Ib. Type of Well:	INTERIOR		ر ج ₂ 0	se Serial No.		,
1a. Type of work: Image: DRILL 1b. Type of Well: Image: Oil Well Image: Oil Well Image: Gas Well		REENTOBE	スシー		Expires: January 31, 2018	
1a. Type of work: Image: DRILL 1b. Type of Well: Image: Oil Well		-	<u> </u>	6. If Indian, Allotee	or Tribe	Name
	Other	YAM		7. If Unit or CA Ag		
	Single Zone	Multiple ZoR	ECE	8. Lease Name and		
		• • • • • • • • • • • • • • • • • • •	164	CAMELLIA FED C	ЮМ 26.	36 21 \$ 400
2. Name of Operator AMEREDEV OPERATING LLC (372224)				9. API Well No. 30-024	-4	
3a. Address 5707 Southwest Parkway, Building 1, Suite 275 Austin T.		No. (include area cod 4700	le)	10. Field and Pool, WC-025 G-08 S26	-	• • • • •
4. Location of Well (Report location clearly and in accordance				11. Sec., T. R. M. o	r Bik. and	i Survey or Area
At surface LOT M / 283 FSL / 310 FWL / LAT 32.022				SEC 21 / T26S / F	36E / N	MP
At proposed prod. zone LOT D / 50 FNL / 200 FWL / LAT 32.05041 / LONG -103.27796						
 Distance in miles and direction from nearest town or post o 5 miles 	ffice*	· · · · · · · · · · · · · · · · · · ·		12. County or Paris LEA	h	13. State NM
15. Distance from proposed [®] location to nearest property or lease line, ft.	16. No of a 320	acres in lease	17. Spaci 320	ing Unit dedicated to	his well	
(Also to nearest drig, unit line, if any) 18. Distance from proposed location*	19. Propos	d Depth 20. BLM/BIA Bond No. in file		1		
to nearest well, drilling, completed, applied for, on this lease, ft. 680 feet	1	at / 22619 feet	1	MB001478		
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 2923 feet	Show whether DF, KDB, RT, GL, etc.) 22. Approx 03/15/201		ate work will start* 23. Estimated duration 90 days		ion	
	24. Atta	chments				
The following, completed in accordance with the requirements (as applicable) 1. Well plat certified by a registered surveyor. 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest Syst SUPO must be filed with the appropriate Forest Service Office	tem Lands, the cc).	 4. Bond to cover th Item 20 above). 5. Operator certific 6. Such other site sp BLM. 	e operation	ny unless covered by a mation and/or plans a	n existing s may be	bond on file (see
25. Signature (Electronic Submission)		Name (Printed/Typed) Shristie Hanna / Ph: (737)300-472		23	Date 06/04/2	2018
Title Senior Engineering Technician						
Approved by (Signature) Name (Printed/Typed) Date						
		Christopher Walls / Ph: (575)234-2 Office		2234	05/15/	2019
		RLSBAD				
Application approval does not warrant or certify that the applic applicant to conduct operations thereon. Conditions of approval, if any, are attached.	ant holds legal	l or equitable title to the	hose rights	in the subject lease w	hich wo	ald entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, of the United States any false, fictitious or fraudulent statement					any depa	rtment or agency
5-1 Pec 05/20/19		ITH CONDIT	IONS	Kappel	2011	
(Continued on page 2))VED W	e: 05/15/2019		- Ros (In	<u>AU</u> structio	ons on page 2)

.

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionary drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

Approval Date: 05/15/2019

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: LOT M / 283 FSL / 310 FWL / TWSP: 26S / RANGE: 36E / SECTION: 21 / LAT: 32.022296 / LONG: -103.2775919 (TVD: 0 feet, MD: 0 feet) PPP: LOT D / 50 FNL / 200 FWL / TWSP: 26S / RANGE: 36E / SECTION: 16 / LAT: 32.05041 / LONG: -103.27796 (TVD: 11770 feet, MD: 22619 feet) BHL: LOT D / 50 FNL / 200 FWL / TWSP: 26S / RANGE: 36E / SECTION: 16 / LAT: 32.05041 / LONG: -103.27796 (TVD: 11770 feet, MD: 22619 feet)

BLM Point of Contact

Name: Priscilla Perez Title: Legal Instruments Examiner Phone: 5752345934 Email: pperez@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Approval Date: 05/15/2019

(Form 3160-3, page 4)

263621M APD Camellia Fed Com 26 36 21 091H 30015 NMNM023199 Ameredev 12-55 03192019 NMK_ContingencyPlan

Cap surface csg in a 13 3/8 17 1/2 **Design Factors** SURFACE inch hole. #/ft Body Segment Grade Coupling Collapse Weight Burst Length "A" 54.50 BUTT 7.85 1.27 1.12 108.728 J 55 1,995 "B" Õ 0 w/8.4#/g mud, 30min Sfc Csg Test psig: 1,040 Tail Cmt does not circ to sfc. Totals: 1,995 108,728 Comparison of Proposed to Minimum Required Cement Volumes 1 Stage Drilling Hole Annular 1 Stage 1 Stage Min Calc Min Dist Req'd Size Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE Hole-Cplg 17 1/2 0.6946 1440 8.60 1345 2M 1.56 Site station on material and the print D.D.2. (L.D.4) Loop yours? 95/8 casing inside the **Design Factors** INTERMEDIATE 133/8 #/ft Grade Coupling Body Segment Length Weight Collapse Burst "A" 40.00 **HCL 80** BUTT 4.57 0.82 200,520 1.73 5,013 "B" ۵ 0 w/8.4#/g mud, 30min Sfc Csg Test psig: Totals: 5,013 200,520 The cement volume(s) are intended to achieve a top of 0 1995 ft from surface or a overlap. 1 Stage Drilling Hole Annular 1 Stage 1 Stage Min Calc Req'd Min Dist Size Volume Cmt Sx **CuFt Cmt** Cu Ft Mud Wt MASP BOPE % Excess Hole-Cplg 12 1/4 0.3132 1687 0.81 look 🖌 0 4161 5M 9.40 3262 D V Tool(s): Σ%excess sum of sx **<u>Σ</u>CuFI</u>** 37 1357 3882 130 t by stage % : 315 Burst Frac Gradient(s) for Segment(s): A, B, C, D = 1.15, b, c, d All > 0.70, OK. 75/8 casing inside the 9 5/8 A Buoyant **Design Factors** INTERMEDIATE Segment #/ft Grade Coupling Joint Collapse Burst Length Weight "A" 29.70 **HCL 80** BUTT 2.13 1.1 1.36 11,147 331,066 "B" 0 0 w/8.4#/g mud, 30min Sfc Csg Test psig: 2,452 11,147 331,066 Totals: The cement volume(s) are intended to achieve a top of 0 ft from surface or a 5013 overlap. Hole Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc Rea'd Min Dist Size Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE Hole-Cplg 8 3/4 0.1005 683 1339 1172 14 10.50 3831 5M 0.56 Class 'H' tail cmt yld > 1.20 Tail cmt casing inside the PRODUCTION 51/27 5/8 **Design Factors** Collapse Segment #/ft Grade Coupling Joint Burst Length Weight "A" 20.00 P 110 BUTT 2.78 2.1 2.24 222,940 11,147 "B" 20.00 P 110 BUTT 8.80 1.84 2,24 11,421 228,420 Totals: 22,568 451,360 w/8.4#/g mud, 30min Sfc Csg Test pslg: 2,452 Biegment Design Factors would be: 52.57 1.99 if it were a vertical wellbore. MTD Max VTD Csg VD Curve KOP Dogleg^o Severity^o MEOC No Pilot Hole Planned 22568 11770 11770 11200 90 9 12206.7 The cement volume(s) are intended to achieve a top of 0 ft from surface or a 11147 overlap. Hole Annular 1 Stage 1 Stage Min 1 Stage Drilling Rea'd **Min Dist** Calc Size Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE Hole-Cpla 6 3/4 0.0835 2346 1994 0.49 1751 18 10.50 Class 'H' tail cmt vid > 1.20

Carlsbad Field Office

Approval Date: 05/15/2019

4/29/2019

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

	Ameredev Operating LLC
LEASE NO.:	NMNM023199
WELL NAME & NO.:	Camellia Fed Com 26 36 21 091H
SURFACE HOLE FOOTAGE:	283'/S & 310'/W
BOTTOM HOLE FOOTAGE	50'/N & 200'/W
LOCATION:	Section 21, T.26 S., R.36 E., NMPM
COUNTY:	Lea County, New Mexico

COA

H2S	Yes Yes	🙆 No	
Potash	• None	Secretary	C R-111-P
Cave/Karst Potential	C Low	C Medium	C High
Variance	C None	Flex Hose	C Other
Wellhead	C Conventional	Multibowl	C Both
Other	1 4 String Area	Capitan Reef	WIPP

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

- 1. The 13-3/8 inch surface casing shall be set at approximately 1925 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours

Page 1 of 9

after bringing cement to surface or 500 pounds compressive strength, whichever is greater.

- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
 - Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
 - Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- 2. The minimum required fill of cement behind the 9-5/8 inch 1st intermediate casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Excess calculates to 22% additional cement might be required.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:

Page 2 of 9

• Cement should tie-back at least 50 feet on top of Capitan Reef Top. Operator shall provide method of verification. Excess calculates to 17% additional cement might be required.

Alternate Casing Design:

- 3. The minimum required fill of cement behind the 7-5/8 inch 2nd intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Excess calculates to 14% - additional cement might be required.

In the case of lost circulation, operator has proposed to pump down 9 5/8" X 7 5/8" annulus. Operator must run a CBL from TD of the 7 5/8" casing to surface. Submit results to the BLM.

Pilot hole is required to have a plug at the bottom of the hole. If two plugs are set, the BLM is to be contacted (575-361-2822) prior to tag of bottom plug, which must be a minimum of 200' in length. Operator can set one plug from bottom of pilot hole to kick-off point and save the WOC time for tagging the first plug. Note plug tops on subsequent drilling report.

4. The minimum required fill of cement behind the 5-1/2 inch production casing is:

 Cement should tie-back at least 50 feet on top of Capitan Reef Top. Operator shall provide method of verification. Excess calculates to 18%
 - additional cement might be required.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working

Page 3 of 9

pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi.)

D. SPECIAL REQUIREMENT(S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be
- numbers. When the Communitization Agreement number is known, it shall also on the sign.

Page 4 of 9

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201. During office hours call (575) 627-0272. After office hours call (575)
 - Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log (one log per well pad is acceptable) run from TD to surface (horizontal well vertical portion of hole) shall

Page 5 of 9

be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> <u>hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

Page 6 of 9

- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.

Page 7 of 9

- a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

Page 8 of 9

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Waste Minimization Plan (WMP)

In the interest of resource development, submission of additional well gas capture development plan information is deferred but may be required by the BLM Authorized Officer at a later date.

NMK4282019

Page 9 of 9

263621M APD Camellia Fed Com 26 36 21 091H 30015 NMNM023199 Ameredev 12-55 03192019 NMK

Cap SURFACE 133/8 surface csg in a 171/2 inch hole. **Design Factors** Segment #/ft Grade Coupling Body Collapse Burst Length Weight "A" 68.00 BUTT 8,17 0.63 130,900 J 55 2:27 1,925 "B" 0 0 130,900 w/8.4#/g mud, 30min Sfc Csg Test psig: 1,500 Tail Cmt does not circ to sfc. 1,925 Totals: Comparison of Proposed to Minimum Required Cement Volumes 1 Stage Hole Annular 1 Stage 1 Stage Min Drilling Calc Reg'd Min Dist Mud Wt MASP BOPE Hole-Cplg Size Volume Cmt Sx **CuFt Cmt** Cu Ft % Excess 17 1/2 2083 1390 50 2988 3M 1.56 0.6946 1231 8.60 Burst Frac Gradient(s) for Segment(s) A, B = , b All > 0.70, OK. Alt Burst = 1.15 > 0.7 95/8 casing inside the 13 3/8 **Design Factors** INTERMEDIATE Grade Segment #/ft Coupling Body Collapse Burst Length Weight "A" 40.00 **HCL 80** 2.06 445,440 BUTT 0.78 0.9 11,136 "B" 0 0 w/8.4#/g mud, 30min Sfc Csg Test psig: Totals: 11.136 445.440 The cement volume(s) are intended to achieve a top of 0 ft from surface or a 1925 overlap. Hole Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc Reg'd Min Dist Size Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE Hole-Cplg 3549 12 1/4 0.3132 look 🖌 0 9,40 3831 5M 0.81 D V Tool(s): 5002 Σ%excess sum of sx Σ CuFt 2756 6210 75 t by stage % : 119 22 Class 'H' tail cmt yld > 1.20 Burst Frac Gradient(s) for Segment(s): A, B, C, D = 0.52, b, c, d Alt Burst = 1.50 > 1 Alt Collapse = 1.17 > 1.125 <0.70 a Problem!! Tail cmt PRODUCTION 51/2 casing inside the **Design Factors** 9 5/8 Collapse Segment #/ft Grade Coupling Body Burst Length Weight "A" 20.00 **HCP 110** BUTT 2.72 1.82 1.93 11,200 224,000 "B" 20.00 **HCP 110** BUTT 8.74 1.60 1.93 11,419 228,372 w/8.4#/g mud, 30min Sfc Csg Test psig: 2,464 Totals: 22,619 452.372 The cement volume(s) are intended to achieve a top of 0 ft from surface or a 11136 overlap. Hole Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc Reg'd Min Dist Cmt Sx CuFt Cmt BOPE Size Volume Cu Ft % Excess Mud Wt MASP Hole-Cplg 4829 8 1/2 0.2291 6471 5540 17 10.50 1.23 Class 'H' tail cmt vid > 1.20 Π Design F actors Segment #/ft Grade Coupling Joint Collapse Burst Length Weight "A" 0 0 "B" 0 0 0 w/8.4#/g mud, 30min Sfc Csg Test psig: Totals: 0 Cmt vol calc below includes this csg, TOC intended 0 ft from surface or a 22619 overlap. 1 Stage Drilling Hole Annular 1 Stage 1 Stage Min Calc Req'd **Min Dist** Cmt Sx Volume CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE Hole-Cplg Size 0 0 0

Carlsbad Field Office

Approval Date: 05/15/2019

4/29/2019

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

Camellia Federal Com 26 36 21 81H:

Surface Hole Location: 283' FSL & 290' FWL, Section 21, T. 26 S., R. 36 E. Bottom Hole Location: 200' FNL & 660' FWL, Section 16, T. 26 S., R. 36 E.

Camellia Federal Com 26 36 21 91H:

Surface Hole Location: 283' FSL & 310' FWL, Section 21, T. 26 S., R. 36 E. Bottom Hole Location: 200' FNL & 660' FWL, Section 16, T. 26 S., R. 36 E.

Camellia Federal Com 26 36 21 101H:

Surface Hole Location: 283' FSL & 230' FWL, Section 21, T. 26 S., R. 36 E. Bottom Hole Location: 200' FNL & 380' FWL, Section 16, T. 26 S., R. 36 E.

Camellia Federal Com 26 36 21 111H:

Surface Hole Location: 283' FSL & 250' FWL, Section 21, T. 26 S., R. 36 E. Bottom Hole Location: 200' FNL & 380' FWL, Section 16, T. 26 S., R. 36 E.

Camellia Federal Com 26 36 21 121H:

Surface Hole Location: 283' FSL & 270' FWL, Section 21, T. 26 S., R. 36 E. Bottom Hole Location: 200' FNL & 380' FWL, Section 16, T. 16 S., R. 36 E.

Page 1 of 22

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions

Permit Expiration

Archaeology, Paleontology, and Historical Sites

Noxious Weeds

Special Requirements

Lesser Prairie-Chicken Timing Stipulations Timing Limitation Exception Ground-level Abandoned Well Marker Hydrology

Construction

Notification Topsoil Closed Loop System Federal Mineral Material Pits Well Pads

Roads

Road Section Diagram

Production (Post Drilling) Well Structures & Facilities

Pipelines

Electric Lines

Interim Reclamation

Final Abandonment & Reclamation

Page 2 of 22

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

Page 3 of 22

V. SPECIAL REQUIREMENT(S)

Timing Limitation Stipulation / Condition of Approval for lesser prairie-chicken:

Oil and gas activities including 3-D geophysical exploration, and drilling will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Additionally, no new drilling will be allowed within up to 200 meters of leks known at the time of permitting. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 feet from the source of the noise.

<u>Timing Limitation Exceptions:</u>

The Carlsbad Field Office will publish an annual map of where the LPC timing and noise stipulations and conditions of approval (Limitations) will apply for the identified year (between March 1 and June 15) based on the latest survey information. The LPC Timing Area map will identify areas which are Habitat Areas (HA), Isolated Population Area (IPA), and Primary Population Area (PPA). The LPC Timing Area map will also have an area in red crosshatch. The red crosshatch area is the only area where an operator is required to submit a request for exception to the LPC Limitations. If an operator is operating outside the red crosshatch area, the LPC Limitations do not apply for that year and an exception to LPC Limitations is not required.

Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well. For more installation details, contact the Carlsbad Field Office at 575-234-5972.

Hydrology

- The entire well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The berm shall be maintained through the life of the well and after interim reclamation has been completed.
- Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion.
- Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 ft. from the source of the noise.

Page 4 of 22

- Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank.
- Automatic shut off, check values, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.
- A leak detection plan will be submitted to the BLM Carlsbad Field Office for approval prior to pipeline installation. The method could incorporate gauges to detect pressure drops, situating values and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.

Page 5 of 22

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Page 6 of 22

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

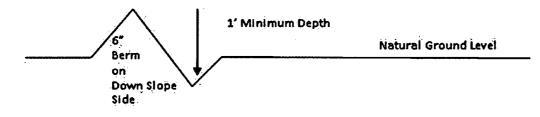
Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.


Drainage

Page 7 of 22

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

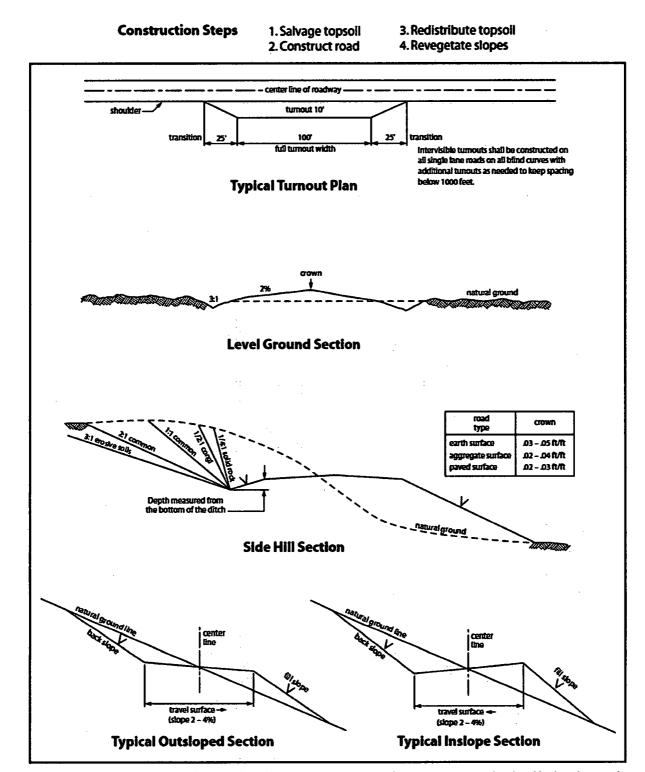
Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: 400' + 100' = 200' lead-off ditch interval 4%

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.


Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 8 of 22

Page 9 of 22

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 1/2 inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Page 10 of 22

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

B. PIPELINES

STANDARD STIPULATIONS FOR SURFACE INSTALLED PIPELINES

A copy of the application (Grant, Sundry Notice, APD) and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 <u>et seq</u>. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to activity of the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

Page 11 of 22

4. The holder shall be liable for damage or injury to the United States to the extent provided by 43 CFR Sec. 2883.1-4. The holder shall be held to a standard of strict liability for damage or injury to the United States resulting from pipe rupture, fire, or spills caused or substantially aggravated by any of the following within the right-of-way or permit area:

- a. Activities of the holder including, but not limited to construction, operation, maintenance, and termination of the facility.
- b. Activities of other parties including, but not limited to:
 - (1) Land clearing.
 - (2) Earth-disturbing and earth-moving work.
 - (3) Blasting.
 - (4) Vandalism and sabotage.

c. Acts of God.

The maximum limitation for such strict liability damages shall not exceed one million dollars (\$1,000,000) for any one event, and any liability in excess of such amount shall be determined by the ordinary rules of negligence of the jurisdiction in which the damage or injury occurred.

This section shall not impose strict liability for damage or injury resulting primarily from an act of war or from the negligent acts or omissions of the United States.

5. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil, salt water, or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil, salt water, or other pollutant, wherever found, shall be the responsibility of the holder, regardless of fault. Upon failure of the holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including, where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve the holder of any responsibility as provided herein.

6. All construction and maintenance activity will be confined to the authorized right-ofway width of <u>20</u> feet. If the pipeline route follows an existing road or buried pipeline right-of-way, the surface pipeline must be installed no farther than 10 feet from the edge of the road or buried pipeline right-of-way. If existing surface pipelines prevent this distance, the proposed surface pipeline must be installed immediately adjacent to the outer surface pipeline. All construction and maintenance activity will be confined to existing roads or right-of-ways.

7. No blading or clearing of any vegetation will be allowed unless approved in writing by the Authorized Officer.

Page 12 of 22

8. The holder shall install the pipeline on the surface in such a manner that will minimize suspension of the pipeline across low areas in the terrain. In hummocky of duney areas, the pipeline will be "snaked" around hummocks and dunes rather then suspended across these features.

9. The pipeline shall be buried with a minimum of <u>24</u> inches under all roads, "two-tracks," and trails. Burial of the pipe will continue for 20 feet on each side of each crossing. The condition of the road, upon completion of construction, shall be returned to at least its former state with no bumps or dips remaining in the road surface.

10. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

12. Excluding the pipe, all above-ground structures not subject to safety requirement shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be a color which simulates "Standard Environmental Colors" – Shale Green, Munsell Soil Color No. 5Y 4/2; designated by the Rocky Mountain Five State Interagency Committee.

13. The pipeline will be identified by signs at the point of origin and completion of the right-of-way and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. Signs will be maintained in a legible condition for the life of the pipeline.

14. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway.

15. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the authorized officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the authorized officer. An evaluation of the discovery will be made by the authorized officer to determine appropriate cultural or scientific values. The holder will

Page 13 of 22

be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the authorized officer after consulting with the holder.

16. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, powerline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

17. Surface pipelines must be less than or equal to 4 inches and a working pressure below 125 psi.

18. Special Stipulations:

- a. <u>Lesser Prairie-Chicken</u>: Oil and gas activities will not be allowed in lesser prairiechicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities and pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Normal vehicle use on existing roads will not be restricted.
- b. This authorization is subject to your Certificate of Participation and/or Certificate of Inclusion under the New Mexico Candidate Conservation Agreement. Because it involves surface disturbing activities covered under your Certificate, your Habitat Conservation Fund Account with the Center of Excellence for Hazardous Materials Management (CEHMM) will be debited according to Exhibit B Part 2 of the Certificate of Participation.

BURIED PIPELINE STIPULATIONS

A copy of the application (Grant, APD, or Sundry Notice) and attachments, including conditions of approval, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The Holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

Page 14 of 22

2. The Holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C.6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

4. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil or other pollutant, wherever found, shall be the responsibility of holder, regardless of fault. Upon failure of holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve holder of any responsibility as provided herein.

Page 15 of 22

5. All construction and maintenance activity will be confined to the authorized right-of-way.

6. The pipeline will be buried with a minimum cover of 36 inches between the top of the pipe and ground level.

7. The maximum allowable disturbance for construction in this right-of-way will be $\underline{30}$ feet:

- Blading of vegetation within the right-of-way will be allowed: maximum width of blading operations will not exceed **20** feet. The trench is included in this area. (*Blading is defined as the complete removal of brush and ground vegetation.*)
- Clearing of brush species within the right-of-way will be allowed: maximum width of clearing operations will not exceed <u>30</u> feet. The trench and bladed area are included in this area. (Clearing is defined as the removal of brush while leaving ground vegetation (grasses, weeds, etc.) intact. Clearing is best accomplished by holding the blade 4 to 6 inches above the ground surface.)
- The remaining area of the right-of-way (if any) shall only be disturbed by compressing the vegetation. (Compressing can be caused by vehicle tires, placement of equipment, etc.)

9. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

10. Vegetation, soil, and rocks left as a result of construction or maintenance activity will be randomly scattered on this right-of-way and will not be left in rows, piles, or berms, unless otherwise approved by the Authorized Officer. The entire right-of-way shall be recontoured to match the surrounding landscape. The backfilled soil shall be compacted and a 6 inch berm will be left over the ditch line to allow for settling back to grade.

11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

Page 16 of 22

12. The holder will reseed all disturbed areas. Seeding will be done according to the attached seeding requirements, using the following seed mix.

() seed mixture 1	() seed mixture 3
() seed mixture 2	() seed mixture 4
(X) seed mixture 2/LPC	() Aplomado Falcon Mixture

13. All above-ground structures not subject to safety requirements shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be color which simulates "Standard Environmental Colors" – Shale Green, Munsell Soil Color No. 5Y 4/2.

14. The pipeline will be identified by signs at the point of origin and completion of the right-ofway and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. All signs and information thereon will be posted in a permanent, conspicuous manner, and will be maintained in a legible condition for the life of the pipeline.

15. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder before maintenance begins. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway. As determined necessary during the life of the pipeline, the Authorized Officer may ask the holder to construct temporary deterrence structures.

16. Any cultural and/or paleontological resources (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

17. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes associated roads, pipeline corridor and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

18. <u>Escape Ramps</u> - The operator will construct and maintain pipeline/utility trenches [that are not otherwise fenced, screened, or netted] to prevent livestock, wildlife, and humans from becoming entrapped. At a minimum, the operator will construct and maintain escape ramps,

Page 17 of 22

ladders, or other methods of avian and terrestrial wildlife escape in the trenches according to the following criteria:

- a. Any trench left open for eight (8) hours or less is not required to have escape ramps; however, before the trench is backfilled, the contractor/operator shall inspect the trench for wildlife, remove all trapped wildlife, and release them at least 100 yards from the trench.
- b. For trenches left open for eight (8) hours or more, earthen escape ramps (built at no more than a 30 degree slope and spaced no more than 500 feet apart) shall be placed in the trench.

19. Special Stipulations:

Lesser Prairie-Chicken

Oil and gas activities will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, geophysical exploration other than 3-D operations, and pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 ft. from the source of the noise.

C. ELECTRIC LINES

STANDARD STIPULATIONS FOR OVERHEAD ELECTRIC DISTRIBUTION LINES

A copy of the grant and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 <u>et seq</u>. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b.

Page 18 of 22

A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, et seq. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, et seq.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

4. There will be no clearing or blading of the right-of-way unless otherwise agreed to in writing by the Authorized Officer.

5. Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all powerline structures placed on this right-of-way, should they be necessary to ensure the safety of large perching birds. Such modifications and/or additions shall be made by the holder without liability or expense to the United States.

Raptor deterrence will consist of but not limited to the following: triangle perch discouragers shall be placed on each side of the cross arms and a nonconductive perching deterrence shall be placed on all vertical poles that extend past the cross arms.

6. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

7. The BLM serial number assigned to this authorization shall be posted in a permanent, conspicuous manner where the power line crosses roads and at all serviced facilities. Numbers will be at least two inches high and will be affixed to the pole nearest the road crossing and at the facilities served.

8. Upon cancellation, relinquishment, or expiration of this grant, the holder shall comply

Page 19 of 22

with those abandonment procedures as prescribed by the Authorized Officer.

9. All surface structures (poles, lines, transformers, etc.) shall be removed within 180 days of abandonment, relinquishment, or termination of use of the serviced facility or facilities or within 180 days of abandonment, relinquishment, cancellation, or expiration of this grant, whichever comes first. This will not apply where the power line extends service to an active, adjoining facility or facilities.

10. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

11. Special Stipulations:

- For reclamation remove poles, lines, transformer, etc. and dispose of properly.
- Fill in any holes from the poles removed.

<u>Timing Limitation Stipulation/Condition of Approval for Lesser Prairie-Chicken:</u>

Oil and gas activities including 3-D geophysical exploration, and drilling will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, geophysical exploration other than 3-D operations, and pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Additionally, no new drilling will be allowed within up to 200 meters of leks known at the time of permitting. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 ft. from the source of the noise.

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

Page 20 of 22

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well.

Page 21 of 22

Seed Mixture for LPC Sand/Shinnery Sites

Holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be <u>no</u> primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed shall be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed shall be either certified or registered seed. The seed container shall be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). Holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. Seeding shall be repeated until a satisfactory stand is established as determined by the Authorized Officer. Evaluation of growth may not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species

<u>lb/acre</u>

5lbs/A

5lbs/A

3lbs/A

6lbs/A

2lbs/A

1lbs/A

Plains Bristlegrass Sand Bluestem Little Bluestem Big Bluestem Plains Coreopsis Sand Dropseed

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

Page 22 of 22

Approval Date: 05/15/2019

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie Hanna

Signed on: 03/29/2019

Operator Certification Data Report

05/16/2019

Title: Senior Engineering Technician

Street Address: 5707 Southwest Parkway, Building 1, Suite 275

State: TX

State: TX

City: Austin

y: Austin

Zip: 78735

Phone: (737)300-4723

Email address: channa@ameredev.com

Field Representative

Representative Name: Zachary Boyd

Street Address: 5707 Southwest Parkway, Building 1, Suite 275

City: Austin

Phone: (432)385-6996

Email address: zboyd@ameredev.com

Zip: 78735

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400030794

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Type: OIL WELL

Well Number: 091H Well Work Type: Drill

Submission Date: 06/04/2018

Application Data Report

Highlight at Allac raileoische Coch Pageni on Coc

Show Final Text

Section 1 - General

APD ID:	10400030794	Tie to previous NOS?	10400025384	Submission Date: 06/04/2018
BLM Office	: CARLSBAD	User: Christie Hanna	Tit	le: Senior Engineering Technician
Federal/Ind	lian APD: FED	Is the first lease penetr	ated for product	tion Federal or Indian? FED
Lease num	ber: NMNM023199	Lease Acres: 320		
Surface ac	cess agreement in place?	Allotted?	Reservation:	
Agreement	in place? NO	Federal or Indian agree	ment:	
Agreement	number:			
Agreement	name:			
Keep appli	cation confidential? NO			

Permitting Agent? NO

Operator letter of designation:

APD Operator: AMEREDEV OPERATING LLC

Zip: 78735

Operator Info

Operator Organization Name: AMEREDEV OPERATING LLC Operator Address: 5707 Southwest Parkway, Building 1, Suite 275

State: TX

Operator PO Box:

Operator City: Austin

Operator Phone: (737)300-4700

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Well in Master SUPO? NO

Well in Master Drilling Plan? NO

Well Name: CAMELLIA FED COM 26 36 21

Field/Pool or Exploratory? Field and Pool

Well Number: 091H

Master SUPO name:

Field Name: WC-025 G-08 S263620C

Master Drilling Plan name:

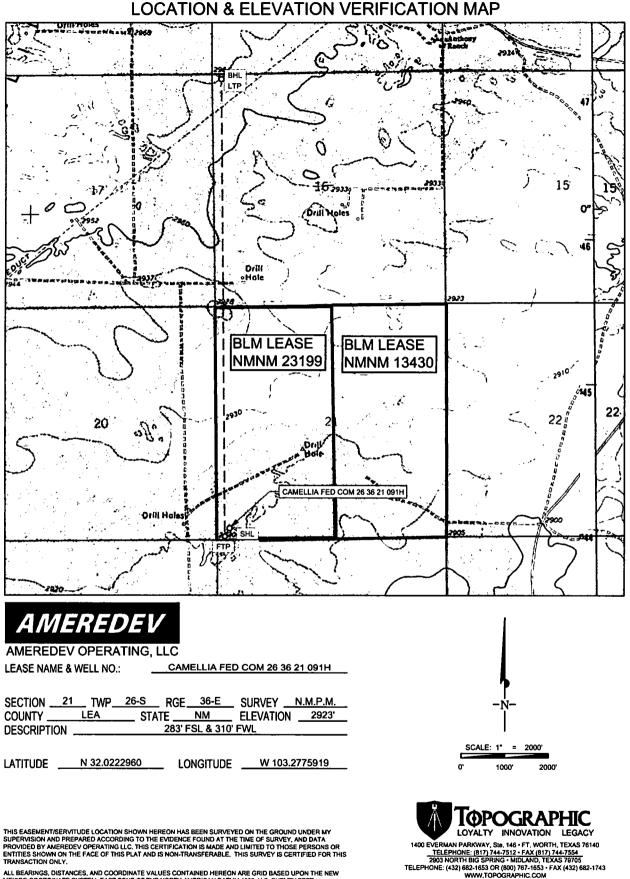
Master Development Plan name:

Well API Number:

Pool Name: LWR BONE SPRING

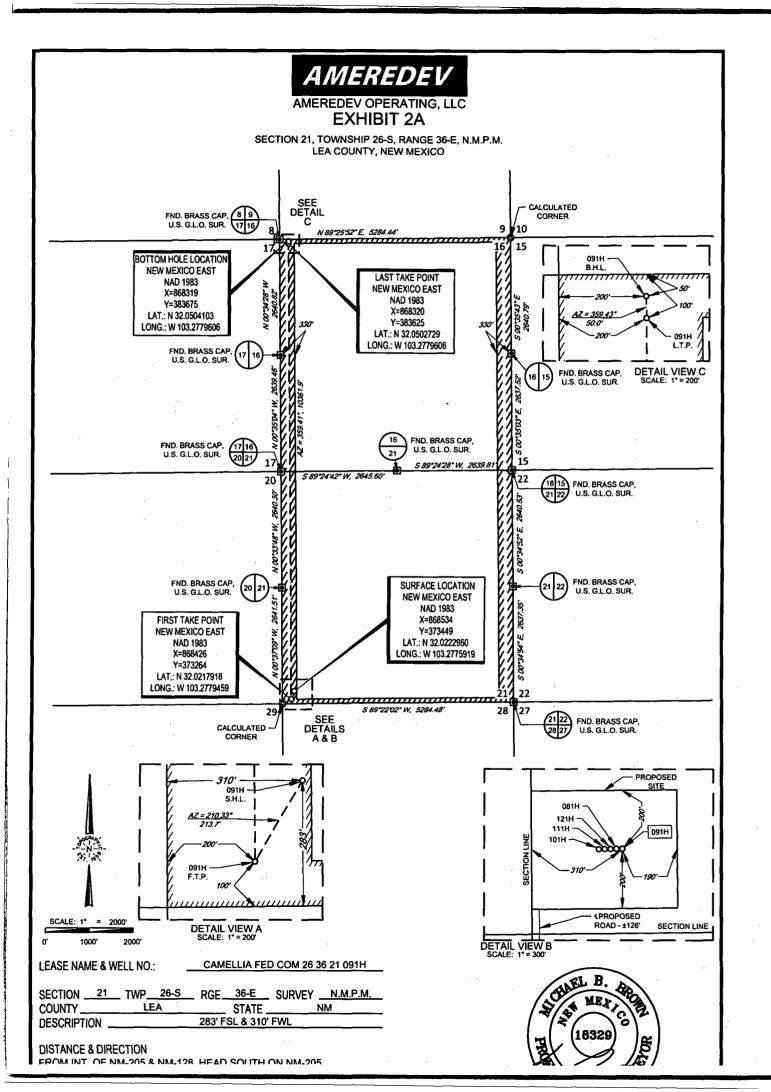
Is the proposed well in an area containing other mineral resources? USEABLE WATER

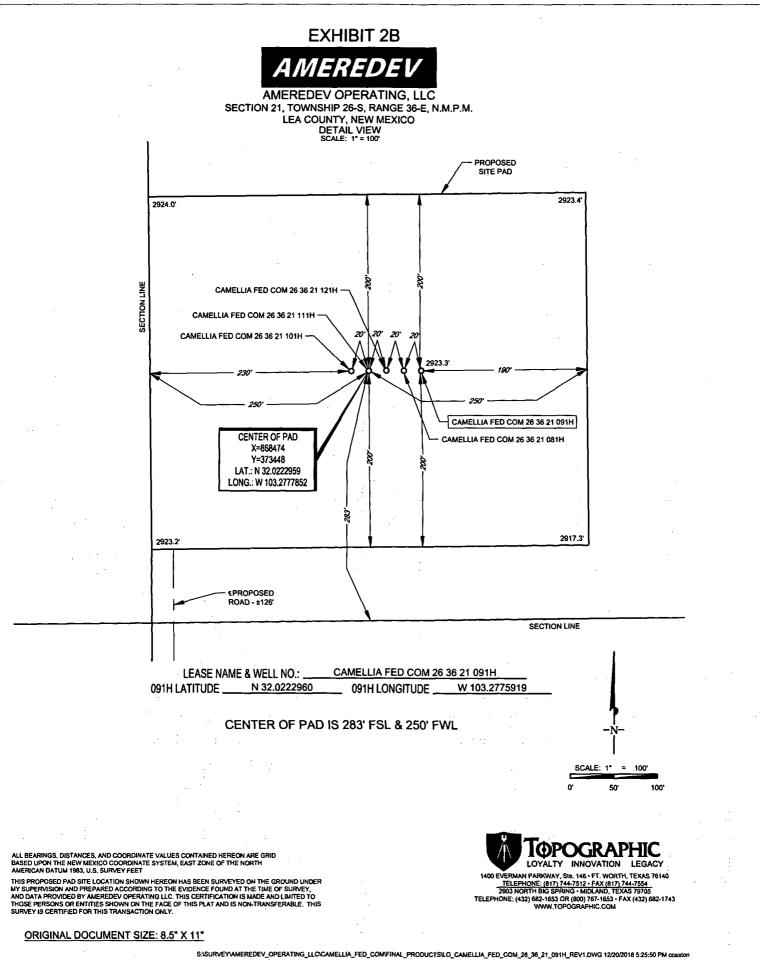
Page 1 of 3

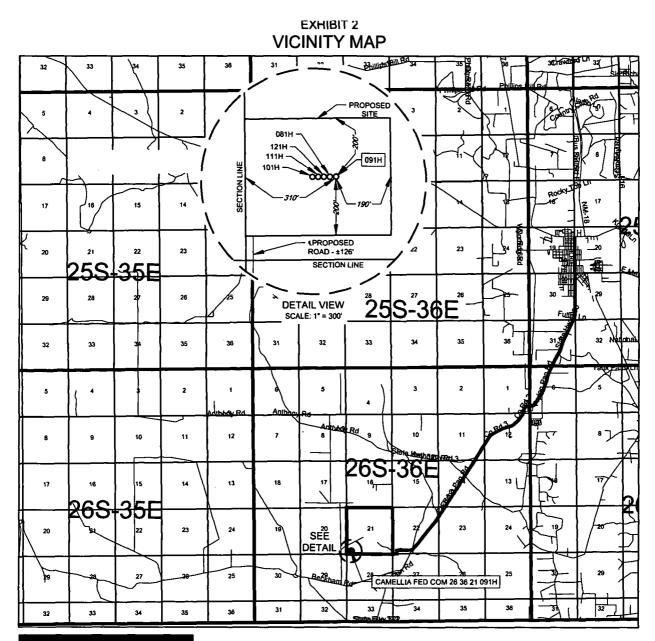

Оре	rator	Name	: AME	RED	EV OF	PERA	TING	LLC										
Wel	Nam	e: CA	MELL	IA FEI		M 26 3	36 21		v	Vell Numb	er: 091	H						
_								<u> </u>										
Dese	ribe c	other	miner	als:														
s th	e prop	osed	well i	n a H	elium	prod	uctio	n area?	N Use I	Existing W	ell Pac	3 7 NO	Ne	w :	surface o	listur	bance	?
Гуре	of W	ell Pa	d: MU	LTIPL	.e we	ELL			Multi CAM/	pie Well Pa AZE	ad Nar	ne:	Nu	Imp	ber: 1N			
Well	Class	: HOF	RIZON	ITAL						ber of Leg	s: 1							
Well	Work	Туре	: Drill			•												
Well	Туре:	OIL	VELL															
Desc	ribe V	Vell T	ype:															
Well	sub-T	ype:	INFILI	- .														
	ribe s	-	-															
	ance t									well: 680 F	T.	Dist	ance to	o le	ase line	: 283	FT .	
			-	-	-				ent: 320 A									
Well	plat:			_	_					LEASE_N	_			36.	pdf			
				_	_					02_SIG_20			•					
										2AB_201				n df				
				_	_	_				NITY_MAF 6_CAPTUR	_							
الملا	work			_	_	_	0_30	_21_091		tion: 90 DA	_	NN_201	90314	141	550.pui			
VCII	WOIK	Slart	Date.	03/13	2019		•		Dura	uon. 90 Dr	110							
	Sec	tion	3 - V	Vell	Loca	atior	i Ta l	ble]									
Surv	еу Туј	be: RE	ECTA	NGUL	AR				_					·				
Desc	ribe S	urvey	/ Туре):														
Datu	m: NA	.D83							Vertic	al Datum:	NAVD	88						
Surv	ey nui	nber:	1832	9														
	<u> </u>							act		:					L		[
		tor		ator				ot/Tre							mbe			
	NS-Foot	NS Indicator	EW-Foot	EW Indicator		e	ы	lot/Lc	pr	Longitude	Ĭţ	_	Jian .	Type	e Nu	ation		
	15	SIL	1-V	N.	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Long	County	State	Meridian	Lease Type	Lease Number	Elevation	Q	2
	ž	Z	ш	I W														
SHL Leg		Z FSL	ш 310	FWL		36E	21	Lot M	32.02229 6	- 103.2775	LEA		NEW MEXI	F		292	0	0

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 091H


	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	DM	TVD
KOP Leg #1	379	FNL	605	FWL	26S	36E	28	Aliquot NWN W	32.02179	- 103.2779 4	LEA		NEW MEXI CO	S	STATE	- 817 7	111 00	111 00
PPP Leg #1	50	FNL	200	FWL	26S	36E	16	Lot D	32.05041	- 103.2779 6	LEA	NEW MEXI CO	NEW MEXI CO	s	STATE	- 884 7	226 19	117 70
EXIT Leg #1	50	FNL	200	FWL	26S	36E	16	Lot D	32.05041	- 103.2779 6	LEA	NEW MEXI CO		S	STATE	- 884 7	226 19	117 70
BHL Leg #1	50	FNL	200	FWL	26S	36E	16	Lot D	32.05041	- 103.2779 6	LEA		NEW MEXI CO	S	STATE	- 884 7	226 19	117 70


Page 3 of 3



ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM, EAST ZONE OF THE NORTH AMERICAN DATUM 1983, U.S. SURVEY FEET.

SISURVEYAMEREDEV_OPERATING_LLCICAMELLIA_FED_COM/FINAL_PRODUCTS/LO_CAMELLIA_FED_COM_28_38_21_091H_REV1.DWG 12/20/2018 5:25:48 PM occaston

AMEREDEV

AMEREDEV OPERATING, LLC

LEASE NAME & WELL NO .: CAMELLIA FED COM 26 36 21 091H

SECTION	21 TM	/P	_ RGE_	<u>36-E</u>	SURVEY	<u>N.M.P.M.</u>	_
COUNTY		LEA		STATE .		NM	
DESCRIPTION			283' F	SL & 310'	FWL		_

DISTANCE & DIRECTION

FROM INT. OF NM-205 & NM-128, HEAD SOUTH ON NM-205 ±8.0 MILES, THENCE WEST (RIGHT) ON PROPOSED RD. ±1.1 MILES TO A POINT ±285 FEET SOUTHWEST OF THE LOCATION.

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM, EAST ZONE OF THE NORTH AMERICAN DATUM 1983, U.S. SURVEY FEET. SCALE: 1" = 10000' 0' 5000' 10000'

TOPOGRAPHIC COM 1400 EVERMAN PARKWAY, Sie. 146 • FT. WORTH, TEXAS 76140 TELEPHONE: (817) 744-7512 • FAX (817) 744-7551 2903 NORTH BIO SPRING • MIDLAND, TEXAS 76705 TELEPHONE: (432) 682-1653 00 (800) 767-1653 • FAX (432) 682-1743 WWW.TOPOGRAPHIC.COM

SISURVEYAMEREDEV_OPERATING_LLCICAMELLIA_FED_COMFINAL_PRODUCTS/LO_CAMELLIA_FED_COM_26_38_21_091H_REV1.DWG 12/20/2018 5:25:49 PM cceston

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Submission Date: 06/04/2018

ig neero Escitu Mova Hesperia Aria aria anad

يو الم

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 091H Well Work Type: Drill

Show Final Text

05/16/2019

Drilling Plan Data Report

Well Type: OIL WELL

APD ID: 10400030794

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing
1	RUSTLER ANHYDRITE	2923	1876	1876	ANHYDRITE	NONE	No
2	SALADO	699	2224	2224	SALT	NONE	No
3	TANSILL	-283	3206	3206	LIMESTONE	NONE	No
4	CAPITAN REEF	-698	3621	3621	LIMESTONE	USEABLE WATER	No
5	LAMAR	-2029	4952	4952	LIMESTONE	NONE	No
6	BELL CANYON	-2163	5086	5086	SANDSTONE	NATURAL GAS,OIL	No
7	BRUSHY CANYON	-4182	7105	7105	SANDSTONE	NATURAL GAS,OIL	No
8	BONE SPRING LIME	-7075	8129	8129	LIMESTONE	NONE	No
9	BONE SPRING 1ST	-6708	9631	9631	SANDSTONE	NATURAL GAS,OIL	No
10	BONE SPRING 2ND	-7352	10275	10275	SANDSTONE	NATURAL GAS,OIL	No
11	BONE SPRING 3RD	-7883	10806	10806	LIMESTONE	NATURAL GAS,OIL	No
12	BONE SPRING 3RD	-8599	11522	11522	SANDSTONE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI): 10M

Rating Depth: 15000

Equipment: 10M BOPE SYSTEM WILL BE USED AFTER THE SURFACE CASING IS SET. A KELLY COCK WILL BE KEPT IN THE DRILL STRING AT ALL TIMES. A FULL OPENING DRILL PIPE STABBING VALVE WITH PROPER DRILL PIPE CONNECTIONS WILL BE ON THE RIG FLOOR AT ALL TIMES. **Requesting Variance?** YES

Variance request: Co-Flex Choke Line, 5M Annular Preventer

Testing Procedure: See attachment

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 091H

Choke Diagram Attachment:

10M_Choke_Manifold_REV_20190314143207.pdf

BOP Diagram Attachment:

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190314143224.pdf

5M_BOP_System_20190314143225.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190314143225.pdf

4_String_MB_Ameredev_Wellhead_Drawing_net_REV_20190314143236.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	2001	0	2001	2923		2001	J-55	• ,	OTHER - BTC			DRY		DRY	
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	11136	0	11136	2923		11136	HCL -80		OTHER - BTC			DRY		DRY	1
	PRODUCTI ON	8.5	5.5	NĘW	API	N	0	22618	0	11770	2923		22618	HCP -110		OTHER - BTC		•	DRY	I	DRY	Þ

Casing Attachments

Casing ID: 1

String Type:SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

13.375_68_J55_SEAH_20190329152052.pdf

Camellia_Fed_Com_26_36_21_091H___Wellbore_Diagram_and_CDA_20190329152105.pdf

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 091H

Casing Attachments

Casing ID: 2

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

9.625_40_SeAH80HC_4100_Collapse_20190314143736.pdf

Camellia_Fed_Com_26_36_21_091H___Wellbore_Diagram_and_CDA_20190329152149.pdf

Casing ID: 3 Inspection Document: String Type: PRODUCTION

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

5.5_20_P110HP_Eagle_SFH_20190314144430.pdf

 $Camellia_Fed_Com_26_36_21_091H__Wellbore_Diagram_and_CDA_20190329152221.pdf$

Section	Section 4 - Cement														
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives				
SURFACE	Lead		° 0	1615	1031	1.76	13.5	1815. - 28	50	CLASS C	Bentonite, Accelerator, Kolseal, Defoamer, Celloflake				
SURFACE	Tail		1615	2001	200	1.34	14.8	268	100	Class C	Salt				
INTERMEDIATE	Lead	5002	0	4152	684	2.47	11.9	1690. 63	25	Class C	Salt, Bentonite, Kolseal, Defoamer, Celloflake, Anti-Settling Expansion				

Page 3 of 6

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 091H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
											Additive
INTERMEDIATE	Tail	:	4152	5002	200	1.33	14.8	266	25	Class C	Retarder
INTERMEDIATE	Lead	5002	0	9880	1604	2.47	11.9	3963. 07	25	Class H	Bentonite, Salt, Kolseal, Defoamer, Celloflake, Retarder, Anti-Settling Expansion Additive
INTERMEDIATE	Tail		9880	1113 6	300	1.24	14.5	371.1	25	Class H	Salt, Bentonite, Retarder, Dispersant, Fluid Loss
PRODUCTION	Lead	:	0	2261 8	4829	1.34	14.2	6471. 31	25	Class H	Salt, Bentonite, Fluid Loss, Dispersant, Retarder, Defoamer

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary supplies (e.g. bentonite, cedar bark) for fluid control will be on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure, and pump rate.

