Form 3160-3 (June 2015) UNITED STATES DEPARTMENT OF THE IN BUREAU OF LAND MANA APPLICATION FOR PERMIT TO D		OBBS C	d D	FORM APPR OMB No. 1004 Expires: January	-0137
DEPARTMENT OF THE I	NTERIOR	10- 03	2019	5. Lease Serial No.	<u></u>
BUREAU OF LAND MANA	AGEMENT	JUL		NMNM137469	
APPLICATION FOR PERMIT TO D	RILL OR I	REENTER	NE	5. Lease Serial No. NMNM137469 7. If Indian, Allotee or Tril 7. If Unit or CA Agreemen	e Name
la. Type of work:	EENTER	K		7. If Unit or CA Agreemer	t, Name and No.
	ther	_		8. Lease Name and Well N	
Ic. Type of Completion: Hydraulic Fracturing	ngle Zone	Multiple Zone		NANDINA PED COM 25 121H	3631 FED COM 22642)
2. Name of Operator AMEREDEV OPERATING LLC (3772224)				9. API Well No. 30-03-4	61%
3a. Address 5707 Southwest Parkway, Building 1, Suite 275 Austin TX		o. <i>(include area code</i> 700	e)	10. Field and Pool, or Exp JAL / WOLFCAMP WES	1.9651//
4. Location of Well (Report location clearly and in accordance w	vith any State	requirements.*)		11. Sec., T. R. M. or Blk. a	•
At surface LOT 4 / 230 FSL / 430 FWL / LAT 32.0802 /	LONG -103	.31139		SEC 31 / T25S / R36E /	NMP
At proposed prod. zone LOT 1 / 50 FNL / 380 FWL / LAT	32.10847 / 1	LONG -103.3115			
14. Distance in miles and direction from nearest town or post offi 7 miles	ce*			12. County or Parish LEA	13. State NM
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any)	16. No of ac 600.28	res in lease	17. Spacin 640.4	ng Unit dedicated to this we	11
18. Distance from proposed location*	19. Proposed	i Depth	20. BLM/	BIA Bond No. in file	
to nearest well, drilling, completed, 2249 feet applied for, on this lease, ft.		/ 23235 feet		1B001478	
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3023 feet	22. Approxis 07/07/2019	mate date work will	start*	23. Estimated duration 90 days	
	24. Attac			Journalis	
The following, completed in accordance with the requirements of (as applicable)	Onshore Oil	and Gas Ord er No. 1	, and the F	lydraulic Fracturing rule per	43 CFR 3162.3-3
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover th Item 20 above).	e operation	as unless covered by an existi	ng bond on file (see
 A Surface Use Plan (if the location is on National Forest Syster SUPO must be filed with the appropriate Forest Service Office 	,	 Operator certific Such other site sp BLM. 		rmation and/or plans as may b	e requested by the
25. Signature		(Printed/Typed)		Date	
(Electronic Submission)	Christi	e Hanna / Ph: (73)	7)300-472	10/2	2/2018
Senior Engineering Technician					
Approved by (Signature) (Electronic Submission)		(Printed/Typed) Layton / Ph: (575)2	234-5959	Date 07/0	2/2019
Title Assistant Field Manager Lands & Minerals	Office				····
Application approval does not warrant or certify that the applican applicant to conduct operations thereon. Conditions of approval, if any, are attached.			nose rights	in the subject lease which w	ould entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, π of the United States any false, fictitious or fraudulent statements of					partment or agency
GCA Roc 07/03/19	mn WI	TH CONDIT	IONS	K# 108/1	9
(Continued on page 2)	VAL Date	: 07/02/2019		*(Instruc	tions on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

Approval Date: 07/02/2019

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

SHL: LOT 4 / 230 FSL / 430 FWL / TWSP: 25S / RANGE: 36E / SECTION: 31 / LAT: 32.0802 / LONG: -103.31139 (TVD: 0 feet, MD: 0 feet)
 PPP: SWSW / 100 FSL / 430 FWL / TWSP: 25S / RANGE: 36E / SECTION: 31 / LAT: 32.07984 / LONG: -103.31149 (TVD: 12432 feet, MD: 12829 feet)
 PPP: SWSW / 0 FSL / 331 FWL / TWSP: 25S / RANGE: 36E / SECTION: 30 / LAT: 32.09408 / LONG: -103.31149 (TVD: 12447 feet, MD: 18000 feet)
 BHL: LOT 1 / 50 FNL / 380 FWL / TWSP: 25S / RANGE: 36E / SECTION: 30 / LAT: 32.10847 / LONG: -103.3115 (TVD: 12447 feet, MD: 23235 feet)

BLM Point of Contact

Name: Tanja Baca Title: Admin Support Assistant Phone: 5752345940 Email: tabaca@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Approval Date: 07/02/2019

(Form 3160-3, page 4)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	AMERIDEV OPERATING LLC
LEASE NO.:	NMNM137649
WELL NAME & NO.:	121H – GOLDEN BELL FED COM 26 36 06
SURFACE HOLE FOOTAGE:	230'/S & 370'/W
BOTTOM HOLE FOOTAGE	50'/N & 380'/W
LOCATION:	SECTION 31, T25S, R36E, NMPM
COUNTY:	LEA

СОА

H2S	C Yes		
Potash	None	C Secretary	C R-111-P
Cave/Karst Potential	• Low	C Medium	High High
Variance	C None	Flex Hose	COther
Wellhead	C Conventional	Multibowl	C Both
Other	4 String Area	Capitan Reef	I. WIPP
Other	Fluid Filled	Cement Squeeze	🗖 Pilot Hole
Special Requirements	Water Disposal	ГСОМ	L. Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 1191 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> hours or 500 pounds compressive strength, whichever is greater. (This is to

Page 1 of 7

include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Operator shall filled 50% casing with fluid while running intermediate casing to maintain collapse safety factor.

- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is: Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.
 - a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
 - b. Second stage above DV tool:Cement to surface. If cement does not circulate, contact the appropriate BLM office. Additional cement maybe required.
 Excess calculates to 23%.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

- Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
 (Use this for 3 string wells in the Capitan Reef, if 4 string well ensure FW based mud used across the capitan interval)
 - Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
 - Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.

Page 2 of 7

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back 50 feet above the top of the Capitan Reef which 3611 ft into the previous casing. Operator shall provide method of verification.

CONTINGENCY

If operator loss 50% or more fluid, operator shall add 4th casing string per approved APD. Operator shall contact BLM before starting contingency plan. C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
 - 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Chaves and Roosevelt Counties
 Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 During office hours call (575) 627-0272.
 After office hours call (575)

Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

Page 3 of 7

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. Operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).

b. When the operator proposes to set surface casing with Spudder Rig

- Notify the BLM when moving in and removing the Spudder Rig.
- Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
- BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive

Page 4 of 7

strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log.

- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

Page 5 of 7

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time.
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength,

Page 6 of 7

whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

ZS 061319

Page 7 of 7

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL TABLE OF CONTENTS

Ameredev Operating LLC Nandina Fed Com 25 36 31 101H MW Lease No. NMNM137469, NMNM137471 (SHL) Lea County NM

Nandina Fed Com 25 36 31 101H:

Surface Hole Location: 230' FSL & 390' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: 200' FNL & 380' FWL, Section 30, T. 25 S., R. 36 E.

Nandina Fed Com 25 36 31 111H:

Surface Hole Location: 230' FSL & 410' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: 200' FNL & 380' FWL, Section 30, T. 25 S., R. 36 E.

Nandina Fed Com 25 36 31 121H:

Surface Hole Location: 230' FSL & 430' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: 200' FNL & 380' FWL, Section 30, T. 25 S., R. 36 E.

Goldenbell Fed Com 26 36 06 101H: Surface Hole Location: 230' FSL & 330' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: 50' FSL & 380' FWL, Section 7, T. 26 S., R. 36 E.

Goldenbell Fed Com 26 36 06 111H: Surface Hole Location: 230' FSL & 350' FWL, Section 31, T. 25 S., R. 36 E.

Bottom Hole Location: 50' FSL & 380' FWL, Section 7, T. 26 S., R. 36 E.

Goldenbell Fed Com 26 36 06 121H:

Surface Hole Location: 230' FSL & 370' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: 50' FSL & 380' FWL, Section 7, T. 26 S., R. 36 E.

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions

Permit Expiration

Archaeology, Paleontology, and Historical Sites

Noxious Weeds

Special Requirements

Lesser Prairie-Chicken Timing Stipulations Ground-level Abandoned Well Marker Hydrology

Page 1 of 15

Construction Notification Topsoil Closed Loop System Federal Mineral Material Pits Well Pads Roads **Road Section Diagram**

Production (Post Drilling) Well Structures & Facilities Pipelines Interim Reclamation

Final Abandonment & Reclamation

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

Page 3 of 15

V. SPECIAL REQUIREMENT(S)

Timing Limitation Stipulation / Condition of Approval for lesser prairie-chicken:

Oil and gas activities including 3-D geophysical exploration, and drilling will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Additionally, no new drilling will be allowed within up to 200 meters of leks known at the time of permitting. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 feet from the source of the noise.

<u>Ground-level Abandoned Well Marker to avoid raptor perching</u>: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well. For more installation details, contact the Carlsbad Field Office at 575-234-5972.

Hydrology:

The entire well pad(s) will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. The compacted berm shall be constructed at a minimum of 12 inches with impermeable mineral material (e.g. caliche). Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed. Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion. Stockpiling of topsoil is required. The top soil shall be stockpiled in an appropriate location to prevent loss of soil due to water or wind erosion and not used for berming or erosion control. If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.

Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank or 24 hour production, whichever is greater. Automatic shut off, check valves, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.

Page 4 of 15

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Page 5 of 15

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

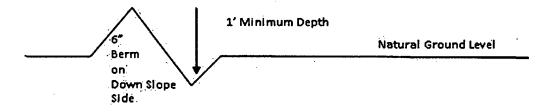
Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.


Drainage

Page 6 of 15

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

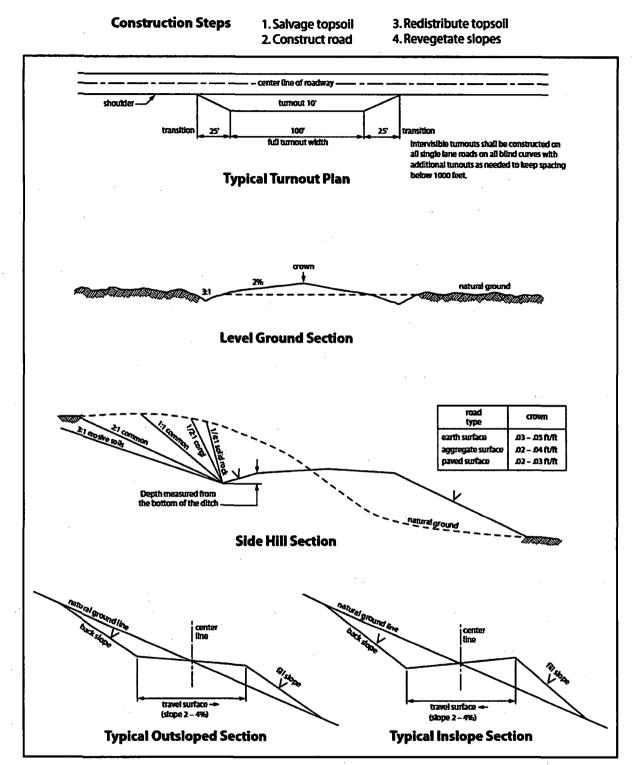
Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: 400' + 100' = 200' lead-off ditch interval 4%

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.


Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 7 of 15

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Page 9 of 15

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

B. PIPELINES

BURIED PIPELINE STIPULATIONS

A copy of the application (Grant, APD, or Sundry Notice) and attachments, including conditions of approval, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The Holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The Holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 <u>et seq.</u> (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C.6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

Page 10 of 15

4. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil or other pollutant, wherever found, shall be the responsibility of holder, regardless of fault. Upon failure of holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve holder of any responsibility as provided herein.

5. All construction and maintenance activity will be confined to the authorized right-of-way.

6. The pipeline will be buried with a minimum cover of 36 inches between the top of the pipe and ground level.

7. The maximum allowable disturbance for construction in this right-of-way will be $\underline{30}$ feet:

- Blading of vegetation within the right-of-way will be allowed: maximum width of blading operations will not exceed <u>30</u> feet. The trench is included in this area. (*Blading is defined as the complete removal of brush and ground vegetation.*)
- Clearing of brush species within the right-of-way will be allowed: maximum width of clearing operations will not exceed <u>30</u> feet. The trench and bladed area are included in this area. (Clearing is defined as the removal of brush while leaving ground vegetation (grasses, weeds, etc.) intact. Clearing is best accomplished by holding the blade 4 to 6 inches above the ground surface.)
- The remaining area of the right-of-way (if any) shall only be disturbed by compressing the vegetation. (Compressing can be caused by vehicle tires, placement of equipment, etc.)

8. The holder shall stockpile an adequate amount of topsoil where blading is allowed. The topsoil to be stripped is approximately $__{6}$ inches in depth. The topsoil will be segregated from other spoil piles from trench construction. The topsoil will be evenly distributed over the bladed area for the preparation of seeding.

9. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence

Page 11 of 15

line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

10. Vegetation, soil, and rocks left as a result of construction or maintenance activity will be randomly scattered on this right-of-way and will not be left in rows, piles, or berms, unless otherwise approved by the Authorized Officer. The entire right-of-way shall be recontoured to match the surrounding landscape. The backfilled soil shall be compacted and a 6 inch berm will be left over the ditch line to allow for settling back to grade.

11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

12. The holder will reseed all disturbed areas. Seeding will be done according to the attached seeding requirements, using the following seed mix.

() seed mixture 1	() seed mixture 3
(X) seed mixture 2	() seed mixture 4
() seed mixture 2/LPC	() Aplomado Falcon Mixture

13. All above-ground structures not subject to safety requirements shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be color which simulates "Standard Environmental Colors" – Shale Green, Munsell Soil Color No. 5Y 4/2.

14. The pipeline will be identified by signs at the point of origin and completion of the right-ofway and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. All signs and information thereon will be posted in a permanent, conspicuous manner, and will be maintained in a legible condition for the life of the pipeline.

15. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder before maintenance begins. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway. As determined necessary during the life of the pipeline, the Authorized Officer may ask the holder to construct temporary deterrence structures.

16. Any cultural and/or paleontological resources (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The

Page 12 of 15

holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

17. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes associated roads, pipeline corridor and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

18. <u>Escape Ramps</u> - The operator will construct and maintain pipeline/utility trenches [that are not otherwise fenced, screened, or netted] to prevent livestock, wildlife, and humans from becoming entrapped. At a minimum, the operator will construct and maintain escape ramps, ladders, or other methods of avian and terrestrial wildlife escape in the trenches according to the following criteria:

- a. Any trench left open for eight (8) hours or less is not required to have escape ramps; however, before the trench is backfilled, the contractor/operator shall inspect the trench for wildlife, remove all trapped wildlife, and release them at least 100 yards from the trench.
- b. For trenches left open for eight (8) hours or more, earthen escape ramps (built at no more than a 30 degree slope and spaced no more than 500 feet apart) shall be placed in the trench.

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

Page 13 of 15

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well.

Page 14 of 15

(Insert Seed Mixture Here)

Page 15 of 15

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie Hanna

Signed on: 06/24/2019

Operator Certification Data Report

07/02/2019

Title: Senior Engineering Technician

Street Address: 5707 Southwest Parkway, Building 1, Suite 275

State: TX

City: Austin

Phone: (737)300-4723

Email address: channa@ameredev.com

Field Representative

Representative Name: ZACHARY BOYD

Street Address: 5707 SOUTHWEST PARKWAY, BLDG 1, STE. 275

City: AUSTIN

State: TX

Zip: 78735

Zip: 78735

Phone: (737)300-4700

Email address: zboyd@ameredev.com

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Application Data Report

Submission Date: 10/22/2018

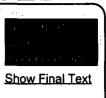
Is the first lease penetrated for production Federal or Indian? FED

Reservation:

Zip: 78735

Well Number: 121H Well Work Type: Drill

Tie to previous NOS?


User: Christie Hanna

Lease Acres: 600.28

Federal or Indian agreement:

APD Operator: AMEREDEV OPERATING LLC

Allotted?

Submission Date: 10/22/2018

Title: Senior Engineering Technician

Well Type: OIL WELL

APD ID: 10400035387

Section 1 - General

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

APD ID:	10400035387

BLM Office: CARLSBAD

Federal/Indian APD: FED

Lease number: NMNM137469

Surface access agreement in place?

Agreement in place? NO

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? NO

Operator letter of designation:

Operator Info

Operator Organization Name: AMEREDEV OPERATING LLC

Operator Address: 5707 Southwest Parkway, Building 1, Suite 275

Operator PO Box:

Operator City: Austin State: TX

Operator Phone: (737)300-4700

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO	Master Development Plan	name:
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name	:
Well Name: NANDINA FED COM 25 36 31	Well Number: 121H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: JAL	Pool Name: WOLFCAMP

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, CO2, OIL

Page 1 of 3

Operator Nam	e: AMEREDEV	OPERATING	LLC
--------------	-------------	-----------	-----

Well Name: NANDINA FED COM 25 36 31

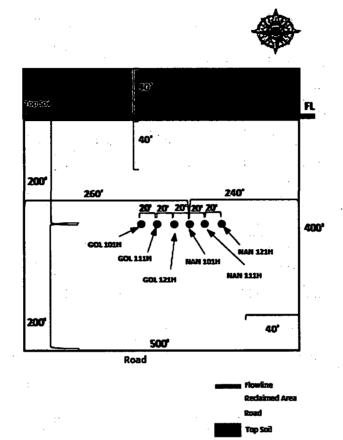
The second se

Well Number: 121H

Desc	ribe o	other r	ninera	als:														
ls the	e prop	osed	well i	n a He	elium	prod	uctio	n area?	N Use E	Existing W	ell Pa	d? NO	Ne	w s	urface c	listurl	bance	?
Туре	of W	ell Pa	d: MU	LTIPL	E WE	LL			Multi	ple Well Pa	ad Nai	ne:	Nu	ımb	er: 1N			
Well	Class	: HOF	RIZON	TAL					NAN/	GB per of Leg s	s• 1							
Well	Work	Туре	: Drill															
													·					
	• •	Vell T			• .													
		ype:		-														
		sub-ty													. •			
		o tow	-	liles			Dist	ance to	nearest	vell: 2249	FT	Dist	ance te	o le	ase line:	: 230 I	-T	
Rese	rvoir	well s	pacin	g ass	ignec	l acre	s Me	asurem	ent: 640.4	Acres								
Well	plat:	NA	NDIN	- A_FE		M_25	5_36_	31_1211	HWELI	SITE_DI	AGRA	M_REV	/_2019	060	4101055	.pdf		
	•	NA	NDIN	A FE		M 25	5 36		H BLM	 _LEASES_:	20190		_ 126.pd	f				
								- 31_121I										
				_	_	_		- 31_121I										
				_	_	_		- 31_121I										
				_	_			- 31_121I				_			-			
Well	work			 07/07				_		- t ion: 90 DA	_	-						
	Sec	tion	3 - V	Vell	Loca	ation	n Tal	ole										
Surve	еу Туј	pe: RE		NGUL	AR													
Desc	ribe S	Survey	/ Туре	: :														
Datur	m: NA	D83							Vertic	al Datum:	NAVE	88						
Surve	ey nu	mber:	1832	9										-,				
								ract							er			
		ator	L.	EW Indicator				Aliquot/Lot/Tract	· · .	<u>a</u>				8	Lease Number	_		
	NS-Foot	NS Indicator	РО Н	Indic	<u>م</u>	ge	tion	uot/L	Latitude	Longitude	nty	ø	Meridian	Lease Type	se N	Elevation		
	-SN	NSI	EW-Foot	N N N	Twsp	Range	Section	Aliq	Latit		County	State		Leas	Lea:	Elev	QW	2
SHL	230	FSL	430	FWL	25S	36E	31	Lot	32.0802		LEA	NEW		F	NMNM	302	0	0
Leg #1								4		103.3113 9		MEXI CO	MEXI CO		137469	3		
L	L	I			1	1	1	I	Ι	I	L .	L	I	<u> </u>		Page 2		1

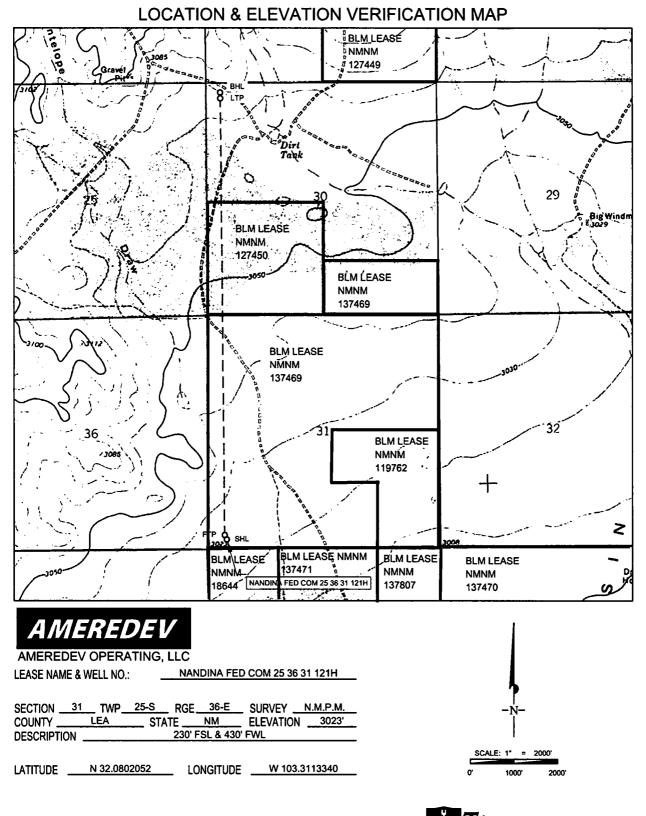
Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31


Well Number: 121H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
KOP Leg #1	277	FNL	871	FWL	26S	36E.	6	Aliquot NWN W	32.07879	- 103.3099 2	LEA		NEW MEXI CO	F	NMNM 018644	- 887 7	119 34	119 00
PPP Leg #1	100	FSL	430	FWL	25S	36E	31	Aliquot SWS W	32.07984	- 103.3114 9	LEA	1	NEW MEXI CO	F	NMNM 137469	- 940 9	128 29	124 32
PPP Leg #1	0	FSL	331	FWL	25S	36E	30	Aliquot SWS W	32.09408	- 103.3114 9	LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 127450	- 942 4	180 00	124 47
EXIT Leg #1	50	FNL	380	FWL	25S	36E -	30	Aliquot NWN W	32.10847	- 103.3115	LEA	NEW MEXI CO		F	FEE	- 942 4	232 35	124 47
BHL Leg #1	50	FNL	380	FWL	25S	36E	30	Lot 1	32.10847	- 103.3115	LEA		NEW MEXI CO	F	FEE	- 942 4	232 35	124 47

Page 3 of 3

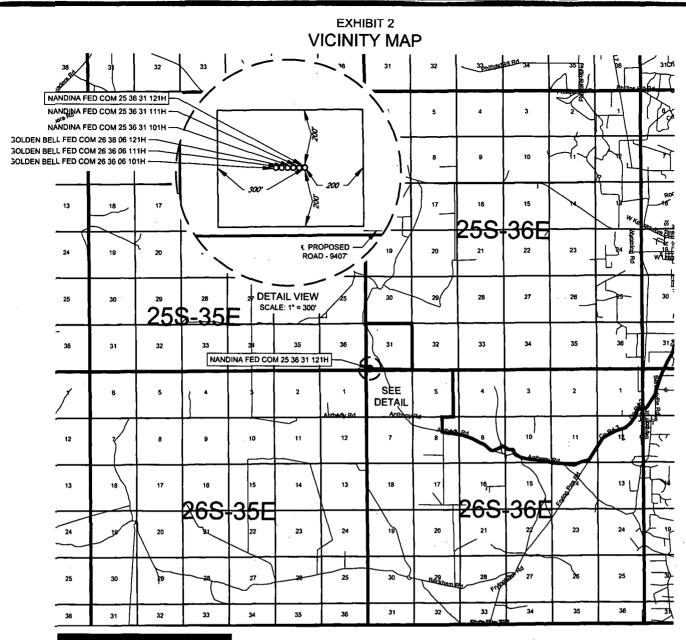

AMEREDEV

Ameredev Operating, LLC Nandina Fed Com 25 36 31 121H Section 31, Township 25S, Range 36E Lea County, New Mexico

Golden Bell Fed Com 26 36 06 101H SHL: 26S 36E 230' FSL 330' FWL Golden Bell Fed Com 26 36 06 111H SHL: 26S 36E 230' FSL 350' FWL Golden Bell Fed Com 26 36 06 121H SHL: 26S 36E 230' FSL 370' FWL Nandina Fed Com 25 36 31 101H SHL: 25S 36E 230' FSL 390' FWL Nandina Fed Com 25 36 31 111H SHL: 25S 36E 230' FSL 410' FWL Nandina Fed Com 25 36 31 121H SHL: 25S 36E 230' FSL 430' FWL

Exhibit 3 – Well Site Diagram

THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.


ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET.

