Form 3160-5 (June 2015)

# UNITED STATES DEPARTMENT OF THE INTERIOR RUPEAU OF LAND MANAGEMENT

FORM APPROVED OMB NO. 1004-0137 Expires: January 31, 2018

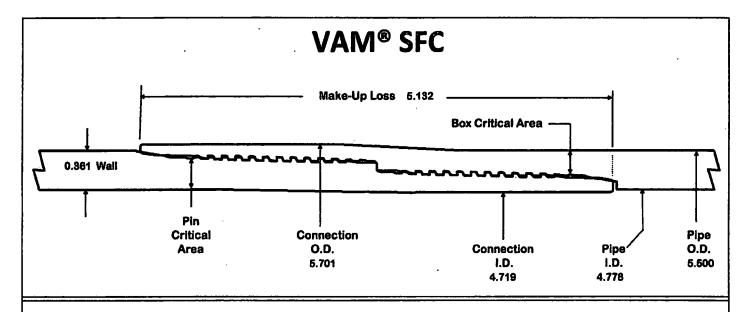
|                                                                                                                                                                                                                                                                                           | ukeau of land mana                                                                                                                           | GEMENI                                                  |                                                                      |                                                      | 5. Lease Serial No.                                             |                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|-------------------------|
| SUNDRY<br>Do not use thi                                                                                                                                                                                                                                                                  | NOTICES AND REPO                                                                                                                             | RTS ON PA                                               | DISPO -                                                              | _                                                    | NMNM110840                                                      |                         |
| abandoned we                                                                                                                                                                                                                                                                              | II. Use form 3160-3 (AP                                                                                                                      | D) for such p                                           | roposals. U                                                          | CD                                                   | 6. If Indian, Allottee or                                       | Tribe Name              |
| SUBMIT IN                                                                                                                                                                                                                                                                                 | TRIPLICATE - Other Ins                                                                                                                       |                                                         |                                                                      |                                                      | 7. If Unit or CA/Agree                                          | ment, Name and/or No.   |
| 1. Type of Well  St Oil Well Gas Well Oth                                                                                                                                                                                                                                                 | ner                                                                                                                                          | RE                                                      | CEIVED                                                               | <u> </u>                                             | 8. Well Name and No.<br>Multiple—See Attac                      | thed                    |
| 2. Name of Operator                                                                                                                                                                                                                                                                       | Contact:                                                                                                                                     | <b>EMILY FOLL</b>                                       | IS                                                                   |                                                      | 9. API Well No.                                                 | lashed                  |
| EOG RESOURCES INCORPO                                                                                                                                                                                                                                                                     | ORATEDE-Wall: emily_tolls                                                                                                                    |                                                         |                                                                      | · · · · · · · · · · · · · · · · · · ·                | Multiple-See At                                                 |                         |
| 3a. Address<br>PO BOX 2267<br>MIDLAND, TX 79702                                                                                                                                                                                                                                           |                                                                                                                                              | Ph: 432-63                                              | (include area code)<br>6-3600                                        |                                                      | 10. Field and Pool or E<br>RED HILLS-WO                         | LFCAMP, WEST (GAS       |
| 4. Location of Well (Footage, Sec., T                                                                                                                                                                                                                                                     | ., R., M., or Survey Description                                                                                                             | )                                                       |                                                                      |                                                      | 11. County or Parish, S                                         | tate                    |
| Multiple-See Attached                                                                                                                                                                                                                                                                     |                                                                                                                                              |                                                         |                                                                      |                                                      | LEA COUNTY, N                                                   | 1W                      |
| 12. CHECK THE A                                                                                                                                                                                                                                                                           | PPROPRIATE BOX(ES)                                                                                                                           | TO INDICA                                               | TE NATURE O                                                          | F NOTICE,                                            | REPORT, OR OTH                                                  | ER DATA                 |
| TYPE OF SUBMISSION                                                                                                                                                                                                                                                                        |                                                                                                                                              |                                                         | TYPE OF                                                              | ACTION                                               |                                                                 |                         |
| Notice of Intent                                                                                                                                                                                                                                                                          | ☐ Acidize                                                                                                                                    | Dec                                                     | pen                                                                  | ☐ Product                                            | ion (Start/Resume)                                              | ☐ Water Shut-Off        |
| _                                                                                                                                                                                                                                                                                         | ☐ Alter Casing                                                                                                                               | ☐ Hyd                                                   | raulic Fracturing                                                    | ☐ Reclam                                             | ation                                                           | ■ Well Integrity        |
| ☐ Subsequent Report                                                                                                                                                                                                                                                                       | Casing Repair                                                                                                                                | □ New                                                   | Construction                                                         | ☐ Recomp                                             | lete                                                            | Other                   |