	Circ	ulating Mediu	um Ta	able		ł						
Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity (CP)	Salinity (ppm)	Filtration (cc)		Additional Characteristics
0	2001	WATER-BASED MUD	8.4	8.6				.:			· .	•

Page 4 of 6

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 091H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
2001	1113 6	OTHER : Diesel Brine Emulsion	8.5	9.4							
1113 6	1177 0	OIL-BASED MUD	10.5	12.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5000

Anticipated Surface Pressure: 2410.6

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_20180604090020.pdf

Page 5 of 6

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 091H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Cam091_DR_20190314145918.pdf

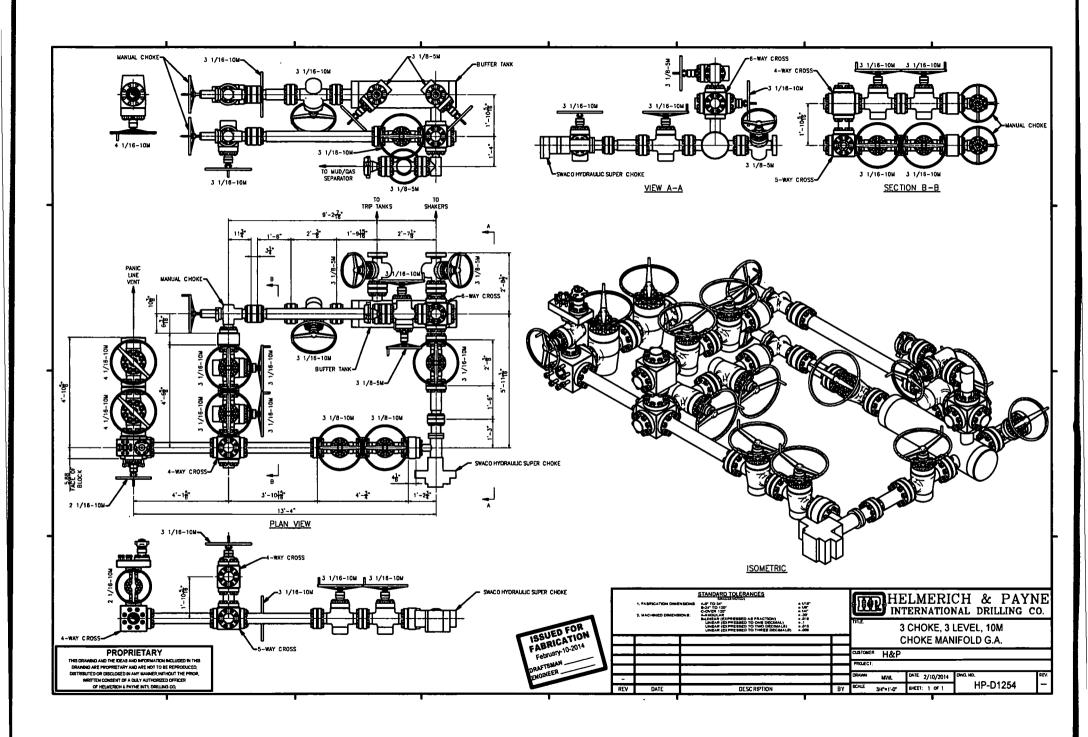
Cam091_LLR_20190314145918.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190314145939.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190314145939.pdf

Other proposed operations facets description:

4-STRING CONTINGENCY PLAN ATTACHED


Other proposed operations facets attachment:

CAPITAN_PROTECTION_CONTINGENCY_PLAN_20190314150004.pdf

Other Variance attachment:

R616___CoC_for_hoses_12_18_17_20190314150028.pdf Requested_Exceptions___3_String_Revised_01312019_20190314150029.pdf

Page 6 of 6

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

• 13-5/8" 5M Annular

AMEREDEV

- 13-5/8" 10M Upper Pipe Rams
 - 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Open Hole	13-5/8	Drilling Fluid	Blind Rams	
• .	for system design.	Kill line with minimu	at will allow full Opera m 2" ID will be availab	

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves
- Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

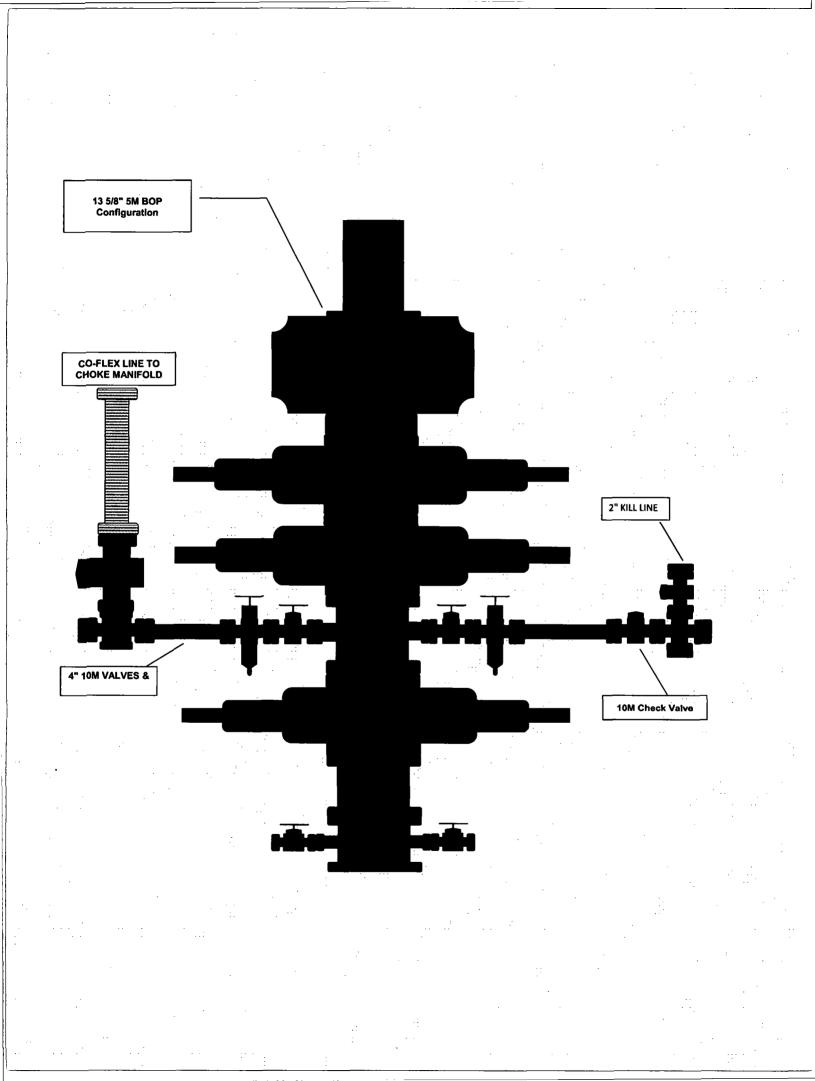
Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure


*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

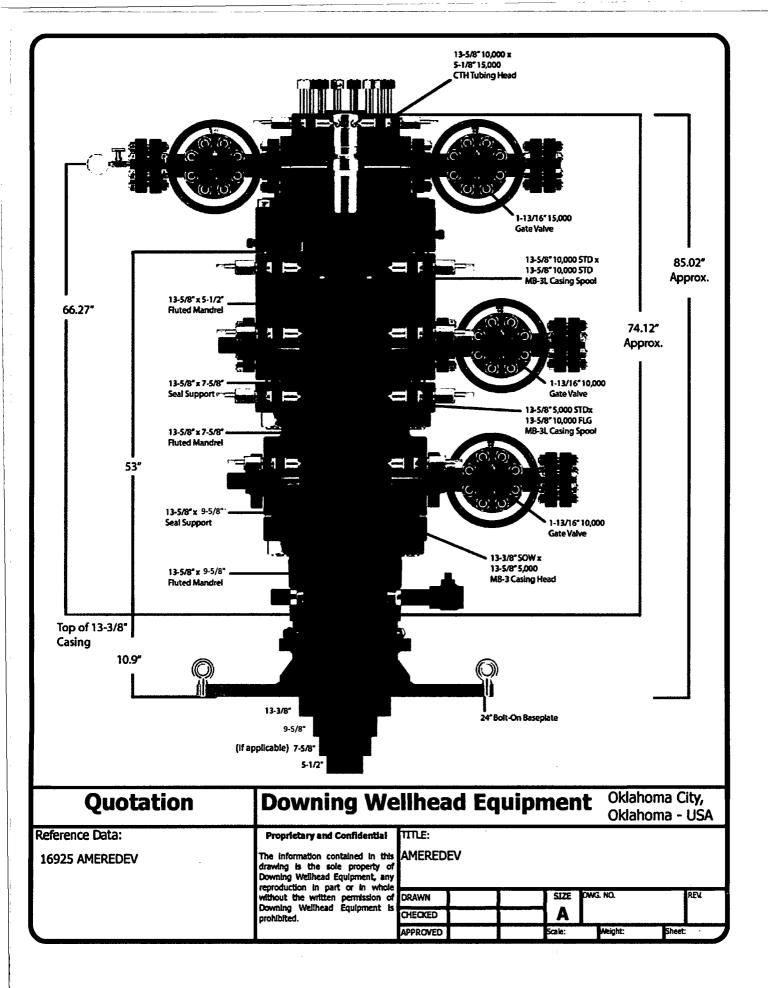
If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan

Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.


 Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).

- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

en e e e e

PERFORMANCE DATA

API BTC

13.375 in

68.00 lbs/ft

J-55

Technical Data Sheet

Tubular Parameters		•		· · · · · · · · · · · · · · · · · · ·	
Size	13.375	in	Minimum Yield	55,000	psi
Nominal Weight	68.00	lbs/ft	Minimum Tensile	75,000	psi
Grade	J-55		Yield Load	1,069,000	íbs
PE Weight	66.10	lbs/ft	Tensile Load	1,458,000	lbs
Wall Thickness	0.480	in	Min. Internal Yield Pressure	3,500	psi
Nominal ID	12.415	in	Collapse Pressure	1,950	psi
Drift Diameter	12.259	in		1	
Nom. Pipe Body Area	19.445	in²			
·	•	•			
Connection Parameters					
Connection OD	14.375	in	· · · · · · · · · · · · · · · · · · ·		
Coupling Length	10.625	in			·. ·
Threads Per Inch	5.000	in			
Standoff Thread Turns	1.000	· · ·			
Make-Up Loss	4.513	in	• •		
Yield Load In Tension		lbs			
Min. Internal Yield Pressure	3.500	osi		· · · ·	

Printed on: February-13-2015

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

AMEREDEV

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 091H	Co. Well ID:	XXXXXX
SHL:	Sec. 21 26S-36E 283' FSL & 310' FWL	AFE No.:	xxxx-xxx
BHL:	Sec. 16 26S-36E 50' FNL & 200' FWL	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	2,923'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Third Bone Spring
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	11,770'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	22,618'
Xmas Tree:	2-9/16" 10M	Ria:	TBD KB: 27'
Tubina:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size		Formation Tops		Logs	Cemen	t	Mud Weight
17.5"		Rustler	1,876'		1,231 Sacks TOC 0'	100% Excess	8.4-8.6 ppg WBM
		13.375" 68# J-55 BTC	2,001'		1,23 TOC	100	8.2
		Salado	2,224'	· .			
		Tansill	3,206'				
		Capitan Reef	3,221'		6	SS	
		Lamar	4,952'	·	884 Sacks TOC 0'	50% Excess	L 8.5 - 9.4 ppg Diesel Brine Emulsion
		DV Tool	5,002'		884 Sat TOC 0'	50%	ine E
12.25"		Bell Canyon	5,086'				sel Bri
		Brushy Canyon	7,105'				g Die
		Bone Spring Lime	8,129'				9.4 pp
		First Bone Spring	9,631'				8.5 -
		Second Bone Spring	10,275'		sks	SS	
		Third Bone Spring Upper	10,806'	1,723 Sacks TOC 0'		50% Excess	
		9.625" 40# L-80HC BTC	11,136'		1,723 S TOC 0'	50%	
8.5"		Third Bone Spring	11,522'				_
12° Build		· :					10.5 - 12.5 ppg OBM
@ 11,136' MD	: [<u> </u>	·····					.5 pp(
thru	5.5"	20# P-110CYHP BTC	22,618'	1	sks	SSS	- 12.
12,207' MD	Target Third	Bone Spring 11770 TVD // 2	2618 MD	.	4,829 Sacks TOC 0'	Excess	10.5
·					4,829 S TOC 0	25%	· · ·

Casing Design and Safety Factor Check

Casing Specifications							
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling	
Surface	17.5	2,001'	13.375	68	J-55	BTC	
Intermediate	12.25	11,136'	9.625	40	HCL-80	BTC	
Prod Segment A	8.5	11,136'	5.5	20	CYHP-110	BTC	
Prod Segment B	8.5	22,618'	5.5	20	CYHP-110	BTC	

	Check Surface Casing						
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
14.375	1,069	915	4,100	3,450			
	S	afety Facto	ors				
1.56	7.86	6.72	4.59	0.63			
	Check I	ntermedia	te Casing				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
7.625	940	558	6700	9460			
Safety Factors							
2.31	2.11	2.15	1.23	1.24			
	Check Prod Casing, Segment A						
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
5.777	728	655	12780	14360			
	S	afety Facto	ors				
1.36	3.09	2.78	1.77	1.88			
	Check Pro	od Casing,	Segment B	1			
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
5.777	728	655	12780	14360			
	S	afety Facto	ors				
1.36	57.41	51.66	1.67	1.88			

SěAH

40#

SEAH-80 HIGH COLLAPSE

Dimensions (Nominal)

9.625"

Outside Diameter 9.625 in. Wall 0.395 in. **Inside Diameter** 8.835 in. Drift 8.750 in. Weight, T&C 40.000 lbs./ft. Weight, PE 38.970 lbs./ft. **Performance Properties** Collapse 4100 psi **Internal Yield Pressure at Minimum Yield** PE 5750 psi LTC 5750 psi BTC 5750 psi Yield Strength, Pipe Body 916 1000 lbs. **Joint Strength** LTC 717 1000 lbs. 915 BTC 1000 lbs.

<u>.395"</u>

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

(SEAH-80 IS A NON HEAT TREATED PRODUCT)

AMEREDEV

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 091H	Co. Well ID:	XXXXXX
SHL:	Sec. 21 26S-36E 283' FSL & 310' FWL	AFE No.:	XXXX-XXX
BHL:	Sec. 16 26S-36E 50' FNL & 200' FWL	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	2,923'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Third Bone Spring
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	11,770'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	22,618'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB: 27'
Tubina:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

-								
Hole Size			Formation Tops		Loge	Cemer	nt	Mud Weight
17.5"			Rustler	1,876'		1,231 Sacks TOC 0'	100% Excess	8.4-8.6 ppg WBM
			13.375" 68# J-55 BTC	2,001'		1 <u>1</u>	100	ά
			Salado	2,224'				
			Tansill	3,206'				
			Capitan Reef	3,221'	,	S	ess	· 5
			Lamar	4,952'		884 Sacks TOC 0'	50% Excess	mulsi
			DV Tool	5,002'		10 10	50%	Le L
12.25"			Bell Canyon	5,086'				8.5 - 9.4 ppg Diesel Brine Emulsion
			Brushy Canyon	7,105'				pg Die
			Bone Spring Lime	8,129'				9.4 p
			First Bone Spring	9,631'				8.5 -
			Second Bone Spring	10,275'		cks	SSS	
:			Third Bone Spring Upper	10,806'		1,723 Sacks TOC 0'	50% Excess	
			9.625" 40# L-80HC BTC	11,136'		1,7	50%	
8.5"			Third Bone Spring	11,522'				-
12° Buik	1 t							10.5 - 12.5 ppg OBM
@								5dd g
11,136' M		L	20# P-110CYHP BTC	22,618'		s	ş	12.5
12,207' M	D Та		Bone Spring 11770 TVD // 22			Sach	xces	0.5 -
						4,829 Sacks TOC 0'	25% Excess	-
L			<u> </u>			<u>4 H</u>	25	

Casing Design and Safety Factor Check

Casing Specifications							
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling	
Surface	17.5	2,001'	13.375	68	J-55	BTC	
Intermediate	12.25	11,136'	9.625	40	HCL-80	BTC	
Prod Segment A	8.5	11,136'	5.5	20	CYHP-110	BTC	
Prod Segment B	8.5	22,618'	5.5	20 `	CYHP-110	BTC	

	Check Surface Casing						
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
14.375	1,069	915	4,100	3,450			
	S	afety Facto	ors				
1.56	7.86	6.72	4.59	0.63			
	Check I	ntermedia	te Casing				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
7.625	940	558	6700	9460			
Safety Factors							
2.31	2.11	2.15	1.23	1.24			
	Check Prod Casing, Segment A						
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
5.777	728	655	12780	14360			
	5	afety Facto	ors				
1.36	3.09	2.78	1.77	1.88			
	Check Pro	od Casing,	Segment B				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
5.777	728	655	12780	14360			
	S	afety Facto	ors				
1.36	57.41	51.66	1.67	1.88			

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

· · · · · · · · · · · · · · · · · · ·	PIPE	CONNECTION	
AECHANICAL PROPERTIES			
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
DIMENSIONS			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
ECTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
ERFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000	: '	lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

1) Other than proprietary collapse and connection values, performance properties have been calculated using standard

equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.

3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.

4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.

6) Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application. Manuel USS Product Data Sheet 2017 rev25 (April)

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064 1-877-893-9461 connections@uss.com www.usstubular.com

Wellbore Schematic

Well:	Camellia Fed Com 26-36-21 091H	Co. Well ID:	xxxxxx
SHL:	Sec. 21 26S-36E 283' FSL & 310' FWL	AFE No.:	XXXX-XXX
BHL:	Sec. 16 26S-36E 50' FNL & 200' FWL	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	2,923'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Third Bone Spring
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	11,770'
•	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	22,618'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB : 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size Formation Tops Logs Cement 17.5" Rustler 1,876' \$\$2000 \circles \$\$20000 \circles \$\$2000 \circles \$\$20000 \circles \$\$2000 \circles \$\$	Mud Weight 6dd 9.8-7.8 MBM
Salado 2,224'	8.4-8.6 ppg WBM
Salado 2,224'	œ
Capitan Reef 3,221'	5
Lamar 4,952' 5,002' 88 F 50	mulsic
Lamar 4,952' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ш ц
12.25" Bell Canyon 5,086'	8.5 - 9.4 ppg Diesel Brine Emulsion
Brushy Canyon 7,105'	og Die
Bone Spring Lime 8,129'	9.4 pt
First Bone Spring 9,631'	8.5 -
Second Bone Spring 10,275'	
Second Bone Spring 10,275 Second Bone Spring Third Bone Spring Upper 10,806' 00 0000000000000000000000000000000000	
9.625" 40# L-80HC BTC 11,136'	
8.5" Third Bone Spring 11,522'	5
12° Build	OBN
@ 11,136' MD	6dd g
	10.5 - 12.5 ppg OBM
12,207' MD Target Third Bone Spring 11770 TVD // 22618 MD	10.5
thru 12,207' MD Target Third Bone Spring 11770 TVD // 22618 MD Target 7 hird Bone Spring 11770 TVD // 22618 MD CONTRACTOR OF CONTRACTOR OF CONTRACTON	

Casing Design and Safety Factor Check

Casing Specifications							
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling	
Surface	17.5	2,001'	13.375	68	J-55	BTC	
Intermediate	12.25	11,136'	9.625	40	HCL-80	BTC	
Prod Segment A	8.5	11,136'	5.5	20	CYHP-110	BTC	
Prod Segment B	8.5	22,618'	5.5	20	CYHP-110	BTC	

Check Surface Casing								
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
14.375	1,069	915	4,100	3,450				
Safety Factors								
1.56	7.86	6.72	4.59	0.63				
Check Intermediate Casing								
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
7.625	940	558	6700	9460				
Safety Factors								
2.31	2.11	2.15	1.23	1.24				
Check Prod Casing, Segment A								
OD Cpig	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
Safety Factors								
1.36	3.09	2.78	1.77	1.88				
Check Prod Casing, Segment B								
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
Safety Factors								
1.36	57.41	51.66	1.67	1.88				

H₂S Drilling Operation Plan

- 1. <u>All Company and Contract personnel admitted on location must be trained by a qualified H₂S</u> safety instructor to the following:
 - a. Characteristics of H₂S
 - b. Physical effects and hazards
 - c. Principal and operation of H₂s detectors, warning system and briefing areas
 - d. Evacuation procedure, routes and first aid
 - e. Proper use of safety equipment and life support systems
 - f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- b. Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

3. H₂S Detection and Alarm Systems:

- a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- b. An audio alarm will be installed on the derrick floor and in the top doghouse.

4. Protective Equipment for Essential Personnel:

- a. Breathing Apparatus:
 - i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
 - ii. Two (SCBA) Units will be stored in safety trailer on location.
 - iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.

b. Auxiliary Rescue Equipment:

- i. Stretcher
- ii. 2 OSHA full body harnesses
- iii. 100 ft. 5/8" OSHA approved rope
- iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- b. Windsock on the rig floor should be high enough to be visible.

6. Communication:

- a. While working under mask scripting boards will be used for communication where applicable.
- b. Hand signals will be used when script boards are not applicable.

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. <u>Drill Stem Testing:</u> No Planned DST at this time.
- 8. Mud program:
 - a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

9. Metallurgy:

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
- **b.** Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H₂S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
- Have received training in the:
 - Detection of H₂S and
 - Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating LLC – Emergency Phone 737-300-4799								
Key Personnel:								
Name	Title	Office	Mobile					
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810					
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996					
Blake Estrada Construction Foreman 432-385-5831								

Artesia			
Ambulance	911		
State Police	575-746-2703		
City Police	575-746-2703		
Sheriff's Office	575-746-9888		
Fire Department	575-746-2701		
Local Emergency Planning Committee	575-746-2122		
New Mexico Oil Conservation Division	575-748-1283		
<u>Carlsbad</u>			
Ambulance	911		
State Police	575-885-3137		
City Police	575-885-2111		
Sheriff's Office	575-887-7551		
Fire Department	575-887-3798		
Local Emergency Planning Committee	575-887-6544		
US Bureau of Land Management	575-887-6544		
Santa Fe			
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600		
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126		
New Mexico State Emergency Operations Center	505-476-9635		
National			
National Emergency Response Center (Washington, D.C.)	800-424-8802		
Medical	· · ·		
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911		
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923		
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433		
.'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, NM	505-842-4949		

CAM/AZ CAM/AZ #1N Camellia 091H

Wellbore #1

Plan: Design #1

Standard Planning Report

16 January, 2019

AMEREDEV

Ameredev Operating, LLC

Planning Report

Database: Company: Project:	EDM5000 Ameredev Ope CAM/AZ	erating, LLC.		Local Co-o TVD Refere MD Refere	nce: nce:	erence:	KB @ KB @	amellia 091H 2950.0usft 2950.0usft		
Site: Well:	CAM/AZ #1N Camellia 091H			North Refe		all a de	Grid	ım Curvature		
Wellbore:	Wellbore #1			Survey Cal	culation Me	31000:	Minimu	im Curvature		
Design:	Design #1						· · · · ×			<u></u>
Project	CAM/AZ		······································	- 100 - 100	·					
Map System: Geo Datum: Map Zone:	US State Plane 1 North American D New Mexico East	atum 1983		System Datu	m:		Mean Se	a Level		
Site	CAM/AZ #1N			·····		· · · · · · · · · · · · · · · · · · ·				
Site Position:			Northing:	373,4	48.30 usft	Latitude	:			32° 1' 20.266 N
From:	Lat/Long		Easting:	868,4	93.74 usft	Longitu	de:		10	3° 16' 39.795 W
Position Uncertainty:	1	0.0 usft	Slot Radius:		13-3/16	Grid Co	nvergence:			0.56 '
Well	Camellia 091H									
Weil Position	+N/-S	0.4 usft	Northing:		373,448.6	i6 usft	Latitude:			32° 1' 20.266 N
	+E/-W	40.0 usft	Easting:		868,533.6	i9 usft	Longitude	:	10	3° 16' 39.331 W
Position Uncertainty		0.0 usft	Wellhead Ele	evation:			Ground Lo	evel:		2,923.0 usf
Wellbore	Wellbore #1					· · · · · · ·				
Magnetics	Model Name	e	Sample Date	Declinati (°)	on		Dip Angle (°)		Field Strengt (nT)	ih
	IGRF	2015	1/11/2019	· ·	6.63			59.90	47,691.08	341805
Design	Design #1									
Audit Notes:										
Version:			Phase:	PROTOTYPE	π	ie On Dept	h:	0.0		
Vertical Section:		-	rom (TVD)	+N/-S		E/-W		Direction		
			sft) .0	(usft) 0.0		usft) 0.0	<u> </u>	(°) 358.80		
Dien Current Test Des		Data 1/14/20	010							
Plan Survey Tool Pro Depth From (usft)	Depth To	Date 1/11/2 urvey (Wellbo		Tool Name		Rema	4-0			

1 0.0 22,618.6 Design #1 (Wellbore #1)

OWSG MWD - Standard

MWD

1/16/2019 9:11:42AM

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 091H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2950.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2950.0usft
Site:	CAM/AZ #1N	North Reference:	Grid
Well:	Camellia 091H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Measured			Vertical			Dogleg	Build	Turn		
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,300.0	6.00	156.00	2,299.5	-14.3	6.4	2.00	2.00	0.00	156.00	
6,724.8	6.00	156.00	6,700.0	-436.9	194.5	0.00	0.00	0.00	0.00	
7,024.8	0.00	0.00	6,999.5	-451.2	200.9	2.00	-2.00	0.00	180.00	
8,525.3	0.00	0.00	8,500.0	-451.2	200.9	0.00	0.00	0.00	0.00	
8,825.3	6.00	156.00	8,799.5	-465.5	207.3	2.00	2.00	0.00	156.00	
10,736.4	6.00	156.00	10,700.0	-648.0	288.5	0.00	0.00	0.00	0.00	
11,036.4	0.00	0.00	10,999.5	-662.4	294.9	2.00	-2.00	0.00	180.00	
11,136.9	0.00	0.00	11,100.0	-662.4	294.9	0.00	0.00	0.00	0.00	
11,458.2	38.35	270.48	11,397.8	-661.5	191.3	11.94	11.94	0.00	270.48	
12,206.7	90.00	359.42	11,770.0	-184.5	-107.9	11.94	6.90	11.88	89.16	Cam091 FTP
22,618.6	90.00	359.42	11,770.0	10,226.8	-214.2	0.00	0.00	0.00	0.00	Cam091 BHL

1/16/2019 9:11:42AM

AMEREDEV

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 091H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2950.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2950.0usft
Site:	CAM/AZ #1N	North Reference:	Grid
Well:	Camellia 091H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

t

	Measured Depth (usft)	Inclination	Azimuth	Vertical Depth (usft)	+N/-S	+E/-W	Vertical Section (usft)	Dogleg Rate (*/100usft)	Build Rate (°/100usft)	Tum Rate (°/100usft)
		(°)	(°)		(usft)	(usft)				······
	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
	100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
	200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
	300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
	400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
	500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
	600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
	700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
	800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
	900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1	1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
1	2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
	2,100.0	2.00	156.00	2,100.0	-1.6	0.7	-1.6	2.00	2.00	0.00
	2,200.0	4.00	156.00	2,199.8	-6.4	2.8	-6.4	2.00	2.00	0.00
	2,300.0	6.00	156.00	2,299.5	-14.3	6.4	-14.5	2.00	2.00	0.00
	2,400.0	6.00	156.00	2,398.9	-23.9	10.6	-24.1	0.00	0.00	0.00
	2,500.0	6.00	156.00	2,498.4	-33.4	14.9	-33.7	0.00	0.00	0.00
	2,600.0	6.00	156.00	2,597.8	-43.0	19.1	-43.4	0.00	0.00	0.00
	2,700.0	6.00	156.00	2,697.3	-52.5	23.4	-53.0	0.00	0.00	0.00
	2,800.0	6.00	156.00	2,796.7	-62.1	27.6	-62.6	0.00	0.00	0.00
	2,900.0	6.00	156.00	2,896.2	-71.6	31.9	-72.3	0.00	0.00	0.00
	3,000.0	6.00	156.00	2,995.6	-81.2	36.1	-81.9	0.00	0.00	0.00
	3,100.0	6.00	156.00	3,095.1	-90.7	40.4	-91.6	0.00	0.00	0.00
	3,200.0	6.00	156.00	3,194.5	-100.3	44.6	-101.2	0.00	0.00	0.00
	3,300.0	6.00	156.00	3,294.0	-109.8	48.9	-110.8	0.00	0.00	0.00
	3,400.0	6.00	156.00	3,393.4	-119.4	53.2	-120.5	0.00	0.00	0.00
	3,500.0	6.00	156.00	3,492.9	-128.9	57.4	-130.1	0.00	0.00	0.00
	3,600.0	6.00	156.00	3,592.3	-138.5	61.7	-139.7	0.00	0.00	0.00
	3,700.0	6.00	156.00	3,691.8	-148.0	65.9	-149.4	0.00	0.00	0.00
1	3,800.0	6.00	156.00	3,791.2	-157.6	70.2	-159.0	0.00	0.00	0.00
	3,900.0	6.00	156.00	3,890.7	-167.1	74.4	-168.6	0.00	0.00	0.00
	4,000.0	6.00	156.00	3,990.1	-176.7	78.7	-178.3	0.00	0.00	0.00
	4,100.0	6.00	156.00	4,089.6	-186.2	82.9	-187.9	0.00	0.00	0.00
	4,200.0	6.00	156.00	4,189.0	-195.8	87.2	-197.6	0.00	0.00	0.00
	4,300.0	6.00	156.00	4,288.5	-205.3	91.4	-207.2	0.00	0.00	0.00
	4,400.0	6.00	156.00	4,387.9	-214.9	95.7	-216.8	0.00	0.00	0.00
	4,500.0	6.00	156.00	4,487.4	-224.4	99.9	-226.5	0.00	0.00	0.00
	4,600.0	6.00	156.00	4,586.9	-234.0	104.2	-236.1	0.00	0.00	0.00
	4,700.0	6.00	156.00	4,686.3	-243.5	108.4	-245.7	0.00	0.00	0.00
	4,800.0	6.00	156.00	4,785.8	-253,1	112.7	-255.4	0.00	0.00	0.00
	4,900.0	6.00	156.00	4,885.2	-262.6	116.9	-265.0	0.00	0.00	0.00
	5,000.0	6.00	156.00	4,984.7	-272.2	121.2	-274.6	0.00	0.00	0.00
	5,100.0	6.00	156.00	5,084.1	-281.7	125.4	-284.3	0.00	0.00	0.00
	5,200.0	6.00	156.00	5,183.6	-291.3	129.7	-293.9	0.00	0.00	0.00
	5,300.0	6.00	156.00	5,283.0	-300.8	133.9	-303.6	0.00	0.00	0.00
L	0,000.0	0.00		0,200.0			000.0	0.00	0.00	

1/16/2019 9:11:42AM

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Cameilia 091H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2950.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2950.0usft
Site:	CAM/AZ #1N	North Reference:	Grid
Well:	Camellia 091H	Survey Calculation Method:	Minimum Curvature
Welibore:	Wellbore #1	1	
Design:	Design #1		• •

.

Planned Survey

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	5,400.0	6.00	156.00	5,382.5	-310.4	138.2	-313.2	0.00	0.00	0.00
	5,500.0	6.00	156.00	5,481.9	-319.9	142.4	-322.8	0.00	0.00	0.00
	5,600.0	6.00	156.00	5,581.4	-329.5	146.7	-332.5	0.00	0.00	0.00
	5,700.0	6.00	156.00	5,680.8	-339.0	150.9	-342.1	0.00	0.00	0.00
	5,800.0	6.00	156.00	5,780.3	-348.6	155.2	-351.7	0.00	0.00	0.00
	5,900.0	6.00	156.00	5,879.7	-358.1	159.4	-361.4	0.00	0.00	0.00
	6,000.0	6.00	156.00	5,979.2	-367.7	163.7	-371.0	0.00	0.00	0.00
i i	6,100.0	6.00	156.00	6,078.6	-377.2	167.9	-380.6	0.00	0.00	0.00
	6,200.0	6.00	156.00	6,178.1	-386.8	172.2	-390.3	0.00	0.00	0.00
	6,300.0	6.00	156.00	6,277.5	-396.3	176.4	-399.9	0.00	0.00	0.00
	6,400.0	6.00	156.00	6,377.0	-405.9	180.7	-409.5	0.00	0.00	0.00
	6,500.0	6.00	156.00	6,476.4	-415.4	184.9	-419.2	0.00	0.00	0.00
	6,600.0	6.00	156.00	6,575.9	-425.0	189.2	-428.8	0.00	0.00	0.00
	6,700.0	6.00	156.00	6,675.3	-434.5	193.5	-438.5	0.00	0.00	0.00
	6,724.8	6.00	156.00	6,700.0	-436.9	194,5	-440.8	0.00	0.00	0.00
	6,800.0	4.50	156.00	6,774.9	-443.2	197.3	-447.2	2.00	-2.00	0.00
	6,900.0	2.50	156.00	6,874.7	-448.7	199.8	-452.8	2.00	-2.00	0.00
	7,000.0	0.50	156.00	6,974.7	-451.1	200.8	-455.2	2.00	-2.00	0.00
		0.00	0.00	6,999.5	-451.2	200.8	-455.3	2.00	-2.00	0.00
	7,024.8	0.00	0.00	7,074.7	-451.2	200.9	-455.3	0.00	0.00	0.00
	7,100.0 7,200.0	0.00	0.00	7,074.7	-451.2	200.9	-455.3	0.00	0.00	0.00
	7,300.0	0.00	0.00	7,274.7	-451.2	200.9	-455.3	0.00	0.00	0.00
	7,400.0	0.00	0.00	7,374.7	-451.2	200.9	-455.3	0.00	0.00	0.00
	7,500.0	0.00	0.00	7,474.7	-451.2	200.9	-455.3	0.00	0.00	0.00
	7,600.0	0.00	0.00	7,574.7	-451.2	200.9	-455.3	0.00	0.00	0.00
	7,700.0	0.00	0.00	7,674.7	-451.2	200.9	-455.3	0.00	0.00	0.00
	7,800.0	0.00	0.00	7,774.7	-451.2	200.9	-455.3	0.00	0.00	0.00
	7,900.0	0.00	0.00	7,874.7	-451.2	200.9	-455.3	0.00	0.00	0.00
	8,000.0	0.00	0.00	7,974.7	-451.2	200.9	-455.3	0.00	0.00	0.00
	8,100.0	0.00	0.00	8,074.7	-451.2	200.9	-455.3	0.00	0.00	0.00
1	8,200.0	0.00	0.00	8,174.7	-451.2	200.9	-455.3	0.00	0.00	0.00
	8,300.0	0.00	0.00	8,274.7	-451.2	200.9	-455.3	0.00	0.00	0.00
	8,400.0	0.00	0.00	8,374.7	-451.2	200.9	-455.3	0.00	0.00	0.00
	8,500.0	0.00	0.00	8,474.7	-451.2	200.9	-455.3	0.00	0.00	0.00
	8,525.3	0.00	0.00	8,500.0	-451.2	200.9	-455.3	0.00	0.00	0.00
	8,600.0	1.49	156.00	8,574.7	-452.1	200.3	-456.2	2.00	2.00	0.00
						•				
	8,700.0	3.49	156.00	8,674.6	-456.1	203.1	-460.2	2.00	2.00	0.00
	8,800.0	5.49	156.00	8,774.2	-463.2	206.2	-467.4	2.00	2.00	0.00
	8,825.3	6.00	156.00	8,799.5	-465.5	207.3	-469.8	2.00	2.00	0.00
	8,900.0	6.00	156.00	8,873.7 9 073 2	-472.7 · -482.2	210.4	-477.0	0.00 0.00	0.00 0.00	0.00 0.00
1	9,000.0	6.00	156.00	8,973.2		214.7	-486.6			
	9,100.0	6.00	156.00	9,072.6	-491.8	218.9	-496.2	0.00	0.00	0.00
	9,200.0	6.00	156.00	9,172.1	-501.3	223.2	-505.9	0.00	0.00	0.00
	9,300.0	6.00	156.00	9,271.5	-510.9	227.5	-515.5	0.00	0.00	0.00
	9,400.0	6.00	156.00	9,371.0	-520.4	231.7	-525.2	0.00	0.00	0.00
	9,500.0	6.00	156.00	9,470.4	-530.0	236.0	-534.8	0.00	0.00	0.00
	9,600.0	6.00	156.00	9,569.9	-539.5	240.2	-544.4	0.00	0.00	0.00
	9,700.0	6.00	156,00	9,669.3	-549.1	244.5	-554.1	0.00	0.00	0.00
	9,800.0	6.00	156.00	9,768.8	-558.6	248.7	-563.7	0.00	0.00	0.00
	9,900.0	6.00	156.00	9,868.2	-568.2	253.0	-573.3	0.00	0.00	0.00
	10,000.0	6.00	156.00	9,967.7	-577.7	257.2	-583.0	0.00	0.00	0.00
	10,100.0	6.00	156.00	10,067.1	-587.3	261.5	-592.6	0.00	0.00	0.00
1	10,200.0	6.00	156.00	10,067.1	-587.3 -596.8	261.5	-592.6	0.00	0.00	0.00
				10,166.0				0.00	0.00	0.00
	10,300.0	6.00	156.00	10,200.0	-606.4	270.0	-611.9	0.00	0.00	0.00

1/16/2019 9:11:42AM

Planning Report

B-4-h	EDM5000	Land Or andiante Defenses	Mall Comollin 00414
Database:		Local Co-ordinate Reference:	Well Camellia 091H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2950.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2950.0usft
Site:	CAM/AZ #1N	North Reference:	Grid
Well:	Camellia 091H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (*/100usft)	Turn Rate (°/100usft)
	10,400.0	6.00	156.00	10,365.5	-615.9	274.2	-621.5	0.00	0.00	0.00
	10,500.0	6.00	156.00	10,464.9	-625.5	278.5	-631.2	0.00	0.00	0.00
	10,600.0	6.00	156.00	10,564.4	-635.0	282.7	-640.8	0.00	0.00	0.00
	10,700.0	6.00	156.00	10.663.8	-644.6	287.0	-650.4	0.00	0.00	0.00
	10,720.9	6.00	156.00	10,684.6	-646.5	287.9	-652.4	0.00	0.00	0.00
	Sec 28									
	10,736.4	6.00	156.00	10,700.0	-648.0	288.5	-653.9	0.00	0.00	0.00
ł	10,800.0	4.73	156.00	10,763.4	-653.5	290.9	-659.4	2.00	-2.00	0.00
	10,900.0	2.73	156.00	10,863.2	-659.4	293.6	-665.4	2.00	-2.00	0.00
	11,000.0	0.73	156.00	10,963.1	-662.2	294.8	-668.2	2.00	-2.00	0.00
	11,036.4	0.00	0.00	10,999.5	-662.4	294.9	-668.4	2.00	-2.00	0.00
1	11,100.0	0.00	0.00	11,063.1	-662.4	294.9	-668.4	0.00	0.00	0.00
	11,136.9	0.00	0.00	11,100.0	-662.4	294.9	-668.4	0.00	0.00	0.00
	11,200.0	7.53	270.48	11,162.9	-662.3	290.8	-668.3	11.94	11.94	0.00
	11,300.0	19.47	270.48	11,260.0	-662.1	267.5	-667.6	11.94	11.94	0.00
	11,400.0	31.40	270,48	11,350.1	-661.8	224.6	-666.3	11.94	11.94	0.00
	11,458.2	38.35	270.48	11,397.8	-661.5	191.3	-665.4	11.94	11.94	0,00
	11,500.0	38.69	278.48	11,430.6	-659.5	165.4	-662.8	11.94	0.83	19.13
	11,600.0	41.61	296.48	11,507.3	-640.0	104.6	-642.0	11.94	2.92	18.00
	11,700.0	46.96	311.80	11,579.0	-600.7	47.4	-601.5	11.94	5.35	15.33
	11,800.0	54.00	324.34	11,642.8	-543.2	-3.6	-543.0	11.94	7.04	12.53
	11,900.0	62.11	334.67	11,695.7	-470.2	-46.3	-469.1	11.94	8.12	10.34
	12,000.0	70.89	343.51	11,735.6	-384.6	-78.7	-382.9	11.94	8.77	8.84
	12,100.0	80.04	351.43	11,760.7	-290.3	-99.5	-288.1	11.94	9.15	7.92
	12,121.3	82.02	353.05	11,764.1	-269.4	-102.4	-267.2	11.94	9.29	7.59
	Sec 21									
	12,200.0	89.37	358.92	11,770.0	-191.2	-107.8	-188.9	11. 94	9.34	7.46
	12,206,7	90.00	359.42	11,770.0	-184.5	-107.9	-182.2	11. 94	9.36	7.40
	Cam091 FTP									
	12,300.0	90.00	359.42	11,770.0	-91.2	-108.9	-88.9	0.00	0.00	0.00
	12,400.0	90.00	359.42	11,770.0	8.8	-109.9	11.1	0.00	0.00	0.00
	12,500.0	90.00	359.42	11,770.0	108.8	-110.9	111.1	0.00	0.00	0.00
	12,600.0	90.00	359.42	11,770.0	208.8	-111.9	211.1	0.00	0.00	0.00
	12,700.0	90.00	359.42	11,770.0	308.8	-113.0	311.1	0.00	0.00	0.00
	12,800.0	90.00	359.42	11,770.0	408.7	-114.0	411.0	0.00	0.00	0.00
	12,900.0	90.00	359.42	11,770.0	508.7	-115.0	511.0	0.00	0.00	0.00
	13,000.0	90.00	359.42	11,770.0	608.7	-116.0	611.0	0.00	0.00	0.00
	13,100.0	90.00	359.42	11,770.0	708.7	-117.0	711.0	0.00	0.00	0.00
	13,200.0	90.00	359.42	11,770.0	808.7	-118.1	811.0	0.00	0.00	0.00
	13,300.0	90.00	359,42	11,770.0	908.7	-119.1	911.0	0.00	0.00	0.00
	13,400.0	90.00	359.42	11,770.0	1,008.7	-120.1	1,011.0	0.00	0.00	0.00
	13,500.0	90.00	359.42	11,770.0	1,108.7	-121.1	1,111.0	0.00	0.00	0.00
	13,600.0	90.00	359.42	11,770.0	1,208.7	-122.1	1,211.0	0.00	0.00	0.00
	13,700.0	90.00	359.42	11,770.0	1,308.7	-123.2	1,311.0	0.00	0.00	0.00
	13,800.0	90.00	359.42	11,770.0	1,408.7	-124.2	1,411.0	0.00	0.00	0.00
	13,900.0	90.00	359.42	11,770.0	1,508.7	-125.2	1,511.0	0.00	0.00	0.00
	14,000.0	90.00	359.42	11,770.0	1,608.7	-126.2	1,611.0	0.00	0.00	0.00
	14,100.0	90.00	359.42	11,770.0	1,708.7	-127.3	1,711.0	0.00	0.00	0.00
	14,200.0	90.00	359.42	11,770.0	1,808.7	-128.3	1,811.0	0.00	0.00	0.00
	14,300.0	90.00	359.42	11,770.0	1,908.7	-129.3	1,911.0	0.00	0.00	0.00
	14,400.0	90.00	359.42	11,770.0	2,008.7	-130.3	2,011.0	0.00	0.00	0.00
	14,500.0	90.00	359.42	11,770.0	2,108.7	-131.3	2,110.9	0.00	0.00	0.00
	14,600.0	90.00	359.42	11,770.0	2,208.7	-132.4	2,210.9	0.00	0.00	0.00

1/16/2019 9:11:42AM

COMPASS 5000.15 Build 90

1

AMEREDEV

Ameredev Operating, LLC

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 091H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2950.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2950.0usft
Site:	CAM/AZ #1N	North Reference:	Grid
Well:	Camellia 091H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Ł

