,308.9	0.00	0.00	0.00
22,200.0	90.00	359.42	11,509.0	10,408.4	-106.0	10,408.9	0.00	0.00	0.00
22,300.0	90.00	359.42	11,509.0	10,508.4	-107.0	10,508.9	0.00	0.00	0.00
22,400.0	90.00	359.42	11,509.0	10,608.4	-108.0	10,608.9	0.00	0.00	0.00
22,500.0	90.00	359.42	11,509.0	10,708.4	-109.0	10,708.9	0.00	0.00	0.00
22,600.0	90.00	359.42	11,509.0	10,808.4	-110.0	10,808.9	0.00	0.00	0.00
22,700.0	90.00	359.42	11,509.0	10,908.4	-111.1	10,908.9	0.00	0.00	0.00
22,800.0	90.00	359.42	11,509.0	11,008.4	-112.1	11,008.9	0.00	0.00	0.00
22,900.0	90.00	359.42	11,509.0	11,108.4	-113.1	11,108.9	0.00	0.00	0.00
Cam093 LTP									_
22,971.0	90.00	359.42	11,509.0	11,179.3	-113.8	11,179.9	0.00	0.00	0.00

Design	Targets
--------	---------

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Eesting (usft)	Latitude	Longitude
Cam093 KOP - plan hits target cent - PoInt	0.00 er	0.00	11,000.0	-491.2	51.6	372,022.64	870,264.78	32° 1' 5.988 N	103° 16' 19.388 W
Cam093 FTP - plan hits target cent - Point	0.00 er	0.00	11,509.0	770.0	-7.6	373,283.81	870,205.53	32° 1' 18.472 N	103° 16' 19.933 W
Cam093 LTP - plan misses target o - Point	0.00 center by 20.9	0.00 Jusft at 2290	11,509.0 0.0usft MD (11,129.3 11509.0 TVD,	-113.3 11108.4 N, -1	383,643.13 13.1 E)	870,099.82	32° 3' 0.985 N	103° 16' 19.978 W
Cam093 BHL - plan hits target cent - Point	0.00 er	0.00	11,509.0	11,179.3	-113.8	383,693.15	870,099.32	32° 3' 1.480 N	103° 16' 19.978 W

3/5/2019 12:22:22PM

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 093H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2938.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2938.0usft
Site:	; CAM/AZ #5SX	North Reference:	Grid
Weil:	Camellia 093H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	i	1
Design:	Design #1		

	Plan Annotations	
--	------------------	--

Measured	Vertical	Local Coordinates		
Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment
 12,461.0	11,505.5	670.1	-3.4	Cam093 into NMNM23199

3/5/2019 12:22:22PM

CAM/AZ CAM/AZ #5SX Camellia 093H Wellbore #1

Plan: Design #1

Lease Penetration Section Line Foot

05 March, 2019

Lease Penetration Section Line Footages

	meredev Operati XAM/AZ	ing, LLC.		Local Co-ordir TVD Reference	nate Reference: e:	Well Camellia KB @ 2938.0u		
Site: C	AM/AZ #5SX			MD Reference:	:	KB @ 2938.0u	sft	
	Carnellia 093H			North Referen	ce:	Grid		
	Velibore #1			Survey Calcul	ation Method:	Minimum Curv	ature	
Design: D	Design #1			Database:		EDM5000		
Project	CAM/AZ							
Map System:	US State Plane			System Datu	ım:	Mean Sea Le	vel	
Geo Datum:	North American							
Map Zone:	New Mexico Ea	astern Zone						
Site	CAM/AZ #5S	x						
Site Position:			Northing:			itude:		32° 1' 10.853 I
From:	Lat/Long		Easting:			gitude:		103° 16' 20.164 V
Position Uncertaint	y:	0.0 usft	Slot Radius:	13	3-3/16" Grid	d Convergence:		0.56 *
Well	Camellia 0931	4						
Well Position	+N/-S	0.0 usft	Northing:		372,513.84 usft	Latitude:		32° 1' 10.853 M
	+E/-W	0.0 usft	Easting:		870,213.16 usft	Longitude:		103° 16' 19.932 V
Position Uncertaint	У	0.0 usft	Wellhead Ele	evation:	usft	Ground Level:		2,911.0 usf
Wellbore	Weilbore #1							
Magnetics	Model Na	3me	Sample Date	Declinati	on	Dip Angle	Field Str	rength
-				(°)		(*)	(n]	
	IG	RF2015	3/5/2019		6.61	59.9	0 47,67	5.25085865
Design	Design #1							
Audit Notes:								
Audit Notes: Version:			Phase:	PROTOTYPE	Tie On	Depth:	0.0	
			Phase: rom (TVD) isft)	PROTOTYPE +N/-S (usft)	Tie On +E/-W (usft)	Depth:	0.0 Direction (°)	
Version:		(u	rom (TVD)	+N/-S	+E/-W	Depth:	Direction	
Version:		(u	rom (TVD) Isft)).0	+N/-S (usft)	+E/-W (usft)	Depth:	Direction (°)	
Version: Vertical Section:	m To	(u (rom (TVD) Isft)).0	+N/-S (usft)	+E/-W (usft)	Depth:	Direction (°)	
Version: Vertical Section: Survey Tool Progra		(u (rom (TVD) isft) 0.0 	+N/-S (usft) 0.0	+E/-W (usft)	Depth: Description	Direction (°)	
Version: Vertical Section: Survey Tool Progra From	To (usft)	(u () Date 3/5/20	rom (TVD) isft) 	+N/-S (usft) 0.0	+E/-W (usft) 0.0 Name	· · · · · · · · · · · · · · · · · · ·	Direction (*) 359.42	
Version: Vertical Section: Survey Tool Progra From (usft)	To (usft)	(u) Date 3/5/20 Survey (Wellbo	rom (TVD) isft) 	+N/-S (usft) 0.0 Tool	+E/-W (usft) 0.0 Name	Description	Direction (*) 359.42	
Version: Vertical Section: Survey Tool Progra From (usft) 0.0	To (usft)	(u) Date 3/5/20 Survey (Wellbo	rom (TVD) Isft) 0.0 119 ore) Ilbore #1)	+N/-S (usft) 0.0 Tool MW(+E/-W (usft) 0.0 Name	Description	Direction (*) 359.42	Longitude
Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD	To (usft)) 22,971.0 Inc (°)	(u Date 3/5/20 Survey (Wellbo Design #1 (We Azi (az	rom (TVD) Isft) 0.0 119 ore) Ilbore #1)	+N/-S (usit) 0.0 Tool MWI	+E/-W (usft) 0.0 Name D	Description OWSG MWD +FWL/-FEL	Direction (*) 359.42 - Standard	Longitude 103° 16' 19.932 W
Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft)	To (usft)) 22,971.0 inc (°) 0	(u Date 3/5/20 Survey (Wellbo Design #1 (We Azi (az	rom (TVD) Isft) 0.0 119 ore) Ilbore #1)	+N/-S (usft) 0.0 Tool MW(TVD 4 (usft)	+E/-W (usft) 0.0 Name D FSL/-FNL (usft)	Description OWSG MWD +FWL/-FEL (usft)	Direction (*) 359.42 - Standard Latitude	-
/ersion: /ertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0.0	To (usft)) 22,971.0 inc (°) 0	(u Date 3/5/20 Survey (Wellbo Design #1 (We Azl (az (* 0.00	rom (TVD) Isft) 0.0 119 ore) Ilbore #1) Ilmuth) c) 0.00	+N/-S (usft) 0.0 Tool MW(TVD (usft) 0.0	+E/-W (usft) 0.0 Name D FSL/-FNL (usft) -669.8	Description OWSG MWD +FWL/-FEL (usft) 1,980.0	Direction (*) 359.42 - Standard Latitude 32° 1' 10.853 N	103° 16' 19.932 V 103° 16' 19.932 V
Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0.1	To (usft)) 22,971.0 Inc (°) 0 0	(u Date 3/5/20 Survey (Wellbo Design #1 (We Azl (az (* 0.00 0.00	rom (TVD) Isft) 0.0 119 ore) Ilbore #1) Ilmuth) 0.00 0.00	+N/-S (usft) 0.0 Tool MW(TVD (usft) 0.0 100.0	+E/-W (usft) 0.0 Name D FSL/-FNL (usft) -669.8 -669.8	Description OWSG MWD +FWL/-FEL (usft) 1,980.0 1,980.0	Direction (*) 359.42 - Standard Latitude 32° 1' 10.853 N 32° 1' 10.853 N	103° 16' 19.932 V 103° 16' 19.932 V 103° 16' 19.932 V
Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0.1 00.4 200.4	To (usft)) 22,971.0 inc (°) 0 0 0 0	(u Date 3/5/20 Survey (Wellbo Design #1 (We Azi (az (* 0.00 0.00 0.00	rom (TVD) Isft) 0.0 119 bore) libore #1) 0.00 0.00 0.00 0.00	+N/-S (usft) 0.0 Tool MW(TVD (usft) 0.0 100.0 200.0	+E/-W (usft) 0.0 Name D ►FSL/-FNL (usft) -669.8 -669.8 -669.8	Description OWSG MWD +FWL/-FEL (usft) 1,980.0 1,980.0 1,980.0	Direction (*) 359.42 - Standard Latitude 32° 1' 10.853 N 32° 1' 10.853 N 32° 1' 10.853 N	103° 16' 19.932 V 103° 16' 19.932 V 103° 16' 19.932 V 103° 16' 19.932 V 103° 16' 19.932 V
Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0.1 00.4 200.4 300.4	To (usft)) 22,971.0 inc (°) 0 0 0 0 0	(u Date 3/5/20 Survey (Wellbo Design #1 (We Azl (az () 0.00 0.00 0.00 0.00	rom (TVD) Isft) 0.0 119 bore) libore #1) 0.00 0.00 0.00 0.00 0.00	+N/-S (usft) 0.0 Tool MW(TVD (usft) 0.0 100.0 200.0 300.0	+E/-W (usft) 0.0 Name D FSL/-FNL (usft) -669.8 -669.8 -669.8	Description OWSG MWD +FWLJ-FEL (usft) 1,980.0 1,980.0 1,980.0 1,980.0	Direction (*) 359.42 - Standard Latitude 32° 1' 10.853 N 32° 1' 10.853 N 32° 1' 10.853 N 32° 1' 10.853 N	103° 16' 19.932 V
Version: Vertical Section: Survey Tool Program (usft) 0.0 Planned Survey (usft) 0.0 200.4 300.4 300.4 300.4	To (usft)) 22,971.0 inc (°) 0 0 0 0 0 0 0	(u Date 3/5/20 Survey (Wellbo Design #1 (We Azl (az (0.00 0.00 0.00 0.00 0.00 0.00	rom (TVD) Isft) 0.0 119 119 119 119 119 100 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	+N/-S (usft) 0.0 Tool MW0 (usft) 0.0 100.0 200.0 300.0 400.0 500.0	+E/-W (usft) 0.0 Name D -FSL/-FNL (usft) -669.8 -669.8 -669.8 -669.8 -669.8 -669.8	Description OWSG MWD +FWLJ-FEL (usft) 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0	Direction (*) 359.42 - Standard Latitude 32° 1' 10.853 N 32° 1' 10.853 N	103° 16' 19.932 V 103° 16' 19.932 V
Version: Vertical Section: Survey Tool Program (usft) 0.0 Planned Survey MD (usft) 0.0 200.4 300.4 400.4 500.4	To (usft)) 22,971.0 inc (°) 0 0 0 0 0 0 0 0	(u Date 3/5/20 Survey (Wellbo Design #1 (We Azl (az (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	rom (TVD) Isft) 0.0 119 119 119 119 119 100 119 0.00 0.	+N/-S (usft) 0.0 Tool MW0 (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0	+E/-W (usft) 0.0 Name D +FSL/-FNL (usft) -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8	Description OWSG MWD +FWLJ-FEL (usft) 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0	Direction (*) 359.42 - Standard Latitude 32° 1' 10.853 N 32° 1' 10.853 N	103° 16' 19.932 V 103° 16' 19.932 V
Version: Vertical Section: Survey Tool Program (usft) 0.0 Planned Survey MD (usft) 0.0 200.0 300.0 400.0 500.0 600.0 700.0	To (usft)) 22,971.0 (°) 0 0 0 0 0 0 0 0 0 0 0	(u Date 3/5/20 Survey (Wellbo Design #1 (We Azl (az (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	rom (TVD) Isft) 0.0 119 119 119 119 100 119 0.000 0.00	+N/-S (usft) 0.0 Tool MWU (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0	+E/-W (usft) 0.0 Name D +FSL/-FNL (usft) -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8	Description OWSG MWD +FWLJ-FEL (usft) 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0	Direction (*) 359.42 - Standard Latitude 32° 1' 10.853 N 32° 1' 10.853 N	103° 16' 19.932 V 103° 16' 19.932 V
Version: Vertical Section: Survey Tool Program (usft) 0.0 Planned Survey MD (usft) 0.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0	To (usft)) 22,971.0 (°) 0 0 0 0 0 0 0 0 0 0 0 0 0	(u Date 3/5/20 Survey (Wellbo Design #1 (We Azl (az (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	rom (TVD) Isft) 0.0 119 119 119 119 100 119 100 119 100 100	+N/-S (usft) 0.0 Tool MWU (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0	+E/-W (usft) 0.0 Name D +FSL/-FNL (usft) -869.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8	Description OWSG MWD +FWLJ-FEL (usft) 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0	Direction (*) 359.42 - Standard Latitude 32° 1' 10.853 N 32° 1' 10.853 N	103° 16' 19.932 V 103° 16' 19.932 V
Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0.1 200.4 300.4 300.4 300.4 600.4 700.4 800.4 900.4	To (usft)) 22,971.0 inc (*) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(u Date 3/5/20 Survey (Wellbo Design #1 (We Azl (az () 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	rom (TVD) isft) 0.0 119 bre) libore #1) 0.00 0.	+N/-S (usft) 0.0 Tool MWI (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0	+E/-W (usft) 0.0 Name D FSL/-FNL (usft) -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8	Description OWSG MWD ◆FWLJ-FEL (usft) 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0	Direction (*) 359.42 - Standard Latitude 32° 1' 10.853 N 32° 1' 10.853 N	103° 16' 19.932 V 103° 16' 19.932 V
/ersion: /ertical Section: Survey Tool Program (usft) 0.0 /lanned Survey (usft) 0.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0	To (usft)) 22,971.0 inc (*) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(u Date 3/5/20 Survey (Wellbo Design #1 (We Azl (az (0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	rom (TVD) Isft) 0.0 119 119 119 119 100 119 100 119 100 100	+N/-S (usft) 0.0 Tool MWU (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0	+E/-W (usft) 0.0 Name D +FSL/-FNL (usft) -869.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8 -669.8	Description OWSG MWD +FWLJ-FEL (usft) 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0 1,980.0	Direction (*) 359.42 - Standard Latitude 32° 1' 10.853 N 32° 1' 10.853 N	103° 16' 19.932 V 103° 16' 19.932 V

3/5/2019 12:22:33PM

Lease Penetration Section Line Footages

Project: 0 Site: 0 Well: 0 Wellbore: N	t: CAM/AZ CAM/AZ #5SX Carnellia 093H ore: Wellbore #1		AZ #5SX MD Reference: billia 093H North Reference: ore #1 Survey Calculation Method:		Well Camellia 093H KB @ 2938.0usft KB @ 2938.0usft Grid Minimum Curvature EDM5000		
Planned Survey							
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
1,200	.0 0.00	0.00	1,200.0	-669.8	1,980.0	32° 1' 10.853 N	103° 16' 19.932 \
1,300	.0 0.00	0.00	1,300.0	-669.8	1,980.0	32° 1' 10.853 N	103° 16' 19.932 \
1,400	.0 0.00	0.00	1,400.0	-669.8	1,980.0	32° 1' 10.853 N	103° 16' 19.932 \
1,500	.0 0.00	0.00	1,500.0	-669.8	1,980.0	32° 1' 10.853 N	103° 16' 19.932 \
1,600		0.00	1,600.0	-669.8	1,980.0	32° 1' 10.853 N	103° 16' 19.932 \
1,000		0.00	1,700.0	-669.8	1,980.0	32° 1' 10.853 N	103° 16' 19.932 \
1,800		0.00	1,800.0	-669.8	1,980.0	32° 1' 10.853 N	103° 16' 19.932 \
1,800		0.00	1,800.0	-669.8	1,980.0	32° 1' 10.853 N	103° 16' 19.932 \
2,000		0.00	2,000.0	-669.8	1,980.0	32° 1' 10.853 N	103° 16' 19.932 \
2,100		174.00	2,100.0	-671.5	1,980.2	32° 1' 10.836 N	103° 16' 19.930 \
2,200		174.00	2,199.8	-676.7	1,980.7	32° 1' 10.784 N	103° 16' 19.924 1
2,300		174.00	2,299.5	-685.4	1,981.6	32° 1' 10.698 N	103° 16' 19.915
2,400	.0 6.00	174.00	2,398.9	-695.8	1,982.7	32° 1' 10.595 N	103° 16' 19,903 1
2,500	.0 6.00	174.00	2,498.4	-706.2	1,983.8	32° 1' 10.493 N	103° 16' 19.892
2,600	.0 6.00	174.00	2,597.8	-716.6	1,984.9	32° 1' 10.390 N	103° 16' 19.880 1
2,700	.0 6.00	174.00	2,697.3	-727.0	1,986.0	32° 1' 10,287 N	103° 16' 19.869
2,800	.0 6.00	174.00	2,796.7	-737.4	1,987.1	32° 1' 10.184 N	103° 16' 19.857
2,900	.0 6.00	174.00	2,896.2	-747.8	1,988.2	32° 1' 10.081 N	103° 16' 19.846
3,000	.0 6.00	174.00	2,995.6	-758.2	1,989.3	32° 1' 9.978 N	103° 16' 19.834
3,100		174.00	3,095.1	-768.6	1,990.4	32° 1' 9.875 N	103° 16' 19.823
3,200		174.00	3,194.5	-779.0	1,991.5	32° 1' 9.772 N	103° 16' 19.811
3,300		174.00	3,294.0	-789.4	1,992.6	32° 1' 9,669 N	103° 16' 19.800
3,400		174.00	3,393.4	-799.8	1,993.7	32° 1' 9.566 N	103° 16' 19.788
3,500.		174.00	3,492.9	-810.2	1,994.7	32° 1' 9.463 N	103° 16' 19.777
3,600		174.00	3,592.3	-820.6	1,995.8	32° 1' 9.360 N	103° 16' 19.765
3,700.		174.00	3,691.8	-830.9	1,996.9	32° 1' 9.257 N	103° 16' 19.754
3,800.		174.00	3,791.2	-841.3	1,998.0	32° 1' 9.154 N	103° 16' 19.742
3,900	.0 6.00	174.00	3,890.7	-851.7	1,999.1	32° 1' 9.051 N	103° 16' 19.731
4,000	.0 6.00	174.00	3,990.1	-862.1	2,000.2	32° 1' 8.948 N	103° 16' 19.719
4,100	.0 6.00	174.00	4,089.6	-872.5	2,001.3	32° 1' 8.845 N	103° 16' 19.708
4,200.	.0 6.00	174.00	4,189.0	-882.9	2,002.4	32° 1' 8,742 N	103° 16' 19.696
4,300	.0 6.00	174.00	4,288.5	-893.3	2,003.5	32° 1' 8.639 N	103° 16' 19.685
4,400	.0 6.00	174.00	4,387.9	-903.7	2,004.6	32° 1' 8.536 N	103° 16' 19.673
4,500	.0 6.00	174.00	4,487.4	-914.1	2,005.7	32° 1' 8.433 N	103° 16' 19.662
4,600		174.00	4,586.9	-924.5	2,006.8	32° 1' 8.330 N	103° 16' 19.650
4,700		174.00	4,686.3	-934.9	2,007.9	32° 1' 8.227 N	103° 16' 19.639
4,800		174.00	4,785.8	-945.3	2,008.9	32° 1' 8.124 N	103° 16' 19.627
4,900		174.00	4,885.2	-955.7	2,010.0	32° 1' 8.021 N	103° 16' 19.616
5,000		174.00	4,984.7	-966.1	2,011.1	32° 1' 7.918 N	103° 16' 19.604
E 400							

3/5/2019 12:22:33PM

5,100.0

5,200.0

5,300.0

5,400.0

5,500.0

6.00

6.00

6.00

6.00

6.00

174.00

174.00

174.00

174.00

174.00

5,084.1

5,183.6

5,283.0

5,382.5

5,481.9

-976.5

-986.9

-997.3

-1,007.7

-1,018.1

2,012.2

2,013.3

2,014.4

2,015.5

2,016.6

COMPASS 5000.15 Build 90

32° 1' 7.815 N 103° 16' 19.593 W

32° 1' 7.712 N 103° 16' 19.581 W

32° 1' 7.609 N 103° 16' 19.569 W

32° 1' 7.506 N 103° 16' 19.558 W 32° 1' 7.403 N 103° 16' 19.546 W

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

7,400.0

7,500.0

7,600.0

7,700.0

7,800.0

7.900.0

8,000.0

8,100.0

8,200.0

8.300.0

8,400.0

8.500.0

8,600.0

8,700.0

8.800.0

8,900.0

9,000.0

9,100.0

9,200.0

9,300.0

9,400.0

9,500.0

9,600.0

9,700.0

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Ameredev Operating, LLC

Lease Penetration Section Line Footages

Company: Project: Sita: Well: Wellbore: Design:	Ameredev Operating, LLC. CAM/AZ CAM/AZ #SSX Carnellia 093H Wellbore #1 Design #1			Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Database:		KB @ 2938.0us KB @ 2938.0us Grid	Minimum Curvature	
Planned Survey								
MD (usft)	Inc (°)		Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
5,6	600.0	6.00	174.00	5,581.4	-1,028.5	2,017.7	32° 1' 7.301 N	103° 16' 19.535 V
5,7	700.0	6.00	174.00	5,680.8	-1,038.9	2,018.8	32° 1' 7.198 N	103° 16' 19.523 V
5,8	300.0	6.00	174.00	5,780.3	-1,049.3	2,019.9	32° 1' 7.095 N	103° 16' 19.512 V
5,9	0.000	6.00	174.00	5,879.7	-1,059.7	2,021.0	32° 1' 6.992 N	103° 16' 19.500 V
6,0	000.0	6.00	174.00	5,979.2	-1,070.0	2,022.1	32° 1' 6.889 N	103° 16' 19.489 V
6,1	100.0	6.00	174.00	6,078.6	-1,080.4	2,023.2	32° 1' 6.786 N	103° 16' 19.477 V
6,2	200.0	6.00	174.00	6,178.1	-1,090.8	2,024.2	32° 1' 6.683 N	103° 16' 19.466 V
6,3	300.0	6.00	174.00	6,277.5	-1,101.2	2,025.3	32° 1' 6.580 N	103° 16' 19.454 \
6,4	100.0	6.00	174.00	6,377.0	-1,111.6	2,026.4	32° 1' 6.477 N	103° 16' 19.443 V
6,5	500.0	6.00	174.00	6,476.4	-1,122.0	2,027.5	32° 1' 6.374 N	103° 16' 19.431 V
6,6	600.0	6.00	174.00	6,575.9	-1,132.4	2,028.6	32° 1' 6.271 N	103° 16' 19.420 V
6,7	700.0	6.00	174.00	6,675.3	-1,142.8	2,029.7	32° 1' 6.168 N	103° 16' 19.408 V
6,7	24.8	6.00	174.00	6,700.0	-1,145.4	2,030.0	32° 1' 6.142 N	103° 16' 19.406 V
6,8	300.0	4.50	174.00	6,774.9	-1,152.2	2,030.7	32° 1' 6.075 N	103° 16' 19.398 V
6,9	900.0	2.50	174.00	6,874.7	-1,158.3	2,031.3	32° 1' 6.015 N	103° 16' 19.391 V
7,0	0.00	0.50	174.00	6,974.7	-1,160.9	2,031.6	32° 1' 5.989 N	103° 16' 19.388 V
7,0)24.8	0.00	0.00	6,999.5	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 V
7,1	00.0	0.00	0.00	7,074.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 \
7,2	200.0	0.00	0.00	7,174.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 V
7,3	300.0	0.00	0.00	7,274.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 \

7,374.7

7,474.7

7,574.7

7,674.7

7,774.7

7,874.7

7,974.7

8,074.7

8,174.7

8,274,7

8,374.7

8,474.7

8,574.7

8,674.7

8,774.7

8,874.7

8,974.7

9,074.7

9,174.7

9,274.7

9,374.7

9,474.7

9,574.7

9,674.7

-1,161.0

-1,161.0

-1,161.0

-1,161.0

-1.161.0

-1,161.0

-1,161.0

-1,161.0

-1,161.0

-1,161.0

-1.161.0

-1,161.0

-1,161.0

-1,161.0

-1,161.0

-1,161.0

-1,161.0

-1,161.0

-1,161.0

-1,161.0

-1,161.0

-1,161.0

-1,161.0

-1,161.0

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

2.031.6

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

2,031.6

3/5/2019 12:22:33PM

COMPASS 5000.15 Build 90

32° 1' 5.988 N 103° 16' 19.388 W

32° 1' 5.988 N 103° 16' 19.388 W 32° 1' 5.988 N 103° 16' 19.388 W

103° 16' 19.388 W 103° 16' 19.388 W

103° 16' 19.388 W

103° 16' 19.388 W

103° 16' 19.388 W

103° 16' 19.388 W

103° 16' 19.388 W

103° 16' 19.388 W

103° 16' 19.388 W

103° 16' 19.388 W

32° 1' 5.988 N

Lease Penetration Section Line Footages

Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Camellia 093H
Project:	CAM/AZ	TVD Reference:	KB @ 2938.0usft
Site:	CAM/AZ #5SX	MD Reference:	KB @ 2938.0usft
Well:	Camellia 093H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Design #1	Database:	EDM5000