| ☐ Final Abandonment Notice                                                                                                                                                                                                                                                                | ☐ Change Plans                                                                                                                               | Plug                                                    | and Abandon                                                          | ☐ Tempor                                             | arily Abandon                                                   | Change to Original A PD |
|                                                                                                                                                                                                                                                                                           | ☐ Convert to Injection                                                                                                                       | Plug                                                    | Back                                                                 | ☐ Water I                                            | )isposal                                                        |                         |
| If the proposal is to deepen directions Attach the Bond under which the wor following completion of the involved testing has been completed. Final Ah determined that the site is ready for fi EOG respectfully requests an the casing design, add Brader documentation and list of wells | operations. If the operation re-<br>landonment Notices must be fil-<br>inal inspection.  amendment to our appro-<br>lihead squeeze, and ceme | sults in a multipled only after all to<br>ved APD for r | e completion or reco<br>requirements, includi<br>nultiple wells to r | mpletion in a r<br>ing reclamation<br>reflect chance | new interval, a Form 3160<br>n, have been completed a<br>nes in | l-4 must be filed once  |
| SEE ATTAC<br>CONDITIONS OF                                                                                                                                                                                                                                                                | _ : : -                                                                                                                                      | C                                                       | arlsbad<br>Opera                                                     |                                                      | l Office<br>Copy                                                |                         |
| All Previous Co                                                                                                                                                                                                                                                                           | DAs Still Ap                                                                                                                                 | ply, Ex                                                 | Kept Fa                                                              | or th                                                | e Fallawi                                                       | ng.                     |
| 14. I hereby certify that the foregoing is                                                                                                                                                                                                                                                | true and correct. Electronic Submission #                                                                                                    | 464839 verifie                                          | i by the BLM Wei                                                     | l Information                                        | System                                                          |                         |
| Com                                                                                                                                                                                                                                                                                       | # Electronic Submission<br>For EOG RESOU<br>mitted to AFMS8 for proc                                                                         |                                                         |                                                                      |                                                      |                                                                 |                         |
| Name (Printed/Typed) BEN HOC                                                                                                                                                                                                                                                              | HER                                                                                                                                          |                                                         | Title ENGINE                                                         | ERING AS                                             | SOCIATE                                                         |                         |
|                                                                                                                                                                                                                                                                                           |                                                                                                                                              |                                                         |                                                                      |                                                      |                                                                 |                         |
| Signature (Electronic S                                                                                                                                                                                                                                                                   | ubmission)                                                                                                                                   | l                                                       | Date 05/10/20                                                        | 019                                                  |                                                                 |                         |
|                                                                                                                                                                                                                                                                                           | THIS SPACE FO                                                                                                                                | OR FEDERA                                               | L OR STATE (                                                         | OFFICE U                                             | SE                                                              |                         |
| Annual Pro JEDOMY DODTED                                                                                                                                                                                                                                                                  |                                                                                                                                              |                                                         | THERETPO! C                                                          | I INA ENIONAIS                                       |                                                                 | Date 05/15/2019         |
| _Approved_By_JEROMY PORTER_<br>Conditions of approval, if any, are attached                                                                                                                                                                                                               | Ammoral of this series does                                                                                                                  |                                                         | <u>TitlePETROLE</u>                                                  | AM ENGIN                                             | <u>,50</u>                                                      |                         |
| certify that the applicant holds legal or equivalent which would entitle the applicant to condu                                                                                                                                                                                           | itable title to those rights in the                                                                                                          | subject lease                                           | Office Hobbs                                                         |                                                      |                                                                 |                         |
| Title 18 U.S.C. Section 1001 and Title 43                                                                                                                                                                                                                                                 |                                                                                                                                              | crime for any pe                                        |                                                                      | willfully to ma                                      | ke to any department or a                                       | gency of the United     |