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Tum Rate (°/100usft)
14,700.0	90.00	359.42	11,770.0	2,308.6	-133.4	2,310.9	0.00	0.00	0.00
14,800.0	90.00	359.42	11,770.0	2,408.6	-134.4	2,410.9	0.00	0.00	0.00
14,900.0	90.00	359.42	11,770.0	2,508.6	-135.4	2,510.9	0.00	0.00	0.00
15,000.0	90.00	359.42	11,770.0	2,608.6	-136.4	2,610.9	0.00	0.00	0.00
15,100.0	90.00	359.42	11,770.0	2,708.6	-137.5	2,710.9	0.00	0.00	0.00
15,200.0	90.00	359.42	11,770.0	2,808.6	-138.5	2,810.9	0.00	0.00	0.00
15,300.0	90.00	359.42	11,770.0	2,908.6	-139.5	2,910.9	0.00	0.00	0.00
15,400.0	90.00	359.42	11,770.0	3,008.6	-140.5	3,010.9	0.00	0.00	0.00
15,500.0	90.00	359.42	11,770.0	3,108.6	-141.5	3,110.9	0.00	0.00	0.00
15,600.0	90.00	359.42	11,770.0	3,208.6	-142.6	3,210.9	0.00	0.00	0.00
15,700.0	90.00	359.42	11,770.0	3,308.6	-143.6	3,310.9	0.00	0.00	0.00
15,800.0	90.00	359.42	11,770.0	3,408.6	-144.6	3,410.9	0.00	0.00	0.00
15,900.0	90.00	359.42	11,770.0	3,508.6	-145.6	3,510.9	0.00	0.00	0.00
16,000.0	90.00	359.42	11,770.0	3,608.6	-146.7	3,610.9	0.00	0.00	0.00
16,100.0	90.00	359.42	11,770.0	3,708.6	-147.7	3,710.9	0.00	0.00	0.00
16,200.0	90.00	359.42	11,770.0	3,808.6	-148.7	3,810.8	0.00	0.00	0.00
16,300.0	90.00	359.42	11,770.0	3,908.6	-149.7	3,910.8	0.00	0.00	0.00
16,400.0	90.00	359.42	11,770.0	4,008.6	-150.7	4,010.8	0.00	0.00	0.00
16,500.0	90.00	359.42	11,770.0	4,008.6	-150.7	4,010.8	0.00	0.00	0.00
16,600.0	90.00	359.42	11,770.0	4,208.6	-152.8	4,110.8	0.00	0.00	0.00
									0.00
16,700.0	90.00	359.42	11,770.0	4,308.5	-153.8	4,310.8	0.00	0.00	
16,800.0	90.00	359.42	11,770.0	4,408.5	-154.8	4,410.8	0.00	0.00	0.00
16,900.0	90.00	359.42	11,770.0	4,508.5	-155.8	4,510.8	0.00	0.00	0.00
17,000.0	90.00	359.42	11,770.0	4,608.5	-156.9	4,610.8	0.00	0.00	0.00
17,100.0	90.00	359.42	11,770.0	4,708.5	-157.9	4,710.8	0.00	0.00	0.00
17,200.0	90.00	359.42	11,77 0 .0	4,808.5	-158.9	4,810.8	0.00	0.00	0.00
17,300.0	90.00	359.42	11,770.0	4,908.5	-159.9	4,910.8	0.00	0.00	0.00
17,388.3	90.00	359.42	11,770.0	4,996.9	-160.8	4,999.1	0.00	0.00	0.00
Sec 16									
17,400.0	90.00	359.42	11,770.0	5,008.5	-160.9	5,010.8	0.00	0.00	0.00
17,500.0	90.00	359.42	11,770.0	5,108.5	-162.0	5,110.8	0.00	0.00	0.00
17,600.0	90.00	359.42	11,770.0	5,208.5	-163.0	5,210.8	0.00	0.00	0.00
17,700.0	90.00	359.42	11,770.0	5,308.5	-164.0	5,310.8	0.00	0.00	0.00
17,800.0	90.00	359.42	11,770.0	5,408.5	-165.0	5,410.8	0.00	0.00	0.00
17,900.0	90.00	359.42	11,770.0	5,508.5	-166.0	5,510.8	0.00	0.00	0.00
18,000.0	90.00	359.42	11,770.0	5,608.5	-167.1	5,610.7	0.00	0.00	0.00
18,100.0	90.00	359.42	11,770.0	5,608.5 5,708.5	-167.1	5,810.7	0.00	0.00	0.00
18,200.0	90.00	359.42	11,770.0	5,808.5	-169.1	5,810.7	0.00	0.00	0.00
18,300.0	90.00	359.42	11,770.0	5,908.5	-170.1	5,910.7	0.00	0.00	0.00
	90.00	359.42	11,770.0	6,008.5	-170.1	6,010.7	0.00	0.00	0.00
18,400.0	90.00	359.42		6,008.5	-171.2	6,010.7	0.00	0.00	0.00
18,500.0			11,770.0 11,770.0					0.00	0.00
18,600.0	90.00	359.42	11,770.0	6,208.4	-173.2	6,210.7	0.00 0.00		
18,700.0	90.00	359.42	11,770.0	6,308.4	-174.2	6,310.7		0.00	0.00
18,800.0	90.00	359.42	11,770.0	6,408.4	-175.2	6,410.7	0.00	0.00	0.00
18,900.0	90.00	359.42	11,770.0	6,508.4	-176.3	6,510.7	0.00	0.00	0.00
19,000.0	90.00	359.42	11,770.0	6,608.4	-177.3	6,610.7	0.00	0.00	0.00
19,100.0	90.00	359.42	11,770.0	6,708.4	-178.3	6,710.7	0.00	0.00	0.00
19,200.0	90.00	359.42	11,770.0	6,808.4	-179.3	6,810.7	0.00	0.00	0.00
19,300.0	90.00	359.42	11,770.0	6,908.4	-180.3	6,910.7	0.00	0.00	0.00
19,400.0	90.00	359.42	11,770.0	7,008.4	-181.4	7,010.7	0.00	0.00	0.00
19,500.0	90.00	359.42	11,770.0	7,108.4	-182.4	7,110.7	0.00	0.00	0.00
19,600.0	90.00	359,42	11,770.0	7,208.4	-183,4	7,210.7	0.00	0.00	0.00
	90.00	359.42							

1/18/2019 9:11:42AM

COMPASS 5000.15 Build 90

1

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Camellia 091H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 2950.0usft
Project:	CAM/AZ	MD Reference:	KB @ 2950.0usft
Site:	CAM/AZ #1N	North Reference:	Grid
Weil:	Camellia 091H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1	1 	

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
19,800.0	90.00	359.42	11,770.0	7,408.4	-185.4	7,410.6	0.00	0.00	0.00
19,900.0	90.00	359.42	11 ,770 .0	7,508.4	-186.5	7,510.6	0.00	0.00	0.00
20,000.0	90.00	359.42	11,770.0	7,608.4	-187.5	7,610.6	0.00	0.00	0.00
20,100.0	90.00	359.42	11,770.0	7,708.4	-188.5	7,710.6	0.00	0.00	0.00
20,200.0	90.00	359.42	11,770.0	7,808.4	-189.5	7,810.6	0.00	0.00	0.00
20,300.0	90.00	359.42	11,770.0	7,908.4	-190.6	7,910.6	0.00	0.00	0.00
20,400.0	90.00	359.42	11,770.0	8,008.4	-191.6	8,010.6	0.00	0.00	0.00
20,500.0	90.00	359.42	11,770.0	8,108.3	-192.6	8,110.6	0.00	0.00	0.00
20,600.0	90.00	359.42	11,770.0	8,208.3	-193.6	8,210.6	0.00	0.00	0.00
20,700.0	90.00	359.42	11,770.0	8,308.3	-194.6	8,310.6	0.00	0.00	0.00
20,800.0	90.00	359.42	11,770.0	8,408.3	-195.7	8,410.6	0.00	0.00	0.00
20,900.0	90.00	359.42	11,770.0	8,508.3	-196.7	8,510.6	0.00	0.00	0.00
21,000.0	90.00	359.42	11,770.0	8,608.3	-197.7	8,610.6	0.00	0.00	0.00
21,100.0	. 90.00	359.42	11,770.0	8,708.3	-198.7	8,710.6	0.00	0.00	0.00
21,200.0	90.00	359.42	11,770.0	8,808.3	-199.7	8,810.6	0.00	0.00	0.00
21,300.0	90.00	359,42	11,770.0	8,908.3	-200.8	8,910.6	0.00	0.00	0.00
21,400.0	90.00	359.42	11,770.0	9,008.3	-201.8	9,010.6	0.00	0.00	0.00
21,500.0	90.00	359.42	11,770.0	9,108.3	-202.8	9,110.5	0.00	0.00	0.00
21,600.0	90.00	359.42	11,770.0	9,208.3	-203.8	9,210.5	0.00	0.00	0.00
21,700.0	90.00	359.42	11,770.0	9,308.3	-204.8	9,310.5	0.00	0.00	0.00
21,800.0	90.00	359.42	11,770.0	9,408.3	-205.9	9,410.5	0.00	0.00	0.00
21,900.0	90.00	359.42	11,770.0	9,508.3	-206.9	9,510.5	0.00	0.00	0.00
22,000.0	90.00	359.42	11,770.0	9,608.3	-207.9	9,610.5	0.00	0.00	0.00
22,100.0	90.00	359.42	11,770.0	9,708.3	-208.9	9,710.5	0.00	0.00	0.00
22,200.0	90.00	359.42	11,770.0	9,808.3	-209.9	9,810.5	0.00	0.00	0.00
22,300.0	90.00	359.42	11,770.0	9,908.3	-211.0	9,910,5	0.00	0.00	0.00
22,400.0	90.00	359.42	11,770.0	10,008.2	-212.0	10,010.5	0.00	0.00	0.00
22,500.0	90.00	359.42	11,770.0	10,108.2	-213.0	10,110.5	0.00	0.00	0.00
22,568.6	90.00	359.42	11,770.0	10,176.8	-213.7	10,179.0	0.00	0.00	0.00
Cam091 LTP		••	•		-				
22,600.0	90.00	359.42	11,770.0	10,208.2	-214.0	10,210.5	0.00	0.00	0.00
22,618.6	90.00	359.42	11,770.0	10,226.8	-214.2	10,229.0	0.00	0.00	0.00
Cam091 BHL									

1/16/2019 9:11:42AM

Planning Report

Database:	EDM5000			······································	Local Co-o	rdinate Reference:	Well Came	ilia 091H			
Company:	Ameredev Op	erating, LLC			TVD Refere	nce:	: KB @ 295	KB @ 2950.0usft			
Project:	CAM/AZ				MD Referen	ice:	KB @ 295	0.0usft			
Site:	CAM/AZ #1N				North Refer	rence:	Grid				
Well:	Camellia 091	н			Survey Cal	culation Method:	Minimum C	Curvature			
Wellbore:	Wellbore #1										
Design:	Design #1			****	·						
Design Targets	• • • • • • • • • • • • • • • • • • • •				··· · ·						
Target Name											
 hit/miss target 	Dip Angle	Dip Dir.	TVD	+N/-S	+E/-W	Northing	Easting				
- Shape	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude		
Sec 28	0.00	0.00	10,235.0	-5,570.5	-254.7	367,878.13	868,279.00	32° 0' 25.171 N	103° 16' 42.920 W		
 plan misses target Polygon 	t center by 497	4.1usft at 10	720.9usft MI	D (10684.6 TV	/D, -646.5 N, 2	287.9 E)					
Point 1			10,235.0	0.0	0.0	367,878.13	868,279.00				
Point 2			10,235.0	5,283,8	-52.1	373,161,93	868,226,90				
Point 3			10,235.0	5,342.2	5,232.0	373,220,33	873,511.00				
Point 4			10,235.0	60.2	5,286.0	367,938.33	873,565.00				
Sec 21	0.00	0.00	11,766.0	-286.7	-306.8	373,161.95	868,226.87	32° 1' 17.458 N	103° 16' 42.927 W		
 plan misses target Polygon 	center by 205	.2usft at 121	21.3usft MD	(11764.1 TVE), -269.4 N, -1	02.4 E)					
Point 1			11,766.0	0.0	0.0	373,161.95	868,226.87				
Point 2	•		11,766.0	5,281.5	-54.5	378,443,45	868,172.37				
Point 3		• •	11,766.0	5,336.0	5,230.6	378,497,95	873,457.47				
Point 4			11,766.0	58.4	5,284.2	373,220.35	873,511.07				
Sec 16	0.00	0.00	11,766.0	4,994.8	-361.3	378,443.47	868,172.36	32° 2' 9.723 N	103° 16' 42.961 W		
 plan misses target Polygon 	center by 200	.6usft at 173	88.3usft MD	(11770.0 TVE	0, 4996.9 N, -1	60.8 E)					
Point 1			11,766.0	0.0	0.0	378,443.47	868,172.36				
Point 2		· · · ·	11.766.0	5.280.0	-53.4	383,723.47	868,118.96				
Point 3			11.766.0	5.332.5	5.230.8	383.775.97	873.403.16				
Point 4			11,766.0	54.4	5,285.1	378,497.87	873,457.46				
Cam091 FTP	0.00	0.00	11,770.0	-184.5	-107.9	373,264.16	868,425.77	32° 1' 18.450 N	103° 16' 40.605 W		
 plan hits target cer Point 	nter			• •							
Cam091 BHL - plan hits target cer - Point	0.00 nter	0.00	11,770.0	10,226.8	-214.2	383,675.45	868,319.47	32° 3' 1.477 N	103° 16' 40.658 W		
Cam091 LTP	0.00	0.00	11,770.0	10,176.8	-213.7	383,625.46	868,319.96	32° 3' 0.982 N	103° 16' 40.658 W		
 plan hits target cer Point 	nter		:								

1/16/2019 9:11:42AM

Page 9

CAM/AZ CAM/AZ #1N Camellia 091H Wellbore #1

Plan: Design #1

Lease Penetration Section Line Footages

16 January, 2019

Companys Ameredev Operating, LLC. Project: CAM/AZ Site: CAM/AZ #1N Wellbore: Camellia 091H Wellbore: Wellbore #1 Design: Design #1		Local Go-ordinata TVD Ratarance MD Ratarance North Ratarance Survey Calculatio Database:	KB @ 2950.0usft KB @ 2950.0usft Grid	-
Project CAM/AZ				
Map System: US State Plane 1983 Geo Datum: North American Datum 1983 Map Zone: New Mexico Eastern Zone		System Datum:	Mean Sea Level	
Site CAM/AZ #1N	· · · · · · · · · · · · · · · · · · ·			
Site Position: From: Lat/Long Position Uncertainty: 0.0 usft	Northing: Easting: Slot Radius:	373,448.30 usft 868,493.74 usft 13-3/16 ⁼	Latitude: Longitude: Grid Convergence:	32° 1' 20.266 N 103° 16' 39.795 W 0.56 °
Weili Camellia 091H			in a second second second second in a second in a second second second second second second second second secon	
Weil Position +N/-S 0.0 usft +E/-W 0.0 usft Position Uncertainty 0.0 usft	Northing: Easting: Wellhead Elevation:	373,448.66 usft 868,533.69 usft usft	Latitude: Longitude: Ground Level:	32° 1' 20.266 N 103° 16' 39.331 W 2,923.0 usft
Wellbore #1				
Magnotics Model Name Sample D IGRF2015 1/1	ග වයට්තවේගත ((^P) 1/2019 6.63	(9)	Strengftb ff) 91.08841804	
Design Design #1				
Audit Notes: Version: Phase:	PROTOTYPE The On Dept	h: 0.0		
Verileal Section: Depth From (IVD) (usit) 0.0	COMES CEMU (DEGH) (DEGH) 0.0 0.0	Direction (?) 358.80	······	· · · · · · · · · · · · ·
Survey Tool Program Date 1/11/2019				
(USII) (USII) To (USII) (USII) Survey (Welloon)	চিত্রে গিয়ান	Description		
0.0 22,618.6 Design #1 (Wellbore #1)	MWD	OWSG MWD - Standard		

1/16/2019 9:12:29AM

---- ----

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design:	Ameredev Operating CAM/AZ CAM/AZ #1N Camellia 091H Wellbore #1 Design #1	, LLC.				Local Co-ordin TVD Reference MD Reference: North Referenc Survey Calcula Database:	: e:	Well Camellia 091 KB @ 2950.0usft KB @ 2950.0usft Grid Minimum Curvatur EDM5000	
Planned Survey									
MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
	0.0 0.0	D 0.00	0.0	283,4	310.0	0.0	0.00	0.00	0.00
100	0.0 0.0	0.00	100.0	283.4	310.0	0.0	0.00	0.00	0.00
200	0.0 0.0	D 0.00	200.0	283.4	310.0	0.0	0.00	0.00	0.00
300	0.0 0.0	D 0.00	300.0	283.4	310.0	0.0	0.00	0.00	0.00
400	0.0 0.0	D 0.00	400.0	283.4	310.0	0.0	0.00	0.00	0.00
500	0.0 0.0	0.00	500.0	283.4	310.0	0.0	0.00	0.00	0.00
60	0.0 0.0	0.00	600.0	283.4	310.0	0.0	0.00	0.00	0.00
70	0.0 0.0	0.00	700.0	283.4	310.0	0.0	0.00	0.00	0.00
80	0.0 0.0	0.00	800.0	283.4	310.0	0.0	0.00	0.00	0.00
90	0.0 0.0	0.00	900.0	283.4	310.0	0.0	0.00	0.00	0.00
1,00	0.0 0.0	0.00	1,000.0	283.4	310.0	0.0	0.00	0.00	⁻ 0.00
1,10	0.0 0.0	0.00	1,100.0	283.4	310.0	0.0	0.00	0.00	0.00
1,200	0.0 0.0	0.00	1,200.0	283.4	310.0	0.0	0.00	0.00	0.00
1,30	0.0 0.0	0.00	1,300.0	283.4	310.0	0.0	0.00	0.00	0.00
1,400	0.0 0.0	0.00	1,400.0	283.4	310.0	0.0	0.00	0.00	0.00
1,50	0.0 0.0	0.00	1,500.0	283.4	310.0	0.0	0.00	0.00	0.00
1,600			1,600.0	283.4	310.0	0.0	0.00	0.00	0.00
1,70			1,700.0	283.4	310.0	0.0	0.00	0.00	0.00
1,80	0.0 0.0	0.00	1,800.0	283.4	310.0	0.0	0.00	0.00	0.00
1,90	0.0 0.0	0.00	1,900.0	283.4	310.0	0.0	0.00	0.00	0.00
2,00	0.0 0.0	0.00	2,000.0	283.4	310.0	0.0	0.00	0.00	0.00
2,10			2,100.0	281.8	310.7	-1.6	2.00	2.00	0.00
2,20			2,199.8	277.0	312.8	-6.4	2.00	2.00	0.00
2,30	0.0 6.0	0 156.00	2,299.5	269.0	316.3	-14.5	2.00	2.00	0.00
2,40	0.0 6.0	0 156.00	2,398.9	259.5	320.6	-24.1	0.00	0.00	0.00
2,50	0.0 6.0	0 156.00	2,498.4	249,9	324.8	-33.7	0.00	0.00	0.00
2,60	0.0 6.0	0 156.00	2,597.8	240,4	329.1	-43.4	0.00	0.00	0.00

1/16/2019 9:12:29AM

Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Camellia 091H
Project:	CAM/AZ	TVD Reference:	KB @ 2950.0usft
Site:	CAM/AZ #1N	MD Reference:	KB @ 2950.0usft
Well:	Camellia 091H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Design #1	Database:	EDM5000

Planned Survey

Ţ

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)	
2,700.0	6.00	156.00	2,697.3	230.8	333.3	-53.0	0.00	0.00	0.00	
2,800.0	6.00	156.00	2,796.7	221.3	337.6	-62.6	0.00	0.00	0.00	
2,900.0	6.00	156.00	2,896.2	211.7	341.8	-72.3	0.00	0.00	0.00	
3,000.0	6.00	156.00	2,995.6	202.2	346.1	-81.9	0.00	0.00	0.00	
3,100.0	6.00	156.00	3,095.1	192.6	350.3	-91.6	0.00	0.00	0.00	
3,200.0	6.00	156.00	3,194.5	183.1	354.6	-101.2	0.00	0.00	0.00	
3,300.0	6.00	156.00	3,294.0	173.5	358.8	-110.8	0.00	0.00	0.00	
3,400.0	6.00	156.00	3,393.4	164.0	363.1	-120.5	0.00	0.00	0.00	
3,500.0	6.00	156.00	3,492.9	154.4	367.4	-130.1	0.00	0.00	0.00	
3,600.0	6.00	156.00	3,592.3	144.9	371.6	-139.7	0.00	0.00	0.00	
3,700.0	6.00	156.00	3,691.8	135.3	375.9	-149.4	0.00	0.00	0.00	
3,800.0	6.00	156.00	3,791.2	125.8	380.1	-159.0	0.00	0.00	0.00	
3,900.0	6.00	156.00	3,890.7	116.2	384.4	-168.6	0.00	0.00	0.00	
4,000.0	6.00	156.00	3,990.1	106.7	388.6	-178.3	0.00	0.00	0.00	
4,100.0	6.00	156.00	4,089.6	97.1	392.9	-187.9	0.00	0.00	0.00	
4,200.0	6.00	156.00	4,189.0	87.6	397.1	-197.6	0.00	0.00	0.00	
4,300.0	6.00	156.00	4,288.5	78.0	401.4	-207.2	0.00	0.00	0.00	
4,400.0	6.00	156.00	4,387.9	68.5	405.6	-216.8	0.00	0.00	0.00	
4,500.0	6.00	156.00	4,487.4	58.9	409.9	-226.5	0.00	0.00	0.00	
4,600.0	6.00	156.00	4,586.9	49.4	414.1	-236.1	0.00	0.00	0.00	
4,700.0	6.00	156.00	4,686.3	39.8	418.4	-245.7	0.00	0.00	0.00	
4,800.0	6.00	156.00	4,785.8	30.3	422.6	-255.4	0.00	0.00	0.00	
4,900.0	6.00	156.00	4,885.2	20.7	426.9	-265.0	0.00	0.00	0.00	
5,000.0	6.00	156.00	4,984.7	11.2	431.1	-274.6	0.00	0.00	0.00	
5,100.0	6.00	156.00	5,084.1	1.6	435.4	-284.3	0.00	0.00	0.00	
5,200.0	6.00	156.00	5,183.6	-7.9	439.6	-293.9	0.00	0.00	0.00	
5,300.0	6.00	156.00	5,283.0	-17.5	443.9	-303.6	0.00	0.00	0.00	

1/16/2019 9:12:29AM

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design:	Ameredev Operatin CAM/AZ CAM/AZ #1N Camellia 091H Wellbore #1 Design #1	g, LLC.				Local Co-ordina TVD Reference: MD Reference: North Referenc Survey Calcula Database:	Well Camellia 091H KB @ 2950.0usft KB @ 2950.0usft Grid Minimum Curvature EDM5000		
Planned Survey									
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
5,400	0.0 6.0	00 156.00	5,382.5	-27.0	448.1	-313,2	0.00	0.00	0.00
5,500	0.0 6.0	00 156.00	5,481.9	-36.6	452.4	-322.8	0.00	0.00	0.00
5,600	0.0 6.0	00 156.00	5,581.4	-46.1	456.6	-332.5	0.00	0.00	0.00
5,700	0.0 6.0	00 156.00	5,680.8	-55.7	460.9	-342.1	0.00	0.00	0.00
5,800	0.0 6.0	00 156.00	5,780.3	-65.2	465.1	-351.7	0.00	0.00	0.00
5,900	0.0 6.0	00 156.00	5,879.7	-74.8	469.4	-361.4	0.00	0.00	0.00
6,000	0.0 6.0	00 156.00	5,979.2	-84.3	473.6	-371.0	0.00	0.00	0.00
6,100	0.0 6.0	00 156.00	6,078.6	-93.9	477.9	-380.6	0.00	0.00	0.00
6,200	0.0 6.0	00 156.00	6,178.1	-103.4	482.1	-390.3	0.00	0.00	0.00
6,300	0.0 6.0	00 156.00	6,277.5	-112.9	486.4	-399.9	0.00	0.00	0.00
6,400	0.0 6.0	00 156.00	6,377.0	-122.5	490.6	-409.5	0.00	0.00	0.00
6,500	0.0 6.0	00 156.00	6,476.4	-132.0	494.9	-419.2	0.00	0.00	0.00
6,600	0.0 6.0	00 156.00	6,575.9	-141.6	499.2	-428.8	0.00	0.00	0.00
6,700	0.0 6.0	00 156.00	6,675.3	-151.1	503.4	-438.5	0.00	0.00	0.00
6,724	4.8 6.0	00 156.00	6,700.0	-153.5	504.5	-440.8	0.00	0.00	0.00
6,800	0.0 4.	50 156.00	6,774.9	-159.8	507.3	-447.2	2.00	-2.00	0.00
6,900	0.0 2.9	50 156.00	6,874.7	-165.4	509.7	-452.8	2.00	-2.00	0.00
7,000	0.0 0.4	50 156.00	6,974.7	-167.8	510.8	-455.2	2.00	-2.00	0.00
7,024	4.8 0.0	0.00	6,999.5	-167.8	510.8	-455.3	2.00	-2.00	0.00
7,100	0.0 0.0	0.00	7,074.7	-167.8	510.8	-455.3	0.00	0.00	0.00
7,200	0.0 0.0	00.00	7,174.7	-167.8	510.8	-455.3	0.00	0.00	0.00
7,300	0.0 0.0	00.00	7,274.7	-167.8	510.8	-455.3	0.00	0.00	0.00
7,400	0.0 0.0	00.00	7,374.7	-167.8	510.8	-455.3	0.00	0.00	0.00
7,500	D.O 0.0	0.00	7,474.7	-167.8	510.8	-455.3	0.00	0.00	0.00
7,600	0.0 0.0	0.00	7,574.7	-167.8	510.8	-455.3	0.00	0.00	0.00
7,700	0.0 0.0	0.00	7,674.7	-167.8	510.8	-455.3	0.00	0.00	0.00
7,800	0.0 0.0	0.00	7,774.7	-167.8	510.8	-455.3	0.00	0.00	0.00

1/16/2019 9:12:29AM

Company: Project: Site: Well: Wellbore: Design:	: CAM/AZ CAM/AZ #1N Camelia 091H re: Wellbore #1 : Design #1					Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Database:			Well Camellia 091H KB @ 2950.0usft KB @ 2950.0usft Grid Minimum Curvature EDM5000		
Planned Surve	-									_	
MD (usft)	Inc (°)		Azl (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)	
7,9	900.0	0.00	0.00	7,874.7	-167.8	510.8	-455.3	0.00	0.00	0.00	
8,0	000.0	0.00	0.00	7,974.7	-167.8	510.8	-455.3	0.00	0.00	0.00	
8,1	100.0	0.00	0.00	8,074.7	-167.8	510.8	-455.3	0.00	0.00	0.00	
8,2	200.0	0.00	0.00	8,174.7	-167.8	510.8	-455.3	0.00	0.00	0.00	
8,3	300.0	0.00	0.00	8,274.7	-167.8	510.8	-455.3	0.00	0.00	0.00	
8,4	00.0	0.00	0.00	8,374.7	-167.8	510.8	-455.3	0.00	0.00	0.00	
8,5	500.0	0.00	0.00	8,474.7	-167.8	510.8	-455.3	0.00	0.00	0.00	
8,5	525.3	0.00	0.00	8,500.0	-167.8	510.8	-455.3	0.00	0.00	0.00	
8,6	600.0	1.49	156.00	8,574.7	-168.7	511.2	-456.2	2.00	2.00	0.00	
8,7	700.0	3.49	156.00	8,674.6	-172.7	513.0	-460.2	2.00	2.00	0.00	
8,8	300.0	5.49	156.00	8,774.2	-179.9	516.2	-467.4	2.00	2.00	0.00	
8,8	325.3	6.00	156.00	8,799.5	-182.2	517.2	-469.8	2.00	2.00	0.00	
8,9	00.0	6.00	156.00	8,873.7	-189.3	520.4	-477.0	0.00	0.00	0.00	
9,0	000.0	6.00	156.00	8,973.2	-198.9	524.6	-486.6	0.00	0.00	0.00	
9,1	100.0	6.00	156.00	9,072.6	-208.4	528.9	-496.2	0.00	0.00	0.00	
9,2	200.0	6.00	156.00	9,172.1	-218.0	533.2	-505.9	0.00	0.00	0.00	
9,3	300.0	6.00	156.00	9,271.5	-227.5	537.4	-515.5	0.00	0.00	0.00	
9,4	400.0	6.00	156.00	9,371.0	-237.1	541.7	-525.2	0.00	0.00	0.00	
9,5	500.0	6.00	156.00	9,470.4	-246.6	545.9	-534.8	0.00	0.00	0.00	
9, 6	500.0	6.00	156.00	9,569.9	-256.2	550.2	-544.4	0.00	0.00	0.00	
9,7	700.0	6.00	156.00	9,669.3	-265.7	554.4	-554.1	0.00	0.00	0.00	
9,8	300.0	6.00	156.00	9,768.8	-275.3	558.7	-563.7	0.00	0.00	0.00	
9,9	900.0	6.00	156.00	9,868.2	-284.8	562.9	-573.3	0.00	0.00	0.00	
10,0	00.0	6.00	156.00	9,967.7	-294.4	567.2	-583.0	0.00	0.00	0.00	
10.1	100.0	6.00	156.00	10,067.1	-303.9	571.4	-592.6	0.00	0.00	0.00	
	200.0	6.00	156.00	10,166.6	-313.5	575,7	-602.2	0.00	0.00	0.00	
10.3	300.0	6.00	156.00	10,266.0	-323.0	579.9	-611.9	0.00	0.00	0.00	

1/16/2019 9:12:29AM

Company: Project: Site: Well: Wellbore: Design: Planned Surve	Ameredev Ope CAM/AZ CAM/AZ #1N Camellia 091H Wellbore #1 Design #1	•	LC.				Local Co-ordina TVD Reference: MD Reference: North Referenc Survey Calcula Database:	e:	Well Camellia 091 KB @ 2950.0usft KB @ 2950.0usft Grid Minimum Curvatur EDM5000	
MD (usft)	,, Inc (°)		Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Se c (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
	400.0	6.00	156.00	10,365.5	-332.6	584.2	-621.5	0.00	0.00	0.00
10,5	500.0	6.00	156.00	10,464.9	-342.1	588.4	-631.2	0.00	0.00	0.00
10.6	600.0	6.00	156.00	10,564.4	-351.7	502.7	640 P	0.00	0.00	0.00
-	700.0	6.00	156.00	10,564.4	-351.7	592.7 596.9	-640.8 -650.4	0.00 0.00	0.00 0.00	0.00 0.00
	720.9	6.00	156.00	10,684.6	-363.2	597.8	-652.4	0.00	0.00	0.00
Sec 28		0.00	100.00	10,001.0	-000.2	007.0	-002.4	0.00	0.00	0.00
	736.4	6.00	156.00	10,700.0	-364.7	598.5	-653.9	0.00	0.00	0.00
10,8	300.0	4.73	156.00	10,763.4	-370.1	600.9	-659.4	2.00	-2.00	0.00
10.9	900.0	2.73	156.00	10,863.2	-376.0	603.5	-665.4	2.00	-2.00	0.00
	000.0	0.73	156.00	10,963.1	-378.8	604.8	-668.2	2.00	-2.00	0.00
	036.4	0.00	0.00	10,999.5	-379.0	604.9	-668.4	2.00	-2.00	0.00
11,1	100.0	0.00	0.00	11,063.1	-379.0	604.9	-668.4	0.00	0.00	0.00
11,1	136.9	0.00	0.00	11,100.0	-379.0	604.9	-668.4	0.00	0.00	0.00
11 2	200.0	7.53	270.48	11,162.9	-379.0	600.7	-668.3	11.94	11.94	0.00
-	300.0	19.47	270.48 270.48	11,260.0	-378.8	577.4	-667.6	11.94	11.94	0.00
	400.0	31.40	270.48	11,350.1	-378.4	534.5	-666.3	11.94	11.94	0.00
-	158.2	38.35	270.48	11,397.8	-378.1	501.3	-665.4	11.94	11.94	0.00
	500.0	38.69	278.48	11,430.6	-376.1	475.4	-662.8	11.94	0.83	19.13
11 6	600.0	41.61	296.48	11,507,3	-356.6	414.5	-642.0	11.94	2.92	18.00
	700.0	46.96	311.80	11,507.3	-336.0	357.4	-642.0	11.94	5.35	15.33
	300.0	40.90 54.00	324.34	11,642.8	-259.9	306.3	-543.0	11.94	7.04	12.53
	900.0	62.11	334.67	11,695.7	-186.8	263.7	-469.1	11.94	8.12	10.34
	000.0	70.89	343.51	11,735.6	-101.2	231.3	-382.9	11.94	8.77	8.84
12.1	100.0	80.04	351.43	11,760,7	-6.9	210,4	-288.1	11.94	9.15	7.92
	121.3	82.02	353.05	11,764.1	14.0	207.6	-267.2	11.94	9.29	7.59
Sec 21										
12,2	200.0	89.37	358.92	11,770.0	92.1	202.1	-188.9	11.94	9.34	7.46

1/16/2019 9:12:29AM

,

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design: Planned Survey	Ameredev Operati CAM/AZ CAM/AZ #1N Camellia 091H Wellbore #1 Design #1	ng, LLC.				Local Co-ordina TVD Reference: MD Reference: North Referenc Survey Calculat Database:	e:	Well Cameilla 091 KB @ 2950.0usft KB @ 2950.0usft Grid Minimum Curvature EDM5000	
MD	y Inc	Azi (azimuth)	TVD	+FSL/-FNL	+FWL/-FEL	V. Sec	DLeg	Build	Turn
(usft)	(*)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
12,20	06.7 90	.00 359.42	11,770.0	98.9	202.0	-182.2	11.94	9.36	7.40
Cam091									
12,3	00.0 90	.00 359.42	11,770.0	192.1	201.1	-88.9	0.00	0.00	0.00
12,4	00.0 90	.00 359.42	11,770.0	292.1	200.1	11.1	0.00	0.00	0.00
12,5	00.0 90	.00 359.42	11,770.0	392.1	199.0	111.1	0.00	0.00	0.00
12,6	00.0 90	.00 359.42	11,770.0	492.1	198.0	211.1	0.00	0.00	0.00
12,7	00.0 90	.00 359.42	11,770.0	592.1	197.0	311.1	0.00	0.00	0.00
12,8	00.0 90	.00 359.42	11,770.0	692.1	196.0	411.0	0.00	0.00	0.00
12,9	00.0 90	.00 359.42	11,770.0	792.1	194.9	511.0	0.00	0.00	0.00
13,0	00.0 90	.00 359.42	11,770.0	892.1	193.9	611.0	0.00	0.00	0.00
13,10	00.0 90	.00 359.42	. 11,770.0	992.1	192.9	711.0	0.00	0.00	0.00
13,2	00.0 90	.00 359.42	11,770.0	1,092.1	191.9	811.0	0.00	0.00	0.00
13,3	00.0 90	.00 359.42	11,770.0	1,192.1	190.9	911.0	0.00	0.00	0.00
13,4	00.0 90	.00 359.42	11,770.0	1,292.1	189.8	1,011.0	0.00	0.00	0.00
13,5		.00 359.42		1,392.1	188.8	1,111.0	0.00	0.00	0.00
13,6		.00 359.42		1,492.1	187.8	1,211.0	0.00	0.00	0.00
13,7		.00 359.42		1,592.1	186.8	1,311.0	0.00	-0.00	0.00
13,8		.00 359.42		1,692.1	185.8	1,411.0	0.00	0.00	0.00
13,9		.00 359.42	11,770.0	1,792.0	184,7	1,511.0	0.00	0.00	0.00
-		.00 359.42	-	1,792.0	183.7	1,611.0	0.00	0.00	0.00
14,1		.00 359.42		1,992.0	182.7	1,711.0	0.00	0.00	0.00
		.00 359.42		2,092.0	181.7	1,811.0	0.00	0.00	0.00
		.00 359.42		2,002.0	180.7	1,911.0	0.00	0.00	0.00
		.00 359.42	•	2,292.0	179.6	2,011.0	0.00	0.00	0.00
		.00 359.42	-	2,392.0	178.6	2,110.9	0.00	0.00	0.00
-		.00 359.42	-	2,492.0	177.6	2,210.9	0.00	0.00	0.00
14,7	00.0 90	.00 359.42	11,770.0	2,592.0	176.6	2,310.9	0.00	0.00	0.00

1/16/2019 9:12:29AM

ĺ

Ameredev Operating, LLC Lease Penetration Section Line Footages

Company: Project: Silte: Vell: Vellbore: Design:	CAM// CAM//	AZ #1N Ilia 091H ore #1	LC.				Local Co-ordina TVD Reference: MD Reference: North Reference Survey Calculat Database:	9:	Well Cameilia 0911 KB @ 2950.0usft KB @ 2950.0usft Grid Minimum Curvature EDM5000	
lanned Survey	У	····							<u>,</u>	
MD (usft)		lnc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/190usft)
14,8	00.0	90.00	359.42	11,770.0	2,692.0	175.6	2,410.9	0.00	0.00	0.00
14,9	00.0	90.00	359.42	11,770.0	2,792.0	174.5	2,510.9	0.00	0.00	0.00
15,0	00.0	90.00	359.42	11,770.0	2,892.0	173.5	2,610.9	0.00	0.00	0.00
15,10	00.0	90.00	359.42	11,770.0	2,992.0	172.5	2,710.9	0.00	0.00	0.00
15,20	00.0	90.00	359.42	11,770.0	3,092.0	171.5	2,810.9	0.00	0.00	0.00
15,3	00.0	90.00	359.42	11,770.0	3,192.0	170.4	2,910.9	0.00	0.00	0.00
15,4	00.0	90.00	359.42	11,770.0	3,292.0	169.4	3,010.9	0.00	0.00	0.00
15,5	00.0	90.00	359.42	11,770.0	3,392.0	168.4	3,110.9	0.00	0.00	0.00
15,6	00.0	90.00	359.42	11,770.0	3,492.0	167.4	3,210.9	0.00	0.00	0.00
15,7	00.0	90.00	359.42	11,770.0	3,592.0	166.4	3,310.9	0.00	0.00	0.00
15,8	00.0	90.00	359.42	11,770.0	3,691.9	165.3	3,410.9	0.00	0.00	0.00
15,9	00.0	90.00	359.42	11,770.0	3,791.9	164.3	3,510.9	0.00	0.00	0.00
16,0	00.0	90.00	359.42	11,770.0	3,891.9	163.3	3,610.9	0.00	0.00	0.00
16,1	00.0	90.00	359.42	11,770.0	3,991.9	162.3	3,710.9	0.00	0.00	0.00
16,2	00.0	90.00	359.42	11,770.0	4,091.9	161.3	3,810.8	0.00	0.00	0.00
16,3	00.0	90.00	359.42	11,770.0	4,191.9	160.2	3,910.8	0.00	0.00	0.00
16,4	00.0	90.00	359.42	11,770.0	4,291.9	159.2	4,010.8	0.00	0.00	0.00
16,5	00.0	90.00	359.42	11,770.0	4,391.9	158.2	4,110.8	0.00	0.00	0.00
16,6	00.0	90.00	359.42	11,770.0	4,491.9	157.2	4,210.8	0.00	0.00	0.00
16,7	00.0	90.00	359.42	11,770.0	4,591.9	156.2	4,310.8	0.00	0.00	0.00
16,8	00.0	90.00	359.42	11,770.0	4,691.9	155.1	4,410.8	0.00	0.00	0.00
16,9	0.00	90.00	359.42	11,770.0	4,791.9	154.1	4,510.8	0.00	0.00	0.00
17,0	00.0	90.00	359.42	11,770.0	4,891.9	153.1	4,610.8	0.00	0.00	0.00
17,1	00.0	90.00	359.42	11,770.0	4,991.9	152.1	4,710.8	0.00	0.00	0.00
17,2	00.0	90.00	359.42	11,770.0	5,091.9	151.0	4,810.8	0.00	0.00	0.00
17,3	00.0	90.00	359.42	11,770.0	5,191.9	150.0	4,910.8	0.00	0.00	0.00

1/16/2019 9:12:29AM

Company: Project: Site: Well: Wellbore: Design: Planned Surve	Ameredev Opera CAM/AZ CAM/AZ #1N Camellia 091H Wellbore #1 Design #1	tting, LLC.					Local Co-ordina TVD Reference: MD Reference: North Reference Survey Calculat Database:	:	Well Camellia 091H KB @ 2950.0usft KB @ 2950.0usft Grid Minimum Curvature EDM5000	
MD (usft)	inc (°)	Azi (azin (°)	•	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
		0.00	359.42	11,770.0	5,280.2	149.1	4,999.1	0.00	0.00	0.00
Sec 16	i									
17,4	400.0 9	0.00	359.42	11,770.0	5,291.9	149.0	5,010.8	0.00	0.00	0.00
17,5	500.0 9	0.00	359.42	11,770.0	5,391.9	148.0	5,110.8	0.00	0.00	0.00
17,6	600.0 9	0.00	359.42	11,770.0	5,491.9	147.0	5,210.8	0.00	0.00	0.00
17,7	700.0 9	0.00	359.42	11,770.0	5,591.8	145.9	5,310.8	0.00	0.00	0.00
17,8	300.0 9	0.00	359.42	11,770.0	5,691.8	144.9	5,410.8	0.00	0.00	0.00
17,9	900.0	0.00	359.42	11,770.0	5,791.8	143.9	5,510.8	0.00	0.00	0.00
18,0	000.0	0.00	359.42	11,770.0	5,891.8	142.9	5,610.7	0.00	0.00	0.00
18,1	100.0 §	0.00	359.42	11,770.0	5,991.8	141.9	5,710.7	0.00	0.00	0.00
18,2	200.0 9	0.00	359.42	11,770.0	6,091.8	140.8	5,810.7	0.00	0.00	0.00
18.3	300.0	0.00	359.42	11,770.0	6,191.8	139.8	5,910.7	0.00	0.00	0.00
		0.00	359.42	11,770.0	6,291.8	138.8	6,010.7	0.00	0.00	0.00
		0.00	359.42	11,770.0	6,391.8	137.8	6,110.7	0.00	0.00	0.00
		0.00	359.42	11,770.0	6,491.8	136.8	6,210.7	0.00	0.00	0.00
		0.00	359.42	11,770.0	6,591.8	135.7	6,310.7	0.00	0.00	0.00
		0.00 10.00	359.42 359.42	11,770.0 11,770.0	6,691.8 6 701 8	134.7 133.7	6,410.7 6 510 7	0.00	0.00	0.00
		0.00	359.42	11,770.0	6,791.8 6,891.8	133.7	6,510.7 6,610.7	0.00 0.00	0.00 0.00	0.00 0.00
		0.00	359.42	11,770.0	6,991.8	132.7	6,710.7	0.00	0.00	0.00
		0.00	359.42	11,770.0	7,091.8	130.6	6,810.7	0.00	0.00	0.00
		0.00	359.42	11,770.0	7,191.8	129.6	6,910.7	0.00	0.00	0.00
		0.00	359.42	11,770.0	7,291.8	128.6	7,010.7	0.00	0.00	0.00
		0.00	359.42	11,770.0	7,391.8	127.6	7,110.7	0.00	0.00	0.00
		0.00	359.42	11,770.0	7,491.7	126.5	7,210.7	0.00	0.00	0.00
19,7	700.0 9	0.00	359.42	11,770.0	7,591.7	125.5	7,310.6	0.00	0.00	0.00
19,8	BOO.O 9	0.00	359.42	11,770.0	7,691.7	124.5	7,410.6	0.00	0.00	0.00

1/16/2019 9:12:29AM

Company: Project: Site: Well: Wellbore: Design:	Ameredev Operating CAM/AZ CAM/AZ #1N Camellia 091H Wellbore #1 Design #1	, μc .				Local Co-ordina TVD Reference: MD Reference: North Reference Survey Calculat Database:	9 :	Well Camellia 091 KB @ 2950.0usft KB @ 2950.0usft Grid Minimum Curvature EDM5000	
Planned Survey	y inc	Azi (azimuth)	TVD	+FSL/-FNL	+FWL/-FEL	V. Sec	DLeg	Build	Turn
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
19,9	00.0 90.0	0 359.42	11,770.0	7,791.7	123.5	7,510.6	0.00	0.00	0.00
20,0	00.0 90.0	0 359.42	11,770.0	7,891.7	122.5	7,610.6	0.00	0.00	0.00
20,10	00.0 90.0	0 359.42	11,770.0	7,991.7	121.4	7,710.6	0.00	0.00	0.00
20,20	00.0 90.0	0 359.42	11,770.0	8,091.7	120.4	7,810.6	0.00	0.00	0.00
20,3	00.0 90.0	0 359.42	11,770.0	8,191.7	119.4	7,910.6	0.00	0.00	0.00
20,4	00.0 90.0	0 359.42	11,770.0	8,291.7	118.4	8,010.6	0.00	0.00	0.00
20,5	00.0 90.0	0 359.42	11,770.0	8,391.7	117.4	8,110.6	0.00	0.00	0.00
20,6	00.0 90.0	0 359.42	11,770.0	8,491.7	116.3	8,210.6	0.00	0.00	0.00
20,7	00.0 90.0	0 359.42	11,770.0	8,591.7	115.3	8,310.6	0.00	0.00	0.00
20,8	00.0 90.0	0 359.42	11,770.0	8,691.7	114.3	8,410.6	0.00	0.00	0.00
20,9	00.0 90.0	0 359.42	11,770.0	8,791.7	113.3	8,510.6	0.00	0.00	0.00
21,0	00.0 90.0	0 359.42	11,770.0	8,891.7	112.3	8,610.6	0.00	0.00	0.00
21,10	00.0 90.0	0 359.42	11,770.0	8,991.7	111.2	8,710.6	0.00	0.00	0.00
21,2	00.0 90.0	0 359.42	11,770.0	9,091.7	110.2	8,810.6	0.00	0.00	0.00
21,3	00.0 90.0	0 359.42	11,770.0	9,191.7	109.2	8,910.6	0.00	0.00	0.00
21,4	00.0 90.0	0 359.42	11,770.0	9,291.7	108.2	9,010.6	0.00	0.00	0.00
21,5	00.0 90.0	0 359.42	11,770.0	9,391.6	107.1	9,110.5	0.00	0.00	0.00
21,6	00.0 90.0	0 359.42	11,770.0	9,491.6	106.1	9,210.5	0.00	0.00	0.00
21,7	00.0 90.0	0 359.42	11,770.0	9,591.6	105.1	9,310.5	0.00	0.00	0.00
21,8	00.0 90.0	0 359.42	11,770.0	9,691.6	104.1	9,410.5	0.00	0.00	0.00
21,9	00.0 90.0	0 359.42	11,770.0	9,791.6	103.1	9,510.5	0.00	0.00	0.00
22,0	00.0 90.0	0 359.42	11,770.0	9,891.6	102.0	9,610.5	0.00	0.00	0.00
22,1	00.0 90.0	0 359.42	11,770.0	9,991.6	101.0	9,710.5	0.00	0.00	0.00
22,2	00.0 90.0	0 359.42	11,770.0	10,091.6	100.0	9,810.5	0.00	0.00	0.00
22,3	00.0 90.0	0 359.42	11,770.0	10,191.6	99.0	9,910.5	0.00	0.00	0.00
22,4	00.0 90.0	0 359.42	11,770.0	10,291.6	98.0	10,010.5	0.00	0.00	0.00
22,5	00.0 90.0	0 359.42	11,770.0	10,391.6	96.9	10,110.5	0.00	0.00	0.00