	MD (usft)	Inc (°)	Azl (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
	9,800.0	0.00	0.00	9,774.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 W
	9,900.0	0.00	0.00	9,874.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 W
	10,000.0	0.00	0.00	9,974.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 W
	10,100.0	0.00	0.00	10,074.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 W
	10,200.0	0.00	0.00	10,174.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 W
	10,300.0	0.00	0.00	10,274.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 W
	10,400.0	0.00	0.00	10,374.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 W
	10,500.0	0.00	0.00	10,474.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 W
ł	10,600.0	0.00	0.00	10,574.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 W
	10,700.0	0.00	0.00	10,674.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 W
	10,800.0	0.00	0.00	10,774.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 W
	10,900.0	0.00	0.00	10,874.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 W
	11,000.0	0.00	0.00	10,974.7	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 W
ł.	11,025.3	0.00	0.00	11,000.0	-1,161.0	2,031.6	32° 1' 5.988 N	103° 16' 19.388 W
1	Cam093 KOP							
	11,100.0	8.96	357.29	11,074.4	-1,155.2	2,031.3	32° 1' 6.045 N	103° 16' 19.391 W
	11,200.0	20.96	357.29	11,170.8	-1,129.4	2,030.1	32° 1' 6.300 N	103° 16' 19.402 W
	11,300.0	32.96	357.29	11,259.8	-1,084.2	2,028.0	32° 1' 6.748 N	103° 16' 19.422 W
	11,400.0	44.96	357.29	11,337.4	-1,021.5	2,025.0	32° 1' 7.368 N	103° 16' 19.449 W
	11,500.0	56.96	357.29	11,400.3	-944.1	2,021.3	32° 1' 8.135 N	103° 16' 19.483 W
	11,600.0	68.96	357.29	11,445.6	-855.3	2,017.1	32° 1' 9.014 N	103° 16' 19.522 W
	11,700.0	80.96	357.29	11,471.5	-759.0	2,012.6	32° 1' 9,967 N	103° 16' 19.564 W
l	11,756.1	87.69	357.29	11,477.1	-703.3	2,009.9	32° 1' 10.519 N	103° 16' 19.588 W
	11,800.0	87.69	357.29	11,478.8	-659.5	2,007.9	32° 1' 10.953 N	103° 16' 19.607 W
	11,900.0	87.69	357.29	11,482.9	-559.7	2,003.1	32° 1' 11.941 N	103° 16' 19.651 W
	12,000.0	87.69	357.29	11,486.9	-459.9	1,998.4	32° 1' 12.929 N	103° 16' 19.694 W
	12,100.0	87.69	357.29	11,490.9	-360.0	1,993.7	32° 1' 13.917 N	103° 16' 19.738 W
	12,200.0	87.69	357.29	11,495.0	-260.2	1,989.0	32° 1' 14.905 N	103° 16' 19.781 W
	12,300.0	87.69	357.29	11,499.0	-160.4	1,984.2	32° 1' 15.893 N	103° 16' 19.825 W
	12,400.0	87.69	357.29	11,503.0	-60.6	1,979.5	32° 1' 16.881 N	103° 16' 19.868 W
	12,461.0	87.69	357.29	11,505.5	0.3	1,976.6	32° 1' 17.483 N	103° 16' 19.895 W
	Cam093 into NMI	NM23199						
	12,500.0	87.69	357.29	11,507.1	39.2	1,974.8	32° 1' 17.869 N	103° 16' 19.912 W
	12,534.9	87.69	357.29	11,508.5	74.0	1,973.1	32° 1' 18.214 N	103° 16' 19.927 W
	12,561.1	90.00	359.42	11,509.0	100.2	1,972.4	32° 1' 18.472 N	103° 16' 19.933 W
	Cam093 FTP		252.42	44 500 0		4 070 0	000 41 40 0F0 N	
	12,600.0	90.00	359.42	11,509.0	139.1	1,972.0	32° 1' 18.858 N	103° 16' 19.933 W
	12,700.0	90.00	359.42	11,509.0	239.1	1,971.0	32° 1' 19.847 N	103° 16' 19.933 W
	12,800.0	90.00	359.42	11,509.0	339.1	1,969.9	32° 1' 20.837 N	103° 16' 19.934 W
	12,900.0	90.00	359.42	11,509.0	439.1	1,968.9	32° 1' 21.826 N	103° 16' 19.934 W
	13,000.0	90.00	359.42	11,509.0	539.1	1,967.9	32° 1' 22.816 N	103° 16' 19.935 W
	13,100.0	90.00	359.42	11,509.0	639.1	1,966.9	32° 1' 23.805 N	103° 16' 19.935 W
	13,200.0	90.00	359.42	11,509.0	739.1	1,965.8	32° 1' 24.795 N	103° 16' 19.935 W
	13,300.0	90.00	359.42	11,509.0	839.1	1,964.8	32° 1' 25.784 N	103° 16' 19.936 W
L	13,400.0	90.00	359.42	11,509.0	939.1	1,963.8	32° 1' 26.774 N	103° 16' 19.936 W

3/5/2019 12:22:33PM

Lease Penetration Section Line Footages

Design:	Design #1	Database:	EDM5000
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Well:	Camellia 093H	North Reference:	Grid
Site:	CAM/AZ #5SX	MD Reference:	KB @ 2938.0usft
Project:	CAM/AZ	TVD Reference:	KB @ 2938.0usft
Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Camellia 093H

Planned Survey

MD (usft)	lnc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
13,500.0	90.00	359.42	11,509.0	1,039.0	1,962.8	32° 1' 27.763 N	103° 16' 19.937 W
13,600.0	90.00	359.42	11,509.0	1,139.0	1,961.8	32° 1' 28.753 N	103° 16' 19.937 W
13,700.0	90.00	359.42	11,509.0	1,239.0	1,960.7	32° 1' 29.742 N	103° 16' 19.938 W
13,800.0	90.00	359.42	11,509.0	1,339.0	1,959.7	32° 1' 30.732 N	103° 16' 19.938 W
13,900.0	90.00	359.42	11,509.0	1,439.0	1,958.7	32° 1' 31.721 N	103° 16' 19.939 W
14,000.0	90.00	359.42	11,509.0	1,539.0	1,957.7	32° 1' 32.711 N	103° 16' 19.939 W
14,100.0	90.00	359.42	11,509.0	1,639.0	1,956.7	32° 1' 33.700 N	103° 16' 19.939 W
14,200.0	90.00	359.42	11,509.0	1,739.0	1,955.6	32° 1' 34.690 N	103° 16' 19.940 W
14,300.0	90.00	359.42	11,509.0	1,839.0	1,954.6	32° 1' 35.679 N	103° 16' 19.940 W
14,400.0	90.00	359.42	11,509.0	1,939.0	1,953.6	32° 1' 36.669 N	103° 16' 19.941 V
14,500.0	90.00	359.42	11,509.0	2,039.0	1,952.6	32° 1' 37.658 N	103° 16' 19.941 V
14,600.0	90.00	359.42	11,509.0	2,139.0	1,951.6	32° 1' 38.648 N	103° 16' 19.942 V
14,700.0	90.00	359.42	11,509.0	2,239.0	1,950.5	32° 1' 39.637 N	103° 16' 19.942 V
14,800.0	90.00	359.42	11,509.0	2,339.0	1,949.5	32° 1' 40.627 N	103° 16' 19.943 W
14,900.0	90.00	359.42	11,509.0	2,439.0	1,948.5	32° 1' 41.616 N	103° 16' 19.943 W
15,000.0	90.00	359.42	11,509.0	2,539.0	1,947.5	32° 1' 42.606 N	103° 16' 19.943 V
15,100.0	90.00	359.42	11,509.0	2,639.0	1,946.5	32° 1' 43.595 N	103° 16' 19.944 W
15,200.0	90.00	359.42	11,509.0	2,739.0	1,945.4	32° 1' 44.585 N	103° 16' 19.944 V
15,300.0	90.00	359.42	11,509.0	2,839.0	1,944.4	32° 1' 45.575 N	103° 16' 19.945 V
15,400.0	90.00	359.42	11,509.0	2,938.9	1,943.4	32° 1' 46.564 N	103° 16' 19.945 V
15,500.0	90.00	359.42	11,509.0	3,038.9	1,942.4	32° 1' 47.554 N	103° 16' 19.946 V
15,600.0	90.00	359.42	11,509.0	3,138,9	1,941.4	32° 1' 48.543 N	103° 16' 19.946 V
15,700.0	90.00	359.42	11,509.0	3,238.9	1,940.3	32° 1' 49.533 N	103° 16' 19.946 W
15,800.0	90.00	359.42	11,509.0	3,338.9	1,939.3	32° 1' 50.522 N	103° 16' 19.947 V
15,900.0	90.00	359.42	11,509.0	3,438.9	1,938.3	32° 1' 51.512 N	103° 16' 19.947 V
16,000.0	90.00	359.42	11,509.0	3,538.9	1,937.3	32° 1' 52.501 N	103° 16' 19.948 V
16,100.0	90.00	359.42	11,509.0	3,638.9	1,936.3	32° 1' 53.491 N	103° 16' 19.948 v
16,200.0	90.00	359.42	11,509.0	3,738.9	1,935.2	32° 1' 54.480 N	103° 16' 19.949 V
16,300.0	90.00	359.42	11,509.0	3,838.9	1,934.2	32° 1' 55.470 N	103° 16' 19.949 V
16,400.0	90.00	359.42	11,509.0	3,938.9	1,933.2	32° 1' 56.459 N	103° 16' 19.950 V
16,500.0	90.00	359.42	11,509.0	4,038.9	1,932.2	32° 1' 57.449 N	103° 16' 19.950 V
16,600.0	90.00	359.42	11,509.0	4,138.9	1,931.2	32° 1' 58.438 N	103° 16' 19.950 V
16,700.0	90.00	359.42	11,509.0	4,238.9	1,930.1	32° 1' 59.428 N	103° 16' 19.951 V
16,800.0	90.00	359.42	11,509.0	4.338.9	1,929.1	32° 2' 0.417 N	103° 16' 19.951 V
16,900.0	90.00	359.42	11,509.0	4,438.9	1,928.1	32° 2' 1.407 N	103° 16' 19.952 V
17,000.0	90.00	359.42	11,509.0	4,538.9	1,927.1	32° 2' 2.396 N	103° 16' 19.952 V
17,100.0	90.00	359.42	11,509.0	4,638.9	1,926.1	32° 2' 3.386 N	103° 16' 19.953 V
17,200.0	90.00	359.42	11,509.0	4,738.9	1,925.0	32° 2' 4.375 N	103° 16' 19.953 V
17,300.0	90.00	359.42	11,509.0	4,838.8	1,924.0	32° 2' 5.365 N	103° 16' 19.954 V
17,400.0	90.00	359.42	11,509.0	4,938.8	1,923.0	32° 2' 6.354 N	103° 16' 19.954 V
17,500.0	90.00	359.42	11,509.0	5,038.8	1,922.0	32° 2' 7.344 N	103° 16' 19.954 V
17,600.0	90.00	359.42	11,509.0	5,138.8	1,921.0	32° 2' 8.333 N	103° 16' 19.955 V
17,700.0	90.00	359.42	11,509.0	5,238.8	1,919.9	32° 2' 9.323 N	103° 16' 19.955 V
17,800.0	90.00	359.42	11,509.0	5,338.8	1,918.9	32° 2' 10.312 N	103° 16' 19.956 V

3/5/2019 12:22:33PM

Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design:	Ameredev Operating, LLC. CAM/AZ CAM/AZ #5SX Camellia 093H Wellbore #1 Design #1			Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Database:		Well Camellia 093H KB @ 2938.0usft KB @ 2938.0usft Grid Minimum Curvature EDM5000		
Planned Survey		The second s		······				
MD	-	Inc	Azi (azimuth)	TVD	+FSL/-FNL	+FWL/-FEL	Latitude	Longitude
(usft)		(°)	(°)	(usft)	(usft)	(usft)		
	,900.0	90.00	359.42	11,509.0	5,438.8	1,917.9	32° 2' 11.302 N	103° 16' 19.956 V
	,000.0	90.00	359.42	11,509.0	5,538.8	1,916.9	32° 2' 12.291 N	103° 16' 19.957 V
	,100.0	90.00	359.42	11,509.0	5,638.8	1,915.9	32° 2' 13.281 N	103° 16' 19.957 V
18,	,200.0	90.00	359.42	11,509.0	5,738.8	1,914.8	32° 2' 14.270 N	103° 16' 19.957 V
18,	,300.0	90.00	359.42	11,509.0	5,838.8	1,913.8	32° 2' 15.260 N	103° 16' 19.958 V
18,	,400.0	90.00	359.42	11,509.0	5,938.8	1,912.8	32° 2' 16.249 N	103° 16' 19.958 V
18,	,500.0	90.00	359.42	11,509.0	6,038.8	1,911.8	32° 2' 17.239 N	103° 16' 19.959 V
18,	,600.0	90.00	359.42	11,509.0	6,138.8	1,910.8	32° 2' 18.228 N	103° 16' 19.959 V
18,	,700.0	90.00	359.42	11,509.0	6,238.8	1,909.7	32° 2' 19.218 N	103° 16' 19.960 V
18,	,800.0	90.00	359.42	11,509.0	6,338.8	1,908.7	32° 2' 20.207 N	103° 16' 19.960 V
18,	,900.0	90.00	359.42	11,509.0	6,438.8	1,907.7	32° 2' 21.197 N	103° 16' 19.961 V
19,4	000.0	90.00	359.42	11,509.0	6,538.8	1,906.7	32° 2' 22.187 N	103° 16' 19.961 V
19,	100.0	90.00	359.42	11,509.0	6,638.8	1,905.7	32° 2' 23.176 N	103° 16' 19.961 V
19,	200.0	90.00	359.42	11,509.0	6,738.8	1,904.6	32° 2' 24.166 N	103° 16' 19.962 V
19,	300.0	90.00	359.42	11,509.0	6,838.7	1,903.6	32° 2' 25.155 N	103° 16' 19.962 V
19,4	400.0	90.00	359.42	11,509.0	6,938.7	1,902.6	32° 2' 26.145 N	103° 16' 19.963 V
19,	500.0	90.00	359.42	11,509.0	7,038.7	1,901.6	32° 2' 27.134 N	103° 16' 19.963 V
19,0	600.0	90.00	359.42	11,509.0	7,138.7	1,900.6	32° 2' 28.124 N	103° 16' 19.964 V
19,	700.0	90.00	359.42	11,509.0	7,238.7	1,899.5	32° 2' 29.113 N	103° 16' 19.964 V
19,	800.0	90.00	359.42	11,509.0	7,338.7	1,898.5	32° 2' 30.103 N	103° 16' 19.964 V
19,9	900.0	90.00	359.42	11,509.0	7,438.7	1,897.5	32° 2' 31.092 N	103° 16' 19.965 V
20,0	000.0	90.00	359.42	11,509.0	7,538.7	1,896.5	32° 2' 32.082 N	103° 16' 19.965 V
20,	100.0	90.00	359.42	11,509.0	7,638.7	1,895.4	32° 2' 33.071 N	103° 16' 19.966 V
20,3	200.0	90.00	359.42	11,509.0	7,738.7	1,894.4	32° 2' 34.061 N	103° 16' 19.966 V
20,	300.0	90.00	359.42	11,509.0	7,838.7	1,893.4	32° 2' 35.050 N	103° 16' 19.967 V
20,4	400.0	90.00	359.42	11,509.0	7,938.7	1,892.4	32° 2' 36.040 N	103° 16' 19.967 V
20,	500.0	90.00	359.42	11,509.0	8,038.7	1,891.4	32° 2' 37.029 N	103° 16' 19.968 V
20,0	600.0	90.00	359.42	11,509.0	8,138.7	1,890.3	32° 2' 38.019 N	103° 16' 19.968 V
20,	700.0	90.00	359.42	11,509.0	8,238.7	1,889.3	32° 2' 39.008 N	103° 16' 19.968 V
20,8	800.0	90.00	359.42	11,509.0	8,338.7	1,888.3	32° 2' 39.998 N	103° 16' 19.969 V
	900.0	90.00	359.42	11,509.0	8,438.7	1,887.3	32° 2' 40.987 N	103° 16' 19.969 V
	0.000	90.00	359.42	11,509.0	8,538.7	1,886.3	32° 2' 41.977 N	103° 16' 19.970 V
	100.0	90.00	359.42	11,509.0	8,638.7	1,885.2	32° 2' 42.966 N	103° 16' 19.970 V
	200.0	90.00	359.42	11,509.0	8,738.6	1,884.2	32° 2' 43.956 N	103° 16' 19.971 V
21,	300.0	90.00	359.42	11,509.0	8,838.6	1,883.2	32° 2' 44,945 N	103° 16' 19.971 V
	400.0	90.00	359.42	11,509.0	8,938.6	1,882.2	32° 2' 45.935 N	103° 16' 19.971 V
	500.0	90.00	359.42	11,509.0	9,038.6	1,881.2	32° 2' 46.924 N	103° 16' 19.972 V
	600.0	90.00	359.42	11,509.0	9,138.6	1,880.1	32° 2' 47.914 N	103° 16' 19.972 V
	700.0	90.00	359.42	11,509.0	9,238.6	1,879.1	32° 2' 48.903 N	103° 16' 19.973 V
21,8	800.0	90.00	359.42	11,509.0	9,338.6	1,878.1	32° 2' 49.893 N	103° 16' 19.973 V
21,9	900.0	90.00	359.42	11,509.0	9,438.6	1,877.1	32° 2' 50.882 N	103° 16' 19.974 V
22,0	000.0	90.00	359.42	11,509.0	9,538.6	1,876.1	32° 2' 51.872 N	103° 16' 19.974 V
	100.0	90.00	359.42	11,509.0	9,638.6	1,875.0	32° 2' 52.861 N	103° 16' 19.975 V
	200.0	90.00	359.42	11,509.0	9,738.6	1,874.0	32° 2' 53.851 N	103° 16' 19.975 V

3/5/2019 12:22:33PM

Lease Penetration Section Line Footages

Planned Surve	B y	· · · · · ·	
Design:	Design #1	Database:	EDM5000
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Weil:	Camellia 093H	North Reference:	Grid
Site:	CAM/AZ #5SX	MD Reference:	KB @ 2938.0usft
Project:	CAM/AZ	TVD Reference:	KB @ 2938.0usft
Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Camellia 093H

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
22,300.0	90.00	359.42	11,509.0	9,838.6	1,873.0	32° 2' 54.840 N	103° 16' 19.975 W
22,400.0	90.00	359.42	11,509.0	9,938.6	1,872.0	32° 2' 55.830 N	103° 16' 19.976 W
22,500.0	90.00	359.42	11,509.0	10,038.6	1,871.0	32° 2' 56.819 N	103° 16' 19.976 W
22,600.0	90.00	359.42	11,509.0	10,138.6	1,869.9	32° 2' 57.809 N	103° 16' 19.977 W
22,700.0	90.00	359.42	11,509.0	10,238.6	1,868.9	32° 2' 58.798 N	103° 16' 19.977 W
22,800.0	90.00	359.42	11,509.0	10,338.6	1,867.9	32° 2' 59.788 N	103° 16' 19,978 W
22,900.0	90.00	359.42	11,509.0	10,438.6	1,866.9	32° 3' 0.777 N	103° 16' 19.978 W
Cam093 LTP							
22,971.0	90.00	359.42	11,509.0	10,509.5	1,866.2	32° 3' 1.480 N	103° 16' 19.978 W
Cam093 BHL							
n Annotations							
Measure	d Vertical	Local Co	ordinates				
Depth	Depth	+N/-S	+E/-W				

(usft)	(usft)	+N/-S (usft)	+E/-W (usft)	Comment		
12,461	.0 11,505.5	670.1	-3.4	Cam093 into NMNM23199		
				····	· · · · · · · · · · · · · · · · · · ·	

Approved By:

Checked By:

3/5/2019 12:22:33PM

COMPASS 5000.15 Build 90

Date:

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

• 13-5/8" 5M Annular

AMEREDEV

- 13-5/8" 10M Upper Pipe Rams
 - 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Open Hole	13-5/8	Drilling Fluid	Blind Rams	
• •	E for system design.	Kill line with minimu	at will allow full Opera m 2" ID will be availab	

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan

Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

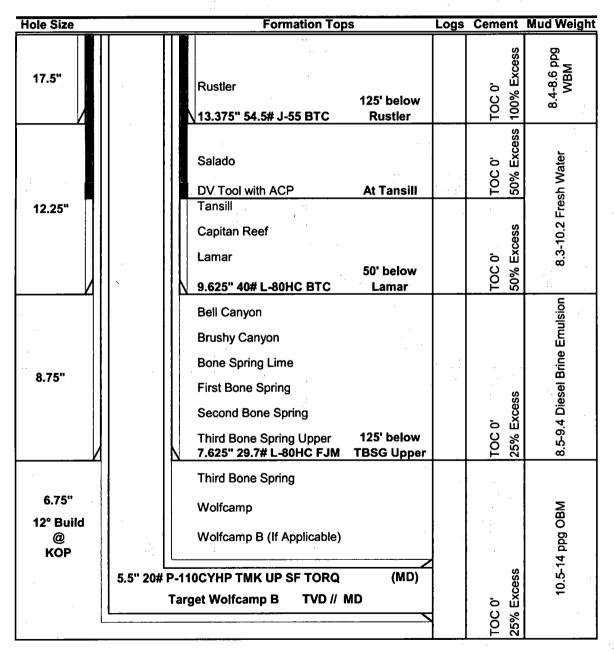
Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

Ameredev Drilling Plan: 3 String with 4 String Contingency

- Contingency Plan If Losses Exceed 50% in Intermediate Interval
 - We will utilize a MB4 wellhead that will enable us to convert a 3 string design to a 4 string design. (Schematic Attached)
 - We will displace well with FW and drill or condition to run 9-5/8" Casing at the Lamar Limestone, we will utilize DV Tool w/ ACP @ the Tansill to Isolate Capitan Reef and cement to surface.
 - Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.

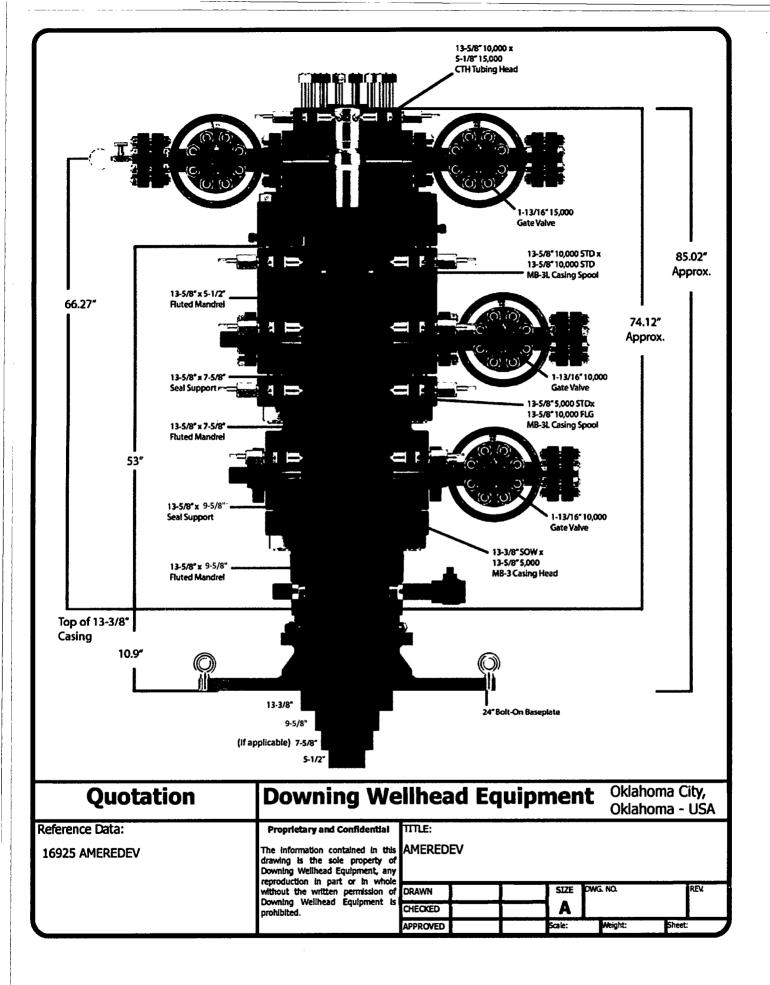
• 7.625 Casing will be Additional 4th String


o Drill remaining hole section to 10,670'

o Run 7.625 29.7# HCL80 FJM Casing

AMEREDEV

4-String Contingency Wellbore Schematic


Well:	(Well Name)	Co. Well ID:	XXXXXX
SHL:	(SHL)	AFE No.:	XXXX-XXX
BHL:	(BHL)	API No.:	XXXXXXXXXXXXX
	Lea, NM	GL:	(Elevation)'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp B
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	(TVD)'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	(MD)'
Xmas Tree	: 2-9/16" 10M	Rig:	TBD KB 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Contingency Casing Design and Safety Factor Check

		Casing :	Specificati	ons		
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling
Surface	17.5	1,888'	13.375	54.5	J-55	BTC
Int #1	12.25	5,013'	9.625	40	HCL-80	BTC
Int #2	8.75	11,147'	7.625	29.7	HCL-80	FJM
Prod Segment A	6.75	11,147'	5.5	20	CYHP-110	TMK UPSF
Prod Segment B	6.75	22,496'	5.5	20	CYHP-110	TMK UPSF

	Chec	k Surface (Casing						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
14.38	853	909	1,130	2,730					
	S	afety Facto	ors						
1.56	8.29	8.83	1.15	0.91					
	Che	ck Int #1 C	asing						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
10.625	916	1042	4230	5750					
Safety Factors									
0.81	4.57	5.20	1.41	0.95					
Check Int #2 Casing									
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
7.625	940	558	6700	9460					
	S	afety Facto	ors						
0.56	2.84	1.96	1.10	1.24					
	Check Pro	od Casing,	Segment A						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
	S	afety Facto	ors						
0.49	3.11	2.79	1.77	1.89					
	Check Pro	od Casing,	Segment B						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
·		afety Facto							
0.49	63.53	57.16	1.68	1.89					

		Hole Size	Casing Size	Depth	Sacks	Yield	Density	1
		17.5	13.375	1888		1.76	13.5	
		Bbl/Sk				0.31372549		
		bbls				419.402246		
		Stage Tool Dept	h			N/A		
		Top MD of Segn	nent			0		
		Bottom MD of S	egment			1502		
		Cement Type				С		
Lead		Additves	Bentonite, Accele	rator, Kolseal, Def	oamer, Celloflak	e		
5 -		Quantity (sks)				1,337		
		Yield (cu ft/sk)				1.76		
		Density (ibs/gal)				13.5		
		Volume (cu ft)				2,352.85		
		Percent Excess				100%	Target %	100%
		Column Height				3,389.88		
			•			· - · · · · · · · · · · · · · · · · · ·		
			Target TOC	0				
			Calc TOC	-1888	bbi	25% Excess	100%	
			calc vol	0.12372195	233.587041	291.9838012	467.174082	
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		17.5	13.375	1888		1.34	14.8	
	l							
		Bbl/Sk				0.23885918		
		bbls				47.77183601		
		Top MD of Segm				1502		
		Bottom MD of S	egment			1888		
		Cement Type				сс		
		Additives						
Tail		Quantity (sks)		· · ·		200		
		Yield (cu ft/sk)				1.34		
		Density (lbs/gal)				14.8		
		Volume (cu ft)	,			268		
						100%		
		Percent Excess						
		Percent Excess Column Height				386.1225606		

SURFACE CEMENT

		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		12.25	9.625	5013		3.5	9		
		Bbl/Sk				0.623885918			
		bbls				372.0365733			
	•	Stage Tool Dept	h			N/A			
		Top MD of Segm				0			
		Bottom MD of S				4163			
		Cement Type				c			
-		Additves	Bentonite,Salt,K	olseal, Defoamer, Co	elloclake				
Stage 1 Lead									
S, J									
		Quantity (sks)			•	596			
		Yield (cu ft/sk)				3.5			
		Density (lbs/gal)				9			
		Volume (cu ft)				2,087.13			
		Percent Excess				50%	Target %	50%	
		Column Height				6,669.49			
			Target TOC	0_					
			Calc TOC	-2506.5	bbl	25% Excess	50%		
			calc voi	0.055781888	279.6346021	349.5432526	419.4519031		
		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		12.25	9.625	5013		1.33	14.8		
ľ		Bbl/Sk				0.237076649			i .
		bbls				47.41532977			
		Top MD of Segm	ent			4163			
		Bottom MD of S				5013			
		Cement Type	-Briterite		- · · ·	<u></u>			
		Additives							
Stage 1 Tail									
tage Tall									
S		Quantity (sks)			-	200			
		Yield (cu ft/sk)				1.33			
		Density (lbs/gal)				14.8			
]	Volume (cu ft)				266			
		Percent Excess				25%			
	1	Column Height				850.013004			
1									

INTERMEDIATE 1 CEMENT - STAGE 1

		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		12.25	9.625	3262		3.5	9	
Stage 2 Lead		12.25 Bbl/Sk bbls Stage Tool Depti Top MD of Segm Bottom MD of S Cement Type Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess Column Height	h eent Bentonite,Salt,Ko Target TOC	olseal,Defoamer,Ce	· · · · · · · · · · · · · · · · · · ·	0.623885918 225.5254458 N/A 0 2412 C C 361 3.5 9 1,265.20 50% 4,042.99	9 Target %	50%
			Calc TOC	-1631	bbl	25% Excess	50%	
			calc vol	0.055781888	181.960517	227.4506463	272.9407756	
	•	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		12.25	9.625	3262		1.33	14.8	
		Bbl/Sk				0.237076649		
		bbls				47.41532977		
		Top MD of Segm				2412		
		Bottom MD of S	egment			3262		
		Cement Type				c		
Stage 2 Tail		Additives						
	1	Quantity (sks)				200		
		Yield (cu ft/sk)				1.33		
		B				14.8		
		Density (Ibs/gal)						
		Volume (cu ft)				266		
				·· ·-· ·		266		

INTERMEDIATE 1 CEMENT - STAGE 2

	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	8.75	7.625	10670		2.47	9	
	Bbl/Sk				0.440285205		
	bbls				168.6309595		
	Stage Tool Dept	h			N/A		
	Top MD of Segm	nent			0		
	Bottom MD of S	egment			6755		
	Cement Type	-			н		
read	Additves	Bentonite,Retard	er, Kolseal, Defoam	er,Celloflake, Ant	i-Settling		
Lead	Expansion Addit						
	Quantity (sks)				383		
	Yield (cu ft/sk)				2.47		
	Density (lbs/gal)				9		
	Volume (cu ft)				946.02		
	Percent Excess				25%	Target %	259
	Column Height				9,422.97		
		Target TOC	٥_				
		Calc TOC	-2667.5	ьы	25% Excess	25%	
		calc vol	0.01789574	190.9475483	238.6844354	238.6844354	
	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	8.75	7.625	10670		1.31	14.2	
ł	Bbl/Sk				0.233511586		
	bbls				70.05347594		
	Top MD of Segm				6755		
	Bottom MD of S	egment			10670		
	Cement Type				н		
Tail	Additves	Salt,Bentonite,Re	tarder, Dispersant,	Fluid Loss			
Tall				<u>.</u>			
	Quantity (sks)				300		
	Yield (cu ft/sk)				1.31		
	Density (lbs/gal)				14.2		
	Volume (cu ft)				393		
					25%		
	Percent Excess Column Height				3914.533571		

INTERMEDIATE 2 CEMENT

.