 TOPOGRAPHIC LOYALTY
 INNOVATION
 LEGACY

 1400 EVERMAN PARKWAY, SLb. 148 • FT. WORTH, TEXAS 76140 <u>TELEPHONE: (817) 74-7512 • FAX (817) 74-7554</u> 2803 NORTH BIG SPRING • MIDLAND, TEXAS 78705

 TELEPHONE: (432) 682-1653 00 (800) 787-1653 • FAX (432) 682-1743 WWW, TOPOGRAPHIC.COM

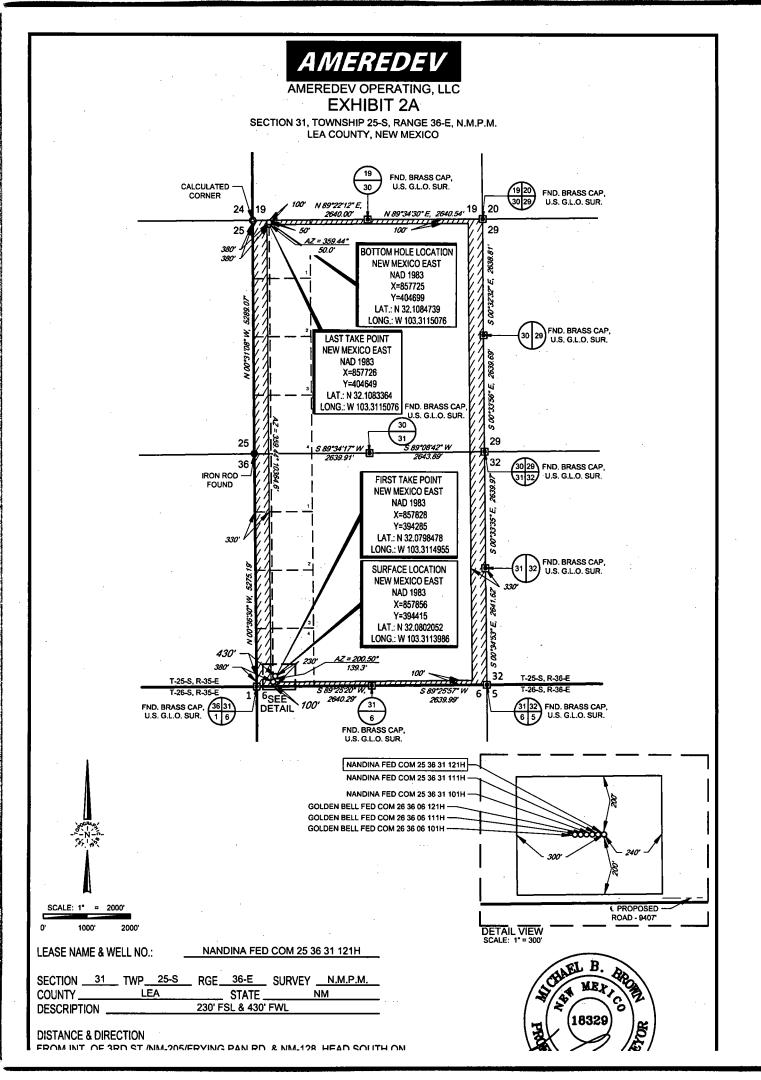
S:SURVEYAMEREDEV_OPERATING_LLCWANDINA_FED_COMFINAL_PRODUCTS\LO_NANDINA_FED_COM_25_36_31_121H.DWG 8/6/2018 3:12:45 PM ccaston

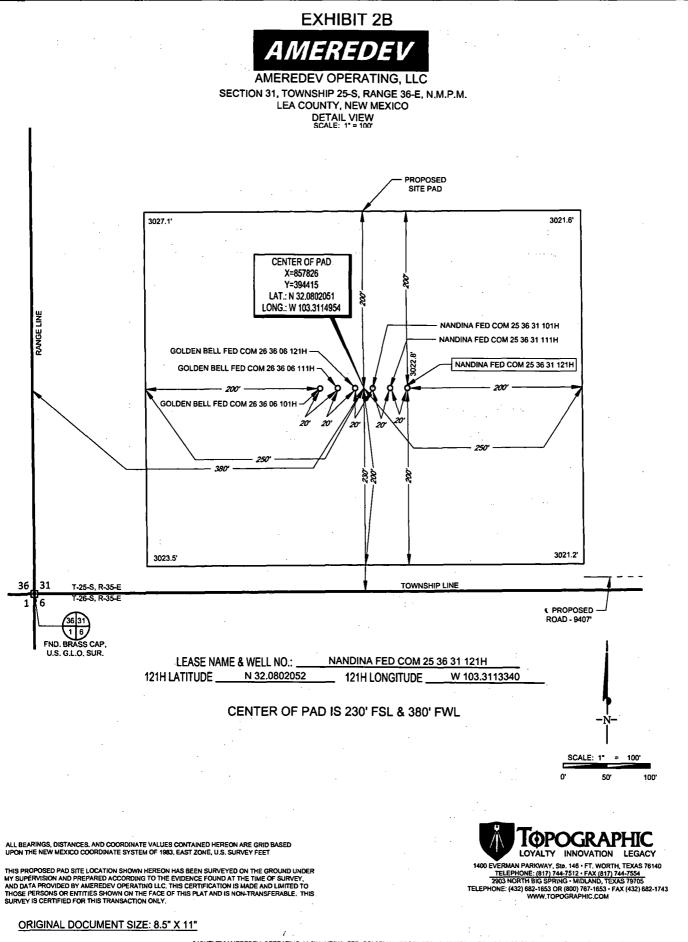
AMEREDEV

AMEREDEV OPERATING, LLC LEASE NAME & WELL NO.: NANDINA FED COM 25 36 31 121H

SECTION		RGE <u>36-E</u> S	URVEY <u>N.M.P.M.</u>
COUNTY	LEA	STATE	NM
DESCRIPTION		230' FSL & 430' FW	/L

DISTANCE & DIRECTION


FROM INT. OF 3RD ST./NM-205/FRYING PAN RD. & NM-128, HEAD SOUTH ON 3RD ST./NM-205/FRYING PAN RD. ±5.6 MILES, THENCE WEST (RIGHT) ON ANTHONY RD. ±3.4 MILES, THENCE NORTH (RIGHT) TO CONTINUE ON ANTHONY RD. ±0.3 MILES, THENCE EAST (RIGHT) ON PIPELINE RD. ±0.3 MILES, THENCE NORTH (LEFT) ON A LEASE RD. ±1.0 MILES, THENCE WEST (LEFT) ON A LEASE RD. ±9407 FEET TO A POINT ±294 FEET SOUTHEAST OF THE LOCATION.


THIS EASEMENT/SERVITUDE LOCATION SHOWN HEREON HAS BEEN SURVEYED ON THE GROUND UNDER MY SUPERVISION AND PREPARED ACCORDING TO THE EVIDENCE FOUND AT THE TIME OF SURVEY, AND DATA PROVIDED BY AMEREDEV OPERATING LLC. THIS CERTIFICATION IS MADE AND LIMITED TO THOSE PERSONS OR ENTITIES SHOWN ON THE FACE OF THIS PLAT AND IS NON-TRANSFERABLE. THIS SURVEY IS CERTIFIED FOR THIS TRANSACTION ONLY.

ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO STATE PLANE COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET. -N-SCALE: 1° = 10000' 0' 5000' 10000'

SISURVEYAMEREDEV_OPERATING_LLCWANDINA_FED_COMFINAL_PRODUCTSILO_NANDINA_FED_COM_25_38_31_121H_REV1.DWG 11/16/2018 11:03:07 AM ccaston

Stsurveyvameredev_OPERATING_LLCWANDINA_FED_COMFINAL_PRODUCTSLO_NANDINA_FED_COM_25_38_31_121H_REV1.DWG 11/16/2018 11:03:08 AM oceastan

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

APD ID: 10400035387

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Submission Date: 10/22/2018

n de parte de la com la composition de la la composition de la c

Show Final Text

2.05

07/02/2019

Drilling Plan Data Report

and the second second

Well Type: OIL WELL

Well Number: 121H

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	RUSTLER ANHYDRITE	3023	956	956	ANHYDRITE	NONE	No
2	SALADO	1646	1376	1376	SALT	NONE	No
3	TANSILL	-356	3378	3378	LIMESTONE	NONE	No
4	CAPITAN REEF	-718	3740	3740	LIMESTONE	USEABLE WATER	No
5	LAMAR	-1999	5021	5021	LIMESTONE	NONE	No
6	BELL CANYON	-2091	5113	5113	SANDSTONE	NATURAL GAS,OIL	No
7	BRUSHY CANYON	-4260	7282	7282	SANDSTONE	NATURAL GAS,OIL	No
8	BONE SPRING LIME	-5442	8464	8464	LIMESTONE	NONE	No
9	BONE SPRING 1ST	-6772	9794	9794	SANDSTONE	NATURAL GAS,OIL	No
10	BONE SPRING 2ND	-7340	10362	10362	SANDSTONE	NATURAL GAS,OIL	No
11	BONE SPRING 3RD	-7866	10888	10888	LIMESTONE	NATURAL GAS,OIL	No
12	BONE SPRING 3RD	-8467	11489	11489	SANDSTONE	NATURAL GAS,OIL	No
13	WOLFCAMP	-8739	11761	. 11761	SHALE	NATURAL GAS,OIL	No
14	WOLFCAMP	-9075	12097	12097	SHALE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Page 1 of 6

Well Name: NANDINA FED COM 25 36 31

Well Number: 121H

Pressure Rating (PSI): 10M Rating Depth: 15000

Equipment: 10M BOPE SYSTEM WILL BE USED AFTER THE SURFACE CASING IS SET. A KELLY COCK WILL BE KEPT IN THE DRILL STRING AT ALL TIMES. A FULL OPENING DRILL PIPE STABBING VALVE WITH PROPER DRILL PIPE CONNECTIONS WILL BE ON THE RIG FLOOR AT ALL TIMES. **Requesting Variance?** YES

Variance request: Co-Flex Choke Line, 5M Annular Preventer

Testing Procedure: See attachment

Choke Diagram Attachment:

10M_Choke_Manifold_REV_20190604124802.pdf

BOP Diagram Attachment:

5M_BOP_System_20181022095616.pdf

4_String_MB_Ameredev_Wellhead_Drawing_net_REV_20190604124830.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190624132926.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190624142502.pdf

Section 3 - Casing

												• •										
Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE			NEW	API	N	0		0 · · ·		3023					OTHER - BTC	Ì	ı	DRY	,	DRY	
2				NEW	API	N	0	1	0	: • 1	3023					OTHER - BTC			DRY		DRY	
3	PRODUCTI ON			NEW	API	N	0 <u>: :</u> .		0		3023					OTHER - SFH			DRY	•	DRY	

Casing Attachments

Page 2 of 6

Well Name: NANDINA FED COM 25 36 31

Well Number: 121H

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

13.375_68.00__J55_BTC_20190604125253.pdf

Nandina_Fed_Com_25_36_31_121H____Wellbore_Diagram_and_CDA_20190624134826.pdf

Casing ID: 2 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

7.625_29.70_L80HC_BORUSAN_20190624134113.pdf

Nandina_Fed_Com_25_36_31_121H___Wellbore_Diagram_and_CDA_20190624134919.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

5.5_20_P110HP_Eagle_SFH_20190624134938.pdf

Nandina_Fed_Com_25_36_31_121H___Wellbore_Diagram_and_CDA_20190624134948.pdf

Page 3 of 6

Well Name: NANDINA FED COM 25 36 31

. .

Well Number: 121H

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead			· . · ·		1.76	13.5	.'., t	50	en de la composition de la composition La composition de la c	is gent an an Ea⊈a sa n i Fation i i
SURFACE	Tail	:			200	1.34	14.8	268	100	CLASS C	Salt
INTERMEDIATE	Lead					2.47	11.9		25	e server	 1.33 (a) interval and a second second
INTERMEDIATE	Tail				200	1.33	14.8	266	25	Class C	Retarder
INTERMEDIATE	Lead				i	2.47	11.9		25		
INTERMEDIATE	Tail				300	1.24	14.5	371.1	25	CLASS H	Salt, Bentonite, Retarder, Dispersant, Fluid Loss
PRODUCTION	Lead					1.34	14.2		25		

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary supplies (e.g. bentonite, cedar bark) for fluid control will be on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure, and pump rate.

Circulating Medium Table

Well Name: NANDINA FED COM 25 36 31

Well Number: 121H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1081	WATER-BASED MUD	8.4	8.6							
1081	1176 1	OTHER : Diesel Brine Emulsion	8.5	9.4							
1176 1	1244 7	OIL-BASED MUD	10.5	12.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Section 7 - Pressure

ter and the second s

Anticipated Bottom Hole Temperature(F): 165

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_20181022120727.pdf

Page 5 of 6

Well Name: NANDINA FED COM 25 36 31

Well Number: 121H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Nan121_DR_20190604131154.pdf

Nan121_LLR_20190604131154.pdf

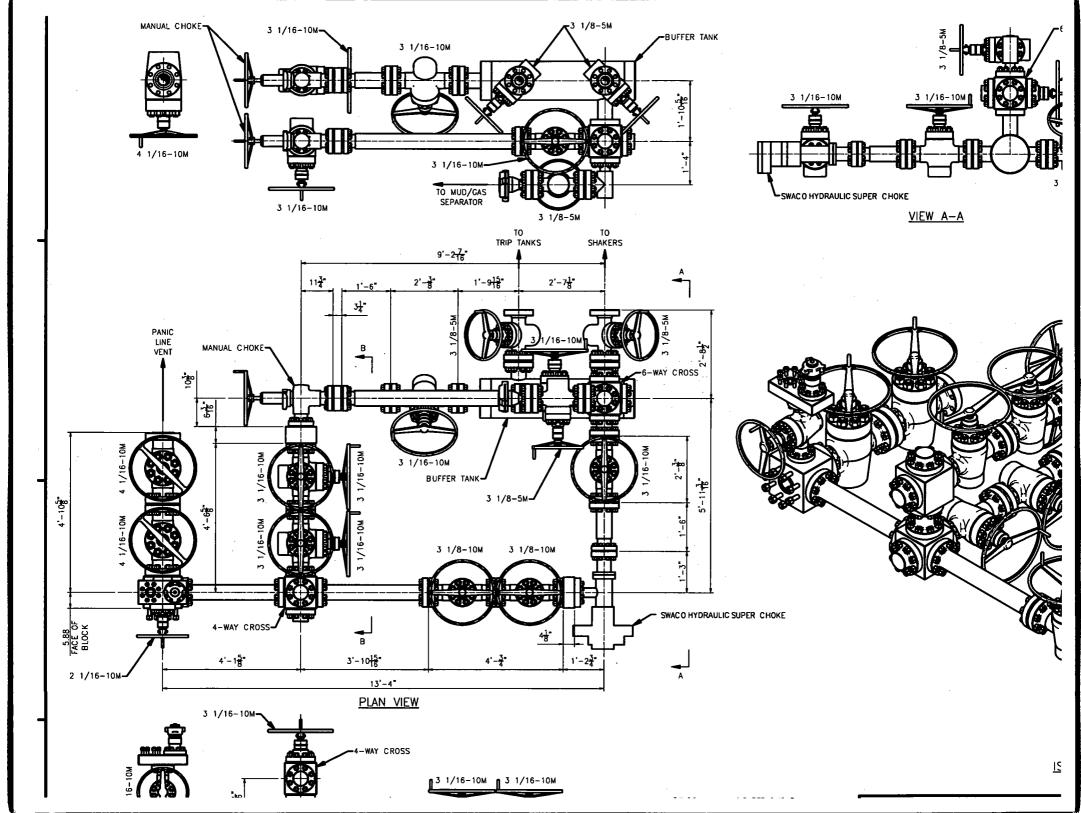
Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190604131210.pdf

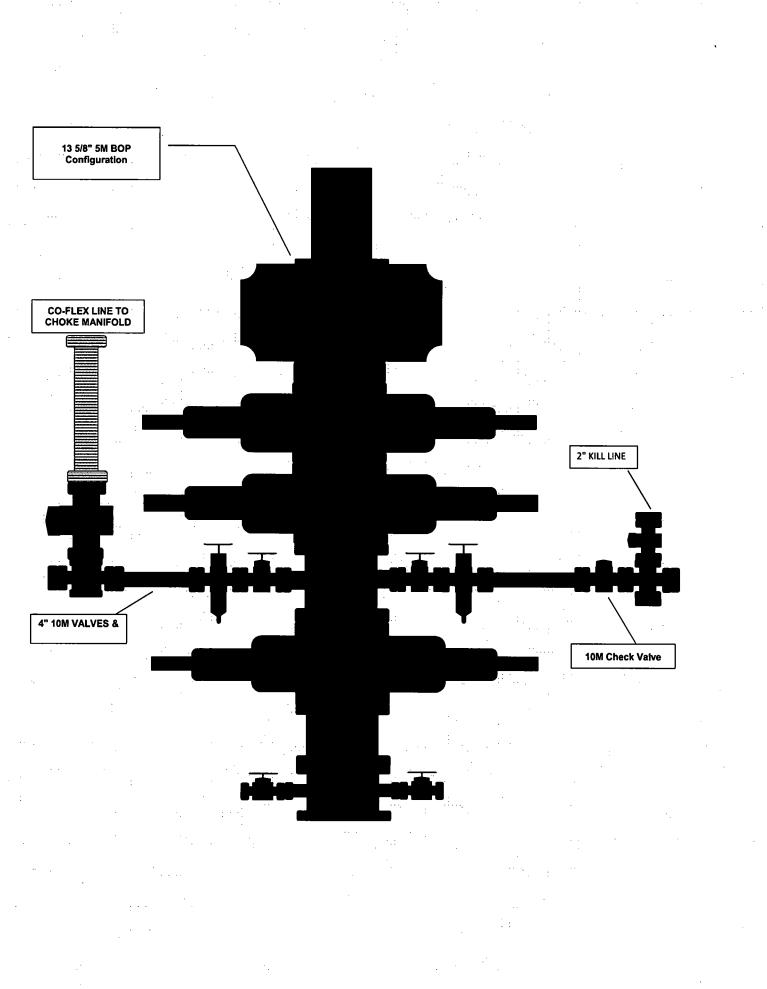
5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190624135350.pdf

Other proposed operations facets description:

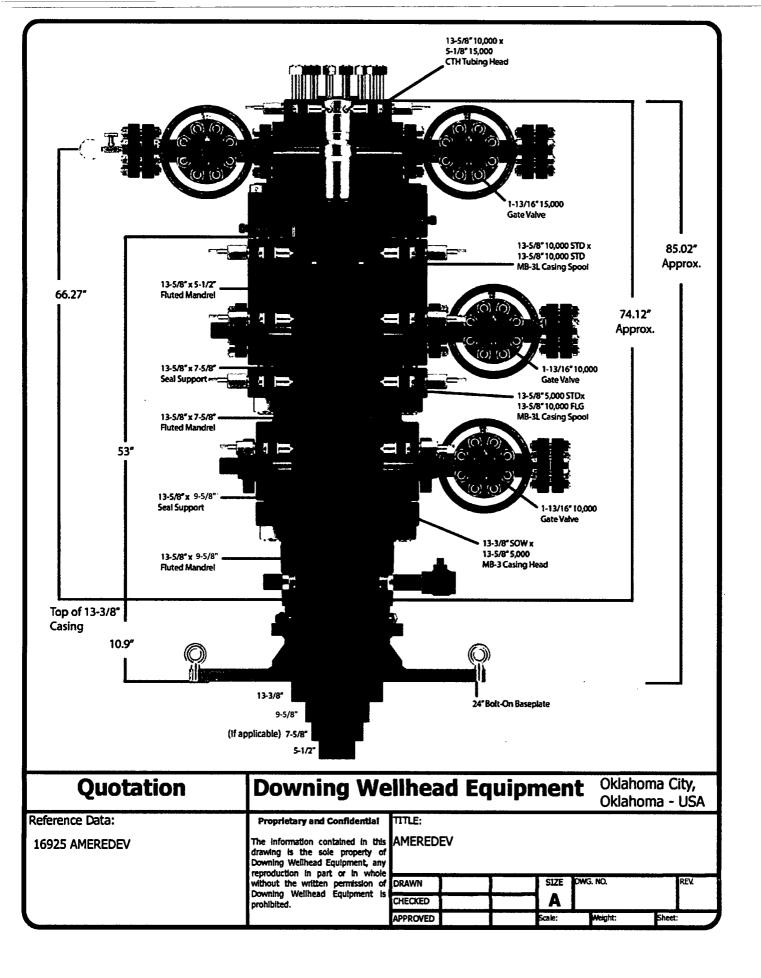
n na harakan sa Kirana ang Kirina. T

Other proposed operations facets attachment:


CAPITAN_PROTECTION_CONTINGENCY_PLAN_WC_PACKET_20190606_20190622224844.pdf


Rig_Skid_Procedure_20190624135414.pdf

Other Variance attachment:


R616___CoC_for_hoses_12_18_17_20190604131250.pdf Requested_Exceptions___3_String_Revised_01312019_20190604131300.pdf

Page 6 of 6

1...:

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

• 13-5/8" 5M Annular

AMEREDEV

- 13-5/8" 10M Upper Pipe Rams
 - 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier							
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams							
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams							
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams							
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Ram							
Open Hole	13-5/8	Drilling Fluid	Blind Rams								
All Drilling Compone	nts in 10M Environr	nent will have OD the	at will allow full Opera	tional RATED							
WORKING PRESSURE	for system design.	Kill line with minimu	m 2" ID will be availab	ole outside							
	WORKING PRESSURE for system design. Kill line with minimum 2" ID will be available outside substructure with 10M Check Valve for OOH Kill Operations										

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

- Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.
- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan

Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" (7-5/8" as applicable) Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" (7-5/8" as applicable) Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.

AMEREDE

- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" (7-5/8" as applicable) Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTION	
ECHANICAL PROPERTIES			
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
RIGIEREMI			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
GTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
NFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

1) Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.

3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.

Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up 4)

torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.). Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor. 5)

Connection external pressure resistance has been verified to 10,000 psi (Application specific testing). 6)

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application. Manuel USS Product Data Sheet 2017 rev25 (April)

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064

1-877-893-9461 connections@uss.com www.usstubular.com

Wellbore Schematic

Well:	Nandina Fed Com 25-36-31 121H	Co. Well ID:	xxxxxx
SHL:	Sec. 31 25S-36E 230' FSL & 430' FWL	AFE No.:	xxxx-xxx
BHL:	Sec. 30 25S-36E 50' FNL & 380' FWL	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	3,023'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp B
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	12,447'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	23,235'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB : 27'
Tubina:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size	Formation Tops		Logs	Cemen	t	Mud Weight
17.5"	Rustler 13.375" 68# J-55 BTC	956' 1,081'		687 Sacks TOC 0'	50% Excess	8.4-8.6 ppg WBM
	Salado DV Tool	1,376'		ş	25% Excess	
	Tansill	3,378' 3,378'				1
	Capitan Reef	3,740'				ulsion
	Lamar	5,021'				E E
	Bell Canyon	5,113'				8.5 - 9.4 ppg Diesel Brine Emulsion
9.875"	Brushy Canyon	7,282'				iese
	Bone Spring Lime	8,464'				D 6dd
	First Bone Spring	9,794'				9.4
	Second Bone Spring	10,362'			.:	8.5 -
	Third Bone Spring Upper	10,888!		sks -	SSS	
	Third Bone Spring	11,489'		1,418 Sacks TOC 0'	25% Excess	
	7.625" 29.7# L-80HC BTC	11,761'		1,418 TOC	25%	
6.75"	Wolfcamp A	11,761'				_
12° Build @	Wolfcamp B	12,097'			÷ 5.	10.5 - 12.5 ppg OBM
11,934' MD			1			idd (
thru	5.5" 20# P-110 USS RYS SF	23,235'		sks	SSS	12.5
13,019' MD	Target Wolfcamp B 12447 TVD // 2323	5 MD		0' Sat	EXC	- 2
				1,809 Sacks TOC 0'	25% Excess	10

Casing Design and Safety Factor Check

Casing Specifications										
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling				
Surface	17.5	1,081'	13.375	68	J-55	BTC				
Intermediate	9.875	11,761'	7.625	40	HCL-80	BTC				
Prod Segment A	6.75	11,934'	5.5	20	CYHP-110	BTC				
Prod Segment B	6.75	23,235'	- 5.5	20	CYHP-110	BTC				

Check Surface Casing									
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
14.375	1,069	915	4,100	3,450					
	S	afety Facto	ors						
1.56	14.55	12.45	8.49	0.60					
Check Intermediate Casing									
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
7.625	940	558	6700	9460					
Safety Factors									
1.13	2.69	1.87	1.17	1.17					
	Check Prod Casing, Segment A								
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
	S	afety Facto	ors						
0.49	2.92	2.63	1.65	1.78					
	Check Pro	od Casing,	Segment B						
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
	S	afety Facto	ors						
0.49	70.96	63.84	1.58	1.78					

BORUSAN MANNESMANN

API 5CT Casing Performance Data Sheet

Manufactured to specifications of API 5CT 9th edition and bears the API monogram. Designed for enhanced performance through increased collapse resistance.

Grade	L80HC
· · · · · · · · · · · · · · · · · · ·	Pipe Body Mechanical Properties
Minimum Yield Strength	80,000 psi
Maximum Yield Strength	95,000 psi
Minimum Tensile Strength	95,000 psi
Maximum Hardness	23.0 HRC
	<u>Sizes</u>
	7 5/8 in
Nominal Wall Thickness	0.375 in
Nominal Weight, T&C Nominal Weight, PE	29.70 lb/ft 29.06 lb/ft
	6.875 in
Standard Drift	6.750 in
Alternate Drift	N/A
	Minimum Performance
Collapse Pressure	5,780 psi
Internal Pressure Yield	6,880 psi
Pipe body Tension Yield	683,000 lbs
Internal pressure leak resistance STC/LTC connections	6,880 psi
Internal pressure leak resistance BTC connections	6,880 psi
	Inspection and Testing
Visual	OD Longitidunal and independent 3rd party SEA
Visual NDT	
· · · · · · · · · · · · · · · · · · ·	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness
NDT	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u>
NDT Pipe ends	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band
NDT Pipe ends	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u>
· · · · · · · · · · · · · · · · · · ·	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band
NDT Pipe ends	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band
NDT Pipe ends	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band
NDT Pipe ends	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band
NDT Pipe ends	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band
NDT Pipe ends	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band
NDT Pipe ends Couplings	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band Red with one brown band
NDT Pipe ends Couplings	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band Red with one brown band
NDT Pipe ends Couplings	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band Red with one brown band
NDT Pipe ends Couplings	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band Red with one brown band
NDT Pipe ends Couplings	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band Red with one brown band
NDT Pipe ends Couplings	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band Red with one brown band
NDT Pipe ends Couplings	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band Red with one brown band
NDT Pipe ends Couplings	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band Red with one brown band
NDT Pipe ends Couplings	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band Red with one brown band
NDT Pipe ends Couplings	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness Color code One red, one brown and one blue band Red with one brown band
NDT Pipe ends Couplings	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness Color code One red, one brown and one blue band Red with one brown band
NDT Pipe ends Couplings	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness <u>Color code</u> One red, one brown and one blue band Red with one brown band
NDT Pipe ends Couplings	OD Longitidunal and independent 3rd party SEA Independent 3rd party full body EMI after hydrotest Calibration notch sensitivity: 10% of specified wall thickness Color code One red, one brown and one blue band Red with one brown band

Ξ.