1/16/2019 9:12:29AM

Company: Project: Site: Vell: Vellbore: Design:	Ameredev Operating, L CAM/AZ CAM/AZ #1N Camelia 091H Wellbore #1 Design #1	LC.				Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Database:		Well Camellia 091 KB @ 2950.0usft KB @ 2950.0usft Grid Minimum Curvatu EDM5000	
Planned Survey MD (usft)	inc (°)	Azl (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	V. Sec (usft)	DLeg (°/100usft)	Build (°/100usft)	Turn (°/100usft)
22,568 Cam091 L 22,600 22,618	TP .0 90.00	359.42 359.42 359.42	11,770.0 11,770.0 11,770.0	10,460.2 10,491.6 10,510.1	96.2 95.9 95.7	10,179.0 10,210.5 10,229.0	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
Cam091 E	HL								

COMPASS 5000.15 Build 90

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

• 13-5/8" 5M Annular

AMEREDEL

- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" -- 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Size	Primary Barrier	Secondary Barrier	Third Barrier
3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
13-5/8	Drilling Fluid	Blind Rams	
	3-1/2"-5-1/2" 3-1/2"-5-1/2" 3-1/2"-5-1/2" 3-1/2"-5-1/2"	3-1/2"-5-1/2" Drilling Fluid 3-1/2"-5-1/2" Drilling Fluid 3-1/2"-5-1/2" Drilling Fluid 3-1/2"-5-1/2" Drilling Fluid	3-1/2"-5-1/2"Drilling FluidUpper Pipe Rams3-1/2"-5-1/2"Drilling FluidUpper Pipe Rams3-1/2"-5-1/2"Drilling FluidUpper Pipe Rams3-1/2"-5-1/2"Drilling FluidUpper Pipe Rams

WORKING PRESSURE for system design. Kill line with minimum 2" ID will be available outside substructure with 10M Check Valve for OOH Kill Operations

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves
- Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan

Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

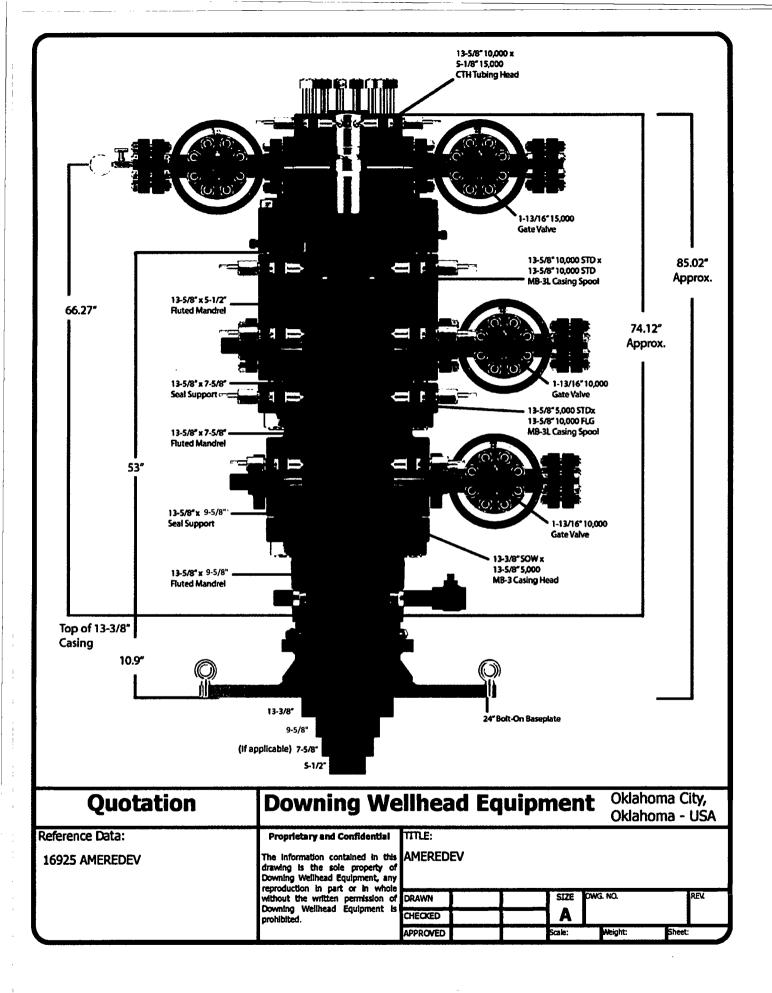
Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

Ameredev Drilling Plan: 3 String with 4 String Contingency

- Contingency Plan If Losses Exceed 50% in Intermediate Interval
 - We will utilize a MB4 wellhead that will enable us to convert a 3 string design to a 4 string design. (Schematic Attached)
 - We will displace well with FW and drill or condition to run 9-5/8" Casing at the Lamar Limestone, we will utilize DV Tool w/ ACP @ the Tansill to Isolate Capitan Reef and cement to surface.
 - Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- 7.625 Casing will be Additional 4th String
 - o Drill remaining hole section to 10,670'
 - o Run 7.625 29.7# HCL80 FJM Casing

4-String Contingency Wellbore Schematic


Well:	(Well Name)	Co. Well ID:	xxxxxx
SHL:	(SHL)	AFE No.:	XXXX-XXX
BHL:	(BHL)	API No.:	XXXXXXXXXXXXX
	Lea, NM	GL:	(Elevation)
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp B
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	(TVD)'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	(MD)'
Xmas Tree	: 2-9/16" 10M	Rig:	TBD KB 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

12.25" N13.375" 54.5# J-55 BTC Rustler F F Salado 50 HI F F F 12.25" Tansill F F F 12.25" Capitan Reef Salado Salado Salado 9.625" 40# L-80HC BTC Lamar Salado Salado Salado 9.625" 40# L-80HC BTC Lamar Salado Salado Salado 8.75" Bell Canyon Bell Canyon Salado Salado Salado 8.75" First Bone Spring Salado Sal	Hole Size	Formation Tops	Logs	Cement	Mud Weight
12.25" DV Tool with ACP At Tansill At Tansill At Tansill Capitan Reef So UU So UU So UU So UU Lamar So' below OO %0 At Tansill At Tansill Bell Canyon Bell Canyon Bone Spring Lime Bone Spring So UU So UU First Bone Spring Second Bone Spring So UU So UU So UU So UU Third Bone Spring Upper 125' below OO %0 Charles So UU So UU Third Bone Spring Third Bone Spring So UU So UU So UU So UU Third Bone Spring Third Bone Spring So UU So UU So UU So UU Third Bone Spring So UU So UU So UU So UU So UU So UU Third Bone Spring So UU Third Bone Spring So UU So UU So UU So UU So UU So UU Third Bone Spring So UU So UU So UU So UU So UU So UU Third Bone	17.5"	125' below			8.4-8.6 ppg WBM
50' below 0 % 9.625" 40# L-80HC BTC Lamar Bell Canyon Bell Canyon Brushy Canyon Bone Spring Lime First Bone Spring Second Bone Spring Second Bone Spring Upper 125' below Third Bone Spring Upper 125' below Third Bone Spring O %		DV Tool with ACP At Tansill		TOC 0' 50% Excess	sh Water
Third Bone Spring	12.25"	Capitan Reef Lamar 50' below		TOC 0' 50% Excess	8.3-10.2 Fre
6 75"	8.75"	Bell Canyon Brushy Canyon Bone Spring Lime First Bone Spring Second Bone Spring Third Bone Spring Upper 125' below		TOC 0' 25% Excess	8.5-9.4 Diesel Brine Emulsion
5.5" 20# P-110CYHP TMK UP SF TORQ (MD) Target Wolfcamp B TVD // MD	12° Build @	Wolfcamp Wolfcamp B (If Applicable) 5.5" 20# P-110CYHP TMK UP SF TORQ (MD)		: 0' Excess	10.5-14 ppg OBM

Contingency Casing Design and Safety Factor Check

		Casing	Specificati	ons		
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling
Surface	17.5	1,888'	13.375	54.5	J-55	BTC
Int #1	12.25	5,013'	9.625	40	HCL-80	BTC
Int #2	8.75	11,147'	7.625	29.7	HCL-80	FJM
Prod Segment A	6.75	11,147'	5.5	20	CYHP-110	TMK UPSF
Prod Segment B	6.75	22,496'	5.5	20	CYHP-110	TMK UPSF

Check Surface CasingOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi14.388539091,1302,730Safety Factors1.568.298.831.150.91Check Int #1 CasingOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi
inches 1000 lbs 1000 lbs psi psi 14.38 853 909 1,130 2,730 Safety Factors 1.56 8.29 8.83 1.15 0.91 Check Int #1 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi
14.38 853 909 1,130 2,730 Safety Factors 1.56 8.29 8.83 1.15 0.91 Check Int #1 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi
Safety Factors1.568.298.831.150.91Check Int #1 CasingOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi
1.56 8.29 8.83 1.15 0.91 Check Int #1 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi
Check Int #1 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi
OD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi
inches 1000 lbs 1000 lbs psi psi
10.625 916 1042 4230 5750
Safety Factors
0.81 4.57 5.20 1.41 0.95
Check Int #2 Casing
OD Cplg Body Joint Collapse Burst
inches 1000 lbs 1000 lbs psi psi
7.625 940 558 6700 9460
Safety Factors
0.56 2.84 1.96 1.10 1.24
Check Prod Casing, Segment A
OD Cplg Body Joint Collapse Burst
inches 1000 lbs 1000 lbs psi psi
5.777 728 655 12780 14360
Safety Factors
0.49 3.11 2.79 1.77 1.89
Check Prod Casing, Segment B
OD Cplg Body Joint Collapse Burst
inches 1000 lbs 1000 lbs psi psi
F 777 700 CEE 10700 140CO
5.777 728 655 12780 14360
5./// 728 655 12780 14360 Safety Factors 0.49 63.53 57.16 1.68 1.89

. .

Hole Size Casing Size Depth Sacks Yield Density 17.5 13.375 1888 1.76 13.5 Bbl/Sk 0.31372549 bbls 419.402246 Stage Tool Depth N/A N/A Top MD of Segment 0 0 Bottom MD of Segment 1502 Cement Type Cement Type C Additves Moditives Bentonite, Accelerator, Kolseal, Defoamer, Celloflake 1.337 Yield (cu ft/sk) 1.76 13.5 Volume (cu ft) 2.352.85 1.00% Percent Excess 100% Target % 100%									
17.5 13.375 1888 1.76 13.5 Bbl/Sk 0.31372549 0 0 0 bbls 419.402246 3 0 0 Stage Tool Depth N/A 0 0 0 0 Bottom MD of Segment 1502 C 0 </th <th></th> <th></th> <th>Hole Size</th> <th>Casing Size</th> <th>Depth</th> <th>Sacks</th> <th>Yield</th> <th>Density</th> <th></th>			Hole Size	Casing Size	Depth	Sacks	Yield	Density	
bbls 419.402246 Stage Tool Depth N/A Top MD of Segment 0 Bottom MD of Segment 1502 Cement Type C Additves Bentonite, Accelerator, Kolseal, Defoamer, Celloflake Quantity (sks) 1,337 Yield (cu ft/sk) 1.76 Density (lbs/gal) 13.5 Volume (cu ft) 2,352.85 Percent Excess 100%		1	17.5	-	1888		1.76		
	Stage 1 Lead		Bbl/Sk bbls Stage Tool Deptl Top MD of Segm Bottom MD of S Cement Type Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft)	n lent egment Bentonite, Accele		pamer, Cellofiako	0.31372549 419.402246 N/A 0 1502 C 2 1,337 1.76 13.5 2,352.85		100%
						bbl	25% Excess	100%	
				calc vol	0.12372195	233.587041	291.9838012	467.174082	
Calc TOC -1888 bbl 25% Excess 100%									
Calc TOC -1888 bbl 25% Excess 100%			Hole Size	Casing Size	Depth	Sacks	Yield	Density	
Calc TOC -1888 bbl 25% Excess 100% calc vol 0.12372195 233.587041 291.9838012 467.174082			17.5	13.375	1888	1	1.34	14.8	
Calc TOC -1888 bbl 25% Excess 100% calc vol 0.12372195 233.587041 291.9838012 467.174082 Hole Size Casing Size Depth Sacks Yield Density			Bbl/Sk				0.23885918		
Calc TOC -1888 bbl 25% Excess 100% calc vol 0.12372195 233.587041 291.9838012 467.174082 Hole Size Casing Size Depth Sacks Yield Density 17.5 13.375 1888 1 1.34 14.8			bbls				47 77103601		
Calc TOC -1888 bbl 25% Excess 100% calc vol 0.12372195 233.587041 291.9838012 467.174082 Hole Size Casing Size Depth Sacks Yield Density 17.5 13.375 1888 1.34 14.8 Bbl/Sk 0.23885918 47.77183601									
Calc TOC -1888 bbl 25% Excess 100% calc vol 0.12372195 233.587041 291.9838012 467.174082 Hole Size Casing Size Depth Sacks Yield Density 17.5 13.375 1888 1.34 14.8 Bbl/Sk 0.23885918 47.77183601 Top MD of Segment 1502							1502		
Calc TOC -1888 bbl 25% Excess 100% calc vol 0.12372195 233.587041 291.9838012 467.174082 Hole Size Casing Size Depth Sacks Yield Density 17.5 13.375 1888 1.34 14.8 Bbl/Sk 0.23885918 47.77183601 Top MD of Segment 1502 Bottom MD of Segment 1888 1888 1888 1888			Bottom MD of S				1502 1888		
Calc TOC -1888 bbl 25% Excess 100% calc vol 0.12372195 233.587041 291.9838012 467.174082 Hole Size Casing Size Depth Sacks Yield Density 17.5 13.375 1888 1 1.34 14.8 Bbl/Sk 0.23885918 47.77183601 Top MD of Segment 1502 Bottom MD of Segment 1888 1888 1502 Cement Type C C 1888 1888			Bottom MD of Se Cement Type				1502 1888		
Calc TOC -1888 bbl 25% Excess 100% calc vol 0.12372195 233.587041 291.9838012 467.174082 Hole Size Casing Size Depth Sacks Yield Density 17.5 13.375 1888 1 1.34 14.8 Bbl/Sk 0.23885918 54.771183601 Top MD of Segment 1502 Bottom MD of Segment 1888 1888 Cement Type C Additives Castron C C C C			Bottom MD of Se Cement Type				1502 1888		
Calc TOC -1888 bbl 25% Excess 100% calc vol 0.12372195 233.587041 291.9838012 467.174082 Hole Size Casing Size Depth Sacks Yield Density 17.5 13.375 1888 1.34 14.8 Bbl/Sk 0.23885918 1.34 14.8 Bbl/Sk 0.23885918 1502 Bottom MD of Segment 1502 Bottom MD of Segment 1888 Cernent Type C Additives C	Stage 1 Taii		Bottom MD of S Cement Type Additives				1502 1888 C		
Calc TOC -1888 bbl 25% Excess 100% calc vol 0.12372195 233.587041 291.9838012 467.174082 Hole Size Casing Size Depth Sacks Yield Density 17.5 13.375 1888 1.34 14.8 Bbl/Sk 0.23885918 1.34 14.8 Bbl/Sk 0.23885918 1502 Bottom MD of Segment 1502 Bottom MD of Segment 1888 Cement Type C Additives 200	Stage 1 Tali		Bottom MD of S Cement Type Additives Quantity (sks)				1502 1888 C		
Calc TOC -1888 bbl 25% Excess 100% calc vol 0.12372195 233.587041 291.9838012 467.174082 Hole Size Casing Size Depth Sacks Yield Density 17.5 13.375 1888 1.34 14.8 Bbl/Sk 0.23885918 1.34 14.8 Bbl/Sk 0.23885918 1502 Bottom MD of Segment 1502 Bottom MD of Segment 1888 Cement Type C Additives 200 Yield (cu ft/sk) 1.34	Stage 1 Tail		Bottom MD of S Cement Type Additives Quantity (sks) Yield (cu ft/sk)	egment			1502 1888 C 200 1.34		
Calc TOC -1888 bbl 25% Excess 100% calc vol 0.12372195 233.587041 291.9838012 467.174082 Hole Size Casing Size Depth Sacks Yield Density 17.5 13.375 1888 1.34 14.8 Bbl/Sk 0.23885918 1.34 14.8 Bbls 47.77183601 1502 Top MD of Segment 1502 Bottom MD of Segment 1888 Cement Type C Additives 200 Yield (cu ft/sk) 1.34 Density (ibs/gal) 14.8	Stage 1 Tail		Bottom MD of S Cement Type Additives Quantity (sks) Yield (cu ft/sk) Density (lbs/gal)	egment			1502 1888 C 200 1.34 14.8		
Calc TOC -1888 bbl 25% Excess 100% calc vol 0.12372195 233.587041 291.9838012 467.174082 Hole Size Casing Size Depth Sacks Yield Density 17.5 13.375 1888 1.34 14.8 Bbl/Sk 0.23885918 1.34 14.8 Bbl/Sk 0.23885918 1502 Bottom MD of Segment 1502 Bottom MD of Segment 1888 Cement Type C Additives 200 Yield (cu ft/sk) 1.34 Density (lbs/gal) 14.8 Volume (cu ft) 268	Stage 1 Tail		Bottom MD of Sc Cement Type Additives Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft)	egment			1502 1888 C 200 1.34 14.8 268		
Calc TOC -1888 bbl 25% Excess 100% calc vol 0.12372195 233.587041 291.9838012 467.174082 Hole Size Casing Size Depth Sacks Yield Density 17.5 13.375 1888 1.34 14.8 Bbl/Sk 0.23885918 500 47.77183601 Top MD of Segment 1502 1502 1502 Bottom MD of Segment 1888 Cement Type C Additives	Stage 1 Tail		Bottom MD of S Cement Type Additives Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft) Percent Excess	egment			1502 1888 C 200 1.34 14.8 268 100%		

SURFACE CEMENT

								1	
		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		12.25	9.625	5013	11.	3.5	9		
Stage 1	Lead	Bbl/Sk bbls Stage Tool Dept Top MD of Segm Bottom MD of S Cement Type Additves	h nent egment	olseal, Defoamer, Ce		0.623885918 372.0365733 N/A 0 4163 C			
		Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft))			596 3.5 9 2,087.13			
		Percent Excess				50%	Target %	50%	. es;:
		Column Height	Target TOC	0		6,669.49			
			Calc TOC	-2506.5	bbl	25% Excess	50%		
			calc vol	0.055781888	279.6346021	349.5432526	419.4519031		
		F			<u> </u>				
		Hole Size 12.25	Casing Size 9.625	Depth 5013	Sacks	Yield 1.33	Density 14.8		
		14.23	9.023	3013		1.35	14.0		
		Bb1/Sk				0.237076649			
		bbls				47.41532977			
		Top MD of Segn	nent			4163			1
		Bottom MD of S				5013			
		Cement Type		_		С			
		Additives							
Stage 1	Tail								
13	-	Ourselle (stal)				200			1
		Quantity (sks) Yield (cu ft/sk)	· <u> </u>			1.33			
		Density (lbs/gal)				1.55			1
		Volume (cu ft)			· • · · · · · · · · · · · · · · · · · ·	266			
		Percent Excess				25%			
		Column Height				850.013004			
									1
1									

INTERMEDIATE 1 CEMENT - STAGE 1

	1							
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		12.25	9.625	3262	M41	3.5	9	
		Bbl/Sk				0.623885918		
		bbis				225.5254458		
		Stage Tool Dept)			N/A		
		Top MD of Segm	ent			0		
		Bottom MD of Se	egment			2412		
		Cement Type				с		i
19		Additves	Bentonite,Salt,Ko	olseal, Defoamer, Ce	lloclake			
Lead								[
		Quantity (sks)				361		
	l	Yield (cu ft/sk)				3.5		
	1	Density (lbs/gal)				9		
	1	Volume (cu ft)				1,265.20	•	
		Percent Excess				50%	Target %	50%
		Column Height				4,042.99		
			Target TOC	0				
			Calc TOC	-1631	bbl	25% Excess	50%	
			calc vol	0.055781888	181.960517	227.4506463	272.9407756	
					101.500017			
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		12.25	9.625	3262		1.33	14.8	
		Bbl/Sk				0.237076649		
		bbls				47.41532977		
	1	Top MD of Segm	ent			2412		
	1					3262		
		Bottom MD of Se						
		Bottom MD of Se Cement Type				C		
		Bottom MD of Se Cement Type Additives						
		Cement Type						
tail		Cement Type						
Tail		Cement Type Additives						
Tail		Cement Type			· · · · · · · · · · · · · · · · · · ·	<u>с</u>		
tall		Cement Type Additives Quantity (sks) Yield (cu ft/sk)				<u> </u>		
Judge 4 Tail		Cement Type Additives Quantity (sks)		· · · · · · · · · · · · · · · · · · ·		C 		
stage 2 Tail		Cement Type Additives Quantity (sks) Yield (cu ft/sk) Density (lbs/gal)				C 200 1.33 14.8		

INTERMEDIATE 1 CEMENT - STAGE 2

		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
Stage 1 Lead		8.75	7.625	10670	- 11	2.47	9	
		Bbl/Sk				0.440285205		
		bbls				168.6309595		
		Stage Tool Depth						
		Top MD of Segment 0						
	Bottom MD of Segment 6755							
		Cement Type H						
	Additves Bentonite,Retarder,Kolseal,Defoamer,Celloflake, Anti-Settling Expansion Additive							
		Quantity (sks) 383						
		Yield (cu ft/sk)				2.47		
	Density (lbs/gal)					9		
	1	Volume (cu ft)				946.02		
		Percent Excess				25%	Target %	25%
		Column Height				9,422.97		
		·		·				
			Target TOC	0				
			Catc TOC	-2667.5	bbl	25% Excess	25%	
			calc vol	0.01789574	190.9475483	238.6844354	238.6844354	
	1	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		8.75	7.625	10670	- 1	1.31	14.2	
		Bbl/Sk				0.233511586		
						70.05347594		
	Top MD of Segment 6755 Bottom MD of Segment 10670 Cement Type H							
	1	Additves Salt,Bentonite,Retarder,Dispersant,Fluid Loss						1
		Additves	Salt.Bentonite.Re	tarder Dispersant.	Fluid Loss			
		Additves	Salt,Bentonite,Re	tarder,Dispersant,	Fluid Loss			
Tall			Salt,Bentonite,Re	tarder, Dispersant,				
Tail		Quantity (sks)	Salt,Bentonite,Re	tarder, Dispersant,		300		
Tail	·	Quantity (sks) Yield (cu ft/sk)		tarder, Dispersant,		1.31		
TalleT		Quantity (sks) Yield (cu ft/sk) Density (lbs/gal)		tarder, Dispersant,		1.31 14.2		
Tail		Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft)		tarder, Uispersant,		1.31 14.2 393		
Stage 1 Tall		Quantity (sks) Yield (cu ft/sk) Density (lbs/gal)		tarder, Uispersant,		1.31 14.2		

INTERMEDIATE 2 CEMENT

****EXAMPLE ONLY - NOT FOR CONSTRUCTION****

	Hole Size	Casing Size	Depth	Sacks	Yield	Density		
	<u>6.75</u>	5.5	22496	1 K. C.	1.34	14.2		
	Bbi/Sk				0.23885918			
	bbls				418.2897805			
	Stage Tool Dept	h			N/A			
	Top MD of Segre				0			
	Bottom MD of S	egment			22496			
	Cement Type				Н			
1	Additves	Salt, Bentonite, F	luid Loss, Dispersa	nt, Retarder, Def	oamer			
Lead								
- I:	Quantity (sks)			· · · · · ·	1,751			
	Yield (cu ft/sk)				1.34			
	Density (lbs/gal)				14.2			
	Volume (cu ft)				2,346.61			
	Percent Excess				2,348.81	Target %	25%	
	Column Height				2370	I al Ber 20	2370	
	Column Height				28,120.00			
		Target TOC	0					1
		Calc TOC	-5624	bbl	25% Excess	25%		
		calc vol	0.01487517	334.6318244	418.2897805	418.2897805		
								1
	Hole Size	Casing Size	Depth	Sacks	Yield	Density		
	6.75	5.5	22496	0	0	0		1
	Bbl/Sk				0			1
	bbls				0			
	Top MD of Segm	ant			22496			1
Í	Bottom MD of Segm				22496			
	Cement Type	egment			H			
	Additives		·····		<u>n</u>			
=	Abolitves							1
Tail								I
	Quantity (sks)				0			
	Yield (cu ft/sk)				0			
	Density (lbs/gal)				0			
	Volume (cu ft)				0			
	Percent Excess Column Height				0			

PRODUCTION CEMENT

HALLIBURTON

Permian Basin, Ft Stockton

Lab Results- Lead

Submitte Custome	•	2488456/2 Dillon Briers Ameredev		Rig Name Job Type Location	Interm Lea	ediate Casing	Date Bulk Pia Well	18/DEC/201	: :
	Informat								
-	iner Size	7.625 in		Depth MD	5013 1		BHST	165°F	
Hole Siz	e 	8.75 in		Depth TVD	5013 1	It	внст	130°F	
Cemen	et Inform	nation - Lead D	lesign						¢
Conc	<u>UOM</u>	Cement/Additive					C	ement Properties	5
100	% BWOC	NeoCem					Slurry Density	9	lbm/gal
14.68	gal/sack	Heated Fresh Wat	er				Slurry Yield	3.5	ft3/sack
							Water Requirement	nt 14.68	gal/sack
		· · · ·				. :		· · · · ·	
Pilot 7	'est Resu	lts Request ID	248845	6/1					
API R	heology,	Request Test I	D:3566	5340					_
Гетр (de	egF) 300	200	1	00 d	50	30	6	3	Cond Time (min)
									(1111)
60 (up)	82	67		9 . 4	12	39	36	28	0
30 (down		59			26	18	10	9	0
10 (avg.)	82	63	4	2 3	34	29	23	19	0
V (cP) &	YP (lbs/100)ft2): 61.73	22.32	(Least-squares r	method)				· · · ·
			• ;		,				:
V (cP) &						.			
	11 (105/100)ft2): 60	22	(Traditional met	thod (300 & 10	0 rpm based))			
eneralize)ft2): 60 Bulkley 4: YP(lbf/10				0 rpm based)) n=0.8 i			
<u>-</u>	d Herschel-		0ft2)=20.33	8 Mulnf(cP)=52.3		• "			·
API R	d Herschel-	Bulkley 4: YP(lbf/10	0ft2)=20.33	8 Mulnf(cP)=52.3		• "	3	Cond Time	Cond Temp
API R	d Herschel- heology,	Bulkley 4: YP(lbf/10 Request Test I	0ft2)=20.33 D:3566	8 Mulnf(cP)=52.3 5341	9 m=0.81	n=0.8 i	3	Cond Time (min)	Cond Temp (degF)
API R	d Herschel- heology,	Bulkley 4: YP(lbf/10 Request Test I	0ft2)=20.33 D:3566	8 Mulnf(cP)=52.3 5341	9 m=0.81	n=0.8 i	3		•
API R Femp (de 134 (up)	heology, heology, egF) 300	Bulkley 4: YP(Ibf/10 Request Test 1 200 47	0ft2)=20.33 D:3566 100 29	8 Mulnf(cP)=52.3 5341 60 21	9 m=0.81 30	n=0.8 i	3	(min) 30	(degF) 134
API R Temp (de 34 (up) 34 (dow	ed Herschel-J heology, egF) 300 63 n) 63	Bulkley 4: YP(lbf/10 Request Test] 200 47 46	0ft2)=20.33 D:3566 100 29 29 29	8 Mulnf(cP)=52.3 5341 60 21 21 21	9 m=0.81 30 15 14	n=0.8 i	6 4	(mln) 30 30	(degF) 134 134
API R Femp (de 34 (up) 34 (dow	ed Herschel-J heology, egF) 300 63 n) 63	Bulkley 4: YP(Ibf/10 Request Test 1 200 47	0ft2)=20.33 D:3566 100 29	8 Mulnf(cP)=52.3 5341 60 21	9 m=0.81 30	n=0.8 i	6	(min) 30	(degF) 134
API R ⁷ emp (de 34 (up) 34 (dow 34 (avg.	ed Herschel-J heology, egF) 300 63 n) 63	Bulkley 4: YP(ibf/10 Request Test 1 200 47 46 47	0ft2)=20.33 D:3566 100 29 29 29	8 Mulnf(cP)=52.3 5341 60 21 21 21	9 m=0.81 30 15 14 15	n=0.8 i	6 4	(mln) 30 30	(degF) 134 134
API R Femp (dd 34 (up) 34 (dow 34 (avg. V (cP) &	63 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Bulkley 4: YP(lbf/10 Request Test 1 200 47 46 47 26 47 57.12	0ft2)=20.33 D:3566 100 29 29 29 29	8 Mulnf(cP)=52.3 5341 60 21 21 21 21	9 m=0.81 30 15 14 15 nethod)	n=0.8 i	6 4	(mln) 30 30	(degF) 134 134
API R Femp (dd 134 (up) 134 (dow 134 (avg. V (cP) & V (cP) &	ed Herschel-J heology, egF) 300 63 n) 63) 63 YP (lbs/100 YP (lbs/100	Bulkley 4: YP(lbf/10 Request Test 1 200 47 46 47 26 47 57.12	0ft2)=20.33 D:3566 100 29 29 29 29 29 29 29 29 12	B Mulnf(cP)=52.3 5341 60 21 21 21 21 (Least-squares r (Traditional met	9 m=0.81 30 15 14 15 nethod) thod (300 & 10	n=0.8 i	6 4	(mln) 30 30	(degF) 134 134
API R Femp (do 134 (up) 134 (dow 134 (avg. V (cP) & V (cP) & eneralize	ed Herschel-J heology, egF) 300 63 n) 63) 63 YP (lbs/100 YP (lbs/100 d Herschel-J	Bulkley 4: YP(lbf/10 Request Test 1 200 47 46 47 9ft2): 57.12 9ft2): 51	0ft2)=20.33 D:3566 100 29 29 29 7.98 12 0ft2)=2.26	8 Mulnf(cP)=52.3 5341 60 21 21 21 (Least-squares r (Traditional met Mulnf(cP)=30.6	9 m=0.81 30 15 14 15 nethod) thod (300 & 10	n=0.8 i 6 7 7 7 7 0 rpm based))	6 4	(mln) 30 30	(degF) 134 134
API R Femp (dd 134 (up) 134 (dow 134 (avg. V (cP) & V (cP) & v (cP) & eneralize API FI	ed Herschel-J heology, egF) 300 63 n) 63) 63 YP (lbs/100 YP (lbs/100 d Herschel-J	Bulkley 4: YP(lbf/10 Request Test 1 200 47 46 47 9ft2): 57.12 9ft2): 51 Bulkley 4: YP(lbf/10	0ft2)=20.33 D:3566 100 29 29 29 29 29 29 7.98 12 0ft2)=2.26 ID:3566	8 Mulnf(cP)=52.3 5341 60 21 21 21 21 (Least-squares r (Traditional met Mulnf(cP)=30.6 65342	9 m=0.81 30 15 14 15 nethod) thod (300 & 10	n=0.8 i 6 7 7 7 7 7 0 rpm based)) n=0.4 1	6 4	(mln) 30 30 30	(degF) 134 134 134
API R Femp (dd 134 (up) 134 (dow 134 (avg. V (cP) & V (cP) & V (cP) & Cest Tem	ed Herschel- heology, egF) 300 63 n) 63 YP (lbs/100 YP (lbs/100 ed Herschel-1 luid Loss	Bulkley 4: YP(lbf/10 Request Test 1 200 47 46 47 9ft2): 57.12 9ft2): 51 Bulkley 4: YP(lbf/10 5, Request Test Test Pressure (psi)	0ft2)=20.33 D:3566 100 29 29 29 29 7.98 12 0ft2)=2.26 ID:3566 Test Tin	B Mulnf(cP)=52.3 5341 60 21 21 21 21 (Least-squares r (Traditional met Mulnf(cP)=30.6 65342 ne (min) Me	9 m=0.81 30 15 14 15 nethod) thod (300 & 10 4 m=0.41	n=0.8 i 6 7 7 7 7 0 rpm based)) n=0.4 l Calculatec min)	6 4 5 1 FL (<30 Conditi (min)	(mln) 30 30 30 30	134 134 134 nditioning Tem gF)
API R Femp (dd 134 (up) 134 (dow 134 (avg. V (cP) & V (cP) & v (cP) & eneralize API FI	ed Herschel- heology, egF) 300 63 n) 63 YP (lbs/100 YP (lbs/100 ed Herschel-1 luid Loss	Bulkley 4: YP(lbf/10 Request Test 1 200 47 46 47 9f2): 57.12 9f2): 51 Bulkley 4: YP(lbf/10 5, Request Test	0ft2)=20.33 D:3566 100 29 29 29 29 29 29 7.98 12 0ft2)=2.26 ID:3566	8 Mulnf(cP)=52.3 5341 60 21 21 21 21 (Least-squares r (Traditional met Mulnf(cP)=30.6 65342	9 m=0.81 30 15 14 15 nethod) thod (300 & 10 4 m=0.41	n=0.8 i 6 7 7 7 7 0 rpm based)) n=0.4 1 Calculated	6 4 5 1 FL (<30 Conditi	(mln) 30 30 30 30	(degF) 134 134 134 134 nditioning Tem gF)
API R Femp (dd 134 (up) 134 (dow 134 (avg. V (cP) & V (cP) & V (cP) & Cest Tem	ed Herschel- heology, egF) 300 63 n) 63 YP (lbs/100 YP (lbs/100 ed Herschel-1 luid Loss	Bulkley 4: YP(lbf/10 Request Test 1 200 47 46 47 9ft2): 57.12 9ft2): 51 Bulkley 4: YP(lbf/10 5, Request Test Test Pressure (psi)	0ft2)=20.33 D:3566 100 29 29 29 29 7.98 12 0ft2)=2.26 ID:3566 Test Tin	B Mulnf(cP)=52.3 5341 60 21 21 21 21 (Least-squares r (Traditional met Mulnf(cP)=30.6 65342 ne (min) Me	9 m=0.81 30 15 14 15 nethod) thod (300 & 10 4 m=0.41	n=0.8 i 6 7 7 7 7 0 rpm based)) n=0.4 l Calculatec min)	6 4 5 1 FL (<30 Conditi (min)	(mln) 30 30 30 30	(degF) 134 134 134 134 nditioning Tem gF)
API R Gemp (do 34 (up) 34 (dow 34 (avg. V (cP) & V (cP) & V (cP) & Cest Tem 34	ed Herschel- heology, egF) 300 63 n) 63 YP (lbs/100 YP (lbs/100 ed Herschel-1 luid Loss	Bulkley 4: YP(lbf/10 Request Test 1 200 47 46 47 9ft2): 57.12 9ft2): 51 Bulkley 4: YP(lbf/10 5, Request Test Test Pressure (psi)	0ft2)=20.33 D:3566 100 29 29 29 29 7.98 12 0ft2)=2.26 ID:3566 Test Tin	B Mulnf(cP)=52.3 5341 60 21 21 21 21 (Least-squares r (Traditional met Mulnf(cP)=30.6 65342 ne (min) Me	9 m=0.81 30 15 14 15 nethod) thod (300 & 10 4 m=0.41	n=0.8 i 6 7 7 7 7 0 rpm based)) n=0.4 l Calculatec min)	6 4 5 1 FL (<30 Conditi (min)	(mln) 30 30 30 30	(degF) 134 134 134 134 nditioning Tem gF)
API R emp (dd 34 (up) 34 (dow 34 (avg. 7 (cP) & 7 (cP) & 7 (cP) &	ed Herschel- heology, egF) 300 63 n) 63 YP (lbs/100 YP (lbs/100 ed Herschel-1 luid Loss	Bulkley 4: YP(lbf/10 Request Test 1 200 47 46 47 9ft2): 57.12 9ft2): 51 Bulkley 4: YP(lbf/10 5, Request Test Test Pressure (psi)	0ft2)=20.33 D:3566 100 29 29 29 29 7.98 12 0ft2)=2.26 ID:3566 Test Tin	B Mulnf(cP)=52.3 5341 60 21 21 21 21 (Least-squares r (Traditional met Mulnf(cP)=30.6 65342 ne (min) Me	9 m=0.81 30 15 14 15 nethod) thod (300 & 10 4 m=0.41	n=0.8 i 6 7 7 7 7 0 rpm based)) n=0.4 l Calculatec min)	6 4 5 1 FL (<30 Conditi (min)	(mln) 30 30 30 30	(degF) 134 134 134 134 nditioning Tem gF)

Global Customer Report

Page 1 of 2

Free Fluid A	PI 10B-2, Re	quest Te	st ID:35665343			
Con. Temp (degF)) Cond. Tir	ne (min)	Static T. (F)	Static time (min)	Incl. (deg)	% Fluid
134	30		80	120	0	0
Pilot Test Re	sults Reques	at ID-2504	116/5			
Thickening T	ime - ON-O	FF-ON, I	Request Test ID	:35852392		
Test Temp (degF)	Pressure (psi)	Reached i	n (min) 70 Bc (hh:m	in) Start Bc		
126	5800	40	6:18	16		
UCA Comp.	Strength, Re	equest Te	st ID:35852394			
End Temp P (degF)	ressure (psi) 5	0 psi (hh:mm	i) 500 psi 12 (hh:mm)	2 hr CS (psi) 24 hr CS (ps	i) 48 hr CS (psi)	· · ·

681

456

8:55

12:23

4000

159

This report is the property of Halliburton Energy Services and neither it nor any part thereof, nor a copy thereof, is to be published or disclosed without first securing the expressed written approval of Halliburton. It may however be used in the course of regular business operations by any person or concern receiving such report from Halliburton. This report is for information purposes only and the content Is limited to the sample described. Halliburton makes no warranties, expressed or implied, as to the accuracy of the contents or results. Any user of this report agrees Halliburton shall not be liable for any loss or damage regardless of cause, including any act or omission of Halliburton, resulting from the use hereof.

Global Customer Report

Page 2 of 2

6/6/2017 6:18:53 PM

USS U. S. Steel Tubular Products

7.625" 29.70lbs/ft (0.375" Wall) HCL80 USS-LIBERTY FJM[®]

MECHANICAL PROPERTIES	Pipe	USS-LIBERTY FJI	M.e.
Minimum Yield Strength	110,000		psi
Maximum Yield Strength	140,000		psi
Minimum Tensile Strength	125,000		psi
DIMENSIONS	Pipe	USS-LIBERTY FJ	W®
Outside Diameter	7.625	7.625	in.
Wall Thickness	0.375		in.
Inside Diameter	6.875	6.789	in.
Standard Drift	6.750	6.750	in.
Alternate Drift			in.
Nominal Linear Weight, T&C	29.70	 ' ' '	lbs/ft
Plain End Weight	29.06	<u> </u>	lbs/ft
SECTION AREA	Pipe	USS-LIBERTY FJI	M [®]
Critical Area	8.541	5.074	sq. in.
Joint Efficiency		59.4	%
PERFORMANCE	Pipo	USSHIBERTYFI	$\mathbb{K}_{0}^{(1,0)}$
Minimum Collapse Pressure	6,700	6,700	psi
Minimum Internal Yield Pressure	9,460	9,460	psi
Minimum Pipe Body Yield Strength	940,000		lbs
Joint Strength		558,000	lbs
Compression Rating		558,000	lbs
Reference Length		12,810	ft t
Maximum Uniaxial Bend Rating	-	39.3	deg/100 ft
	-		
Make-Up Loss		3.92	in.
Minimum Make-Up Torque	-	10,800	ft-lbs
Maximum Make-Up Torque		15,250	ft-lbs
design or safety factors. Calculations assume nominal Compressive & Tensile Connection Efficiencies are call Unlaxial bending rating shown is structural only, and eq USS-LIBERTY FJM™ connections are optimized for ea	pipe OD, nominal wall the culated by dividing the of ual to compression effi- ach combination of OD a pound friction factor of 1 atc.). by nominal plain end w	hickness and Specified Minimur connection critical area by the p clency. and wall thickness and cannot b .0 and are recommended only. eight with 1.5 safety factor.	ipe body area. re interchanged. Field make-up torques may require adjustment based on actual field
	······································		·····
specific application without independent competent prof	essional examination a	nd verification of accuracy, suita	information only. This material should not therefore be used or relied ability and applicability. Anyone making use of this material does so at ad warranties of fitness for any general or particular application.
	·		
	U, S, Steel Tub 10343 Sam Houston F		3-9461 ns@uss.com

U.S. Steel Tubular Products

Uss

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTION	
MECHANICAL PROPERTIES			
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
RIOIZIEMIC			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
ECTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
ERFORMATE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque	:	14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque	· · ·	25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

 Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.

3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.

4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.

6) Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application. Manuel USS Product Data Sheet 2017 rev25 (April)

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064 1-877-893-9461 connections@uss.com www.usstubular.com

QUALITY CONTROL	No.: QC-DB- 651 / 2013
	Page : 1 / 44
Hose No.:	Revision : 0
66551, 66552, 66553, 66554	Date: 14. November 2013.
	Prepared by : Scala Lander
	Appr. by: Appr. Such

CHOKE AND KILL HOSES

id.: 3" 69 MPa x 35 ft (10,67 m)

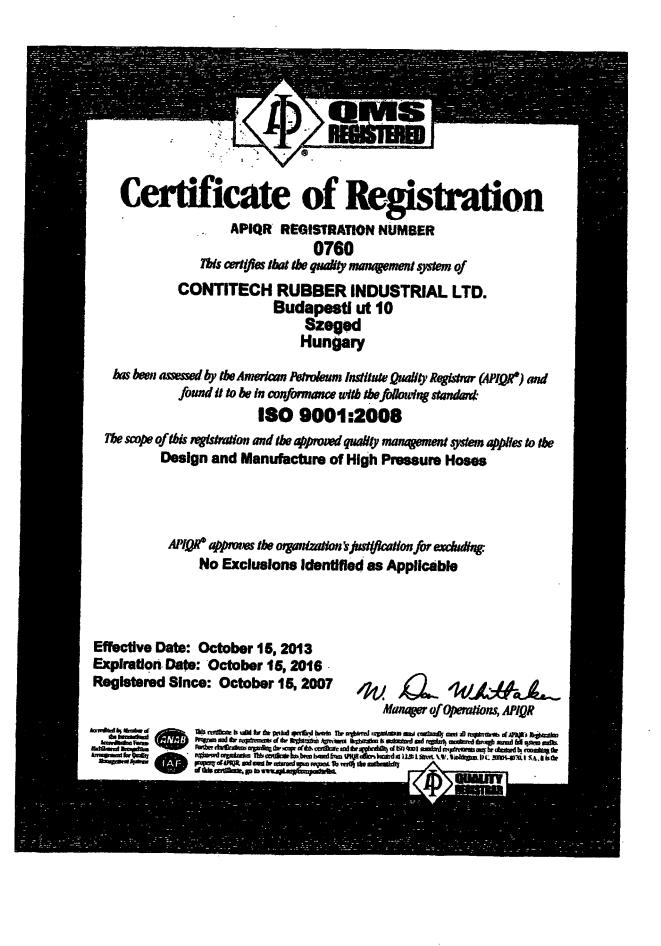
DATA BOOK

Purchaser: H&P STOCK Purchaser Order No.: ContiTech Rubber Order No.: 537587 ContiTech Oil & Marine Corp. Order No.: 4500370505

NOT DESIGNED FOR WELL TESTING

ContiTech Rubber Industrial Kit. Budapesti út 10., Szeged H-8728 P.O.Box 152 Szeged H-8701 Hungary Phone: +36 62 566 737 Fea: +36 62 566 738 e-mail: Info@fluid.contitech.hu Internet: www.contitech-rubber.hu The Court of Ceongréd County es Registry Court Registry Court No: HU 06-09-002502 EU VAT No: HU11087209 Bank data Commercial and Creditbank Szeged 10402805-28014250-00000000

CONTITECH RUBBER	No.: QC-	DB- 651 / 2013
Industrial Kft.	Page:	2/44


CONTENT

1.	API QMS Certificate (No.: 0760)	<u>Page</u> 3.
2.	American Petroleum Institute Certificate of Authority To Use the Official API Monogram (No.: 16C-0004)	4.
3.	Quality Control Inspection and Test Certificates (No.: 1905, 1906, 1907, 1908)	5-8.
4.	Hose Data Sheet	9.
5.	Metal Parts	
5.1.	Raw Material Quality Certificates (No.: TR070687, EUR-265844, 86989/13-0)	10-13.
5.2.	Hardness Test Reports (No.: 561/13, 562/13)	14-15.
5.3.	Ultrasonic Test Reports (No.: 513/13, 514/13, 515/13)	16-18.
5.4.	NDT Examiner Certificate (Name: Tóth Ákos József)	19-20.
5.5.	Welding Procedure Specification (No.: 140-71)	21-24.
5.6 .	Welding Procedure Qualification Record (No.: BUD 0700002/1)	25-26.
5.7.	Welder's Approval Test Certificate (No.: RK1825997.R1)	27-28.
5.8 .	Welding Log Sheet (No.: 2013/2898)	29.
5. 9 .	Visual Examination Record (No.: 813/13)	30.
5.10.	NDT Examiner Certificate (Name: Kis Gábor Balázs)	31-32.
5.11.	Radiographic Test Certificates (No.: 2431/13, 2430/13)	33-34.
5.12.	NDT Examiner Certificate (Name: Ménesi István)	35-36.
5.13.	MP Examination Record (No.: 1222/13)	37.
5.14.	NDT Examiner Certificate (Name: Oravecz Gábor)	38-39.
6.	Steel Cord	
6.1.	Inspection Certificate (No.: 4046181212)	40.
7.	Outside Stripwound Tube	
7.1.	Inspection Certificate (No.: 63892/2012)	41.
8.	Certificate of Calibration (Manometer Serial No.: 1518086)	42-44.