		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		6.75	5.5	22496		1.34	14.2		
		Bbl/Sk				0.23885918			
		bbis				418.2897805			
		Stage Tool Depth	1	·······		N/A			
		Top MD of Segm	ent			0		ľ	
		Bottom MD of Se	egment			22496			
		Cement Type				н			
7 n		Additves	Salt, Bentonite, F	luid Loss, Dispers	ant, Retarder, Def	oamer			
Stage 1 Lead									
S		Quantity (sks)				1,751			
l		Yield (cu ft/sk)				1.34			
		Density (lbs/gal)				14.2			
	ł	Volume (cu ft)				2,346.61			
		Percent Excess				25%	Target %	25%	· :
		Column Height				28,120.00		ſ	
			Target TOC	0					
			Calc TOC	-5624	bbi	25% Excess	25%		
			calc vol	0.01487517	334.6318244	418.2897805	418.2897805		
				· · · · · · · · · · · · · · · · · · ·					
		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		6.75	5.5	22496	0	0	0		
		8bl/Sk				0			
		bbls				0			
		Top MD of Segm				22496			
		Bottom MD of Se	egment			22496			
		Cement Type				н			
-		Additives							
Stage 1 Tail									
S [Quantity (sks)				0			
		Yield (cu ft/sk)			· ····	0			
	1	Density (Ibs/gal)		• • • • • • • • • • • • • • • • • • • •		0			-
	1	Volume (cu ft)				0		1	
		Percent Excess		•••••					
		Column Height				0			
	1								

PRODUCTION CEMENT

,

HALLIBURTON

Permian Basin, Ft Stockton

Lab Results- Lead

Request/Slu	rmatio rry	2488456/2		Rig Name			Dat	e	18/DEC/20	18
Submitted B	•	Dillon Briers		Job Type	Interm	ediate Casing	Bul	k Plant		
Customer		Ameredev	۰.	Location	Lea		We			
Well Info	ormati	on		:						
Casing/Line		7.625 in		Depth MD	5013 f	t i i i	BH	ST	165°F	
Hole Size		8.75 in		Depth TVD	5013 f	t	BH	СТ	130°F	
Cement L	nform:	ntion - Lead I	Design							~
	0M	Cement/Additiv		··· · · ·				Cem	ent Propertie	
	BWOC	NeoCem	<u>-</u>		•		Slurry Dens		9	lbm/gal
	l/sack	Heated Fresh Wa	ter				Slurry Yield	•	3.5	ft3/sack
9							Water Requ		14.68	gal/sack
										0
	•									
Pilot Test	Resul	ts Request II) 2488456	/1						
PI Rhee	ology, I	Request Test	ID:35665	340						
Temp (degF)		200				30	6	3		Cond Time
······ (····B- /							- ·	-		(min)
0 (up)	82	67	49	42		39	36	28	2	0
0 (down)	82	59	35		. ·	18	10	. 9		0 ·
0 (avg.)	82	63	42			29	23	19)	ò
√ (cP) & YP	(lbs/100f	2): 61.73	22.32	(Least-squares me	(hod)					
V (cP) & YP	(lbs/100f	2): 60	22	(Traditional metho	d (300 & 100) rpm based))				
enemlized H	ercchal.B	ulkley 4: YP(lbf/10	10821-20 33	Mulaf(cP)-52 20	m=0.81	n=0.81		•	• •	
		· · ·	-			n=0.81				
API Rheo	ology, I	Request Test	ID:35665	341						
`emp (degF)	300	200	100	60	30	6	3		Cond Time	Cond Tem
							· ·		(min)	(degF)
34 (up)	63	47	29	21	15	7	6		30	134
34 (down)	63	46	29	21	14	7	4		30	134
34 (uown)	63	47	29	21	15		. 5 .		30	134
34 (avg.)		2): 57.12	7.98	Loost coupros mot	(had)					
34 (avg.)	11/1000	.2): 37.12	7.98	Least-squares met	.noa)					
	(lbs/100f				d (300 & 100	(pr based)			·	
34 (avg.)		2): 51	12	Traditional metho						
34 (avg.) √ (cP) & YP √ (cP) & YP	(lbs/100f	2): 51 ulkley 4: YP(lbf/10			m=0.41	n=0.41				
34 (avg.) √ (cP) & YP √ (cP) & YP eneralized He	(lbs/100f		00ft2)=2.26	MuInf(cP)=30.64		n=0.41		····	<u> . </u>	
34 (avg.) √ (cP) & YP √ (cP) & YP eneralized He	(lbs/100ft erschel-B Loss,	ulkley 4: YP(lbf/10	00ft2)=2.26 t ID:3566	MuInf(cP)=30.64 5342	m=0.41	Calculated	1 FL (<30 C		•	•
34 (avg.) / (cP) & YP / (cP) & YP eneralized He PI Fluid	(lbs/100fl erschel-Bi l Loss, legF)	ulkley 4: YP(lbf/10 Request Tes	00ft2)=2.26 t ID:3566	MuInf(cP)=30.64 5342	m=0.41			uin)	•	nditioning Tem gF) 4

This report is the property of Halliburton Energy Services and neither it nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

Global Customer Report

Page 1 of 2

Con. Temp (degF) Cond. Tin	e (min) Stati	с Т. (F)	Static time (min)	Inci. (deg)	% Fluid	
134	30	80		120	0	0	
Pilot Test Ro	sults Reques	LID 2504116/5					
Thickening	Гіme - ON-O	FF-ON, Reque	st Test ID:35	5852392			
Test Temp (degF)	Pressure (psi)	Reached in (min)	70 Bc (hh:min)	Start Bc			
126	5800	40	6:18	16			
UCA Comp.	Strength, Re	quest Test ID:	35852394				
End Temp I (degF)	Pressure (psi) 50	psi (hh:mm) 500 p (hh:r		CS (psi) 24 hr CS (ps	si) 48 hr CS (psi)		

749

456

681

12:23

This report is the property of Halliburton Energy Services and neither it nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

Global Customer Report

4000

8:55

159

Page 2 of 2

U. S. Steel Tubular Products

.

7.625" 29.70lbs/ft (0.375" Wall) HCL80 USS-LIBERTY FJM®

MECHANICAL PROPERTIES	Pipe	USS-LIBERTY FJM [®]	
Minimum Yield Strength	110,000	••	psi
Maximum Yield Strength	140,000	-	psi
Minimum Tensile Strength	125,000		psi
DIMENSIONS	Pipe	USS-LIEERTY FIM®	
Outside Diameter	7.625	7.625	in.
Wall Thickness	0.375		in.
Inside Diameter	6.875	6.789	in.
Standard Drift	6.750	6.750	in.
Alternate Drift		-	in.
Nominal Linear Weight, T&C	29.70	-	lbs/ft
Plain End Weight	29.06		lbs/ft
EECTION AREA	Pipo	USS-LIBERTY FIM®	
Critical Area	8.541	5.074	sq. in.
Joint Efficiency	-	59.4	%
VIRTORIANCE:	Pape	USS LIEPERTY F.H. ⁶⁶	
Minimum Collapse Pressure	6,700	6,700	psi
Minimum Internal Yield Pressure	9,460	9,460	psi
Minimum Pipe Body Yield Strength	940,000	_	lbs
Joint Strength	-	558,000	lbs
Compression Rating		558,000	lbs
Reference Length	-	12,810	ft
Maximum Uniaxial Bend Rating	·	39.3	deg/100 ft
Make-Up Loss		3.92	in.
Minimum Make-Up Torque		10,800	ft-lbs
Maximum Make-Up Torque		15,250	ft-lbs
Other than proprietary collapse and connection values,	nerformance propertie	s have been calculated using standard equation	ns defined by API 5C3 and do not incomprete any ac

4. USS-LIBERTY FJM™ connections are optimized for each combination of OD and wall thickness and cannot be interchanged. 5. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

6. Reference length is calculated by joint strength divided by nominal plain end weight with 1.5 safety factor.

7. Connection external pressure leak resistance has been verified to 100% API pipe body collapse pressure following the guidelines of API 5C5 Cel III.

Legal Notice

.

USS-LIBERTY FJM[®] is a trademark of U. S. Steel Corporation. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U.S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064

1-877-893-9461 connections@uss.com www.usstubular.com

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTION	
AECHANICAL PROPERTIES			
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
IMENSIONS			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
ECTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
ERFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length	:	21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

 Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.

3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.

4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.

6) Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application. Manuel USS Product Data Sheet 2017 rev25 (April)

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064 1-877-893-9461 connections@uss.com www.usstubular.com

Ontinental & CONTITECH

QUALITY CONTROL	No.: QC-DB- 651 / 2013		
	Page : 1 / 44		
Hose No.:	Revision : 0		
66551, 66552, 66553, 66554	Date: 14. November 2013.		
	Prepared by : Scala Lander		
	Appr. by: Delan Such		

CHOKE AND KILL HOSES

id.: 3" 69 MPa x 35 ft (10,67 m)

DATA BOOK

Purchaser: H&P STOCK Purchaser Order No.: ContiTech Rubber Order No.: 537587 ContiTech Oil & Marine Corp. Order No.: 4500370505

NOT DESIGNED FOR WELL TESTING

ContiTech Rubber Industrial Kit. Budapesti út 10., Szeged H-6728 P.O.Box 152 Szeged H-6701 Hungary Phone: +36 62 566 737 Fax: +36 62 568 738 e-mail: info@fluid.contitech.hu Internet: www.contitech-rubber.hu The Court of Csongrád County as Registry Court Registry Court No: HU 06-09-002502 EU VAT No: HU11087209 Bank data Commercial and Creditbank Szeged 10402805-28014250-00000000

CONTITECH RUBBER Industrial Kft.	No.: QC- DB- 651 / 2013			
	Page:	2/44		

CONTENT

	CONTENT	Deee
1.	API QMS Certificate (No.: 0760)	Page 3.
2.	American Petroleum Institute Certificate of Authority To Use the Official API Monogram (No.: 16C-0004)	4.
3.	Quality Control Inspection and Test Certificates (No.: 1905, 1906, 1907, 1908)	5-8.
4.	Hose Data Sheet	9.
5.	Metal Parts	
5.1.	Raw Material Quality Certificates (No.: TR070687, EUR-265844, 86989/13-0)	10-13.
5.2.	Hardness Test Reports (No.: 561/13, 562/13)	14-15.
5.3.	Ultrasonic Test Reports (No.: 513/13, 514/13, 515/13)	16-18.
5.4.	NDT Examiner Certificate (Name: Tóth Ákos József)	19-20.
5.5.	Welding Procedure Specification (No.: 140-71)	21-24.
5.6.	Welding Procedure Qualification Record (No.: BUD 0700002/1)	25-26.
5.7.	Welder's Approval Test Certificate (No.: RK1825997.R1)	27-28.
5.8.	Welding Log Sheet (No.: 2013/2898)	29.
5.9.	Visual Examination Record (No.: 813/13)	30.
5.10.	NDT Examiner Certificate (Name: Kis Gábor Balázs)	31-32.
5.11.	Radiographic Test Certificates (No.: 2431/13, 2430/13)	33-34.
5.12.	NDT Examiner Certificate (Name: Ménesi István)	35-36.
5.13.	MP Examination Record (No.: 1222/13)	37.
5.14.	NDT Examiner Certificate (Name: Oravecz Gábor)	38-39.
6.	Steel Cord	
6.1 .	Inspection Certificate (No.: 4046181212)	40.
7.	Outside Stripwound Tube	
7.1.	Inspection Certificate (No.: 63892/2012)	41.
8.	Certificate of Calibration (Manometer Serial No.: 1518086)	42-44.
	·	

ContiTech Rubber Industrial Kft. Quality Control Dept. (1)

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	3 / 44		

Certificate of Authority to use the Official API Monogram License Number: 16C-0004 ORIGINAL The American Petroleum Institute hereby grants to CONTITECH RUBBER INDUSTRIAL LTD. Budapesti ut 10 Szeged Hungary the right to use the Official API Monogram® on manufactured products under the conditions in the official publications of the American Petroleum Institute entitled API Spec Q1® and and in accordance with the provisions of the License Agreement. API Spec 16C American In all cases where the Official API Monogram is applied, the API Monogram should be used in conjunction with this certificate number; Petroleum 16C-0004 Institute The American Petroleum Institute reserves the right to savoke this authorization to use the Official API Monogram for any reason satisfactory to the Board of Directors of the American Petroleum Institute. The scope of this license includes the following product: Flexible Chake and Kill Lines. QMS Exclusions: No Exclusions Identified as Applicable American Petroleum Institute Effective Date: OCTOBER 15, 2013 Expiration Date: OCTOBER 15, 2016 2011 111 To verify the authenticity of this license, go to www.apl.org/compositelist. Director of Global Industry Services

CONTITECH RUBBER Industrial Ā Page: No:QC-DB-651 /2013 4 \$

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	5/44		

QUALITY CONTROL INSPECTION AND TEST CERTIFICATE							CERT. N	1 °:	1905			
PURCHASER: ContiTech Oil & Marine Corp.							P.O. Nº:		45003705	05		
CONTI	tech ru	BBER or	ter Nº: 537	587	ноѕ	E TYPE:	3"	ID		Choke ar	nd Kill Hose	
HOSE	SERIAL	N°:	665	51	NOM	INAL / AC	TUAL LI	ENGTH:		10,67	m / 10,75 m	
W.P.	68,9	MPa	10000	psi	T.P.	103,4	MPa	1500)() psi	Duration:	60	min.
	Pressure test with water at ambient temperature											
					_				. .			
				5	see a	attachm	ent. ('	1 page	;)			. <u>.</u>
. :						·						
↑ 11	0 mm = `	10	Min.									
	0 mm =	25	MPa									•
	COL	JPLINGS	Туре			Seria	l Nº		Q	uality	Hea	t N°
	3".	coupling	with		8	084	808	3	AIS	14130	246	613
4	4 1/16° 1	OK API	Flange end						AIS	4130	034	939
	NO	r desi	GNED FO	OR W	ELL	TESTIN	IG				API Spec 1	6 C
								•		Tem	perature ra	te:"B"
WE CEP		AT THE A	BOVE HOSE I							H THE TERM	IS OF THE ORD	ER
INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.												
COUNTRY OF ORIGIN HUNGARY/EU												
Date:			Inspec	tor			Qualit	y Contro	Conti	Tech Rubh	. (
13. November 2013.) کا						
Budepesti út	ubber Industria t 10., Szeged ł Szeged H-670	H-6728	Phone: +36 62 5 Fax: +36 62 5 e-mail: Info@fluid Internet: www.con	66 738 Lcontitech.h		The Court of Registry Cou Registry Cou EU VAT No:	rt No: HU QE	-09-002502	Szeged	and Creditbank 28014250-00000		

ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE No: 1904, 1905

Page: 1/1

	Hayn Co
15	Contillect Rubbe Industrial Kft. Quality Control Deg
RD +26.65 9C BL +1947 bar CH +19-68 9C	20120
RU +1045. bdr RL +1045. bdr	20110 20110
CN +28-61 90 RD +28-17 90	20:00 20:00 20:00 19:50 19:50
81. +1853- 84 r 61. +28-89 98 85. 428-89 98	19150 19140
BL +1859- bar	19130 19130 19130 19130
RD +20.10 9C	19120
12.11.2013. 19:10 66511.66551 19:10	
9 10 20 30 4	190 50 60 70 60 90 100
	00 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	6 / 44		

QUALITY CO	CERT. N	1 °:	1906			
PURCHASER: ContiTe	P.O. Nº:		4500370505			
CONTITECH RUBBER order N°: 53758	7 HOSE TYPE:	3" ID	· · · · ·	Choke and	d Kill Hose	
HOSE SERIAL Nº: 66552	NOMINAL / AC	TUAL LENGTH	:	10,67 m	n / 10,73 m	
W.P. 68,9 ^{MPa} 10000 r	si T.P. 103,4	MPa 150	00 psi	Duration:	60	min.
Pressure test with water at ambient temperature					·	
	See attachm	ent (1 pag	e)			ľ
		(· F-9	- /			
↑ 10 mm = 10 Min. 						
COUPLINGS Type	Seria	l N°	Q	uality	Heat N°	
3" coupling with	8088	8085	AIS	il 4130	24613	
4 1/16" 10K API Flange end			AIS	i 4130	034939	
NOT DESIGNED FOR	WELL TESTIN	IG		A	PI Spec 16 C	;
All metal parts are flawless				Temp	erature rate:	"B"
WE CERTIFY THAT THE ABOVE HOSE HAS				H THE TERMS	OF THE ORDER	
INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements. COUNTRY OF ORIGIN HUNGARY/EU						
Date: Inspector		Quality Contr	ol			
13. November 2013.					<u> </u>	

ContiTech Rubber Industrial Kft. Budapesti út 10., Szeged H-6728 P.O.Box 152 Szeged H-6701 Hungary Phone: +36 62 568 737 Fax: +36 62 568 738 e-mail: Into@fluid.contitech.hu Internet: www.contitech-rubber.hu

The Court of Csongrad County as Registry Court Registry Court No: HU 06-09-002502 EU VAT No: HU11087209 Bank data Commercial and Creditbank Szeged 10402805-28014250-00000000

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	7 / 44

QUA INSPECTION	CERT. N	1 0:	1907				
PURCHASER:	ContiTech	P.O. Nº:		450037050	5		
CONTITECH RUBBER order	3" ID		Choke and	Kill Hose			
HOSE SERIAL Nº:	66553	NOMINAL / ACT	TUAL LENGTH	l:	10,67 m	/ 10,745 m	
W.P. 68,9 MPa 1	0000 psi	т.р. 103,4	MPa 150	00 psi	Duration:	. 60	min.
Pressure test with water at ambient temperature			<u> </u>			· · · · · · · · · · · · · · · · · · ·	
						×	
		See attachme	ent. (1 pag	e)			
				-			
	· · · .						
	-						İ
		· · ·					
↑ 10 mm = 10 Min) .						•
\rightarrow 10 mm = 25 MP	a					γ_=	
COUPLINGS Ty	ре	Serial	N°	Q	uality	Heat	N°
3" coupling wit	h ⁱ	8089	8087	AIS	4130	23171	24613
4 1/16" 10K API Flan	ige end		· · · .	AIS	4130	0349	39
NOT DESIGN	ED FOR W	ELL TESTIN	G		A	PI Spec 16	S C
					Tempe	erature rat	: :"В "
All metal parts are flawless WE CERTIFY THAT THE ABOV INSPECTED AND PRESSURE 1					THE TERMS	OF THE ORDE	R
INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.							
COUNTRY OF ORIGIN HUNGARY/EU							
Date:	Inspector		Quality Contr				
13. November 2013.			Heller		Contant Crat	Bacn C	())
Budapesti út 10., Szeged H-6728 Fax: 20.Box 152 Szeged H-6701 e-ma	e: +36 62 566 737 +36 62 566 738 al: info@fluid.contiteoh. net: www.contitech-rubt	Registry Court hu Registry Court	No: HU 08-09-00250	2 Szeged	i and Creditbank 28014250-0000000)	÷

CONTITECH RUBBER	No:QC-DE	8- 651 /2013
Industrial Kft.	Page:	8/44

QUA INSPECTION	LITY CON AND TES	CERT. №: 1908								
PURCHASER:	ContiTech	Oil & Marine C	Согр.		P.O. Nº:		450037050)5		
CONTITECH RUBBER order N	Nº: 537587	HOSE TYPE:	3"	ID		Choke and	Kill Hose			
HOSE SERIAL Nº: 66554 NOMINAL / ACTUAL LENGTH						10,67 m	/ 10,71 m			
W.P. 68,9 MPa 1	0000 psi	T.P. 103,4	MPa	1500	0 psi	Duration:	60	min.		
Pressure test with water at ambient temperature		· · ·				• • •				
		See attachm	ent. (1	page)					
				F-3-	,					
							·			
	•									
↑ 10 mm = 10 Mir	1.									
→ 10 mm = 25 MP	'a									
COUPLINGS Ty	ре	Seria	l N°		Q	uality	Heat	N°		
3" coupling wit	h	8090	8086		AIS	61 4130	23171	24613		
4 1/16" 10K API Flan	nge end				AIS	il 4130	0349	39		
NOT DESIGN	ED FOR W	ELL TESTIN	IG			A	PI Spec 1	6 C		
All motal parts are flowdare						Temp	erature rat	te:"B"		
All metal parts are flawless WE CERTIFY THAT THE ABOV						H THE TERMS	OF THE ORDE	R		
STATEMENT OF CONFORMIT conditions and specifications of	INSPECTED AND PRESSURE TESTED AS ABOVE WITH SATISFACTORY RESULT. STATEMENT OF CONFORMITY: We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.									
	c	COUNTRY OF ORI	IGIN HUNG	ARY/E	U					
Date:	Inspector		Quality	Contro	ł					
13. November 2013.			Rel	<u>~~~</u> , /	ín	tiTech Rubbe dustrial Kft. ty Control DG) ez		
Budapesti út 10., Szeged H-6728 Fax: P.O.Box 152 Szeged H-6701 e-ma	ne: +38 62 568 737 +36 62 568 738 dl: Info@ftluid.contitech. net: www.contitech-rubt	Registry Cou hu Registry Cou	rt No: HU 06-0	•	Szeged	- al and Greditbank 28014250-0000000	<u>_</u>	-		

ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE

No:1906, 1907, 1908 Page: 1/1

		Jacon Los Contillets Rubber
		adustriei Kft.
G1 +19 G2 GG R0 +19 G2 GC R0 +19 G2 GC G1 +19 G2 GC G1 +19 G2 GC	17:20 17:20 17:20	
CN +19.65 CC RD +19.64 °C BL +1956. bar C3 +19.69 CC	17:10 17:10 17:10	
R0 +19.69 -C	17:50 0 17520 60 70 80	90 100
67 + 19-52 - 20 RD + 19-77 - 20 BL + 1953 - 54 - 1 BL + 19-51 - 90 RD + 19-78 - 40	16:50 16:50 16:250	
RD +19.78 9C BL +1955. bar GN +19.88 9C	16:49 16:49	
RD +19-73 9C BL +1056- bar	16:30 16:30 16:30 16:20 16:20	
01 +19.78 4C RD +19.78 4C BL +1062- 14	16:20 16:20	
2		
12-11-2213-16-00 66552,66553,66554	00	

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	9 / 44

Ontinental & CONTITECH

Hose Data Sheet

CRI Order No.	537587
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500370505
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVE
Type of coupling other end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVE
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL RESISTANT
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage (m)	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15
······································	

and a distant second of the states

				~						-DB- 6	51 /20	13
					CONT	ITECH	H RUBE		_	-00-0	10/4	
					Ir	ndustri	ial Kft.		Page:		1074	4
Ord Par Our Dat	tificate No			111	4205	258500 160045 064201 ry 2013		y - 8088 451-	5	• •		
		•	Cocking	J Jarvis A	Pears S	Selman	42	051	റ്റാ	45		
0)escriptk	on			CERTI	FICATE	OF CONF					Treatmen
MIN (OR RED TAKI MEC NAC	ELONGAT COLDER) PUCTION S EN FROM CHANICAL E MR0176 ROX 20 T	TION, CHAI LATERAL 3:1 MIN. NI LA 4° SQR (RPY IMPAC EXPANSION 1% MAX & (QTC AS PEI CIMEN TO APPLIES	T TESTING N 0.38 MIN, CE 0.62 MA R API 6A/PS	X, TESTS M SL 3 OTC SK	-30C AY BE ZE.	TEMPERED WATER TEM TEMP. MEA COMPONEN TEST COUP REDUCTION REDUCTION FURNACE (C/E = 0.693	APERATUR SUREMENT IT HARDNE ION - 4" SQ IN RATIO - 6, IN RATIO & H	E BEFORE 7, FURNACI SS E 10 - 2 X 8" LONG 2 IT APPLY 1	QUENCH, 2 E ATMOSPH 11 HBW10/3 , TESTED A TO BOTH JO	18°C, AFTER IERE THER 009 T ½ T LOCA	MOCOUPL
	<u>.</u>				·	CAS	T 24613)				
C	:	Si	Mn	S	Р	Ni	er	Mo	AI	Cu	Sn	Nb
		0.2590					1.0560					
	, 1	Ta	TI	Nb+Ta	Co	N	В	W	Ce	Fe	As	Sb
Y		10			. I			1	1	1		E Contraction
	0.0010		0.0010			0.0079	0.0001					
		Ca	0.0010 H (ppm)	CEY		0.0079	0.0001					
	0.0010		0.0010	CEV 0.69			9 0.0001	m2 MIN Y	IELD			
	<u>0.0010</u> њ	Ca emperatu	0.0010 H (ppm) 1.20	CEV 0.69	T SPECIF Rp 0.2	ICATION Rm		m2 MIN Y Z %	IELD Imp	act	Temp.	Hardnes
	<u>0.0010</u> њ	Ca	0.0010 H (ppm) 1.20	CEV 0.69 TES	T SPECIF	ICATION Rm	1 517 N/mi A %			act	Temp.	Hardnes
	0.0010 •b T	Ca emperatu RT	0.0010 H (ppm) 1.20	CEV 0.69 TES Re 8/mm2	T SPECIF Rp 0.2 517.000 Namm2	ICATION Rm Nimm2 TEST I	1 517 N/mi A % 40 RESULTS	Ζ%	Imp	. <u></u>		
	0.0010 b	Ca emperatur RT	0.0010 H (ppm) 1.20 re Dir./Temp.	CEV 0.69 TES Re	Rp 0.2 517.000 Namm2	ICATION Rm Nimm2 TEST I Rm	1 517 N/mi A % 40 RESULTS A %	Z %	imp: Jc KCV	nilės	Charpy Direction	
	0.0010 'b Tr 'est Num 3T22561	Ca emperatu RT Iber	0.0010 H (ppm) 1.20	CEV 0.69 TES Re 8/mm2	T SPECIF Rp 0.2 517.000 Namm2	ICATION Rm Nimm2 TEST I	1 517 N/mi A % 40 RESULTS A %	Ζ%	Jc KCV 48°C KCV	nules 60 50 78	Charpy Direction	
	0.0010 'b Tr 'est Num 3T22561	Ca emperatur RT	0.0010 H (ppm) 1.20 re Dir./Temp.	CEV 0.69 TES Re 8/mm2	Rp 0.2 517.000 Namm2	ICATION Rm Nimm2 TEST I Rm	1 517 N/mi A % 40 RESULTS A %	Z %	Jc KCV 48°C KCV -80°C KCV -80°C	nules 60 50 78 50 50 46	Charpy Direction LONG LONG	
	0.0010 'b Tr 'est Num 3T22561	Ca emperatu RT Iber	0.0010 H (ppm) 1.20 re Dir./Temp.	CEV 0.69 TES Re 8/mm2	Rp 0.2 517.000 Namm2	ICATION Rm Nimm2 TEST I Rm	1 517 N/mi A % 40 RESULTS A %	Z %	Jec KCV 48°C KCV -80°C % Shear Su 62.0% S	nules 60 50 78 50 50 46 rface	Charpy Direction LONG LONG	
	0.0010 b Tr Gest Num ST22561 Specimen G	Ca emperatu RT Iber N 3 12.500mm	0.0010 H (ppm) 1.20 re Dir./Temp.	CEV 0.69 TES Re Normal Re	Rp 0.2 517.000 Namm2	ICATION Rm Nitmaz TEST I Rm 696.000	N 517 N/ms A % A RESULTS A % S/L \$0.60ms 27.60	Z %	Joc KCV 48°C KCV 48°C KCV 40°C 50°C 50°C 50°C 50°C 50°C 50°C 50°C 5	nules 60 50 78 50 50 46 rtace 52.0% 60.0%	Charpy Direction LONG LONG LONG	KBWIDDOO
For	0.0010 b Tr Gest Num ST22561 Specimen G	Ca emperatu RT Iber N 3 12.500mm	0.0010 H (ppm) 1.20 re Dir./Temp. 20.0°C	CEV 0.69 TES Re Normal Re	T SPECIF Rp 0.2 517.000 Nkmm2 Rp 524.000	ICATION Rm Nitmaz TEST I Rm 696.000	N 517 N/ms A % A RESULTS A % S/L \$0.60ms 27.60	Z %	Joc KCV 48°C KCV 48°C KCV 40°C 50°C 50°C 50°C 50°C 50°C 50°C 50°C 5	nules 60 50 78 50 50 46 frece 2.0% 60.0% enston (mm) 0.740 1.020 ontiTech Rub Industrial Kr CERTIFICAT ACCEPTCATL ACCEPTCATL	Charpy Direction LONG LONG LONG	
For	C.OO 10 b Tr Cest Num ST22561 Specimen C Stees Ltd wood Way	Ca emperatu RT Iber N 3 12.500mm	0.0010 H (ppm) 1.20 re Dir./Temp. 20.0°C	CEV 0.69 TES Re Normal Re	T SPECIF Rp 0.2 517.000 Nkmm2 Rp 524.000	ICATION Rm Nitmaz TEST I Rm 696.000	N 517 N/ms A % A RESULTS A % S/L \$0.60ms 27.60	Z %	Joc KCV 48°C KCV 48°C KCV 40°C 50°C 50°C 50°C 50°C 50°C 50°C 50°C 5	111000 111000	Charpy Direction LONG LONG LONG	4 (0)1246 28
For	C.OO10 b Tr Cest Num ST22561 Specimen C	Ca emperatu RT Iber N 3 12.500mm	0.0010 H (ppm) 1.20 re Dir./Temp. 20.0°C	CEV 0.69 TES Re Normal Re	T SPECIF Rp 0.2 517.000 Numm2 Rp 524.000	ICATION Rm Itest I Rm 695.000	N 517 N/ms A % A RESULTS A % S/L \$0.60ms 27.60	2 % 2 % 67.70	Impr Jc KCV 48°C KCV 80°C 80°C 80°C 80°C 80°C 80°C 80°C 80°C	60 50 78 50 50 46 floce 52.0% 60.0% anston (mon) 0.740 1.020 DantiTech Rub Industrial Kf CERTIFICAT ACCEPTABL 0.1	Charpy Direction LONG LONG LONG LONG LONG R LONG LONG LONG LONG LONG LONG LONG LONG	4 (0)1246 28