#### Additional data for EC transaction #464839 that would not fit on the form

#### Wells/Facilities, continued

 
 Agreement NMNM110840
 Lease NMNM110840
 Well/Fac Name, Number PHILLY 31 FED COM 708H
 API Number 30-025-44763-00-X1
 Location Sec 31 T26S R34E 290FSL 1780FEL 32.001084 N Lat, 103.508167 W Lon Sec 31 T26S R34E 290FSL 568FEL 32.001088 N Lat, 103.502220 W Lon

 NMNM110840
 NMNM110840
 PHILLY 31 FED COM 709H
 30-025-44765-00-X1
 Sec 31 T26S R34E 290FSL 568FEL 32.001088 N Lat, 103.502220 W Lon


### **TECHNICAL SPECIFICATIONS**

These specifications are furnished for general information only and are not intended for design purposes. This information is preliminary and may change subject to a final design by VAM-USA Engineering. This is not a controlled document.

| DWC/C-IS MS standard                                                 |                   | Casing                                                                                                                                                                                                  | 5.500" O.D.                                      | 20.00 lb./ft.                                       | VST P-110EC                               |
|----------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------|
| VST P-110EC<br>125,000<br>135,000                                    |                   | Material Grade Minimum Yield Strength (p Minimum Ultimate Strength                                                                                                                                      | •                                                |                                                     |                                           |
| 5.500<br>4.778<br>0.361<br>20.00<br>19.83<br>5.828                   |                   | Pipe Dimensions Nominal Pipe Body OD (in. Nominal Pipe Body ID (in.) Nominal Wall Thickness (in Nominal Weight (lbs./ft.) Plain End Weight (lbs./ft.) Nominal Pipe Body Area (s                         | n.)                                              | Houston, TX 779<br>Phone: (713) 4<br>Fax: (713) 479 | ouston Pkwy, Suite 150<br>041<br>179-3200 |
| 729,000<br>12,090<br>14,360<br>13,100                                |                   | Pipe Body Performance I<br>Minimum Pipe Body Yield S<br>Minimum Collapse Pressur<br>Minimum Internal Yield Pre<br>Hydrostatic Test Pressure                                                             | Strength (lbs.) re (psi.) essure (psi.)          |                                                     |                                           |
| 6.115<br>4.778<br>4.653<br>4.13<br>5.828<br>100.0                    |                   | Connection Dimensions Connection OD (in.) Connection ID (in.) Connection Drift Diameter Make-up Loss (in.) Critical Area (sq. in.) Joint Efficiency (%)                                                 | (in.)                                            |                                                     |                                           |
| 729,000<br>26,040<br>728,000<br>729,000<br>12,090<br>14,360<br>104.2 | (1)<br>(2)<br>(3) | Connection Performance Joint Strength (lbs.) Reference String Length (f API Joint Strength (lbs.) Compression Rating (lbs.) API Collapse Pressure Rat API Internal Pressure Res Maximum Uniaxial Bend R | t.) 1.4 Design F<br>ting (psi.)<br>stance (psi.) |                                                     |                                           |
| 16,600<br>19,100<br>21,600                                           | (5)<br>(5)<br>(6) | Approximated Field End Minimum Final Torque (ft Maximum Final Torque (ft Connection Yield Torque (f                                                                                                     | lbs.)<br>-lbs.)                                  |                                                     | ·                                         |

- (1) Joint Strength is the minimum pipe body yield strength multiplied by the connection critical area.
- (2) Reference String Length is the joint strength divided by both the weight in air and the design factor.
- (3) API Joint Strength is for reference only. It is calculated from Formulas 42 and 43 in the API Bulletin 5C3.
- (4) API Internal Pressure Resistance is calculated from Formulas 31, 32, and 35 in the API Bulletin 5C3.
- (5) Torque values are approximated and may be affected by field conditions.
- (6) Connection yield torque is not to be exceeded.

Connection specifications within the control of VAM-USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades to obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advite obtain current connection specifications and verify pipe mechanical properties for each application.



O.D. 5.500 WEIGHT 20.00

WALL 0.361 GRADE VST P110EC

**Connection OD** 

**Connection ID** 

Wk Compression

**Max Pure Bending** 

**DRIFT** 4.653

5.701 in

4.719 in

**357 kips** 

20 °/100 ft

#### PIPE BODY PROPERTIES

| Material Grade        | VST P110EC |     |
|-----------------------|------------|-----|
| Min. Yield Strength   | 125        | ksi |
| Min. Tensile Strength | 135        | ksi |
|                       |            |     |

| Outside Diameter | 5.500 in     |
|------------------|--------------|
| Inside Diameter  | 4.778 in     |
| Nominal Area     | 5.828 sq.in. |

| Yield Strength     | 729 kips   |
|--------------------|------------|
| Ultimate Strength  | 787 kips   |
| Min Internal Yield | 14,360 psi |
| *High Collapse     | 12,090 psi |