0

ContiTech Bubber Industrial Kft. Quality Control Dept. (1)

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	3/44

Certificate of Authority to use the Official API Monogram License Number: 16C-0004 ORIGINAL The American Petroleum Institute hereby grants to CONTITECH RUBBER INDUSTRIAL LTD. **Budapesti ut 10** Szeged Hungary the right to use the Official API Monogram[®] on manufactured products under the conditions in the official publications of the American Petroleum Institute emitted API Spec Q1® and API Spec 16C and in accordance with the provisions of the License Agreement. American In all cases where the Official API Monogram is applied, the API Monogram should be used in conjunction with this certificate number: Petroleum 16C-0004 Institute The American Petroleum Institute reserves the right to revoke this authorization to use the Official API Monogram for any reason satisfactory to the Board of Directors of the American Petroleum Institute. The scope of this license includes the following product: Flexible Choke and Kill Lines. QMS Exclusions: No Exclusions Identified as Applicable American Petroleum Institute Effective Date: OCTOBER 15, 2013 Expiration Date: OCTOBER 15, 2016 2011.111 to verify the authenticity of this license, go to www.apl.org/compositofist. Director of Global Industry Service

CONTITECH RUBBER

No:QC-DB-

651

Industrial Kft.

Page:

4/44 /2013

CONTITECH RUBBER	No:QC-DE	8- 651 /2013
Industrial Kft.	Page:	5 / 44

PURCHASER: CONTITECH RUBBER ord HOSE SERIAL N°: W.P. 68,9 MPa Pressure test with water ambient temperature	der N°: 537587 66551 10000 psi at	Oil & Marine (HOSE TYPE: NOMINAL / AC T.P. 103,4	3"	ID NGTH: 1500	P.O. N°:	Choke and	4500370505 d Kill Hose n / 10,75 m 60	min.
HOSE SERIAL N°: W.P. 68,9 MPa Pressure test with water	66551 10000 psi at	NOMINAL / AC	TUAL LE	NGTH:	1 0 psi	10,67 m	n / 10,75 m	min.
W.P. 68,9 MPa Pressure test with water	10000 psi at	T.P. 103,4			i) psi			min.
Pressure test with water	at		MPa	1500	() psi	Duration:	60	min.
						• •		
		• • •						
		See attachm	ent. (1	page)	:		
						· ·	:	
↑ 10 mm = 10 → 10 mm = 25	Min. MPa							
COUPLINGS		Seria	l Nº		Q	uality	Heat N	0
3" coupling) with	8084	8083	3	AIS	il 4130	24613	3
4 1/16" 10K API	Flange end				AIS	il 4130	03493	9
NOT DES	GNED FOR W	VELL TESTIN	IG			A	PI Spec 16	С
All metal parts are flawle	55					Temp	erature rate	:" B "
WE CERTIFY THAT THE A INSPECTED AND PRESSU						H THE TERMS	S OF THE ORDER	ł
STATEMENT OF CONFOR conditions and specification accordance with the referen	is of the above Pure	chaser Order and t	hat these	items/eq	uipment v	vere fabricate	d inspected and t	tested in
· .		COUNTRY OF OR	IGIN HUNG	GARY/E	U			
Date:	Inspector		Quality	Contro			~	
13. November 201	3.		20	ut s	Ind	Tech Rubber netrial Kft. Control Dep)

Budapesti út 10., Szeged H-6728 P.O.Box 152 Szeged H-6701 Hungary Phone: +36 62 566 737 Fex: +36 62 566 738 e-mail: info@fluid.contitech.hu Internet: www.contitech-rubber.hu The Court of Ceongrad County as Registry Court Registry Court No: HU 05-09-002502 EU VAT No: HU11087209

Commercial and Creditbank Szeged 10402805-28014250-00000000 ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE No: 1904, 1905 Page: 1/1

15													Que	nerz Dda Lity (ech Ru tiriai I Control
RD	+28.	85, 9C		Ī	20) 20)	20							Π		
RD RD	+28.				20) 20) 20)										
RD BL	+28. +165				20:	000							+ +		
	+20 +105				19:	50 50									
RO EL		26 90 5. bai			191	40									
	+20 +105	99 90 17 90 9- 64 8- 64			191										
RD BL	+20.	10 °C 4. bai			191	2020							++		
	1.20 1,66	13. 19 551 19	: 10 : 10										++		
		20 3	0 4		+ 	50 50	6	0	7	5	е)	9	o	100

1

Hungary

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	6 / 44

QUALIT INSPECTION AN	TY CON ND TEST		ATE	CERT.	N°:	1906	
PURCHASER: C	ontiTech (Oil & Marine C	orp.	P.O. Nº	:	4500370505	
CONTITECH RUBBER order N°:	537587	HOSE TYPE:	3" ID		Choke and	Kill Hose	
HOSE SERIAL Nº:	66552	TUAL LENG	TH:	10,67 m	/ 10,73 m		
W.P. 68,9 MPa 1000)() psi	т.р. 103,4	MPa 15	5000 psi	Duration:	60	min.
Pressure test with water at ambient temperature		.					
					. '		
I	8	See attachme	ent. (1 pa	ge)			1
							:
↑ 10 mm = 10 Min.							
\rightarrow 10 mm = 25 MPa							
COUPLINGS Type		Serial	l Nº	6	luality	, Heat N°	
3" coupling with		8088	8085	AIS	SI 4130	24613	
4 1/16" 10K API Flange	end			AIS	SI 4130	034939	
NOT DESIGNED	FORW	ELL TESTIN	IG		A	PI Spec 16 C	;
					Tempe	erature rate:'	" B "
All metal parts are flawless WE CERTIFY THAT THE ABOVE HO	SE HAS BE		RED IN ACCO	RDANCE WIT	H THE TERMS	OF THE ORDER	
INSPECTED AND PRESSURE TEST	ED AS ABO	VE WITH SATISFA	CTORY RESI	JLT.			
STATEMENT OF CONFORMITY: conditions and specifications of the accordance with the referenced stand	above Purch	haser Order and th	hat these item	s/equipment	were fabricated	inspected and tes	ted in
			GIN HUNGAR	Y/EU			
Date: In:	spector		Quality Co				
13. November 2013.		· · · ·	Beller	Indu	strial Kft.	back in	
Budapesti út 10., Szeged H-6728 Fax: +5 P.O.Box 152 Szeged H-6701 e-mail: Im	38 62 566 737 38 62 566 738 fo@fluid.contitech. ww.contitech-rubb	Registry Cou hu Registry Cou	Csongrád County a rt rt No: HU 08-09-00; HU 1087209	Commerce 2502 Szeged	l lal and Creditbank i-28014250-00000000)	

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	7 / 44

INSPE	-	JALITY ()N AND			FIFIC	ATE		CERT	N°:	1907					
PURCHASER:	<u> </u>	Conti	Tech (Oil & Ma	rine C	orp.		P.O. №: 4500370505							
CONTITECH RUB	BER ord	er Nº: 537	587	HOSE T	YPE:	3"	ID	Choke and Kill Hose							
HOSE SERIAL N	•:	665		10,67 m	/ 10,745 n	1									
W.P. 68,9	MPa	10000	psi	T.P. 1(03,4	MPa	1500)() ps	I Duration:	60	min.				
Pressure test with ambient tempera		at													
			{	See atta	achme	ent. (1	l page)							
· · ·									· .	:					
↑ 10 mm = → 10 mm =		Min. MPa					r			·]					
	PLINGS				Serial				Quality		nt N°				
3" œ 4 1/16" 10	OUPIING			8089	•	808	7		ISI 4130 ISI 4130	23171	24613 939				
			-												
NOT	DESI	GNED FO	DR W	ELL TE	STIN	G				PI Spec 1					
All metal parts are	e flawles	8							Temp	erature ra	ite:"B"				
WE CERTIFY THAT							-		ITH THE TERM	S OF THE ORI	DER				
STATEMENT OF C conditions and spe accordance with the	ONFOR	WITY: We has of the above	ereby c /e Purct	ertify that t haser Orde	he abov r and th	e items/ at these	equipme items/e	nt suppli quipmen	t were fabricate	d inspected a	nd tested in				
				COUNTRY		GIN HUN	IGARY/E	U							
Date: 13. Novembe	er 2013	Inspec	tor			Qualit	y Contro	Con	tiTerte Arthan dustrigh Mint ity Control Dat	ler Hocn	$\overline{)}$				

Contriber Hubber Industrial Kit. Budapesti út 10., Szeged H-6728 PO.Box 152 Szeged H-6701 Hungary Phane: +38 62 568 737 Fax: +36 62 566 738 e-mail: info@ftuid.contitech.hu Internet: www.contitech-rubber.hu

The Court of Coongrad County as Registry Court Registry Court No: HU 08-09-002602 EU VAT No: HU11087209

Commercial and Creditbank Szeged 10402805-28014250-00000000

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	8/44

QUALITY CON INSPECTION AND TES	TE	CERT. N	1 °:	1908						
PURCHASER: ContiTech	Oil & Marine Co	p.	P.O. N°:		4500370505					
CONTITECH RUBBER order Nº: 537587	3" ID	Choke and Kill Hose								
HOSE SERIAL Nº: 66554	NOMINAL / ACTU	AL LENGTH	•	10,67 m	n / 10,71 m					
W.P. 68,9 ^{MPa} 10000 psi	T.P. 103,4 M	Pa 150	00 psi	Duration:	60	min.				
Pressure test with water at ambient temperature	See attachmen	t (1 page	a)							
			,							
$\uparrow 10 \text{ mm} = 10 \text{ Min.}$ $\rightarrow 10 \text{ mm} = 25 \text{ MPa}$										
→ 10 mm = 25 MPa COUPLINGS Type	Serial N		Q	uality	Heat	N°				
3" coupling with	8090	8086	AIS	il 4130	23171	24613				
4 1/16" 10K API Flange end			AIS	il 4130	0349	39				
NOT DESIGNED FOR W	ELL TESTING	Į.		A	PI Spec 1	6 C				
All metal parts are flawless				Temp	erature ra	te:"B"				
WE CERTIFY THAT THE ABOVE HOSE HAS BI				H THE TERMS	OF THE ORD	ĒR				
STATEMENT OF CONFORMITY: We hereby conditions and specifications of the above Pure accordance with the referenced standards, codes	haser Order and that	these items/e	quipment v	vere fabricated	inspected and	tested in				
· · · · · · · · · · · · · · · · · · ·	COUNTRY OF ORIGIN	I HUNGARY/E	EU							
Date: Inspector 13. November 2013.		Quality Contro	្រីបន្ទា ក្រ	tiTech Rubbe dustrial Kft. ty Control De)				

ContTech Rubber Industrial Kft. Budapesti út 10., Szeged H-6728 P.O.Box 152 Szeged H-6701 Hungary Phone: +38 62 568 737 Fax: +38 62 568 738 e-mail: info@tiud.contitech.hu Internet: www.contitech-rubber.hu

The Court of Csongråd County as Registry Court Registry Court No: HU 06-09-002502 EU VAT No: HU1 1087209

Bank date Commercial and Creditbank Szeged 10402805-28014250-00000000 ATTACHMENT OF QUALITY CONTROL INSPECTION AND TEST CERTIFICATE No: 1906, 1907, 1908

Page: 1/1

•

n ech Rubi er

Endustrial Kft. Mity Control Dept.

																										(Con	
6																										•		1
RD		1	24	BNO	k			<u>ii</u>			17		2020						1				:		1		Π	
20 J 3	1		7. 25		Ľ						17		10								Í		:			1		
RD	119		7. 75		ic	10 10 10	p								60	2		7	D		зр		1	9) 2	1	50	
			7. 75		ł						16	2	50 50					•	1			; ;	Í			ĺ		
	1		3.5								16		40 40		(;			T		
		1	35		: 12						16							1	;	· ;		1 1	;					
RD	+	1	26		ł	Ċ								I	-	- - 	1	•			Ī	1	-					
2																	. 						,		1	1		
12.	552	 	66	101	3,	66	5	54			0	8																
	Ĭ				ļ		H		#	1				:		1		1					i				í	
	tt	11	Ħ	T	Π	11	11	11	1	Ţ	Π	Ì	i		Ħ	·	ļ,	÷ 1					-	Ī	;		T	

CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page: 9 / 44

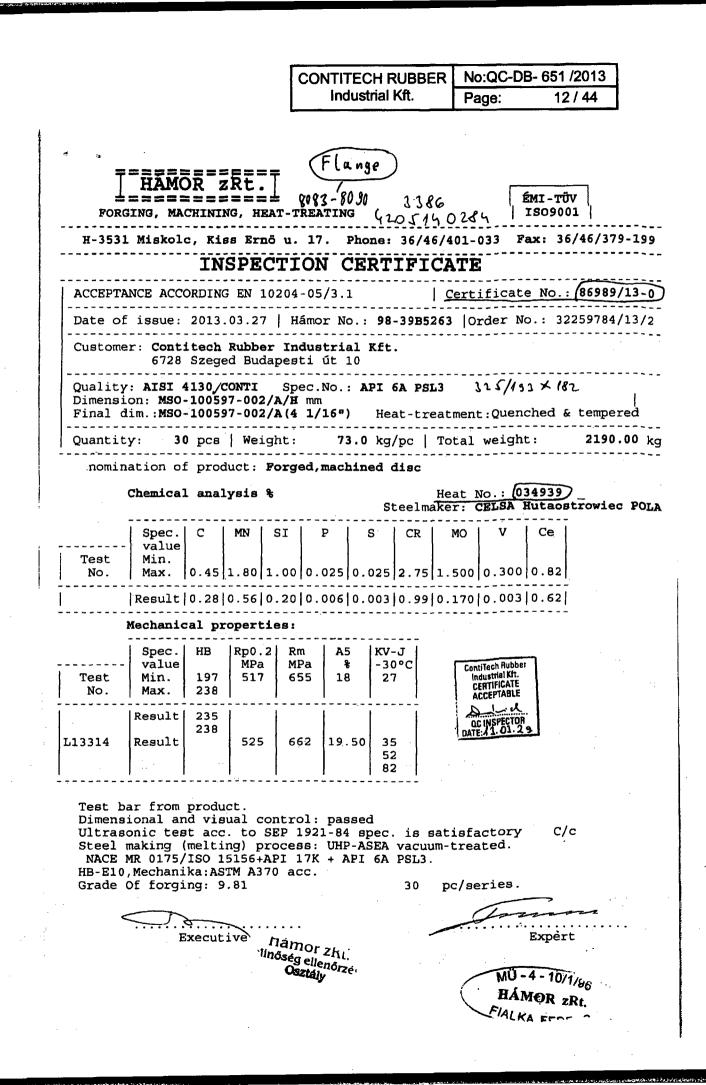
Ontinental S CONTITECH

Hose Data Sheet

CRI Order No.	537587
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500370505
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	35 ft
Type of coupling one end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155STANDARD RING GROOVE
Type of coupling other end	FLANGE 4.1/16" 10KPSI API SPEC 6A TYPE 6BX FLANGE C/W BX155 STANDARD RING GROOVE
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL RESISTANT
Safety clamp	No
Lifting collar	No
Element C	No
Safety chain	No
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

				Г					No:QC	-DB- 6	51 /20	13
					CONI	i i ECt idustri	I RUBE al Kft.		Page:		10/4	
				L				╾╌┺╴				
						(Bod	y)			t t	
Γ	Customer:		ContiT	ech Rubt	per Indus	trial Kft	(
1	Order Num				-	258500 160045	80 83	- 8088				
- 1	Part Numbe Our Rel:	HT:				160045 D64201						
	Date:				h Februa	-			8	t e	e 1	S
1.4	Certificate I		_	070687/(Rev. 18/0	6/2013)	31	451-	. 14	66		
ľ	••	ilgnatories: Greaves A	Cocking	j Jarvis /	Pears S	Selman		-	. ۔ ۵۵			
с Г									6 00	47		
	Descript		O BAR, HEA	TTREATER			HARDENED		C FOR 53	HOURS		Freatment
	97-238 BHN	I, 655MPA N	IIN TENSILE	, 517MPA N	AIN YIELD,	18%	TEMPERED	AT 870°C F	OR 10 HOU	IRS (AIR CC	OOL)	•
10	DR COLDE	R) LATERAL	RPY IMPAC EXPANSIO	N 0.38 MIN,	ROLLING			SUREMENT	, FURNACE	ATMOSPH	ERE THER	I, 35°C. MOCOUPLE
- H.			1% MAX & O		•	1	COMPONEN TEST COUP					TION
	ECHANICA	L TEST SPI	ECIMEN TO				REDUCTION	RATIO - 6	2			
11	ACE MRUT	75/ISO1515	D APPLIES				REDUCTION FURNACE C					1ECE
1	PPROX 20	TONNES 2	10 MM DIA				C/E = 0.693					
ļ	ERTS TO E	N10204 3.1										
	C	Si	Mn	s	IP	CAS	T 24613	Mo	Al	Cu	Sn	Nb
	-	0.2590	}	1	0.0100		1 0580		0.0200			
	V.5200	Ta	Ti	Nb+Ta	Co	N. 1000	B	0.2330 W	0.0200 Ce	0. 1420 Fe	0.0070 As	55
	0.0010		0.0010			0.0079	0.0001					
	Pb	Ca		CEV		0.001	0.0001	<u> </u>				<u> </u>
	L		1.20	0.69							l	
	ſ	Temperatu	ira	TES Re	T SPECIF Rp 0.2	ICATION Rm	517 N/mr	n2 MIN Y Z %	IELD Impt	ict	Temp.	Hardness
		RT			517.000							
	L			8/mm2	Nimm2	N/mon3	40					
	Test Nur	nber	Dir./Temp.	. Re_	Rp	Rm	RESULTS	Z %		ules	Charpy Direction	HEWICIANO
	ST2256		20,0°C	 -	524.000	696.000		67.70	KCV 48°C KCV	60 50 78	LONG	211
	Specimen	Ø 12.500mm	·	l	I	L	L	L	-60°C % Shear Sur	50 50 46 face	LONG	l
									62.0% 5	2.0% 80.0%		
									Lateral Expa	nston (mm) .740 1.020	LONG	}
- 1									Co	ntiTech Rub ndustrial Kh	ber	
										CERTIFICATI		
			TH Stools	Ltd	11	rK	MA			りいう		
	For and co	Rehalf			4. [0	1CILI	ng			CINSPECTO	ñ,	•
	For and or	Behalf of	110 016619		/ 2	1	<u> </u>				<u></u>	•
	For and or	a Behalf of	110 3(5813	Ϊ	, .							
	For and or				, ,						Tei •4	4 (0)1248 25831
	M Stees Lid	,								•		4 (0)1248 25831 4 (0)1246 26831
	M Stees Lid Coxwood Way Foxwood Roa	,	119 016019					o Industria			Sales Fax +4 Iction Fax +4	4 (0)1246 2883 1 4 (0)1248 26984
	M Stees Lid	,	119 016019		Steel for t	he Oit and	Engineerin Boring Fac	-		Prote	Sales Fax +4 Ictum Fax. +4 email sale	4 (0)1246 28831

Carbrook Street Sheffield S9 2JN Telephone: +44 114 244 6711 Facsimile: +44 114 244 7469

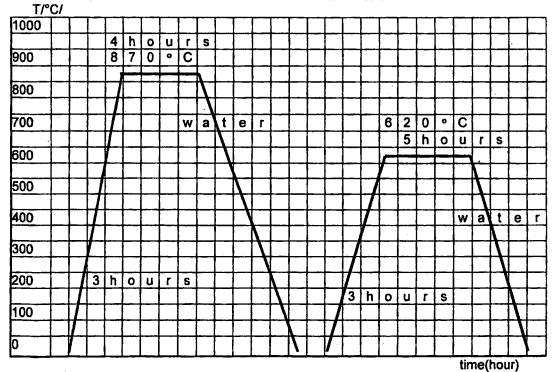


Certile, 1930 Results quoted only refer to the items tested

Body **Test Certificate** 8089 - 80 90 Customer Order Number Test Number 32252193 - 01 402483 70: CONTITECH RUBBER INDUSTRIAL KFT H-8728, SZEGED, BUDAFESTI UT 10, K/SG2 - K/S75 HUNGARY, HUNGARY, HUNGARY, S2-0.516 DO 55 Customer Order Date Part Number 27Feb12 4205160045 Sales Order Number Cast Number (23171) EUR-352067-1 25Sep12 Report Date Cert Number EUR-265844 420516 0045 14 Pos 17402 Kgs 210 mm Dia Quantity Description AISI 4130 75K8I .2% PS API QTC Steel Type ALLOY 4130

Vaterial Specifica	tion	AISH	130 /																					
Heat Treatment S	pec	197-1	378HN						Tes	t Spec 5	17N/MN	2MIN.YLD)				Test Sp	ec				******		
Melt Practice		EFN	อ			Produc	ction Meth	ad 🛛	FORG	ED														
Heat Treatm	ient	Tet	np(°C)		Soak		Co	olant	Che	uga Ref.	Intt	Max(°C)	Ba	lich	Temp n	bebrace	using	CONT	ACT THE	MOCOU	PLE			
HARDEN		860		3 HF	RS		WATER	OUENCH	SHF-1	58284	20	30	09120	91308	Nature	of T/P		Separ	ete					
Temper		650		4 HF	rs		TABLE C	OOL	SHF-1	58284			10120	91319	Qto siz	19 4ini	ah SQ X 6l	nch LON	B					
													_						Req. Min/i	Max		Ach	ieved	
															Hardin	ess on T	7P	197	237	HBW	229	2	229	HBW
															Hardne	ess on M	laterial	197	237	HBW	218	4	235	HBW
Tensile - Location		0	ction		D- 00			łm		A%		Z%	Impada	a - Location			ection	1	CVN		Lat Fim	(TTTTTTTTTTTTT	6 Shear
Location 1/4T			rudina		Rp 0.2 517 M			-um to 600	10	A76 Min (40)		278 0 Min	+	1/4T			TUDINAL	<u> </u>	7 Min Ave		Lat. Exp. (0.380 N		<u>+'</u>	6 Snear 0
Results (N/mm2)				<u>-</u>	580	-			ļ	(40)			Decision				entigrade	<u> </u>	106 104 102		1.44 1.42 1.4		40 40 4	
							· '			00.0000		64.0 (12.56mm) Results (Jo							·			+'		
Results			<u> </u>		·		+						Result	ba				1					+	
Corrosion ·		1														<u></u>								
Pitting Resistanc	θ.,			Fe	errite	1							Micros	incture				•						
Carbon Equivale	nt.					 /	871	·			Gra	In Size	Min		. 6	Max	•	6						·
C . SI	Mn	P		6	a	Мо	N	Cu		<u> </u>								·]	T					T
0.2940 0.2920	0.5370	0 001	10 00	2050	1.0620	0.2290	0.1860	0.2490											ŀ					
Cents to BSEN10 NACE MR-01-75 FE = BAL REDUCTION RA	170 6.5	ส		_						Industrial CERTIFIC ACCEPTA	Ktt. ATE BLE						All furnaci Hardness force per Third par	load/per ASTM E	netration d 10.	rms to AP spth - HB	16A 20th E W 10 diam	dition A eter (mr	NNEX n)/300	M. O logi tes
Names of Appro This report is not	to be re	produc	ed with	laxted put with	G.Smith Itten appr	S.Sute oval.	r P.Roger	B M.Brown							\$	Signature	M	53			Page	1 of 1		

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 11 / 44


CONTITECH RUBBER	No:QC-D	B- 651 /2013
	Page:	13 / 44

7		
MISKOLC Kiss Emő u. 17. sz. H-3531 tel:3	6/46/401-033 fax:36/46/379-	199 e-mail: <u>hamor@t-online.ht</u>
. <u></u>		COL NUMMER: 98-39B52
HEAT-TREAT	MENT PROTOCO	OL
BUYER: CONTITECH RUBBER INDUSTRIAL Kft. Szeged Budapesti út 10. sz.	r i i i i i i i i i i i i i i i i i i i	o. of Buyer: 9784/13/2
Dudapesii ut 10. sz.	Work No. of Buyer:	
PRODUCT:	QUANTITY: PIECE	No. of drawing:
forged	30	MSO-100597-002/A/H
MATERIAL QUALITY: AISI 4130 CONTI API 6A PSL3	Charge No.: 34939	Test No.:

HEAT-TREATMENT: quenching and tempering

Typ of furnace: electric furnace Hardening medium: water

PROCESS OF HEAT-TREATMENT

Miskolc, Hámor ZRt. 2013-03-26.

<u>a no</u>

head of heat-treatment

Hámor zRt, ^{Jinós}ég ellenőrzés **Osztály**

winword\doc\HOKEZ-K\CONTITEC\4130-620

	· · · · · · · · · · · · · · · · · · ·	······			
	GAMMAA-UMAT KOLL	REF	ESS TEST PORT	Report N	No: 561/13.
	CLIENT:		SZEGED, KUL	TERULET, 014	108/22.
	TEST EQUIPMENT; PROCEDURE:	TH 160-D Ha QCP-45-R1	rdness tester		
	DESCRIPTION OF COUP		after PWHT		
	DRAWING NUMBER: SERIAL NUMBER:	MT-3121-30(8083; 8084; 1			
	BRINELL HARDNESS	SERIAL NO OF	PART O	ETUE	ACTUAL
·	REQUIREMENT	COUPLING	COUP	LING	HARDNESS RESULT (HB)
					· · · · · · · · · · · · · · · · · · ·
		V 8083	bod wel		224 222
	Min HB 197 Max HB 238		flang	ge	236
			connectio	•	238
·		√ 8084	bod wei	ď	213 208
			flang connectio	je on face	220 238
			body		214
		- 8085	weld flang		214 219
			connectio		222
: .		8086	body weld		232 237
			flang	e .	238
			- Minerio		197
	The coupling(s) conform to	API Spec 6A requi	rements.	l	
ŀ	DATE:	PREPARED:		APPROXE	D:
	2013. október 30.	The	že		CONTROLL KFT.
		Ménesi is	tván	Y COSTON	mma control h

CONTITECH RUBBER	No:QC-DB- 651 /201	3
Industrial Kft.	Page: 15 / 44	

19/18/13 12:54 Lap: 3 gamma controll kft 61344 HARDNESS TEST CAMMA-CONTRULL Report No: 562/13. REPORT 67% Appo, interties 01064/16. http: DAUTes : e00.62513-600/61044 CLIENT; JE-ZO KFT. SZEGED, KÜLTERÜLET, 01408/22. TEST EQUIPMENT: TH 160-D Hardness tester QCP-45-R1 PROCEDURE: DESCRIPTION OF COUPLING: coupling(s) after PWHT DRAWING NUMBER: MT-3121-3000 8087; 8088; 8089; 8090 SERIAL NUMBER: ACTUAL **BRINELL HARDNESS SERIAL NO OF** PART OF THE HARDNESS RESULT (HB) REQUIREMENT COUPLING COUPLING body 213 1 8087 weld 216 220 Min HB 197 flange connection face 225 Max HB 238 229 body / 8088 weld 212 223 flange connection face 213 219 body **V 8089** 229 weld 231 flange connection face 238 207 body / 8090 210 weld flange 226 234 connection face The coupling(s) conform to API Spec 6A requirements.

DATE:	PREPARED:	APROVEDCONTROLL KFT. 6750 Algyő, Küherület 94184/14. hrsz.
2013. október 30.	Mille	Adoszanis 110940149-06
2010. 5.1.0501 00.	Ménesi István	Vargestilliges
QCP-03 HB/11		

Felado :

CONTITECH RUBBER	No:QC-DB- 651 /2013			
Industrial Kft.	Page:	16 / 44		

GAMMA-CONTROLL

An krautsatus es krivi keteletikurepiket

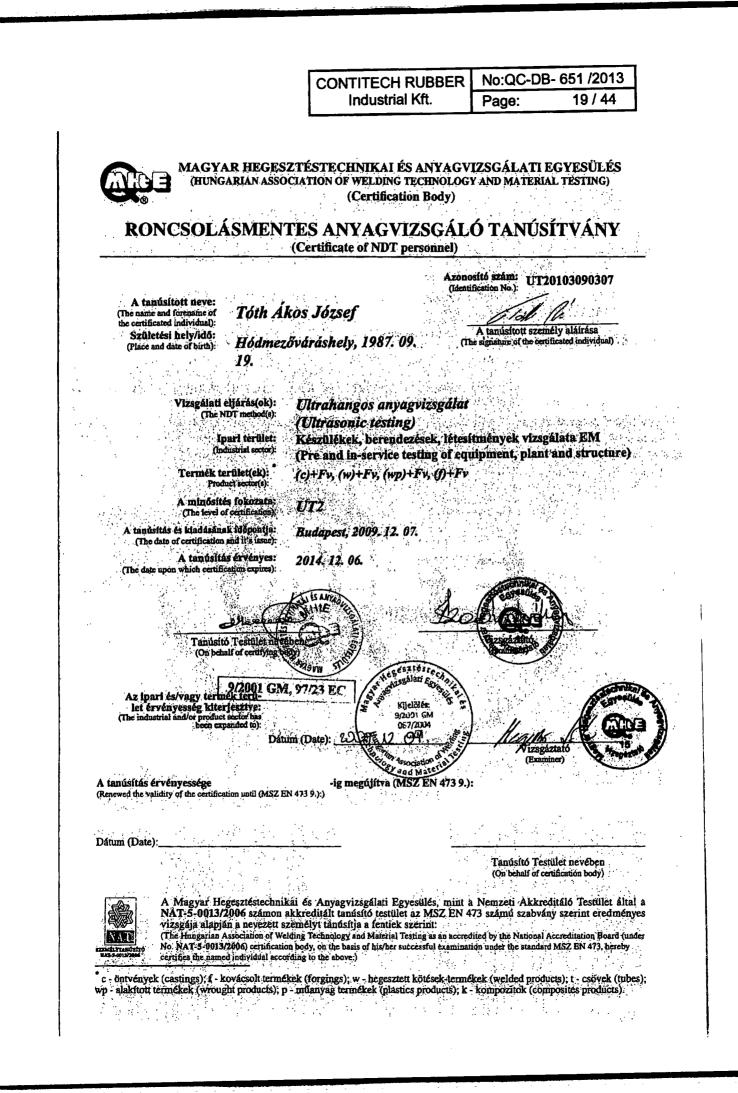
www.gaminea-controllitu 6750 Algyd, kiltertiet D1684/14, hmz. Tal/Fax: +36 62/517-400 / 81344 KAT Aba NAT-1-140/2018 satiron attractati vingetiston

ULTRAHANG VIZSGÁLATI JEGYZŐKÖNYV

ULTRASONIC EXAMINATION REPORT 513/13

Vizsgálati szám: Report No.:

Vizsgálat tái	rgya / Obj	ect of test		(Coupling (Body))				
Gyártó			Megrendelő	JE-ZO Kf	t. Szeged			
Manufacturer			Customer					
Gyáriszám			Rendelési szám					
Serial-No.			Order-No.					
Azonositó jel Identification	8083-8088	<u>B</u>	Követelmény Requirement		ASTM A388			
Geometriai kialakítás	/ Rajzszám		 Vizsgálati hőkez 	elés	előtt			
Geometric configuration	on / Drawing-No.		Test heat treatm	ent	prior			
MT-3121-3000		ø200xø70x491						
Anyagminöség Material		AISI 4130 /	Letapogatási irár Direction of scan	•	axiális és radiális			
Adagszám			Directori of scall					
Heat-No.		24613 /						
Vizsgálati felület állap	ota	forgácsolt	Vizsgálati terjede	elem	100%			
Surface condition		machined	Exted of Test					
Vizsgált darabszám		6 db						
Testing pieces								
	Vi	zsgálati adatok	/ Examination	n data				
Készülék típusa Tupe of LIS-oquinment		USM25	Készülék gyári sa		7875f			
Type of US-equipment			Serial-No. Of US	equipment				
••••	fizsgálófej(ek) SEB-2,		Frekvencia(k)	-	2 MHz 4 MHz			
Searc unit(s)		SEB4H	Frequency(ies)	Frequency(les)				
					MHz			
		<u> </u>	· · · · · · · · · · · · · · · · · · ·		MHz			
Kalibrációs blokk		ET1,ET2	Erősítés(ek)	axiálisan	18 dB			
Calibration standard Id	lentfication	,	Gain		dB			
					dB			
				radiálisan	6 dB			
Csatoló közeg		olaj	Hanggyengülés		dB/m			
Couplant			Attenuation					
	lelt kijelzése	ok / Evaluation / re	cordable indicati	lons				
Értékelés Evoluction		megfelelő	ner	n megfelelő	/ not acceptable			
Evaluation	L	satisfactory	<u>I</u> _	·····				
Megjegyzés(ek) Remark(s)								
Hely / kelt		7	1		TROLL ATT			
Piace / date	-	1Í	$\int (m \cap f)$	GAMMA	The state of the s			
Gamma-Controll Kft.		<u> </u>	10thill	6750 Algy	1094614-2-06			
		Viz	sgálatot vágezte	WWW.ga				
AlovA	Algyő, 2013.10.17		Tested by	Tel.: 0	6-30-218-2640			
Algyő,				Approved by				
Algyő,		тањ А	kos UT20103090307	Renké D	éter - Felelős vezetőh.			


	CONTITE	ECH RUB	BER	No:QC-D	B- 651 /2013
		strial Kft.		Page:	17 / 44
	L			L <u>×</u>	
				•	Vizsgálati szám:
GAMMA-CONTROLL	ULTRAHA JEG	NG VI2 YZŐKÖ			Report No.:
All (AG) 1280 (LL ES (MUNUSE DELLER) 34.00 (ST) www.gamma-controlling	ULTRASON			ATION	514/13
8750 Algyő, külterületi 01884/14. brsz. Tel /Fax: +38 62/517400 / 61344 A KKT člall NA:-1-1160/2010 szimus etkireditál vizugitátábostória		REPOR	Γ		}
Vizsgálat tárgya / Objec	t of test		\leq	Coupling	(Body))
Gyártó Manufacturer		Megrendelö Customer	JI	E-ZO Kft. Sze	ged
Gyáriszám		Rendelési sz	ám		
Serial-No. Azonosító jej		Order-No. Követelmény			
Identification 8089-8090		Requirement		AST	°M A388
Geometriai kialakítás / Rajzszám		Vizsgálati hői			eiőtt
Geometric configuration / Drawing-No.	ø200xø70x491	Test heat trea	atment		prior
Anyagminőség Material	AISI 4130 /	Letapogatási Direction of s	-	axiál	is és radlális
Adagszám Heat-No.	23171 /				
Vizsgálati felület állapota Surface condition	forgácsolt machined	Vizsgálati terj Exted of Test		100%	6
Vizsgált darabszám Festing pleces	2 db				
	sgálati adatok / E	xaminati	lon da	ta	
Készülék lípusa	USM25	Készülék gyá	ri száma	7076	
Type of US-equipment	·	Serial-No. Of		ment 7075	
Vizsgálófej(ek) Searc unit(s)	SEB-2, SEB4H	Frekvencla(k) Frequency(ies			2 MHz 4 MHz
			-1		4 MHz
					MHz
Kalibrációs blokk Calibration standard identification	ET1,ET2	Erősítés(ek) Gain	ax	iálisan	18 dB dB
					dB
		<u> </u>		diálisan	6 dB
Csatoló közeg Couplant	olaj oit	Hanggyengük Attenuation	ês		dB/m
Ertékelés / észlelt kijelzések			ations		
	megfelelő	Ι.	lem me	gfelelő / not	accentable
		1 1			
Ertékelés X Evaluation	satisfactory				
Evaluation X Megjegyzés(ek)	satisfactory				
Evaluation X Megjegyzés(ek) Remark(s)	satisfactory			GAMMA-CO	NTROLL KF I.
Evaluation X Megjegyzés(ek) Remark(s) Hely / kelt Place / date	Isatisfactory Nolu	و ۱۵		GAMMA - CO 5750 Alexit Falls	NTROLL KF 1. nyle 8189/14. hrsz.
Evaluation Kegjegyzés(ek) Remark(s) Hety / kett Place / date Gamma-Controll Kft.	<u>L'au</u>			5750 Algvi Alle	1094614-2-06
Evaluation A Megjegyzés(ek) Remark(s) Hely / kelt Place / date	Nolu Vizsgála	L ((tot végezte ited by		5750 Algvi Alle	nuel 91889/14. msz. 1094614-2-06 na-connoli:hu 10948-2640

·	CONT	ITECH RUBBER	No:QC-	DB- 651 /2
		dustrial Kft.	Page:	18 /
F 197-1	ULTRAH	ANG VIZSQÁ	LATI	Vizsgálati szám: Report No.:
GAMMA-CONTRO	JE	GYZŐKÖNYV		
erön gennta controll tar (DS) Algab köllendet (1884/14 kar	ULTRASO	NIC EXAMINA	ATION	516/13
Tel./Ficz. + 38 52517-609 / 8 1344 A 1977 Stat 1937 - 19622/13 statem staretisti straj		REPORT		
Vizsgálat tárgya / (Object of test		Flange	
Gyértő Marwiecture: Gyériszám		Megrendelö Customer JE Rendstési szám	-ZO Kft. Sze	ged
Senial-No. Azonositó (21 8083-	B090	Ordar-No. Követeimény	 Ast	M A388
Identification Geometriai kislakités / Rajzszám Geometric configuration / Drawing		Requirement Vizsgálabi hőkezelős Test hezi treatment		el ót prior
Ariyagminöség Ariyagminöség Misteriai	6315285x6190x94x6 AISI 4130 /	70 Letepogatidai Intrivok Direction of scanning	axiál	ls és radiális
Adegszári Hedt-No	034939 /			
Vizsgátati felület állapota Surface condition Vizsgát darabszám	forgicsolt machined	Vizegálsti terjedelem Exted of Test	1009	6
Testing pieces	8 db Vizsgálati adatok /	Bramination dat		
Készülék típuse	USM25	Készülék gyári száma	7875	
Type of US-equipment Vizsgálófej(ek) Searc und(s)	SEB-2, SEB4H	Seria)-No. Of US-equipm Frekvencia(k) Frequency(les)	ient	2 MHz 4 MHz
KajiDrácica biotik		Erösités(ck) exi	alisan	MHz MHz 6 dB
Calibration standard Identification	ET1,ET2	Gain		68 48
Cestoló kúzeg Ceuplant	olaj oli	Hanggyengülés Attenuation	lálisan	6 dB dB/n
Érténciés / éssicit hije	isések / Evaluation / rec	ordable indications		
Ertékelés) Evaluation	K megfelelő satisfactory	nem me	gfelelő / no	acceptable
Megjegyzés(ek) Remark(o)				
Hely / kelt	<u>ໂ</u>	. nt		a.
Place / date Gamma-Contro		aliatot végezte	a750 Merrie Luis	Mana Mana Mana Mana Mana Mana Mana Mana

3.változat 2013.07.16

r

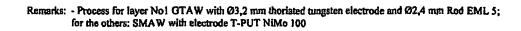
.

				3- 651 /2013
		ustrial Kft.	Page:	20 / 44
(HUNG (HUNG Meghatalmazzuk a tanú	AR HEGESZTÉSTECHN ARIAN ASSOCIATION OF WE (Ce sítvány tulajdonosát, bogy vizsgá	LDING TECHNOLOG rtification Body)	Y AND MATER	IAL TESTING)
GADT 6722 Sz Munkáltató aláírása DTP Signature of the employer)	as been authorised to perform tests and ta AA - CONTROLL KFT ged, Gyertyamos u. 1246/A wzaw Cluber 1-206 mar. 1475800520406154 W.gamma-controll hu el.: 06 30 218-2640	Ţ	esults. (MSZ EN 473 Pátum: Acce Jaté)	
	Folyamatos munkavégzé (Evidence of continued w	s igazolása (MSZ EN 4 ork activity (MSZ EN 4739.)	7 3 9 .)	
Sorsz.:	Munkálitató aláírása (Signature of the employer)	Anyag ta Simple		Dátum (Date)
1.	MINJ	Min Solgellenders	11. 200	0.01.04.
<u>2</u> . 3.	THE SET	Contraction of the	100	12:01.06. 12:01.09.
4	1 SAL	-GANNA-TONT	12	3.01.09
5.		Anyagonada	K ⁴	
6. 7.				
8.				and the second
9. 10.				
Jegészítések Aditional remarks: j				
A tanúsltvány a munkálitató a Dia certificate la válid with the signa	láirásával érvényes nure of the employer.)		-	

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	21 / 44

					DATA SHEET TDS Page			
	PHOENIX RUBBER INDUSTRIAL LTD.	WEL	DING PR	OCEDUR	E SPECIFICAT	TION	WPS	Nº 1 of 2
- 	CLIENT		THIS SP	ECIFICAT	ION IS BASED	WPS N°	140-71	REV 4
:	IDENTITY CODE		ON AS	ME CODE	SECTION IX	SUPPOR	LTING PQ BL	R N° 1D 0700002/
	ITEM	M Qty Welding process: G				PERFORM	ÆD BY:	
	DATA FOR ACCEPT	TANCE TYPES: MANUAL				WELDER	's Stamp	
	JOINTS (QW-402)	75 r. 1.5	B	Ī	Sequences	of weld se	ee on adden	ndum
	JOINT DESIGN	B	ACKING: <u>Y</u>	<u>es</u> /No	WELD SEQUEN	NCE		
	BASE METALS (PART "A	"	PAR	Т "В"
	DRW Nº							
	GRADE:		WN	o.:1.7220	ASTM A 322-9	1: AISI 41 EN 10083		Mo4 (MSZ
	CARBON EQUIVALE	NT	max.C	e **	0.82		0.	82
	MECHANICAL PROP						-	
		E STRENGTH			655			55
	Ducti		<u>%</u>	min.	18		18	
	Hardi		HB	max.	238			38
-	IMPACT TEST -30°			Average	27		27	
f f	THICKNESS:		-38 mm		OUTSIDE DIAMET	ER :	ØD = 60-2	280 mm
	FILLER METALS (QV WELD MATERIAL	v-404) Diameter	BRA	ND	5	NDARD		SUPPLIER
	Rod	2.4 mm	EM		AWS A5.18		08-3	Böhler
	Electrode	3.2; 4.0	T-PUT Ni		AWS A 5.5-96:1			Böhler
	LAPSE BETWEEN OF		MIN./m	in	I			1
	Positions (QW-40				PREHEAT (QW-4	06)		
1 1	POSITIONS: 1G R	•	ontal)		PREHEAT TEMP.	•	0 °C	
	WELDING PROGRE	-			INTERPASS TEM	P.: max. 3	350 °C	
			to the top		PREHEAT MAIN			gining of
	Position of Fille	π	•		postweld he			- •
1					1			

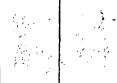
CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	22 / 44