:

	NO	9						C	T	dy									Te	est	t C	Ce	rti	fic	cat	te
NICO META	SMANAGE							8089 - 80 90					Customer Order Number 32252183 - 01			Test Nu	mber			4	02483	<u></u>	<u></u>			
arbrook heffield	S9 2.J	J					To: CONTT H-6728	TECH RUE	BER INC	USTRIA	l KFT		Custom Date	er Order		2	7Feb12		Part Nu	mber			420	51600	45	
elephor acsimik							SZEGE	D. FESTIUT	10. K	1562	-KI	(75	Sales C Number			EUF	-352067-1	l .	Cast N	mber			Ċ	23171	シ	
6	121						hung/ hung/	ADV .	1205	516 -	0045	-	Report Quantit		14 Pc		5Sep12 2 Kgs 210	mm Dia	Cert NL	mber			EUI	1-2656	44	
B	2 20						Descri	ption AISI	4130 75K	SI .2% F	S API QT	c							Steel T	урө	AL	LOY 4	130			
esuits qu	-	y rater to	the ite	ns test	90																					
Material S	****		AISI4																							
leat Trea	ument S	Dec	197-2	78HN						Te	st Spec 5	17N/MM	2MIN.YLD	1				Test Sp	ec							
Noti Prac	tice		EFM)			Produ	ction Meth	od	FORG	ED															
Hea	t Treatm	ent	Ten	P(°C)		· Soak		Co	alant	Chu	nge Ref.	Init	Max(°C)	Be	uch	Temp n	scorded us	ing	CONTA	CT THE	FIMOC	OUPLE			Ranggamaraka	
IARDEN			860		3 H	RS		WATER	DUENCH	SHF-	58284	20	30	09120	91308	Nature	of T/P		Separate							
TEMPER			650		4 H	R 8		TABLE C	001	SHF-	158284			10120	91319	Oto siz	te 4inch	SQ X 6h	nch LONG	1						
																			A	eq. Min	Max					
			 													Hardn	ess on T/P	· · · · · ·	197	237	HE	3W	229	2	229	HBW
			1		1					ŀ		<u> </u>				Hardn	ess on Ma	ertei	197	237	HE	SW	218		235	HBM
ensile -	cution		Dire	Hon		Ro 0.1	2010/		<u>ک</u>		A%		Z%	Impact	9 - Location		Direc	tion		CVN		1	Exp. (r	707)	T &	Shear
	1/4T		ONGIT		1	- 10 00 617 N			to 800	18	Min (4d)	+	0 Min		1/4T		LONGIT		27	Min Av	0		.380 M		† 	0
Results ((N/mm2)				+	58	0	;	765	25	(60.0mm)	64.0	(12.56mm) Resul	ta (Joules				106 104 102		2	1.44 1.42 1.4		40	40 40	
Results														Resul	ba Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-						·				<u> </u>	
Corrosio	n ·						_																			
Pitting R	esistanc	9 .			F	enile								Micros	tructure											
Carbon I	Equivalei	rt.						871				Gral	In Size	Min		6	Max		6							
C	_ \$1	Mn	P		6	Q	Мо	NI	Cu				·						<u>'</u>				T			
0.2940	0.2920	0.5970	0.01	0 0	050	1.0620	0.2290	0.1660	0.2450		ntiTech R				<u> </u>		<u> </u>			·					L	
NACE M FE = BA	BŜEN10 IR-01-75 L TION RA		-								Industrial CERTIFICA ACCEPTA	KTT. ATTE BLE					H k	ardness xce per /	Calibration load/pene STM E10	tration ().						
Names (This rep	of Appro ort is not	ved Sig to be rej	natoria produce	e : S.N d with	laxted put wn	l G.Smlti ilten app	n S.Sute roval.	r P.Rogen	M.Brow		11-12-1	10-09-	J				Signature	Me	S ~				Page 1	of 1		

Bod

CONTITECH RUBBER Industrial Kft.

Page:

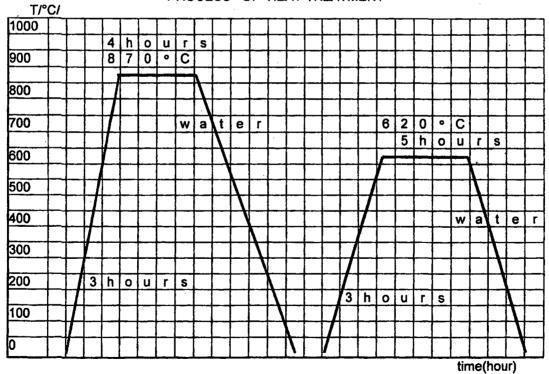
11/44

No:QC-DB- 651 /2013

				СО		H RUBB	ER No:QC-DB- 651 /2013
					Indust	rial Kft.	Page: 12 / 44
	HAM(===== SING, MA	c, Kis	s Ernö	808 -TREA	. Pho	33 4205 ne: 36/4	86 ÉMI-TÖV 1509001 16/401-033 Fax: 36/46/379-1 CATE
ACCEPT	NCE ACC	ORDING	EN 102	204-05	5/3.1		Certificate No.: 86989/13
Date of	issue:	2013.	03.27	Hámo	or No.:	98-39B	5263 Order No.: 32259784/13
Custome	er: Cont 6728		Rubber d Budap			Kft.	
Dimensi	on: MSO	-10059	7-002/A	./H mm	l I		SL3 $315/151 \times 182$ reatment:Quenched & tempered
Quantit	y: 3	0 pcs	Weigh	it:	73.0	kg/pc	Total weight: 2190.00
.nomin	nation o	f prod	uct: Fo	rged,	machine	ad disc	
	Chemica	l anal	ysis %			Steelm	Heat No.: 034939 maker: CELSA Hutaostrowiec Po
Test No.	Spec. value Min. Max.					5 CR 025 2.75	MO V Ce 5 1.500 0.300 0.82
 	Result	0.28	0.56 0.	20 0.	006 0.0	003 0.99	0.170 0.003 0.62
	Mechani	cal pr	opertie				
Test No.	Spec. value Min. Max.	HB 197 238	Rp0.2 MPa 517	Rm MPa 655	A5 % 18	KV-J -30°C 27	ContiTech Rubber Industrial Kfr. CERTIFICATE ACCEPTABLE
L13314	Result Result	235 238	525	662	19.50	35	DE INSPECTOR DATE: 11.01.29
						52 82	
Dimens Ultras Steel NACE HB-E10	making MR 0175, Mechan: Of forg:	nd vis st acc (meltin /ISO 1 ika:AS	ual con . to SE ng) pro 5156+AP IM A370 .81	P 192 cess: I 17K acc.	1-84 sp UHP-AS + API	pec. is SEA vacu	satisfactory C/c num-treated. pc/series. Expert
				Osztál	ZKL enőrzé y		MÜ - 4 - 10/1/86 HÁMOR zRt.

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	13 / 44

(HMOR zRr)


MISKOLC Kiss Ernő u. 17. sz. H-3531

tel:36/46/401-033 fax:36/46/379-199

e-mail: <u>hamor@t-online.hu</u>

	PROTOC	COL NUMMER: 98-39B526			
HEAT-TREAT	MENT PROTOC	OL			
BUYER: CONTITECH RUBBER INDUSTRIAL Kft. Szeged Budapesti út 10. sz.		o. of Buyer: 9784/13/2			
budapesti ut 10. sz.	Work No. of Buyer:	······································			
PRODUCT:	QUANTITY: PIECE	No, of drawing:			
forged	30	MSO-100597-002/A/H			
MATERIAL QUALITY: AISI 4130 CONTI API 6A PSL3	Charge No.: 34939	Test No.:			
HEAT-TREATMENT: quenching and tem Typ of furnace: electric furnace	pering Hardening medium:	water			

PROCESS OF HEAT-TREATMENT

Miskolc, Hámor ZRt. 2013-03-26.

a ndo

head of heat-treatment

and the second second

flámor zRt. Vlinóség ellenőrzée Osztály

winword/doc/HOKEZ-K/CONTITEC/4130-620

CONTITECH RUBBER	No:QC-DB- 651 /2013					
Industrial Kft.	Page:	14 / 44				

					<u> </u>		
, ****	MIMA - HAINTRALL		•	Report N	io: 561/13.		
CLIENT:		JE-ZO KFT. S	ZEGED, KULT	ERULET. 014	08/22		
PROCED	TION OF COUP NUMBER:	TH 160-D Har QCP-45-R1 LING: coupling(s) MT-3121-300 8083; 8084; 8	dness tester after PWHT)				
	l Hardness Uirement	SERIAL NO OF COUPLING	PART OF COUPL	ACTUAL HARDNES RESULT (H			
			······································		<u>; . </u>		
		× 8083	body weld		224 222		
	HB 197 HB 238		flange connection face		236 238		
		\$084	body weid		213 208		
			flange connection		220 238		
		J 8085	body weld flange		214 214 219		
	· .		connection	n face	222		
	 	/ 8086	body weld flange		232 237 238		
			connectior		197		
	·. ·		• .				
The coupli	ng(s) conform (o API Spec 6A requi	rements.		• • • • • • • • • • • •		
DATE:		PREPARED:		APPROXE	PONTPOLLE		
	október 30.	Ménesi Is	20	GASERVER CONTROLL KF 6750Algyo, Kalterulet 0188474, hr Addszum, TROSzar 98. Wyky, camma-controll he			

Fe

CONTITECH RUBBER	No:QC-DB- 651 /2013					
Industrial Kft.	Page:	15 / 44				

3 gamma controll kft 19/10/13 12:54 Lap: Felado : 61344 HARDNESS TEST GAMMA-CONTRULL Report No: 562/13, REPORT TAG Aggo, Loterties Differtes. Inst Dalf as : +00 02011 --011 / 0204 ÷.; CLIENT: JE-ZO KFT. SZECED, KÜLTERÜLET, 01408/22. TEST EQUIPMENT: TH 160-D Hardness tester PROCEDURE: QCP-45-R1 DESCRIPTION OF COUPLING: coupling(s) after PWHT DRAWING NUMBER: MT-3121-3000 SERIAL NUMBER: 8087; 8088; 8089; 8090 ACTUAL BRINELL HARDNESS REQUIREMENT SERIAL NO OF PART OF THE COUPLING HARDNE85 COUPLING RESULT (HB) body 213 J 8087 weld 216 Min HB 197 flange 220 Max HB 238 connection face 225 body 229 / 8088 weld 212 flange 223 connection face 213 body 219 **8089** weld 229 flange 231 connection face 238 body . 207 8090 weld 210 flange 226 234 connection face The coupling(s) conform to API Spec 6A requirements. DATE: PREPARED: APPROMEDCONTROLL KPT. So Alayo, Kaharaler Ortsu/14. hrsz. Adoszana Howard 14. hrsz. Adoszana Howard 14. hrsz. Www.gomma.conaroll.hu Venrejes Mildage 0 The le 2013. október 30. Ménesi István QCP-03 HB/11

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	16/44	

GAMMA-CONTROLL

www.gamma-controll.hu 6750 Algyő, külterület 01684/14. hrsz. Tiel/Faz.: +38 62/517 400 / 01344 NAT état NAT-1-1162/2018 számon advantáli vingelők

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

ULTRASONIC EXAMINATION

Vizsgálati szám: Report No.:

REPORT

513/13

,							
Vizsgálat tár	gya / Objec	t of tea	st			Coupli	ing (Body)
Gyártó Manufacturer				Megrandelő JE-ZO Kft. Szeged			
Gyáriszám				Rendelési s	szám		
Serial-No.				Order-No.			
Azonositó jel Identification		Követelmér Requiremen	•	ASTM A388			
Geometriai kialakitás /	Rajzszám		•	Vizsgálati h	őkezelé	s	előtt
Geometric configuratio	Test heat treatment		t	prior			
MT-3121-3000		ø20	0xø70x491				
Anyagminőség Material	AISI 41			Letapogatási irányok Direction of scanning axiális			axiális és radiális
Adagszám Heat-No.		24613	1				
Vizsgálati felület állapo	ta	forgácsolt		Vizsgálati terjedelem 4000/			100%
Surface condition		machined		Exted of Te	st		100 %
Vizsgált darabszám Testing pieces		6 db					
	Vizs	sgálati	adatok / E	xamina	tion	data	
Készülék típusa		-		Készülék gy	yári szár	ma	
Type of US-equipment USM2					Of US-equipment 7875f		
Vizsgálófej(ek)		SEB-2,		Frekvencia			2 MHz
Searc unit(s)		SEB4H		Frequency(ies)		4 MHz
		•					MHz
Kalibrációs blokk		<u></u>		Erősítés(ek)	axiálisan	18 dB
Calibration standard ide	entfication		ET1,ET2	Gain			dB
							dB
						radiálisan	6 dB
Csatoló közeg olaj				Hanggyeng	ülés		dB/m
Couplant		oil		Attenuation			QBVIII
Ertékelés / észl	elt kijelzések	/ Evalua	ition / record	dable indi	lcatio	ns	
Ertékelés Evaluation	Х	megfele satisfac			nem	megfelelő	/ not acceptable
Megjegyzés(ek)		1SALISTAC		<u> </u>	I		
Remark(s)							
Hely / keit		T				CANDAL P	ONTROLL KET.
Piace / date Gamma-Controll Kft. Algyő, 2013.10.17			Vizsgálatot végezte Tested by			GAMMA 6750 Algyo	USZ.
					www.gz		in a sectoral http://www.academic.com
						Tel.: 06-30-218-2640 Approved by	
			Tóth Ákos UT20103090307			Benkő P	éter - Felelős vezetőh.
	Ez a jegyzőkönyv részleteiben nem másolható! / Copying details is prohibited!						

CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page:17 / 44

GAMMA-CONTROLL

www.ganma-controllinu

www.gamma-controllinu 8750 Algyd, lutterritet 01894/14. luter. Tel/Fax: +38 82/517-400 / 81344 NAT dat NAT-1149/2918 szlaces ettrestél vzsgáttabo

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

Vizsgálati szám: Report No.:

ULTRASONIC EXAMINATION REPORT 514/13

Vizsgálat tárgya / Object of test					\mathcal{C}	Coupling (B	ody)	
Gyártó				Megrendelő JE-ZO Kft. Szeged				
Manufacturer				Customer				
Gyáriszám				Rendelési szám				
Serial-No.		· · · · · · · · · · · · · · · · · · ·		Order-No.			<u>.</u>	
Azonositó jel 8089-8090				Követelmény ASTM A388			A388	
Identification	Requirement							
Geometriai kialakítás /	•			Vizsgálati h			előtt	
Geometric configuration	n / Drawing-No.			Test heat tr	eatment	·	prior	
MT-3121-3000		ØZ	00xø70x491	_	····			
Anyagminőség Material		AISI 41	30 /	Letapogatá: Direction of	-	axiális (axiális és radiális	
Adagszám Heat-No.		23171	/			·		
Vizsgálati felület állapo Surface condition	ta ¹	forgácsol machined		Vizsgálati te Exted of Te	•	100%		
Vizsgált darabszám Testing pieces		2 db	·					
	Viz	sgálati	adatok / J	Examinat	tion dat	a		
Készülék típusa tigasa		USM25	Készülék gyári		/ári száma	S-equipment 78751		
Type of US-equipment USHI23			·		Of US-equipm			
Vizsgálófej(ek)		SEB-2,		Frekvencia(-		2 MHz	
Searc unit(s)		SEB4H		Frequency(i	ies)		4 MHz	
1. Sec. 1. Sec							MHz	
							MHz	
Kalibrációs blokk			ET1,ET2	Erősítés(ek)) axiá	állsan	18 dB	
Calibration standard ide	entfication			Gain		,	dB	
							dB	
: • • • • • • • • • • • • • • • • • • •	<u> </u>					iálisan	6 dB	
Csatoló közeg olaj				Hanggyengi Attenuation			dB/m	
Couplant Ertékelés / észl	alt hitstates	oil						
-	CIT HIJCISCOO							
Értékelés Evaluation	X	megfel satisfa			nem me	gfelelő / not ac	ceptable	
Megjegyzés(ek) Remark(s)						· · · · · · · · · · · · · · · · · · ·		
Hely / kelt			~			GAMMA - CONT	ROLL KFT.	
Place / date			1 [] ն	0 01		TTO ALC A Valterile	01884/14 hrsz.	
Gamma-Controll Kft.			Vizsgálatot végezte			Lance 20094014-2-00		
Algyő, 2013.10.17		ł			www.gamina-connoli:hu Tel. 0061989248-2640			
		1	Tested by			Approved by		
		ł	Táth Ákos UT20103090307		7	Benkő Péter - Felelős vezetőh.		
Ez a lonuzákánai részlateihen nerr								

3.változat 2013.07.16

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	18 / 44	

Vizagálati azám: Report No.:

516/13

GAMMA-CONTROLL

erine gaterinis-controll ha 19750 Algob küllerdet (†1886/14. kmp 1987/Radi 1986-25317-400 / 8 1984 1987 Isan 1984-1-1940/2013 száma műretülőt ertyjaistosat

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

ULTRASONIC EXAMINATION REPORT

Vizsgálat tárgya / Object of test (Flange)					\supset		
Gyártó		······································	Megrendelö	JE-ZO Kft. 8	Tened		
Manufacturer			Customer		wañan		
Gyáriszám			Rendelési szám				
Senal-No.		·····	Order-No.				
Azonositò jei Idantification	8083-8090		Követelmény Requirement	Kovetelmény ASTM A3			
Geometriai kialakités / I	Raizazám			Vizagátati hőkezelés előtt			
				Test heat beatment grior			
MT-3121-3000	· · · · ·	ø315x85xø190x94xø7	0	-			
Anyagminöség	······································	AISI 4130 /	Letapogatasi irår	·	ciális és radiális		
Matenai			Direction of scan	scanning extend of the			
Adagszári Heat-No		034939 🖊					
Vizagalati felület állapot	a	forgicsolt	Vosgáláti terjede	zagalisti terledelern			
Surface condition		machined	Exted of Test	10	20%		
Vizsgát darabszám		8 db			ي من من مراجع مراجع من المراجع من المالية المراجع		
Testing pieces		8 ab					
Vizsgálati adatok / Examination data							
Készülék típusa	· . · · · · · · · · · · · · · · · · · ·		Készülék gyári s	Készülék gyári száma			
Type of US-equipment		USM25	Serial-No. Of US	Serial-No. Of US-equipment. 78751			
Vizsgálófej(ek)		SEB-2,	Freitvencia(ik)		2 MHz		
Searc und(s)		SEB4H	Frequency(les)		4 MHz		
					MHz		
					\$AH2		
Kalibrációs blokk		ET1,ET2	Erősités(ek)	axidilsan	6 dB		
Calibration standard Ide	ntication	, La 7 1 j ha 8 A i	Gain		dB		
			1		đB		
				radiálisan	6 dB		
Castoló közeg		olaj	Hanggyengülés		dB/m		
Couplant	A builded as		Attenuation				
	tir Elictorea	· · ·	TOROIS INDICAC				
Entekelés Evaluation	X	megfelelő satisfactory	nei	m megfelelő /	not acceptable		
Megjegyzés(ek) Remark(s)		<u> </u>					
Hely / kett Piace / date Gamma-Controli Kft. Algyő, 2013.10.17		тт	Hatat végezte esied by				
			UT20103090307	Benkő Péts	r - Felelös vazetón		

owning it appetered in the interpreter of one hand opened is here been

3.változat 2013.07.16

	CONTITEC		Page:	3- 651 /2013 19 / 44
			raye.	
MAGY.	AR HEGESZTÉSTECHNIKAI ARIAN ASSOCIATION OF WELDIN (Certific)	ÉS ANYAGV G TECHNOLOG ation Body)	IZSGÁLATI I Y AND MATERL	E GYESÜLÉS AL TESTING)
RONCSOL	ÁSMENTES ANYAGY (Certificate of NDT	VIZSGÁL	Ó TANÚS	ÍTVÁNY
	· · · · · ·		fication No.):	0103090307
A tanúsított neve: (The name and forename of	Tóth Ákos József		1 de la	a'
the certificated individual): Születési hely/idő:		-	A tanúsított szen	
(Place and date of birth)	 Hódmezőváráshely, 1987. 	<i>UY</i> . (11	re allevatime of the ceri	ificated individual)
	4.7 •			
A CONTRACTOR OF	eljárás(ok): Mitrahanyos an	ZIL		**
(The)	eljárás(ok): Ultrahangos an IDT method(s): (Ultrasonic testi			n de la compañía de Esta de la compañía de
	pari terület: Készülékek, beren		tmények vizse	álata EM
(b	distrist sector): (Pre and in-service			
	ertilet(ek): (c)+Fv, (w)+Fv, (w	p)+Fv, (f)+Fv		
(The level o	f certification)			
A tanúsítás és kiadásán (The date of certification	ak Möpontja: Budapest, 2009. 12 mid it's issue):	. 07.		1 And State
	is érvényes: 2014 12.06.	in the second second		· .
(The date upon which certifi	cation expires):			
	LUIS ANTAOL		201010	A
	Marchand Starter	Lo	D AND	-
Tanisit	o Testulet neveben		Vizsed 2000	y
(On beh	alf of certifying why?		Karana a	
	9/2001 GM, 97/23 EC	Kijelälés:		- Andrew
Az ipari és/vagy terti let érvényesség kite	9/2001 GM, 97/23 EC	Kijelölés:		Besteric
(The industrial and/or product	t sector has panded to):	9/2001 GM 067/2004	11	
	Datum (Date): 2017512	<u> </u>	 Nizse	ztató
N.,	APE-CAN	Asociation of Te	(Exam	
A tanúsítás érvényessége	-ig megújítva (MSZ EN 473 9.)	•	
Renewed the validity of the certification	шон анц (мэх глч 473 9.):)			
way the state of the		:		
Dátum (Date):		<u>.</u> 		
		. 4		tulet neveden rufication body)
			(còn ocuan ol ce	Intration Dody)
NAT-5-0013/ vizsgája alapi	gesztéstechnikái és Anyagvizsgálati I 2006 számon akkreditált tanúsító testü án a nevezett személyt tánúsítja a fentie Association of Welding Technology and Materia	let az MSZ EN 4 k szerint:	73 számú szabvá	ny szerint eredményes
michinastatro No. NAT-5-0013	/2006) certification body, on the basis of his/her d individual according to the above.)			
	továcsolt termékek (forgings); w - hegesz	tett kötések termé	kek (welded prodi	icts): f - csövek (tubes):
un - alakitott termékek (wrou	ht products); p - mūanyag termékek (pla	stics products); k	kompozitok (con	posites products)

			ECH RUBBER		B- 651 /2013	
		Ind	ustrial Kft.	Page:	20 / 44]
(HUN Meghatalmazzuk a tan (MSZ EN 473 3.21) (The bolder of this certificate GAM	GARIAN ASSOCI úsítvány mlajdono has been authorised to j	ATION OF WE (Ce sát, hogy vizsgá berform tests and ta		GY AND MATEL	UAL TESTING) felefősséget vállaljon.	
Munkáltató aláírása	dorzáne 1709-614 Banie 1773-605527 www.gamma-contra Tel: 06 30 218,26	u. 1456/A		Dátum: <u>Ao</u> oc Dair:)	1.12.07	· · · · · · · · · · · · · · · · · · ·
	Folyamat	s munkavěgzé	s igazolása (MSZ EN 4 ork activity (MSZ EN 473 9.)	173 9.)		
Sorsz.:	Munkáli	ató aláirása f the employer)	ANMA-CONTIROL		Dátum (Date)	
1.	A.I.N	\mathcal{F}	Minasagellenderd Ki	311. 201	0.01.04	
2.	N.S	at	- CAMMAN CONT		1.01.06.	
3.	MA	8	A starting and the second	00	12 01.09.	
	0	X	GANNALONI	4 12	(3.01.09	- 1 M
5.			-GANMA- Anyosulausia Munascellendra	s Kft		
6	1. N. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					
7.						
8.		<u>.</u>				
9,						
10.						
Kłegćszitések (Additional remarks:)						
	1 ⁻ 21- 21 					
		i.		1		

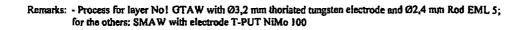
• A tanúsítvány a munkáliató aláírásával érvényes (This cérüficate is valid with the signature of the employer.)

.