Wellbore Schematic

Well:	Nandina Fed Com 25-36-31 121H	Co. Well ID:	XXXXXX
SHL:	Sec. 31 25S-36E 230' FSL & 430' FWL	AFE No.:	xxxx-xxx
BHL:	Sec. 30 25S-36E 50' FNL & 380' FWL	API No.:	XXXXXXXXXXX
-	Lea, NM	GL:	3,023'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp B
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	12,447'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	23,235'
Xmas Tree:	2-9/16" 10M	Rig;	TBD KB: 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Formation Tops		Logs	Cement	Mud Weight
Rustler 13.375" 68# J-55 BTC	956' 1,081'		687 Sacks TOC 0' 50% Excess	8.4-8.6 ppg WBM
Salado DV Tool	1,376' 3.378'		459 Sacks TOC 0' 25% Excess	
Tansill	3,378'			· ·
Capitan Reef	3,740'	· .		ulsion
Lamar	5,021'			
Bell Canyon	5,113'			al Brine
Brushy Canyon	7,282'		· · · · ·	ese
Bone Spring Lime	8,464'		.* : *.	8.5 - 9.4 ppg Diesel Brine Emulsion
First Bone Spring	9,794'			6.
Second Bone Spring	10,362'			8.5 -
Third Bone Spring Upper	10,888'		sy ss	
Third Bone Spring	11,489'		118 Sac 0C 0' % Exce	
7.625" 29.7# L-80HC BTC	11,761'		1,4 TC 25	
Wolfcamp A	11,761			
Wolfcamp B	12,097'			10.5 - 12.5 ppg OBM
		1	· ·	dd
5.5" 20# P-110 USS RYS SF	23,235'		ss ss	12.5
	5 MD	1	xce Sac	
		4	б б б б б б б б б б б б б б б б б б б	0.5
	· · · · · ·	١	1,8(1,8(
	Rustler 13.375" 68# J-55 BTC Salado DV Tool Tansill Capitan Reef Lamar Bell Canyon Brushy Canyon Bone Spring Lime First Bone Spring Second Bone Spring Third Bone Spring Upper Third Bone Spring Upper Third Bone Spring B Solfcamp A Wolfcamp B	Rustler 956' 13.375" 68# J-55 BTC 1,081' Salado 1,376' DV Tool 3,378' Tansill 3,378' Capitan Reef 3,740' Lamar 5,021' Bell Canyon 5,113' Brushy Canyon 7,282' Bone Spring Lime 8,464' First Bone Spring 9,794' Second Bone Spring 10,362' Third Bone Spring Upper 10,888' Third Bone Spring 11,489' 7.625" 29.7# L-80HC BTC 11,761' Wolfcamp A 11,761' Wolfcamp B 12,097'	Rustler 956' 13.375" 68# J-55 BTC 1,081' Salado 1,376' DV Tool 3,378' Tansill 3,378' Capitan Reef 3,740' Lamar 5,021' Bell Canyon 5,113' Brushy Canyon 7,282' Bone Spring Lime 8,464' First Bone Spring 10,362' Third Bone Spring Upper 10,888' Third Bone Spring 11,489' 7.625" 29.7# L-80HC BTC 11,761' Wolfcamp A 11,761' Wolfcamp B 12,097'	Rustler 956' System Solution 13.375" 68# J-55 BTC 1,081' 80 P 90 P Salado 1,376' 89 P 90 P 90 P DV Tool 3,378' 91 P 92 P 90 P 90 P DV Tool 3,378' 91 P 92 P 90 P

Casing Design and Safety Factor Check

Casing Specifications								
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling		
Surface	17.5	1,081'	13.375	68	J-55	BTC		
Intermediate	9.875	11,761'	7.625	40	HCL-80	BTC		
Prod Segment A	6.75	11,934'	5.5	20	CYHP-110	BTC		
Prod Segment B	6.75	23,235'	5.5	20	CYHP-110	BTC		

Check Surface Casing						
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
14.375	1,069	915	4,100	3,450		
	S	afety Facto	ors			
1.56	14.55	12.45	8.49	0.60		
	Check I	ntermedia	te Casing			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
7.625	940	558	6700	9460		
	S	afety Facto	ors			
1.13	2.69	1.87	1.17	1.17		
	Check Pro	od Casing,	Segment A			
OD Cpig	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
	S	afety Facto	ors			
0.49	2.92	2.63	1.65	1.78		
	Check Pro	od Casing,	Segment B			
OD Cplg	Body	Joint	Collapse	Burst		
inches	1000 lbs	1000 lbs	psi	psi		
5.777	728	655	12780	14360		
	S	afety Facto	ors			
0.49	70.96	63.84	1.58	1.78		

PERFORMANCE DATA

API BTC

.

13.375 in

68.00 lbs/ft

J-55

Technical Data Sheet

Tubular Parameters

Size	13.375	in	Minimum Yield	55,000	psi
Nominal Weight	68.00	lbs/ft	Minimum Tensile	75,000	psi
Grade	J-55		Yield Load	1,069,000	lbs
PE Weight	66.10	lbs/ft	Tensile Load	1,458,000	lbs
Wall Thickness	0.480	in	Min. Internal Yield Pressure	3,500	psi
Nominal ID	12.415	in	Collapse Pressure	1,950	psi
Drift Diameter	12.259	in -	· · ·	_ 1 I	
Nom. Pipe Body Area	19.445	in²			

Connection Parameters		
Connection OD	14.375	in
Coupling Length	10.625	in
Threads Per Inch	5.000	in
Standoff Thread Turns	1.000	
Make-Up Loss	4.513	in
Yield Load In Tension	· ·	lbs
Min. Internal Yield Pressure	3,500	psi

Printed on: February-13-2015

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

Wellbore Schematic

Well:	Nandina Fed Com 25-36-31 121H	Co. Well ID:	xxxxxx
SHL:	Sec. 31 25S-36E 230' FSL & 430' FWL	AFE No.:	XXXX-XXX
BHL:	Sec. 30 25S-36E 50' FNL & 380' FWL	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	3,023'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp B
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	12,447'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	23,235'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB: 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs	s Cement	Mud Weight
17.5"	Rustler 956	· · .	687 Sacks TOC 0' 50% Excess	8.4-8.6 ppg WBM
	13.375" 68# J-55 BTC 1,081	•		
	Salado 1,376		459 Sacks TOC 0' 25%	
	DV Tool 3,378 Tansill 3,378	•	<u> 4 ⊢ ∩ ⊔</u>	1
	Capitan Reef 3,740			ulsion
	Lamar 5,021			Ē
	Bell Canyon 5,113			8.5 - 9.4 ppg Diesel Brine Emulsion
9.875"	Brushy Canyon 7,282			ese
	Bone Spring Lime 8,464			iQ 6dd
	First Bone Spring 9,794	•		9.4
	Second Bone Spring 10,362			8.5 -
	Third Bone Spring Upper 10,888	•	ss ss	
	Third Bone Spring 11,489	•	1,418 Sacks TOC 0' 25% Excess	
	7.625" 29.7# L-80HC BTC 11,761		1,4 TO 25%	
6.75"	Wolfcamp A 11,761	'		_
12° Build @	Wolfcamp B 12,097	,		10.5 - 12.5 ppg OBM
11,934' MD		Z		dd
thru	5.5" 20# P-110 USS RYS SF 23,235	•	sss cks	12.5
13,019' MD	Target Wolfcamp B 12447 TVD // 23235 MD		Na Sar	
		Z	1,809 Sacks TOC 0' 25% Excess	1 0.
			<u>0 1 7 1</u>	

Casing Design and Safety Factor Check

Casing Specifications										
Segment Hole ID Depth OD Weight Grade Coupling										
Surface	17.5	1,081'	13.375	68	J-55	BTC				
Intermediate	9.875	11,761'	7.625	40	HCL-80	BTC				
Prod Segment A	6.75	11,934'	5.5	20	CYHP-110	BTC				
Prod Segment B	6.75	23,235'	5.5	20	CYHP-110	BTC				

Check Surface Casing							
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
14.375	1,069	915	4,100	3,450			
	S	afety Facto	ors				
1.56	14.55	12.45	8.49	0.60			
	Check I	ntermedia	te Casing				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
7.625	940	558	6700	9460			
	Safety Factors						
1.13	2.69	1.87	1.17	1.17			
	Check Pro	od Casing,	Segment A				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
5.777	728	655	12780	14360			
	S	afety Facto	ors				
0.49	2.92	2.63	1.65	1.78			
	Check Pro	od Casing,	Segment B	}			
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
5.777	728	655	12780	14360			
	S	afety Facto	ors				
0.49	70.96	63.84	1.58	1.78			

H₂S Drilling Operation Plan

- 1. <u>All Company and Contract personnel admitted on location must be trained by a qualified H₂S</u> safety instructor to the following:
 - a. Characteristics of H₂S
 - b. Physical effects and hazards
 - c. Principal and operation of H₂s detectors, warning system and briefing areas
 - d. Evacuation procedure, routes and first aid
 - e. Proper use of safety equipment and life support systems
 - f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- b. Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

3. H₂S Detection and Alarm Systems:

- a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- b. An audio alarm will be installed on the derrick floor and in the top doghouse.

4. Protective Equipment for Essential Personnel:

- a. Breathing Apparatus:
 - i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
 - ii. Two (SCBA) Units will be stored in safety trailer on location.
 - iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.

b. Auxiliary Rescue Equipment:

- i. Stretcher
- ii. 2 OSHA full body harnesses
- iii. 100 ft. 5/8" OSHA approved rope
- iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- b. Windsock on the rig floor should be high enough to be visible.

6. <u>Communication:</u>

- a. While working under mask scripting boards will be used for communication where applicable.
- b. Hand signals will be used when script boards are not applicable.

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. <u>Drill Stem Testing:</u> No Planned DST at this time.

8. Mud program:

a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

9. Metallurgy:

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
- b. Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H₂S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
- Have received training in the:
 - Detection of H₂S and
 - o Measures for protection against the gas,
 - Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
	rumuna	Gravity			concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating LLC – Emergency Phone 737-300-4799						
Key Personnel:						
Name	Title	Office	Mobile			
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810			
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996			
Blake Estrada	Construction Foreman		432-385-5831			

Artesia	
Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283
Carlsbad	
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
US Bureau of Land Management	575-887-6544
Santa Fe	
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
National	
National Emergency Response Center (Washington, D.C.)	800-424-8802
Medical	
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433
.'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, NM	505-842-4949

Ameredev Operating, LLC.

NAN/GB NAN/GB #1N Nandina 121H

Wellbore #1

Plan: Design #1

Standard Planning Report

04 March, 2019

anan Ang ang ang Ang ang

• •

Database: Company: Project: Site: Nell: Nellbore: Design:	EDM5000 Ameredev Op NAN/GB NAN/GB #1N Nandina 1211 Wellbore #1 Design #1			Local Co-ordin TVD Reference MD Reference North Reference Survey Calcula	: e:	Well Nandi KB @ 3050 KB @ 3050 Grid Minimum C).Ousft).Ousft	
Project	NAN/GB		,					
Oco Datain.	US State Plane North American New Mexico Eas	Datum 1983		System Datum:		Mean Sea Le	vel	
Site	NAN/GB #1N	· · · · · · · · · · · · · · · · · · ·						
Site Position: From: Position Uncertainty:	Lat/Long	0.0 usft	Northing: Easting: Slot Radius:	394,414. 857,776. 13	36 usft Longi			32° 4' 48.738 103° 18' 41.965 0.54
Well	Nandina 121H							
Well Position Position Uncertainty	+N/-S +E/-W	1.0 usft 100.0 usft 0.0 usft	Northing: Easting: Wellhead Elev	85	4,415.24 usft 7,876.36 usft	Latitude: Longitude: Ground Level	:	32° 4' 48.739 103° 18' 40.803 3,023.0 u
Wellbore	Wellbore #1			· · · · · · · · · · · · · · · · · · ·				
Magnetics	Model Nar		Sample Date	Declination (°)		Dip Angle (°)		Field Strength (nT)
	IGR	RF2015	3/4/2019		6.63	59.9)5	47,706.61415520
Design	Design #1							
Audit Notes: Version:			Phase:	PROTOTYPE	Tie On De	epth:	0.0	
Vertical Section:	······································	(u	rom (TVD) Isft)).0	+N/-S (usft) 0.0	+E/-W (usft) 0.0		Direction (°) 359.16	
	· · · · ·							
Plan Survey Tool Pro Depth From (usft)	Depth To	Date 3/4/20 Survey (Wellb		Tool Name	Per	narks		

3/4/2019 2:38:53PM

Ameredev Operating, LLC

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Nandina 121H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3050.0usft
Project:	NAN/GB	MD Reference:	KB @ 3050.0usft
Site:	NAN/GB #1N	North Reference:	Grid
Well:	Nandina 121H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1	j	, }

Plan Sections

fleasured			Verticat			Dogleg	Build	Turn		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Rate	Rate	Rate	TFO	- .
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)	(°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,300.0	6.00	139.00	2,299.5	-11.8	10.3	2.00	2.00	0.00	139.00	
6,724.8	6.00	139.00	6,700.0	-360.9	313.7	0.00	0.00	0.00	0.00	
7,024.8	0.00	0.00	6,999.5	-372.8	324,0	2.00	-2.00	0.00	180.00	
8,525.3	0.00	0.00	8,500.0	-372.8	324.0	0.00	0.00	0.00	0.00	
8,825.3	6.00	139.00	8,799.5	-384.6	334.3	2.00	2.00	0.00	139.00	
10,233.6	6.00	139.00	10,200.0	-495.7	430.9	0.00	0.00	0.00	0.00	
10,533.6	0.00	0.00	10,499.5	-507.5	441.2	2.00	-2.00	0.00	180.00	
11,934.1	0.00	. 0.00	11,900.0	-507.5	441.2	0.00	0.00	0.00	0.00	
12,515.2	69.39	301.49	12,349.1	-345.1	176.1	11.94	11.94	0.00	301.49	
13,019.4	90.00	359.43	12,447.0	69.0	-48.8	11.94	4.09	11.49	77.57	Nan121 FTP2
23,234.6	90.00	359.43	12.447.0	10,283.6	-151.2	0.00	0.00	0.00	0.00	Nan121 BHL

3/4/2019 2:38:53PM

Ameredev Operating, LLC

Planning Report

C	*****		
Database:	EDM5000	Local Co-ordinate Reference:	Well Nandina 121H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3050.0usft
Project:	NAN/GB	MD Reference:	KB @ 3050.0usft
Site:	NAN/GB #1N	North Reference:	Grid
Well:	Nandina 121H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Bulid Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	2.00	139.00	2,100.0	-1.3	1.1	-1.3	2.00	2.00	0.00
2,200.0	4.00	139.00	2,199.8	-5.3	4.6	-5.3	2.00		
								2.00	0.00
2,300.0	6.00	139.00	2,299.5	-11.8	10.3	-12.0	2.00	2.00	0.00
2,400.0	6.00	139.00	2,398.9	-19.7	17.2	-20.0	0.00	0.00	0.00
2,500.0	6.00	139.00	2,498.4	-27.6	24.0	-28.0	0.00	0.00	0.00
2,600.0	6.00	139.00	2,597.8	-35.5	30.9	-36.0	0.00	0.00	0.00
2,700.0	6.00	139.00	2,697.3	-43.4	37.7	-43.9	0.00	0.00	0.00
2,800.0	6.00	139.00	2,796.7	-51.3	44.6	-51.9	0.00	0.00	0.00
2,900.0	6.00	139.00	2,896.2	-59.2	51.4	-59,9	0.00	0.00	0.00
3,000.0	6.00	139.00	2,995.6	-67.1	58.3	-67.9	0.00	0.00	0.00
3,100.0	6.00	139.00	3,095.1	-75.0	65.2	-75.9	0.00	0.00	0.00
3,200.0	6.00	139.00	3,194.5	-82.8	72.0	-83.9	0.00	0.00	0.00
3,300.0	6.00	139.00	3,294.0	-90.7	78.9	-91.9	0.00	0.00	0.00
3,400.0	6.00	139.00	3,393.4	-98.6	85.7	-99.9	0.00	0.00	0.00
3,500.0	6.00	139.00	3,492.9	-106.5	92.6	-107.9	0.00	0.00	0.00
3,600.0	6.00	139.00	3,592,3	-114.4	99.4	-115.8	0.00	0.00	0.00
3,700.0	6.00	139.00	3,691.8	-122.3	106.3	-123.8	0.00	0.00	0.00
3,800.0	6.00	139.00	3,791.2	-130.2	113.2	-131.8	0.00	0.00	0.00
3,900.0	6.00	139.00	3,890.7	-138.1	120.0	-139.8	0.00	0.00	0.00
4,000.0	6.00	139.00	3,990.1	-146.0	126.9	-147.8	0.00	0.00	0.00
4,100.0	6.00	139.00	4,089.6	-153.8	133.7	-155.8	0.00	0.00	0.00
4,200.0	6.00	139.00	4,189.0	-161.7	140.6	-163.8	0.00	0.00	0.00
4,300.0	6.00	139.00	4,288.5	-169.6	147.4	-171.8	0.00	0.00	0.00
4,400.0	6.00	139.00	4,387.9	-177.5	154.3	-179.8	0.00	0.00	0.00
4,500.0	6.00	139.00	4,487.4	-185.4	161.2	-187.7	0.00	0.00	0.00
4,600.0	6.00	139.00	4,586.9	-193.3	168.0	-195.7	0.00	0.00	0.00
4,700.0	6.00	139.00	4,686.3	-201.2	174.9	-203.7	0.00	0.00	0.00
4,800.0	6.00	139.00	4,785.8	-209.1	181.7	-211.7	0.00	0.00	0.00
4,900.0	6.00	139.00	4,885.2	-217.0	188.6	-219.7	0.00	0.00	0.00
5.000.0	6.00	139,00	4,984,7	-224.8	195.5	-227.7	0.00	0.00	0.00
5,078.0	6.00	139.00	5,062.2	-231.0	200.8	-233.9	0.00	0.00	0.00
	NMNM18644	100.00	0,002.2	-201.0	200.0	-200.0	0.00	0.00	0.00

3/4/2019 2:38:53PM

Ameredev Operating, LLC

Planning Report

,			
Database:	EDM5000	Local Co-ordinate Reference:	Well Nandina 121H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3050.0usft
Project:	NAN/GB	MD Reference:	KB @ 3050.0usft
Site:	NAN/GB #1N	North Reference:	Grid
Well:	Nandina 121H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		· · · · · · · · · · · · · · · · · · ·

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	·						·····		
5,200.0	6.00	139.00	5,183.6	-240.6	209.2	-243.7	0.00	0.00	0.00
5,300.0	6.00	139.00	5,283.0	-248.5	216.0	-251.7	0.00	0.00	0.00
5,400.0	6.00	139.00	5,382.5	-256.4	222.9	-259.6	0.00	0.00	0.00
5,500.0	6.00	139.00	5,481.9	-264.3	229.7	-267.6	0.00	0.00	0.00
5,600.0	6.00	139.00	5,581.4	-272.2	236.6	-275.6	0.00	0.00	0.00
5,700.0	6.00	139.00	5,680.8	-280.1	243.5	-283.6	0.00	0.00	0.00
5,800.0	6.00	139.00	5,780.3	-288.0	250.3	-291.6	0.00	0.00	0.00
5,900.0	6.00	139.00	5,879.7	-295.8	257.2	-299.6	0.00	0.00	0.00
6,000.0	6.00	139.00	5,979.2	-303.7	264.0	-307.6	0.00	0.00	0.00
6,100.0	6.00	139.00	6,078.6	-311.6	270.9	-315.6	0.00	0.00	0.00
6,200.0	6.00	139.00	6,178.1	-319.5	277.7	-323.6	0.00	0.00	0.00
6,300.0	6.00	139.00	6,277.5	-327.4	284.6	-331.5	0.00	0.00	0.00
6,400.0	6.00	139.00	6,377.0	-335.3	291.5	-339.5	0.00	0.00	0.00
6,500.0	6.00	139.00	6,476.4	-343.2	298.3	-347.5	0.00	0.00	0.00
6,600.0	6.00	139.00	6,575.9	-351.1	305.2	-355,5	0.00	0.00	0.00
6,700.0	6.00	139.00	6,675.3	-359.0	312.0	-363.5	0.00	0.00	0.00
6,724.8	6.00	139.00	6,700.0	-360.9	313.7	-365.5	0.00	0.00	0.00
6,800.0	4.50	139.00	6,774. 9	-366.1	318.2	-370.7	2.00	-2.00	0.00
6,900.0	2.50	139.00	6,874.7	-370.7	322.2	-375.4	2.00	-2.00	0.00
7,000.0	0.50	139.00	6,974.7	-372.7	324.0	-377.4	2.00	-2.00	0.00
7,024.8	0.00	0.00	6,999.5	-372.8	324.0	-377.5	2.00	-2.00	0.00
7,100.0	0.00	0.00	7,074.7	-372.8	324.0	-377.5	0.00	0.00	0.00
7 200 0	0.00	0.00	7 174 7	272.0	224.0	077 E	0.00	0.00	0.00
7,200.0	0.00	0.00	7,174.7	-372.8	324.0	-377.5	0.00	0.00	0.00
7,300.0	0.00	0.00	7,274.7	-372.8	324.0	-377.5	0.00	0.00	0.00
7,400.0	0.00	0.00	7,374.7	-372.8	324.0	-377.5	0.00	0.00	0.00
7,500.0	0.00	0.00	7,474.7	-372.8	324.0	-377.5	0.00	0.00	0.00
7,600.0	0.00	0.00	7,574.7	-372.8	324.0	-377.5	0.00	0.00	0.00
7,700.0	0.00	0.00	7,674.7	-372.8	324.0	-377.5	0.00	0.00	0.00
7,800.0	0.00	0.00	7,774.7	-372.8	324.0	-377.5	0.00	0.00	0.00
7,900.0	0.00	0.00	7,874.7	-372.8	324.0	-377.5	0.00	0.00	0.00
8,000.0	0.00	0.00	7,974.7	-372.8	324.0	-377.5	0.00	0.00	0.00
8,100.0	0.00	0.00	8,074.7	-372.8	324.0	-377.5	0.00	0.00	0.00
8,200.0	0.00	0.00	8,174.7	-372.8	324.0	-377.5	0.00	0.00	0.00
8,300.0	0.00	0.00	8,274.7	-372.8	324.0	-377.5	0.00	0.00	0.00
8,400.0	0.00	0.00	8,374.7	-372.8	324.0	-377.5	0.00	0.00	0.00
8,500.0	0.00	0.00	8,474.7	-372.8	324.0	-377.5	0.00	0.00	0.00
8,525.3	0.00	0.00	8,500.0	-372.8	324.0	-377.5	0.00	0.00	0.00
8,600.0	1.49	139.00	8,574.7	-373.5	324.7	-378.2	2.00	2.00	0.00
8,700.0	3.49	139.00	8,674.6	-376.8	327.5	-381.5	2.00	2.00	0.00
8,800.0	5,49	139.00	8,774.2	-382.7	332.7	-387.5	2.00	2.00	0.00
8,825.3	6.00	139.00	8,799.5	-384.6	334.3	-389.5	2.00	2.00	0.00
8,900.0	6.00	139.00	8,873.7	-390.5	339.4	-395.4	0.00	0.00	0.00
9,000.0	6.00	139.00	8,973.2	-398.4	346.3	-403.4	0.00	0.00	0.00
9,100.0	6.00	139.00	9,072.6	-406.3	353.2	-411.4	0.00	0.00	0.00
9,200.0	6.00	139.00	9,172.1	-414.2	360.0	-419.4	0.00	0.00	0.00
9,300.0	6.00	139.00	9,271.5	-422.0	366.9	-427.4	0.00	0.00	0.00
9,400.0	6.00	139.00	9,371.0	-429.9	373.7	-435.4	0.00	0.00	0.00
9,500.0	6.00	139.00	9,470.4	-437.8	380.6	-443.4	0.00	0.00	0.00
9,600.0	6.00	139.00	9,569.9	-445.7	387.4	-451.4	0.00	0.00	0.00
9,700.0	6.00	139.00	9,669.3	-453.6	394.3	-459.3	0.00	0.00	0.00
9,800.0	6.00	139.00	9,669.3	-461.5	401.2	-467.3	0.00	0.00	0.00
9,900.0	6.00	139.00	9,868.2	-469,4	408.0	-475.3	0.00	0.00	0.00
10,000.0	6.00	139.00	9,967.7	-477.3	414.9	-483.3	0.00	0.00	0.00
10,100.0	6.00	139.00	10,067.1	-485.2	421.7	-491.3	0.00	0.00	0.00

3/4/2019 2:38:53PM

COMPASS 5000.15 Build 90

ŗ

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Nandina 121H	i
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3050.0usft	
Project:	NAN/GB	MD Reference:	KB @ 3050.0usft	
Site:	NAN/GB #1N	North Reference:	Grid	i
Well:	Nandina 121H	Survey Calculation Method:	Minimum Curvature	
Wellbore:	Wellbore #1			i i
Design:	Design #1			