CONTINUAT	CONTINUATION OF WPS Nº 140-71 Rev.4					Pa	uge N° 2 of 2			
				GAS (OW	-408)	I				
					-	rgon for root				
		4 HR				-				
HEATING	RATE MAX.:			PERCEN	TAGE COMPOS	ION (MIXTUR	E)			
COOLING	COOLING RATE MAX.: 80 °C/HR				99	.995 %				
LOCATION	I OF THERMO	COUPLE		FLOW R	ATE 10	-12 LITRES	/min.			
		•.		GASBAC	CKING: Argor	(for 1st and	2nd passes)			
FURNACE	ATMOSPHER	e Air	FLOW R	ате 7-	9 Litres/min					
TYPE:				TRAILIN	G SHIELDING (JAS COMP.				
ELECTRICAL CURRENT	ELECTRICAL CHARACTERISTICS (QW-409) CURRENT DC ELECTRODE POLARITY						pass: - passes: +			
TUNGSTEN	ELEKTRODE S	ize/type: Ø3.2	mm thoriated	tungsten						
MODE OF T	RANSFER FOR	GMAW								
ELECTRODE	ELECTRODE / WIRE FEED SPEED RANGE									
WELD	PROCESS	S FILLER METAL			1	Volt	HEAT			
LAYERS	2 14	CLASS	DIAMETER	1	1	RANGE	(KJ/cm)			
	GTAW	EML 5	2.4 mm	-		11-12	5-8.4			
2-3	SMAW	T-PUT NiMo 100	3.2 mm	+	120-140	24-26	12-19.6			
4-28	SMAW	T-PUT NiMo 100	4.0 mm	+	150-170	26-30	16.2-27.5			
TRAVEL SPE	TRAVEL SPEED RANGE 100-130 mm/min									
TECHNIQUE	TECHNIQUE (QW-410)									
STRING OR	WEAVE BEAD			ORIFACE OR GAS CUP SIZE Ø9mm						
INITAL/INTE	INITAL/INTERPASS CLEANING: Brushing, Grinding									
EQUIPMENTS FOR WELDING:										
OTHER:	OTHER:									
		•	1	REMARKS						
		-	,							
	N [°] MIO-FB 2 Based on ASME IX.				- Before welding bake electrodes for 2 hours at					
By	DATE	TECH	NICAL D		EET		<u></u>			
1 1						1				
Desig. Box	14.06	WELDING F	WELDING PROCEDURE SPECIFICATION SUBJECT: Butt weld of hose coupling for H2S service;				HOSETECHNICAL			
DesigBox	2007	<u> </u>				4	CHNICAL			
	POSTWELD HOLDING HOLDING HEATING COOLING LOCATION FURNACE TYPE: ELECTRICAL CURRENT TUNGSTEN I MODE OF TH ELECTRODE WELD LAYERS 1 2-3 4-28 TRAVEL SPE TECHNIQUE STRING OR I INITAL/INTE EQUIPMENT OTHER: EXAMINA AN	POSTWELD HEAT TREAT HOLDING TEMP. RANG HOLDING TEMP. TIME HEATING RATE MAX.: COOLING RATE MAX.: LOCATION OF THERMO FURNACE ATMOSPHER TYPE: ELECTRICAL CHARACTER CURRENT DC TUNGSTEN ELEKTRODE S MODE OF TRANSFER FOR ELECTRODE / WIRE FEED WELD PROCESS LAYERS 1 GTAW 2-3 SMAW 4-28 SMAW 4-28 SMAW TRAVEL SPEED RANGE TECHNIQUE (QW-410) STRING OR WEAVE BEAD INITAL/INTERPASS CLEAN EQUIPMENTS FOR WELDIN OTHER: EXAMINATION – Acc. to the BCC N° MIO-FB 2	POSTWELD HEAT TREATMENT (QW-407 HOLDING TEMP. RANG 620 +20 /- HOLDING TEMP. TIME 4 HR HEATING RATE MAX.: 80 °C/HR LOCATION OF THERMOCOUPLE FURNACE ATMOSPHERE Air TYPE: ELECTRICAL CHARACTERISTICS (QW-40 CURRENT DC TUNGSTEN ELEKTRODE SIZE/TYPE: Ø3.2 MODE OF TRANSFER FOR GMAW ELECTRODE / WIRE FEED SPEED RANGE WELD PROCESS FILLER LAYERS CLASS 1 GTAW 2-3 SMAW NiMo 100 T-PUT NiMo 100 TRAVEL SPEED RANGE TECHNIQUE (QW-410) STRING OR WEAVE BEAD INITAL/INTERPASS CLEANING: Brushing, EQUIPMENTS FOR WELDINO: OTHER: EXAMINATION – Acc. to the acceptance instruct N° MIO-FB 2 Based on ASME N° MIO-FB 2 Based on ASME	POSTWELD HEAT TREATMENT (QW-407) HOLDING TEMP. RANG 620 +20 / -0 C° HOLDING TEMP. TIME 4 HR HEATING RATE MAX.: 80 °C/HR LOCATION OF THERMOCOUPLE FURNACE ATMOSPHERE Air TYPE: ELECTRICAL CHARACTERISTICS (QW-409) CURRENT DC TUNGSTEN ELEKTRODE SIZE/TYPE: Ø3.2 mm thoriated MODE OF TRANSFER FOR GMAW ELECTRODE / WIRE FEED SPEED RANGE WELD PROCESS FILLER METAL LAYERS CLASS DIAMETER 1 GTAW 2-3 SMAW NiMo 100 4-28 SMAW NiMo 100 TRAVEL SPEED RANGE 100-130 mm/min TECHNIQUE (QW-410) STRING OR WEAVE BEAD INITAL/INTERPASS CLEANING: Brushing, Grinding EQUIPMENTS FOR WELDINO: OTHER: EXAMINATION - Acc. to the acceptance instruction N° MIO-FB 2 Based on ASME IX.	POSTWELD HEAT TREATMENT (QW-407) GAS (QW HOLDING TEMP. RANG 620 +20 / -0 C° SHIELDI HOLDING TEMP. TIME 4 HR PERCEN COOLING RATE MAX.: 80 °C/HR PERCEN COOLING RATE MAX.: 80 °C/HR FLOW R. LOCATION OF THERMOCOUPLE FLOW R. GAS BAC FURNACE ATMOSPHERE Air FLOW R. TYPE: TRAILIN ELECTRICAL CHARACTERISTICS (QW-409) CURRENT DC ELECTRODE TUNGSTEN ELEKTRODE SIZE/TYPE: Ø3.2 mm thoriated tungsten MODE OF TRANSFER FOR GMAW ELECTRODE / WIRE FEED SPEED RANGE DIAMETER CUI MODE OF TRANSFER FOR GMAW ELECTRODE / WIRE FEED SPEED RANGE DIAMETER CUI 1 GTAW EML 5 2.4 mm - 2-3 SMAW T-PUT 3.2 mm + NIMO 100 T-PUT 3.2 mm + + 4-28 SMA W T-PUT 4.0 mm + TRAVEL SPEED RANGE 100-130 mm/min TECHNIQUE (QW-410) STRING OR WEAVE BEAD ORIFACE C NIMIAL/INTERPASS CLEANING: Brushing, Grinding EQ	POSTWELD HEAT TREATMENT (QW-407) GAS (QW-408) HOLDING TEMP. RANG 620 +20 / -0 C° ShielDING GAS A HOLDING TEMP. TIME 4 HR PERCENTAGE COMPOS ShielDING GAS A HOLDING TEMP. TIME 4 HR PERCENTAGE COMPOS 99 LOCATION OF THERMOCOUPLE FLOW RATE 91 LOCATION OF THERMOCOUPLE FLOW RATE 10 GAS BACKING: Argou FLOW RATE 7- TYPE: TRAILING SHIELDING C ELECTRICAL CHARACTERISTICS (QW-409) CURRENT DC ELECTRODE POLARITY TUNGSTEN ELEKTRODE SIZE/TYPE: Ø3.2 mm thoriated tungsten MODE OF TRANSFER FOR GMAW ELECTRODE / WIRE FEED SPEED RANGE DIAMETER TYPE WELD PROCESS FILLER METAL CURRENT LAYERS SMAW T-PUT 3.2 mm + 120-140 4-28 SMAW T-PUT 4.0 mm + 150-170 NIMO 100 Intral/INTERPASS CLEANING: Brushing, Grinding EQUIPMENTS FOR WELDING: ORIPACE OR GAS CUP SIZ NITAL/INTERPASS CLEANING: Brushing, Grinding EQUIPMENTS FOR WELDING: ORIPACE OR GAS CUP SIZ OTHER:	POSTWELD HEAT TREATMENT (QW-407) GAS (QW-408) HOLDING TEMP. RANG 620 +20 / -0 C° HOLDING TEMP. TIME 4 HR HEATING RATE MAX.: PERCENTAGE COMPOSION (MIXTUR COOLING RATE MAX.: 80 °C/HR PERCENTAGE COMPOSION (MIXTUR COOLING RATE MAX.: 80 °C/HR PERCENTAGE COMPOSION (MIXTUR COOLING RATE MAX.: 80 °C/HR PERCENTAGE COMPOSION (MIXTUR 99.995 % LOCATION OF THERMOCOUPLE FLOW RATE IOURARAC ATMOSPHERE Air TVPE: TRAILING SHIELDING GAS COMP. ELECTRICAL CHARACTERISTICS (QW-409) 1st CURRENT DC ELECTRODE SIZE/TYPE: Ø3.2 mm thoriated tungsten MODE OF TRANSFER FOR GMAW ELECTRODE / WIRE FEED SPEED RANGE VELD PROCESS FILLER METAL CURRENT VOLT RANGE 1 GTAW EMELS 2.4 mm 2-3 SMAW T-PUT 3.2 mm 4.28 SMAW T-PUT 4.0 mm 2-3 SMAW			

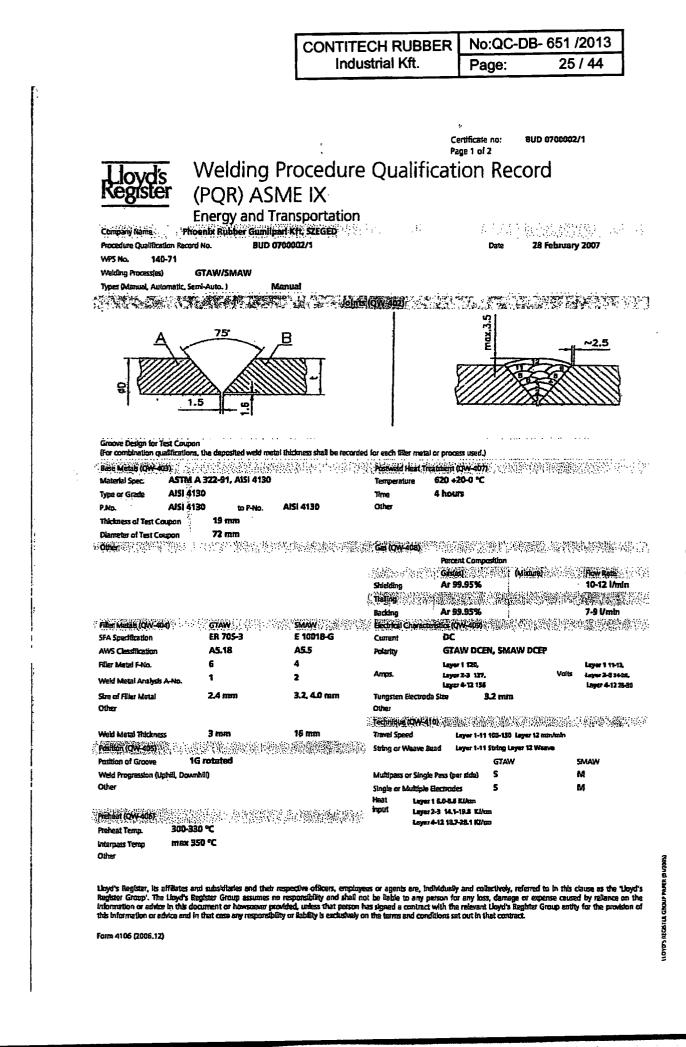
.

CONTITECH RUBBER	No:QC-E)B- 651 /2013
Industrial Kft.	Page:	23 / 44

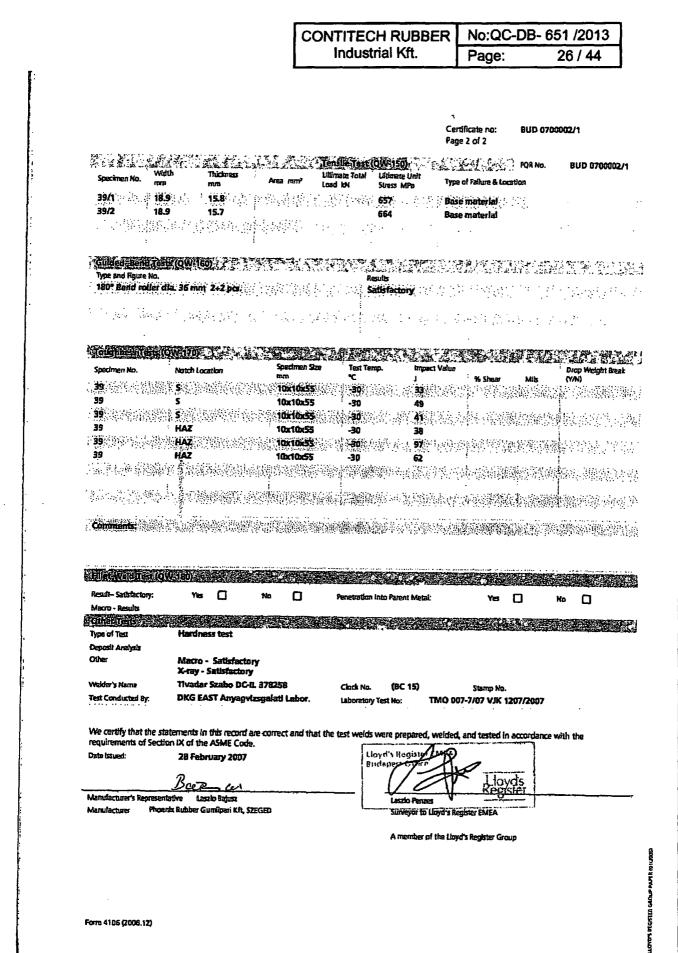
PHOENIX RUBBER Industrial Ltd.	Nº:	WPS 140-71 Addendum
Hose Division	Revision:	4
	Page Nº:	1/2
	Date:	2007-06-12
ADDENDUM	Designed:	Bainch
for the approved wall thickness range 5-38 mm	Checked:	1.11.
Based on WPS 140-71 Rev.4, PQR No.: BUD 0700002/1	Approval:	C Sefer


No.	Wall thickness [mm]	Weld layers		Electrode Ø [mm]
1.	5-7		1 2	3,2 3,2
2.	7-9		l 2-3	3,2 3,2
3.	9-11		1 2-3 4-5	3,2 3,2 4,0
3	11-13		 2-3 4-6	3,2 3,2 4,0
5.	13-15		1 2-3 4-8	3,2 3,2 4,0
6.	15-18		l 2-3 4-10	3,2 3,2 4,0
7.	18-20		1 2-3 4-11	3,2 3,2 4,0
8.	20-22,22		1 2-3 4-15	3,2 3,2 4,0
9.	22,2-26		i 2-3 4-19	3,2 3,2 4,0

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	24 / 44


PHOENIX RUBBER Industrial Ltd.	Nº:	WPS 140-71 Addendum
ADDENDUM	Revision:	4
for the approved wall thickness range 5-38 mm Based on WPS 140-71Rev.4, PQR No.: BUD 0700002/1	Page N°:	2/2

No.	Wali thickness [mm]	Weld layers	· · · ·	Electrode Ø (mm)
10.	26-29		1 2-3 4-19	3,2 3,2 4,0
11.	29-32		i 2-3 4-23	3,2 3,2 4,0
	32-35		1 2-3 4-24	3,2 3,2 4,0
13.	35-38		l 2-3 4-28	3,2 3,2 4,0



Remarks: - Process for layer No1 GTAW with Ø3,2 mm thoriated tungsten electrode and Ø2,4 mm wire EML 5; for the others: SMAW with electrode T-PUT NiMo 100

.

يتريني والمحافظ والمحافظ

CONTITECH RUBBER	No:QC-D	B- 651 /2013
Industrial Kft.	Page:	27 / 44

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Designation ASME IX: GTAW / SMAW Pipe BW s19 1G

Welder's name: Tivadar Szabó (BC15)

Identification card No: 517278EA

Date and place of birth: 19. August 1949; SZEGED

		Weld test details		Range of a	pproval	Photo (if required)	
Welding process	5	GTAW/SMAW					
	Туре	Rod / Electro	de				
Filler metal	Designation	AWS 5.18; ER7 AWS 5.5; E90					
Parent metal gro	oup(s)	ASTM A 322-91 4130	I, AISI	ASTM A 322 4130		ISI	
Plate or pipe		Pipe		Pipe/Pl	ate		
Welding position) ₂	1G		1G/Fi	at		
Outside diamete	er (mm)	72 mm		> 25 m	ກ	Identification of test pieces:	
Test plece thick	ness (mm)	19		Max to be v	welded	pieces.	
Single/ both side	e welding	Single	_		<u>_</u>	WPS No .:	
Gouging/ backin	g					140-60 Rev.4	
Joint type		Groove		Groove / Fillet		Testing standard:	
Shielding/ backi	ng gas(ses)	Argon (99,95%)				ASME IX	
Welding carried	out, place: Sze	eged	Dat We	e: Iding Engineer:	29 April 20 László Bai	10 USZ Barrer	
Type of test	Pe	erformed and accepted		Not required		e and date:	
Visual	Acce	pted (Vjk-1739/10)				Szeged, 18-Jun-2010	
Radiography	Acce	pted (Vjk-1739/10)			}	•	
Ultrasonic			+		Surv	reyor:	
Magnetic particle	e			+		Péter Szabó	
Penetrant			+			an and eigenview	
Macro				+	Star	np and store and	
Fracture				+			
Bend				+		A THE AND A THE THE THE	

CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page:28 / 44

Continental : CONTITECH

Fluid Technology

WELDER'S APPROVAL TEST CERTIFICATE - ASME CODE IX

Examiner or test body: ABS

Registration No.: RK1825997.R1

Welder's name: Tivadar Szabó (BC15)

Identification card No.: 517278AE

Date and place of birth: 19. August 1949; SZEGED

	PROLON	IGATION OF APPROVAL BY EMPLOY	E R
Place	Date	Name/ position/ title	Stamp and signature
Szeged	29.10.2010.	Laselo Bajuse / Unkling beduno logist	Barred
Szeged	29.04.2011.	Lasslo Boyuss / welding telenoly to	Berrel
Szeged	29.10.2011	Lasslo Bain Inelding Jedus byist	Beerer
Sreged	29.04.2012.	Caselo Bainen (Webling Lecterolgo)	Barr
Sz eject	29. 10. 2017.	Lassle Dairin / Ubbling La le walgigt	Beach
Sigal	29, 04, 20 13 .	laselo Baiun Mulling Ledeusloyest	Baral
Siger	29, 10, 2013	lasilo baien / Weldieg tale uslast	Barcel
			······································

CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page: 29 / 44

	ZO KFT. –	,++						1	MLS NG				
seged, Ki	ülterület 01408/2	2 h 5	" w	ELDIN	IG L	og s	HEE			2013.1	1 28	98.	
Bank	: 13341039-2-06 :számlaszám:			JESZ					PAGE /		l <u> </u>	<u>/v ·</u>	
067008	0101001001000	n/1	1					[`					
Megren		ONTI	ITECH R	UBBER I	ndustria	al Kft.		CH.ORDER elésszám	N ^Q . g	2261598	2		
	ACT Nº		SPOO					WPS Nº.	_			1 /	
Kötéssz	źm			i m.szám	2898	-2905	·	Heg.ut.sz	ima	40-71.	Kev	· 4. /.	. 7
	OF WEDED PAR atrêsz megneve		Bad	v + Il	ome.			DRWG N Raizszám	². \r	<u>- 3121 -</u>	2000	9	
	N ^Q . OF WELDER				1/21	1 20		LOCATIO	N/SHOP				
	lő neve és szám	8	T THE R.	livador	105210	<u>. D.U</u>	<u>_10 </u>	Munkaveg			1. Kr	ne szel	e 6.
DATE	2013.10.2	25	QUAN		8.			SERIAL N Sorszárno		: s 8083 ~	809	o .	
1. MATE		· · · · · · · · · · · · · · · · · · ·	BJECT 1	bo		MATERIA	VL T		C	AST Nº.	246	13× 80	P3-1
CONTR		Tár	ngry 1			Anyag		AISI . 413.	5 , AC			71,8	
azonosit	nogfelelőség lása	SUE	SJECT 2	Π.		MATERIA	⊾ _	See Lie		NST N [₽] .	07	4939	,
			gy 2	Flan	ge	Алуад		ASI. 1130	<u>2. Ad</u>	lagszám		7433	•
	R METAL a minóség		LD LAYER ratszám	S		1.	2	-3.	4	- <i>K</i> .			
és mére	-	TYP			Fine.	Б	NIHI	0. 100 .	NIM	0. IDD .			
			<u>AS</u> Meter										
		Atm	êrő		2.	4.		3.2.		4.			
			ER CAST		800	303.	112	4075	112	7750.	•		
3. ELEC	TRICAL	TYP	TYPE POLAR Polaritás VOLT (V)		-			+		+	Τ		
	nos adatok	VOL			12		ړ	ひ.	<u> </u>	26.			
		AMF	PERE (A)	E (A)		180.		140		180 .			
	EAT TREATME			0059							_		
						. 300		C°		8.			Hour
Elektro 5. APPL!	da felhasználás ED SHILDING G	t meg	slőző hóke TYPE	zelése	Percent	30U . age Comp	osition			8. Flow Rate			Houn
Elektro 5. APPL!	oda felhasználás	t meg	slőző hóke TYPE	zelése	Percent Tisztasé	age Comp	osition 94	<u> </u>	%	Flow Rate Aramlási		8.	Hour
Elektro 5. APPL! Alkatro	óda felhasználás ED SHILDING G sazott védőgáz	t meg IAS	slőző hőke TYPE ^{Tipus} Ar	zelése qon.	Tisztast	age Comp ag .	9	9 ⁹ \$.	%	Flow Rate		8 .	Hour
Elektro 5. APPLI Alkalm 6. HEAT	da felhasználás ED SHILDING G	t meg IAS	slőző hőke TYPE ^{Tipus} Ar	zelése qon.		age Comp ag . TION	9		%	Flow Rate Aramlási		8.	
Elektró 5. APPL! Alkatm 6. HEAT Elômei	da felhasználás ED SHILDING G azott védőgáz TREATMENT (p	t meg IAS IAS	előző hőke TYPE ^{Tipus} Ar ^{Id)} 300.	zelése qon. C°	Tisztast 7. POSI Helyz	age Comp ag . TION	ge Forge	gqs. atott :		Flow Rate Aramlási Vmin		8.	
Elektró 5. APPL! Alkatm 6. HEAT Elômei 8. SPEEL Heges	bda felhasználás ED SHILDING G Nazott védőgáz TREATMENT (p legítás D OF TRAVELS ztési sebesség	t meg IAS IAS	eköző hőke TYPE ^{Tipus} Ar ^{tal)} 300. D÷130.	zelése qon. C° mm/min	7. POSI Helyz 9. LAPS Varma	age Comp ag TION tet E BEETW tfeirakási s	4 Forqu EN OF	gqs. atott . PASSES	8	Flow Rate Aramlási 1/min	sab		min
Elektró 5. APPLI Alkatro 6. HEAT Elômei 8. SPEEL Heges 10.POST	bda feihasználás ED SHILDING G Nazott védőgáz TREATMENT (p legítés D OF TRAVELS Ztési sebesség WELD HEAT	t meg IAS IAS	eköző hőke TYPE ^{Tipus} Ar ^{tal)} 300. D÷130.	zelése qon . C° mm/min ne	7. POSI Helyz 9. LAPS Varra Ter	age Comp ag . TION et E BEETW	4 Forqu EN OF	995. atott . PASSES <u>k</u> Fumac		Flow Rate Aramlási 1/min	sab 	8 . cooling n ési sebe	min
Elektró 5. APPLI Alkalm 6. HEAT Elômei 8. SPEE Heges 10.POST TREAT	bda felhasználás ED SHILDING G Nazott védőgáz TREATMENT (p legítás D OF TRAVELS ztési sebesség	t meg IAS IAS	előző hőke TYPE ^{Tipus} Ar ^{id)} 300. 0÷130. Tit	zelése qon. C° mm/min ne Ko	7. POSI Helyz 9. LAPS Varra Ter Hő	age Comp àg . TION tet E BEETW tfeirakási s mperature	4 Forqu EN OF	995. atott PASSES * Furmac Hot	8 e atmos őközeg	Flow Rate Aramlási 1/min	sab C Hūk	ooling r	min ate sség
Elektró 5. APPL! Alkatm 6. HEAT Elômei 8. SPEE/ Heges 10. POST TREAT Utónók	bda feihasználás ED SHILDING G Nazott védőgáz TREATMENT (p legítás D OF TRAVELS Ztési sebesség WELD HEAT FMENT	iAS IAS IDI	eičzó hóke TYPE Tipus Ar 4a) 300. D÷130. Ti 10 .240.	zelése qon . C° mm/min ne tő min	Tisztasá 7. POSI Helyz 9. LAPS Varra Ter Hő	age Comp åg . TION set E BEETW tfelrakási s mperature mérséklet 620 .	4 Forqe EN OF zünete	995. atott . PASSES <u>k</u> Fumac	8 e atmos őközeg	Flow Rate Aramlási 1/min	sab C Hūk	ooling n ési sebe	min ate sség
Elektró 5. APPLI Alkatro 6. HEAT Előmei 8. SPEEL Heges 10. POST TREAT Utóhók 11. RADI- Radio	bda felhasználás ED SHILDING G wazott védőgáz TREATMENT (p legítés D OF TRAVELS D OF TRAVELS Ztési sebesség WELD HEAT IMENT vezelési adatok	IAS IAS ID(<u>ексо ноке</u> Туре Тіриз Ан 4a) 300. Ω÷130. Та Ic _240. RT. №.	zelése qon . C° mm/min ne tő min	7. POSI Helyz 9. LAPS Varra Ter Hő	age Comp ag . TION set E BEETW tfeirakási s mperature mérséklet 220 . 2451	94 Forqe EN OF z0meter C°	gqs. atott PASSES k Furmac Hot Leve	8 e atmos őközeg	Flow Rate Aramlási 1/min	sab C Hūk	ooling n ési sebe	min ate sség
Elektró 5. APPLI Alkatro 6. HEAT Előmei 8. SPEEL Heges 10.POST TREAT Utóhók 11. RADI	ida felhasználás ED SHILDING G wazott védőgáz TREATMENT (p legítés D OF TRAVELS Ztési sebesség WELD HEAT MENT WELD HEAT MENT GRAPHIC TES	t meg IAS IPD-we ID(ST CE	<u>ексо ноке</u> Туре Тіриз Ан 4a) 300. Ω÷130. Та Ic _240. RT. №.	zelése qon . C° mm/min ne tő min	Tisztasá 7. POSI Helyz 9. LAPS Varra Ter Hő	age Comp ag . TION set E BEETW tfeirakási s mperature mérséklet 220 . 2451	4 Forqe EN OF zünete	gqs. atott PASSES k Furmac Hot Leve	8 e atmos őközeg	Flow Rate Aramlási 1/min	sab C Hūk	ooling n ési sebe	min ate sség
Elektró 5. APPLI Alkatro 6. HEAT Előmei 8. SPEEL Heges 10.POST TREAT Utóhół 11. RADI Radio REPAIR	bda feihasználás ED SHILDING G Nazott védőgáz TREATMENT (p legítés D OF TRAVELS Ztési sebesség WELD HEAT FMENT GZRÁGAI vízsa, biz	t meg IAS ITO-we ID(ST CE szén	<u>ейсо ноке</u> Туре Тіриз Ан 4d) 300. D÷130. Ті 10 .240. RT. №. na	zelése qon . C° mm/min ne tő min	Tisztasá 7. POSI Helyz 9. LAPS Varra Ter Hő	age Comp ag . TION set E BEETW theirakási s mérséklet 620 . 2451 X i	94 Forqe EN OF zUnete C° /(L) NO/ Ne OF DE	995. atott PASSES * Fumac Hot Leve	8 e atmos őközeg	Flow Rate Aramlási 1/min	sab C Hūk	ooling n ési sebe	min ate sség
Elektró 5. APPLI Alkatro 6. HEAT Előmei 8. SPEEL Heges 10.POST TREAT Utóhół 11. RADI Radio REPAIR	bda feihasználás ED SHILDING G vazott védőgáz TREATMENT (p legítás D OF TRAVELS Ztési sebesség WELD HEAT FMENT (czalási adatok OGRAPHIC TES gráfiai vízsg, biz YES/ ige PLACE OF DE Hiba helye METHOD OF F	IDU BTCE STCE	sidzo hoke TYPE Tipus An id) 300 . 0 ÷ 130 . The id _240 RT. №. ma	zelése qon . C° mm/min ne tő min	Tisztasá 7. POSI Helyz 9. LAPS Varra Ter Hő	Age Comp Ag . TION set E BEETW theirakási s mérséklet S20 . 2451 X TYPE	94 Forqe EN OF zUnete C° /(L) NO/ Ne OF DE	995. atott PASSES * Fumac Hot Leve	8 e atmos őközeg	Flow Rate Aramlási 1/min	sab C Hūk	ooling n ési sebe	min ate sség
Elektrá 5. APPLI Alkatra 6. HEAT Előmei 8. SPEEL Hegeas 10.POST TREAT Utóhók 11. RADI Radio REPAIR Javítás	bda feihasználás ED SHILDING G Nazott védőgáz TREATMENT (p legítás D OF TRAVELS Ztési sebesség WELD HEAT FMENT Kezelési sebesség NETHOD OF F Javítási módszi NSPECTION	I megeve MAS I DO I DO I DO I DO I DO I DO I DO I DO	sidzo hoke TYPE Tipus Ar id) 300. 0÷130. 0÷130. RT. Nº. na	zelése qon . C° mm/min ne tő min	Tisztasá 7. POSI Hetyz 9. LAPS Varra Ter Hő (//(age Comp ag . TION SE BEETW tfelrakási a merséklet 220 . 2454 X i TYPE Hiba ti	94 Forqe EN OF zUnete C° /(L) NO/ Ne OF DE	995. atott PASSES * Fumac Hot Leve	8 e atmos őközeg	Flow Rate Aramlási 1/min	sab C Hūk	ooling n ési sebe	min ate sség
Elektrá 5. APPLI Alkatm 6. HEAT Előmei 8. SPEEL Hegeas 10.POST TREAT Utóhók 11. RADI <u>Radio</u> REPAIR Javítás	bda feihasználás ED SHILDING G vazott védőgáz TREATMENT (p legítás D OF TRAVELS ztési sebesség WELD HEAT FMENT Gozalási adatok OGRAPHIC TES práfiai vízsg. biz PLACE OF DE Hiba helye METHOD OF F Javítási módsz NSPECTION itelezés S	ID(ID) ID) ID) ID) ID) ID) ID) ID) ID) ID)	sidzo hóko TYPE Tipus Ar id) 300. D÷130. The id .240. RT. Nº. na R R Meqfelel	221658 2001 C° mm/min me 16 2430 26 / Sor	Tisztasé 7. POSI Hetyz 9. LAPS Varma Ter Hô () //(age Comp ag . TION set E BEETW tfeinakási s mérséklet 220 . 2454 TYPE Hiba ti	۲۰ Forqe EN OF z0nete C° / Հ NO/ Ne OF DE puss	995. atott PASSES * Fumac Hot Leve	8 e atmos őközeg	Flow Rate Aramiási i/min	58b	ooiing n ési sebe 30 .	min ate ssség C°/ł
Elektró 5. APPLI Alkalm 6. HEAT Előmei 8. SPEEL Heges 10.POST TREAT Utóhók 11. RADI Radio REPAIR Javítás VISUAL II Szemnevk Meglegyz	bda feihasználás ED SHILDING G vazott védőgáz TREATMENT (p legítás D OF TRAVELS ztési sebesség WELD HEAT IMENT GGRAPHIC TES OGRAPHIC TES OGRAPHIC TES PLACE OF DE Hiba helye METHOD OF F Javítási módsz NSPECTION itelezés S	IDI IDI IDI IDI ITCE IST	sidzo hóko TYPE Tipus Ar id) 300. D÷130. The id 240. RT. Nº. na R R Meqfelel Fronius.	zelése qon . C° mm/min ne 10 min 2430 26 / Son Monic	Tisztasá 7. POSI Hetyz 9. LAPS Varra Ter Hó (//(// // // // // // // // //	Age Comp Ag . TION SE BEETW E BEETW E BEETW Merséklet 220 . 2434 TYPE Hiba ti	Gr Forq EN OF zonete C° //(NO/ Ne OF DE puse	gqs. atott · PASSES * Fumaco Hor Leve	8 e atmos őközeg 9ő.	Flow Rate Aramiasi i/min	sab 	cooling n ési sebe 30 .	min ate ssség C°/F
Elektrá 5. APPLI Alkalm 6. HEAT Előmei 8. SPEEI Heges 10.POST TREAT Utóhół 11. RADI Radio REPAIR Javítás VISUAL II Szemravá REMARKZ Date, end	bda feihasználás ED SHILDING G vazott védőgáz TREATMENT (p legítás D OF TRAVELS ztési sebesség WELD HEAT FMENT Gozalási adatok OGRAPHIC TES práfiai vízsg. biz PLACE OF DE Hiba helye METHOD OF F Javítási módsz NSPECTION itelezés S	IDI IDI IDI IDI ITCE IST	sidzo hoke TYPE Tipus Ar id) 300. D÷130. D÷130. C240. RT. Nº. na R R Heqfelel Yonius.	zelése qon C° mm/min ne b min 24.00 24.00 Co Magic Magic	Tisztasz 7. POSI Hetyz 9. LAPS Varra Ter Hő (//(age Comp ag . TION E BEETW tfelrakási a mperature 220 . 2454 TYPE Hiba ti 007 . Ve EGESZT	Grand Contract of the second s	gqs. atott PASSES * Fumac Hot Leve m FECT	8 e atmos Öközeg 90°.	Flow Rate Aramiasi i/min	C Huk Huk JE-, Ku	ooling n ési sebe 30 .	min ate ssség C°/I-
Elektrá 5. APPLI Alkatro 6. HEAT Előmei 8. SPEEI Heges 10.POST TREAT Utóhół 11. RADI Radio REPAIR Javítás VISUAL II Szemravá REMARK Reglegyz Date, end Dátum, kil	bda feihasználás ED SHILDING G vazott védőgáz TREATMENT (p legítás D OF TRAVELS ztési sebesség WELD HEAT IMENT GOGRAPHIC TES gráfial vízsg. biz YES/ ige PLACE OF DE Hiba helye METHOD OF F Javítási módsz NSPECTION itelezés S és of coling down t	t meg MAS Intervet IDU It CE ST ST CE ST ST CE ST ST S	sidzo hoke TYPE Tipus Ar id) 300. D÷130. D÷130. C240. RT. Nº. na R R Heqfelel Yonius.	221658 2001 C° mm/min me 16 2430 26 / Sor	Tisztasz 7. POSI Hetyz 9. LAPS Varra Ter Hő (//(age Comp ag . TION E BEETW tfelrakási a mperature 220 . 2454 TYPE Hiba ti 007 . Ve EGESZT	Grand Contract of the second s	gqs. atott PASSES * Fumac Hot Leve m FECT	8 e atmos őközeg gő.	Flow Rate Aramiasi i/min ph. φ728 Szege	588b C Huk JE-2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	cooling n ési sebe 30 .	ET. 039-2-00 2-01 2-01 2-01 2-01 2-01 2-01 2-01

WLS-13

CONTITECH RUBBER	No:QC-DB- 651 /2013					
Industrial Kft.	Page:	30 / 44				

Felado :

61344

gamma controll kft

19/10/13 12:58 Lap: 1

3.1

SZEMREVÉTELEZÉSES VIZSGÁLATI JEGYZŐKÖNYV VIZSGÁLATI JEGYZŐKÖNYV SZÁMA: BURDA: 430 625174-00; 61344 ANUT édi NUT-11/102070 uzban adustáti szejítászatása REPORT

Object Tárgy	Coupling welding Caatlakozó hegesztés	Serial No. Gyari szám	3083-8090
Customer Megrendel	JE-ZO KR. Szeged	Drawing No	-3121-3000
Job Nr. Munkaszá	002/13	Material/Dimension Anyagminöség/méret	AISI 4130 115/77
Quantity Mennyisé	8 db	Extent of examination Vizsgalat terjedelme	100%
Requirements Követelmények	ASME code VIII/1	Hest treatment Hökezelés	after PWHT
Written Procedure No. QCP-09-1 Vizsgálati eljárás száma		Welder Hegesztő	BC18
	Visual examination / Szor	mrevételezéses vizsgálat	

Measurement / Mérés

Equipment Készülék	-	•
Instrument		
Készülék		•
Surface temperature	Surface	Lighting intensity
A felület 20 °C hõmérséklete	Felület machined Allapota	Megvilágítás 1000lx
Test results		
Eredmények :	SATISFACTORY megfelelő8	pc(s)/db
	not accepted nem megicielū0	pc(s)/db
Vizsgålat helye és ideje:	Vizagálatot végezje:	Áttekintette és jóváhagyta:
Place and date of test:	Tested by:	GAMMA - CONTROLL BAST
Gamma-Controll Kft. Algyő, 2013.10.30. (10h)	Kis / abor VT20403130102	Activity 110469172-08 www.perintercontrol. Tel.Posensa recessor

tis a jagozálata w réspicteiben nero missolisatól / Copying details is prohibitenti

CONTITECH RUBBER	No:QC-DE	3- 651 /2013
Industrial Kft.	Page:	31 / 44

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

RONCSOLÁSMENTES ANYAGVIZSGÁLÓ TANÚSÍTVÁNY (Certificate of NDT personnel)

Azonositó szám: VT20103130102 (Identification No.): A tanásított neve: Kis Gábor Balázs (The name and forename of the certificated individual): Születési hely/idő: (Place and date of birth): A tanúsitoti sz ly aláirá Szeged, 1980. 02. 29. (The signature of) dindivi Vizsgilati eljárás(ok): (The NDT method(s): Szemrevételezéses anyagvizsgáló (Visual testing) **Ipari terület:** Készülékek, berendezések, létesítmények vizsgálata EM (Industrial scotor): (Pre and in-service testing of equipment, plant and structure) Termék terület(ek): (c), (w), (wp), (f) Product sector(s): A minősítés fokozata: (The level of centification): VT2 A tanúsítás és kiadásának Időpontja: Budapest, 2013. 02. 19. (The date of certification and it's issue): A tanúsítás érvényes: 2018, 02, 18. (The date upon which certification expires): al age C Tamisitó Testület nev (On behalf of certifying b izsgáztató (Examiner) Az ipari és/vagy termék terü-let érvényesség kiterjesztve: (The industrial and/or product sector has been expanded to): Dátum (Date): Tanúsító Testület povében (On behalf of certifying body) A tanúsítás érvényessége -ig megújítya (MSZ EN ISO 9712 10.): (Renewed the validity of the certification until (MSZ EN ISO 9712 10.):) Dátum (Date): Tanúsító Testület nevében (On behalf of certification body) c - öntvények (castings); f - kovácsolt termékek (fingings); w - hegesztett és forrasztott termékek (welded products); t - csövek és csövezetékek (tubes); wp - alakított termékek (wrougitt pirchcts); k - kompozit anyagok (composites products).

CONTITECH RUBBER	No:QC-DB- 651 /201					
Industrial Kft.	Page:	32 / 44				

Dátum: 10(2.02.01.

V120103130102

MAGYAR HEGESZTÉSTECHNIKAI ÉS ANYAGVIZSGÁLATI EGYESÜLÉS (HUNGARIAN ASSOCIATION OF WELDING TECHNOLOGY AND MATERIAL TESTING) (Certification Body)

• Meghatalmazzuk a tanúsítvány tulajdonosát, hogy vizsgálatokat végezzen és azok eredményéért felelősséget vállaljon. (MSZ EN ISO 9712 3.21)

(The holder of this additional to be entropy of the performance and take responsibility for the test results. (MSZ EN ISO 9712 3.21))

0126 Szened, Túzok n. 8/A Munikáltató aláírásar dőszánt 11094614-2.04 (Signature of the carplofa TP Bank: 11205002-2016/14

·	(Evidence of continued	tés igazniása (MSZ EN ISO 9712 10.) wod: scrivity (MSZ EN ISO 9712 10.))		
Sorsz.:	Municalizato alairasa (Signature of the amployer)	Ph. "GANMA CONSTROLL."	Datum (Date)	1. A.V.
1.		Anyagetingfiló és Minörigetlenőrőő K/i	7012.02.06.	
2.				
3.				
4				·
5.		· · · · · · · · · · · · · · · · · · ·		
6				
7 .			· · · · · · · · · · · · · · · · · · ·	
8.				}
9.				
10.]

Kiegészítések: (Additional semarks:)

. .

\$

-

A tanúsítvány a munkáltató aláírásával érvényes (This cartificate is valid with the signature of the employer.)

CONTITECH RUBBER	No:QC-DI	B- 651 /2013
Industrial Kft.	Page:	33 / 44

Felado :

ļ

61344

gamma controll kft 19/18/13 12:54 Lap: 1

CAMMA-CONTROLL	RADIOGRÁFIAI VIZSGÁLATI JEGYZŐKÖNYV	Jegyzőkönyv szání: Report No.: 2431/13
www.gininja-cuntrii/ju G700 Algyd, kalkyda, bilba/M. hae. Tau/Faz: 400 42617.400 f 61844 A KKT aks NAT-4 1402310 wing, attracting dispatikaonikkau	RADIOGRAPHIC	Kiállílás dátumu: Date of report: 2013.10.30

.

Object:	l tángya:			(Couplin	ß		Client				JE-20 Kft. Szeged					
Munkanz	ám;				_				ilėsi sut	m:							
Job No.:								Order									
Rajescán Draving	No.:			MI	-3121-3	000		Mater					AIS	14130			
Testing s		_	QCP-13-1							edcime: ing:			10	00%			
	overolmén co criteriu:	y;	_	A	STM E)4		Hôka/ Heat L		t condition:			After	PWHT			
Kód: Code:			N	ASZ E	IN ISO	6520-	1	Heges	ziń jele; r stimp		·		B	CIS			
Boronden Type of e	és tipusa: quipment:			GA	MMAM	AT		Ксрті Тура с		lző típusa;			ASTM	set B typ	e		
Sugartom Source:					Ir192	_		Képmi		etző helye: IQI:				F			
Sugariom Source size	la méreto; so:			3	x1,5mm	1			képmini red IQI:	Christ:			2%	(2-21)			
Aktivitts:									pus:			,					
Activity:				(),4 TBq			Film T					FON	AAR5			
Filmirido) Film proc	gozás módj cssing:	a:	Kézi: Manual:		Automati	_	X			astagaily: id thick:				0,027			
			5	-	3							Hibák/	Defecta				
	1	ن ا	l 1	¥.	199		t	3 بر	Dated ins	Gáz	Salak	Kötés	Győk	Repeates	Pelaie		
			2 .	128	8 8	!	<u> </u>	A the set		Porosity	Slag	Leck of	Lack of	Crack	Surfac		
188	[「夏日	급분	A tuga	ŀ	1ğ		Ğ.	A	B	fusion C	panaratan D	E	F		
Megnevezés Designation	Måret Size	Febrékék száma: B. Namber of cadingraphs	Attagizet ayapratgeig Recented dichese	a Soghfurts film theolsta Source-to-film dismace:	Fin the othery angler in both obstant Distance from source side of object to fin:	Felender Deuty.	a Magnilagitini idit. Si Exposi Teare:	Unistiks: A-meglelek Ur-nom negfelek Resúr Procened: NA-na necened	Vangèlan idôpentjaç	200	300	401	402	100	500		
8083	115/77	4	19	96	19	2,4	0,5	A	10,30	ţ{							
8084	115/77	4	19	96	19	2,4	0.5	A	10,30 (0)								
8085	115/77	4	19	96	19	2,4	0.5	A	10,10								
8086	115/77	4	19	96	19	2.4	0,5	A	10,30								
8087	115/77	4	19	96	19	2,4	0,5	A	10.30. 10b								
8088	115/77	4	19	96	19	2,4	0,5	A	10.30								
filmer	ámok és	Varrater	zámok a	7000	ak how	onoví		merr		it terhell		·					
				• •				-		the task o	f the ac-	tum					
	_			103 81		al, uit	11 100		5101118	HIE WEAR U	. uie 603						
	tot végez	ze:						•		Ménesi I.	- Szabó	Т.					
erforme								-	<u> </u>								
Vicentist helye: Eričkolte:					- 14	1.			GAN		INTROI	L KFI					
Maco of Lent: [Evaluated by:					i	The second	Ľ										
6750 Algyö, Gamma-Controll Kft. Telephely							iénesi 20101		7		With sent a state of all in With 103 0 21 25 3640						

8. változat.2013.07.16

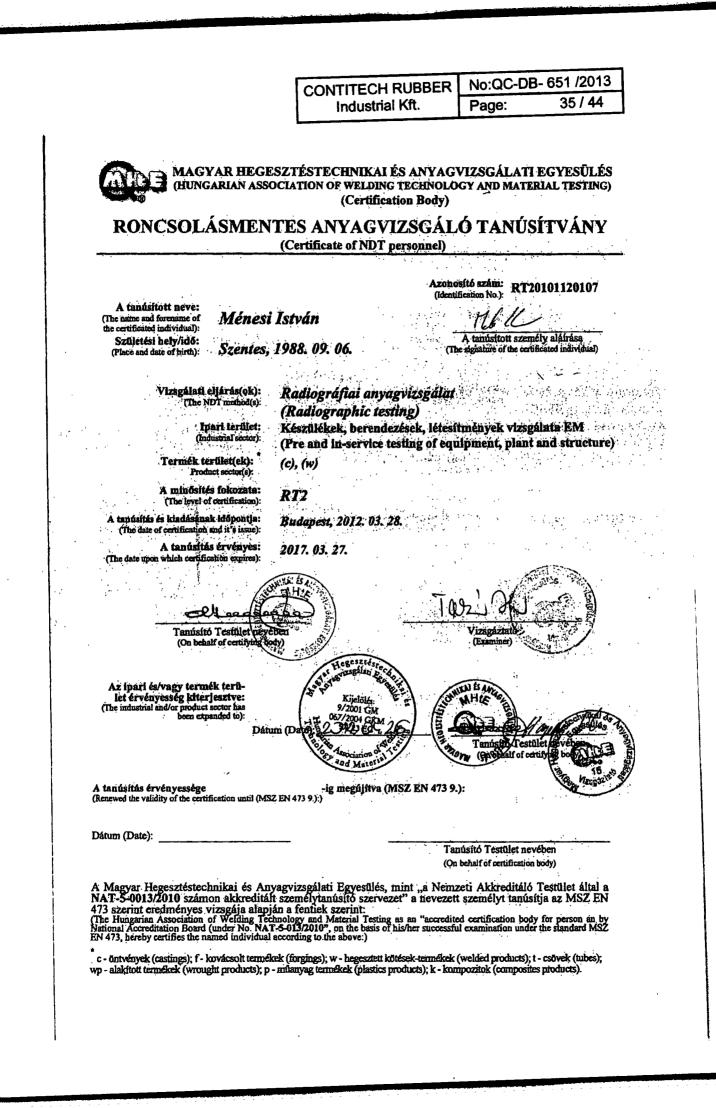
•

CONTITECH RUBBER	No:QC-DB- 651 /2013				
Industrial Kft.	Page:	34 / 44			

Felado :

: 61344

gamma controll kft


19/18/13 12:49 Lap: 1

GAMMA-CONTROLL	RADIOGRÁFIAI VIZSGÁLAT JEGYZŐKÖNYV	TI Jegyzőkönyv szám: Report No.: 2430/13
er Burrey Lines to the Shift, end of the second state of the gamma can find his 6750 Agrid, Kithardio (S180414, Arad. Stat/Raz. + 50 (2014/402) / 17344 A Not Anis Mari 1 (19022010 calines adoughts) statedostations	RADIOGRAPHIC EXAMINATION REPORT	Kiallitás dátumu: Date of report: 2013,10,30
Vizagélat tárgya: Co Object: Co	pling Megrendelő;	IE-70 Ko Surred

Object	a anEMa:		Coupling							Megrendelä: Client:				JE-ZO Kn. Szeged			
Munker	까지:		_				_		Rendelési szám:								
Job No.: Reizode		· · · · · ·							Order No;								
Drawing	•			M	г-зі2і-З	000			Anyogmindseg: Material: AISI 4130								
Vizsgála	Vizsgálati szabvány:									cócime:							
Testing standard; QCP-13-1									1 07 1.31				1	00%			
Arvátoli követelmény: ASTM E94) Kike	ulda:				10.				
Kód; Code; MSZ EN ISO 6520-1										t condition;		. :	ATCO	PWHT			
									nê jelê F stamp					CIS)			
Berendeze's tipusa: Type of equipment: GAMMAMAT							Керті Турс с		tizo tipusa:			ASTM	set B typ)8			
Sugarlands: Source: Ir192								Képm		ebû helye:				F			
Sugárfornis mérato:									képmin								
Source star: 3x1,5mm									cd IOI:				2%	(2-27)			
Aktivitis:								Film U	pus:	·							
Activity:				1	0,4 TBq			Film T					FON	1A R5			
	gozás mód	ja:	Kezt		Automat		X			usroticije:			Di	0.027			
'ilm proc	casing:		Manaal:		Automat	a;	~	Serven	(ype ar	d thick:				V1V2/			
	1	1	5	I.,	18 .	I	1 -	Ι.		L			Defucis				
	1	¥ I		13 8	l Š	1.	1	4	2	Cláz,	Selak	Kötés	Győk	Kepedés	Felâlei		
<u>ب</u> وو	l		28	J		1				Porosity	Siag	Lack of Station	Lack of Plastaring	Crack	Surface		
쐶협	1	111		1 a a		1	1		Å.	A	B	C ftalon	D	E	F		
Megnevezés Designation	Méret Size	Fetritulal azimus: Number of radiographs.	kungtron urjagnangalig Procruted thickness	Sugarturcts film theated g Source-to-film disconce:		Februalis Denuity.	Mepsilightsi idb. Expos. Time	Ninkatés A-megidelé: NA-men negittelő Remis A-mantist NA-me soccaso	fürseblar idiporaja; Date of tes	200	300	401	402	100	500		
8089	0 115/77	4	19	etern 96	տա 19	2,4	min 0,5	22 ₹ A	10.30								
									10h 10.30.								
8090	115/77	4	.19	96	19	2,4	0,5	A	10.44								
<u> </u>	•	•	-	•	-	-	-	-		-	-	-	-	-	-		
{					·												
1	ļ		J					1					1	1			
filmsz	imok és	verteter	ámok a	70006	sk beaz	mosit	Acule o	Meure	ndelő	t terball				I			
										the task of							
			and Mé	109 (11)	e menuc	w, UI0		111103(ure usk of	THE COS	wher.					
rzsgauau erforme	ot végez d by:	le:					•••		1	Ménesi I. •	- Szabó '	r.					
zəgálat h	alyo;				Ertékelt	:					T	lováhogyta	:				
test of test					Evaluato			All	0			6750 Ale	MA - CO	NTROL	L/Tel hrozzi		
Gamm	6750 a-Contro	Algyö, II Kft.	Telephe	iy				énesi): 01011		,		À	loszam: 1		- 46		
				·									100700-0		IJ		

fix a Jegyzikanye resoluteihen nem masothatol / Copying details is prohibitedf

8. változat.2013.07,16

			CONTITECH RUBBER Industrial Kft.	No:QC-D Page:	B- 651 /2013 36 / 44	-
					RT201	
	ATR	HAGYAR HEGES (HUNGARIAN ASSO	SZTÉSTECHNIKAI ÉS ANYA Ciation of welding technol	GVIZSGÁLA LOGY AND MA	ATI EGYESÜLÉ Aterial testin(CS G)
) 	(Certification Body) .		
	Meghata (MSZ E)	almazzuk a tanústivány tulajó N 473 3.21)	donosát, hogy vizsgálatokat végezzen és NTROLL KIL ceregy sztrom szára and take responsibility for the s 1094514-2-06	azok eredményé	ert felelösseget valla	ijon.
	Munkáltat	6126 Szcged Adószám: 1 Adószám: 1	1094514-2-05 10505-20406-54		(4/3 3.21))	-
	(Signature of t	the employer.) OTPBank:	Jan La	tum: Date:) <u>Ol</u>	. 04.19.	-
		Folyam	atos munkavégzés igazolása (MSZ EN 47 tence of continued work activity (MSZ EN 473 9.	73 9.)		
	Sorsz.:	Munkáltató aláírás (Signature of the employ		11	Dátum (Date)	
	1.	Non	Anyago	Kft1	L. 04.19.	
	2	LAS.	GANIGATO AND		3.01.09	
	3.					
	4.					
	5.					
	6.					
	7.					
	8.					
	9.					
·	10.				;	
	Kiegészítése (Additional rem	¢k:			·	
		5.	4			
			، من الم			
	· .					
		-				
	·		·			
						:
		ny a munkáltató aláírásával ér				

CONTITECH RUBBER	No:QC-DB- 651 /2013		
Industrial Kft.	Page:	37 / 44	

ContiTech Rubber Industrial Kft Szeged/Hungary	Vizsgálat Liquid pene Festékdifft ⊠ Magnetic p	ation record ti jegyzőkönyv trant examination úzlós vizsgálat article examination repedésvizsgálat	Record No. Jegyzökönyv száma : 1222/13
Manufacturer Gyártó	JE-ZO Kft.	Serial No. Gyári szám	8083-8090
Customer Megrendelő	ContiTech Rubber Industrial Kft.	Drawing No. Rajzszám	MT 3121-3000
Object Tárgy	coupling(s)	Material Anyagminőség	AISI 4130
Quantity Mennyiség	8 pc(s)	Extent of examina Vizsgálat terjedeln	
Requirements Követelmények	ASTM E 709	Heat treatment Hökezelés	yes
Written Procedure N Vizsgálati eljárás sz		Welder: Hegesztő:	Szabó T.