Contact: <u>tech.support@vam-usa.com</u>
Ref. Drawing: SI-PD 100414 Rev.B

Date: 14-Jun-16 Time: 2:31 PM

#### CONNECTION PROPERTIES

| Make up Loss       | 5.132 in     |
|--------------------|--------------|
| Box Critical Area  | 4.083 sq.in. |
| %PB Section Area   | 70.1%        |
| Pin Critical Area  | 4.123 sq.in. |
| %PB Section Area   | 70.7%        |
| Yield Strength     | 510 kips     |
| Parting Load       | 551 kips     |
| Min Internal Yield | 14,360 psi   |
| *High Collapse     | 12,090 psi   |

#### TORQUE DATA ft-lb

| min   | opt   | max    |
|-------|-------|--------|
| 8,700 | 9,700 | 10,700 |



All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice, in no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

| letal One Corp.    | MO-FX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                 | Page                                                                          | MCTP                                                                                                     |                           |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|
| -                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>-</b>                                                                                                                                        | Date                                                                          | 3-Nov-1                                                                                                  | 6                         |  |  |  |
| Metal One          | Connection Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Connection Data Sheet                                                                                                                           |                                                                               |                                                                                                          |                           |  |  |  |
|                    | - John Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ita Oliect                                                                                                                                      | Rev.                                                                          | 0                                                                                                        |                           |  |  |  |
|                    | Geométry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>Imperia</u>                                                                                                                                  | Imperial                                                                      |                                                                                                          |                           |  |  |  |
|                    | Pipe Body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                        | -                                                                             |                                                                                                          |                           |  |  |  |
| •                  | Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P110HC 1                                                                                                                                        | <i>!</i>                                                                      | P110HC"1                                                                                                 | 1 177                     |  |  |  |
|                    | Pipe OD (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 5/8                                                                                                                                           | in                                                                            | 193.68                                                                                                   | mm                        |  |  |  |
| MO-FXL             | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.70                                                                                                                                           | lb/ft                                                                         | 44.25                                                                                                    | kg/m                      |  |  |  |
|                    | Actual weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.04                                                                                                                                           |                                                                               | 43.26                                                                                                    | kg/m                      |  |  |  |
|                    | Wall Thickness (:t')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0.375                                                                                                                                          | in _                                                                          | 9.53                                                                                                     | .mm                       |  |  |  |
|                    | Pipe ID (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.875                                                                                                                                           | in                                                                            | 174.63                                                                                                   | mm                        |  |  |  |
|                    | Pipe body cross section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.537                                                                                                                                           | , in <sup>2</sup>                                                             | 5,508                                                                                                    | mm <sup>2</sup>           |  |  |  |
|                    | Drift Dia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.750                                                                                                                                           | in                                                                            | 171.45                                                                                                   | mm                        |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 | 177                                                                           |                                                                                                          | 111111                    |  |  |  |