Planned Survey

AMEREDEV

Measurød Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (*/100usft)
10,200.0	6.00	139.00	10,166.6	-493.0	428.6	-499.3	0.00	0.00	0.00
10,233.6	6.00	139.00	10,200,0	-495.7	430.9	-502.0	0.00	0.00	0.00
10,300.0	4.67	139.00	10,266.1	-500.4	435.0	-506.7	2.00	-2.00	0.00
10,400.0	2.67	139.00	10,365.9	-505.2	439.2	-511.6	2.00	-2.00	0.00
10,500.0	0.67	139.00	10,465.9	-507.4	441.1	-513.8	2.00	-2.00	0.00
10,533.6	0.00	0.00	10,499.5	-507.5	441.2	-514.0	2.00	-2.00	0.00
10,600.0	0.00	0.00	10,565.9	-507.5	441.2	-514.0	0.00	0.00	0.00
10,700.0	0.00	0.00	10,665.9	-507.5	441.2	-514.0	0.00	0.00	0.00
10,800.0	0.00	0.00	10,765.9	-507.5	441.2	-514.0	0.00	0.00	0.00
10,800.0	0.00	0.00	10,865.9	-507.5	441.2	-514.0	0.00	0.00	0.00
	0.00	0.00	10,965.9	-507.5	441.2	-514.0	0.00	0.00	0.00
11,000.0									
11,100.0	0.00	0.00	11,065.9	-507.5	441.2	-514.0	0.00	0.00	0.00
11,200.0	0.00	0.00	11,165.9	-507.5	441.2	-514.0	0.00	0.00	0.00
11,300.0	0.00	0.00	11,265.9	-507.5	441.2	-514.0	0.00	0.00	0.00
11,400.0	0.00	0.00	11,365.9	-507.5	441.2	-514.0	0.00	0.00	0.00
11,500.0	0.00	0.00	11,465.9	-507.5	441.2	-514.0	0.00	0.00	0.00
11,600.0	0.00	0.00	11,565.9	-507.5	441.2	-514.0	0.00	0.00	0.00
11,700.0	0.00	0.00	11,665.9	-507.5	441.2	-514.0	0.00	0.00	0.00
		0.00		-507.5	441.2			0.00	0.00
11,800.0	0.00		11,765.9	-507.5		-514.0	0.00		
11,900.0	0.00	0.00	11,865.9		441.2	-514.0	0.00	0.00	0.00
11,934.1	0.00	0.00	11,900.0	-507.5	441.2	-514.0	0.00	0.00	0.00
Nan121 KC									
12,000.0	7.86	301.49	11,965.6	-505.2	437.3	-511.6	11.94	11.94	0.00
12,100.0	19.81	301.49	12,062.6	-492.7	417.0	-498.8	11.94	11.94	0.00
12,200.0	31.75	301.49	12,152.5	-470.0	380.0	-475.6	11. 94	11.94	0.00
12,300.0	43.69	301.49	12,231.4	-438.1	327,9	-442.9	11.94	11.94	0.00
12,400.0		301.49	12,296.0	-398.4	263.0	-402.2	11.94	11,94	0.00
12,500.0		301.49	12,343.5	-352.6	188.1	-355.3	11.94	11.94	0.00
12,515.2		301.49	12,349.1	-345.1	176.1	-347.7	11.94	11.94	0.00
12,600.0		311.89	12,377.3	-297.4	112.1	-299.0	11.94	2.93	12.27
12,700.0	75.49	323.75	12,405.4	-226.4	47.8	-227.1	11. 94	3.62	11.86
12,800.0	79.68	335.21	12,427.0	-142.4	-1.6	-142.3	11.94	4.19	11.45
12,829.4	81.00	338.50	12,431.9	-115.8	-13.0	-115.6	11.94	4.47	11.23
Nan121 FT	P								
12,900.0	84.27	346.35	12,441.0	-49.0	-34.1	-48.5	11.94	4.63	11.10
12 000 0	89.06	357.31	12,446.8	49.6	-48.2	50.3	11.94	4.79	10.96
13,000.0	90.00	359.43	12,440.0	49.0 69.0	-48.8	69.7	11.94	4.84	10.92
13,019.4		339.43	12,9977.0	05.0		05.7	11.54	4.04	10.52
Nan121 FT		250 42	10 447 0	140.6	40.0	150.0	0.00	0.00	0.00
13,100.0	90.00	359.43	12,447.0	149.6	-49.6	150.3	0.00	0.00	0.00
13,200.0	90.00	359.43	12,447.0	249.6	-50.6	250.3	0.00	0.00	0.00
13,300.0	90.00	359.43	12,447.0	349.6	-51.6	350.3	0.00	0.00	0.00
13,400.0	90.00	359.43	12,447.0	449.6	-52.6	450.3	0.00	0.00	0.00
13,500.0	90.00	359.43	12,447.0	549.6	-53.6	550.3	0.00	0.00	0.00
13,600.0	90.00	359.43	12,447.0	649.6	-54.6	650.3	0.00	0.00	0.00
13,700.0		359.43	12,447.0	749.5	-55.6	750.3	0.00	0.00	0.00
13,800.0		359.43	12,447.0	849.5	-56.6	850.3	0.00	0.00	0.00
13,900.0		359.43	12,447.0	949.5	-57.6	950.3	0.00	0.00	0.00
14,000.0		359.43	12,447.0	1,049.5	-58.6	1,050.3	0.00	0.00	0.00
14,100.0		359.43	12,447.0	1,149.5	-59.6	1,150.3	0.00	0.00	0.00
14,200.0		359.43	12,447.0	1,249.5	-60.6	1,250.3	0.00	0.00	0.00
14,300.0	90.00	359.43	12,447.0	1,349.5	-61.6	1,350.3	0.00	0.00	0.00
14,400.0	90.00	359.43	12,447.0	1,449.5	-62.6	1,450.3	0.00	0.00	0.00
14,500.0		359.43	12,447.0	1,549.5	-63.6	1,550.3	0.00	0.00	0.00

3/4/2019 2:38:53PM

Planning Report

,			
Database:	EDM5000	Local Co-ordinate Reference:	Well Nandina 121H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3050.0usft
Project:	NAN/GB	MD Reference:	KB @ 3050.0usft
Site:	NAN/GB #1N	North Reference:	Grid
Well:	Nandina 121H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

AMEREDEV

.

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
14,600.0	90.00	359.43	12,447.0	1,649.5	-64.6	1,650.3	0.00	0.00	0.00
14,700.0	90.00	359.43	12,447.0	1,749.5	-65.6	1,750.3	0.00	0.00	0.00
14,800.0	90.00	359.43	12,447.0	1,849.5	-66.6	1,850.3	0.00	0.00	0.00
14,900.0	90.00	359.43	12,447.0	1,949.5	-67.6	1,950.3	0.00	0.00	0.00
15,000.0	90.00	359.43	12,447.0	2,049.5	-68.6	2,050.3	0.00	0.00	0.00
15,100.0	90.00	359.43	12,447.0	2,149.5	-69.6	2,150.3	0.00	0.00	0.00
15,200.0	90.00	359.43	12,447.0	2,249.5	-70.6	2,250.3	0.00	0.00	0.00
15,300.0	90.00	359.43	12,447.0	2,349.5	-71.6	2,350.3	0.00	0.00	0.00
15,400.0	90.00	359.43	12,447.0	2,449.5	-72.6	2,450.3	0.00	0.00	0.00
15,500.0	90.00	359.43	12,447.0	2,549.5	-73.7	2,550.3	0.00	0.00	0.00
15,600.0	90.00	359.43	12,447.0	2,649.5	-74.7	2,650.3	0.00	0.00	0.00
15,700.0	90.00	359.43	12,447.0	2,749.4	-75.7	2,750.3	0.00	0.00	0.00
15,800.0	90.00	359.43	12,447.0	2,849.4	-76.7	2,850.3	0.00	0.00	0.00
15,900.0	90.00	359.43	12,447.0	2,949.4	-77.7	2,950.3	0.00	0.00	0.00
16,000.0	90.00	359.43	12,447.0	3,049.4	-78,7	3,050.3	0.00	0,00	0.00
16,100.0	90.00	359,43	12,447.0	3,149.4	-79.7	3,150.3	0.00	0.00	0.00
16,200.0	90.00	359.43	12,447.0	3,249.4	-80.7	3,250.3	0.00	0.00	0.00
16,300.0	90.00	359.43	12,447.0	3,349.4	-81.7	3,350.3	0.00	0.00	0.00
16,400.0	90.00	359.43	12,447.0	3,449.4	-82.7	3,450.3	0.00	0.00	0.00
16,500.0	90.00	359.43	12,447.0	3,549.4	-83.7	3,550.3	0.00	0.00	0.00
16,600.0	90.00	359.43	12,447.0	3,649.4	-84.7	3,650.3	0.00	0.00	0.00
16,700.0	90.00	359.43	12,447.0	3,749.4	-85.7	3,750.3	0.00	0.00	0.00
16,800.0	90.00	359.43	12,447.0	3,849.4	-86.7	3,850.3	0.00	0.00	0.00
16,900.0	90.00	359.43	12,447.0	3,949.4	-87.7	3,950.2	0.00	0.00	0.00
17,000.0	90.00	359.43	12,447.0	4,049.4	-88.7	4,050.2	0.00	0.00	0.00
17,100.0	90.00	359.43	12,447.0	4,149.4	-89,7	4,150.2	0.00	0.00	0.00
17,200.0	90.00	359.43	12,447.0	4,249.4	-90.7	4,250.2	0.00	0.00	0.00
17,300.0	90.00	359.43	12,447.0	4,349.4	-91.7	4,350.2	0.00	0.00	0.00
17,400.0	90.00	359.43	12,447.0	4,449.4	-92.7	4,450.2	0.00	0.00	0.00
17,500.0	90.00	359.43	12,447.0	4,549.4	-93.7	4,550.2	0.00	0.00	0.00
17,600.0	90.00	359.43	12,447.0	4,649.4	-94.7	4,650.2	0.00	0.00	0.00
17,700.0	90.00	359.43	12,447.0	4,749.3	-95.7	4,750.2	0.00	0.00	0.00
17,800.0	90.00	359.43	12,447.0	4,849.3	-96.7	4,850.2	0.00	0.00	0.00
17,900.0	90.00	359.43	12,447.0	4,949.3	-97.7	4,950.2	0.00	0.00	0.00
18,000.0	90.00	359.43	12,447.0	5,049.3	-98.7	5,050.2	0.00	0.00	0.00
-	NMNM127450		,	-,		-,	0.00		0.00
18,100.0	90.00	359.43	12,447.0	5,149.3	-99.7	5,150.2	0.00	0.00	0.00
18,200.0	90.00	359.43	12,447.0	5,249.3	-100.7	5,250.2	0.00	0.00	0.00
18,300.0	90.00	359.43	12,447.0	5,349.3	-101.7	5,350.2	0.00	0.00	0.00
18,400.0	90.00	359.43	12,447.0	5,449.3	-102.7	5,450.2	0.00	0.00	0.00
18,500.0	90.00	359.43	12,447.0	5,549.3	-103.7	5,550.2	0.00	0.00	0.00
18,600.0	90.00	359.43	12,447.0	5,649.3	-104.7	5,650.2	0.00	0.00	0.00
18,700.0	90.00	359.43	12,447.0	5,749.3	-105.7	5,750.2	0.00	0.00	0.00
18,800.0	90.00	359.43	12,447.0	5,849.3	-106.7	5,850.2	0.00	0.00	0.00
18,900.0	90.00	359.43	12,447.0	5,949.3	-107.7	5,950.2	0.00	0.00	0.00
19,000.0	90.00	359.43	12,447.0	6,049.3	-108.8	6,050.2	0.00	0.00	0.00
19,100.0	90.00	359.43	12,447.0	6,149.3	-109.8	6,150.2	0.00	0.00	0.00
19,200.0	90.00	359.43	12,447.0	6,249.3	-110,8	6,250.2	0.00	0.00	0.00
19,300.0	90.00	359.43	12,447.0	6,349.3	-111.8	6,350.2	0.00	0.00	0.00
19,400.0	90.00	359.43	12,447.0	6,449.3	-112.8	6,450.2	0.00	0.00	0.00
19,500.0	90.00	359.43	12,447.0	6,549.3	-113.8	6,550.2	0.00	0.00	0.00
19,600.0	90.00	359.43	12,447.0	6,649.3	-114,8	6,650,2	0.00	0.00	0.00
19,700.0	90.00	359.43	12,447.0	6,749.2	-115.8	6,750.2	0.00	0.00	0.00
19,800.0	90.00	359.43	12,447.0	6,849.2	-116.8	6,850.2	0.00	0.00	0.00

3/4/2019 2:38:53PM

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Nandina 121H	
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3050.0usft	1
Project:	NAN/GB	MD Reference:	KB @ 3050.0usft	
Site:	NAN/GB #1N	North Reference:	Grid	
Well:	Nandina 121H	Survey Calculation Method:	Minimum Curvature	
Wellbore:	Wellbore #1			
Design:	Design #1			,

Planned Survey

AMEREDEV

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
*		·····	· · · ·						
19,900.0	90.00	359.43	12,447.0	6,949.2	-117.8	6,950.2	0.00	0.00	0.00
20,000.0	90.00	359.43	12,447.0	7,049.2	-118.8	7,050.2	0.00	0.00	0.00
20,100.0	90.00	359.43	12,447.0	7,149.2	-119.8	7,150.2	0.00	0.00	0.00
20,200.0	90.00	359.43	12,447.0	7,249.2	-120.8	7,250.2	0.00	0.00	0.00
20,300.0	90.00	359.43	12,447.0	7,349.2	-121.8	7,350.2	0.00	0.00	0.00
20,400.0	90.00	359.43	12,447.0	7,449.2	-122.8	7,450.2	0.00	. 0.00	0.00
20,500.0	90.00	359.43	12,447.0	7,549.2	-123.8	7,550.2	0.00	0.00	0.00
20,600.0	90.00	359.43	12,447.0	7,649.2	-124.8	7,650.2	0.00	0.00	0.00
20,700.0	90.00	359.43	12,447.0	7,749.2	-125.8	7,750.2	0.00	0.00	0.00
20,800.0	90.00	359.43	12,447.0	7,849.2	-126.8	7,850.2	0.00	0.00	0.00
20,900.0	90.00	359.43	12,447.0	7,949.2	-127.8	7,950.2	0.00	0.00	0.00
21,000.0	90.00	359,43	12,447.0	8,049.2	-128.8	8,050.2	0.00	0.00	0.00
21,100.0	90.00	359.43	12,447.0	8,149.2	-129.8	8,150.2	0.00	0.00	0.00
21,200.0	90.00	359.43	12,447.0	8,249.2	-130.8	8,250.2	0.00	0.00	0.00
21,300.0	90.00	359.43	12,447.0	8,349.2	-131.8	8,350.2	0.00	0.00	0.00
21,400.0	90.00	359.43	12,447.0	8,449.2	-132.8	8,450.2	0.00	0.00	0.00
21,500.0	90.00	359.43	12,447.0	8,549.2	-133.8	8,550.2	0.00	0.00	0.00
21,600.0	90.00	359.43	12,447.0	8,649.2	-134.8	8,650.2	0.00	0.00	0.00
21,700.0	90.00	359.43	12,447.0	8,749.1	-135.8	8,750.2	0.00	0.00	0.00
21,800.0	90.00	359.43	12,447.0	8,849.1	-136.8	8,850.2	0.00	0.00	0.00
21,900.0	90.00	359.43	12,447.0	8,949.1	-137.8	8,950.2	0.00	0.00	0.00
22,000.0	90.00	359.43	12,447.0	9,049.1	-138.8	9,050.2	0.00	0.00	0.00
22,100.0	90.00	359.43	12,447.0	9,149.1	-139.8	9,150.2	0.00	0.00	0.00
22,200.0	90.00	359.43	12,447.0	9,249.1	-140.8	9,250.2	0.00	0.00	0.00
22,300.0	90.00	359.43	12,447.0	9,349.1	-141.8	9,350.2	0.00	0.00	0.00
22,400.0	90.00	359,43	12,447.0	9,449,1	-142.8	9.450.2	0.00	0.00	0.00
22,500.0	90.00	359.43	12,447.0	9,549.1	-143.8	9,550.2	0.00	0.00	0.00
22,600.0	90.00	359.43	12,447.0	9,649.1	-144,9	9.650.2	0.00	0.00	0.00
22,700.0	90.00	359.43	12,447.0	9,749.1	-145.9	9,750.2	0.00	0.00	0.00
22,800.0	90.00	359.43	12,447.0	9,849.1	-146.9	9,850.2	0.00	0.00	0.00
22,900.0	90.00	359.43	12,447.0	9,949.1	-147.9	9,950.2	0.00	0.00	0.00
23,000.0	90.00	359.43	12,447.0	10,049.1	-148.9	10,050.2	0.00	0.00	0.00
23,100.0	90.00	359.43	12,447.0	10,149.1	-149.9	10,150.2	0.00	0.00	0.00
23,184.5	90.00	359.43	12,447.0	10,233.6	-150.7	10,234.7	0.00	0.00	0.00
Nan121 LTP									
23,200.0	90.00	359.43	12,447.0	10,249.1	-150.9	10,250.2	0.00	0.00	0.00
23,234.6	90.00	359.43	12,447.0	10,283.6	-151.2	10,284.7	0.00	0.00	0.00
Nan121 BHL									

3/4/2019 2:38:53PM

АЛ	// 5	21	7 D .	/ 3	
a 1 L	[]7				

Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:	EDM5000 Ameredev Operating, LLC. NAN/GB NAN/GB #1N Nandina 121H Weilbore #1 Design #1				Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:		Well Nandina 121H KB @ 3050.0usft KB @ 3050.0usft Grid Minimum Curvature		
Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dlp Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Nan121 KOP - plan hits target ce - Point	0.00 nter	0.00	11,900.0	-507.5	441.2	393,907.71	858,317.56	32° 4' 43.675 N	103° 18' 35.731 W
Nan121 BHL - plan hits target ce - Point	0.00 nter	0.00	12,447.0	10,283.6	-151.2	404,698.88	857,725.15	32° 6' 30.506 N	103° 18' 41.427 W
Nan121 LTP - plan hits target ce - Point	0.00 nter	0.00	12,447.0	10,233.6	-150.7	404,648.85	857,725.62	32° 6' 30.011 N	103° 18' 41.427 W
Nan121 FTP2 - plan hits target ce - Point	0.00 nter	0.00	12,447.0	69.0	-48.8	394,484.24	857,827.59	32° 4' 49.426 N	103° 18' 41.362 W
Nan121 FTP - plan misses targe - Point	0.00 t center by 41.		12,447.0 9.4usft MD (-130.5 12431.9 TVD,	-48.8 -115.8 N, -13.	394,284.77 0 E)	857,827.59	32° 4' 47.452 N	103° 18' 41.384 W

Plan Annotations

	Measured Depth (usft)	Vertical	Local Coordinates			
		Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment	
	5,078.0 18.000.0	5,062.2 12,447.0	-231.0 5.049.3	200.8 -98.7	Nan121 into NMNM18644 Nan121 into NMNM127450	

3/4/2019 2:38:53PM

AMEREDEV

Ameredev Operating, LLC.

NAN/GB NAN/GB #1N Nandina 121H Wellbore #1

Plan: Design #1

Lease Penetration Section Line Foot

04 March, 2019

AMEREDEV

Ameredev Operating, LLC

Lease Penetration Section Line Footages

Project:	Ameredev Operat NAN/GB NAN/GB #1N	ting, LLC			TVD F	Co-ordinate Re leference: eference:	eference:	Well Nandina 1 KB @ 3050.0u KB @ 3050.0u	sft	
Well: I	Nandina 121H				North	Reference:		Grid		
	Wellbore #1				Surve	y Calculation N	lethod:	Minimum Curva	ature	
Design: I	Design #1				Datab	ase:		EDM5000		
Project	NAN/GB									
Map System:	US State Plan				Syst	em Datum:		Mean Sea Lev	vel	
Geo Datum:	North America									
Map Zone:	New Mexico E	astem Z	one				<u> </u>			
Site	NAN/GB #11	١								
Site Position:			N	orthing:		394,414.25 _L		ide:		32° 4' 48.738 N
From:	Lat/Long			asting:		857,776.361		ltude:		103° 18' 41.965 W
Position Uncertain	ty:	0.0 u	isft S	lot Radius:		13-3/16*	' Grid	Convergence:		0.54 °
Well	Nandina 121	н		-						
Well Position	+N/-S	().0 usft	Northing:		394,4	415.25 usft	Latitude:		32° 4' 48.739 N
	+E/-W	C).0 usft	Easting:		857,8	376.36 usft	Longitude:		103° 18' 40.803 W
Position Uncertain	ty	C).0 usft	Wellhead E	levation:		usft	Ground Level:		3,023.0 usft
Wellbore	Wellbore #1									
Magnetics	Model N	lame	5	ample Date		Declination (°)		Dip Angle (°)	Field St (n1	-
	ic	GRF2015		3/4/201	9	6	.63	59.9	95 47,70	6.61415520
Design	Design #1									
Audit Notes:										
Version:			1	Phase:	PROTO	TYPE	Tie On D	epth:	0.0	
Vertical Section:			Depth Fro	m (TVD)	+	N/-S	+E/-W		Direction	
			(ust	t)	(usft)	(usft)		(°)	
			0.0)		0.0	0.0		359.16	
Survey Tool Progr	am	Date	3/4/2019)			,			
From	То	_								
(usft)	(usft)		(Wellbore			Tool Name	•	Description		
0.	.0 23,234.6	5 Design	#1 (Wellb	ore #1)		MWD		OWSG MWD	- Standard	·····
Planned Survey										
MD	Inc		Azi (azin	wth)	TVD	+FSL/-I		+FWL/-FEL	Latitude	Longitude
(usft)	(°)	0.00	(°)	0.00	(usft)	(usfi		(usft)	200 41 40 700 11	103° 18' 40.803 W
100	0.0	0.00 0.00		0.00 0.00	10	0.0 D 0	231.0 231.0	430.0 430.0	32° 4' 48.739 N 32° 4' 48.739 N	103° 18' 40.803 W
100		0.00		0.00	20		231.0	430.0	32° 4' 48.739 N	103° 18' 40.803 W
200		0.00		0.00	30		231.0	430.0	32° 4' 48.739 N	103° 18' 40.803 W
200 300	0.0	0.00		0.00	40		231.0	430.0	32° 4' 48.739 N	103° 18' 40.803 W
200 300 400		0.00						430.0	32° 4' 48.739 N	103° 18' 40.803 W
300 400	0.0			0.00	50	0.0	231.0			
300 400 500).0).0	0.00		0.00 0.00	50 60		231.0 231.0	430.0		103° 18' 40.803 W
300 400 500 600).0).0).0	0.00 0.00		0.00	60	0.0	231.0	430.0	32° 4' 48.739 N	103° 18' 40.803 W
300 400 500 600 700	9.0 9.0 9.0	0.00 0.00 0.00		0.00 0.00	60 70	0.0 0.0	231.0 231.0	430.0 430.0	32° 4' 48.739 N 32° 4' 48.739 N	103° 18' 40.803 W 103° 18' 40.803 W
300 400 500 600 700 800	9.0 9.0 9.0 9.0	0.00 0.00 0.00 0.00		0.00 0.00 0.00	60 70 80	0.0 0.0 0.0	231.0 231.0 231.0	430.0 430.0 430.0	32° 4' 48.739 N 32° 4' 48.739 N 32° 4' 48.739 N	103° 18' 40.803 W 103° 18' 40.803 W 103° 18' 40.803 W
300 400 500 600 700 800 900	0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00	604 704 804 904	0.0 0.0 0.0 0.0	231.0 231.0 231.0 231.0	430.0 430.0 430.0 430.0	32° 4' 48.739 N 32° 4' 48.739 N 32° 4' 48.739 N 32° 4' 48.739 N	103° 18' 40.803 W 103° 18' 40.803 W 103° 18' 40.803 W 103° 18' 40.803 W
300 400 500 600 700 800	0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00		0.00 0.00 0.00	60 70 80	0.0 0.0 0.0 0.0	231.0 231.0 231.0	430.0 430.0 430.0	32° 4' 48.739 N 32° 4' 48.739 N 32° 4' 48.739 N	103° 18' 40.803 W 103° 18' 40.803 W 103° 18' 40.803 W