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	21 / 44

,

	PHOENIX		TECHN	ICAL D	ATA SHEET		TDS	Page
	Phoenix Rubber Industrial LTD.	WEL	DING PRO	OCEDUR	E SPECIFICATION WPS		WPS]Nº 1 of 2
	CLIENT		THIS SP	ECIFICAT	ION IS BASED	WPS N°	140-71	REV 4
1	DENTITY CODE		ON AS	ME CODE	SECTION IX	SUPPOR	-	R Nº 1D 0700002/
	TEM	Qty	WELDING P	ROCESS: G	TAW-SMAW	Perform	ED BY:	
I	DATA FOR ACCEPT	ANCE	TYPES: MA	NUAL		Welder'	s Stamp	
J	QW-402)	75	B A	[Sequences	of weld see	e on adder	ndum
Justice	IOINT DESIGN	B	ACKING: Y	<u>es</u> /NO	WELD SEQUEN	ICE		
	BASE METAĻS ((Q ₩ -403)			PART "A	n	PAR	Т "В"
I	DRW Nº							
(Grade:		WNo	o.:1. 7220	ASTM A 322-91	I: AISI 413 EN 10083-		Mo4 (MSZ
	CARBON EQUIVALE	NT	max.C	8 =	0.82		0.	82
N	MECHANICAL PROP							
		E STRENGTH		min.	655			55
	Ducti		<u>%</u>	min.	18			8
	HARD		HB	max.	238			38
		r Test -30°		Average	27			7
	THICKNESS: FILLER METALS (Q)		-38 mm		OUTSIDE DIAMET	ER: k	ØD = 60-2	80 mm
	i	DIAMETER	Bra	חא	STAT	DARD		SUPPLIER
F F	Rod	2.4 mm	EM		AWS A5.18		S-3	Böhler
	Electrode	3.2; 4.0	T-PUT Nil		AWS A 5.5-96: I	E 10018-D	2 (mod.)	Böhler
I	APSE BETWEEN OF	PASSES	MIN./m	in	•		I	•
P	POSITIONS (QW-40	5)			PREHEAT (QW-4	06)		
	POSITIONS: IGR	otated (horiz	ontal)		PREHEAT TEMP.	: 300-330	°C	
	WELDING PROGRE	-			INTERPASS TEM	P.: max. 3	50 °C	
		near	to the top		PREHEAT MAINI			gining of
	POSITION OF FILLE	π			postweld he	at threating	8	
	OTHER				METHOD OF PRE		F	

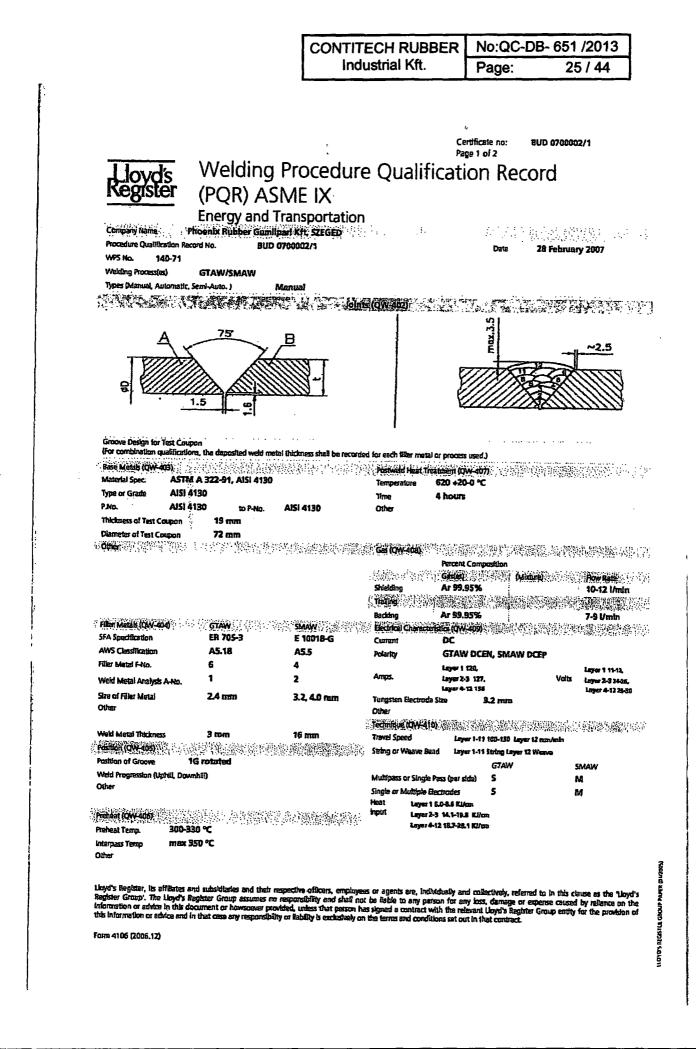

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	22 / 44	

l l		······							
	CONTINUAT	TION OF WP	5 Nº 140-71 Rev	/.4			P	age N° 2 of	
	POSTWELD	HEAT TREAT	MENT (QW-407))	GAS (QW	-408)			
•	HOLDING	TEMP. RANG	620 +20 / -	0 C°	SHIELDI	SHIELDING GAS Argon for root			
	HOLDING	TEMP. TIME	4 HR						
	HEATING	RATE MAX.:			PERCEN	TAGE COMPOS	SION (MIXTURE)		
	COOLING	RATE MAX.:	80 °C/HR			99	9.995 %		
	LOCATION	N OF THERMO	COUPLE		FLOW R	ATE 10)-12 LITRES	S/min.	
			· · ·	·····	GAS BAG	CKING: Argor	o (for 1st and	l 2nd passe	
	FURNACE	ATMOSPHER	E Air		FLOW R	ATE 7-	9 Litres/min	L	
ŀ	TYPE:	·		······································	TRAILIN	G SHIELDING (JAS COMP.		
	ELECTRICA CURRENT	L CHARACTE DC	RISTICS (QW-40	9)	ELECTRO	DE POLARITY	lst : 2nd-28th	pass: - passes: +	
	TUNGSTEN	ELEKTRODE	size/type: Ø3.2	mm thoriated	l tungsten				
	MODE OF T	RANSFER FO	RGMAW						
	ELECTRODE	E / ŴIRE FEEL	SPEED RANGE						
	WELD	PROCESS	FILLER	METAL	Cu	RRENT	VOLT	HEAT	
	LAYERS	10.1	CLASS	DIAMETER	1	AMP.	RANGE	INPUT	
	í 		ENG 5	24	POLAR.	RANGE 110-130	11 12	(KJ/cm	
akan ya kan baka b	2-3	GTAW SMAW	EML 5 T-PUT NiMo 100	2.4 mm 3.2 mm	+	120-140	11-12 24-26	5-8.4 12-19.0	
	4-28	SMA₩	T-PUT NiMo 100	4.0 mm	+	150-170	26-30	16.2-27.	
	TRAVEL SPI	EED RANGE	100-130 r	nm/min					
	TECHNIQUE	: (QW-410)							
	STRING OR	WEAVE BEAL	>		ORIFACE C	OR GAS CUP SL	ze Ø9mm	····· ••••••	
	INITAL/INTE	ERPASS CLEA	NING: Brushing,	Grinding					
	EOUIPMENT	S FOR WELD	NG:						
	OTHER:				······································				
	EXAMINA	TION -		·	REMARKS	<u></u>			
			ceptance instruct	tion		y CMo3 (MS	Z 61)		
	N	-				- ** Ni content less than 1 %			
		- Befo 350 %					ectrodes for	2 hours at	
	Bı		TECH	NICAL I	DATA SHI	EET			
	Desig.	1 <i>20</i> 0 %	WELDING H				HOSET	ECHNICAL	
	Appr. C	ten 14.06	SUBJECT: Butt	weld of hose	coupling for	H2S service;	DEPA	RTMENT	
	Chek'd			Strengh	t 75K		WPS Nº 1	40-71 Rev.4	

CONTITECH RUBBER	No:QC-E	DB- 651 /2013
Industrial Kft.	Page:	23 / 44

PHOENIX RUBBER Industrial Ltd.	Nº:	WPS 140-71 Addendum
Hose Division	Revision:	4
	Page Nº:	1/2
	Date:	2007-06-12
ADDENDUM	Designed:	Bainil
for the approved wall thickness range 5-38 mm	Checked:	1.1.
Based on WPS 140-71 Rev.4, PQR No.: BUD 0700002/1	Approval:	C Sefer

No.	Wall thickness [mm]	Weld layers		Electrode Ø [mm]
1.	5-7		1 2	3,2 3,2
2.	7-9		1 2-3	3,2 3,2
3.	9-11		i 2-3 4-5	3,2 3,2 4,0
3. 4.222	11-13		1 2-3 4-6	3,2 3,2 4,0
5.	13-15		1 2-3 4-8	3,2 3,2 4,0
б.	15-18		l 2-3 4-10	3,2 3,2 4,0
7.	18-20		l 2-3 4-11	3,2 3,2 4,0
8.	20-22,22		1 2-3 4-15	3,2 3,2 4,0
9.	22,2-26		l 2-3 4-19	3,2 3,2 4,0


CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	24 / 44	

PHOENIX RUBBER Industrial Ltd.	N °:	WPS 140-71 Addendum
ADDENDUM	Revision:	4
for the approved wall thickness range 5-38 mm Based on WPS 140-71Rev.4, PQR No.: BUD 0700002/1	Page N°:	2/2

No.	Wali thickness [mm]	Weld layers		Electrode Ø [mm]
10.	26-29		1 2-3 4-19	3,2 3,2 4,0
11.	29-32		i 2-3 4-23	3,2 3,2 4,0
2	32-35		1 2-3 4-24	3,2 3,2 4,0
13.	35-38		i 2-3 4-28	3,2 3,2 4,0

Remarks: - Process for layer No1 GTAW with Ø3,2 mm thoriated tungsten electrode and Ø2,4 mm wire EML 5; for the others: SMAW with electrode T-PUT NiMo 100

•

		CONTITECH RUBBI Industrial Kft.	ER No:QC-DB Page:	26 / 44
			Faye.	
				07000010
			Centificate no: BUD Page 2 of 2	0700002/1
	للروشين الراجا ستنده فكالمتاط عارر والان	Tensile Test (OW-150)	POR	No. BUD 07
Specimen No. mm	n mm Area	1040 KM 20872 MILE	Type of Failure & Location	
39/1 18 39/2 18	9 15.7	657	Base material Base material	·
	나타 다 한 사람을 가 있다.		·	. •
Guided Bond Tos	HE (QW-160)			
Type and Figure No.	dia: 36 mm 2+2 pc	Results Satisfactory	an an an an an Arrender an Andreas ann an Anna. An Anna Anna Anna Anna Anna Anna Anna A	
				•
and a second				
Route	IOW IVO I I I I I I I I I I I I I I I I I I			
Specimen No.	Notch Location Sp	eectimesn Slize Test Termp. Impa m ℃ j	ct Value % Shear M	¹ Drop Wei
39 39 39 39 30 30 30 30 30 30 30 30 30 30 30 30 30		2x10x55 -30 -33 Dx10x55 -30 49	但这个"自己不能是我的"	siespieles
		ix10x55	PAN AND AND A	ers (k. j.e.)
39 19		Dx10x55 -30 38 Dx10x55 -30 97		
39	HAZ 11	bc10x55 -30 62	no activiti mani	Nalasi Mi
n and and a started	n an agus ann ann ann an ann ann an ann ann ann	na na na sense se su br>Se se su s	n an an an an an Annairte. An an an an an Annairte an Annairte	an a
Comments:				
	CONSIGNATION OF A PROPERTY OF A PROPERTY OF			
	QW51801		•••••	
Result - Saustactory: Macro - Results	QW-180) Yes [] №	Penetration Into Parent Meta	k Yes ()	No 🗍
Result- Satirfactory: Macro - Results Clineraties	Yes [] No	Penetration into Parent Meta	£ Ys [No 🗌
Result - Satisfactory: Macro - Results Clifferaturess Type of Test Deposit Analysis	Yes No Hardness test	Penetration Into Parent Meta	4: Ye 🗌	No 🗌
Result- Satisfactory: Macro - Results Clifferator Is Type of Test	Yis No Hardness test Macro - Satisfactory X-ray - Satisfactory		έ γ α Ο	No 🗌
Result - Satisfactory: Macro - Results Clifferaturess Type of Test Deposit Analysis	Yes No Hardness test Macro - Satisfactory		£ Yes [] Stamp No. TMO 007-7/07 V/K 1207/2	- -
Result- Satisfactory: Macro - Results Chineratures Type of Test Deposit Analysis Other Welder's Nama Test Conducted By:	Yes No Hardness test Macro - Satisfactory X-ray - Satisfactory Tivadar Szabo DC-D. 37822 DKG EAST Anyagy(zsgalat	58 Clock No. (BC 15) J Labor. Laboratory Test No:	Stamp No. TMO 007-7/07 V/K 1207/2	007
Result-Satisfactory: Macro - Results Children Test Deposit Analysis Other Welder's Nama Test Conducted By: We certify that the s	Yes No Hardness test Macro - Satisfactory X-ray - Satisfactory Tivadar Szabo DC-D. 37822 DKG EAST Anyagy(zsgalat	58 Clock No. (BC 15) J Labor. Laboratory Test No: ect and that the test welds were prepared	Stamp No. TMO 007-7/07 V/K 1207/2	007
Result-Satisfactory: Macro - Results Other Test Deposit Analysis Other Welder's Nama Test Conducted By: We certify that the s	Yes No Hardness test Macro - Satisfactory X-ray - Satisfactory Tivadar Szabo DC-IL 3782 DKG EAST Anyagvizsgalat statements in this record are corre	58 Clock No. (BC 15) J Labor. Laboratory Test No:	Stamp No. TMO 007-7/07 V/K 1207/2	007
Result - Satisfactory: Macro - Results Type of Test Deposit Analysis Other Welder's Name Test Conducted By: We certify that the s requirements of Sec Date Issued:	Yes No Hardness test Macro - Satisfactory Kray - Satisfactory Xray - Satisfactory Tivadar Szabo DC-U. 37822 DKG EAST Anyagvizsgalat statements in this record are correction IX of the ASME Code. 28 February 2007 Bace Date Code	58 Clock No. (BC 15) I Labor. Laboratory Test No: ect and that the test welds were prepared Lloyd's Registy	Stamp No. TMO 007-7/07 V/K 1207/2	007
Result-Satisfactory: Macro - Results Utilities for test Deposit Analysis Other Welder's Nama Test Conducted By: We certify that the s requirements of Sec Data Issued: Manufacturer's Represe	Yes No Hardness test Macro - Satisfactory Kray - Satisfactory Xray - Satisfactory Tivadar Szabo DC-U. 37822 DKG EAST Anyagvizsgalat Statements in this record are correction IX of the ASME Code. 28 February 2007 Bace Date Code	58 Clock No. (BC 15) 3 Labor. Laboratory Test No: ect and that the test welds were prepared Lloyd's Registy Buckape	Stamp No. TMO 007-7/07 VJK 1207/2 I, welded, and tested in account Lioyods Register	007
Result-Satisfactory: Macro - Results (Interactive States) Type of Test Deposit Analysis Other Welder's Name Test Conducted By: We certify that the s requirements of Sec Date Issued: Manufacturer's Represe	Yis No Hardness test Macro - Satisfactory X-ray - Satisfactory X-ray - Satisfactory Tivadar Szabo DC-IL 3782! DKG EAST Anyagvizsgalat statements in this record are correction IX of the ASME Code. 28 February 2007 Bace Cote Action 12 Code	58 Clock No. (BC 15) 5 Labor. Laboratory Test No: 1 ct and that the test welds were prepared Lloyd's Registry Birdape of the Laszlo Penu Surveyor te	Stamp No. TMO 007-7/07 VJK 1207/2 I, welded, and tested in account the state of the state of the score the state of the state of the score the state of the state of the score of the state	007
Result- Satisfactory: Macro - Results Chinera results Type of Test Deposit Analysis Other Welder's Name Test Conducted By: We certify that the s requirements of Sec Data Issued: Manufacturer's Represe	Yis No Hardness test Macro - Satisfactory X-ray - Satisfactory X-ray - Satisfactory Tivadar Szabo DC-IL 3782! DKG EAST Anyagvizsgalat statements in this record are correction IX of the ASME Code. 28 February 2007 Bace Cote Action 12 Code	58 Clock No. (BC 15) 5 Labor. Laboratory Test No: 1 ct and that the test welds were prepared Lloyd's Registry Birdape of the Laszlo Penu Surveyor te	Stamp No. TMO 007-7/07 VJK 1207/2 I, welded, and tested in account welded, and tested in account Lioyd's Register EMEA	007
Result-Satisfactory: Macro - Results (Interactive States) Type of Test Deposit Analysis Other Welder's Name Test Conducted By: We certify that the s requirements of Sec Date Issued: Manufacturer's Represe	Yis No Hardness test Macro - Satisfactory X-ray - Satisfactory X-ray - Satisfactory Tivadar Szabo DC-IL 3782! DKG EAST Anyagvizsgalat statements in this record are correction IX of the ASME Code. 28 February 2007 Bace Cote Action 12 Code	58 Clock No. (BC 15) 5 Labor. Laboratory Test No: 1 ct and that the test welds were prepared Lloyd's Registry Birdape of the Laszlo Penu Surveyor te	Stamp No. TMO 007-7/07 VJK 1207/2 I, welded, and tested in account welded, and tested in account Lioyd's Register EMEA	007

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	27 / 44		

tonikasoniał CONTTECH

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Designation ASME IX: GTAW / SMAW Pipe BW s19 1G

Welder's name: Tivadar Szabó (BC15)

Identification card No: 517278EA

Date and place of birth: 19. August 1949; SZEGED

m) g ses)	GTAW/SMA Rod / Electro AWS 5.18; ER AWS 5.5; E9 ASTM A 322-91 4130 Pipe 1G 72 mm 19 Single Groove Argon (99,95	ode 70S-3 018 1; AISI	ASTM A 322- 4130 Pipe/Pla 1G/Fla > 25 mi Max to be w Groove / F	ate nt relded	Identification of test pieces: WPS No.: 140-60 Rev.4	
m) g	AWS 5.18; ER AWS 5.5; E9 ASTM A 322-91 4130 Pipe 1G 72 mm 19 Single Groove	70S-3 018 1; AISI	4130 Pipe/Pla 1G/Fla > 25 m Max to be w	ate nt relded	pleces: WPS No.:	
m) g	AWS 5.5: E9 ASTM A 322-91 4130 Pipe 1G 72 mm 19 Single Groove	018 1; AISI	4130 Pipe/Pla 1G/Fla > 25 m Max to be w	ate nt relded	pleces: WPS No.:	
g	4130 Pipe 1G 72 mm 19 Single Groove		4130 Pipe/Pla 1G/Fla > 25 m Max to be w	ate nt relded	pleces: WPS No.:	
g	1G 72 mm 19 Single Groove		1G/Fla > 25 mi Max to be w	nt m velded	pleces: WPS No.:	
g	72 mm 19 Single Groove		> 25 mi Max to be w	m velded	pleces: WPS No.:	
g	19 Single Groove		Max to be w	velded	pleces: WPS No.:	
g	Single Groove				WPS No.:	
	Groove	:04)	Groove / F	Fillet		
ses)		:94)	Groove / f		140-60 Rev.4	
5es)		:94)	Groove / F	Fillet		
ses)	Argon (99,95	:%)			Testing standard:	
		, ,0]			ASME IX	
ce: Szege	ed	Date	e: Iding Engineer:	29 April 20	pril 2010 16 Bajusz Beeter	
	ormed and ccepted		Not required		e and date:	
	ed (Vjk-1739/10)				Szeged, 18-Jun-2010	
Accepte	ed (Vjk-1739/10)		······································	`	52eyeu, 10-Jun-2010	
			+	Sun	/eyor:	
			+		Péter Szabó	
			+		no and elementaria	
			+		np and signature	
			+			
			+		A THE ALL AND A PLEST IN	
			+			
	prolong	prolongation by employ	prolongation by employer every	+ + + + + + + +	+ + + + + + + + + + + + +	

CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page:28 / 44

(Onlinental * CONTITECH

Fluid Technology

J

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Welder's name: Tivadar Szabó (BC15)

Identification card No.: 517278AE

Date and place of birth: 19. August 1949; SZEGED

PROLONGATION OF APPROVAL BY EMPLOYER					
Place	Date	Name/ position/ title	Stamp and signature		
Szeged	29.10.2010	Laselo Bajuse / unkling beduno logist	Barred		
Szeged	29.04.2011.	Lass to Boyuss / Weldery telesologies	Berrel		
Szeged	29 10. 2011	Lasslo Banon Welding Jedus byist	Beerer		
resed	29.04.2012.	Caselo Bainen (Webling Lecteralgot	Bearl		
erect	29. 10. 2017.	12526 Dairen / Ubblig La le walger	Beach		
zgal	29.04.2018.	laselo Baiun Welling Laderalogist	baral		
rgel	28, 10, 2013	(asilo Baien / Weldie Jale wolgest	Beecel		
			•		
		· · ·	· <u>~</u> · · · · · · · · · · · · · · · · · · ·		
			· · · · · ·		
	1l		<u>-</u>		

CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page: 29 / 44

_...

Second K	ZO KFT. (ülterület 01408/2 n: 13341039-2-06	2 h s		ELDIN					WLS N Száma	2013.	28	98.	. <u></u>
Doni	kszámlaszám:	101		GESZ			KAL	.AP	PAGE	oldal 1/	1		
CLIENT	r Ci	TNC	TECH R	UBBER I	ndustria	al Kft.		CH.ORDE	RN ⁰ .	3226159	8.		
CONTF Kötéssz	RACT N ^O . Itám			XL/JOB N ^O . I m.szám	2898	-2905	•	WPS N ⁴ Heg.ut.s		40 - 71	. Rev	.4./	.7
Heg. all	OF WEDED PAR katrész megneve	zése	Bod	(+ -]	one	•		DRWG Rajzszá	m ^Q . Yr	T 3121 -	- 3000		
	N ^Q . OF WELDER		Stabo	livador	loszle	5. <u>B.C</u>	15.	Munkav	ON/SHO égzés he	ive segec	n. Tôp	e Szel	e 6 .
DATE Dátum	2013.10.2	_	QUANT	zám	8.			SERIAL Sorszán		8083 -	8090	0	
1. MATI	OL		BJECT 1	pod	ły .	MATERI/ Anyag		AISI.41	30. A	AST N ^o . dagszám	2460	131 30 71 8	085-80
Anyag r azonosi	negfelelőség itása	SUI	SJECT 2	-Don	al.	MATERI	× 1	AISI. JI	a 1 -	AST Nº.		4939	
	ER METAL Ja minőség	WE	gy 2 LD LAYER ratszám		1	Anyag	T	-3.	<u> </u>	dagszám 4 - // .	Ī		
és mén		TYF	Έ		Fhu.	5.		0. 100		10. IDD	.		
1		_	METER	·	2.	4.		3.2.		4.			
		FILL	ER CAST		800	303.	112	4075	112	27750.			
	TRICAL	1.	E POLAR		~	•		+	1	+			
	mos adatok		.T (V)		12. <i>L</i> h			26.					
		L	PERE (A)		18	0.).	40.		180 .			
	HEAT TREATME óda felhasználás					. 300		ငႚ		8.			Hours
	IED SHILDING G nazott védőgáz	AS	TYPE Tipus Ar	qon.	Percent Tisztas	age Comp ag .	osition 9	9 ⁹⁵ .	%	Flow Rat Aramlási Vmin		8.	
	TREATMENT (p	10-W E	^{id)} 300.	C°	7. POS Helyz		Forq	atott	,	1		-	
	D OF TRAVELS sztési sebesség	101	0÷130.	mm/min		E BEETW				3.			min
10.POST	TWELD HEAT		Từ	ne Iõ	Te	mperature mérséklet	T	Fuma	ace atmo: iűtőközeg			ooling r bsi sebe	ato
	TMENT kezelési edatok		240							С°/Н			
	IOGRAPHIC TES			2450	115,	2451	145			···		•• •••	
REPAIR Javitás						X	NO/ Ne	m					
PLACE OF DEFECT TYPE OF DE Hiba helye Hiba tipusa				OF DE									
	METHOD OF R		R			.							;-
	Javitási módsz	Br									- <u></u>		
	Javitási módszi INSPECTION		Hegfele)	å 50	hsfact	ory.							
Szemrev REMARK	Javitási módszi INSPECTION ételezés (S		ionius.	i Son Magic	. Ika		2600				JE-7		<u> </u>
Szemrev REMARK Megjegyz Date, end	Javitási módszi INSPECTION ételezés (S		ionius.	Magic Magic	ETT H ESETI		G (E		SPECTO	R6728 Szeg	ica, Kiŭi	133410	FT. 01408/2 039-2-06 zám: -001606

CONTITECH RUBBER	No:QC-DB- 651 /2013				
Industrial Kft.	Page:	30 / 44			

Felado :

61344

gamma controll kft

19/10/13 12:50 Lap: 1

CAMMA-CONTROLL	SZEMREVÉTELEZÉSES VIZSGÁLATI JEGYZŐKÖNYV	Record No. Jegyzökönyv száma:
Alexandro en alexandro en 1948 et 2 estato de alexandro Alexandro Alexandro et 2000 et 2000 Tel / Pez, + 439 62/517-400 / 63344 A NAT des NAT-I-HIGEORI estasos estatestes desplitatorestatore	VISUAL EXAMINATION REPORT	813/13

Object Tárgy	Coupling welding Caatlakozó hegesztés	Serial No. Gyári szám	3083-8090
Customer Megrendel	JE-ZO Kft. Szeged	Orawing No. MT Rejzszám	-3121-3000
Job Nr. Munkaszá	002/13	Material/Dimension Anyagminöség/méret	AI8I 4130 115/77
Quantity Mennylsé	8 db	Extent of examination Vizsgálat terjedelme	100%
Requirements Követelmények	ASME code VIII/1	Heat treatment Hőkezelés	after PWHT
Written Procedure N Vizsgálati eljárás sz	OCP.09-1	Welder Hegesztő	BC15
	Visual examination / Sze	mrevételezéses vizsgálat	

Technique Módszer	Direct visual	-	: .	-	
Instrument Készülék	•			•	
Visual aids Segédeszközök	3x magnifiying lens			•	a.

Measurement / Mérés

Equipment Készülék	•	
Instrument Kêszülêk		
Surface temperature	Surface condition	Lighting intensity
A felület 20 °C hömérséklete	Feiület machined Allapota	Megvilágítás 1000lx
Test results	,	
Eredmények :	SATISFACTORY megfeleið8	pc(a)/db
··· · · ·	not accepted nem megicielū0	pc(s)/db
Vizsgálat helye és ideje:	Vizsgálatot végezte:	Áttekintette és jóváhagyta:
Place and date of test:	Tested by:	Reviewed and approved burr GAMNA - CONTROLL A
Gamma-Controll Kft. Aigyö, 2013.10.30. (10h)	Kis vábor VT20103130102	6750 Alexin, Kallesse Queralia, Kalles Addexing, Linger 2, 25 Www.philling.com/00100 Tel Potense Naceses

then payzolidity vezetetelben nem missolhutos / Conying details in prohibitent

7.villacut 2013.07.10

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	31 / 44		

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY (Certificate of NDT personnel)

Azonosító szám: VT20109130102 (Identification No.): A tanúsított neve: (The name and forename of the certificated individual): Kis Gábor Balázs Születési hely/idő: A tamisitoti mély aláírás SZ Szeged, 1980, 02, 29. (Place and date of birth). (The signature of the id indiv Vizegálati eljárás(ok): (The NDT metod(s): Stemrevételezéses anyagvizsgáló (Visual testing) Készülékek, berendezések, létesítmények vizsgálata EM Ipari terület: ÷., (Industrial sector): (Pre and in-service testing of equipment, plant and structure) Termék terület(ek): (c), (w), (wp), (f) Product sector(s): A minősítés fokozata: VT2 (The level of certification): A tanúsítás és kiadásának időpontja: (The date of certification and it's issue): Budapest, 2013. 02. 19. A tanúsítás érvényes: 2018, 02, 18, (The date upon which certification expires): Las œ., Tanisitó Testulet ner izsgáztató (On behalf of certifying b miner) (Exe Az ipari és/vagy termék terü-let érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to): Dátum (Date): Tanúsító Testület nevében (On behalf of certifying body) A tamisitás érvényessége -ig megújítva (MSZ EN ISO 9712 10.): (Ronewed the validity of the certification until (MSZ EN ISO 9712 10.):) Dátum (Date): Tanúsító Testület nevében (On behalf of certification body) c - öntvények (castings); f - kovácsolt termékek (förgings); w - begesztett és forrasztott termékek (welded products); t - csövek és csövezetékek (tubes); wp - alakított termékek (wrought products); k - kompozit anyagok (composites products).

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	32 / 44		

VT20103130102

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) Miß (Certification Body)

Meghatalmazzuk a tamúsítvány tulajdonosát, bogy vizsgálatokat végzzzen és azok credményéért felelősséget vállaljon. (MSZ EN ISO 9712 3.21) (The holder of the additional ber experimentation in the responsibility for the test result. (MSZ EN ISO 9712 3.21)) 0726 Szened, Tuzok II. & A. Munikáltató aláírásar doszám 11694614.2.04

Signature of the employed of P Bank: 11.235003-20000 34 Www.gamme-controll.hu/ Tel: 00 Bely-all field inhus regres is achieve (MSZ EN ISO 9712 10.) (Evidence of continued work sativity (MSZ EN ISO 9712 10.)											
30152.	Municalizato alairasa (Signature of the employer)	Ph. "GANMA CONSTROLL"	Dátum (Date)								
1.	LA	Anyageligilö és Minőségellenőrő Kfr.	1011.03.06.								
2											
3.			· · · · · · · · · · · · · · · · · · ·								
4.			and the second second second	•							
5.		······	<u> </u>	•							
6.				• • •							
7.		<u> </u>									
8.			<u> </u>								
9.			······································								
10.											