|                    | Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                 |                                                                               |                                                                                                          |                           |  |  |  |
|                    | Box .@D.( W').                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 | in                                                                            | 193.68                                                                                                   | mm_                       |  |  |  |
| <b>1</b>           | PIN ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.875                                                                                                                                           | in                                                                            | 174.63                                                                                                   | mm                        |  |  |  |
|                    | Make up Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 4:219                                                                                                                                         | ln .                                                                          | 107.16                                                                                                   | mm.                       |  |  |  |
|                    | Box Critical Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.714                                                                                                                                           | in².                                                                          | 3686                                                                                                     | mm <sup>2</sup>           |  |  |  |
| 4 1 1              | discal Joint load efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70                                                                                                                                              | %                                                                             | . <b>7</b> .0                                                                                            | %                         |  |  |  |
| , j a              | read Taper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                               |                                                                               | 2" per (t )                                                                                              |                           |  |  |  |
|                    | Number of Threads:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of Threads 5.TPI                                                                                                                         |                                                                               |                                                                                                          |                           |  |  |  |
| -                  | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                 |                                                                               |                                                                                                          |                           |  |  |  |
|                    | Performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                 |                                                                               |                                                                                                          |                           |  |  |  |
| 10 E               | Performance  Performance Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s for Pipe Body                                                                                                                                 |                                                                               |                                                                                                          |                           |  |  |  |
| 10 E               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for Pipe Body                                                                                                                                   | kips                                                                          | 4,747                                                                                                    | kN 1                      |  |  |  |
| 2                  | Performance Properties S.M.Y.S. 1 M.I.Y.P. *1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 | kips<br>psi                                                                   | 74.21                                                                                                    | MPa                       |  |  |  |
| ozs P <sub>H</sub> | Performance Properties S.M.Y.S. *1 M.I.Y.P. *1 Collapse Strength *1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,067<br>10,760<br>7,360                                                                                                                        | psi<br>psi                                                                    | 74.21<br>50.76                                                                                           | MPa<br>MPa                |  |  |  |
| Part Part          | Performance Properties  S.M.Y.S. *1  M.I.Y.P. *1  Collapse Strength *1  Note S.M.Y.S.= Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,067<br>10,760<br>7,360<br>idled Minimum YIE                                                                                                   | psi<br>psi<br>LD Strer                                                        | 74.21<br>50.76<br>ngth of Pipe bod                                                                       | MPa<br>MPa                |  |  |  |
| 7 Pr               | Performance Properties  S.M.Y.S. *1  M.I.Y.P. *1  Collapse Strength *1  Note S.M.Y.S.= Spectors  M.I.Y.P. = Mini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,067<br>10,760<br>7,360                                                                                                                        | psi<br>psi<br>LD Strer<br>Pressur                                             | 74.21<br>50.76<br>ngth of Pipe bod<br>re of Pipe body                                                    | MPa<br>MPa                |  |  |  |