3/4/2019 2:39:09PM

Lease Penetration Section Line Footages

Company: Ameredev Operating, L Project: NAN/GB Site: NAN/GB #1N Well: Nandina 121H Wellbore: Wellbore #1 Design: Design #1		1N 21H	2.	Local Co-ordinate Ri TVD Reference: MD Reference: North Reference: Survey Calculation M Database:		KB @ 3050.0usft KB @ 3050.0usft Grid		
Planned Surv MD	rey		Azi (azimuth)	TVD	+FSL/-FNL	+FWL/-FEL	Latitude	Longitude
(usft)		(°)	(°)	(usft)	(usft)	(usft)	Latitude	Longitude
	1,200.0	0.00	0.00	1,200.0	231.0	430.0	32° 4' 48.739 N	103° 18' 40.803 V
	1,300.0	0.00	0.00	1,300.0	231.0	430.0	32° 4' 48.739 N	103° 18' 40.803 V
	1,400.0	0.00	. 0.00	1,400.0	231.0	430.0	32° 4' 48,739 N	103° 18' 40.803 V
	1,500.0	0.00	0.00	1,500.0	231.0	430.0	32° 4' 48.739 N	103° 18' 40.803 V
	1,600.0	0.00	0.00	1,600.0	231.0	430.0	32° 4' 48,739 N	103° 18' 40.803 V
	1,700.0	0.00	0.00	1,700.0	231.0	430.0	32° 4' 48.739 N	103° 18' 40.803 V
	1,800.0	0.00	0.00	1,800.0	231.0	430.0	32° 4' 48.739 N	103° 18' 40.803 V
	1,900.0	0.00	0.00	1,900.0	231.0	430.0	32° 4' 48.739 N	103° 18' 40.803 V
	2,000.0	0.00	0.00	2,000.0	231.0	430.0	32° 4' 48.739 N	103° 18' 40.803 V
	2,100.0	2.00	139.00	2,100.0	229.7	431.1	32° 4' 48.725 N	103° 18' 40.789 V
	2,200.0	4.00	139.00	2,199.8	225.7	434.6	32° 4' 48.686 N	103° 18' 40.750 V
	2,300.0	6.00	139.00	2,299.5	219.2	440.3	32° 4' 48.620 N	103° 18' 40.684 V
	2,400.0	6.00	139.00	2,398.9	211.3	447.2	32° 4' 48.542 N	103° 18' 40.605 V
	2,500.0	6.00	139.00	2,498.4	203,4	454.0	32° 4' 48.463 N	103° 18' 40.527 \
	2,600.0	6.00	139.00	2,597.8	195.5	460.9	32° 4' 48.384 N	103° 18' 40.448 \
	2,700.0	6.00	139.00	2,697.3	187.6	467.7	32° 4' 48.306 N	103° 18' 40,369 \
	2,800.0	6.00	139.00	2,796.7	179.7	474.6	32° 4' 48.227 N	103° 18' 40.290 \
	2,900.0	6.00	139.00	2,896.2	171.8	481.4	32° 4' 48.148 N	103° 18' 40.211 \
	3,000.0	6.00	139.00	2,995.6	163.9	488.3	32° 4' 48.069 N	103° 18' 40.132 V
	3,100.0	6.00	139.00	3,095.1	156.0	495.2	32° 4' 47.991 N	103° 18' 40.054 V
	3,200.0	6.00	139.00	3,194.5	148.2	502.0	32° 4' 47.912 N	103" 18' 39.975 \
	3,300.0	6.00	139.00	3,294.0	140.3	508.9	32° 4' 47.833 N	103° 18' 39.896 \
	3,400.0	6.00	139.00	3,393.4	132.4	515.7	32° 4' 47.755 N	103° 18' 39.817 \
	3,500.0	6.00	139.00	3,492.9	124.5	522.6	32° 4' 47.676 N	103° 18' 39.738 V
	3,600.0	6.00	139.00	3,592.3	116.6	529.4	32° 4' 47.597 N	103° 18' 39.659 V
	3,700.0	6.00	139.00	3,691.8	108.7	536.3	32° 4' 47.519 N	103° 18' 39.581 V
	3,800.0	6.00	139.00	3,791.2	100.8	543.2	32° 4' 47.440 N	103° 18' 39.502 \
	3,900.0	6.00	139.00	3,890.7	92.9	550.0	32° 4' 47.361 N	103° 18' 39.423 V
	4,000.0	6.00	139.00	3,990.1	85.0	556.9	32° 4' 47.282 N	103° 18' 39.344 V
	4,100.0	6.00	139.00	4,089.6	77.2	563.7	32° 4' 47.204 N	103° 18' 39.265 \
	4,200.0	6.00	139.00	4,189.0	69.3	570.6	32° 4' 47.125 N	103° 18' 39.186 V
	4,300.0	6.00	139.00	4,288.5	61.4	577.4	32° 4' 47.046 N	103° 18' 39.108 \
	4,400.0	6.00	139.00	4,387.9	53.5	584.3	32° 4' 46.968 N	103° 18' 39.029 V
	4,500.0	6.00	139.00	4,487.4	45.6	591.2	32° 4' 46.889 N	103° 18' 38,950 \
	4,600.0	6.00	139.00	4,586.9	37.7	598.0	32° 4' 46.810 N	103° 18' 38.871 \
	4,700.0	6.00	139.00	4,686.3	· 29.8	604.9	32° 4' 46.732 N	103° 18' 38.792 V
	4,800.0	6.00	139.00	4,785.8	21.9	611.7	32° 4' 46.653 N	103° 18' 38.714 \
	4,900.0	6.00	139.00	4,885.2	14.0	618.6	32° 4' 46.574 N	103° 18' 38.635 \
	5,000.0	6.00	139.00	4,984.7	6.2	625.5	32° 4' 46.495 N	103° 18' 38.556 \
	5,078.0	6.00	139.00	5,062.2	0.0	630.8	32° 4' 46,434 N	103° 18' 38.494
Nan1	21 into NMNM1			•				
	5,100.0	6.00	139.00	5,084.1	-1.7	632,3	32° 4' 46,417 N	103° 18' 38.477 \
	5,200.0	6.00	139.00	5,183.6	-9.6	639.2	32° 4' 46.338 N	103° 18' 38.398 \
	5,300.0	6.00	139.00	5,283.0	-17.5	646.0	32° 4' 46.259 N	103° 18' 38.319 \

3/4/2019 2:39:09PM

Lease Penetration Section Line Footages

Company: Project: Site: Weil: Weilbore: Design:	oject: NAN/GB te: NAN/GB #1N eil: Nandina 121H eilbore: Wellbore #1		TVD Refere MD Refere North Refe	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Database:		Well Nandina 121H KB @ 3050.0usft KB @ 3050.0usft Grid Minimum Curvature EDM5000		
Planned Sur MD (usft		Inc	Azi (azimuth)	TVD	+FSL/-FNL	+FWL/-FEL	Latitude	Longitude
(ບຣກ	5,400.0	(°) 6.00	(°)	(usft) 5,382.5	(usft) -25.4	(usft) 652.9	32° 4' 46.181 N	103° 18' 38.241 V
	5,500.0	6.00		5,382.5 5,481.9	-25.4 -33.3	659.7	32° 4' 46.181 N 32° 4' 46.102 N	103 18 38.241 V
	5,600.0	6.00		5,581.4	-55.5	666.6	32° 4' 46.023 N	103° 18' 38.083 V
	5,700.0	6.00		5,680.8	-49,1	673.5	32° 4' 45.945 N	103° 18' 38.003 V
	5,800.0	6.00		5,780.3	-57.0	600 Q	32° 4' 45.866 N	103 18 38.004 V
				5,760.5	-57.0		32 4 45.000 N	103 16 37.925 4
	5,900.0	6.00		5,879.7	-64.8	687.2	32° 4' 45.787 N	103° 18' 37.846 V
	6,000.0	6.00		5,979.2	-72.7	694.0	32° 4' 45.708 N	103° 18' 37.768 V
	6,100.0	6.00		6,078.6	-80.6	700.9	32° 4' 45.630 N	103° 18' 37.689 V
	6,200.0	6.00		6,178.1	-88.5	707.7	32° 4' 45.551 N	103° 18' 37.610 V
	6,300.0	6.00	139.00	6,277.5	-96.4	714.6	32° 4' 45.472 N	103° 18' 37.531 V
	6,400.0	6.00	139.00	6,377.0	-104.3	721.5	32° 4' 45.394 N	103° 18' 37.452 V
	6,500.0	6.00		6,476.4	-112.2	728.3	32° 4' 45.315 N	103° 18' 37.373 V
	6,600.0	6.00		6,575.9	-120.1	735.2	32° 4' 45.236 N	103° 18' 37,295 V
	6,700.0	6.00		6,675,3	-128.0	742.0	32° 4' 45.158 N	103° 18' 37.216 V
	6,724.8	6.00		6,700.0	-129.9	743.7	32° 4' 45.138 N	103° 18' 37.196 V
	6,800.0	4.50			-135.1			
				6,774.9		748.2	32° 4' 45.086 N	103° 18' 37.144 \
	6,900.0	2.50		6,874.7	-139.7	752.2	32° 4' 45.040 N	103° 18' 37.098 V
	7,000.0	0.50		6,974.7	-141.7	754.0	32° 4' 45.021 N	103° 18' 37.079 \
	7,024.8	0.00		6,999.5	-141.8	754.0	32° 4' 45.020 N	103° 18' 37.078 V
	7,100.0	0.00	0.00	7,074.7	-141.8	754.0	32° 4' 45.020 N	103° 18' 37.078 V
· .	7,200.0	0.00	0.00	7,174.7	-141.8	754.0	32° 4' 45.020 N	103° 18' 37.078 V
	7,300.0	0.00	0.00	7,274.7	-141.8	754.0	32° 4' 45.020 N	103° 18' 37.078 V
	7,400.0	0.00	0.00	7,374.7	-141.8	754.0	32° 4' 45.020 N	103° 18' 37.078 V
	7,500.0	0.00	0.00	7,474.7	-141,8	754.0	32° 4' 45.020 N	103° 18' 37.078 V
	7,600.0	0.00	0.00	7,574.7	-141.8	754.0	32° 4' 45.020 N	103° 18' 37.078 V
	7,700.0	0.00	0.00	7,674.7	-141.8	754.0	32° 4' 45.020 N	103° 18' 37.078 \
	7,800.0	0.00	0.00	7,774.7	-141.8	754.0	32° 4' 45.020 N	103° 18' 37.078 \
	7,900.0	0.00	0.00	7,874.7	-141.8	754.0	32° 4' 45.020 N	103* 18' 37.078 \
	8,000.0	0.00		7,974.7	-141.8	754.0	32° 4' 45.020 N	103° 18' 37.078 V
	8,100.0	0.00		8,074.7	-141.8	754.0	32° 4' 45.020 N	103° 18' 37.078 V
	8,200.0	0.00	0.00	8,174.7	-141.8	754.0	32° 4' 45.020 N	103° 18' 37.078 \
	8,200.0	0.00		8,174.7	-141.8	754.0		
	8,300.0	0.00		8,274.7 8,374.7	-141.8 -1 41. 8	754.0	32° 4' 45.020 N 32° 4' 45.020 N	103° 18' 37.078 \ 103° 18' 37.078 \
	8,400.0	0.00		8,474.7	-141.8	754.0	32° 4' 45.020 N 32° 4' 45.020 N	103° 18' 37.078 \
	8,525.3	0.00		8,500.0	-141.8	754.0	32° 4' 45.020 N 32° 4' 45.020 N	103° 18' 37.078 \
		· · ·						
	8,600.0 8,700.0	1.49		8,574.7 8,674.6	-142.5	754.7	32° 4' 45.013 N	103° 18' 37.071 \
	8,700.0 8,800.0	3.49		8,674.6	-145.8	757.5	32° 4' 44.980 N	103° 18' 37.038 \
	8,800.0	5.49		8,774.2	-151.7	762.7	32° 4' 44.921 N	103° 18' 36.979 \
	8,825.3	6.00		8,799.5	-153.6	764.3	32° 4' 44.902 N	103° 18' 36.960 \
	8,900.0	6.00		8,873.7	-159.5	769.4	32° 4' 44.843 N	103° 18' 36.901 V
	9,000.0	6.00		8,973.2	-167.4	776.3	32° 4' 44.764 N	103° 18' 36.822 \
	9,100.0	6.00		9,072.6	-175.3	783.2	32° 4' 44.686 N	103° 18' 36.743
	9,200.0	6.00	139.00	9,172.1	-183.2	790.0	32° 4' 44.607 N	103° 18' 36.664 \
	9,300.0	6.00	139.00	9,271.5	-191.0	796,9	32° 4' 44,528 N	103° 18' 36,585 1
	9,400.0	6.00	139.00	9,371.0	-198.9	803.7	32° 4' 44,449 N	103° 18' 36.507

3/4/2019 2:39:09PM

Page 4

Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design:	roject: NAN/GB ite: NAN/GB #1N /ell: Nandina 121H /ellbore: Wellbore #1		<u> </u>	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Database:			21H sft sft sture	
Planned Surv MD	ey	Inc	Azi (azimuth)	TVD	+FSL/-FNL	+FWL/-FEL	Latitude	Longitude
(usft)		(°)	(°)	(usft)	(usft)	(usft)		
	9,500.0	6.00	139.00	9,470.4	-206.8	810.6	32° 4' 44.371 N	103° 18' 36.428 V
	9,600.0	6.00	139.00	9,569.9	-214.7	817.4	32° 4' 44.292 N	103° 18' 36.349 V
	9,700.0	6.00	139.00	9,669.3	-222.6	824.3	32° 4' 44.213 N	103° 18' 36.270 V
	9,800.0	6.00	139.00	9,768.8	-230.5	831.2	32° 4' 44.135 N	103° 18' 36.191 V
ę	9,900.0	6.00	139.00	9,868.2	-238.4	838.0	32° 4' 44.056 N	103° 18' 36.112 V
10	0,000.0	6.00	139.00	9,967.7	-246.3	844.9	32° 4' 43.977 N	103° 18' 36.034 V
10	0,100.0	6.00	139.00	10,067.1	-254.2	851.7	32° 4' 43.898 N	103° 18' 35.955 V
10	0,200.0	6.00	139.00	10,166.6	-262.0	858.6	32° 4' 43.820 N	103° 18' 35.876 V
1(0,233.6	6.00	139.00	10,200.0	-264.7	860.9	32° 4' 43.793 N	103° 18' 35.849 V
1(0,300.0	4.67	139.00	10,266.1	-269.4	865.0	32° 4' 43.747 N	103° 18' 35.803 \
1(0,400.0	2.67	139.00	10,365.9	-274.2	869.2	32° 4' 43.699 N	103° 18' 35.755 \
	0,500.0	0.67	139.00	10,465.9	-276.4	871,1	32° 4' 43.677 N	103° 18' 35.733 \
	0,533.6	0.00	0.00	10,499,5	-276.5	871.2	32° 4' 43.675 N	103° 18' 35,731 \
	0,600.0	0.00	0.00	10,565.9	-276.5	871.2	32° 4' 43.675 N	103° 18' 35.731 \
	0,700.0	0.00	0.00	10,665.9	-276.5	871.2	32° 4' 43.675 N	103° 18' 35.731 \
	0,800.0	0.00	0.00	10,765.9	-276.5	871.2	32° 4' 43,675 N	103° 18' 35.731 '
	0,900.0	0.00	0.00	10,865.9	-276.5	871.2	32° 4' 43.675 N	103° 18' 35.731 V
	1,000.0	0.00	0.00	10,965.9	-276.5	871.2	32° 4' 43.675 N	103° 18' 35.731 1
	1,100.0	0.00	0.00	11,065.9	-276.5	871.2	32° 4' 43.675 N	103° 18' 35.731 1
1	1,200.0	0.00	0.00	11,165.9	-276.5	871.2	32° 4' 43.675 N	103° 18' 35.731 \
1	1,300.0	0.00	0.00	11,265.9	-276.5	871.2	32° 4' 43.675 N	103° 18' 35.731 V
1	1,400.0	0.00	0.00	11,365.9	-276.5	871.2	32° 4' 43,675 N	103° 18' 35.731 \
1	1,500.0	0.00	0.00	11,465.9	-276.5	871.2	32° 4' 43.675 N	103° 18' 35.731 \
1	1,600.0	0.00	0.00	11,565.9	-276.5	871.2	32° 4' 43.675 N	103° 18' 35,731 V
1	1,700.0	0.00	0.00	11,665.9	-276.5	871.2	32° 4' 43.675 N	103° 18' 35.731 V
1.	1,800.0	0.00	0.00	11,765.9	-276.5	871.2	32° 4' 43.675 N	103° 18' 35.731 V
	1,900.0	0.00	0.00	11,865.9	-276.5	871.2	32° 4' 43.675 N	103° 18' 35.731 \
	1,934.1	0.00	0.00	11,900.0	-276.5	871.2	32° 4' 43.675 N	103 18 35.731
	21 KOP	0.00	0.00	11,000.0	-210.0	0r 1.2	02 7 70.070 N	
	2,000.0	7.86	301.49	11,965.6	-274.2	867.3	32° 4' 43.699 N	103° 18' 35.776 V
	2,100.0	19.81	301.49	12,062.6	-261.7	847.0	32° 4' 43.824 N	103° 18' 36.011 \
	2,200.0	31.75	301.49	12,152.5	-239.0	810.0	32° 4' 44.052 N	103° 18' 36.438 \
	2,300.0	43.69	301.49	12,231.4	-207.1	757.9	32° 4' 44.372 N	103° 18' 37.040 \
	2,400.0	55.63	301.49	12,296.0	-167.4	693.0	32° 4' 44.772 N	103° 18' 37.790
	2,500.0	67.57	301.49	12,343.5	-121.6	618.1	32° 4' 45.232 N	103° 18' 38.655 1
12	2,515.2	69.39	301.49	12,349.1	-114.1	606.1	32° 4' 45.307 N	103° 18' 38.795 1
1:	2,600.0	71.88	311.89	12,377.3	-66.4	542.1	32° 4' 45.785 N	103° 18' 39.533 1
1:	2,700.0	75.49	323.75	12,405.4	4.6	477.8	32° 4' 46.494 N	103° 18' 40.272 1
1:	2,800.0	79.68	335.21	12,427.0	88.6	428.4	32° 4' 47.330 N	103° 18' 40.837 1
1:	2,829.4	81.00	338.50	12,431.9	115.2	417.0	32° 4' 47.594 N	103° 18' 40.966 '
Nan12	21 FTP							
1:	2,900.0	84.27	346.35	12,441.0	182.0	395.9	32° 4' 48.256 N	103° 18' 41.204 V
1:	3,000.0	89.06	357.31	12,446.8	280.6	381.8	32° 4' 49.234 N	103° 18' 41.358
	3,019.4	90.00	359.43	12,447.0	300.0	381.2	32° 4' 49.426 N	103° 18' 41.362
	21 FTP2							

3/4/2019 2:39:09PM

Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore: Design:	roject: NAN/GB te: NAN/GB #1N ell: Nandina 121H ellbore: Wellbore #1 esign: Design #1			TVD Refere MD Refere North Refe	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Database:		Well Nandina 121H KB @ 3050.0usft KB @ 3050.0usft Grid Minimum Curvature EDM5000		
Planned Surve	ey	Inc	Azi (azimuth)	TVD	+FSL/-FNL	+FWL/-FEL	Latitude	Longitude	
(usft)		(°)	(°)	(usft)	(usft)	(usft)			
	3,100.0	90.00	359.43	12,447.0	380.6	380.4	32° 4' 50.223 N	103° 18' 41.362	
	3,200.0	90.00	359.43	12,447.0	480.6	379.4	32° 4' 51.213 N	103° 18' 41.363 '	
13	3,300.0	90.00	359.43	12,447.0	580.6	378.4	32° 4' 52.202 N	103° 18' 41.364	
13	3,400.0	90.00	359.43	12,447.0	680.6	377.4	32° 4' 53.192 N	103° 18' 41.364	
13	3,500.0	90.00	359.43	12,447.0	780.6	376.4	32° 4' 54.181 N	103° 18' 41.365 '	
13	3,600.0	90.00	359.43	12,447.0	880.6	375.4	32° 4' 55.171 N	103° 18' 41.366 1	
13	3,700.0	90.00	359.43	12,447.0	980.5	374.4	32° 4' 56.160 N	103° 18' 41.366 '	
13	3,800.0	90.00	359.43	12,447.0	1,080.5	373.4	32° 4' 57.150 N	103° 18' 41.367 '	
13	3,900.0	90.00	359.43	12,447.0	1,180.5	372.4	32° 4' 58.139 N	103° 18' 41.368 '	
	4,000.0	90.00	359.43	12,447.0	1,280.5	371.4	32° 4' 59.129 N	103° 18' 41.368	
	4,100.0	90.00	359.43	12,447.0	1,380.5	370.4	32° 5' 0.118 N	103° 18' 41.369	
	4,200.0	90.00	359.43	12,447.0	1,480.5	369.4	32° 5' 1.108 N	103° 18' 41.369	
	4,300.0	90.00	359.43	12,447.0	1,580.5	368.4	32° 5' 2.097 N	103° 18' 41.370	
4	4,400.0	90.00	359.43	12,447.0	1 690 5	367,4	32° 5' 3.087 N	1039 401 44 371	
	4,400.0 4,500.0	90.00	359.43	12,447.0	1,680.5 1,780.5	366.4	32° 5' 4.076 N	103° 18' 41.371 ' 103° 18' 41.371 '	
	4,600.0 4,600.0	90.00	359.43	12,447.0	1,880.5	365,4	32° 5' 5.066 N	103 18 41.371 103° 18' 41.372	
	4,800.0	90.00	359.43	12,447.0	1,980.5	364.4	32° 5' 6.055 N	103° 18 41.372 103° 18' 41.373	
	4,800.0	90.00	359.43	12,447.0	2,080.5	363.4	32° 5' 7.045 N	103° 18' 41.373	
1.	+,000.0			12,447.0	2,000.5	505.4	32 3 7.043 N		
14	4,900.0	90.00	359.43	12,447.0	2,180.5	362.4	32° 5' 8.034 N	103° 18' 41.374	
	5,000.0	90.00	359.43	12,447.0	2,280.5	361.4	32° 5' 9.024 N	103° 18' 41.375	
	5,100.0	90.00	359.43	12,447.0	2,380.5	360.4	32° 5' 10.014 N	103° 18' 41.375	
	5,200.0	90.00	359,43	12,447.0	2,480.5	359.4	32° 5' 11.003 N	103° 18' 41.376	
1:	5,300.0	90.00	359.43	12,447.0	2,580.5	358.4	32° 5' 11.993 N	103° 18' 41.377	
18	5,400.0	90.00	359.43	12,447.0	2,680.5	357.4	32° 5' 12.982 N	103° 18' 41.377	
16	5,500.0	90.00	359.43	12,447.0	2,780.5	356.3	32° 5' 13.972 N	103° 18' 41.378	
15	5,600.0	90.00	359.43	12,447.0	2,880.5	355.3	32° 5' 14.961 N	103° 18' 41.378	
	5,700.0	90.00	359.43	12,447.0	2,980.4	354.3	32° 5' 15.951 N	103° 18' 41.379	
15	5,800.0	90.00	359.43	12,447.0	3,080.4	353.3	32° 5' 16.940 N	103° 18' 41.380	
41	5,900.0	90.00	359.43	12,447.0	3,180,4	352.3	32° 5' 17.930 N	103° 18' 41.380	
	5,900.0 6,000.0	90.00	359.43	12,447.0	3,180.4	352.3	32° 5' 18.919 N	103 18 41.380 103° 18' 41.381	
	6,100.0	90.00	359.43	12,447.0	3,280.4 3,380.4	350.3	32° 5' 19,909 N	103° 18' 41.381	
	6,200.0	90.00	359.43	12,447.0	3,380.4	349.3	32° 5' 20.898 N	103° 18' 41.382	
	5,200.0 5,300.0	90.00	359.43	12,447.0	3,580.4	348.3	32° 5' 21.888 N	103 18 41.382	
	5,400.0	90.00	359.43	12,447.0	3,680.4	347.3	32° 5' 22.877 N	103° 18' 41.384	
	6,500.0	90.00	359.43	12,447.0	3,780.4	346.3	32° 5' 23.867 N	103° 18' 41.384	
	6,600.0	90.00	359.43	12,447.0	3,880.4	345.3	32° 5' 24.856 N	103° 18' 41.385	
	6,700.0	90.00	359.43	12,447.0	3,980.4	344.3	32° 5' 25.846 N	103° 18' 41.386	
16	5,800.0	90.00	359.43	12,447.0	4,080.4	343.3	32° 5' 26.835 N	103° 18' 41.386	
1€	6,900.0	90.00	359.43	12,447.0	4,180.4	342.3	32° 5' 27.825 N	103° 18' 41.387	
17	7,000.0	90.00	359.43	12,447.0	4,280.4	341,3	32° 5' 28.814 N	103° 18' 41.387	
17	7,100.0	90.00	359.43	12,447.0	4,380.4	340.3	32° 5' 29.804 N	103° 18' 41.388	
17	7,200.0	90.00	359.43	12,447.0	4,480.4	339.3	32° 5' 30.793 N	103° 18' 41.389	
17	7,300.0	90.00	359.43	12,447.0	4,580.4	338.3	32° 5' 31.783 N	103° 18' 41.389	
	7,400.0	90.00	359.43	12,447.0	4,680.4	337.3	32° 5' 32.772 N	103° 18' 41.390	

