Form 3160-3 (June 2015)

(Continued on page 2)

IBBS OCD **UNITED STATES**

FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018

*(Instructions on page 2)

DEPARTMENT OF THE I BUREAU OF LAND MAN	INTERIOR	OBPO	.40	5. Lease Serial No. NMNM020979	
BUREAU OF LAND MAN APPLICATION FOR PERMIT TO [DRILL OR		バミD	6 If Indian Allotee or	Tribe Name
la. Type of work:	REENTER Other	RECE	VED.	7. If Unit or CA Agree 8. Lease Name and We	·
lc. Type of Completion: Hydraulic Fracturing S	Single Zone [Multiple Zone		IGLOO 19-24 STATE	
2. Name of Operator CAZA OPERATING LLC 249099				9. API Well No.	46412
3a. Address 200 N. Loraine Street, Suite 1550 Midland TX 79701	3b. Phone N (432)682-74	o. (include area cod 424	le)	10. Field and Pool, or LEA / BONE SPRING	Exploratory
4. Location of Well (Report location clearly and in accordance At surface SWSE / 450 FSL / 2514 FEL / LAT 32.5520 At proposed prod. zone SWSW / 460 FSL / 280 FWL / L	615 / LONG -	103.496198	1417	11. Sec., T. R. M. or B SEC 19 / T20S / R35	lk. and Survey or Area
14. Distance in miles and direction from nearest town or post of 22.6 miles			1417	12. County or Parish LEA	13. State NM
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of ac	res in lease	17. Spaci 240	ng Unit dedicated to this	weil
Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	19. Proposed 9628 feet /	•		/BIA Bond No. in file //B000471	
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3693 feet	22. Approxis 05/30/2018 24. Attac		start*	23. Estimated duration 35 days	
The following, completed in accordance with the requirements of as applicable) 1. Well plat certified by a registered surveyor. 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office	em Lands, the	4. Bond to cover the Item 20 above). 5. Operator certification.	ne operation	Hydraulic Fracturing rule as unless covered by an e	xisting bond on file (see
25. Signature (Electronic Submission)		(Printed/Typed) 3 Sam / Ph: (432)6	82-7424		ate 3/13/2018
Title VP Operations				T	
Approved by (Signature) (Electronic Submission)	Cody I	(Printed/Typed) Layton / Ph: (575)	234-5959		ate 9/26/2019
Title Assistant Field Manager Lands & Minerals	Office CARL				
Application approval does not warrant or certify that the applica pplicant to conduct operations thereon. Conditions of approval, if any, are attached.	int holds legal o	or equitable title to the	hose rights	in the subject lease which	th would entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, of the United States any false, fictitious or fraudulent statements					department or agency
GCP Rec 10/4/19	ven Wi	TH CONDIT	IONS	10/04/1	9

pproval Date: 09/26/2019

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

1. SHL: SWSE / 450 FSL / 2514 FEL / TWSP: 20S / RANGE: 35E / SECTION: 19 / LAT: 32.552615 / LONG: -103.496198 (TVD: 0 feet, MD: 0 feet)

PPP: SESE / 450 FSL / 0 FEL / TWSP: 20S / RANGE: 35E / SECTION: 24 / LAT: 32.552617 / LONG: -103.505174 (TVD: 9805 feet, MD: 12410 feet)

BHL: SWSW / 460 FSL / 280 FWL / TWSP: 20S / RANGE: 34E / SECTION: 24 / LAT: 32.552619 / LONG: +103.521417 (TVD: 9628 feet, MD: 17418 feet)

BLM Point of Contact

Name: Priscilla Perez

Title: Legal Instruments Examiner

Phone: 5752345934 Email: pperez@blm.gov

(Form 3160-3, page 3)

Approval Date: 09/26/2019

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

Approval Date: 09/26/2019

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: | C

Caza Operating, LLC.

LEASE NO.:

NMNM-020979

WELL NAME & NO.:

Igloo 19-24 State Fed Com 14H

SURFACE HOLE FOOTAGE:

0450' FSL & 2514' FEL

BOTTOM HOLE FOOTAGE

0460' FSL & 0280' FWL Sec. 24, T. 20 S., R 34 E.

LOCATION:

Section 19, T. 20 S., R 35 E., NMPM

COUNTY: Cou

County, New Mexico

Communitization Agreement

The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.

In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

☐ Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 3933612

- 1. A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the Yates formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.
- 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1)

Page 2 of 7

Approval Date: 09/26/2019

cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Capitan Reef

Possible of water flows in the Salado.

Possible lost circulation in the Red beds, Rustler, Capitan Reef, Delaware and Bone Spring.