| ozs Pri            | Performance Properties  S.M.Y.S. *1  M.I.Y.P. *1  Collapse Strength *1  Note S.M.Y.S.= Spectors  M.I.Y.P. = Mini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,067<br>10,760<br>7,360<br>cilied Minimum YIE<br>mum Internal Yield<br>B P110HC (YS=12                                                         | psi<br>psi<br>LD Strer<br>Pressur<br>5~140ks                                  | 74.21<br>50.76<br>ngth of Pipe bod<br>re of Pipe body                                                    | MPa<br>MPa                |  |  |  |
| ozs Pri            | Performance Properties  S.M.Y.S. *1  M.I.Y.P. *1  Collapse Strength *1  Note S.M.Y.S.= Spectors  M.I.Y.P. = Minital *1  Based on VS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,067<br>10,760<br>7,360<br>cilied Minimum YIE<br>mum Internal Yield<br>B P110HC (YS=12                                                         | psi<br>psi<br>LD Strer<br>Pressur<br>5~140ks<br>n                             | 74.21<br>50.76<br>ngth of Pipe body<br>e of Pipe body<br>ii)                                             | MPa<br>MPa                |  |  |  |
| ozs Pri            | Performance Properties  S.M.Y.S. *1  M.I.Y.P. *1  Collapse Strength *1  Note S.M.Y.S. = Spector M.I.Y.P. = Minital *1 Based on VS  Performance Properties  Tensile Yield load  Min. Compression Yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,067<br>10,760<br>7,360<br>silied Minimum YIE<br>mum Internal Yield<br>B P110HC (YS=12<br>for Connectio                                        | psi<br>psi<br>LO Strer<br>Pressur<br>5~140ks<br>n<br>1 70%                    | 74.21 50.76 Ingth of Pipe body ie of Pipe body ii) of S.M.Y.S. )                                         | MPa<br>MPa                |  |  |  |
| oss Pri            | Performance Properties  S.M.Y.S. *1  M.I.Y.P. *1  Collapse Strength *1  Note S.M.Y.S. Spec  M.I.Y.P. & Mini  1 Based on VS  Performance Properties  Tensile Yield load  Min. Compression Yield  Internal Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,067<br>10,760<br>7,360<br>silied Minimum YIE<br>mum Internal Yield<br>B P110HC (YS=12<br>s for Connectio                                      | psi<br>psi<br>LD Strer<br>Pressur<br>5-140ks<br>n<br>70%<br>( 70%             | 74.21 50.76 Ingth of Pipe body ie of Pipe body ii) of S.M.Y.S. ) of S.M.Y.S. )                           | MPa<br>MPa<br>y           |  |  |  |
| oss Pri            | Performance Properties  S.M.Y.S. *1  M.I.Y.P. *1  Collapse Strength *1  Note S.M.Y.S. = Spector M.I.Y.P. = Minital *1 Based on VS  Performance Properties  Tensile Yield load  Min. Compression Yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,067 10,760 7,360 idled Minimum YIE mum Internal Yielo B P110HC (YS=12 s for Connectio 7,47 kips 747 kips                                      | psi<br>psi<br>LD Strer<br>Pressur<br>5-140ks<br>n<br>70%<br>( 70%             | 74.21 50.76 Ingth of Pipe body ie of Pipe body ii) of S.M.Y.S. )                                         | MPa<br>MPa<br>y           |  |  |  |
| ozs Pri            | Performance Properties  S.M.Y.S. *1  M.I.Y.P. *1  Collapse Strength *1  Note S.M.Y.S. Spec  M.I.Y.P. & Mini  1 Based on VS  Performance Properties  Tensile Yield load  Min. Compression Yield  Internal Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,067 10,760 7,360 idled Minimum YIE mum Internal Yielo B P110HC (YS=12 s for Connectio 7,47 kips 747 kips                                      | psi<br>psi<br>LD Strer<br>Pressur<br>5-140ks<br>n<br>70%<br>( 70%             | 74.21 50.76 Ingth of Pipe body ie of Pipe body ii) of S.M.Y.S. ) of S.M.Y.S. ) of M.I.Y.P. )             | MPa<br>MPa<br>y           |  |  |  |
| ozs Pri            | Performance Properties  S.M.Y.S. *1  M.I.Y.P. *1  Collapse Strength *1  Note S.M.Y.S. Spector  M.I.Y.P. Minitage  1 Based on VS  Performance Properties  Tensile Yield load  Min. Compression Yield  Internal Pressure  External Pressure  Max. DLS ( deg./100ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,067 10,760 7,360 idled Minimum YIE mum Internal Yielo B P110HC (YS=12 s for Connectio 7,47 kips 747 kips                                      | psi<br>psi<br>LO Strer<br>Pressur<br>5~140ks<br>n<br>( 70%<br>( 80%<br>100% c | 74.21 50.76 Ingth of Pipe body ie of Pipe body ii) of S.M.Y.S. ) of S.M.Y.S. ) of M.I.Y.P. )             | MPa<br>MPa<br>y           |  |  |  |
| ozs Pri            | Performance Properties  S.M.Y.S. *1  M.I.Y.P. *1  Collapse Strength *1  Note S.M.Y.S. * Spectors  M.I.Y.P. * Minitage  1 Based on VS  Performance Properties  Tensile Yield load  Min. Compression Yield  Internal Pressure  External Pressure  Max. DLS ( deg. /100ft)  Recommended Torque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,067 10,760 7,360 idlied Minimum YIE mum Internal Yield B P110HC (YS=12 for Connectio 7,47 kips 747 kips 8,610 psl                             | psi<br>psi<br>LO Strer<br>Pressur<br>5~140ks<br>n<br>( 70%<br>( 80%<br>100% c | 74.21 50.76 Ingth of Pipe body ii) of S.M.Y.S.) of M.I.Y.P.) of Collapse St                              | MPa<br>MPa<br>y<br>rength |  |  |  |
| oss Pri            | Performance Properties  S.M.Y.S. *1  M.I.Y.P. *1  Collapse Strength *1  Note S.M.Y.S. Spector  M.I.Y.P. Minitage Minitag | 1,067<br>10,760<br>7,360<br>citied Minimum YIE<br>mum Internal Yield<br>B P110HC (YS=12<br>s for Connectio<br>747 kips<br>747 kips<br>8,610 psl | psi<br>psi<br>LO Strer<br>Pressur<br>5~140ks<br>n<br>( 70%<br>( 80%<br>100% c | 74.21 50.76 Ingth of Pipe body e of Pipe body ii) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St  | MPa<br>MPa<br>y<br>rength |  |  |  |
| loss Pri           | Performance Properties  S.M.Y.S. *1  M.I.Y.P. *1  Collapse Strength *1  Note S.M.Y.S. Spector  M.I.Y.P. Minitage Min. Yield load  Min. Compression Yield  Internal Pressure  External Pressure  Max. DLS ( deg. /100ft)  Recommended Torque  Min.  Opti.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,067<br>10,760<br>7,360<br>cified Minimum YIE<br>mum Internal Yield<br>B P110HC (YS=12<br>s for Connectio<br>747 kips<br>747 kips<br>8,610 psl | psi<br>psi<br>LO Strer<br>Pressur<br>5~140ks<br>n<br>( 70%<br>( 80%<br>100% d | 74.21 50.76 Ingth of Pipe body ii) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St 0 21.000 23,300 | MPa<br>MPa<br>y<br>rength |  |  |  |
| loss Pri           | Performance Properties  S.M.Y.S. *1  M.I.Y.P. *1  Collapse Strength *1  Note S.M.Y.S. Spector  M.I.Y.P. Minitage Minitag | 1,067<br>10,760<br>7,360<br>citied Minimum YIE<br>mum Internal Yield<br>B P110HC (YS=12<br>s for Connectio<br>747 kips<br>747 kips<br>8,610 psl | psi<br>psi<br>LO Strer<br>Pressur<br>5~140ks<br>n<br>( 70%<br>( 80%<br>100% c | 74.21 50.76 Ingth of Pipe body e of Pipe body ii) of S.M.Y.S.) of S.M.Y.S.) of M.I.Y.P.) of Collapse St  | MPa<br>MPa<br>y<br>rength |  |  |  |