3/4/2019 2:39:09PM

Lease Penetration Section Line Footages

Company: Project: Site: Nell: Nellbore: Design:	NAN/GB NAN/GB Nandina Wellbore Design #	#1N 121H #1	c .	TVD Refere MD Refere North Refe	nce:	Well Nandina 1 KB @ 3050.0us KB @ 3050.0us Grid Minimum Curva EDM5000		
Planned Surve	ЭУ	Inc	Azi (azimuth)	TVD	+FSL/-FNL	+FWL/-FEL	Latitude	Longitude
(usft)	,500.0	(°) 90.00	(°) 359.43	(usft) 12,447.0	(usft) 4,780,4	(usft) 336.3	32° 5' 33.762 N	103° 18' 41,391 \
	,500.0	90.00	359.43	12,447.0	4,780.4	335.3	32° 5' 34.751 N	103 18 41.391 \ 103° 18' 41.391 \
	,500.0	90.00	359.43	12,447.0	4,980.3	334.3	32° 5' 35,741 N	103 18 41.391
	,800.0	90.00	359,43	12,447.0	5,080.3	333.3	32° 5' 36,730 N	103° 18' 41.393 \
	-				-			
	,900.0	90.00	359.43	12,447.0	5,180.3	332.3	32° 5' 37.720 N	103° 18' 41.393 \
18	8,000.0	90.00	359.43	12,447.0	5,280.3	331.3	32° 5' 38.709 N	103° 18' 41.394 \
	1 Into NMNN							
	3,100.0	90.00	359.43	12,447.0	5,380.3	330.3	32° 5' 39.699 N	103° 18' 41.395 \
	3,200.0	90.00	359.43	12,447.0	5,480.3	329.3	32° 5' 40.688 N	103° 18' 41.395 \
18	3,300.0	90.00	359.43	12,447.0	5,580.3	328.3	32° 5' 41.678 N	103° 18' 41.396 \
18	3,400.0	90.00	359.43	12,447.0	5,680.3	327.3	32° 5' 42.667 N	103° 18' 41.396 \
18	3,500.0	90.00	359.43	12,447.0	5,780.3	326.3	32° 5' 43.657 N	103° 18' 41.397 V
18	600.0	90.00	359.43	12,447.0	5,880.3	325.3	32° 5' 44.646 N	103° 18' 41.398 \
18	3,700.0	90.00	359.43	12,447.0	5,980.3	324.3	32° 5' 45.636 N	103° 18' 41.398
18	8,800.0	90.00	359.43	12,447.0	6,080.3	323.3	32° 5' 46.626 N	103° 18' 41.399 \
18	900.0	90.00	359.43	12,447.0	6,180.3	322.3	32° 5' 47.615 N	103° 18' 41.400
19	0.000.0	90.00	359.43	12,447.0	6,280.3	321.2	32° 5' 48.605 N	103° 18' 41.400 '
19	,100.0	90.00	359.43	12,447.0	6,380.3	320.2	32° 5' 49.594 N	103° 18' 41.401 1
19	,200.0	90.00	359.43	12,447.0	6,480.3	319.2	32° 5' 50.584 N	103° 18' 41.402
19	,300.0	90.00	359.43	12,447.0	6,580.3	318.2	32° 5' 51.573 N	103° 18' 41.402 \
19	,400.0	90.00	359.43	12,447.0	6,680.3	317.2	32° 5' 52.563 N	103° 18' 41.403 V
19	,500.0	90.00	359.43	12,447.0	6,780.3	316.2	32° 5' 53.552 N	103° 18' 41.404 1
19	9,600.0	90.00	359.43	12,447.0	6,880.3	315.2	32° 5' 54.542 N	103° 18' 41.404 '
19	9,700.0	90.00	359.43	12,447.0	6,980.2	314.2	32° 5' 55.531 N	103° 18' 41.405 1
19	9,800.0	90.00	359.43	12,447.0	7,080.2	313.2	32° 5' 56.521 N	103° 18' 41.405 '
19	9,900.0	90.00	359.43	12,447.0	7,180.2	312.2	32° 5' 57.510 N	103° 18' 41.406
20	0,000.0	90.00	359.43	12,447.0	7,280.2	311.2	32° 5' 58.500 N	103° 18' 41.407
20),100.0	90.00	359.43	12,447.0	7,380.2	310.2	32° 5' 59.489 N	103° 18' 41.407
20),200.0	90.00	359.43	12,447.0	7,480.2	309.2	32° 6' 0.479 N	103° 18' 41.408
20	,300.0	90.00	359.43	12,447.0	7,580.2	308.2	32° 6' 1.468 N	103° 18' 41.409
20	,400.0	90.00	359.43	12,447.0	7,680.2	307.2	32° 6' 2.458 N	103° 18' 41.409
),500.0	90.00	359.43	12,447.0	7,780.2	306.2	32° 6' 3.447 N	103° 18' 41.410
),600.0	90.00	359.43	12,447.0	7,880,2	305.2	32° 6' 4,437 N	103° 18' 41,411
	0,700.0	90.00	359.43	12,447.0	7,980.2	304.2	32° 6' 5.426 N	103° 18' 41.411
	0,800.0	90.00	359.43	12,447.0	8,080.2	303.2	32° 6' 6.416 N	103° 18' 41.412
20),900.0	90.00	359.43	12,447.0	8,180.2	302.2	32° 6' 7.405 N	103° 18' 41.412
	1,000.0	90.00	359.43	12,447.0	8,280.2	301.2	32° 6' 8.395 N	103° 18' 41.413
	1,100.0	90.00	359.43	12,447.0	8,380.2	300.2	32° 6' 9.384 N	103° 18' 41.414 '
	,200.0	90.00	359.43	12,447.0	8,480.2	299.2	32° 6' 10.374 N	103° 18' 41.414
	,300.0	90.00	359.43	12,447.0	8,580.2	298.2	32° 6' 11.363 N	103° 18' 41.415
	,400.0	90.00	359.43	12,447.0	8,680.2	297.2	32° 6' 12.353 N	103° 18' 41.416
	1,400.0	90.00	359.43	12,447.0	8,780.2	296.2	32° 6' 13.342 N	103° 18' 41.416
	1,500.0 1,600.0	90.00	359.43	12,447.0	8,880.2	295.2	32° 6' 14.332 N	103° 18' 41.417
	1,800.0 1,700.0	90.00	359.43	12,447.0	8,980.2	295.2	32° 6' 15.321 N	103° 18' 41.418
21	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30.00	555.45	12,447.0	0,000.1	204.2	02 0 10.021 N	100 10 41.410

3/4/2019 2:39:09PM

Lease Penetration Section Line Footages

Project: N/ Site: N/ Veil: Na Veilbore: W	AN/GB TVD Reference: KB @ 305 AN/GB #1N MD Reference: KB @ 305 andina 121H North Reference: Grid Fellbore #1 Survey Calculation Method: Minimum		Well Nandina 1 KB @ 3050.0us KB @ 3050.0us Grid Minimum Curva EDM5000	ft			
Planned Survey MD (usft)	inc (°)	Azi (azimuth) {°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
21,900.0	90.00	359.43	12,447.0	9,180.1	292.2	32° 6' 17.300 N	103° 18' 41.419 V
22,000.0	90.00	359.43	12,447.0	9,280.1	291.2	32° 6' 18.290 N	103° 18' 41.419 V
22,100.0	90.00	359.43	12,447.0	9,380.1	290.2	32° 6' 19.279 N	103° 18' 41.420 V
22,200.0	90.00	359.43	12,447.0	9,480.1	289.2	32° 6' 20.269 N	103° 18' 41,421 \
22,300.0	90.00	359.43	12,447.0	9,580.1	288.2	32° 6' 21.258 N	103° 18' 41.421 V
22,400.0	90.00	359.43	12,447.0	9,680.1	287.2	32° 6' 22.248 N	103° 18' 41.422 V
22,500.0	90.00	359.43	12,447.0	9,780.1	286.2	32° 6' 23.237 N	103° 18' 41.423 V
22,600.0	90.00	359.43	12,447.0	9,880.1	285.1	32° 6' 24.227 N	103° 18' 41.423 \
22,700.0	90.00	359.43	12,447.0	9,980.1	284.1	32° 6' 25.216 N	103° 18' 41.424 \
22,800.0	90.00	359.43	12,447.0	10,080.1	283.1	32° 6' 26.206 N	103° 18' 41.425 \
22,900.0	90.00	359.43	12,447.0	10,180.1	282.1	32° 6' 27.196 N	103° 18' 41.425 \
23,000.0	90.00	359.43	12,447.0	10,280.1	281.1	32° 6' 28.185 N	103° 18' 41.426 \
23,100.0	90.00	359.43	12,447.0	10,380.1	280.1	32° 6' 29.175 N	103° 18' 41.427 \
23,184.5	90.00	359.43	12,447.0	10,464.6	279.3	32° 6' 30.011 N	103° 18' 41.427 V
Nan121 LTP 23,200.0	90.00	359.43	12,447.0	10,480.1	279.1	32° 6' 30.164 N	103° 18' 41.427 \
23,234.6	90.00	359.43	12,447.0	10,514.6	278.8	32° 6' 30.506 N	103° 18' 41.427 \
Nan121 BHL							

Plan Annota	tions		·		
	Measured	Vertical	Local Coon	dinates	
	Depth	Depth	+N/-S	+E/-W	
Ì	(usft)	(usft)	(usft)	(usft)	Comment
	5,078.0	5,062.2	-231.0	200.8	Nan121 into NMNM18644
	18,000.0	12,447.0	5,049.3	-98.7	Nan121 into NMNM127450

Checked By:

Approved By:

Date:

3/4/2019 2:39:09PM

Pressure Control Equipment

AMEREDE

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

• 13-5/8" 5M Annular

AMEREDEL

- 13-5/8" 10M Upper Pipe Rams
 - 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
0pen Hole	13-5/8	Drilling Fluid	Blind Rams	
	for system design.	Kill line with minimu	at will allow full Opera m 2" ID will be availab	

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

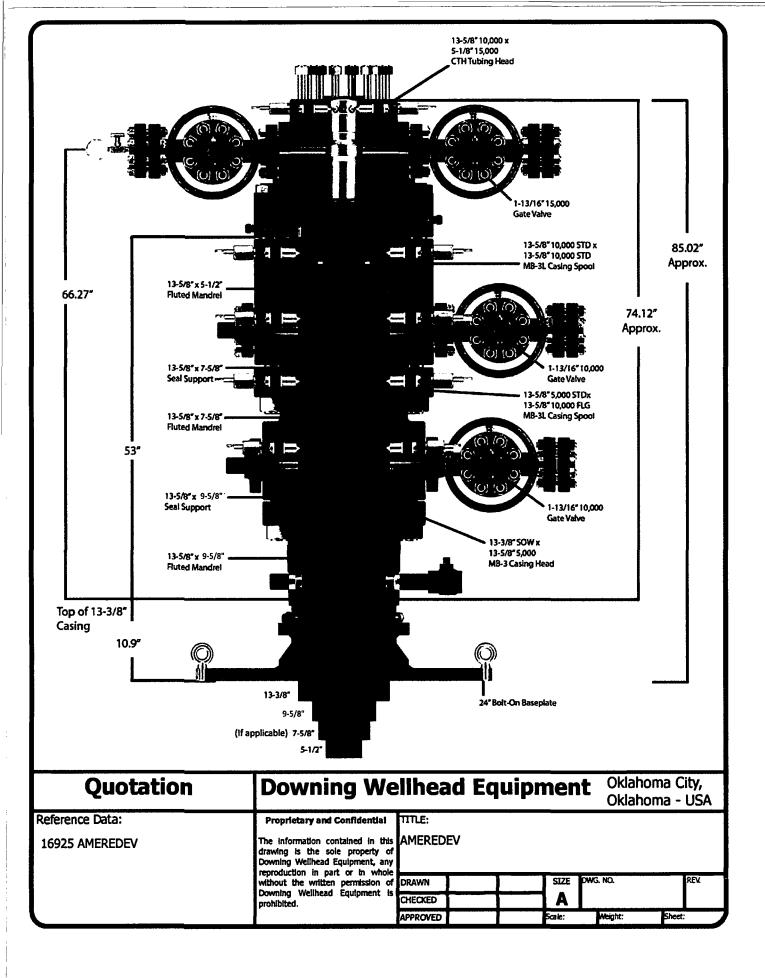
- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Ameredev Drilling Plan: 3 String with 4 String Contingency

- Contingency Plan If Losses Exceed 50% in Intermediate Interval
 - We will utilize a MB4 wellhead that will enable us to convert a 3 string design to a 4 string design. (Schematic Attached)
 - We will displace well with FW and drill or condition to run 9-5/8" Casing at the Lamar Limestone, we will utilize DV Tool w/ ACP @ the Tansill to Isolate Capitan Reef and cement to surface.
 - Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- 7.625 Casing will be Additional 4th String
 - o Drill remaining hole section to base of Wolfcamp A
 - o Run 7.625 29.7# HCL80 FJM Casing

AMEREDEV

Contingency Wellbore Schematic


Well:	Wellname	Co. Well ID:	XXXXXX
SHL:	SHL	AFE No.:	xxxx-xxx
BHL:	BHL	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	хххх
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Target Zone
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	xxxxx
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	XXXXX
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.co

Hole Size	Formation Tops	Logs	Cement	Mud Weight
17.5"	Rustler 13.375" 68# J-55 BTC Rustler + 125'			8.4-8.6 ppg WBM
12.25"	Salado DV Tool with ACP @ Tansill Tansill		· · ·	
	Capitan Reef Lamar 9.625" 40# L-80HC BTC Lamar + 50' Bell Canyon		·	Stine Emulsion
8.75"	Brushy Canyon Bone Spring Lime First Bone Spring			8.5-9.4 Diesel Brine Emulsion
	Second Bone Spring Third Bone Spring Upper Third Bone Spring 7.625" 29.7# L-80HC FJM @ Wolfcamp A			
6.75" 12° Build	Wolfcamp A Wolfcamp B 5.5" 20# P-110 USS RYS SF			10.5 - 12.5 ppg OBM
	Target TVD // MD			10.5 - 12.

Contingency Casing Design and Safety Factor Check

	Casing Specifications									
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling				
Surface	17.5	1,888'	13.375	68	J-55	BTC				
int #1	12.25	5,013'	9.625	40	HCL-80	BTC				
Int #2	8.75	11,147'	7.625	29.7	HCL-80	FJM				
Prod Segment A	6.75	11,147'	5.5	20	P-110	USS RYS SF				
Prod Segment B	6.75	22,496'	5.5	20	P-110	USS RYS SF				

	Chec	k Surface (Casing	·····			
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
14.38	853	909	1,130	2,730			
	S	afety Facto	ors				
1.56	8.29	8.83	1.15	0.91			
Check Int #1 Casing							
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
10.625	916	1042	4230	5750			
	S	afety Facto	ors				
0.81	4.57	5.20	1.41	0.95			
Check Int #2 Casing							
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
7.625	940	558	6700	9460			
	S	afety Facto	ors				
0.56	2.84	1.96	1.10	1.24			
	Check Pro	od Casing,	Segment A				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
5.777	728	655	12780	14360			
		afety Facto					
0.49	3.11	2.79	1.77	1.89			
	Check Pro	_	Segment B				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
5.777	728	655	12780	14360			
		afety Facto					
0.49	63.53	57.16	1.68	1.89			

.

					<u> </u>				
		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		17.5	13.375	1888		1.76	13.5		
		Bbi/Sk				0.31372549			
		bbls				419.402246			
		Stage Tool Dept	n			N/A			
	1	Top MD of Segm				0			
		Bottom MD of S				1502			
		Cement Type	-			с			
		Additves	Bentonite, Accele	erator, Kolseal, Dei	foamer, Celloflake	!			
Stage 1 Lead		*****							
ŝ									
		Quantity (sks)				1,337			
		Yield (cu ft/sk)				1.76			
		Density (Ibs/gal)				13.5			
		Volume (cu ft)				2,352.85			
		Percent Excess				100%	Target %	100%	96.
		Column Height				3,389.88			
			Target TOC	_٥					
			Calc TOC	-1888	ьы	25% Excess	100%		
			calc vol	0.12372195	233.587041	291.9838012	467.174082		
		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		17.5	13.375	1888		1.34	14.8		
		8bl/Sk				0.23885918			
		bbls				47.77183601			
		Top MD of Segm	ant			1502			
		Bottom MD of S				1302			
		Cement Type	egnenc			C			
		Additives			· · · ·	<u> </u>			
17 -	·	Additives							
Stage 1 Tail				****					
N N		Quantity (sks)				200			
		Yield (cu ft/sk)				1.34			
		Density (lbs/gal)	1			14.8			
		Volume (cu ft)				268			
		Percent Excess				100%			
		Column Height				386.1225606			
1	1								
1	1								
1	1								
	1								

SURFACE CEMENT

·

.

	Hole Size	Casing Size	Depth	Sacks	Yield	Density		
	12.25	9.625	5013	20 g	3.5	9	1	
	Bbl/Sk				0.623885918			
	bbls				372.0365733			
	Stage Tool Dept	h			N/A			
	Top MD of Segm				0			
	Bottom MD of Se	egment			4163			
	Cement Type	-			с			
	Additves	Bentonite,Salt,Ko	olseal, Defoamer, C	elloclake				
Stage 1 Lead								
'n	Quantity (sks)	· · · ·		· · · · ·	596			
	Yield (cu ft/sk)				3.5			
	Density (lbs/gal)				9			
	Volume (cu ft)		*******		2,087.13			
	Percent Excess				50%	Target %	50%	da 1
	Column Height				6,669.49	-	ſ	
		Target TOC	٥					
		Calc TOC	-2506.5	ьы	25% Excess	50%	1	
	 · · · · · · · · · · · ·	calc vol	0.055781888	279.6346021	349.5432526	419.4519031		
						- · ·]		
	Hole Size	Casing Size	Depth	Sacks	Yield	Density		
	12.25	9.625	5013		1.33	14.8		
	Bbl/Sk				0.237076649			
	bbls			· · · · · · · · · · · · · · · · · · ·	47.41532977			
	Top MD of Segm				4163			
	Bottom MD of S	egment			5013			
	Cement Type				<u> </u>			
-	Additives							
Stage I Tail								
ñ	Quantity (sks)				200			
					1.33			
	Yield (cu ft/sk)				14.0			
	Yield (cu ft/sk) Density (lbs/gal)	1			14.8			
	Yleid (cu ft/sk) Density (lbs/gal) Volume (cu ft)				266			
	Density (lbs/gal)		. · ·					
	Density (lbs/gal) Volume (cu ft)				266			

INTERMEDIATE 1 CEMENT - STAGE 1

		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		12.25	9.625	3262		3.5	9	
		Bbl/Sk				0.623885918		
		bbls				225.5254458		
		Stage Tool Dept	<u>ווויייייייייייייי</u>			N/A		
		Top MD of Segm	ent			0		
		Bottom MD of Se	egment			2412		
		Cement Type				С		
Lead		Additves	Bentonite,Salt,Ko	olseal, Defoamer, Ce	lloclake			
3 3	í	Quantity (sks)		····		361		
		Yield (cu ft/sk)				3.5		
	1	Density (lbs/gal)						
		Volume (cu ft)		······	······	1,265.20		
		Percent Excess				50%	Target %	50%
		Column Height				4,042.99	Tal Bet 70	50%
				• • • • • • • • • • • • • • • • • • • •		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
			Target TOC	0_				
			Calc TOC	-1631	ьы	25% Excess	50%	
			calc vol	0.055781888	181.960517	227.4506463	272.9407756	
		Hole Size	Casing Size	Depth	Sacks	Yield	Density	
		12.25	9.625	3262		1.33	14.8	
	1							
		Bbl/Sk bbls				0.237076649		
					·	47.41532977 2412		
		Top MD of Segm				3262		
		Bottom MD of Second Comment Type	egment			3262 C		
						<u> </u>		
: _		Additives						
Tail		Additives						
Judge 4 Tail						200		
Juage C Tail		Additives Quantity (sks) Yield (cu ft/sk)		· · · · · · · · · · · · · · · · · · ·	·	<u>200</u> 1.33		
Junge 2 Tail		Quantity (sks)			· · · ·			
Stage 2 Tail		Quantity (sks) Yleld (cu ft/sk)				1.33		
Stage 2 Tail		Quantity (sks) Yleld (cu ft/sk) Density (lbs/gal)				1.33 14.8		

INTERMEDIATE 1 CEMENT - STAGE 2

.

	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	8.75	7.625	10670	, in the second s	2.47	9	
	Bbl/Sk bbls				0.440285205		
	Stage Tool Depth	<u></u>	•		N/A		
	Top MD of Segm				0		
	Bottom MD of Se				6755		
	Cement Type	Shirent			H		
. 1	Additves	Bentonite Retard	er, Kolseal, Defoarr	er Celloflake, Ani			
Lead	Expansion Additi						
2							
	Quantity (sks)				383		
	Yield (cu ft/sk)				2.47		
	Density (lbs/gal)				9		
	Volume (cu ft)				946.02		
	Percent Excess				25%	Target %	25%
	Column Height				9,422.97	-	
		Target TOC	0				
		Calc TOC	-2667.5	bbl	25% Excess	25%	1
		calc vol	0.01789574	190.9475483	238.6844354	238.6844354	
					· · · · · · · · ·		
	Hole Size	Casing Size	Depth	Sacks	Yield	Density	
	8.75	7.625	10670	1	1.31	14.2	
							·
	Bbl/Sk				0.233511586		
	bbls	<u> </u>			70.05347594		
	Top MD of Segm				6755		
	Bottom MD of Se	egment			10670		
	Cement Type				<u> </u>		
	Cement Type Additves	Salt,Bentonite,Re	tarder, Dispersant	Fluid Loss	<u>н</u>		
ait		Salt,Bentonite,Re	tarder, Dispersant	,Fluid Loss	<u> </u>		
Tait	Additves	Salt,Bentonite,Re	tarder, Dispersant	Fluid Loss			
Tail	Additves Quantity (sks)	Salt,Bentonite,Re	etarder, Dispersant	,Fluid Loss	300		
Tail	Additves Quantity (sks) Yield (cu ft/sk)		starder, Dispersant	Fluid Loss	<u> </u>		
Tail	Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal)		etarder, Dispersant	,Fluid Loss	300 1.31 14.2		
Tali	Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal) Volume (cu ft)		etarder, Dispersant	,Fluid Loss	300 1.31 14.2 393		
Jage I Tail	Additves Quantity (sks) Yield (cu ft/sk) Density (lbs/gal)		tarder, Dispersant	,Fluid Loss	300 1.31 14.2		

INTERMEDIATE 2 CEMENT

		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		6.75	5.5	22496		1.34	14.2		
l I		Bbl/Sk				0 22895018			
		bbls				0.23885918 418.2897805			
		Stage Tool Depti				418.2897805 N/A			
		Top MD of Segm				0			
		Bottom MD of Segn				22496			
		Cement Type	egment			22490 H			
		Additves	Salt Reptonite	iuid Loss, Dispersa	nt Retarder Def				
Stage 1 Lead		Additives	Jan, bentonite, r	Tulu LUSS, Disperse	int, Relatuer, Den	Udifier			
ធ្លី ទ័									
VI.		Quantity (sks)				1,751			
		Yield (cu ft/sk)				1.34			
		Density (lbs/gal)	· · · ·	<u> </u>		14.2			
		Volume (cu ft)				2,346.61			
		Percent Excess				2,340.01	Target %	25%	
		Column Height				28,120.00	Target 70	2570	
	1	colorini ricigite				20,120.00			
	1		Target TOC	0					
			Calc TOC	-5624		250/ 5	250/		
			calc vol	-5624 0.01487517	bbl 334.6318244	25% Excess 418.2897805	25% 418.2897805		
		· · · · · ·		0.01487517	554.0518244	418.2897805	418.2897803		
		Hole Size	Casing Size	Depth	Sacks	Yield	Density		
		6.75	5.5	22496	0	0	0		
		0110	0.0		•				
		Bbl/Sk				0			
		bbls				0			
		Top MD of Segm	ent			22496			
		Bottom MD of S				22496			
		Cement Type				н			
		Additives				· · · · ·			
Stage 1 Tail									
tage Tail						·····			
5		Quantity (sks)				0			
		Yield (cu ft/sk)			•	0			
		Density (lbs/gal)				0			
	1	Volume (cu ft)				0			
		Percent Excess							
		Column Height				0			
1						· · · · ·			

.

PRODUCTION CEMENT

HALLIBURTON

Permian Basin, Ft Stockton

Lab Results- Lead

Request/SI	urry	2488456/2		Rig Name			Date	18/DEC/2	018
Submitted	By	Dillon Briers	· ·	Job Type	Intermediate	Casing	Bulk Plant		
Customer	•	Ameredev		Location	Lea		Well		
Well In	format	ion	· .					•.	
Casing/Lin		7.625 in	· · · · · ·	Depth MD	5013 ft		BHST	165°F	· · · · · · · · · · · · · · · · · · ·
Hole Size		8.75 in		Depth TVD	5013 ft		внст	130°F	
Cement	Inform	ation - Lead	Design		÷				Ŕ
	UOM	Cement/Addit	ive					nent Propert	ies
	% BWOC	NeoCem				Slurry I	-	9	lbm/gal
14.68 g	gal/sack	Heated Fresh W	/ater			Slurry V	Yield Requirement	3.5 14.68	ft3/sack gal/sack
						walci r		14.06	gausack
		lts Request I Request Tes							
Femp (deg		200	10		30	6		3	Cond Time (min)
00 (um)	82	67	49	42	. 39	36		28	0
80 (up) 80 (down)	82 82	67 59	- 35		- 18	30 10		20 9 · .	0
80 (avg.)	82	63	42		29	23	-	, 19	0
V (cP) & Y	'P (1bs/100)ft2): 61.73	22.32	(Least-squares met	hod)				
°V (cP) & Y	•			(Traditional metho	•				
		Bulkley 4: YP(lbf	-		m=0.81 n=).81			
		Request Tes			10			Cand Tim	Cond Toma
Temp (deg	F) 300	200	100	60	30	6	3	Cond Tin (min)	e Cond Temp (degF)
134 (up)	63	47	29	21	15	7	6	30	134
134 (down)	63	46	29	21	14	7	4	30	134
134 (avg.)	63	47	29	21	15	7	5	30	134
V (cP) & Y	ዋ (lbs/100)ft2): 57.12	7.98	(Least-squares met	hod)				
'V (cP) & Y	ዋ (lbs/100)ft2): 51	12	(Traditional metho	d (300 & 100 rpm	based))			
ieneralized	Herschel-	Bulkley 4: YP(lbf/	′100ft2) = 2.26	MuInf(cP)=30.64	m=0.41 n=	0.41	·		
API Flu	id Loss	, Request Te	st ID:3566	5342					
Test Temp	(degF)	Test Pressure (p	si) Test Tim	e (min) Meas.		Calculated FL (<30	Condition (min)	•	Conditioning Tem degF)
134		1000	9.12	52		89	30		34
							:		
							: :	: 	

Global Customer Report

Page 1 of 2

Con. Temp (d 134	legF) Co 30	ond. Time (mi	n) Static T. (F) 80		Static ti 120	ime (min)	Incl. (deg) 0		% Fluid 0	. •	
Pilot Test	Results R	equest ID	2504116/5								
Thickenin	ng Time - (ON-OFF-C	DN, Request Tes	t ID:35	852392		<u> </u>				
Test Temp (degF)	Pressure		iched in (min) 70 Bc (hh:min)	Start B	c .	• .				
126	5800	40	6:18	· · ·	16		· · ·				
			st Test ID:35852								
End Temp (degF)	Pressure (j	psi) 50 psi (l	hh:mm) 500 psi (hh:mm)	12 hr (CS (psi)	24 hr CS (psi)	48 hr CS (psi)				
159	4000	8:55	12:23	456	•	749	681	• •			
		: .					ъ.	· · .			
		•	ν.					·. ·			
							:	• •			
						•					
			•								
					•				•		
	. ·		• •••			•					
						••••••••••••••••••••••••••••••••••••••					
						· .					
			·								
			• .								
						· .					
	·										
	· .										·
	• .					1. A.	· · · : · · ·				
							· .			·.	
	•		•				•.				-
			: .				···· ·· ··				
	• .			•				:			
•							• •	·			
				· .	•			·			
								· ···.			