Liquid penetrant examination /Folyadékbehatolásos vizsgálat

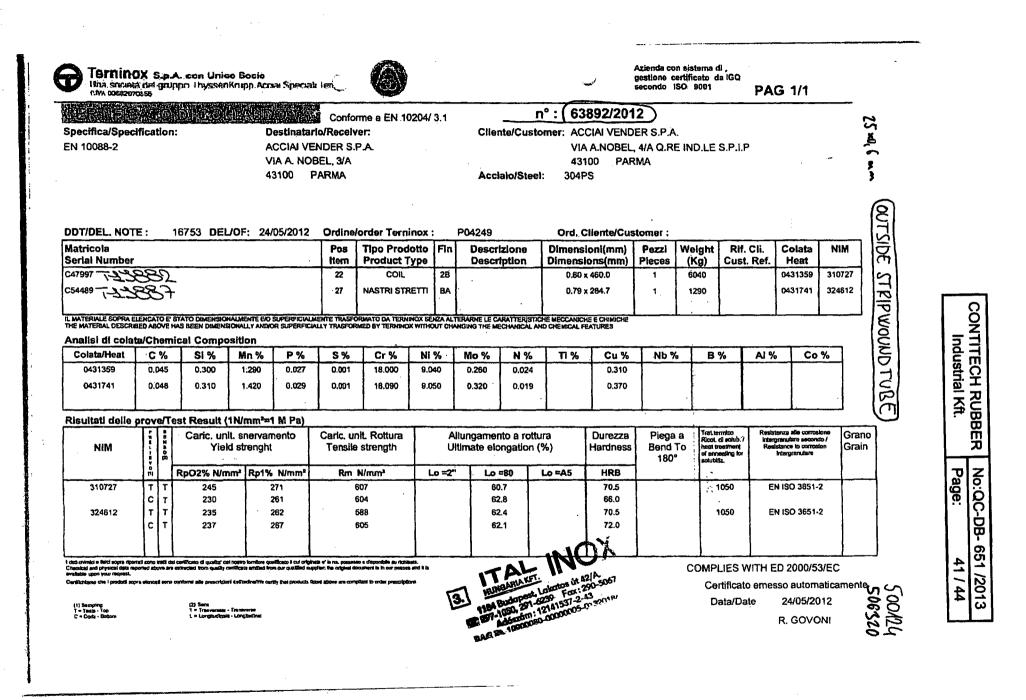
Penetrant	Remover	Developer	
Behatoló anyag	Tisztító	Előhívó	
Dwell time	Drying	Developing time	
Behatolási idő	Száritás	Előhívási Idő	
Surface temperature	Surface condition	Lighting intensity	
A felület hömérséklete	Feiület allapota	Megvilágítás	

Magnetic particle examination/Mágnesezhető poros vizsgálat

				·
Equipment type TSW 1000 Készülék típusa	Testing materi Vizsgáló anyag		Magnetizing currer Mágnesező áram	^{nt} 1000 A
Black light type Superlight C UV-A lámpa típusa 10A-HE	Térerőmérő	disc	old Field strength Térerő	4,2 kA/m
Surface temperature 23 °C A felület hõmérséklete	Surface condit Felület állapota		ed Lighting intensity Megvilágítás	1000 μW/cm ²
Test results			·	
Eredmények :	satisfactory			
· ·	megfelelő	8	pc(s)/db	
	not accepte	d		
	nem megfel	lelõ	pc(s)/db	
· · · · · · · · · · · · · · · · · · ·				
Performed by NDE Level II.	Jun and a start of the start of	Revised by Q	.C. manager	
Vizsgálatot végezte	TEE	Ellenőrizte – I	AEO vozeta Cor	tiTech Rubber
Have U.S.	At Es Sy		It	dustrial Kft. QC 1
Signature Oravecz Gábo	or Citre	Signature	Markó László	
Aláirás	E.	Aláírás	· · · · //	
Place/Date	- SP	Place/Date	6	
Kelt Szeged, 04.11.20		Kelt	Szeged, 04.11.201	3.
QCP-12-1-MPT/07				

Market Pick the second second

		CONTITECH RU	JBBER	No:QC-D	B- 651 /2013
		Industrial K	ft.	Page:	38 / 44
(HUNG	ARIAN ASS	ESZTÉSTECHNIKAI ÉS OCIATION OF WELDING TI (Certificatio TES ANYAGVIZ	ECHNOLO n Body)	GY AND MAT	ERIAL TESTING
		(Certificate of NDT per			···.
A tanúsított neve:		011		tó szám: MT2 ation No.):	20103010506Ú
The name and forename of the certificated individual): Születési hely/idő: (Place and date of birth):		z Gábor 1958. 07. 07.	-	A tanúsított szer	
(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		(10	A ordinantic AI fills CO	THE PROPERTY IN THE PROPERTY INTENTY IN THE PROPERTY INTENTY INTENT PROPERTY INTENT PROPERTY INTENT PROPERTY INTENT PROPERTY INTENT PROPERTY INTENT PROPERTY INTENTY I
Ip	ljárás(ok): DT method(s): ari terület: ustrial sector):	<i>Mágnesezhető poros (Magnetic particle te</i> Fémfeldolgozás MM (Metal manufacturing)		zsgáló	•
Termék te: Produ	rtilet(ek):	(c), (f), (w), (wp)			
	tés szintje: certification):	MT2			
A tanúsítás és kiadásánal (The date of certification a		Budapest, 2012. 02. 21.			
A tanúsitás The date upon which certifics		2017. 02. 20.			Antiket
Tanúsitó (On behal	Testillet never f of certifying bo	-		Vizsgáztató (Examiner)	All and a second
Az ipari és/vagy termé let érvényesség kiterj The industrial and/or product a been expa	esztve: ector has nded to):				
	Dátu	m (Date):		Tanúsító Testi (On behalf of ce	
anúsítás érvényessége wed the validity of the certi	fication until (MS	-ig megújítva (MS2 32 EN 473 9.):)	L EN 473 9.):	
itum (Date):					
· · · · · · · · · · · · · · · · · · ·				úsító Testület ne	
			(Un	behalf of certification	п росу)


A Magyar Hegesztéstechnikai és Anyagvizsgálati Egyesülés, mint "a Nemzeti Akkreditáló Testület által a NAT-5-0013/2010 számon akkreditált személytanúsító szervezet" a nevezett személyt tanúsítja az MSZ EN 473 szerint eredményes vizsgája alapján a fentiek szerint: (The Hungarian Association of Welding Technology and Material Testing as an "accredited certification body for person an by National Accreditation Board (under No. NAT-5-013/2010", on the basis of his/her successful examination under the standard MSZ EN 473, hereby certifies the named individual according to the above:)

c - öntvények (castings); f - kovácsolt termékek (forgings); w - hegesztett kötések-termékek (welded products); t - csövek (tubes); wp - alakított termékek (wrought products); p - milanyag termékek (plastics products); k - kompozitok (composites products).

		<u> </u>	Industrial Kft.	P	age:	39 / 44
	MAGYAR HEG	ESZTÉSTI	ECHNIKAI ÉS A	NYAGVI	IZSGÁLA	MT20103 TI EGYESÜLÉ
	(HUNGARIAN ASS	SOCIATION	OF WELDING TEC (Certification	HNOLOG	Y AND MA	FERIAL TESTIN
	zzuk a tanúsítvány tul	ajdonosát, ho	gy vizsgálatokat véges	zen és azok	eredményé	rt felelősséget válla
(MSZ EN 47 (The holder of th	3 3.21) is certificate has been authorithe	rised to gorform	tests and take responsibility	for the test res	ults. (MSZ EN	473 3.21))
Munkáltató alá (Signature of the en		any		Dátum: (Date:)	2012.	02.21.
·		i matas munka	végzés igazolása (MSZ			
Sorsz.:	EUVA (E Munkáltató alái	vidence of contin	wegzes igazolasa (1932 ued work activity (MSZ E) Ph.	1473 9.))		Dátum
	(Signature of the emp		ContiTient			(Date)
1.	Back T	`	Quality Contro (1)		2013	6.01.24.
2.						
3.	· · · · · · · · · · · · · · · · · · ·			·		
4.				·		· · ·
5.	·					
6.					_	
7.	<u> </u>				_	· · ·
8.	<u>.</u>					
9.	1 		· · · · · · · · · · · · · · · · · · ·			
10.	···					
Kiegészítések:	• • • •					
Additional remarks:)					

A tanúsítvány a munkáltató aláírásával érvényes (This certificate is valid with the signature of the employer.)

					RUBBER	· · · · · · · · · · · · · · · · · · ·	DB- 651 /20	
		L		dustrial	<u>νπ.</u>	Page:	40 / 4	4
Bekaert Hi	obovec a.s.						.	
Mierová 2317							505	760
	vec / Slovakia							
	0421337363111 0421337422742							
STEELC		Page:1 /	1	• · · · · · · · · · · · ·	Certific	ate of Analysis		
MANUFA	CTURER : BKHL				Deliven	No. : 4048181	212	
	ubber Industrial Kft.			Sales	Order	3046059220/1	0	•
	HRUBBER IND SZEGED	·		Purch	ase Order	32260330		
Budapesti ú H-6728 SZE	and the second			Inspec	tion lot	09000020066	5/000001	
-				Batch		3500245379		
				•	becubore	01.07.2013		
				Date C		09.08.2013		unda una cara d
Spec custon	rer Contitech Rubber Indu	istrial KA		Spools Units	•		rom a batch of 32 pro rom a batch of 16 pro	
Your code	14-16-07/1				ry net Qty.	10517 KG		000000
Your spec	REV.3 / 15.01.2002				al Description		selcord 1X24DW/3.6	NT 20/36
Our Spec	H207297 / 28.10.2012	ł		:	× ·	5000 M		
				Lay dir	rection	Z		
				Lay ler	ngth 	20/38		
Tests				Specs		Results	··	
Test		Procedure	Unit	Alm	Min. Max	Avig. N	Min ind Max ind	
Cord diamet		RA12-100	mm	3,6000	3,4200	3.6845	3.6640	
	·			0.0000	3,7800	6	3,6930	
Linear densi	ly .	RA30-110	g/m	65,000	61,700 68,300	65,632 6	65,300 65,870	
Cord breaking	g strength	RA30-203	N	-	17900,0	19337,0	19087,0	
Cord elonga	ion at break	RA30-203	%		2,50	6 2,98	<u>19584,0</u> 2,80	
	·				·····	6	3,15	
Zinc D1		RA40-741	g/m2		32,000	40,057 6	37,870 44,630	
Zinc D2		RA40-741	g/m2		44,000	48,788	45,350	
Residual ton		RA30-160	Nt	0,000	-3,000	66	<u>56,100</u> -0,500	
		10.00-100	1.11	0,000	3,000	6	0,000	
Comments :								
D1: 0,54 D2: 0,73	. .							
Nominal Che %Carbon : 0.	mical composition of High G	rade Oxysteel:						
%Manganese								
%Silicon: ⊲0.								
%S: <0.011 %P: <0.012								
1000. 40.012			``					
	e/Texture: Metallurgically the	e texture is know	n as a higly			. '		
1								
Microstructure drawn, fine pr	arlitic structure.							
1	anitic structura.							
1	arlitic structura.				· .			
1	nfitic structure.			• •	• .			
1	nfitic structure.			· ·	• .			
1	nfitic structure.			· · ·	· · ·			
1	nfitic structure.				· · ·			

CONTITECH RUBBER No:QC-DB- 651 /2013 Industrial Kft. Page: 42 / 44

MKEH Mctrológiai Hatóság/Metrology Authority Mechanikai Mérések Osztály Section of Mechanical Measurements BUDAPEST XII., NÉMETVÖLGYI ÚT 37-39. 1535 Budapest, Pf. 919 Telefon: 458-5800 Telefax: 458-5927 Úgyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013 Hivatkozási szám / Reference No.: 32259470 Page 1/3 oldal Kiadva / Issued

Budapest, 2013. 01. 28. / 28 01 2013

KALIBRÁLÁSI BIZONYÍTVÁNY CALIBRATION CERTIFICATE

villamos kimenőjelű nyomásmérő

A kalibrálás tárgya:

 Object of calibration:
 electrical-output manometer

 Gyártó / Manufacturer:
 AFRISO-EURO-INDEX GmbH

 Típus / Type:
 DMU03 HD

 Azonosító szám / Serial No.:
 1518086

 Műszaki adatok / Technical data:
 (0...2500) bar méréstartomány / r

Kalibrálásra bemutatta: Customer:

A kalibrálás helye és ideje: Place and date of calibration: (0...2500) bar méréstartomány / measuring range (0...2500) bar (4...20) mA kimenőjel tartomány / output signal range (4...20) mA

ContiTech Rubber Industrial Kft. 6728 Szeged, Budapesti út 10.

Magyar Kereskedelmi Engedélyezési Hivatal Hungarian Trade Licensing Office Metrológiai Hatóság, Mechanikai Mérések Osztály Metrology Authority, Section of Mechanical Measurements Budapest, 2013.01.24.

A kalibrálást végezte: Calibrated by:

Szaulich Dénes

metrológus / metrologist

A kalibrálásnál alkalmazott etalonok:

Standards used for the callbration:				
Megnevezés:	Gyártó:	Típus:	Gyártási szám:	Bizonyítvány szám:
Designation:	Manufacturer:	Type:	Serial No.:	Certificate No.:
túlnyomás etalon / pressure standard	Budenberg	283	20603	NYO-0001/2013
digitális multiméter / digital multimeter	Keithley	2000	0597910	ELD-0014/2012
normál ellenállás / resistance standard	ZIP	P 331	117530	ELD-0021/2012
hömérő / temperature measuring instr.	GANZ MM	DTHI	33656	Hőm-0296/2012

A mérési eredmények a nemzeti (nemzetközi) etalonra visszavezetettek. The measuring results are traceable to national standards.

A kalibrálás módja:

Calibration method:

A kalibrálást a KE NYO-3-2002 számú kalibrálás eljárás alapján végeztük. The calibration was done according to the calibration procedure No.: KE NYO-3-2002.

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see <u>http://www.blpm.org</u>).

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

CONTITECH RUBBER	No:QC-DI	8-651/2013
Industrial Kft.	Page:	43 / 44

MKEH Metrológiai Hatóság/*Metrology Authority* Mechanikai Mérések Osztály Section of Mechanical Measurements

Ügyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013

Page 2/3 oldal

A kalibrálás körülményei:

Calibration conditions:

környezeti hőmérséklet / Ambient temperature	21,1 °C	
a kalibrált eszköz helyzete / Position of the calibrated manometer	függőleges / vertical	
a kalibrált eszköz tápfeszültsége / Supply voltage of the calibrated manometer	24V DC	
nyomóközeg / Pressure transfer medium	olaj / <i>oil</i>	

Mérési eredmények a (0...2500) bar nyomástartományban: Results of the measurements in the pressure range of (0...2500) bar:

Nyomás, névleges érték	Áram-kimenőjel, névleges érték	Áram-kimenőjel, mért eltérés a helyes értéktől	Nyomás, mért eltérés a helyes értéktől	Eredő mérési bizonytalanság
Pressure, nominal value	Current-Output, nominal value	Current-Output, measured deviation from the reference value	Pressure, measured deviation from the reference value	Expanded uncertainty of the measurement
bar	mA	mA	bar	bar
0	4,0	-0,0042	-0,7	
250	5,6	-0,0002	0,0	
500	7,2	0,0029	0,5	
750	. 8,8	0,0050	0,8	
1000	10,4	0,0063	1,0	
1250	12,0	0,0053	0,8	2,6
1500	13,6	0,0033	0,5	
1750	15,2	-0,0003	-0,1	
2000	16,8	-0,0052	-0,8	
2250	18,4	-0,0117	-1,8	
2500	20,0	-0,0192	-3,0	

Mérési bizonytalanság: A mérési eredmény(ek) mellett közölve.

Uncertainty of measurement: See next to the results of the measurements.

A közölt kiterjesztett mérési bizonytalanság a standard bizonytalanságnak k kiterjesztési tényezővel szorzott értéke (k = 2), amely normális (Gauss) eloszlás feltételezésével közelítőleg 95%-os fedési valószínűségnek felel meg.

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to coverage probability of approximately 95 %.

A mérési bizonytalanság tartalmazza az etalonból, a kalibrálás módszeréből, a környezeti feltételekből, a kalibrált mérőeszközből stb. eredő részbizonytalanságokat.

It contains the uncertainties of the standards, calibration method, enviromental conditions, calibrated device etc.

A standard bizonytalanság meghatározása az EA-4/02 (Expression of the Uncertainty of Measurement in Calibration) kiadványnak megfelelően történt.

The standard uncertainty of measurement has been determined in accordance with the EA Publication EA 4/02 (Expression of the Uncertainty of Measurement in Calibration).

A bizonyítvány az MKEH írásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

CONTITECH RUBBERNo:QC-DB- 651 /2013Industrial Kft.Page:44 / 44

MKEH Metrológial Hatóság/Metrology Authority Mechanikal Mérések Osztály Section of Mechanical Measurements

Úgyiratszám / File No.: MKEH-MH/00287-003/2013/NY Bizonyítványszám / Certificate No.: NYO - 0008/2013 Page 3/3 oldal

Bélyegzés:

Calibration mark:

A kalibrált mérőeszközön K067662 azonosító számú kalibrálási bélyeget helyeztünk el. We have placed a calibration stamp No.: K067662 on the calibrated instrument.

Megjegyzések:

Additional remarks:

Jelen bizonyítvány összhangban van a Nemzetközi Súly és Mértékügyi Bizottság (CIPM) Kölcsönös Elismerési Megegyezése (MRA) C függeléke által tartalmazott kalibrálási és mérési képességekkel (CMCs). Az MRA minden aláíró intézete elismeri egymás kalibrálási és mérési bizonyítványait a C függelék szerinti mennyiségfajtákra, azok értéktartományaival és mérési bizonytalanságaival (közelebbit lásd: http://www.bipm.org)

This certificate is consistent with Calibration and Measurement Capabilities (CMCs) that are included in Appendix C of the Mutual Recognition Arrangement (MRA) drawn up by the International Committee for Weights and Measures (CIPM). Under the MRA, all participating institutes recognize the validity of each other's calibration and measurement certificates for the quantities, ranges and measurement uncertainties specified in Appendix C (for details see http://www.bipm.org)

A kalibrálási bizonyítványban megadott értékek a mérőeszköznek a kalibrálás idejére és körülményeire jellemző adatai.

The measurement results show the metrological properties of the device during the time of the calibration under the environmental conditions listed above.

Az újrakalibrálás időpontját a felhasználó dönti el a mérőeszköz használatának és állapotának függvényében.

The date of the next calibration is decided by the user. It depends on the usage and the condition of the device.

A bizonyítvány kiadható / Approved by:

A bizonyltvány az MKEH (rásbeli engedélye nélkül csak teljes formájában és terjedelmében másolható! The calibration certificate shall not be reproduced except in full, without written approval of MKEH!

AMEREDE

- Variance is requested to connect the BOP choke outlet to the choke manifold using a co-flex line (instead of using a 4" OD steel line) with a 10,000 psi working pressure that has been tested to 15,000 psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps.
- Variance is requested to allow Option of rig not capable of reaching TD presetting Surface, Drilling Plan will be same using Fresh Water fluid system.
- Variance is requested to wave any centralizer requirements on the 5-1/2" casing. Ameredev will
 utilize cement expansion additives in the cement slurry to maximize cement bond and zonal
 isolation.
- Variance is requested to wave any centralizer requirements on the 9-5/8" casing. Ameredev will
 utilize cement expansion additives in the cement slurry to maximize cement bond and zonal
 isolation.
- Variance is requested to allow Temporary Postponement of Operations on well to skid to adjacent well if multiple wells on drilling pad are drilled.
- Variance is requested to allow use of Multi-Bowl Well Head System.
- Variance is requested to allow adjustment of Casing Design Safety Factor on conditions that Ameredev keeps minimum of 1/3 casing capacity filled with OMW drilling fluids.
- Variance is requested to allow 5M Annular Preventer on 10M BOPE System to drill Production Interval. (Supporting Documentation Attached)

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400030794

Operator Name: AMEREDEV OPERATING LLC

Well Name: CAMELLIA FED COM 26 36 21

Well Type: OIL WELL

Well Number: 091H Well Work Type: Drill

Submission Date: 06/04/2018

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

CAMELLIA_FED_COM_26_36_21_091H___WELL_PAD_ACCESS_20190314150445.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

SUPO Data Report

05/16/2019

Show Final Text

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

CAMELLIA_FED_COM_26_36_21_091H___WELL_PAD_ACCESS_20190314150537.pdf EP_CAMELLIA_PAD_ROAD_EASEMENT_SEC_21_REV1_20190314150550.pdf EP_CAMELLIA_PAD_ROAD_EASEMENT_SEC_28_S_20190314150551.pdf New road type: RESOURCE

Length: 748

Width (ft.): 30

Max slope (%): 2 Max grade (%): 2

Feet

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 20

New road access erosion control: Crowned and ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Operator Name: AMEREDEV OPERATING LLC		
Well Name: CAMELLIA FED COM 26 36 21	Well Number: 091H	
Access road engineering design? NO		
Access road engineering design attachment:		
Access surfacing type: OTHER		
Access topsoil source: ONSITE		
Access surfacing type description: Caliche	· · · · ·	
Access onsite topsoil source depth: 6		
Offsite topsoil source description:		
Onsite topsoil removal process: Grader		
Access other construction information: NM One Call	(811) will be notified before construction start.	
Access miscellaneous information:		
Number of access turnouts: Access	turnout map:	
Drainage Control		
New road drainage crossing: OTHER		
Drainage Control comments: Crowned and ditched		
Road Drainage Control Structures (DCS) description	: None	
Road Drainage Control Structures (DCS) attachment	:	
Access Additional Attachments		
Additional Attachment(s):		
Section 3 - Location of Existing V	Nells	
Existing Wells Map? YES		
Attach Well map:		
CAMELLIA_FED_COM_26_36_21_091H1_MILE_R	ADIUS_WELLS_20190314151412.pdf	
Existing Wells description:		

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: A multiple well pad will be located on section 21, and will measure 400'x500'. The top 6" of soil and brush will be stockpiled north of the well pad. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location. Production from the proposed well will be transported to a new production facility named Camellia CTB, north of the well pad. The Camellia CTB will be 500'x525' and will include a separator, Heat Exchanger, VRU, VRT, meter run and a tank battery. A buried 4" poly flowline will be run approximately 34' from the Camellia Fed Com 26 36 21 091H to the Camellia CTB. A buried

Page 2 of 11

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 091H

8" poly water line will be run from the Camellia CTB to a line that will be installed taking our produced water in the area to an SWD that is operated by OWL. The new line will be approximately 662'. A power line will be run parallel to the water line and will connect into a power line that we will be installing for a well in the area. The new power line will be approximately 913'. **Production Facilities map:**

CAMELLIA_FED_COM_26_36_21_091H___FACILITIES_MAP_20190314151501.pdf BO_CAMELLIA_FED_COM_BATTERY_SITE_S_20190314151532.PDF EP_CAMELLIA_PAD_FLOWLINE_SEC_21_20190314151533.pdf EP_SOUTH_ELECTRIC_SEC_21_REV2_20190314151534.pdf EP_SOUTH_WATER_SEC_21_REV2_20190314151535.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: DUST CONTROL, INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE CASING Describe type:

Water source type: GW WELL

Source longitude:

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: PRIVATE

Water source transport method: PIPELINE, TRUCKING

Source transportation land ownership: FEDERAL

Water source volume (barrels): 20000

Source volume (acre-feet): 2.577862

Source volume (gal): 840000

Water source and transportation map:

CAMELLIA_FED_COM_26_36_21_091H___WATER_MAP_20190314151720.pdf

CAMELLIA_FED_COM_26_36_21_091H___WATER_WELL_LIST_20190314151720.pdf

Water source comments: Water will be trucked or surface piped from existing water wells on private land. See attached list of available wells.

New water well? NO

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Aquifer comments:

Aquifer documentation:

Well depth (ft):

Well casing type:

Est thickness of aquifer:

Page 3 of 11

Well Name: CAMELLIA FED COM 26 36 21

Well casing outside diameter (in.):

New water well casing?

Drilling method:

Grout material:

Casing length (ft.):

Well Production type:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: NM One Call (811) will be notified before construction start. Top 6" of soil and brush will be stockpiled south of the pad. V-door will face east. Closed loop drilling system will be used. Caliche will be hauled from existing caliche pits on private and state land. **Construction Materials source location attachment:**

Well Number: 091H

Well casing inside diameter (in.):

Used casing source:

Casing top depth (ft.):

Completion Method:

Drill material:

Grout depth:

CAMELLIA_FED_COM_26_36_21_091H___CALICHE_MAP_20190314151801.pdf CAMELLIA_FED_COM_26_36_21_091H___WELLSITE_DIAGRAM_20190314151802.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks on pad

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: R360's State approved (NM-01-0006) disposal site at Halfway, NM

Reserve Pit

Reserve pit width (ft.)

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Page 4 of 11

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 091H

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Cuttings area length (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Cuttings area width (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

CAMELLIA_FED_COM_26_36_21_091H___WELLSITE_DIAGRAM_20190314151941.pdf Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: CAM/AZE

Multiple Well Pad Number: 1N

Recontouring attachment:

CAMELLIA_FED_COM_26_36_21_091H___WELLSITE_DIAGRAM_20190314152003.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well Name: CAMELLIA FED COM 26 3	36 21 Well Number: 091	1
Well pad proposed disturbance (acres): 4.59	Well pad interim reclamation (acres): 0.79	Well pad long term disturbance (acres): 3.8
Road proposed disturbance (acres): 0.52	Road interim reclamation (acres): 0	Road long term disturbance (acres) 0.52
Powerline proposed disturbance (acres): 0.42	Powerline interim reclamation (acres): 0	Powerline long term disturbance (acres): 0.42
Pipeline proposed disturbance	Pipeline interim reclamation (acres): 0	Pipeline long term disturbance
(acres): 0.02 Other proposed disturbance (acres):	Other interim reclamation (acres): 0	(acres): 0.02 Other long term disturbance (acres)
6.03	Total interim reclamation: 0.79	6.03
Total proposed disturbance: 11.58		Total long term disturbance: 10.79

Disturbance Comments:

Reconstruction method: Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 17% (.79 acre) by removing caliche and reclaiming 40' wide swaths on the north and east sides of the pad. This will leave 3.8 acres for producing five wells, with tractor-trailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements. **Topsoil redistribution:** Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is

plugged. New road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled. **Soil treatment:** None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Page 6 of 11

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 091H

Seed Table					
Seed type:		Seed source:			
Seed name:					
Source name:		Source address:			
Source phone:					
Seed cultivar:					
Seed use location:					
PLS pounds per acre:		Proposed seeding sea	son.	••	
r Eo pounda per acre.	··· ·	rioposed seeding sea			
Seed S	ummary	Total pounds/Acre:		:	· .
Seed Type	Pounds/Acre		• •		
					:
	· .: · · · · · · · · · · · · · · · · · ·	· · ·		•	, · ·
ed reclamation attachmer	· · ·	· · · · · · · · · · · · · · · · · · ·			
Operator Contact/	Responsible Offici	al Contact Info	:		
First Name:	• • •	Last Name:	· · ·		
Phone:		Email:			
edbed prep:			:		
ed BMP:					
ed method:			•	• • • •	· · · ·
•	NO		•	· · ·:	· · · · · · · · · · · · · · · · · · ·
sting invasive species?			· · ·		· · · · ·
isting invasive species? I isting invasive species tr	eatment description:				· · · · ·
ed method: isting invasive species? isting invasive species tra- isting invasive species tra- ed treatment plan descrij	eatment description: eatment attachment:				· · · · ·
isting invasive species? In isting invasive species transiting invasive species transitions invasive species transitions and the series the second structure of the second s	eatment description: eatment attachment: ption: To BLM standards				
sting invasive species? I sting invasive species tro sting invasive species tro ed treatment plan descrij ed treatment plan attachi	eatment description: eatment attachment: ption: To BLM standards ment:				
sting invasive species? I sting invasive species tro sting invasive species tro ed treatment plan descrip ed treatment plan attachi nitoring plan description	eatment description: eatment attachment: ption: To BLM standards ment: : To BLM standards				· · · · ·
sting invasive species? I sting invasive species tra sting invasive species tra ed treatment plan descrip ed treatment plan attach nitoring plan description nitoring plan attachment	eatment description: eatment attachment: ption: To BLM standards ment: : To BLM standards				
isting invasive species? In isting invasive species tra- isting invasive species tra- ed treatment plan descrip- ed treatment plan attach- nitoring plan description nitoring plan attachment ccess standards: To BLM	eatment description: eatment attachment: ption: To BLM standards ment: : To BLM standards : satisfaction				
isting invasive species? I isting invasive species tr	eatment description: eatment attachment: ption: To BLM standards ment: : To BLM standards : satisfaction				

Page 7 of 11

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 091H

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 091H

USFS Forest/Grassland:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: PIPELINE Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: USFWS Local Office: Other Local Office: USFS Region:

•

USFS Ranger District:

Disturbance type: OTHER Describe: Power line Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office:

Page 9 of 11

Well Name: CAMELLIA FED COM 26 36 21

Well Number: 091H

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

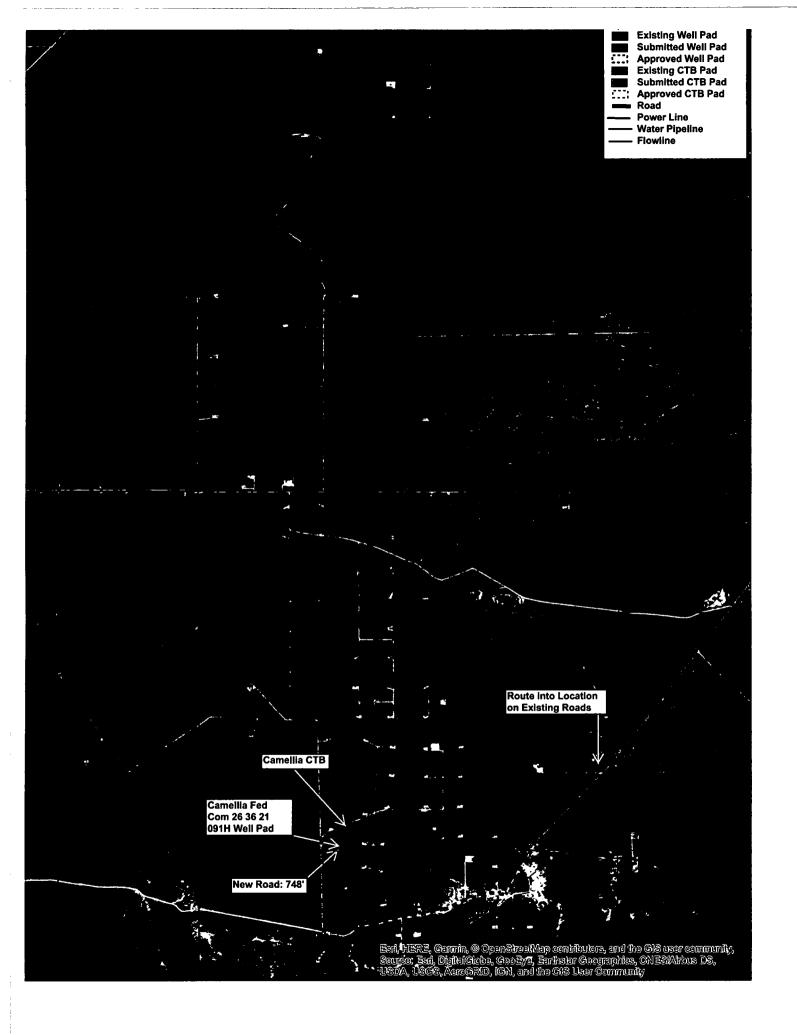
Right of Way needed? YES

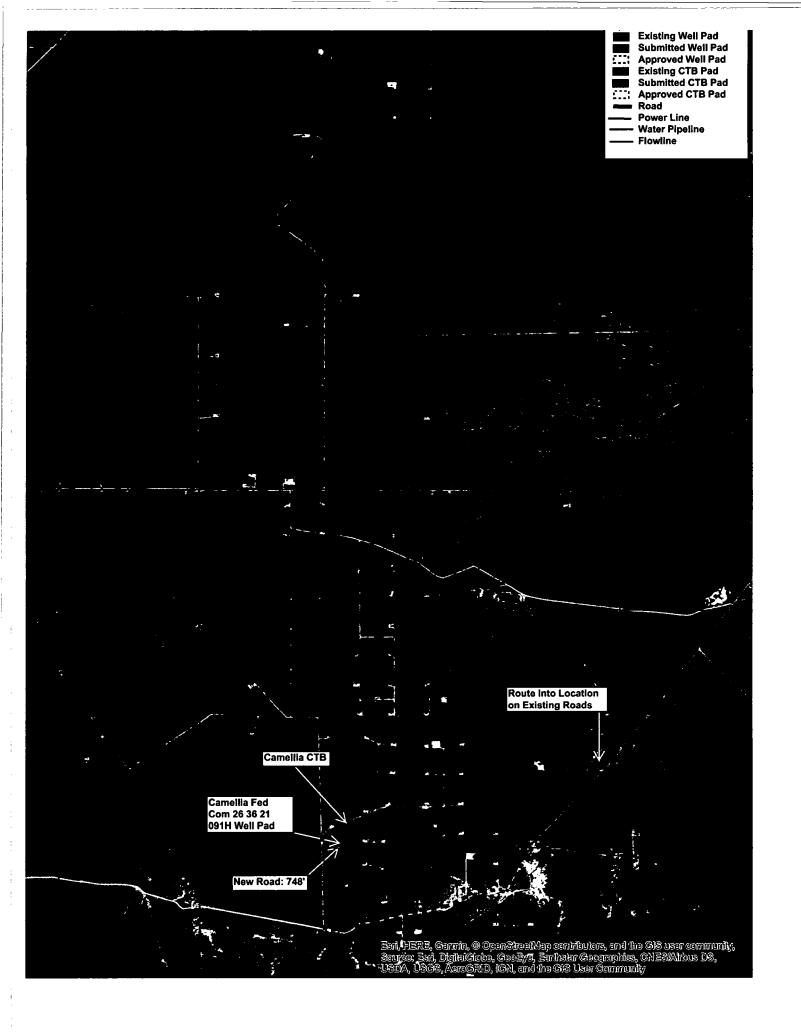
Use APD as ROW? YES

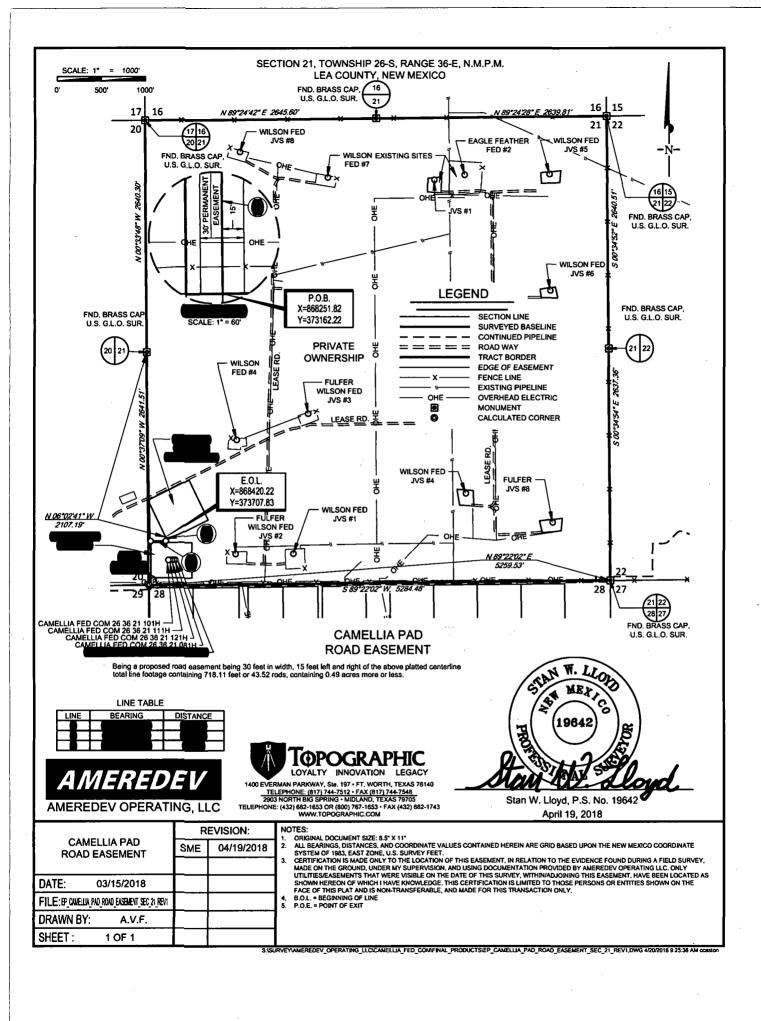
ROW Type(s): 281001 ROW - ROADS,285003 ROW – POWER TRANS,288100 ROW – O&G Pipeline,288103 ROW – Salt Water Disposal Pipeline/Facility,289001 ROW- O&G Well Pad

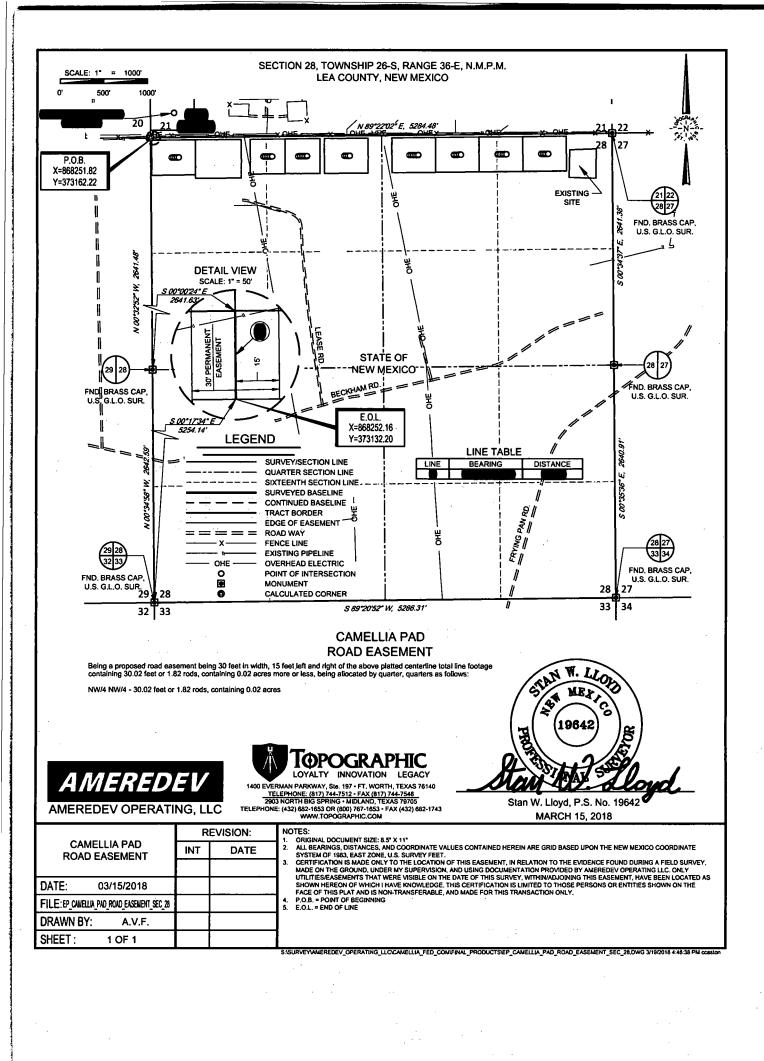
ROW Applications

SUPO Additional Information:


Use a previously conducted onsite? YES


Previous Onsite information: On-site inspection was held with Jeff Robertson (BLM) on 1/30/18. Ameredev made a donation with the MOU fund in lieu of an archaeology report.


Other SUPO Attachment


CAMELLIA_FED_COM_26_36_21_091H___SUPO_REV_20190314_20190314152606.pdf CAMELLIA_FED_COM_26_36_21_091H_LETTER___OWNER_AGREEMENT_20190314152616.pdf

Page 10 of 11

AMEREDEV

Ameredev Operating, LLC Camellia Fed Com 26 36 21 091H Section 21, Township 26S, Range 36E Lea County, New Mexico

Section 3 – Location of Existing Wells

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Camellia Fed Com 26 36 21 091H. See *Exhibit 2a – One Mile Radius Wells List* for a list of wells depicted.