.



## **Revised Permit Information 5/9/2019**

Abstract: Amend the cementing program and add bradenhead squeeze stage. Amend the casing program and revise annulus clearance criteria.

EOG requests that these amendments be applied to the following wells:

| Well Name               | API No.      | Lease No.  |
|-------------------------|--------------|------------|
| Philly 31 Fed Com #706H | 30-025-44763 | NMNM110840 |
| Philly 31 Fed Com #708H | 30-025-44765 | NMNM110840 |
| Philly 31 Fed Com #709H | 30-025-44766 | NMNM110840 |

#### <u>Cement</u>

EOG requests a variance from the minimum standards to pump a two stage cement job on the 7-5/8" intermediate casing string with the first stage being pumped conventionally with the calculated TOC @ the Brushy Canyon and the second stage performed as a bradenhead squeeze with planned cement from the Brushy Canyon to surface. A top out stage will be performed as a contingency.

#### **Cementing Program:**

Primary Plans For 7-5/8" cement Job:

| Depth             | No.<br>Sacks | Wt.  | Yld<br>Ft³/sk | Slurry Description                                                                                                |
|-------------------|--------------|------|---------------|-------------------------------------------------------------------------------------------------------------------|
| 820′<br>9-5/8"    | 990          | 13.5 | 1.73          | Lead: Class C + 4.0% Bentonite Gel + 0.5% CaCl₂ + 0.25 lb/sk Cello-Flake (TOC @ Surface)                          |
|                   | 100          | 14.8 | 1.34          | Tail: Class C + 0.6% FL-62 + 0.25 lb/sk Cello-Flake + 0.2% Sodium Metasilicate (TOC @ 620')                       |
| 11,700'<br>7-5/8" | 500          | 14.2 | 1.11          | 1st Stage (Tail): Class C + 0.6% Halad-9 + 0.45% HR-601 + 3% Microbond (TOC @ 7,000')                             |
|                   | 1,000        | 12.7 | 2.30          | 2 <sup>nd</sup> Stage (Bradenhead squeeze): Class C + 3% Salt + 1%<br>PreMag-M + 6% Bentonite Gel (TOC @ surface) |
| TD<br>5-1/2"      | 940          | 14.2 | 1.31          | Lead: Class H + 0.4% Halad-344 + 0.35% HR-601 + 3%<br>Microbond (TOC @ 11,200')                                   |

EOG also requests variance for the option to perform this cement procedure on previously permitted 4 string designs in the 7-5/8" 2<sup>nd</sup> Intermediate casing string as a contingency plan.

EOG will include the final fluid top verified by Echo-meter and the volume of displacement fluid above the cement slurry in the annulus in all post-drill sundries on wells utilizing this cement program.

EOG will report to the BLM the volume of fluid (limited to 5 bbls) used to flush intermediate casing valves following backside cementing procedures.

| Additive            | Purpose                                 |
|---------------------|-----------------------------------------|
| Bentonite Gel       | Lightweight/Lost circulation prevention |
| Calcium Chloride    | Accelerator                             |
| Cello-flake         | Lost circulation prevention             |
| Sodium Metasilicate | Accelerator                             |
| MagOx               | Expansive agent                         |
| Pre-Mag-M           | Expansive agent                         |
| Sodium Chloride     | Accelerator                             |
| . FL-62             | Fluid loss control                      |
| Halad-344           | Fluid loss control                      |
| Halad-9             | Fluid loss control                      |
| HR-601              | Retarder                                |
| Microbond           | Expansive Agent                         |

#### **Casing**

| Hole<br>Size | Interval        | Csg<br>OD | Weight | Grade   | Conn           | DF <sub>min</sub><br>Collapse | DF <sub>min</sub><br>Burst | DF <sub>min</sub><br>Tension |
|--------------|-----------------|-----------|--------|---------|----------------|-------------------------------|----------------------------|------------------------------|
| 12.25"       | 0' - 820'       | 9.625"    | 40#    | J-55    | LTC            | 1.125                         | 1.25                       | 1.60                         |
| 8.75"        | 0' - 11,700'    | 7.625"    | 29.7#  | HCP-110 | FXL            | 1.125                         | 1.25                       | 1.60                         |
| 6.75"        | 0' - 11,200'    | 5.5"      | 20#    | P-110EC | DWC/C-IS<br>MS | 1.125                         | 1.25                       | 1.60                         |
| 6.75"        | 11,200'-11,700' | 5.5"      | 20#    | P-110EC | VAM SFC        | 1.125                         | 1.25                       | 1.60                         |
| 6.75"        | 11,700' TD      | 5.5"      | 20#    | P-110EC | DWC/C-IS<br>MS | 1.125                         | 1.25                       | 1.60                         |