Global Customer Report

Page 2 of 2

U. S. Steel Tubular Products

7.625" 29.70lbs/ft (0.375" Wall) HCL80 USS-LIBERTY FJM®

MECHANICAL PROPERTIES	Pipe	USS-LIBERTY FJM [®]	
Minimum Yield Strength	110,000	••••••••••••••••••••••••••••••••••••••	psi
Maximum Yield Strength	140,000		psi
Minimum Tensile Strength	125,000	-	psi
DIMENSIONS	Pipe	USS-LIBERTY FJM [®]	
Outside Diameter	7.625	7.625	in.
Wall Thickness	0.375	-	in.
Inside Diameter	6.875	6.789	in.
Standard Drift	6.750	6.750	in.
Alternate Drift			in.
Nominal Linear Weight, T&C	29.70		lbs/ft
Plain End Weight	29.06	-	lbs/ft
SECTION AREA	Pipe	USS-LIBERTY FJM [®]	
Critical Area	8.541	5.074	sq. in.
Joint Efficiency	-	59.4	%
PERFORMANCE	Pipe	USS-LIBERTY FJM [®]	
Minimum Collapse Pressure	6,700	6,700	psi
Minimum Internal Yield Pressure	9,460	9,460	psi
Minimum Pipe Body Yield Strength	940,000		lbs
Joint Strength		558,000	lbs
Compression Rating	-	558,000	lbs
Reference Length		12,810	ft
Maximum Uniaxial Bend Rating	-	39.3	deg/100 ft
Make-Up Loss		3.92	in.
Minimum Make-Up Torque		10,800	ft-lbs
Maximum Make-Up Torque		15,250	ft-lbs

 Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness and Specified Minimum Yield Strength (SMYS).

2. Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.

3. Uniaxial bending rating shown is structural only, and equal to compression efficiency.

4. USS-LIBERTY FJM™ connections are optimized for each combination of OD and wall thickness and cannot be interchanged.

5. Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

6. Reference length is calculated by joint strength divided by nominal plain end weight with 1.5 safety factor.

7. Connection external pressure leak resistance has been verified to 100% API pipe body collapse pressure following the guidelines of API 5C5 Cal III.

Legal Notice

.. .

USS-LIBERTY FJM[®] is a trademark of U. S. Steel Corporation. All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U.S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064 1-877-893-9461 connections@uss.com www.usstubular.com

- --- --- ---- ---- ----

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTION	
IECHANICAL PROPERTIES			
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
EXPLANE			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
ECTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
ERFORMANKE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft ft
Maximum Uniaxial Bend Rating		89.9	deg/100 ft
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

1) Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

- 2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.
- 3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.

4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

- 5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.
- 6) Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application. Manuel USS Product Data Sheet 2017 rev25 (April)

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064 1-877-893-9461 connections@uss.com www.usstubular.com

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

SUPO Data Report

Show Final Text

And Frank Street

APD ID: 10400035387

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Type: OIL WELL

Submission Date: 10/22/2018

Well Number: 121H

Well Work Type: Drill

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

NANDINA_FED_COM_25_36_31_121H___WELL_PAD_ACCESS_20181022120912.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

NANDINA_FED_COM_25_36_31_121H___WELL_PAD_ACCESS_20181022120944.pdf EP_NORTH_ROAD_EASEMENT_SEC_31_REV2_S_20190604131439.pdf New road type: RESOURCE

Length: 2670 Feet Width (ft.): 30

Max slope (%): 2

Max grade (%): 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s):

New road travel width: 20

New road access erosion control: Crowned and Ditched

New road access plan or profile prepared? NO

New road access plan attachment:

Well Name: NANDINA FED COM 25 36 31

Well Number: 121H

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: CALICHE

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: GRADER

Access other construction information: NM One Call (811) will be notified before construction start.

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

New road drainage crossing: OTHER

Drainage Control

Drainage Control comments: Crowned and Ditched

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

NANDINA_FED_COM_25_36_31_121H___1_MILE_RADIUS_WELLS_20181022121159.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: A buried 4" poly flowline will be run approximately 3,369' from the Nandina Fed Com 25 36 31 121H to the existing Nandina CTB northeast of the well pad. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location.

Production Facilities map:

Operator Name: AMEREDEV OPERATING		N 1 4040	
Well Name: NANDINA FED COM 25 36 31	Well	Number: 121H	
IAN_GB_FLOWLINE1N_201906041322	06.pdf		
IANDINA_CTB_PLAT_20190604132207.pd	lf .		
Section 5 - Location and	Types of Water S	upply	
Water Source Table			
Water source use type: DUST CONTRO INTERMEDIATE/PRODUCTION CASING CASING Describe type:			
Source latitude:		Source longitude:	
Source datum:			
Water source permit type: PRIVATE CO	NTRACT		
Source land ownership: PRIVATE			
Water source transport method: PIPEL			
Source transportation land ownership			
Water source volume (barrels): 20000	•	Source volume (acre-feet): 2.5778	362
Source volume (gal): 840000		· · · · · · · · · · · · · · · · · · ·	
	•		
Vater source and transportation map:			
IANDINA_FED_COM_25_36_31_121H	WATER_MAP_2018102	22121423.pdf	
ANDINA_FED_COM_25_36_31_121H	WATER_WELLS_LIST	20181022121424.pdf	
Vater source comments: Water will be true f available wells. lew water well? NO	cked or surface piped fre	m existing water wells on private land. Se	e attached list
New Water Well Info			
Well latitude: V	Vell Longitude:	Well datum:	
Well target aquifer:	· .		
Est. depth to top of aquifer(ft):	Est thicknes	s of aquifer:	
Aquifer comments:			
Aquifer documentation:			
/ell depth (ft):	Well casing ty	pe:	
ell casing outside diameter (in.):	Well casing in	side diameter (in.):	
ew water well casing?	Used casing s		
rilling method:	Drill material:		
rout material:	Grout depth:		
casing length (ft.):	Casing top de	oth (ft.):	

(

Well Name: NANDINA FED COM 25 36 31

Well Number: 121H

Well Production type:

Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: NM One Call (811) will be notified before construction start. Top 6" of soil and brush will be stockpiled north of the pad. Closed loop drilling system will be used. Caliche will be hauled from an existing caliche pit on private (Dinwiddie Cattle Company) land in W2 08-25S-36E or an existing caliche pit on private (Dinwiddie Cattle Company) land in E2 17-25S-36E.

Construction Materials source location attachment:

NANDINA_FED_COM_25_36_31_121H___CALICHE_MAP_20181022121516.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks on pad

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: R360's State approved (NM-01-0006) disposal site at Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Page 4 of 10

Well Name: NANDINA FED COM 25 36 31

Well Number: 121H

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Cuttings area length (ft.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

NANDINA_FED_COM_25_36_31_121H___WELL_SITE_DIAGRAM_REV_20190604132511.pdf BO_NAN_GB_1N_PAD_SITE_S_20190604132540.pdf Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: NAN/GB Multiple Well Pad Number: 1N

Recontouring attachment:

NANDINA_FED_COM_25_36_31_121H___WELL_SITE_DIAGRAM_REV_20190604132631.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Operator Name: AMEREDEV OPERATING LLC Well Name: NANDINA FED COM 25 36 31 Well Number: 121H							
Well pad proposed disturbance (acres): 4.59 Road proposed disturbance (acres): 1.84 Powerline proposed disturbance (acres): 0 Pipeline proposed disturbance (acres): 2.32	Well pad interim reclamation (acres): 0.79 Road interim reclamation (acres): 0 Powerline interim reclamation (acres): 0 Pipeline interim reclamation (acres): 0	(acres): 0 Pipeline long term disturbance					
(acres): 2.32 Other proposed disturbance (acres): 0 Total proposed disturbance: 8.75	Other interim reclamation (acres): 0 Total interim reclamation: 0.79	(acres): 2.32 Other long term disturbance (acres): 0 Total long term disturbance: 7.96					

Disturbance Comments:

Reconstruction method: If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged. Ameredev will gain written permission from the BLM if more time is needed. Interim reclamation will be completed within 6 months of completing the well. Interim reclamation will consist of shrinking the pad 17% (.79 acre) by removing caliche and reclaiming 40' wide swaths on the north and east sides of the pad. This will leave 3.8 acres for producing six wells, with tractor-trailer turn around. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas and harrowed on the contour. Disturbed areas will be seeded in accordance with the surface owner's requirements. All topsoil for the battery will be reseeded in place for the life of the battery.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. New road will be similarly reclaimed within 6 months of plugging. Noxious weeds will be controlled. **Soil treatment:** None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Well Name: NANDINA FED COM 25 36 31

Well Number: 121H

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed name:

Source name:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Seed source:

Source address:

Proposed seeding season:

Seed Summary	
Seed Type	Pounds/Acre

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Zachary

Phone: (580)940-5054

Last Name: Boyd Email: zboyd@ameredev.com

Total pounds/Acre:

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: To BLM standards

Weed treatment plan attachment:

Monitoring plan description: To BLM standards

Monitoring plan attachment:

Success standards: To BLM satisfaction

Pit closure description: No pit

Well Name: NANDINA FED COM 25 36 31

Well Number: 121H

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: PIPELINE Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office:

Page 8 of 10

Well Name: NANDINA FED COM 25 36 31

Well Number: 121H

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? YES

Use APD as ROW? YES

ROW Type(s): 281001 ROW - ROADS, 288100 ROW - O&G Pipeline, 289001 ROW- O&G Well Pad

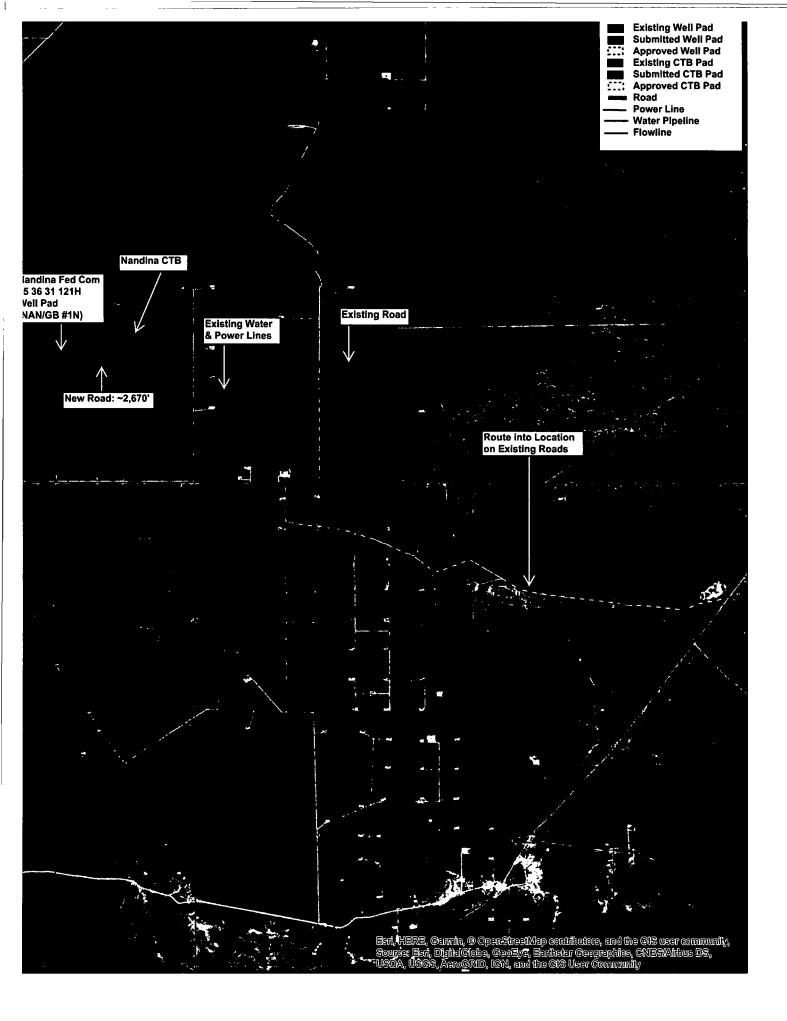
ROW Applications

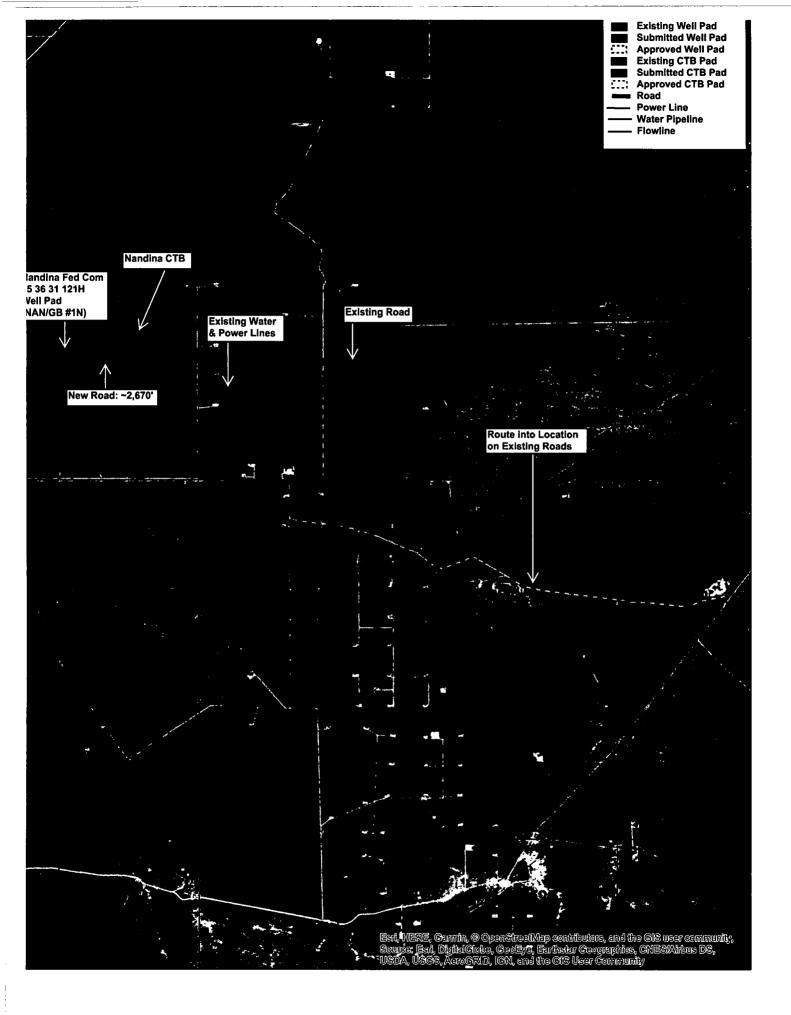
SUPO Additional Information:

Operator Name: AMEREDEV OPERATING LLC

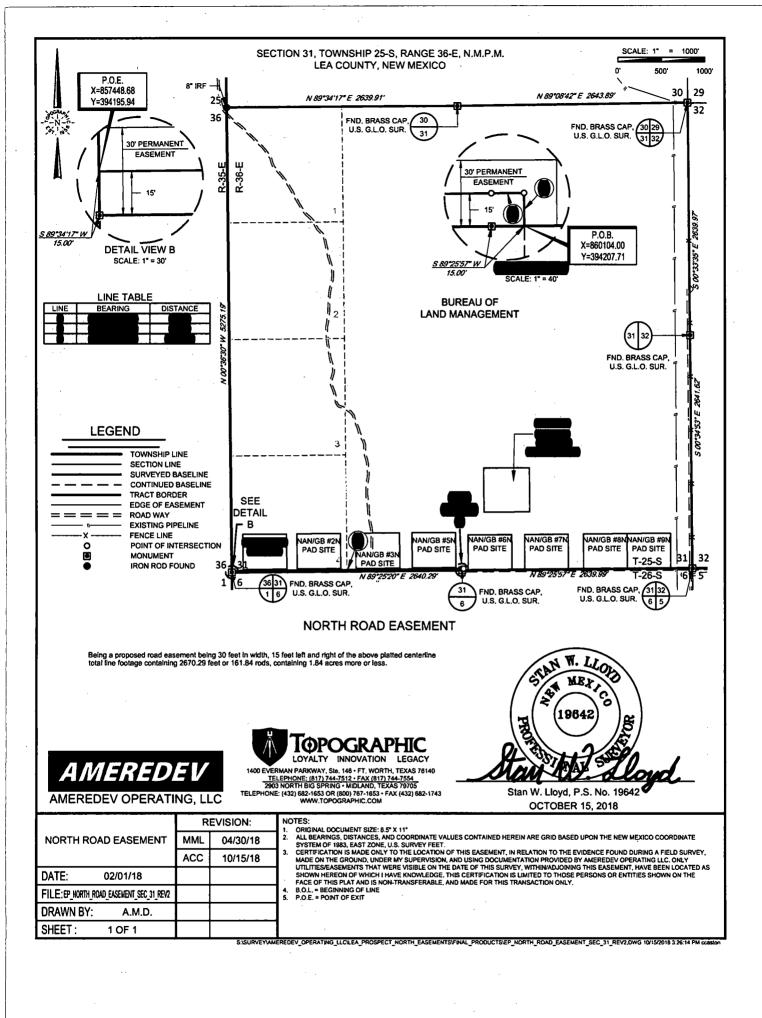
Well Name: NANDINA FED COM 25 36 31

Well Number: 121H


Use a previously conducted onsite? YES


Previous Onsite information: An on-site meeting for Ameredev's Nandina Fed Com 25 36 21 121H was held on 7/23/18 (NOS ID #10400034667). Attendees included Jeff Robertson (BLM), Shane McNeely (Ameredev), and Ged Adams (Topographic). Ameredev made a donation with the MOU fund in lieu of an archaeology report.

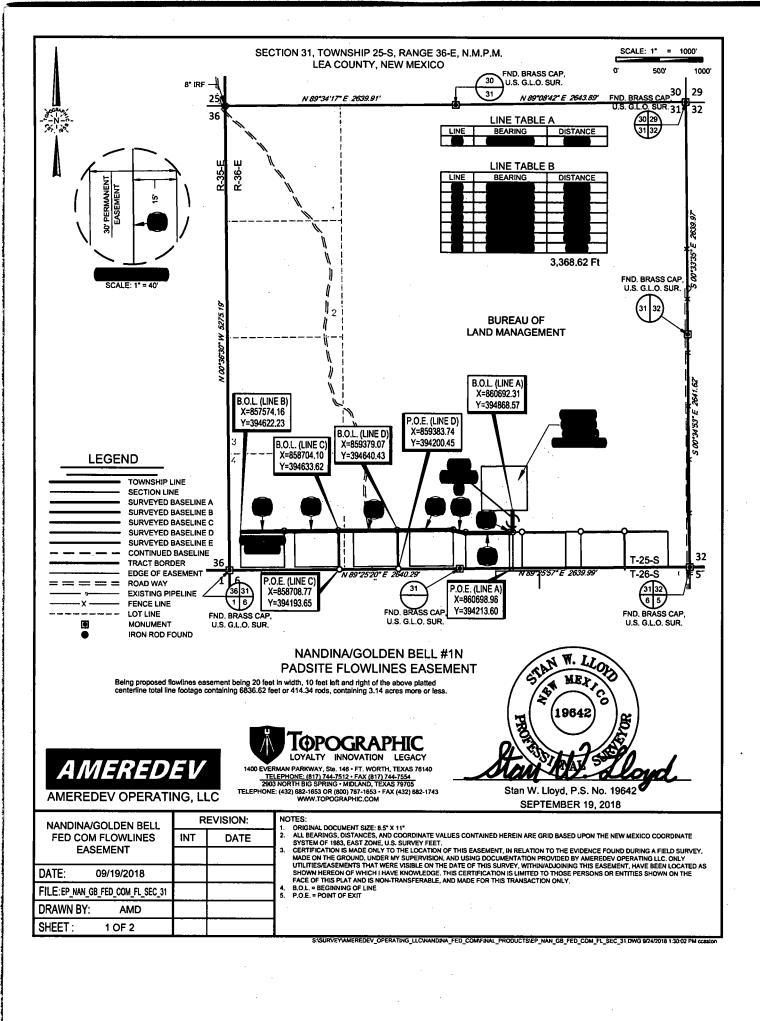
Other SUPO Attachment

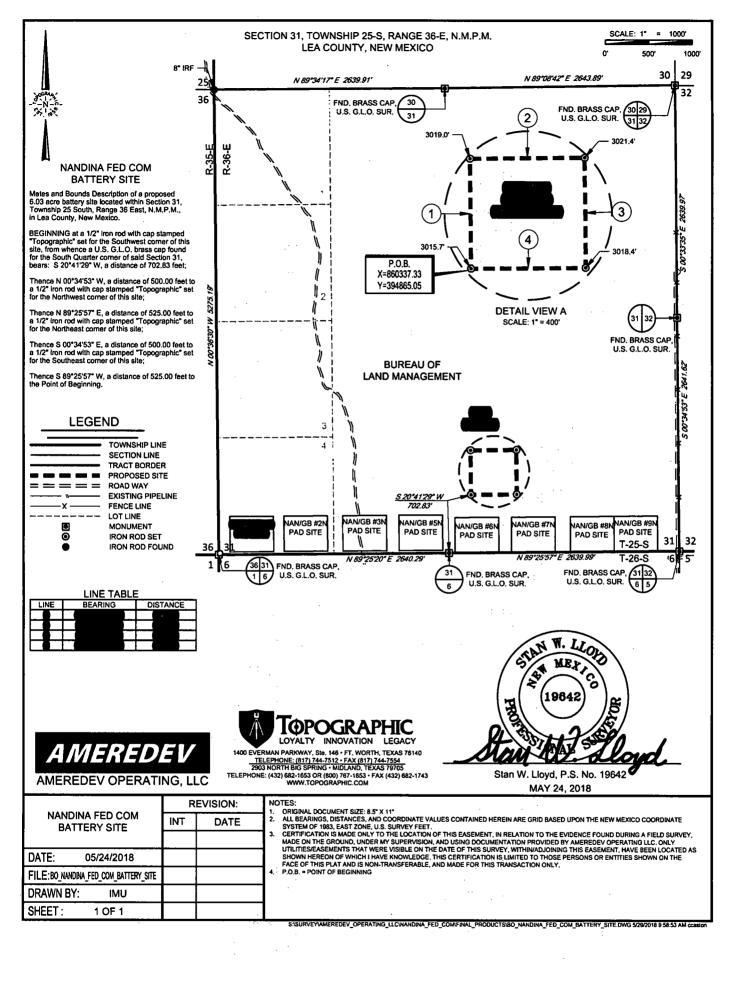

NANDINA_FED_COM_25_36_31_121H___SURFACE_USE_PLAN_REV_20190604_20190604132843.pdf

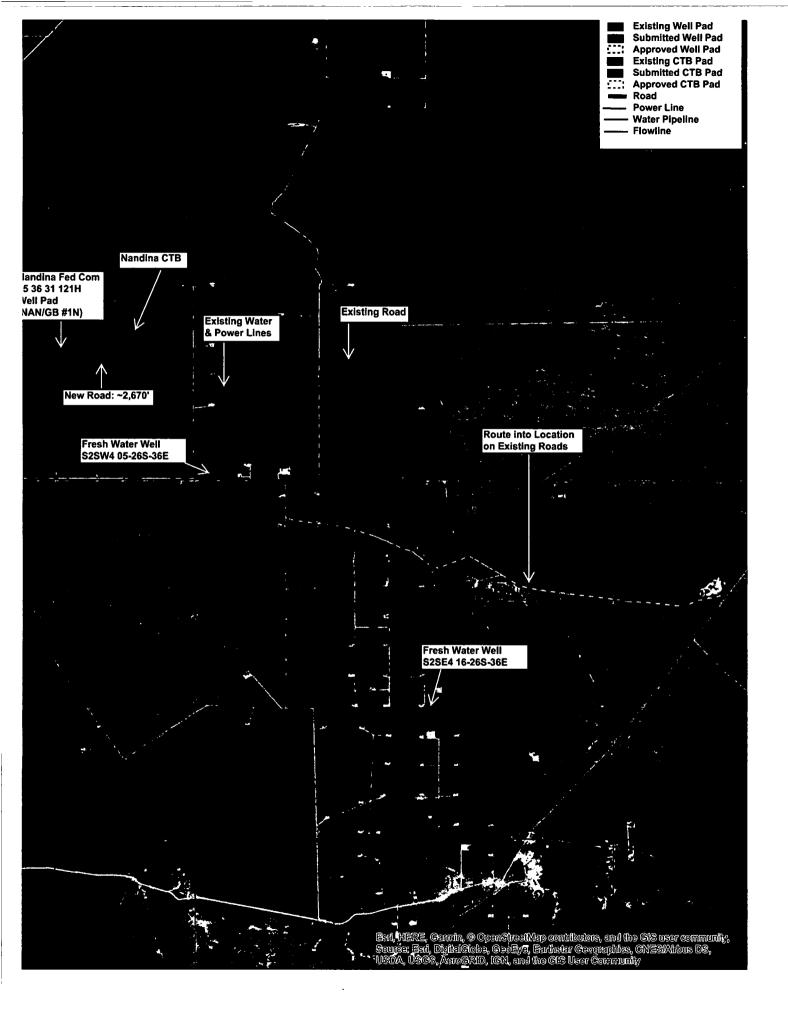
Page 10 of 10

AMEREDEV

26 25 30 29 25S 35E 25S 36E 32 31 36 35 Lea NAI 2 26S 36E 26S 35E • 7 12 11

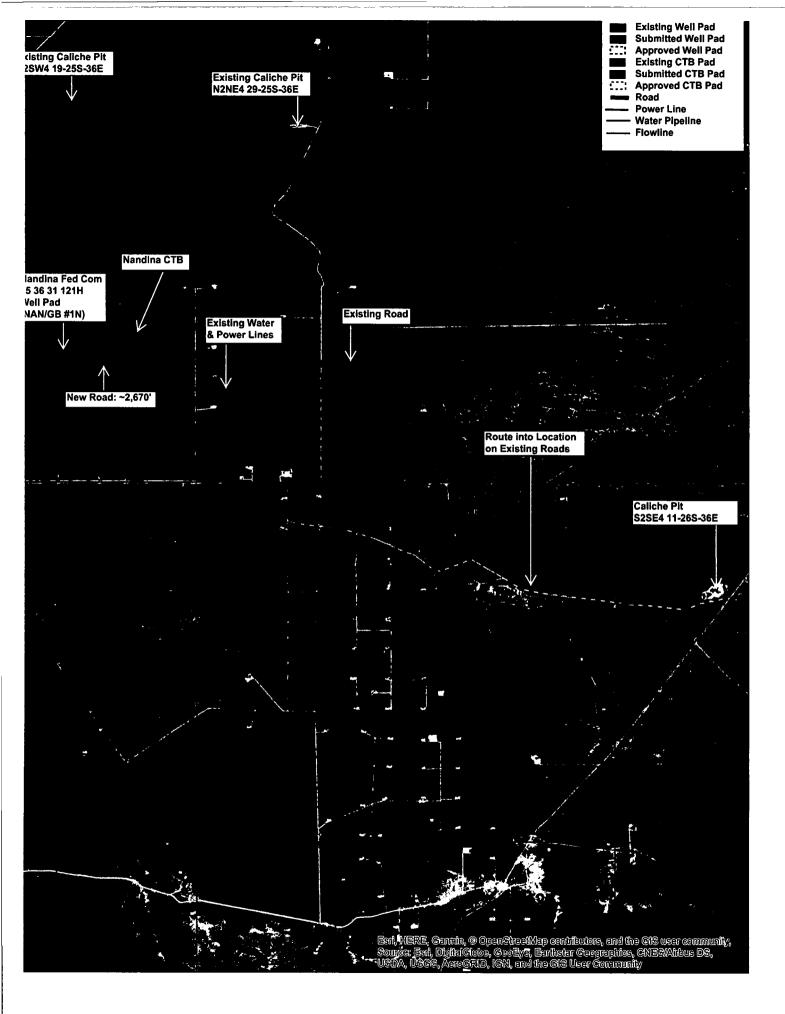

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Nandina Fed Com 25 36 31 121H. See Exhibit 2a – One Mile Radius Wells List for a list of wells depicted.