Kingészítések: (Additional remarks:)

ÿ

1

· / .

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

CONTITECH RUBBER	No:QC-DB- 651 /2013					
Industrial Kft.	Page:	33 / 44				

Felado :

į

61344

gamma controll kft

19/10/13 12:54 Lap: 1

CAMMA-CONTROLL	RADIOGRÁFIAI VIZSGÁLATI JEGYZŐKÖNYV	Report No.: 2431/13
www.comp.comtrd/ju 6750 Appls, ktimetiki 6128//Ju 781/7az.: 430 62617-400 / 61344 Art/O title NuT-1-Hot2510 animon extremella torgationalities	RADIOGRAPHIC EXAMINATION REPORT	Kiáiliúus dánomo; Date of report: 2013.10.30

.

Object:	ii tárgya:		Coupling					Megr	endelő; t:		·		JE-20	Kit Same	and a
Munkos						Rendulési szám:									
Job No.:							Orde	Order No:							
							Anysgminikscg: AISI 4130								
Drawing				_			_	Main	-					4130	
Texting a	ti szabvány tendard:	:		(QCP-13-	-1			alat terj 1 of test	edcime:			1	00%	
	kôvetoimén					<u> </u>	·	Höke		ing:					
	ico criteria:	.		A	STM E	94 .			-	u condition;			After	PWHT	
Kód:							-		zal/i jele		~,				
Code:			r	VI5Z I	IN ISO	6520-	1		r stamp				હ	CIS	
	es tipusa:			GA	MMAM	IAT .				lző tipusa;			ACTOR		
	quipment:		· <u>·</u> ·····						of IQ1:			_	ASIM	set B typ	
Sugarfor	15:				Ir192					etző helye;				F	
Source:	ús mérete:								10011 (11					•·	
Source at	,			3	xi,5mm	1			képmin 				2%	(2-21)	
Aktivitie					<u> </u>				ed KJI:			·			
Activity;				(0,4 TBq			Film T					PON	1A R5	
	gozis módj	τ	Kézi:		Automati	a:	~~~			astagada:					
Film proc	cssing:		Manual:		Automat	la:	_X			d thick:		_	PD (0,027	
			5.		E C			1				Hibák/	Defecta		
	1		116	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	ł	2 بر ا	8	Ciáz	Salak	Kötés	Gyök	Repedies	Pelalet
	j .		i i i i i i i i i i i i i i i i i i i	Ĩ		1	ļ	da Reatt		Porosity	Slag	Leads of	Lack of	Crack	Surfac
188		1 i i		문율	ouns	ŀ	ġ		Ğ	A	B	Austrea C	pensirataan D	E	F
2 8	ł .	표근	분경.	混축	a Pi	5	13 8		1	^	D			. =	"
Megnevezés Designation	Måret Size	Febrétekts számu: Namber of cadingraphs	Aragizet arranszeig Proceed dicherte	Sogietionie film theolisig Source-to-film distrator:	Fin the othery undershood obstatic Rezerve tom source tele of object to that	Felents. Denty:	Nergy Ubgeten Lifte Expose Tease:	Madoles: A-meglelele NA-neu negleleli Resút A-netened: NA-net acteure	Vargeitzi idilpentja; Date of test	200	300	401	402	100	500
8083	0	də 4	mm 19	mm 96	mm 19	2,4	111in 0,5	<u> </u>	10,30	┟───┥					
						<u> </u>	<u> </u>	A	100	┟───┤					
8084	113/77	4	19	96	19	2,4	0,5	. A	ICh						
8085	115/77	4	19	96	19	2.4	0.5	·A	10,10, 195						
8086	115/77	4	19	96	19	2,4	0,5	. A	10,30 (05.						
8087	115/77	4	19	96	19	2,4	0,5	A	10.30. 105						
8088	115/77	4	19	96	19	2.4	0,5	A	10,74. 105						
filmsz	amok és	varrats	rémok a	20105	ak, beaz	onosít	ásuk e	megn	endelő	t terheli.					
								-		the task of	f the cos	himer	•		
	tot végez														
erforme								-		Ménesi I.	- Szabó '	T.	•		
routilat h		_			Értékelte		_								
táce of ter					Erickom Evaluate			A.	lj.			GAN 1675074	IA - CO So, Kalte	NTROL milet 0188	1. KFT M. brzz
							1	uc	<u> </u>		1				
Gamn	6750 18-Contro	Algyō, II Kft.	Telephe	ity				énesi 1 20101		7		ŧ	Widgend Wieleicios	65185364	

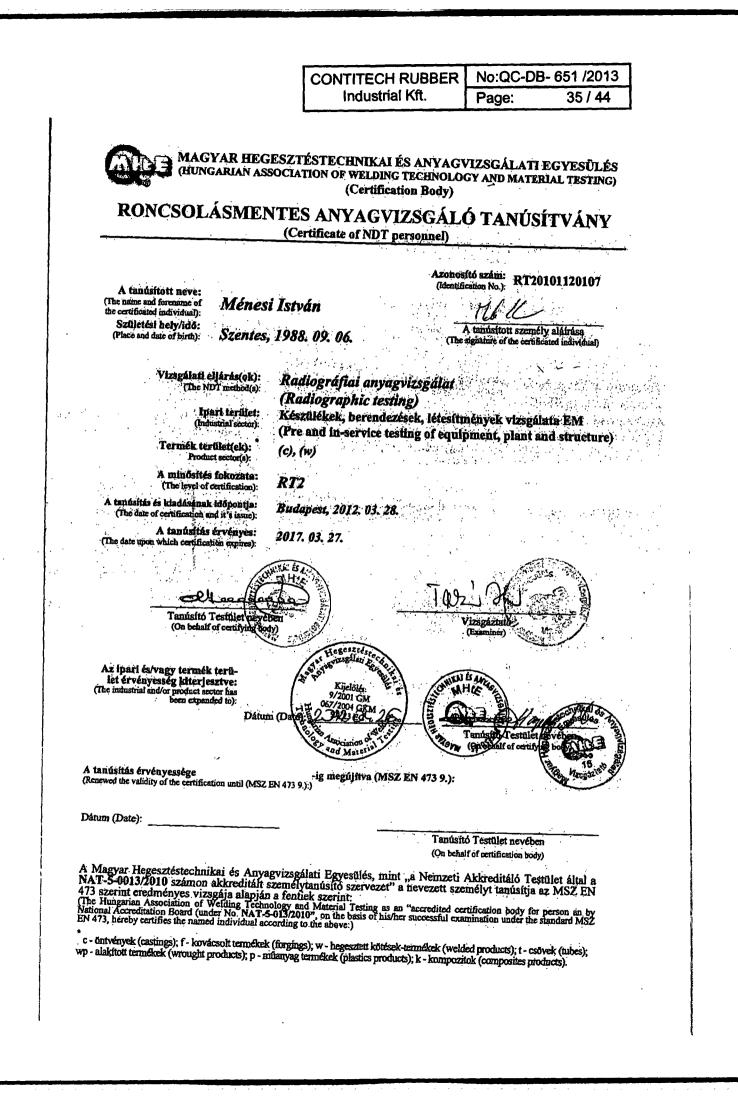
8. változat.2013.07.16

CONTITECH RUBBER	No:QC-DI	3- 651 /2013
Industrial Kft.	Page:	34 / 44

Felado :

61344

gamma controll kft


19/10/13 12:49 Lap: 1

GAMMA-CONTROLL	RADIOGRÁFIAI VIZSGÁLATI	Jegyzőkönyv szám: Report No.:
Contract de la desta de la contraction de la con	JEGYZŐKÖNYV	2430/13
transportation contention for 6780 Alcode, Economics 61804/14, brail	RADIOGRAPHIC	Kiallithe deturne: Date of report:
TRU/FRU: 429 02/917420 / 01344 A MAT allel LAR" 1 (140/2740 colored allowable: standistructure:m	EXAMINATION REPORT	2013.10.30
Vizzęślat turyys;	Mcgrendelő:	

Vizagálat Object					Coupling	R		Megn	:ndclā; ;				J <u>E-Z</u> O 1	Kn. Szeg	ed
Munkap	óm:							Rendelési szán:							
Joh No.:							Order No;								
Rajestán Drawing	No.:			MJ	-3121-3	000		Mater					AIS	14130	
Testing si)CP-13-	1		Extent	oftest	edelme: ing:			10	ю%	
Acceptan	ovetelmény ce criteria:	y:		٨	STM E	94		i linkez Lient ti		it condition;			After	PWHT	
Kód; Code;			· N	1sz e	ISO (6520-	1 .		añ jeié: r stamp				В	C15)	
Berendeze Type of ea				GA	MMAM	AT			nőségje	iző tipusa:			ASTM	set B typ	8
Sugarlam Source:		,			Ir192			Képmi		ebő helye:				F	
	ta méroto;			3	x1,5mm		•	136trt	teat of a tepmin ed IQI:	listig:			2%	(2-27)	
Aktivitis:					<u> </u>			Film t		•••••••••••••••••••••••••••••••••••••••				· · ·	
Activity:				(),4 TBq			Film T					FON	1A R5	
ilmkidol	gozás módj	a;	Kézi:		Automatu		x	Poliala	jta ća v	asiageda:				0.027	
riim proce	casing:	<u> </u>	Manual:					Sensen	type ar	nd thick:		Hibák/	Defucis		
	I i			56			1		g	Gáz.	Salak	Kötés	Győk	Repedés	Felûl
.e			A COLOR	the feet		ŀ	8	12	Т.	Porosity	Slag	Lack of Endon	Luck of processing	Crack	Surfa
vezé				44		u	「「「「「」」」	A de la de l		A	В	С	D	Ê	F
Megnevezés Designation	Ménet Size	Fetvetated extense Mumber of cadiographs	A funding the syngroup of the	Segurburts film thediag	Fan ták, a tángy ang Jamba tadói ga cátalétit 3 D'Starres fron anurca sida d chact to farr.	Februalis Demaity	u Mepukataina. Separtane	Nändestes A-maggaleter NA-man megiatelo Result A-screated NA-ma encover	र्भाउड्डधिड संस्कृत्व्योत् , Date of (co	200	300	401	402	100	500
8089	115/77	4	19	96	19	2,4	0,5	A	10.30. 10%						
8090	115/77	4	19	96	19	2,4	0,5	A	10.30						
0070								.	105		~				
-		•													
					· · · · ·							<u></u>			
					· ·					<u>├</u>					
filmsz	émok és	varrafs	zámok a	ZOROS	ak, beaz	onosít	asuk a	merr	endelå	t terficil.		· · · ·			
										the task o	f the cos	tumer.			
izsgála	tot végez									Ménesi I.				_	
erforme					Fail at										
vizsgálnt halya: Értékelte: Place of test: Evaluated by:					s de		·		Jóváhozyta Ap fildad i		NTROI	L KF			
Gamm		Algyö,	-	4.				<i>طنال</i> افnesi ا 20101		7		1010010			2- 6 6
Gamm	6750 na-Contro		-	ily.				20101		7		4	Terleos	13-807 froi 10-576 264	

fix a jegyzikónyv aszteteihen nem másofnatól / Copying detaits is prohibitedi

8. változat.2013.07.16

			CONTITECH RUBBER Industrial Kft.	Page:	B- 651 /2013 36 / 44
					RT2010112
		(HUNGARIAN ASSOC	LTÉSTECHNIKAI ÉS ANYA IATION OF WELDING TECHNOL (Certification Body)	OGY AND MA	TT EGYESULES TERIAL TESTING)
	Meghatai	mažzuk a tanúsítvány tulajdo			ert felelősséget vállaljon
	(NISZ EN (The holder	of this certificate the best authorised 6126 Szeged, Adoszám: 110	nosat, nogy vzzgalatokat vegezzen es TROLL KEI azorfograsta and take responsibility for the te 194614-2-06	st results. (MSZ EN	473 3.21))
	Munkáltató (Signature of th	aláírása: Anoszani	5005-20406154 Dát		. 04.19.
		Folvama	218-2040 States igazolása (MSZ EN 473 ec of continued work activity (MSZ EN 473 9.)	9.)	
	Sorsz.:	Mankálialó aldírása (Signature of the employer	Ph	L	Dâtum (Date)
	1.	han	An Solac United	F01	2. 04.19.
	2.	LAS	GAWAR		3.01.09
	3.	-	Without		
	4.				
	5.				
	6.				
	7.				
	8.				
	9.				
, I	10.]
	Kiegészítésel (Additional rema		이 이 가슴 사람은 것이다. 같은 것		
			· ·		
	:	; <u>-</u> ;	4 		
			· ·		
	• •				
			¢		
					:

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	37 / 44

ContiTech Rubber Industrial Kft. Szeged/Hungary	Vizsgálat Liquid pener Festékdiffú X Magnetic p	ation record i jegyzőkönyv trant examination izlós vizsgálat article examination repedésvizsgálat	Record No. Jegyzőkönyv száma : 1222/13
Manufacturer Gyártó	JE-ZO Kft.	Serial No. Gyári szám	8083-8090
Customer Megrendelö	ContiTech Rubber Industrial Kft.	Drawing No. Rajzszám	MT 3121-3000
Object Tárgy	coupling(s)	Material Anyagminöség	AISI 4130
Quantity Mennyiség	8 pc(s)	Extent of examinat Vizsgálat terjedelm	
Requirements Követelmények	ASTM E 709	Heat treatment Hőkezelés	yes
Written Procedure Ne Vizsgálati eljárás szá		Welder: Hegesztő:	Szabó T.

Liquid penetrant examination /Folyadékbehatolásos vizsgálat

Penetrant	Remover	Developer	
Behatoló anyag	Tisztító	Előhívó	
Dwell time	Drying	Developing time	
Behatolási idő	Szárítás	Előhívási Idő	
Surface temperature	Surface condition	Lighting intensity	
A felület hömérséklete	Felület állapota	Megvilágítás	

Magnetic particle examination/Mágnesezhető poros vizsgálat

Equipment type Készülék típusa TSW 1000	Testing mater Vizsgáló anya		Magnetizing curre Mágnesező áram	
Black light type Superlight C UV-A lámpa típusa 10A-HE	Field strength Térerőmérő	checking Berth disc	old Field strength Térerő	4,2 kA/m
Surface temperature A felület hömérséklete 23 °C	Surface cond Felület állapo		ed Lighting intensity Megvilágítás	1000 μW/cm ²
Test results Eredmények :	satisfactory	/	pc(s)/db	
	•			
	not accepte nem megfe	əd əlelő	pc(s)/db	
	-			
Performed by NDE Level II.		Revised by Q	.C. manager	
Vizsgálatot végezte	January Reso	Ellenõrizte –	MEO vozotá Co	ntiTech Rubber ndustrial Kft. QC 1
Signature 'Oravecz Gábo	or City	Signature	Markó László	~ 111
Aláírás	The second	Aláirás	l.	4//
Place/Date	•	Place/Date	•	
Kelt Szeged, 04.11.20	13.	Kelt	Szeged, 04.11.201	3
QCP-12-1-MPT/07				

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	38 / 44	

Azonosító szám:

(Identification No.):

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY (Certificate of NDT personnel)

A tanúsított neve: (The name and forename of the certificated individual): Születési hely/idő: (Place and date of birth):

Oravecz Gábor

Szeged, 1958. 07. 07.

A tanúsított személy aláírása (The signature of the certificated individual)

MT20103010506Ú

Vizsgálati eljárás(ok): (The NDT method(s):

Termék terület(ek):

Ipari terület:

(Industrial sector):

Product sector(s):

Mágnesezhető poros anyagvizsgáló (Magnetic particle testing) Fémfeldolgozás MM (Metal manufacturing)

(c), (f), (w), (wp)

A minősítés szintje: MT2 (The level of certification):

A tanúsítás és kiadásának időpontja: (The date of certification and it's issue):

A tanúsítás érvényes: (The date upon which certification expires):

Budapest, 2012. 02. 21.

Az ipari és/vagy termék terület érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to):

Dátum (Date):

Tanúsító Testület nevében

(On behalf of certifying body)

-ig megújítva (MSZ EN 473 9.): A tanúsítás érvényessége (Renewed the validity of the certification until (MSZ EN 473 9.):)

Dátum (Date):

Tanúsító Testület nevében (On behalf of certification body)

A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsító szervezet" a nevezett személyt tanúsítja az MSZ EN 473 szerint eredményes vizsgája alapján a fentiek szerint: (The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by National Accreditation Board (under No. NAT-5-013/2010", on the basis of his/her successful examination under the szandard MSZ EN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alaktiott termékek (wrought products); p - mlanyag termékek (plastics products); k - kompozitok (composites products).

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	39 / 44		

MT20103010506Ú

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN 473 3.21)

(The holder of this certificate has been authorised to gerfect tests and take responsibility for the test results, (MSZ EN 473 3.21))

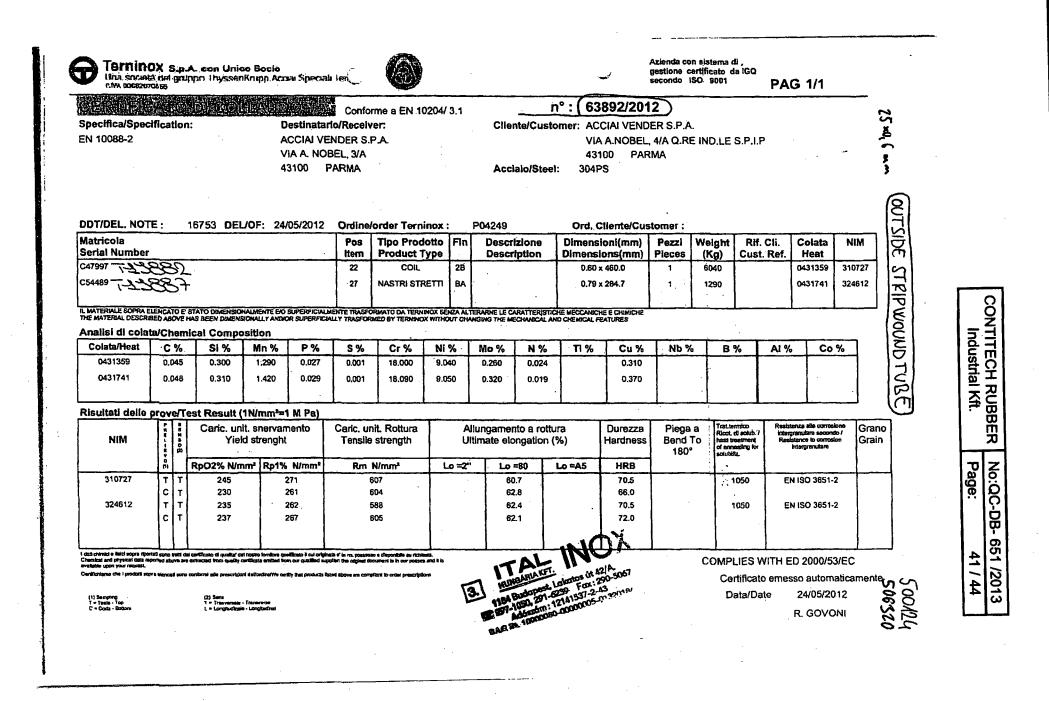
Jacn (

Munkáltató aláírása:

Munkáltató Signature of the		Dátum: (Date:) -	2012.02.21.
		avégzés igazolása (MSZ EN 473 9.) inued work activity (MSZ EN 473 9.))	
Sorsz.:	Munkáltató aláírása (Signature of the employer)	Ph. Contillighture	Dátum (Date)
1.	Hacen Cigo	Industrial Kft. Quality Control Dept.	2013.01.24.
2.		(1)	
3.			
4.	······································		
5.			
6.	· · · · · · · · · · · · · · · · · · ·		
7.	1. 		
8.		· · · · · · · · · · · · · · · · · · ·	
9.			
10.			

Kiegészítések:

(Additional remarks:)


A tanúsitvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

		L		ndustrial	<u></u>	Page:	40 /	44
	Słovakia 137363111						50	5760
ex: 004213	37422742	Page:1 /			Certifica	te of Analysis		
MANUFACTU		Fage. (/	•		Delivery	No. : 40461812	12	
Contillech Rubber CONTITECH RUE Budapesti út 10 H-6728 SZEGED	Industriel Kft. 3BER IND SZEGED			inspec Batch Date p Date (ase Order stion lot roduced	3048059220/10 32260330 090000200665 3500245379 01.07.2013 09.08.2013	/009001	
Spec customer	Contitech Rubber Indus	itrial Kft.		Spool: Units	5		om a batch of 32 p om a batch of 16	
•	14-16-07/1				ry net Qty.	10517 KG		•
	REV.3 / 15.01.2002			Materi	al Description		elcord 1X24DW/3	.6 NT 20/36 Z
Our Spec	H207297 / 28.10.2012			Lay di	petion	5000 M ZZ		
				Lay let		20/36		
Tests				Speca		Results		
Test		Procedure	Unit	Aim	Min. Max.	Avg.	Min Ind Max Ind	1
Cord diameter	······	RA12-100	mm	3,6000	3,4200 3,7800	3,6845	3,6640 3,6930	. I
Linear density		RA30-110	g/m	65,000	61,700 68,300	65,632 6	65,300 65,870	· · · ·
Cord breaking stre	ngth	RA30-203	N		17900.0	19337,0	19087.0 19584.0	
Cord elongation at	break	RA30-203	%	1	2,50	2,98	2,60 3,15	
Zinc D1		RA40-741	g/m2	- <u> </u>	32,000	40,057	37,870	<u> </u>
Zinc D2		RA40-741	g/m2	+	44,000	6 48,788	<u>44,630</u> 45,350	
Residual torsions		RA30-150	Nt	0,000	-3,000	<u>6</u> -0,250	55,100 -0,500	
	composition of High Gr	ede Oxysteet:	<u> </u>	<u> </u>	3,000		0,000	:
%Carbon : 0.70-0.1 %Manganese: 0.4% %Silicon: <0.230 %S: <0.011 %P: <0.012			·					
	ture: Metallurgically the structure.	texture is know	vn as a high	,		•		

Electronically Signed by Qualky Manager (Negy Marcel)

ý

According DIN EN 10204 3.1

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 42/44

MKEH Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements BUDAPEST XII., NÉMETVÖLGYI ÚT 37-39. 1535 Budapest, Pf. 919 Telefon: 458-5800 Telefax: 458-5927

Ügyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013 Hivatkozási szám / Reference No .: 32259470

Page 1/3 oldal Kiadva / Issued Budapest, 2013. 01. 28. / 28 01 2013

KALIBRÁLÁSI BIZONYÍTVÁNY **CALIBRATION CERTIFICATE**

A kalibrálás tárgya: Object of calibration: Gyártó / Manufacturer: Típus / Type: Azonosító szám / Serial No.: Műszaki adatok / Technical data:		anometer -INDEX Gri éréstartomár		
Kalibrálásra bemutatta: Customer:	ContiTech Rubb 6728 Szeged, Bu			
A kalibrálás helye és ideje: Place and date of calibration:	Hungarian Trade I Metrológiai Ha	Licensing Offic tóság, Mech y, Section of M	edélyezési Hivata e anikai Mérések (lechanical Measuren	Osztály
A kalibrálást végezte: Calibrated by:		ch Dénes s / metrologist		
A kalibrálásnál alkalmazott etal Standards used for the calibration:	onok:			
Megnevezés: Designation:	Gyártó: Manufacturer:	Típus: <i>Type</i> :	Gyártási szám: Serlal No.:	Bizonyítvány szám: Certificate No.:
túlnyomás etalon / pressure standard	Budenberg	283	20603	NYO-0001/2013

Keithley digitális multiméter / digital multimeter 2000 0597910 ELD-0014/2012 normál ellenállás / resistance standard ZIP P 331 117530 ELD-0021/2012 hőmérő / temperature measuring instr. GANZ MM DTH Hom-0296/2012 33656 A mérési eredmények a nemzeti (nemzetközi) etalonra visszavezetettek.

The measuring results are traceable to national standards.

A kalibrálás módja:

Calibration method:

A kalibrálást a KE NYO-3-2002 számú kalibrálás eljárás alapján végeztük. The calibration was done according to the calibration procedure No.: KE NYO-3-2002.

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPA). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.blpm.org).

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 43 / 44

Metrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements Úgyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013

21.1 °C

24V DC

olaj / oil

függőleges / vertical

Page 2/3 oldal

A kalibrálás körülményei:

Calibration conditions:

környezeti hőmérséklet / Ambient temperature

a kalibrált eszköz helyzete / Position of the calibrated manometer

a kalibrált eszköz tápfeszültsége / Supply voltage of the calibrated manometer

nyomóközeg / Pressure transfer medium

Mérési eredmények a (0...2500) bar nyomástartományban: Results of the measurements in the pressure range of (0...2500) bar:

Nyomás, névleges érték	Áram-kimenőjel, névleges érték	Áram-kimenőjel, mért eltérés a helyes értéktől	Nyomás, mért eltérés a helyes értéktől	Eredő mérési bizonytalanság
Pressure, nominal value	Current-Output, nominal value	Current-Output, measured deviation from the reference value	Pressure, measured deviation from the reference value	Expanded uncertainty of the measurement
bar	mA	mA	bar	bar
0	4,0	-0,0042	-0,7	
250	5,6	-0,0002	0,0	
500	7,2	0,0029	0,5	
750	8,8	0,0050	0,8	
1000	10,4	0,0063	1,0	
1250	12,0	0,0053	0,8	2,6
1500	13,6	0,0033	0,5	
1750	15,2	-0,0003	-0,1	
2000	16,8	-0,0052	-0,8	
2250	18,4	-0,0117	-1,8	
2500	20,0	-0,0192	-3,0	

Mérési bizonytalanság: A mérési eredmény(ek) mellett közölve.

Uncertainty of measurement: See next to the results of the measurements.

A közölt kiterjesztett mérési bizonytalanság a standard bizonytalanságnak k kiterjesztési tényezővel szorzott értéke (k = 2), amely normális (Gauss) eloszlás feltételezésével közelítőleg 95%-os fedési valószínűségnek felel meg.

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to coverage probability of approximately 95 %.

A mérési bizonytalanság tartalmazza az etalonból, a kalibrálás módszeréből, a környezeti feltételekből, a kalibrált mérőeszközből stb. eredő részbizonytalanságokat.

It contains the uncertainties of the standards, calibration method, enviromental conditions, calibrated device etc.

A standard bizonytalanság meghatározása az EA-4/02 (Expression of the Uncertainty of Measurement in Calibration) kiadványnak megfelelően történt.

The standard uncertainty of measurement has been determined in accordance with the EA Publication EA 4/02 (Expression of the Uncertainty of Measurement in Calibration).

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH! CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page:44 / 44

MKEH Metrológiai Hatóság/*Metrology Authority* Mechanikai Mérések Osztáły

Section of Mechanical Measurements

Úgyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013

Page 3/3 oldal

Bélyegzés:

Calibration mark:

A kalibrált mérőeszközön K067662 azonosító számú kalibrálási bélyeget helyeztünk el. We have placed a calibration stamp No: K067662 on the calibrated instrument.

Megjegyzések:

Additional remarks:

Jelen bizonyítvány összhangban van a Nemzetközi Súly és Mértékügyi Bizottság (CIPM) Kölcsönös Elismerési Megegyezése (MRA) C függeléke által tartalmazott kalibrálási és mérési képességekkel (CMCs). Az MRA minden aláíró intézete elismeri egymás kalibrálási és mérési bizonyítványait a C függelék szerinti mennyiségfajtákra, azok értéktartományaival és mérési bizonytalanságaival (közelebbit lásd: <u>http://www.bipm.org</u>)

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bipm.org)

A kalibrálási bizonyítványban megadott értékek a mérőeszköznek a kalibrálás idejére és körülményeire jellemző adatai.

The measurement results show the metrological properties of the device during the time of the calibration under the environmental conditions listed above.