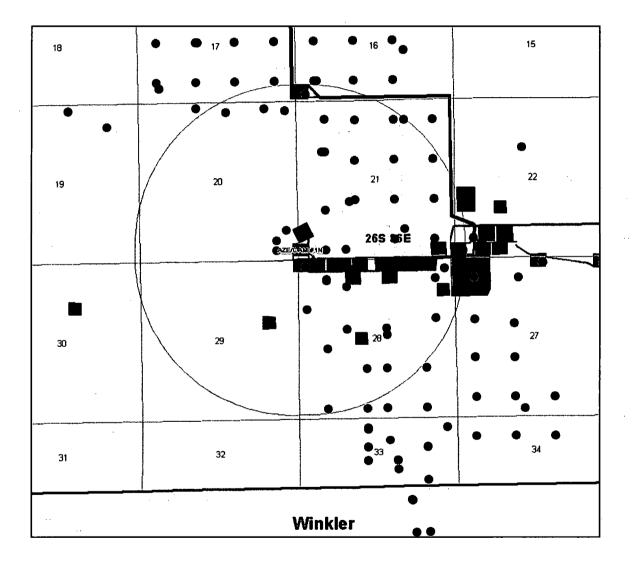
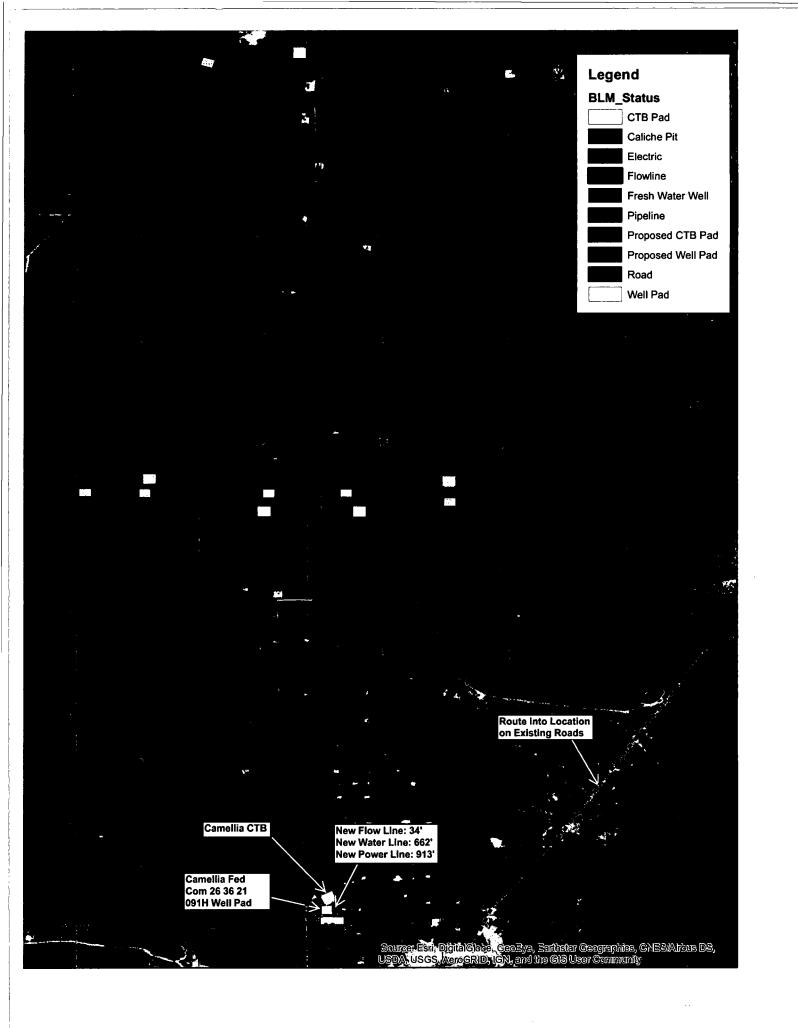
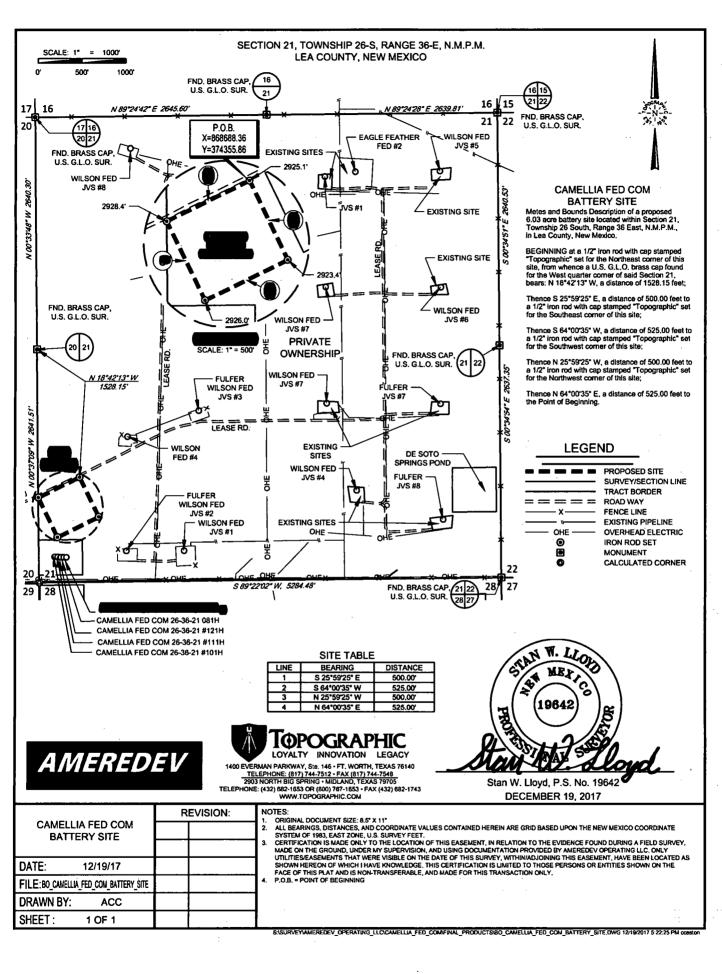
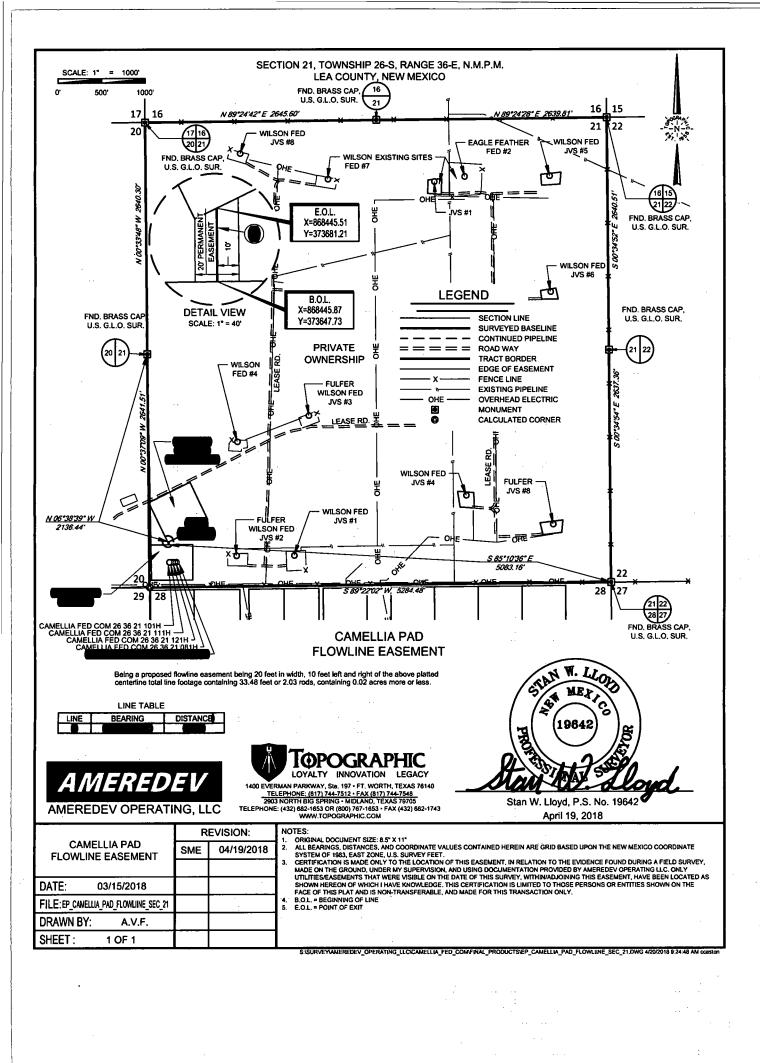


Exhibit 2 – One Mile Radius Existing Wells


AMEREDEV


Ameredev Operating, LLC Camellia Fed Com 26 36 21 091H Section 21, Township 26S, Range 36E Lea County, New Mexico


API	WELL NAME	STATUS	TD
30025257840000	LEA 7406 JV-S 3	DRY	887
30025258290000	LEA 7406 JV-S 4	PLUGOIL	3268
30025259530000	NEW MEXICO 'CV' STAT 1	PLUGOIL	3239
30025098560000	SAND HILLS UNIT 6	JNK	1257
30025098570000	SAND HILLS UNIT A 1	DHSO	3349
30025098580000	FEDERAL 1	DHSO	3940
30025258410000	PARKER QUANAH 2	JNK	284
30025258900000	LEA 7406 JV-S 5	OIL	3266
30025259090000	LEA 7406 JV-S 6	PLUGOIL	3250
30025259110000	PARKER QUANAH 2-Y	PLUGOIL	3258
30025259200000	LEA 7406 JV-S 7	PLUGOIL	3270
30025259300000	LEA 7406 JV-S 8	PLUGOIL	3270
30025259570000	LEA WD-1	DHSO	3420
30025260560000	LEA 7406-JV-S 9	DRY	3268
30025260680000	LEA 7406-JV-S 9-Y	PLUGOIL	3270
30025261310000	WILSON /21/-FEDERAL 1	OIL	3340
30025261320000	WILSON /21/ FED 2	OIL	3500
30025261330000	WILSON '21'-FEDERAL 3	OIL	3797
30025261340000	WILSON 21-FEDERAL 4	OIL	3575
30025261350000	WILSON 21-FEDERAL 5	OIL	3800
30025261360000	WILSON '21' FEDERAL 6	JNK	1682
30025261370000	WILSON /21-FED/ 7	OIL	3700
30025261380000	WILSON /21/ FED 8	OIL	3700
30025267180000	WILSON /21/ FED 6-Y	OIL	3750
30025270000000	LEA /21/ 7406 JV-S 1	OIL	3668
30025270280000	LEA /21/7406 JV-S 2	OIL	3658
30025270290000	LEA /21/7406 JV-S 3	OIL	3598
30025270300000	LEA /21/7406 JV-S 4	JNK	1060
30025270410000	LEA `21` 7406 JV-S 6	OIL	3495
30025270420000	LEA `21` 7406 JV-S 7	OIL	3525
30025270430000	LEA /21/7406 JV-S 8	OIL	3570
30025271970000	LEA `20` 7426 JV-S 2	PLUGOIL	3670
30025272070000	LEA /21/ 7406 JV-S 4-Y	OIL	3550
30025388850000	EAGLE FEATHER FEDERA 2	GAS	13179

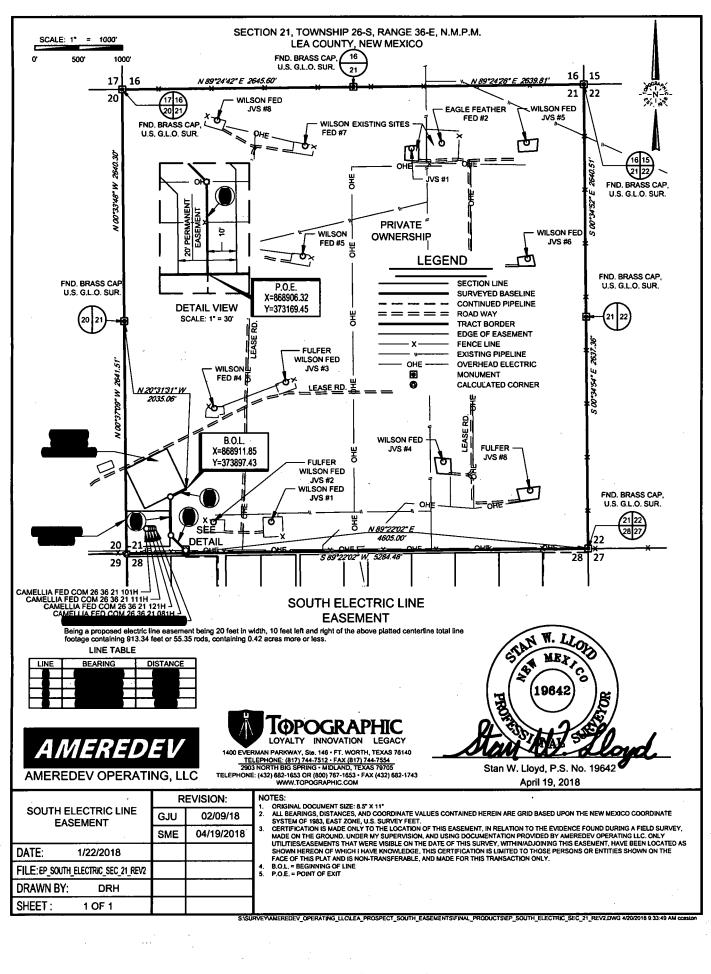
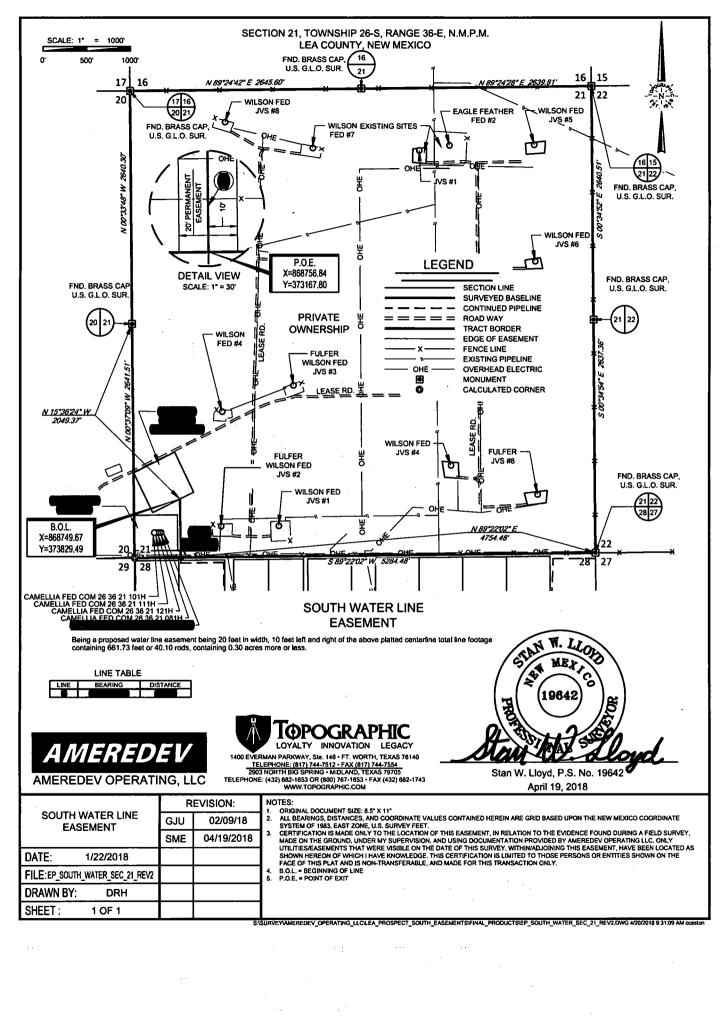
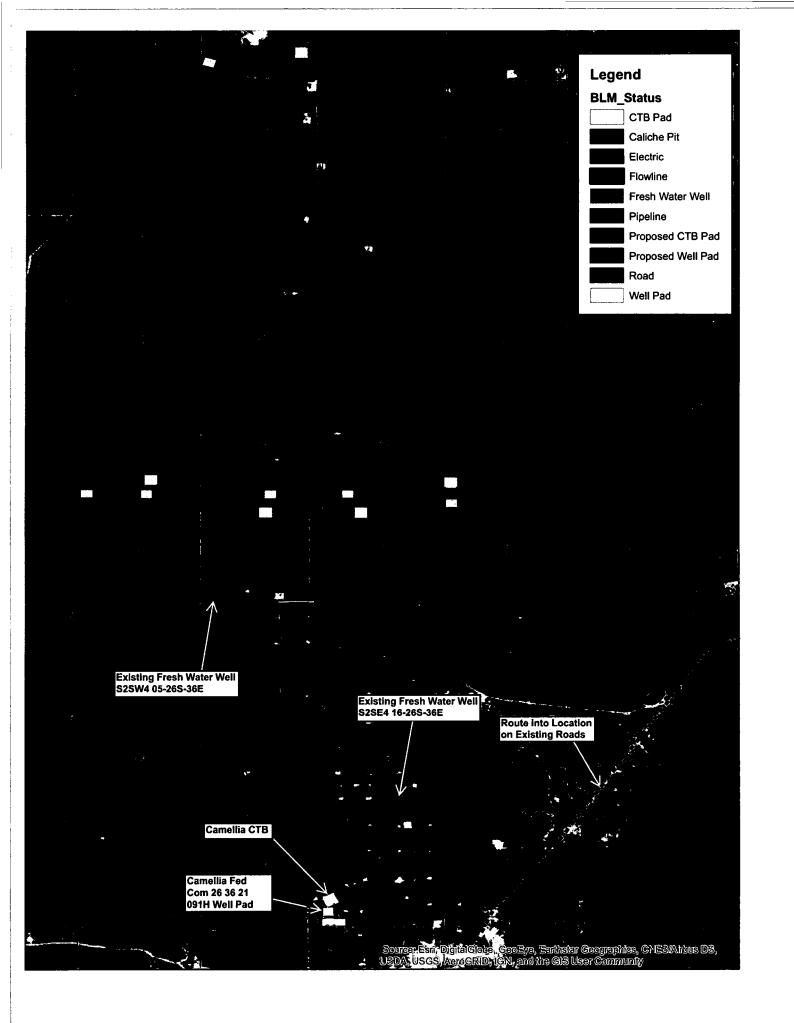
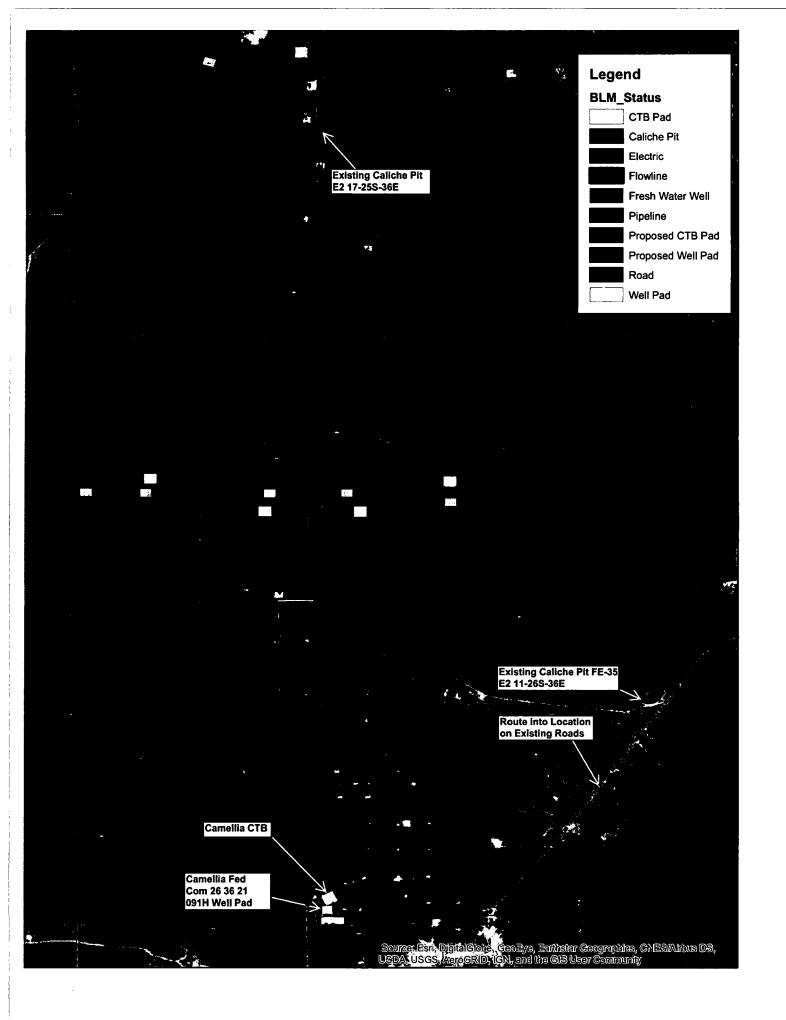

30025401700000 **GOOD CHIEF STATE 1** OIL 3873 30025269880000 **QUANAH PARKER 3** ABDNLOC 30025269890000 **QUANAH PARKER 4** ABDNLOC 30025441120000 WILDHOG BWX STATE CO 002H TREATD 16659 30025442020000 AMEN CORNER 26 36 27 111H PERMIT 3561 30025441050100 AZALEA 26-36-28 STAT 121H JNK 30025444390000 MAGNOLIA 26-36-22 ST 111H PERMIT MAGNOLIA 26-36-22 ST 101H 30025444720000 PERMIT WILDHOG BWX STATE CO 003H 30025445220000 PERMIT 30025445270000 CAMELLIA 26 36 16 FE 101H PERMIT AZALEA 26-36-28 STAT 121H 30025441050000 AT-TD 13600

Exhibit 2a – One Mile Radius Existing Wells List





.



Permit #	Well Name	Lo
CP 1049 POD 2	Bennett	32
CP 1378	S. Eppenour	32
CP 1285	Sec. 5	32
CP 857	Capped	32
C 2287	#1	32
C 2286	#2	32
C 2290	#3	32
C 2285	#4	32
C 2288	#5	32
C 2294	Garden	32
C 2293	House	32
J-11-S-3	Farm Well #2	32
J-11-S-2	Farm Well #3	32
J-11-S	Farm Well #4	32
CP 1170 POD 1	CB 1	32
CP 1170 POD 5		32
CP 1263 POD 5	CB 2	32
CP 1263 POD 3	СВ 3	32
CP 1351 POD 1	CB 4	32
CP 1351 POD 2	СВ 5	32
J 26	Ryan	32
13		32

ocation (Lat/Lon)

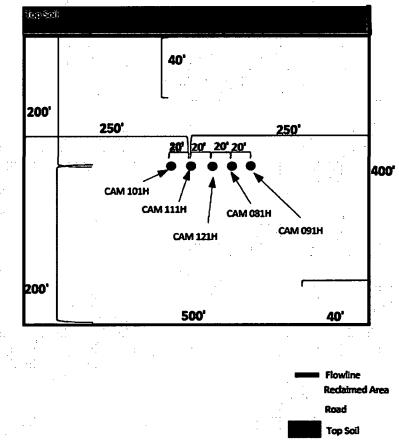

2°04'14.32" N, 103°12'32.30" W 2°05'40.62" N, 103°13' 35.26" W 2°03'56.50" N, 103°17'37.04" W 2°04'39.70" N, 103°16'51.13" W 2°03'59.0" N, 103°33'16.8" W 2°03'59.2" N, 103°33'15.2" W 2°04'1.0" N, 103°33' 12.6" W 2°04'3.7" N, 103°33'9.7" W 2°04'0.5" N, 103°33'8.4" W 2°03'3.2" N, 103°32'38.1" W 2°03'2.3" N, 103°32'36.8" W 2°03'08.4" N, 103°16'35.2" W 2°03'11.5" N, 103°17'02.0" W 2°03'24.6" N, 103°17'02.1" W 2°03'57.2" N, 103°18'45.3" W 2°07'17.1" N, 103°17'48.0" W 2°03'56.27" N, 103°18'27.4" W 2°03'54.90" N, 103°18'16.74" W 2°03'57.16" N, 103°17'45.13" W 2°03'30.70" N, 103°17'45.70" W 2°01'20.41" N, 103°15'49.46" W 32°02'41.5" N, 103°18'55.8" W

Exhibit 4 - Water Wells

Exhibit 3 – Well Site Diagram

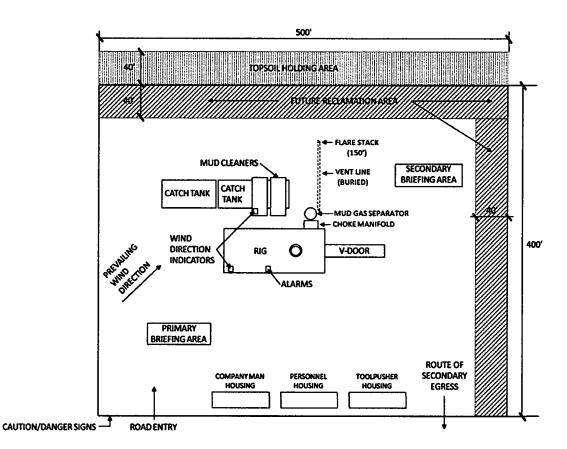
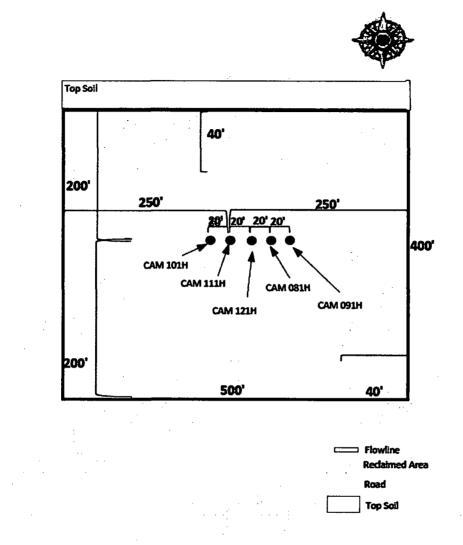



Exhibit 5 - Enlarged Well Site Diagram

Exhibit 3 – Well Site Diagram

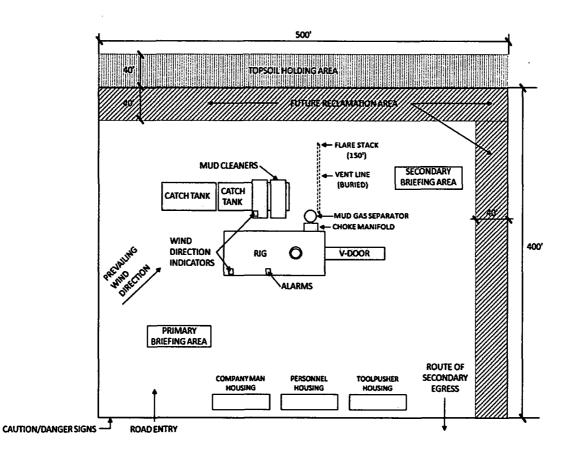
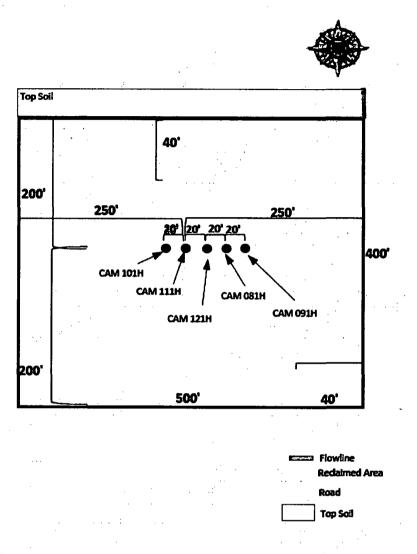



Exhibit 5 – Enlarged Well Site Diagram

AMEREDEV

Ameredev Operating, LLC Camellia Fed Com 26 36 21 091H Section 21, Township 26S, Range 36E Lea County, New Mexico

Exhibit 3 – Well Site Diagram

AMEREDEV

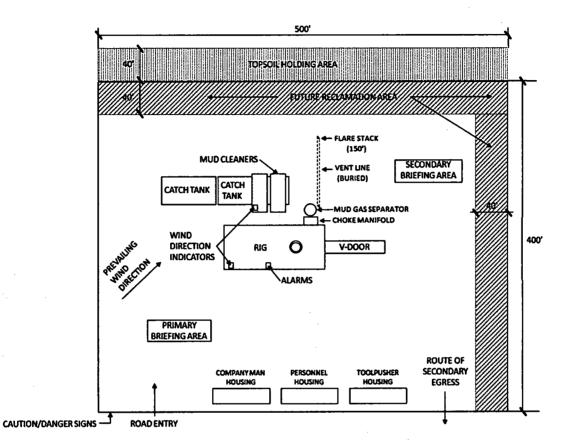


Exhibit 5 – Enlarged Well Site Diagram

AMEREDEV

Surface Use Plan of Operations

Introduction

The following Surface Use Plan of Operations will be implemented by Ameredev Operating, LLC (Ameredev), after APD approval. No disturbance will be created other than those described in this surface use plan. If any additional surface disturbance becomes necessary after APD approval, the appropriate BLM approved sundry notice or right of way application will be acquired prior to such disturbance. This Surface Use Plan includes Ameredev's well pad, battery site, electrical, water and flow lines, and access roads.

Before any surface disturbance is created, stakes or flagging will be installed to mark boundaries of permitted areas of disturbance, including soil storage areas. As necessary, slope, grade, and other construction control stakes will be placed to ensure construction is in accordance with the surface use plan. All boundary markers will be maintained in place until final construction cleanup is completed. If disturbance boundary markers are displaced, they will be replaced before construction proceeds. Adjacent operators will be contacted before construction starts to mark adjacent pipelines.

Directions to proposed pad:

1 | Page

At the intersection of NM-18 and NM-128, head south on NM-18 approximately 1.3 miles. Turn west (right) on Whitworth Drive, and proceed approximately .4 mile. Turn south (left) on NM-205 and proceed about 2.9 miles. Continue on Jal-3/Frying Pan Road approximately 4.4 miles, head west (right) on Beckham Road about 1.4 miles, then north (right) on unnamed road, for approximately .7 mile, then east (right) on proposed road for approximately 113', to the well pad. See *Exhibit 1 – Well Pad Access* for a map of the route.

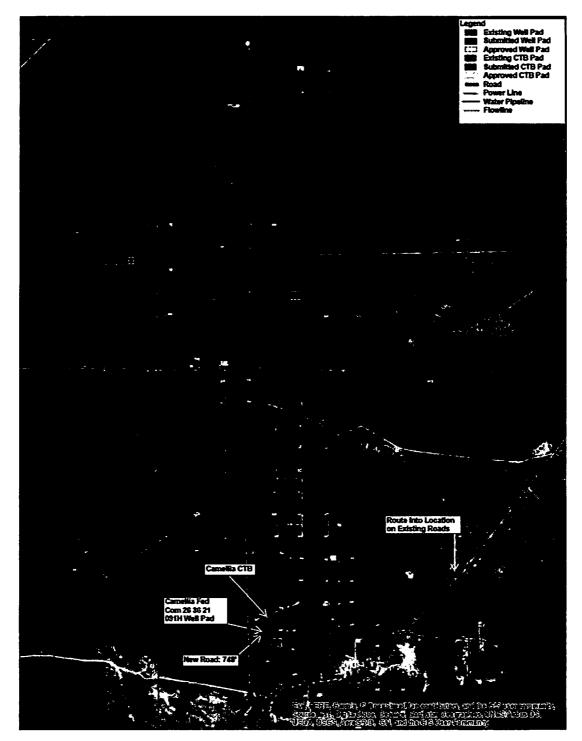
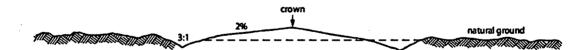


Exhibit 1 – Well Pad Access


AMEREDE

Section 1 – Existing Roads

- A. The existing access road route to the proposed project is depicted on *Exhibit 1 Well Pad Access*. Improvements to the driving surface will be done where necessary. No new surface disturbance will be done, unless otherwise noted in the New or Reconstructed Access Roads section of this surface use plan.
- **B.** The existing access road route to the proposed project does not cross lease or unit boundaries, so a BLM right of-way grant will not be necessary for this proposed road route.
- C. The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattle guards, other range improvement projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use.
- **D.** Operator will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

Section 2 – New or Reconstructed Access Roads

- A. A section of new access road will be needed for this proposed project. See *Exhibit 1 Well Pad Access*, for locations.
- **B.** The length of new access road needed to be constructed for this proposed project is approximately 748 feet.
- C. New access road will be constructed with 6 inches of compacted caliche.
- D. The maximum driving width of the access road will be 20 feet. The maximum width of surface disturbance when constructing the access road will not exceed 30 feet. All areas outside of the driving surface will be revegetated.
- E. When the road travels on fairly level ground, the road will be crowned and ditched with a maximum 2% slope from the tip of the road crown to the edge of the driving surface. Ditches will be constructed on each side of the road. The ditches will be 3 feet wide with 3:1 slopes. See road cross section diagram below:

- F. No turnouts will be constructed on the new portions of access road.
- **G.** No cattle guards will be installed on the new portions of access road.
- H. Since the proposed portion of new access road does not cross lease boundaries, a right-of-way will not be required for this access road.
- 1. No culverts or low water crossings will be constructed for the new portions of access road.

J. Since the access road is on level ground, no lead-off ditches will be constructed for the new portions of access road.

AMEREDEV

- K. Any sharp turns in the in the new road will be rounded to facilitate turning by trucks.
- L. Newly constructed or reconstructed roads, on surface under the jurisdiction of the Bureau of Land Management, will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road.
- **M.** All topsoil and fragmented rock removed in excavation will be used as directed in approved plan.

Section 3 - Location of Existing Wells

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Camellia Fed Com 26 36 21 091H. See *Exhibit 2a - One Mile Radius Existing Wells List* for a list of wells depicted.

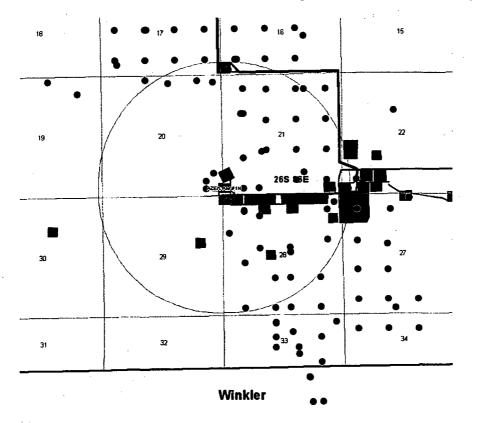


Exhibit 2 – One Mile Radius Existing Wells

API	WELL NAME	STATUS	TD
30025257840000	LEA 7406 JV-S 3	DRY	887
30025258290000	LEA 7406 JV-S 4	PLUGOIL	3268
30025259530000	NEW MEXICO 'CV' STAT 1	PLUGOIL	3239
30025098560000	SAND HILLS UNIT 6	JNK	1257
30025098570000	SAND HILLS UNIT A 1	DHSO	3349
30025098580000	FEDERAL 1	DHSO	3940
30025258410000	PARKER QUANAH 2	JNK	284
30025258900000	LEA 7406 JV-S 5	OIL	3266
30025259090000	LEA 7406 JV-S 6	PLUGOIL	3250
30025259110000	PARKER QUANAH 2-Y	PLUGOIL	3258
30025259200000	LEA 7406 JV-S 7	PLUGOIL	3270
30025259300000	LEA 7406 JV-S 8	PLUGOIL	3270
30025259570000	LEA WD-1	DHSO	3420
30025260560000	LEA 7406-JV-S 9	DRY	3268
30025260680000	LEA 7406-JV-S 9-Y	PLUGOIL	3270
30025261310000	WILSON /21/-FEDERAL 1	OIL	3340
30025261320000	WILSON /21/ FED 2	OIL	3500
30025261330000	WILSON '21'-FEDERAL 3	OIL	3797
30025261340000	WILSON 21-FEDERAL 4	OIL	3575
30025261350000	WILSON 21-FEDERAL 5	OIL	3800
30025261360000	WILSON `21` FEDERAL 6	JNK	1682
30025261370000	WILSON /21-FED/ 7	OIL	3700
30025261380000	WILSON /21/ FED 8	OIL	3700
30025267180000	WILSON /21/ FED 6-Y	OIL	3750
30025270000000	LEA /21/ 7406 JV-S 1	OIL	3668
30025270280000	LEA /21/7406 JV-S 2	OIL	3658
30025270290000	LEA /21/7406 JV-S 3	OIL	3598
30025270300000	LEA /21/7406 JV-S 4	JNK	1060
30025270410000	LEA `21` 7406 JV-S 6	OIL	3495
30025270420000	LEA `21` 7406 JV-S 7	OIL	3525
30025270430000	LEA /21/7406 JV-S 8	OIL	3570
30025271970000	LEA `20` 7426 JV-S 2	PLUGOIL	3670
30025272070000	LEA /21/ 7406 JV-S 4-Y	OIL	3550
30025388850000	EAGLE FEATHER FEDERA 2	GAS	13179
30025401700000	GOOD CHIEF STATE 1	OIL	3873
30025269880000	QUANAH PARKER 3	ABDNLOC	
30025269890000	QUANAH PARKER 4	ABDNLOC	40000
30025441120000 30025442020000	WILDHOG BWX STATE CO 002H AMEN CORNER 26 36 27 111H	TREATD PERMIT	16659
50023442020000	AWEN CORNER 20 30 27 1110		

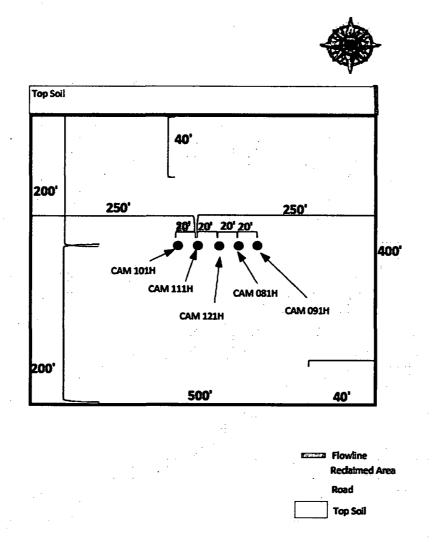

30025441050100	AZALEA 26-36-28 STAT 121H	JNK	3561
30025444390000	MAGNOLIA 26-36-22 ST 111H	PERMIT	
30025444720000	MAGNOLIA 26-36-22 ST 101H	PERMIT	
30025445220000	WILDHOG BWX STATE CO 003H	PERMIT	
30025445270000	CAMELLIA 26 36 16 FE 101H	PERMIT	
30025441050000	AZALEA 26-36-28 STAT 121H	AT-TD	13600

Exhibit 2a – One Mile Radius Existing Wells List

Section 4 - Location of Existing and/or Proposed Production Facilities

- A. The multiple well pad will be located on section 21, and will measure 400'x500'. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location.
- **B.** Production from the proposed well will be transported to a new production facility named Camellia CTB, north of the well pad.
- C. A buried 4" poly flowline will be run approximately 34' from the Camellia Fed Com 26 36 21 091H to the Camellia CTB that will be directly north of the well pad. The Camellia CTB will be 500'x525' and will include a separator, Heat Exchanger, VRU, VRT, meter run and a tank battery. A buried 8" poly water line will be run from the Camellia CTB to a line that will be installed taking our produced water in the area to an SWD that is operated by OWL. This new line will be approximately 662'. A power line will be run parallel to the water line and will connect into a power line that we will be installing for a well in the area. The new power line will be approximately 913'.
- **D.** The new production facility will have a secondary containment structure that is constructed to hold the capacity of 1-1/2 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.
- E. All permanent (lasting more than six months) above ground structures including but not limited to pump jacks, storage tanks, barrels, pipeline risers, meter housing, etc., that are not subject to safety requirements will be painted a non-reflective paint color, Shale Green, from the BLM Standard Environmental Colors chart, unless another color is required in the APD Conditions of Approval.
- F. If any plans change regarding the production facility or other infrastructure (pipeline, electrical lines, etc.), Ameredev will submit a sundry notice or right-of-way (if applicable) prior to installation or construction.

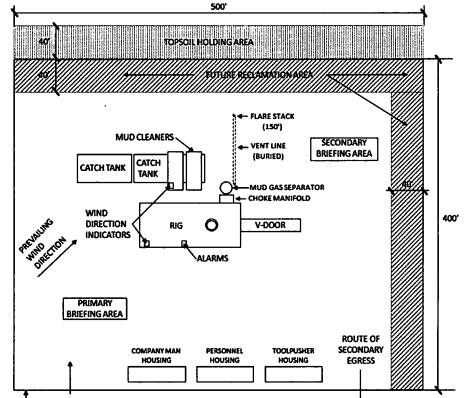
AMEREDE

Section 5 - Location and Types of Water Supply

A. This location will be drilled using a combination of water and mud systems (outlined in the Drilling Program). The water will be obtained from preexisting water wells, by running a pump directly to the drilling rig. See *Exhibit 4 - Water Wells*, for a list of available water wells. In cases where a polyline is used to transport water for drilling or completion purposes, the existing and proposed roads into location will be utilized.

AMEREDEV

<u>Permit #</u>	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04'14.32" N, 103°12'32.30" W
CP 1378	S. Eppenour	32°05'40.62″ N, 103°13' 35.26″ W
CP 1285	Sec. 5	32°03'56.50" N, 103°17'37.04" W
CP 857	Capped	32°04'39.70" N, 103°16'51.13" W
C 2287	#1	32°03'59.0" N, 103°33'16.8" W
C 2286	#2	32°03'59.2" N, 103°33'15.2" W
C 2290	#3	32°04'1.0" N, 103°33' 12.6" W
C 2285	#4	32°04′3.7″ N, 103°33′9.7″ W
C 2288	#5	32°04'0.5″ N, 103°33'8.4″ W
C 2294	Garden	32°03'3.2" N, 103°32'38.1" W
C 2293	House	32°03'2.3" N, 103°32'36.8" W
J-11-S-3	Farm Well #2	32°03'08.4" N, 103°16'35.2" W
J-11-5-2	Farm Well #3	32°03'11.5" N, 103°17'02.0" W
J-11-S	Farm Well #4	32°03'24.6" N, 103°17'02.1" W
CP 1170 POD 1	CB 1	32°03'57.2" N, 103°18'45.3" W
CP 1170 POD 5		32°07′17.1″ N, 103°17′48.0″ W
CP 1263 POD 5	СВ 2	32°03'56.27" N, 103°18'27.4" W
CP 1263 POD 3	СВ 3	32°03'54.90" N, 103°18'16.74" W
CP 1351 POD 1	СВ 4	32°03'57.16" N, 103°17'45.13" W
CP 1351 POD 2	СВ 5	32°03′30.70″ N, 103°17′45.70″ W
J 26	Ryan	32°01'20.41" N, 103°15'49.46" W
13		32°02′41.5″ N, 103°18′55.8″ W


Exhibit 4 – Water Wells

<u>Section 6 – Construction/Construction Materials</u>

A. Caliche will be obtained from the caliche pit located at Lat: 32° 6'28.78"N, Long: 103°16'58.77"W or the caliche pit at Lat: 32° 6'33.14"N, Long: 103°18'44.16"W or the caliche pit at Lat: 32° 3'8.30"N, Long: 103°13'57.00"W.

AMEREDEV

- B. Caliche utilized for the drilling pad will be obtained either from the locations listed above, an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "flipping" the well location. A mineral material permit will be obtained from the BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "flipping" a well location is as follows:
 - 1. An adequate amount of topsoil/root zone (usually top 6 inches of soil) will be stripped from the proposed well location and stockpiled along the side of the well location as depicted on the *Exhibit 3 Well Site Diagram*.
 - 2. An area will be used within the proposed well site dimensions to excavate caliche.
 - 3. Subsoil will be removed and stockpiled within the surveyed well pad dimensions.
 - 4. Once caliche/surfacing mineral is found, the mineral material will be excavated and stock piled within the approved drilling pad dimensions.
 - 5. Subsoil will then be pushed back in the excavated hole and caliche will be spread accordingly across the entire well pad and road (if available).
 - Neither caliche, nor subsoil will be stockpiled outside of the well pad dimensions. Topsoil will be stockpiled along the edge of the pad as depicted in *Exhibit 5 – Enlarged Well Site Diagram*.
 - 7. In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. A BLM mineral material permit will be acquired prior to obtaining any mineral material from BLM pits or federal land.

AMEREDEL

CAUTION/DANGER SIGNS - ROAD ENTRY

Exhibit 5 – Enlarged Well Site Diagram

Section 7 - Methods of Handling Waste

- A. Drill cuttings, mud, salts and other chemicals will be properly disposed of into steel tanks on site and hauled to a State approved commercial disposal facility.
- **B.** Garbage and trash produced during drilling and completion operations will be collected in a portable metal trash container and disposed of properly at a State approved disposal facility. All trash on and around the well site will be collected for disposal.
- **C.** Human waste and grey water will be properly contained and disposed of properly at a State approved disposal facility.
- **D.** After drilling and completion operations, trash, chemicals, salts, frac sand and other waste material will be removed and disposed of properly at a State approved disposal facility.

Section 8 - Ancillary Facilities

A. No ancillary facilities will be needed for the proposed project.

AMEREDEV

Section 9 - Well Site Layout

- A. See Exhibit 3 Well Site Diagram and Exhibit 5 Enlarged Well Site Diagram. The following information is presented:
 - 1. Reasonable scale
 - 2. Well pad dimensions/orientation
 - 3. Drilling rig components/layout
 - 4. Proposed access road
 - 5. Topsoil stockpile
- **B.** The proposed drilling pad was staked and surveyed by a professional surveyor. The attached survey plat of the well site depicts the drilling pad layout as staked.
- C. Topsoil salvaging
 - 1. Grass, forbs, and small woody vegetation such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and re-spread evenly on the site following topsoil re-spreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

Section 10 - Plans for Final Surface Reclamation

Reclamation Objectives

- A. The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil, to control erosion, and to minimize habitat and forage loss, visual impact, and weed infestation during the life of the well or facilities.
- B. The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources, and wildlife habitats. To ensure that the long-term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning, and vegetative productivity.
- **C.** The BLM will be notified at least 3 days prior to the commencement of any reclamation procedures.

D. If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged. Ameredev will gain written permission from the BLM if more time is needed.

AMEREDEV

E. Interim reclamation will performed on the well site after the well is drilled and completed.
 Exhibit 3 – Well Site Diagram depicts the location and dimension of the planned interim reclamation for the well site.

Interim Reclamation Procedures (if performed)

- A. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production.
- **B.** In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. The areas planned for interim reclamation will then be contoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to reseeding will not be steeper than a 3:1 Ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be re-contoured to the above ratios during interim reclamation.
- D. Topsoil will be evenly re-spread and aggressively revegetated over the entire disturbed area not needed for all-weather operations, including cuts and fills. To seed the area, the proper BLM mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Final Reclamation Procedures (well pad, buried pipelines, etc.)

- A. Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- **B.** All surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- **C.** All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be re-contoured to the contour existing prior to initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to re-contouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation.
- **D.** After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BLM seed mixture, free of noxious weeds. Final seedbed preparation will consist of

contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.

AMEREDEV

- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. All unused equipment and structures including pipelines, electric line poles, tanks, etc. that serviced the well will be removed.
- **G.** All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not re-disturbed, and that erosion is controlled.

Section 11 - Surface Ownership

A. BLM has surface ownership for proposed project area.

Section 12 - Other Information

- A. There are no dwellings within 1 mile of this location.
- B. An on-site meeting for Ameredev's Camellia Fed Com 26 36 21 091H well was held on January 30, 2018 (NOS ID#: 10400030794).
- C. The well pad described in this document Camellia (CAM/AZE #1N) will contain 5 wells that produce into an existing central tank battery (CTB) located southwest of the well pad. The wells share a common pad access road, pipeline easement, and electrical corridor. The 6 flowlines from the individual wells will share a common corridor that will terminate into the CTB. The wells that share the pad are:
 - Camellia Fed Com 26 36 21 081H
 - Camellia Fed Com 26 36 21 091H
 - Camellia Fed Com 26 36 21 101H
 - Camellia Fed Com 26 36 21 111H
 - Camellia Fed Com 26 36 21 121H

Ameredev field representative:	Ameredev office contact:
Zac Boyd, Operations Supervisor	Christie Hanna, Regulatory Coordinator
Cell: (432) 385-6996	Direct: (737) 300-4723
Email: zboyd@ameredev.com	Email: channa@ameredev.com

Ameredev Operating, LLC Address: 5707 Southwest Parkway Building 1, Suite 275 Austin, Texas 78735

May 25, 2018

To whom it may concern:

Ameredev Operating, LLC is negotiating a private surface owner agreement with Brad Beckham of Beckham Ranch, Inc. (PO Box 1203, Jal, NM 88252; 575-712-4231) for a power line, flowline, saltwater disposal line, roads, central production facility, and pad for the Camellia Fed Com 26 36 21 091H well in sections 21 and 16 of T26S, R36E.

Thank you,

Christie Hanna Senior Engineering Technician/Regulatory Coordinator

5707 Southwest Parkway, Building 1, Suite 275 Austin, TX 78735

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

PWD Data Report 05/16/2019

PWD disturbance (acres):

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment:

Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

.

.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Bond Info Data Report 05/16/2019