AMEREDEV

API	WELL NAME	STATUS	TD
30025433260000	PURPLE ACE 1 FEDERAL #1H	PERMIT	
30025375170001	MOMENTUM 36 STATE #1	SWD-WO	9702
30025375170000	MOMENTUM 36 STATE #1	D&A-OG	9702
30025445050000	USHANKA FEDERAL COM #023H	AT-TD	12500
30025260100000	SPOTTED TAIL FED #1	OIL	3336
30025445050100	USHANKA FEDERAL COM #023H	AT-TD	19355

Exhibit 2a – One Mile Radius Existing Wells List



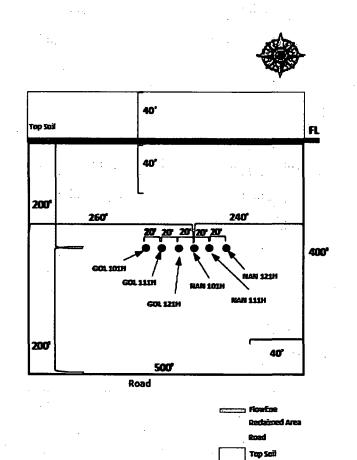
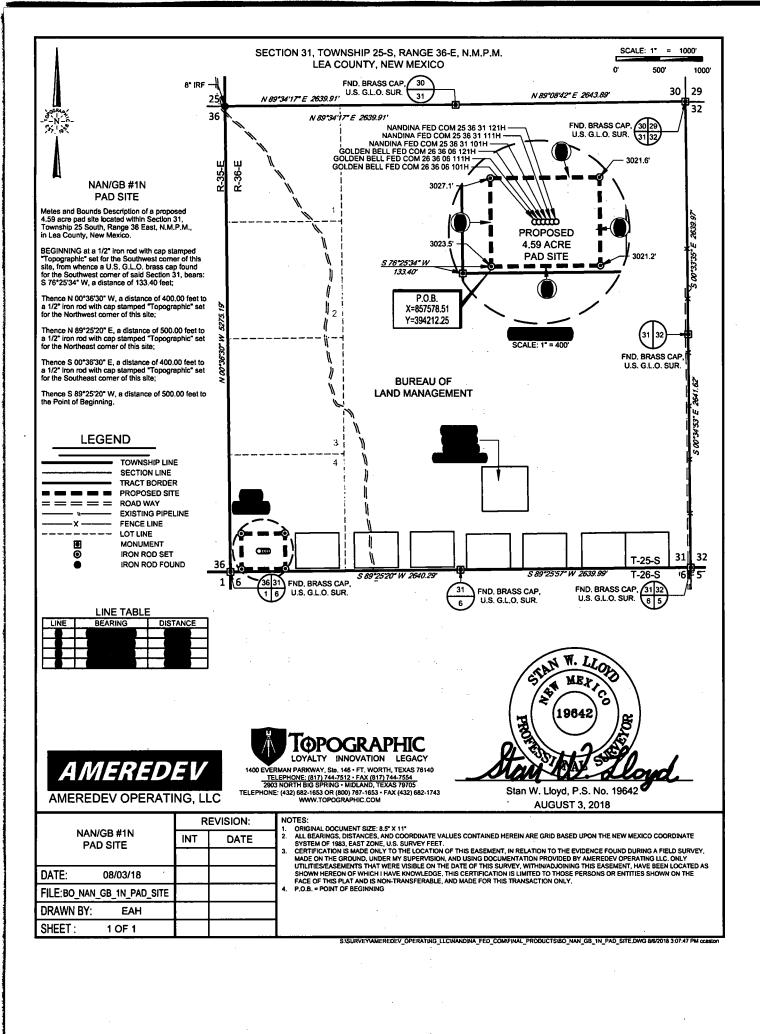
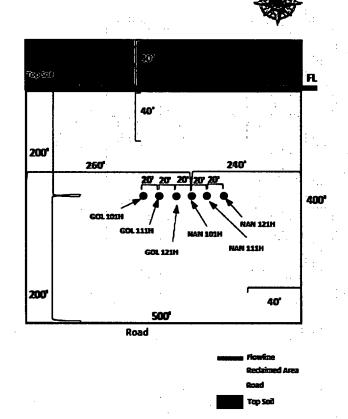

<u>Permit #</u>	<u>Well Name</u>	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04'14.32" N, 103°12'32.30" W
CP 1378	S. Eppenour	32°05′40.62″ N, 103°13′ 35.26″ W
CP 1285	Sec. 5	32°03'56.50" N, 103°17'37.04" W
CP 857	Capped	32°04'39.70" N, 103°16'51.13" W
C 2287	#1	32°03'59.0" N, 103°33'16.8" W
C 2286	#2	32°03'59.2" N, 103°33'15.2" W
C 2290	#3	32°04'1.0" N, 103°33' 12.6" W
C 2285	#4	32°04'3.7" N, 103°33'9.7" W
C 2288	#5	32°04'0.5" N, 103°33'8.4" W
C 2294	Garden	32°03′3.2″ N, 103°32′38.1″ W
C 2293	House	32°03'2.3" N, 103°32'36.8" W
J-11-S-3	Farm Well #2	32°03'08.4" N, 103°16'35.2" W
J-11-S-2	Farm Well #3	32°03′11.5″ N, 103°17′02.0″ W
J-11-S	Farm Well #4	32°03'24.6" N, 103°17'02.1" W
CP 1170 POD 1	CB 1	32°03'57.2" N, 103°18'45.3" W
CP 1170 POD 5		32°07′17.1″ N, 103°17′48.0″ W
CP 1263 POD 5	CB 2	32°03'56.27" N, 103°18'27.4" W
CP 1263 POD 3	CB 3	32°03'54.90" N, 103°18'16.74" W
CP 1351 POD 1	CB 4	32°03'57.16" N, 103°17'45.13" W
CP 1351 POD 2	CB 5	32°03′30.70″ N, 103°17′45.70″ W
J 26	Ryan	32°01'20.41" N, 103°15'49.46" W
13		32°02′41.5″ N, 103°18′55.8″ W

Exhibit 4 – Water Wells

1 | P a g e





Golden Bell Fed Com 26 36 06 101H SHL: 26S 36E 230' FSL 330' FWL Golden Bell Fed Com 26 36 06 111H SHL: 26S 36E 230' FSL 350' FWL Golden Bell Fed Com 26 36 06 121H SHL: 26S 36E 230' FSL 370' FWL Nandina Fed Com 25 36 31 101H SHL: 25S 36E 230' FSL 390' FWL Nandina Fed Com 25 36 31 111H SHL: 25S 36E 230' FSL 410' FWL Nandina Fed Com 25 36 31 121H SHL: 25S 36E 230' FSL 430' FWL

Exhibit 3 – Well Site Diagram

AMEREDE

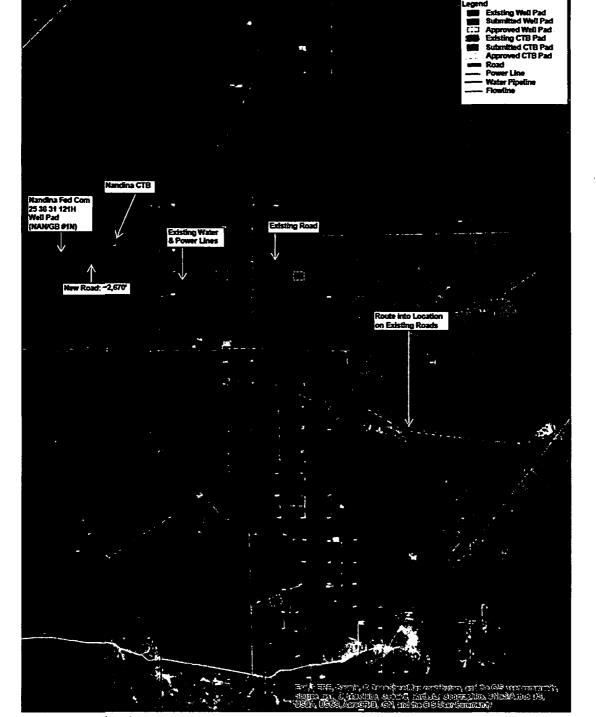
Golden Bell Fed Com 26 36 06 101H SHL: 26S 36E 230' FSL 330' FWL Golden Bell Fed Com 26 36 06 111H SHL: 26S 36E 230' FSL 350' FWL Golden Bell Fed Com 26 36 06 121H SHL: 26S 36E 230' FSL 370' FWL Nandina Fed Com 25 36 31 101H SHL: 25S 36E 230' FSL 390' FWL Nandina Fed Com 25 36 31 111H SHL: 25S 36E 230' FSL 410' FWL Nandina Fed Com 25 36 31 121H SHL: 25S 36E 230' FSL 430' FWL

Exhibit 3 – Well Site Diagram

AMEREDE

Surface Use Plan of Operations

Introduction


The following Surface Use Plan of Operations will be implemented by Ameredev Operating, LLC (Ameredev), after APD approval. No disturbance will be created other than those described in this surface use plan. If any additional surface disturbance becomes necessary after APD approval, the appropriate BLM approved sundry notice or right of way application will be acquired prior to such disturbance. This Surface Use Plan includes Ameredev's well pad, battery site, electrical, water, crude and flow lines, and access roads.

Before any surface disturbance is created, stakes or flagging will be installed to mark boundaries of permitted areas of disturbance, including soil storage areas. As necessary, slope, grade, and other construction control stakes will be placed to ensure construction is in accordance with the surface use plan. All boundary markers will be maintained in place until final construction cleanup is completed. If disturbance boundary markers are displaced, they will be replaced before construction proceeds. Adjacent operators will be contacted before construction starts to mark adjacent pipelines.

Directions to proposed pad:

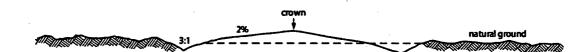
1 | Page

At the intersection of NM-205 & 3rd St/NM-128/Frying Pan Rd, Head south on 3rd St/NM-128/Frying Pan Road approximately 5.6 miles. Turn west (right) on Anthony Road and proceed approximately 3.4 miles. Turn North (right) on unnamed road and proceed approximately .3 miles. Turn east (right) on Pipeline Road and proceed approximately .3 miles. Turn north (left) on unnamed road and proceed approximately 1 mile. Turn west (left) on unnamed lease road and proceed approximately 9,407 ft. Location is on the North side of the road. See *Exhibit 1 – Well Pad Access* for a map of the route.

AMEREDEV

Exhibit 1 – Well Pad Access

<u>Section 1 – Existing Roads</u>


A. The existing access road route to the proposed project is depicted on *Exhibit 1 – Well Pad Access*. Improvements to the driving surface will be done where necessary. No new surface disturbance will be done, unless otherwise noted in the New or Reconstructed Access Roads section of this surface use plan.

AMEREDI

- B. Right-Of-Way will be acquired before construction begins.
- C. The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattle guards, other range improvement projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use.
- **D.** Operator will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

Section 2 – New or Reconstructed Access Roads

- **A.** A section of new access road will be needed for this proposed project. See *Exhibit 1 Well Pad Access*, for locations.
- B. The length of new access road needed to be constructed for this proposed project is approximately 2,670 feet.
- C. New access road will be constructed with 6 inches of compacted caliche.
- D. The maximum driving width of the access road will be 20 feet. The maximum width of surface disturbance when constructing the access road will not exceed 30 feet. All areas outside of the driving surface will be revegetated.
- E. When the road travels on fairly level ground, the road will be crowned and ditched with a maximum 2% slope from the tip of the road crown to the edge of the driving surface. Ditches will be constructed on each side of the road. The ditches will be 3 feet wide with 3:1 slopes. See road cross section diagram below:

- F. No turnouts will be constructed on the new portions of access road.
- G. No cattle guards will be installed on the new portions of access road.
- H. Right-Of-Way will be acquired before construction begins.
- I. No culverts or low water crossings will be constructed for the new portions of access road.

J. Since the access road is on level ground, no lead-off ditches will be constructed for the new portions of access road.

AMEREDE

- K. Any sharp turns in the in the new road will be rounded to facilitate turning by trucks.
- L. Newly constructed or reconstructed roads, on surface under the jurisdiction of the Bureau of Land Management, will be constructed as outlined in the BLM "Gold Book" and to meet the standards of the anticipated traffic flow and all anticipated weather requirements as needed. Construction will include ditching, draining, crowning and capping or sloping and dipping the roadbed as necessary to provide a well-constructed and safe road.
- **M.** All topsoil and fragmented rock removed in excavation will be used as directed in approved plan.

Section 3 – Location of Existing Wells

Exhibit 2 – One Mile Radius Existing Wells depicts all known wells within a one mile radius of the Nandina Fed Com 25 36 31 121H. See *Exhibit 2a – One Mile Radius Wells List* for a list of wells depicted.

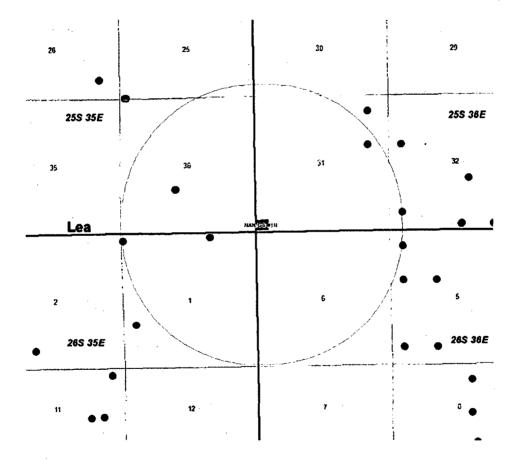


Exhibit 2 – One Mile Radius Existing Wells

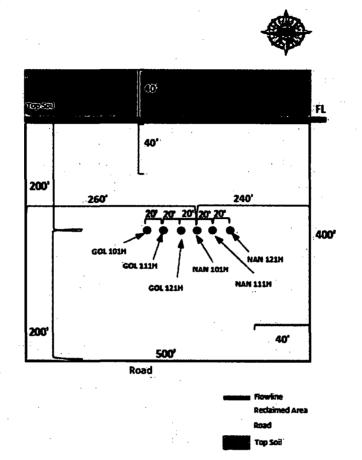

API		STATUS		TD
30025433260000	PURPLE ACE 1 FEDERAL #1H	PERMIT		
30025375170001	MOMENTUM 36 STATE #1	SWD-WO		9702
30025375170000	MOMENTUM 36 STATE #1	D&A-OG	· . •	9702
30025445050000	USHANKA FEDERAL COM #023H	AT-TD		12500
30025260100000	SPOTTED TAIL FED #1	OIL		3336
30025445050100	USHANKA FEDERAL COM #023H	AT-TD		19355

Exhibit 2a – One Mile Radius Existing Wells List

5 | Page

Section 4 - Location of Existing and/or Proposed Production Facilities

- A. The multiple well pad will be located on Section 31, and will measure 400'x500'. Should any type of production facilities be located on the well pad, they will be strategically placed to allow for maximum interim reclamation, re-contouring, and revegetation of the well location.
- B. Production from the proposed well will be transported to an existing production facility named Nandina CTB, northeast of the well pad, via a buried 4" poly flowline that runs approximately 3,369'.
- C. All permanent (lasting more than six months) above ground structures including but not limited to pump jacks, storage tanks, barrels, pipeline risers, meter housing, etc., that are not subject to safety requirements will be painted a non-reflective paint color, Shale Green, from the BLM Standard Environmental Colors chart, unless another color is required in the APD Conditions of Approval.
- D. If any plans change regarding the production facility or other infrastructure (pipeline, electrical lines, etc.), Ameredev will submit a sundry notice or right-of-way (if applicable) prior to installation or construction.

AMEREDE

Golden Bell Fed Com 26 36 06 101H SHL: 26S 36E 230' FSL 330' FWL Golden Bell Fed Com 26 36 06 111H SHL: 26S 36E 230' FSL 350' FWL Golden Bell Fed Com 26 36 06 121H SHL: 26S 36E 230' FSL 370' FWL Nandina Fed Com 25 36 31 101H SHL: 25S 36E 230' FSL 390' FWL Nandina Fed Com 25 36 31 111H SHL: 25S 36E 230' FSL 410' FWL Nandina Fed Com 25 36 31 121H SHL: 25S 36E 230' FSL 430' FWL

Exhibit 3 – Well Site Diagram

AMEREDE

Section 5 - Location and Types of Water Supply

A. This location will be drilled using a combination of water and mud systems (outlined in the Drilling Program). The water will be obtained from preexisting water wells, by running a pump directly to the drilling rig. See *Exhibit 4 - Water Wells*, for a list of available water wells. In cases where a polyline is used to transport water for drilling or completion purposes, the existing and proposed roads into location will be utilized.

<u>Permit #</u>	Well Name	Location (Lat/Lon)
CP 1049 POD 2	Bennett	32°04'14.32" N, 103°12'32.30" W
CP 1378	S. Eppenour	32°05′40.62″ N, 103°13′ 35.26″ W
CP 1285	Sec. 5	32°03′56.50″ N, 103°17′37.04″ W
CP 857	Capped	32°04'39.70" N, 103°16'51.13" W
C 2287	#1	32°03′59.0″ N, 103°33′16.8″ W
C 2286	#2	32°03′59.2″ N, 103°33′15.2″ W
C 2290	#3	32°04'1.0" N, 103°33' 12.6" W
C 2285	#4	32°04'3.7" N, 103°33'9.7" W
C 2288	#5	32°04'0.5" N, 103°33'8.4" W
C 2294	Garden	32°03′3.2″ N, 103°32′38.1″ W
C 2293	House	32°03'2.3" N, 103°32'36.8" W
J-11-S-3	Farm Well #2	32°03'08.4" N, 103°16'35.2" W
J-11-S-2	Farm Well #3	32°03′11.5″ N, 103°17′02.0″ W
J-11-S	Farm Well #4	32°03′24.6″ N, 103°17′02.1″ W
CP 1170 POD 1	CB 1	32°03′57.2″ N, 103°18′45.3″ W
CP 1170 POD 5		32°07′17.1″ N, 103°17′48.0″ W
CP 1263 POD 5	CB 2	32°03′56.27″ N, 103°18′27.4″ W
CP 1263 POD 3	СВ 3	32°03′54.90″ N, 103°18′16.74″ W
CP 1351 POD 1	СВ 4	32°03′57.16″ N, 103°17′45.13″ W
CP 1351 POD 2	СВ 5	32°03'30.70" N, 103°17'45.70" W
J 26	Ryan	32°01'20.41" N, 103°15'49.46" W
13		32°02′41.5″ N, 103°18′55.8″ W

Exhibit 4 – Water Wells

Section 6 – Construction/Construction Materials

A. Caliche will be obtained from the caliche pit located at Lat: 32° 6'28.78"N, Long: 103°16'58.77"Wor the caliche pit at Lat: 32° 6'33.14"N, Long: 103°18'44.16"Wor the caliche pit at Lat: 32° 3'8.30"N, Long: 103°13'57.00"W.

AMEREDEV

- B. Caliche utilized for the drilling pad will be obtained either from the locations listed above, an existing approved mineral pit, or by benching into a hill, which will allow the pad to be level with existing caliche from the cut, or extracted by "flipping" the well location. A mineral material permit will be obtained from the BLM prior to excavating any caliche on Federal Lands. Amount will vary for each pad. The procedure for "flipping" a well location is as follows:
 - 1. An adequate amount of topsoil/root zone (usually top 6 inches of soil) will be stripped from the proposed well location and stockpiled along the side of the well location as depicted on the *Exhibit 3 Well Site Diagram*.
 - 2. An area will be used within the proposed well site dimensions to excavate caliche.
 - 3. Subsoil will be removed and stockpiled within the surveyed well pad dimensions.
 - 4. Once caliche/surfacing mineral is found, the mineral material will be excavated and stock piled within the approved drilling pad dimensions.
 - 5. Subsoil will then be pushed back in the excavated hole and caliche will be spread accordingly across the entire well pad and road (if available).
 - Neither caliche, nor subsoil will be stockpiled outside of the well pad dimensions. Topsoil will be stockpiled along the edge of the pad as depicted in *Exhibit 3 – Well Site Diagram*.
 - 7. In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. A BLM mineral material permit will be acquired prior to obtaining any mineral material from BLM pits or federal land.

Section 7 - Methods of Handling Waste

- A. Drill cuttings, mud, salts and other chemicals will be properly disposed of into steel tanks on site and hauled to a State approved commercial disposal facility.
- **B.** Garbage and trash produced during drilling and completion operations will be collected in a portable metal trash container and disposed of properly at a state approved disposal facility. All trash on and around the well site will be collected for disposal.
- **C.** Human waste and grey water will be properly contained and disposed of properly at a state approved disposal facility.
- **D.** After drilling and completion operations, trash, chemicals, salts, frac sand and other waste material will be removed and disposed of properly at a state approved disposal facility.

AMEREDE

Section 8 - Ancillary Facilities

A. No ancillary facilities will be needed for the proposed project.

Section 9 - Well Site Layout

- A. See Exhibit 3 Well Site Diagram. The following information is presented:
 - 1. Reasonable scale
 - 2. Well pad dimensions/orientation
 - 3. Proposed access road
 - 4. Topsoil stockpile
- **B.** The proposed drilling pad was staked and surveyed by a professional surveyor. The attached survey plat of the well site depicts the drilling pad layout as staked.
- C. Topsoil salvaging
 - 1. Grass, forbs, and small woody vegetation such as mesquite will be excavated as the topsoil is removed. Large woody vegetation will be stripped and stored separately and re-spread evenly on the site following topsoil re-spreading. Topsoil depth is defined as the top layer of soil that contains 80% of the roots. In areas to be heavily disturbed, the top 6 inches of soil material will be stripped and stockpiled on the perimeter of the well location and along the perimeter of the access road to control run-on and run-off, to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging.

Section 10 - Plans for Final Surface Reclamation

Reclamation Objectives

- A. The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil, to control erosion, and to minimize habitat and forage loss, visual impact, and weed infestation during the life of the well or facilities.
- B. The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources, and wildlife habitats. To ensure that the long-term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning, and vegetative productivity.
- C. The BLM will be notified at least 3 days prior to the commencement of any reclamation procedures.

D. If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on location has been completed or plugged. Ameredev will gain written permission from the BLM if more time is needed.

AMEREDI

E. Interim reclamation will be performed on the well site after the well is drilled and completed.
 Exhibit 3 – Well Site Diagram depicts the location and dimension of the planned interim reclamation for the well site.

Interim Reclamation Procedures (if performed)

- A. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production.
- **B.** In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- C. The areas planned for interim reclamation will then be contoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to reseeding will not be steeper than a 3:1 Ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be re-contoured to the above ratios during interim reclamation.
- D. Topsoil will be evenly re-spread and aggressively revegetated over the entire disturbed area not needed for all-weather operations, including cuts and fills. To seed the area, the proper BLM mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.
- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- **F.** The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.

Final Reclamation Procedures (well pad, buried pipelines, etc.)

- A. Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- **B.** All surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- **C.** All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be re-contoured to the contour existing prior to initial construction or a contour that blends indistinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to re-contouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation.
- **D.** After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BLM seed mixture, free of noxious weeds. Final seedbed preparation will consist of

contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting, in order to break the soil crust and create seed germination micro-sites.

AMEREDE

- E. Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.
- F. All unused equipment and structures including pipelines, electric line poles, tanks, etc. that serviced the well will be removed.
- **G.** All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not re-disturbed, and that erosion is controlled.

Section 11 - Surface Ownership

A. BLM has surface ownership for proposed project area.

Section 12 - Other Information

- A. There are no dwellings within 1 mile of this location.
- B. An on-site meeting for Ameredev's Nandina Fed Com 25 36 31 121H well was held on July 23, 2018 (NOS ID #10400034667). Attendees included Jeff Robertson (BLM), Shane McNeely (Ameredev), and Ged Adams (Topographic).
- C. The well pad described in this document Nandina/Golden Bell (NAN/GB #1N) will contain 6 wells that produce into an existing central tank battery (CTB) located northeast of the well pad. The wells share a common pad access road, pipeline easement, and electrical corridor. The six flowlines from the individual wells will share a common corridor that will terminate into the CTB. The wells that share the pad are:
 - Nandina Fed Com 25 36 31 121H
 - Nandina Fed Com 25 36 31 111H
 - Nandina Fed Com 25 36 31 101H
 - Golden Bell Fed Com 26 36 06 121H
 - Golden Bell Fed Com 26 36 06 111H
 - Golden Bell Fed Com 26 36 06 101H

Ameredev field representative:Ameredev office contact:Zac Boyd, Operations SupervisorChristie Hanna, Regulatory CoordinatorCell: (432) 385-6996Direct: (737) 300-4723Email: zboyd@ameredev.com

Ameredev Operating, LLC Address: 5707 Southwest Parkway Building 1, Suite 275 Austin, Texas 78735

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

PWD Data Report

.

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbi/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Bond Info Data Report