Az újrakalibrálás időpontját a felhasználó dönti el a mérőeszköz használatának és állapotának függvényében.

The date of the next calibration is decided by the user. It depends on the usage and the condition of the device.

A bizonyítvány kiadható / Approved by:

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

Requested Exceptions

- Variance is requested to connect the BOP choke outlet to the choke manifold using a co-flex line (instead of using a 4" OD steel line) with a 10,000 psi working pressure that has been tested to 15,000 psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps.
- Variance is requested to allow Option of rig not capable of reaching TD presetting Surface, Drilling Plan will be same using Fresh Water fluid system.
- Variance is requested to allow Temporary Postponement of Operations on well to skid to adjacent well if multiple wells on drilling pad are drilled.
- Variance is requested to allow use of Multi-Bowl Well Head System.

AMEREDEV

- Variance is requested to allow adjustment of Casing Design Safety Factor on conditions that Ameredev keeps minimum of 1/3 casing capacity filled with OMW drilling fluids.
- Variance is requested to allow 5M Annular Preventer on 10M BOPE System to drill Production Interval. (Supporting Documentation Attached)

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400030569

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Type: OIL WELL

Well Number: 093H

Submission Date: 06/04/2018

Well Work Type: Drill

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

CAMELLIA_FED_COM_26_36_21_093H___SITE_ACCESS_MAP_20190404145117.pdf

Existing Road Purpose: ACCESS

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

CAMELLIA_FED_COM_26_36_21_093H___SITE_ACCESS_MAP_20190404145139.pdf CAM_AZE_5SX_ROAD_20190404145150.pdf

New road type: RESOURCE

Length: 455

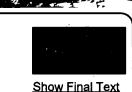
Width (ft.): 30

Max slope (%): 2

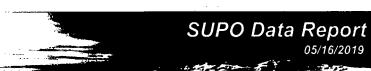
Max grade (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):


New road travel width: 20

New road access erosion control: Crowned and Ditched


New road access plan or profile prepared? NO

New road access plan attachment:

Page 1 of 10

Row(s) Exist? NO

Feet

Operator Name: AMEREDEV OPERATIN	IG LLC				
Well Name: CAMELLIA FED COM 26 36	21 Well Number: 093H	4			
Access road engineering design? NO			<u> </u>		
Access road engineering design attach	ment:				
Access surfacing type: OTHER					
Access topsoil source: ONSITE					
Access surfacing type description: Calic	he				
Access onsite topsoil source depth: 6					
Offsite topsoil source description:					
Onsite topsoil removal process: Grader					
Access other construction information:	NM One Call (811) will be notified befor	e constructio	on starts.		
Access miscellaneous information:			·		
Number of access turnouts:	Access turnout map:				
Drainage Control			:	· :	
New road drainage crossing: OTHER					
Drainage Control comments: Crowned ar	nd Ditched	• :			
Road Drainage Control Structures (DCS)	description: Crowned and Ditched			· · · · · · · · · · · · · · · · · · ·	
Road Drainage Control Structures (DCS)	attachment:				
Access Additional Attac	hments				
Additional Attachment(s):			•		
Auunonai Anacimetin(5).				·.	
Section 3 - Location of	Existing Wells		•	·. :	

Attach Well map:

CAMELLIA_FED_COM_26_36_21_093H___1_MILE_RADIUS_WELLS_20190404145248.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Production from the proposed well will be transported to an existing production facility named Camellia CTB, northwest of the well pad, via a buried 4" poly flowline (700 psi maximum) that runs approximately 2,614'.

Production Facilities map:

BO_CAMELLIA_FED_COM_BATTERY_SITE_REV1_20190404145322.pdf

Page 2 of 10

Operator Name: AMEREDEV OPERA	TING LLC	
Well Name: CAMELLIA FED COM 26 3	36 21 Well Nu	umber: 093H
AM_AZE_5SX_FLOWLINE_20190404	145327.pdf	
O_CAM_AZE_5XS_PAD_SITE_REV1	_20190404145336.PDF	
Section 5 - Location a	and Types of Water Su	pply
Water Source Tat	ble	
Water source use type: DUST CON INTERMEDIATE/PRODUCTION CAS CASING Describe type:		Water source type: GW WELL CE Source longitude:
Source latitude:		Source longitude:
Source datum:		
Water source permit type: PRIVATE	E CONTRACT	
Source land ownership: PRIVATE		
Source transportation land owners	hin: FEDERAL	
Water source volume (barrels): 200	-	Source volume (acre-feet): 2.577862
Source volume (gal): 840000		
····· (3-), · · ····	· ·	
later source and transportation map	:	
AMELLIA FED COM 26 36 21 0931		145429.pdf
AMELLIA_FED_COM_26_36_21_093ł		•
Vater source comments: Water will be f available wells. lew water well? NO	e trucked or surface piped from	existing water wells on private land. See attached I
New Water Well In	ito	
Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		
Est. depth to top of aquifer(ft):	Est thickness	of aquifer:
more debut to top of additer(it).		
Aquifer comments:		
		· · · ·
Aquifer comments: Aquifer documentation:	Well casing type	:
Aquifer comments: Aquifer documentation: /ell depth (ft):		
Aquifer comments: Aquifer documentation: /ell depth (ft): /ell casing outside diameter (in.):	Well casing type	le diameter (in.):
Aquifer comments: Aquifer documentation: /ell depth (ft): /ell casing outside diameter (in.): /ew water well casing?	Well casing type Well casing insid	le diameter (in.):
Aquifer comments:	Well casing type Well casing insic Used casing sou	le diameter (in.):

Page 3 of 10

	COM 26 36 21	Wel	Number: ()93H			
ell Production type:	 	Completion N	lethod:				
ater well additional information	ation:						
tate appropriation permit:							
dditional information attach	nment:						
Section 6 - Cons	struction Materi	als					
onstruction Materials sourc	e location attachme	ent:			· · · ·		
AMELLIA_FED_COM_26_36	5_21_093HCALIC	HE_MAP_2019	040414550	4.pdf			
Section 7 - Methods	s for Handling V	Naste				·	
aste type: DRILLING	·				· · ·		
aste content description: D	rill cuttings, mud, sal	ts, and other ch	emicals				• •
mount of waste: 2000	barrels	·		•			
aste disposal frequency : [Daily				· · · · ·		•
afe containmant attachmen	t:						
		Disposal locat	tion owners	ship: COMN	IERCIAL		
sposal type description:	· · · ·	• . ·					
				-			
				· · · ·			
· · · ·	<u> </u>	: '					
	Reserve Pit	<u> </u>					•
	· · · · ·						
			• •				
	Cuttings		• •	·:	· · · :		
	Cuttings Are)a	· · ·	·:		· ·	
	Cuttings Are			·		Page 4 of	

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 093H

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

CAMELLIA_FED_COM_26_36_21_093H___WELL_SITE_DIAGRAM_20190404145608.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Recontouring attachment:

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well Name: CAMELLIA FED COM 26 3	36 21 Well Number: 093	l
Well pad proposed disturbance (acres): 4.53	Well pad interim reclamation (acres): 0.79	Well pad long term disturbance (acres): 3.74
Road proposed disturbance (acres): 0.313 Powerline proposed disturbance (acres): 0 Pipeline proposed disturbance	Road interim reclamation (acres): 0 Powerline interim reclamation (acres): 0 Pipeline interim reclamation (acres): 0	(acres): 0
(acres): 1.8 Other proposed disturbance (acres): (Other interim reclamation (acres): 0) Total interim reclamation: 0.79	(acres): 1.8 Other long term disturbance (acres): (
Total proposed disturbance: 6.643		Total long term disturbance: 5.853

Soil treatment: None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Page 6 of 10

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 093H

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed name:

Source name:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Source address:

Seed source:

.

Total pounds/Acre:

Proposed seeding season:

Seed Summary					
Seed Type	Pounds/Acre				

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Zachary

Phone: (580)940-5054

Last Name: Boyd

Email: zboyd@ameredev.com

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Page 7 of 10

Operator Name: AMEREDEV OPERATING LLC
Well Name: CAMELLIA FED COM 26 36 21

Well Number: 093H

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: NEW ACCESS ROAD

Page 8 of 10

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 093H

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

· · ·

Disturbance type: PIPELINE

<u> </u>		 	 	 	 	
	1			 	 	
$\mathcal{A}_{i} = \mathcal{A}_{i}$						

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? NO ROW Type(s):

ROW Applications

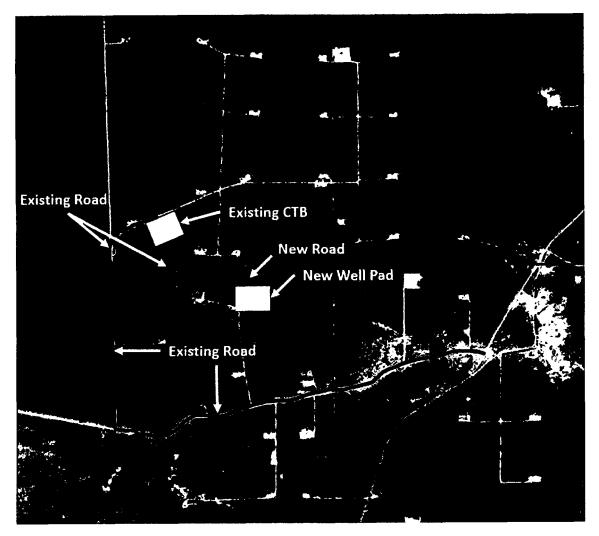
SUPO Additional Information:

Use APD as ROW?

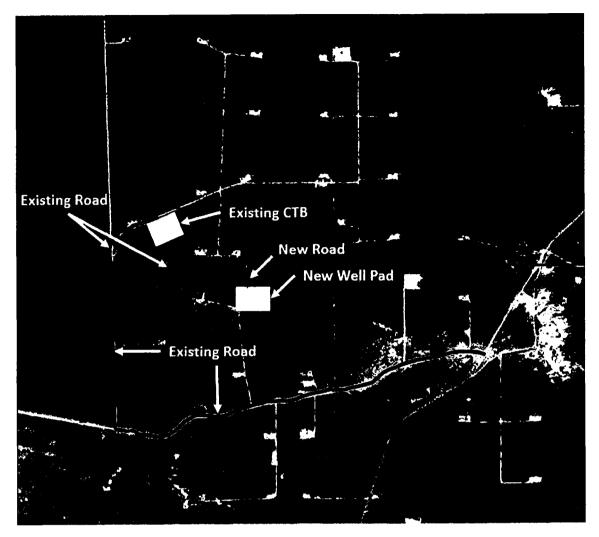
Page 9 of 10

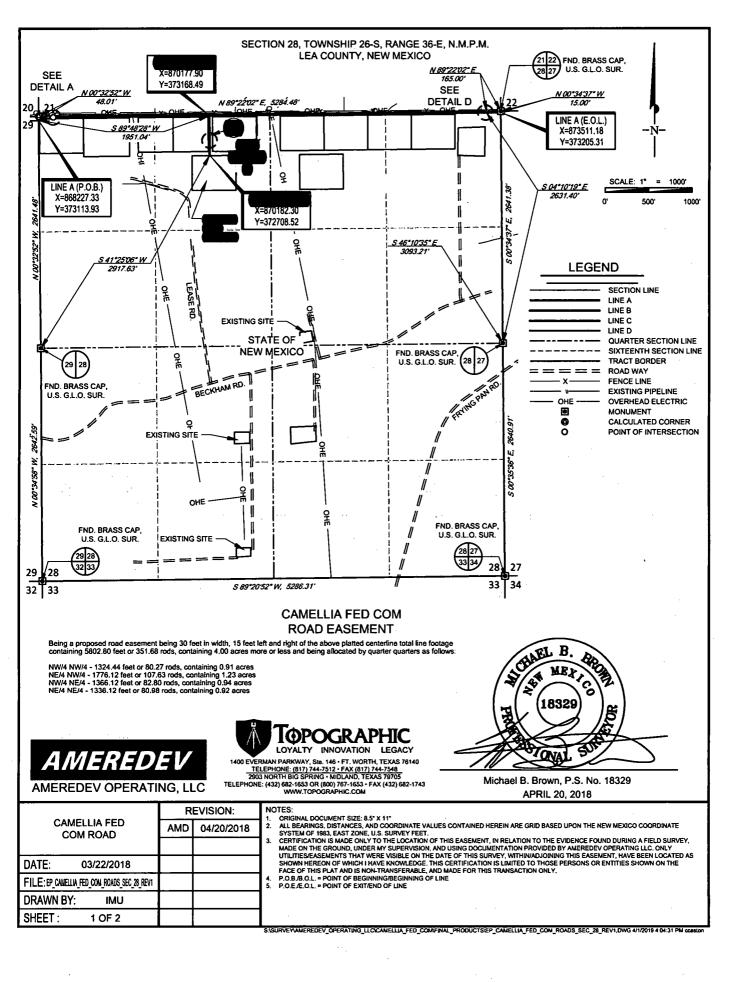
Operator Name: AMEREDEV OPERATING LLC

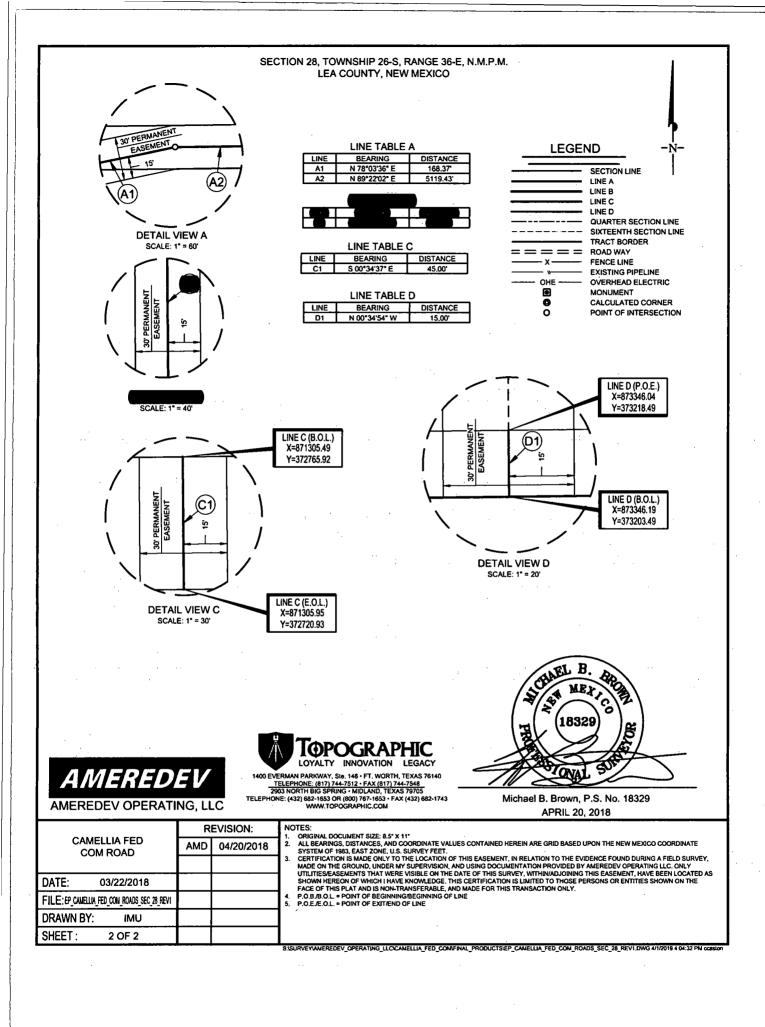
Well Name: CAMELLIA FED COM 26 36 21


Well Number: 093H

Use a previously conducted onsite? YES


Other SUPO Attachment


CAMELLIA_FED_COM_26_36_21_093H___SUPO_REV_20190404145907.pdf



.

.

. . :

AMEREDEV

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Camellia Fed Com 26 36 21 093H. See *Exhibit 2a – One Mile Radius Wells List* for a list of wells depicted.

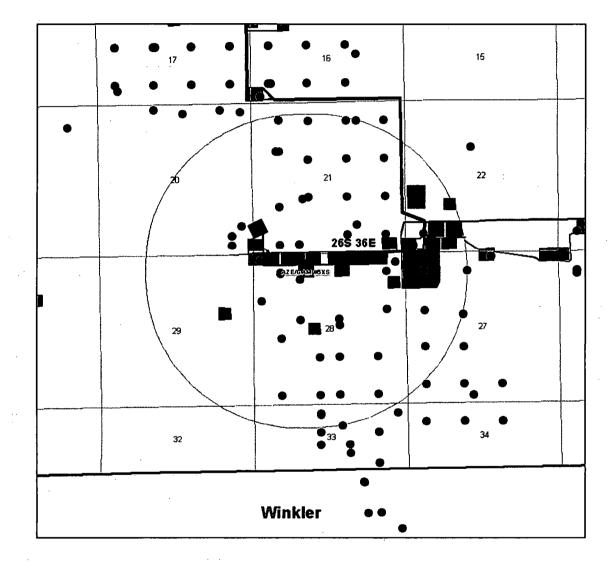
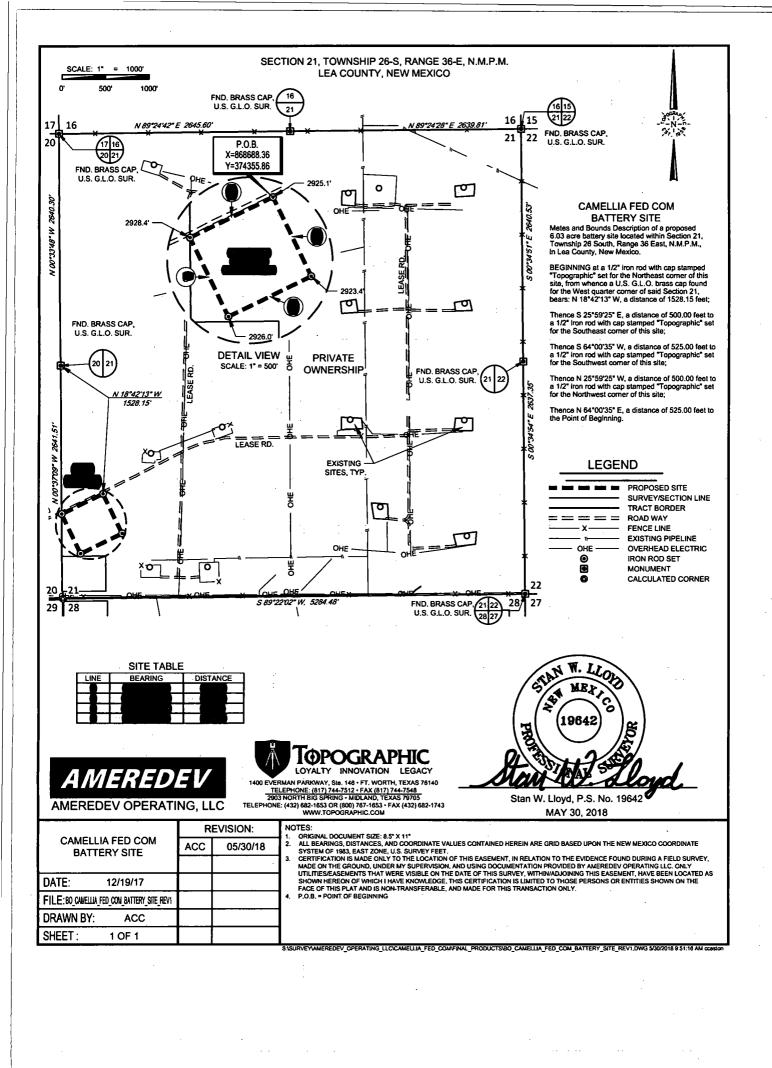
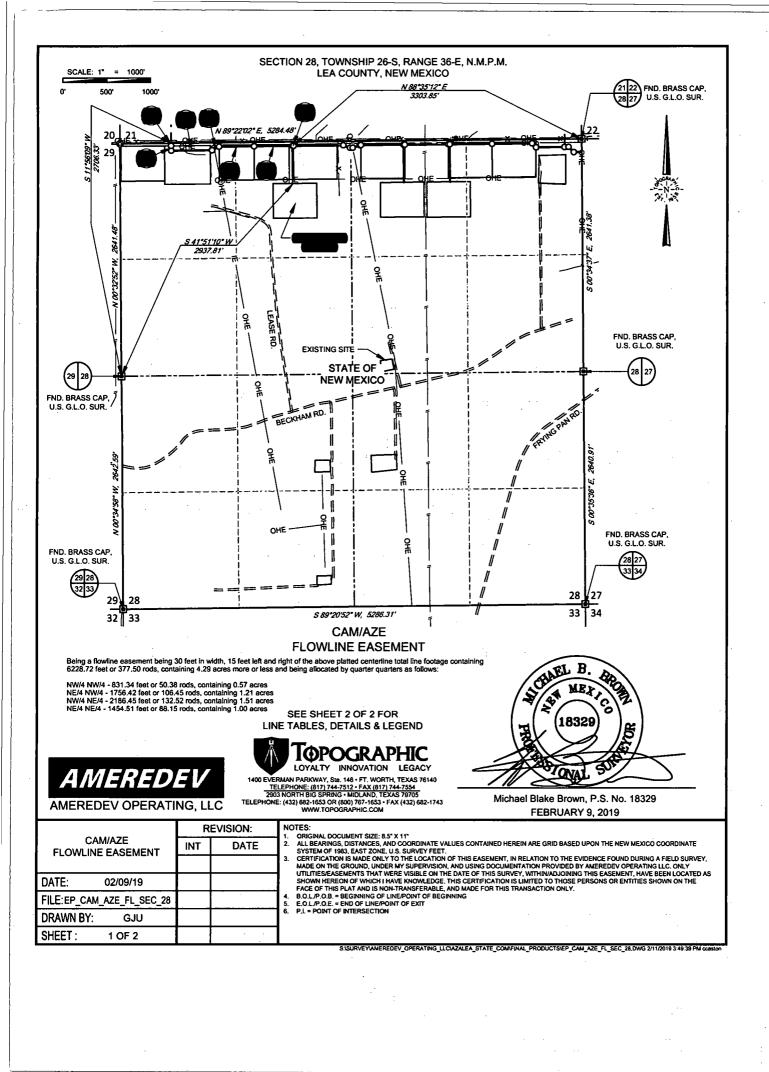
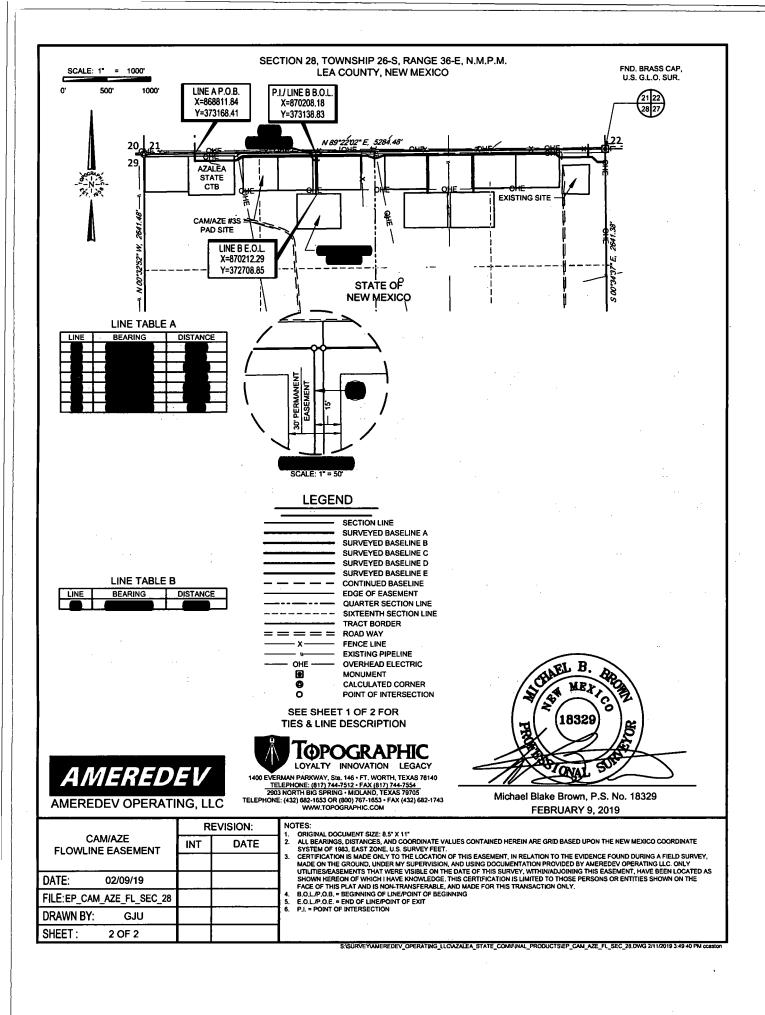


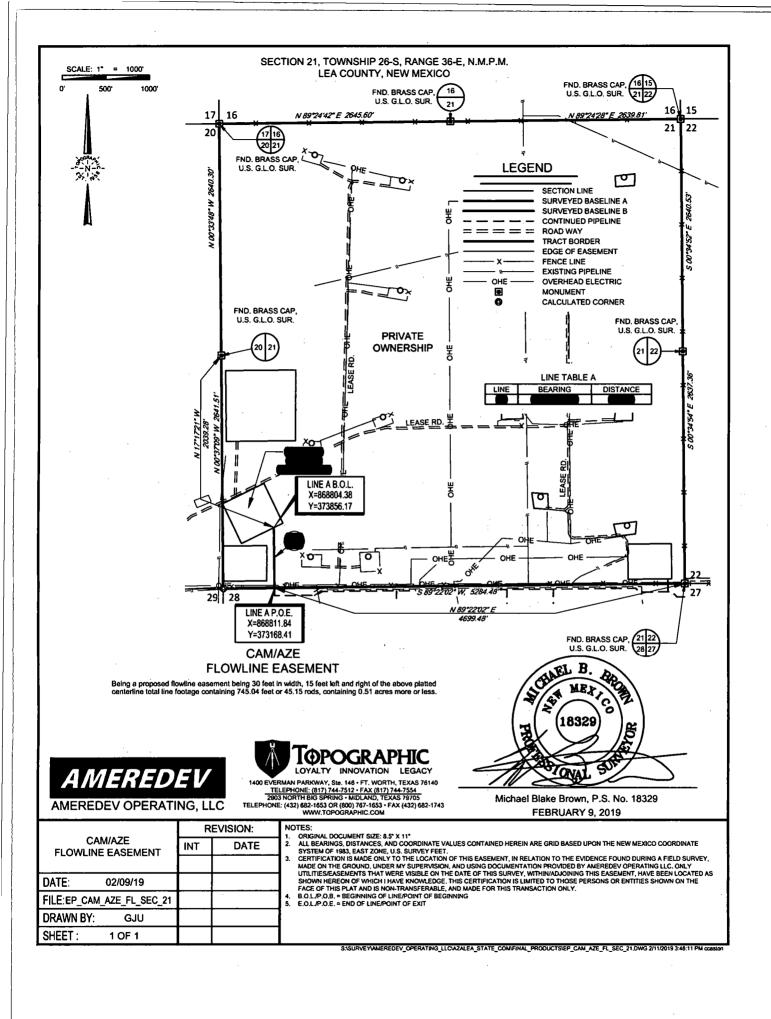
Exhibit 2 – One Mile Radius Existing Wells