EOG also requests to retain the option to utilize previously permitted 4 string designs, if applicable

#### **Annulus Clearance**

EOG requests variance to allow deviation from the 0.422" annulus clearance requirement from Onshore Order #2 under the following conditions:

- Annular clearance to meet or exceed 0.422" between intermediate casing ID and production casing coupling only on the first 500' overlap between both casing strings.
- Annular clearance less than 0.422" is acceptable for the curve and lateral portions of the production open hole section.

# PECOS DISTRICT DRILLING OPERATIONS CONDITIONS OF APPROVAL

OPERATOR'S NAME:
LEASE NO.:
WELL NAME & NO.:
SURFACE HOLE FOOTAGE:
BOTTOM HOLE FOOTAGE
LOCATION:
COUNTY:
LEASE SECTION 31, T26S, R34E, NMPM
LEA

| Potash               | © None         | C Secretary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ⊂ R-111-P |
|----------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Cave/Karst Potential | © Low          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ( High    |
| Variance             | None           | Flex Hose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Other     |
| Wellhead             | Conventional   | Multibowl     ■ Multi |           |
| Other                | ☐4 String Area | ☐Capitan Reef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | □WIPP     |

These COAs Apply to Multiple Wells (Philly 31 FED COM 706H, 708H, & 709H) All Previous COAs Still Apply, Except for the Following:

#### A. CASING

- 1. The 9 5/8" surface casing shall be set at approximately 870 feet (a minimum of 25' into the Rustler Anhydrite and above the salt) and cemented to surface.
  - a. If cement does not circulate to surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of 6 hours after pumping cement, ideally between 8-10 hours after completing the cement job.
  - b. WOC time for a primary cement job will be a minimum of <u>8 hours</u> or <u>500 psi</u> compressive strength, whichever is greater. This is to include the lead cement.
  - c. If cement falls back, remedial cementing will be done prior to drilling out that string.
  - d. WOC time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 psi compressive strength, whichever is greater.

2. The 7 5/8" intermediate casing shall be set at 11,700 feet and the minimum required fill of cement is:

Operator has proposed to cement in two stages by conventionally cementing the first stage and performing a bradenhead squeeze on the second stage.

#### First Stage

 Operator will cement to 7,000 feet with intent to reach Top of Brushy Canyon.

#### **Second Stage**

Operator will perform bradenhead squeeze with cement to surface.

Operator has proposed to pump down 9-5/8" X 7-5/8" annulus. Operator must run Echo-meter to verify fluid top and the volume of displacement fluid above the cement slurry in the annulus.

- 3. The minimum required fill of cement behind the 5-1/2" production casing is:
  - Cement should tie-back at least 200 feet into previous string. Operator shall provide method of verification.

#### **B. PRESSURE CONTROL**

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance approved to use a 5M annular. The annular must be tested to full working pressure (5,000 psi).
  - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
  - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
  - c. Manufacturer representative shall install the test plug for the initial BOP test.
  - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
  - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed

JJP05152019

# GENERAL REQUIREMENTS

- 1. The BLM is to be notified in advance for a representative to witness:
  - a. Spudding well (minimum of 24 hours)
  - b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
  - c. BOPE tests (minimum of 4 hours)
    - Chaves and Roosevelt Counties
       Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
       During office hours call (575) 627-0272.

       After office hours call (575)
    - Eddy County
      Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
    - ✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
  - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
  - b. When the operator proposes to set surface casing with Spudder Rig
    - Notify the BLM when moving in and removing the Spudder Rig.
    - Notify the BLM when moving in the 2<sup>nd</sup> Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
    - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log (one log per well pad is acceptable) run from TD to surface (horizontal well vertical portion of hole) shall

be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

#### A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a

larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

#### **B. PRESSURE CONTROL**

- All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 5M or higher system requires an HCR valve, remote kill line and annular to match.
   The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
  - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
  - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
  - c. Manufacturer representative shall install the test plug for the initial BOP test.
  - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
  - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
  - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done.

The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, no tests shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.