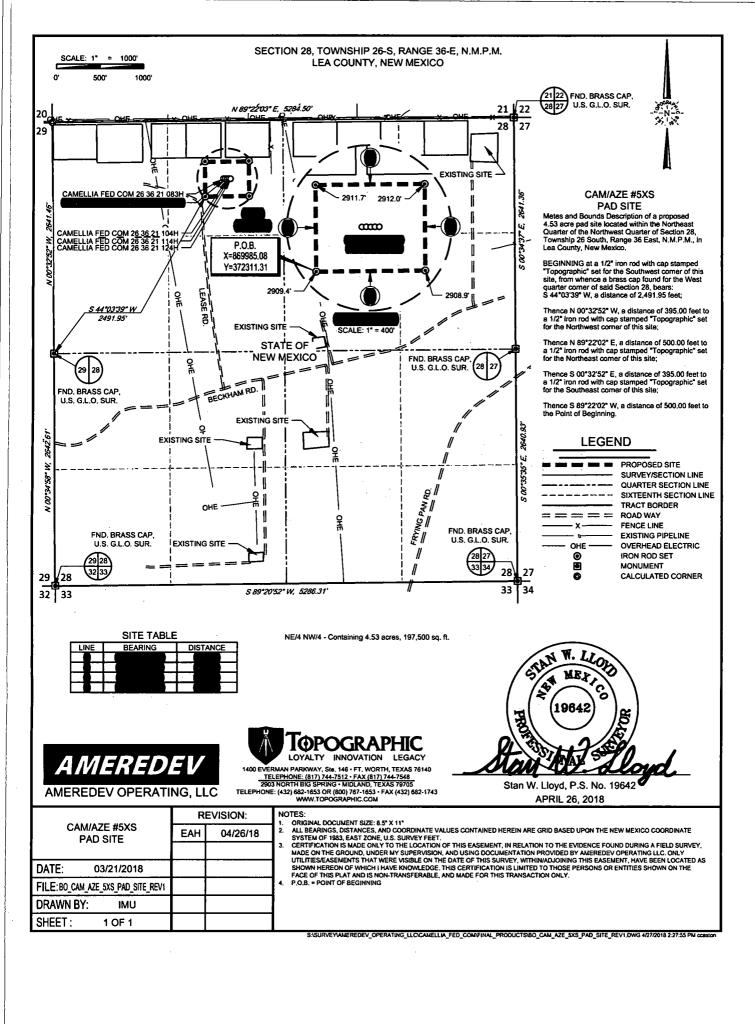
AMEREDEV

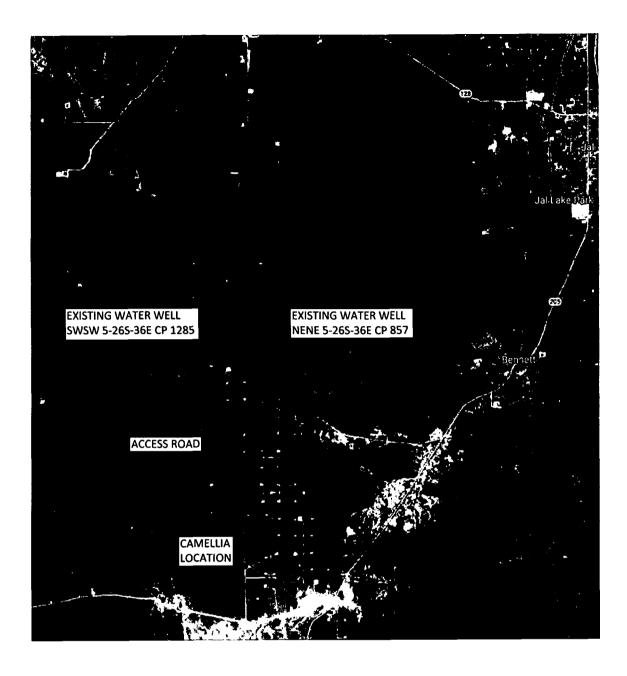

API		STATUS	TD
30025257020000	LEA /7406/ 2	PLUGOIL	3340
30025257780000	QUANAH PARKER 1	PLUGOIL	3310
30025257840000	LEA 7406 JV-S 3	DRY	887
30025258290000	LEA 7406 JV-S 4	PLUGOIL	3268
30025259230000	HORSE BACK 4	JNK	748
30025259530000	NEW MEXICO 'CV' STAT 1	PLUGOIL	3239
30025259540000	HORSE BACK 4Y	JNK	749
30025260230000	QUANAH PARKER 3	ABDNLOC	0
30025260480000	NEW MEXICO `CV` STAT 2	PLUGOIL	3400
30025098560000	SAND HILLS UNIT 6	JNK	1257
30025098570000	SAND HILLS UNIT A 1	DHSO	3349
30025098580000	FEDERAL 1	DHSO	3940
30025258410000	PARKER QUANAH 2	JNK	284
30025258900000	LEA 7406 JV-S 5	OIL	3266
30025259090000	LEA 7406 JV-S 6	PLUGOIL	3250
30025259110000	PARKER QUANAH 2-Y	PLUGOIL	3258
30025259200000	LEA 7406 JV-S 7	PLUGOIL	3270
30025259300000	LEA 7406 JV-S 8	PLUGOIL	3270
30025259570000	LEA WD-1	DHSO	3420
30025260560000	LEA 7406-JV-S 9	DRY	3268
30025260680000	LEA 7406-JV-S 9-Y	PLUGOIL	3270
30025261310000	WILSON /21/-FEDERAL 1	OIL	3340
30025261320000	WILSON /21/ FED 2	OIL	3500
30025261330000	WILSON `21`-FEDERAL 3	OIL	3797
30025261340000	WILSON 21-FEDERAL 4	OIL	3575
30025261350000	WILSON 21-FEDERAL 5	OIL	3800
30025261360000	WILSON `21` FEDERAL 6	JNK	1682
30025261370000	WILSON /21-FED/ 7	OIL	3700
30025261380000	WILSON /21/ FED 8	OIL	3700
30025267180000	WILSON /21/ FED 6-Y	OIL	3750
30025268770000	BUFFALO HUMP 1	PLUGOIL	3585
30025269870000	BUFFALO HUMP 2	PLUGOIL	3545
3002527000000	LEA /21/ 7406 JV-S 1	OIL	3668
30025270280000	LEA /21/7406 JV-S 2	OIL	3658
30025270290000	LEA /21/7406 JV-S 3	OIL	3598


ì

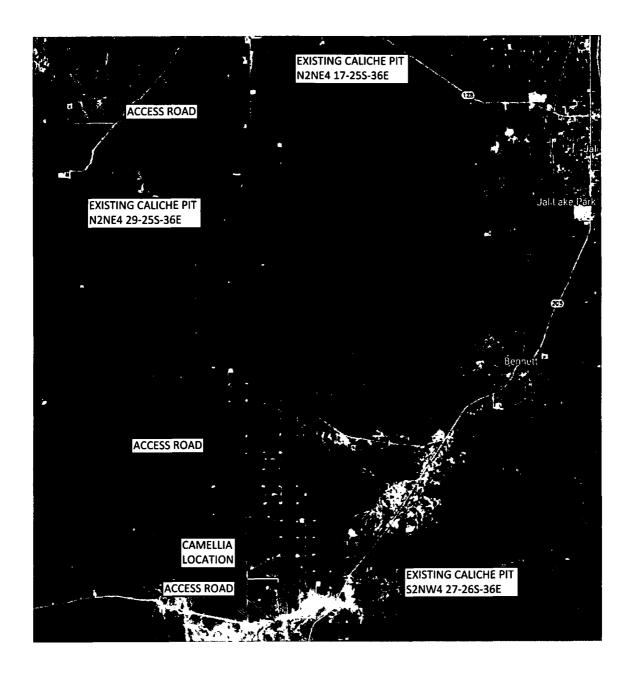

30025270300000	LEA /21/7406 JV-S 4
30025270410000	LEA `21` 7406 JV-S 6
30025270420000	LEA `21` 7406 JV-S 7
30025270430000	LEA /21/7406 JV-S 8
30025271290000	BUFFALO HUMP 8
30025271630000	AMERICAN EAGLE 1
30025272070000	LEA /21/ 7406 JV-S 4-Y
30025388850000	EAGLE FEATHER FEDERA 2
30025401700000	GOOD CHIEF STATE 1
30025269880000	QUANAH PARKER 3
30025269890000	QUANAH PARKER 4
30025442020000	AMEN CORNER 26 36 27 111H
30025441050100	AZALEA 26-36-28 STAT 121H
30025444390000	MAGNOLIA 26-36-22 ST 111H
30025444720000	MAGNOLIA 26-36-22 ST 101H
30025441050000	AZALEA 26-36-28 STAT 121H


JNK 1060 OIL 3495 OIL 3525 OIL 3570 PLUGOIL 3606 PLUGOIL 3550 OIL 3550 GAS 13179 OIL 3873 ABDNLOC ABDNLOC PERMIT JNK 3561 PERMIT PERMIT 13600 AT-TD

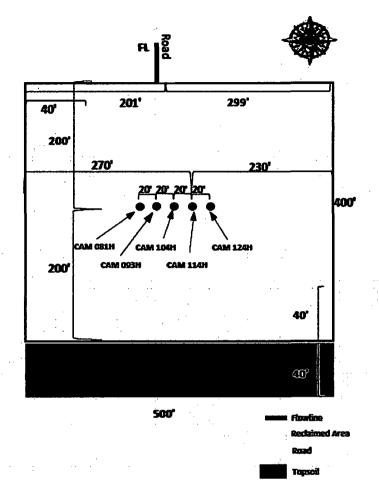

Exhibit 2a – One Mile Radius Existing Wells List



. .



AMEREDEV


<u>Permit #</u>	<u>Well Name</u>	Loca
CP 1049 POD 2	Bennett	32°0
CP 1378	S. Eppenour	32°0
CP 1285	Sec. 5	32°0
CP 857	Capped	32°0
C 2287	#1	32°0
C 2286	#2	32°0
C 2290	#3	32°0
C 2285	#4	32°0
C 2288	#5	32°0
C 2294	Garden	32°0
C 2293	House	32°0
J-11-S-3	Farm Well #2	32°0
J-11-S-2	Farm Well #3	32°0
J-11-S	Farm Well #4	32°0
CP 1170 POD 1	CB 1	32°0
CP 1170 POD 5		32°0
CP 1263 POD 5	CB 2	32°0
CP 1263 POD 3	CB 3	32°0
CP 1351 POD 1	CB 4	32°0
CP 1351 POD 2	CB 5	32°0
J 26	Ryan	32°0
13		32°C

. /.

Exhibit 4 – Water Wells

Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

Exhibit 3 – Well Site Diagram

Ameredev Operating, LLC Camellia Fed Com 26 36 21 093H Section 21, Township 26S, Range 36E Lea County, New Mexico

Surface Use Plan of Operations

Introduction

The following Surface Use Plan of Operations will be implemented by Ameredev Operating, LLC (Ameredev), after APD approval. No disturbance will be created other than those described in this surface use plan. If any additional surface disturbance becomes necessary after APD approval, the appropriate BLM approved sundry notice or right-of-way application will be acquired prior to such disturbance. This Surface Use Plan includes Ameredev's well pad, battery site, electrical, water and flow lines, and access roads.

AMEREDE

Before any surface disturbance is created, stakes or flagging will be installed to mark boundaries of permitted areas of disturbance, including soil storage areas. As necessary, slope, grade, and other construction control stakes will be placed to ensure construction is in accordance with the surface use plan. All boundary markers will be maintained in place until final construction cleanup is completed. If disturbance boundary markers are displaced, they will be replaced before construction proceeds. Adjacent operators will be contacted before construction starts to mark adjacent pipelines.

Directions to proposed pad:

At the intersection of NM-205 and NM-128, head south on NM-205 approximately 8 miles. Turn west (right) on lease road and proceed approximately 1.2 miles. Turn south (left) on lease road and proceed approximately 460', to the northwest of the well pad. See *Exhibit 1 – Well Pad Access* for a map of the route.

1 | Page

Exhibit 1 - Well Pad Access

Section 1 – Existing Roads

- A. The existing access road route to the proposed project is depicted on *Exhibit 1 Well Pad Access*. Improvements to the driving surface will be done where necessary. No new surface disturbance will be done, unless otherwise noted in the New or Reconstructed Access Roads section of this surface use plan.
- **B.** Any required right-of-way will be acquired before construction begins.
- **C.** The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattle guards, other range improvement

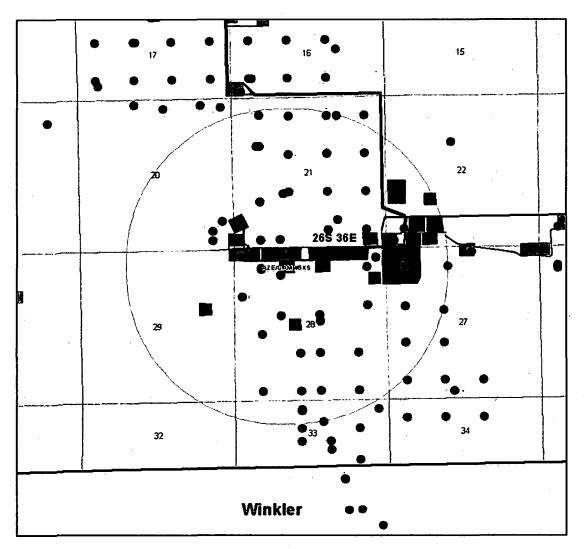
projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use.

D. Operator will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

AMEREDE

Section 2 – New or Reconstructed Access Roads

- A. A section of new access road will be needed for this proposed project. See Exhibit 1 Well Pad Access, for locations.
- **B.** The length of new access road needed to be constructed for this proposed project is approximately 455 feet.
- C. New access road will be constructed with 6 inches of compacted caliche.
- D. The maximum driving width of the access road will be 20 feet. The maximum width of surface disturbance when constructing the access road will not exceed 30 feet. All areas outside of the driving surface will be revegetated.
- E. When the road travels on fairly level ground, the road will be crowned and ditched with a maximum 2% slope from the tip of the road crown to the edge of the driving surface. Ditches will be constructed on each side of the road. The ditches will be 3 feet wide with 3:1 slopes. See road cross section diagram below:


natural ground

- F. No turnouts will be constructed on the new portions of access road.
- G. No cattle guards will be installed on the new portions of access road.
- H. Right-of-way will be acquired before construction begins.
- I. No culverts or low water crossings will be constructed for the new portions of access road.
- J. Since the access road is on level ground, no lead-off ditches will be constructed for the new portions of access road.
- K. Any sharp turns in the in the new road will be rounded to facilitate turning by trucks.
- L. Newly constructed or reconstructed roads, on surface under the jurisdiction of the Bureau of Land Management, will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road.
- **M.** All topsoil and fragmented rock removed in excavation will be used as directed in approved plan.

AMEREDEV

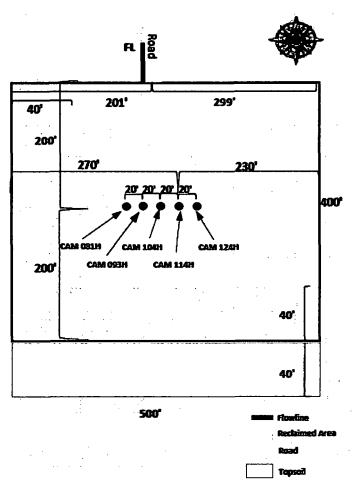
Section 3 – Location of Existing Wells

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Camellia Fed Com 26 36 21 093H. See *Exhibit 2a – One Mile Radius Wells List* for a list of wells depicted.

AMEREDEV

		STATUS	TD
30025257020000	LEA /7406/ 2	PLUGOIL	3340
30025257780000	QUANAH PARKER 1	PLUGOIL	3310
30025257840000	LEA 7406 JV-S 3	DRY	887
30025258290000	LEA 7406 JV-S 4	PLUGOIL	3268
30025259230000	HORSE BACK 4	JNK	748
30025259530000	NEW MEXICO `CV` STAT 1	PLUGOIL	3239
30025259540000	HORSE BACK 4Y	JNK	749
30025260230000	QUANAH PARKER 3	ABDNLOC	0
30025260480000	NEW MEXICO `CV` STAT 2	PLUGOIL	3400
30025098560000	SAND HILLS UNIT 6	JNK	1257
30025098570000	SAND HILLS UNIT A 1	DHSO	3349
30025098580000	FEDERAL 1	DHSO	3940
30025258410000	PARKER QUANAH 2	JNK	284
30025258900000	LEA 7406 JV-S 5	OIL	3266
30025259090000	LEA 7406 JV-S 6	PLUGOIL	3250
30025259110000	PARKER QUANAH 2-Y	PLUGOIL	3258
30025259200000	LEA 7406 JV-S 7	PLUGOIL	3270
30025259300000	LEA 7406 JV-S 8	PLUGOIL	3270
30025259570000	LEA WD-1	DHSO	3420
30025260560000	LEA 7406-JV-S 9	DRY	3268
30025260680000	LEA 7406-JV-S 9-Y	PLUGOIL	3270
30025261310000	WILSON /21/-FEDERAL 1	OIL	3340
30025261320000	WILSON /21/ FED 2	OIL	3500
30025261330000	WILSON '21'-FEDERAL 3	OIL	3797
30025261340000	WILSON 21-FEDERAL 4	OIL	3575
30025261350000	WILSON 21-FEDERAL 5	OIL	3800
30025261360000	WILSON '21' FEDERAL 6	JNK	1682
30025261370000	WILSON /21-FED/ 7	OIL	3700
30025261380000	WILSON /21/ FED 8	OIL	3700
30025267180000	WILSON /21/ FED 6-Y	OIL	3750
30025268770000	BUFFALO HUMP 1	PLUGOIL	3585
30025269870000	BUFFALO HUMP 2	PLUGOIL	3545
30025270000000	LEA /21/ 7406 JV-S 1	OIL	3668
30025270280000	LEA /21/7406 JV-S 2	OIL	3658
30025270290000	LEA /21/7406 JV-S 3	OIL	3598
30025270300000	LEA /21/7406 JV-S 4	JNK	1060
30025270410000	LEA `21` 7406 JV-S 6	OIL	3495
30025270420000	LEA `21` 7406 JV-S 7	OIL	3525
30025270430000	LEA /21/7406 JV-S 8	OIL	3570
30025271290000	BUFFALO HUMP 8	PLUGOIL	3606

30025271630000	AMERICAN EAGLE 1	PLUGOIL	3550
30025272070000	LEA /21/ 7406 JV-S 4-Y	OIL	3550
30025388850000	EAGLE FEATHER FEDERA 2	GAS	13179
30025401700000	GOOD CHIEF STATE 1	OIL	3873
30025269880000	QUANAH PARKER 3	ABDNLOC	
30025269890000	QUANAH PARKER 4	ABDNLOC	
30025442020000	AMEN CORNER 26 36 27 111H	PERMIT	
30025441050100	AZALEA 26-36-28 STAT 121H	JNK	3561
30025444390000	MAGNOLIA 26-36-22 ST 111H	PERMIT	
30025444720000	MAGNOLIA 26-36-22 ST 101H	PERMIT	
30025441050000	AZALEA 26-36-28 STAT 121H	AT-TD	13600


Exhibit 2a – One Mile Radius Existing Wells List

Section 4 - Location of Existing and/or Proposed Production Facilities

- A. The multiple well pad will be located on section 28, and will measure 395'x500'. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location.
- **B.** Production from the proposed well will be transported to an existing production facility named Camellia CTB, northwest of the well pad, via a buried 4" poly flowline (700 psi maximum) that runs approximately 2,614'.
- C. All permanent (lasting more than six months) above ground structures including but not limited to pump jacks, storage tanks, barrels, pipeline risers, meter housing, etc., that are not subject to safety requirements will be painted a non-reflective paint color, Shale Green, from the BLM Standard Environmental Colors chart, unless another color is required in the APD Conditions of Approval.
- D. If any plans change regarding the production facility or other infrastructure (pipeline, electrical lines, etc.), Ameredev will submit a sundry notice or right-of-way (if applicable) prior to installation or construction.

AMEREDEV

Ameredev Operating, LLC Camellia Fed Com 26 36 21 093H Section 21, Township 26S, Range 36E Lea County, New Mexico

Camellia Fed Com 26 36 21 083H SHL: SEC 28-26S-36E, 670' FNL 1960' FWL Camellia Fed Com 26 36 21 093H SHL: SEC 28-26S-36E, 670' FNL 1980' FWL Camellia Fed Com 26 36 21 104H SHL: SEC 28-26S-36E, 670' FNL 2000' FWL Camellia Fed Com 26 36 21 114H SHL: SEC 28-26S-36E, 670' FNL 2020' FWL Camellia Fed Com 26 36 21 124H SHL: SEC 28-26S-36E, 670' FNL 2040' FWL

Exhibit 3 – Well Site Diagram

Section 5 - Location and Types of Water Supply

A. This location will be drilled using a combination of water and mud systems (outlined in the Drilling Program). The water will be obtained from preexisting water wells, by running a pump directly to the drilling rig. See *Exhibit 4 - Water Wells*, for a list of available water wells. In cases where a polyline is used to transport water for drilling or completion purposes, the existing and proposed roads into location will be utilized.

AMEREDEV

<u>Permit #</u>	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04'14.32" N, 103°12'32.30" W
CP 1378	S. Eppenour	32°05'40.62" N, 103°13' 35.26" W
CP 1285	Sec. 5	32°03'56.50" N, 103°17'37.04" W
CP 857	Capped	32°04'39.70" N, 103°16'51.13" W
C 2287	#1	32°03'59.0" N, 103°33'16.8" W
C 2286	#2	32°03'59.2" N, 103°33'15.2" W
C 2290	#3	32°04'1.0" N, 103°33' 12.6" W
C 2285	. #4	32°04'3.7" N, 103°33'9.7" W
C 2288	#5	32°04'0.5" N, 103°33'8.4" W
C 2294	Garden	32°03'3.2" N, 103°32'38.1" W
C 2293	House	32°03'2.3" N, 103°32'36.8" W
J-11-S-3	Farm Well #2	32°03'08.4" N, 103°16'35.2" W
J-11-S-2	Farm Well #3	32°03'11.5" N, 103°17'02.0" W
J-11-S	Farm Well #4	32°03'24.6" N, 103°17'02.1" W
CP 1170 POD 1	CB 1	32°03'57.2" N, 103°18'45.3" W
CP 1170 POD 5		32°07'17.1" N, 103°17'48.0" W
CP 1263 POD 5	СВ 2	32°03'56.27" N, 103°18'27.4" W
CP 1263 POD 3	СВ 3	32°03'54.90" N, 103°18'16.74" W
CP 1351 POD 1	СВ 4	32°03'57.16" N, 103°17'45.13" W
CP 1351 POD 2	СВ 5	32°03'30.70" N, 103°17'45.70" W
J 26	Ryan	32°01'20.41" N, 103°15'49.46" W
J 3		32°02'41.5" N, 103°18'55.8" W

Exhibit 4 – Water Wells

Section 6 – Construction/Construction Materials

A. Caliche will be obtained from the caliche pit located at Lat: 32° 8'0.90"N, Long: 103°16'45.05" or the caliche pit at Lat: 32° 6'28.34"N, Long: 103°16'58.48"W or the caliche pit at Lat: 32° 1'1.28"N, Long: 103°15'15.83"W.

AMEREDE

- B. Caliche utilized for the drilling pad will be obtained either from the locations listed above, an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "flipping" the well location. A mineral material permit will be obtained from the BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "flipping" a well location is as follows:
 - 1. An adequate amount of topsoil/root zone (usually top 6 inches of soil) will be stripped from the proposed well location and stockpiled along the side of the well location as depicted on the *Exhibit 3 Well Site Diagram*.
 - 2. An area will be used within the proposed well site dimensions to excavate caliche.
 - 3. Subsoil will be removed and stockpiled within the surveyed well pad dimensions.
 - 4. Once caliche/surfacing mineral is found, the mineral material will be excavated and stock piled within the approved drilling pad dimensions.
 - 5. Subsoil will then be pushed back in the excavated hole and caliche will be spread accordingly across the entire well pad and road (if available).
 - Neither caliche, nor subsoil will be stockpiled outside of the well pad dimensions. Topsoil will be stockpiled along the south edge of the pad as depicted in *Exhibit 3 – Well Site Diagram.*
 - 7. In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. A BLM mineral material permit will be acquired prior to obtaining any mineral material from BLM pits or federal land.

Section 7 - Methods of Handling Waste

- A. Drill cuttings, mud, salts and other chemicals will be properly disposed of into steel tanks on site and hauled to a State approved commercial disposal facility.
- **B.** Garbage and trash produced during drilling and completion operations will be collected in a portable metal trash container and disposed of properly at a state approved disposal facility. All trash on and around the well site will be collected for disposal.
- **C.** Human waste and grey water will be properly contained and disposed of properly at a state approved disposal facility.
- **D.** After drilling and completion operations, trash, chemicals, salts, frac sand and other waste material will be removed and disposed of properly at a state approved disposal facility.

Section 8 - Ancillary Facilities

A. No ancillary facilities will be needed for the proposed project.

Section 9 - Well Site Layout

- A. See Exhibit 3 Well Site Diagram. The following information is presented:
 - 1. Reasonable scale
 - 2. Well pad dimensions/orientation
 - 3. Proposed access road
 - 4. Topsoil stockpile
- **B.** The proposed drilling pad was staked and surveyed by a professional surveyor. The attached survey plat of the well site depicts the drilling pad layout as staked.
- **C.** Topsoil salvaging
 - 1. Grass, forbs, and small woody vegetation such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and re-spread evenly on the site following topsoil re-spreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

AMEREDE

Section 10 - Plans for Final Surface Reclamation

Reclamation Objectives

- A. The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil, to control erosion, and to minimize habitat and forage loss, visual impact, and weed infestation during the life of the well or facilities.
- B. The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources, and wildlife habitats. To ensure that the long-term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning, and vegetative productivity.
- C. The BLM will be notified at least 3 days prior to the commencement of any reclamation procedures.

D. If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged. Ameredev will gain written permission from the BLM if more time is needed.

AMEREDI

E. Interim reclamation will be performed on the well site after the well is drilled and completed. Exhibit 3 – Well Site Diagram depicts the location and dimension of the planned interim reclamation for the well site.

Interim Reclamation Procedures (if performed)

- A. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production.
- **B.** In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. The areas planned for interim reclamation will then be contoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to reseeding will not be steeper than a 3:1 Ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be re-contoured to the above ratios during interim reclamation.
- D. Topsoil will be evenly re-spread and aggressively revegetated over the entire disturbed area not needed for all-weather operations, including cuts and fills. To seed the area, the proper BLM mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- **F.** The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Final Reclamation Procedures (well pad, buried pipelines, etc.)

- A. Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- **B.** All surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be re-contoured to the contour existing prior to initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to re-contouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. All topsoil remaining at the battery will be reseeded in place for the life of the battery.
- **D.** After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BLM seed mixture, free of noxious weeds. Final seedbed preparation will consist of

contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.

AMERED

- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- **F.** All unused equipment and structures including pipelines, electric line poles, tanks, etc. that serviced the well will be removed.
- **G.** All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not re-disturbed, and that erosion is controlled.

Section 11 - Surface Ownership

A. New Mexico State Land Office has surface ownership for proposed project area.

Section 12 - Other Information

- A. There are no dwellings within 1 mile of this location.
- B. An on-site meeting for Ameredev's Camellia Fed Com 26 36 21 093H well was held on March 29, 2018. Attendees included Jeff Robertson (BLM), Shane McNeely (Ameredev), and Ged Adams (Topographic).
- C. The well pad described in this document Camellia (CAM #5SX) will contain 5 wells that produce into an existing central tank battery (CTB) located northwest of the well pad. The wells share a common pad access road, and the five flowlines from the individual wells will share a common corridor that will terminate into the CTB. The wells that share the pad are:
 - Camellia Fed Com 26 36 21 083H, APD ID# 10400030726
 - Camellia Fed Com 26 36 21 093H, APD ID# 10400030569
 - Camellia Fed Com 26 36 21 104H, APD ID# 10400030326
 - Camellia Fed Com 26 36 21 114H, APD ID# 10400030038
 - Camellia Fed Com 26 36 21 124H, APD ID# 10400030103

Ameredev field representative: Zac Boyd, Operations Supervisor

Cell: (432) 385-6996

Email: zboyd@ameredev.com

Christie Hanna, Regulatory Coordinator Direct: (737) 300-4723 Email: channa@ameredev.com

Ameredev office contact:

Ameredev Operating, LLC Address: 5707 Southwest Parkway Building 1, Suite 275 Austin, Texas 78735

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT PWD Data Report 05/16/2019

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met? Other regulatory requirements attachment: Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Bond Info Data Report 05/16/2019

May 16, 2019

ATTN: Paul Kautz NMOCD 1625 N. French Drive Hobbs, NM 88240 (575) 393-6161 ext. 104

Paul,

Enclosed is a copy of the BLM approved APD COA packet for the Camellia Fed Com 26 36 21 093H well, for your review and approval. Please let me know if you have any questions.

Best regards,

Ch. an

Christie Hanna Regulatory Coordinator