- 1. The 13-3/8 inch surface casing shall be set at approximately 1881 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Formation below the 13-3/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

Page 3 of 7

Approval Date: 09/26/2019

If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:

- Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
- Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Operator has proposed DV tool at depth of 3900', but will adjust cement proportionately if moved. DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

- a. First stage to DV tool:____
- Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage. Excess calculates to negative 22% Additional cement will be required.

	b. Second stage above DV tool.
	☐ Cement to surface. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to Capitan Reef.
Te po pr	ormation below the 9-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. st to be done as a mud equivalency test using the mud weight necessary for the re pressure of the formation below the shoe (not the mud weight required to event dissolving the salt formation) and the mud weight for the bottom of the le. Report results to BLM office.
	entralizers required on horizontal leg, must be type for horizontal service and a inimum of one every other joint.
3.	The minimum required fill of cement behind the 5-1/2 inch production casing is:
	Cement should tie-back at least 50 feet above the Capitan Reef (Top of Capitan Reef estimated at 4570'). Operator shall provide method of verification.
- ,	4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
C.	PRESSURE CONTROL

C.

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.
- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the

- straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 3. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be psi. 5M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

- 4. The appropriate BLM office shall be notified a minimum of hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - a. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.
 - b. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - c. The results of the test shall be reported to the appropriate BLM office.
 - d. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.

Page 6 of 7

Approval Date: 09/26/2019

e. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 090619

Page 7 of 7

Approval Date: 09/26/2019

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

(i) The contraction of the contr

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Tony B Sam

Signed on: 03/13/2018

Title: VP Operations

Street Address: 200 N. Loraine Street, Suite 1550

City: Midland

State: TX

Zip: 79701

Phone: (432)682-7424

Email address: steve.morris@morcorengineering.com

Field Representative

Representative Name: Kevin Garrett

Street Address: 200 N. Lorraine St #1550

City: Midland

State: TX

Zip: 79701

Phone: (432)556-8508

Email address: kgarrett@cazapetro.com

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400027887

Operator Name: CAZA OPERATING LLC

Well Name: IGLOO 19-24 STATE FED COM

Well Type: OIL WELL

Submission Date: 03/13/2018

Well Number: 14H

Well Work Type: Drill

Show Final Text

Section 1 - General

APD ID:

10400027887

Tie to previous NOS? N

Submission Date: 03/13/2018

BLM Office: CARLSBAD

User: Tony B Sam

Title: VP Operations

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM020979

Lease Acres: 320

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? NO

APD Operator: CAZA OPERATING LLC

Operator letter of designation:

Operator Info

Operator Organization Name: CAZA OPERATING LLC

Operator Address: 200 N. Loraine Street, Suite 1550

Operator PO Box:

Zip: 79701

Operator City: Midland

State: TX

Operator Phone: (432)682-7424

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Master Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: LEA

Pool Name: BONE SPRING

SOUTH

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Is the proposed well in a Helium production area? N Use Existing Well Pad? YES New surface disturbance? Y

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name: IGLOO Number: 12H

Well Class: HORIZONTAL 19-24 STATE FED COM

Number of Legs: 1

Well Work Type: Drill

Well Type: OIL WELL
Describe Well Type:

Well sub-Type: INFILL

Describe sub-type:

Distance to town: 22.6 Miles

Distance to nearest well: 50 FT

Distance to lease line: 450 FT

Reservoir well spacing assigned acres Measurement: 240 Acres

Well plat:

IGLOO_19_24_STATE_FED_COM_14H_C_102_signed_20180205071630.pdf

Well work start Date: 05/30/2018

Duration: 35 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number: 33494 Reference Datum:

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
SHL Leg #1	450	FSL	251 4	FEL	208	35E	19	Aliquot SWSE	32.55261 5	- 103.4961 98	LEA	NEW MEXI CO		S	STATE	369 3	0	0
KOP Leg #1	450	FSL	251 4	FEL	208	35E	19	Aliquot SWSE	32.55261 5	- 103.4961 98	LEA		NEW MEXI CO	s	STATE	- 562 8	932 1	932 1
PPP Leg #1	450	FSL	0	FEL	208	35E	24	Aliquot SESE	32.55261 7	- 103.5051 74	LEA	l .	NEW MEXI CO		NMNM 020979	- 611 2	124 10	980 5

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
EXIT Leg #1	460	FSL	280	FWL	208	35E	24	Aliquot SWS W	32.55261 9	- 103.5214 17	LEA	MEXI	NEW MEXI CO	F	NMNM 123525	- 593 5	174 18	962 8
BHL Leg #1	460	FSL	280	FWL	208	34E	24	Aliquot SWS W	32.55261 9	- 103.5214 17	LEA	MEXI		F	NMNM 123525	- 593 5	174 18	962 8

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

APD ID: 10400027887 **Submission Date:** 03/13/2018

Operator Name: CAZA OPERATING LLC

Well Name: IGLOO 19-24 STATE FED COM Well Number: 14H

Well Type: OIL WELL Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical				Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1	QUATERNARY	3693	0	0		USEABLE WATER	N
2	RUSTLER	1862	1831	1857		NONE	N .
3	BASE OF SALT	252	3441	3441		NONE	N
4	YATES	-64	3757	3757		NONE	N
5	CAPITAN REEF	-346	4039	4039		USEABLE WATER	N
6	DELAWARE	-1873	5566	5566		NATURAL GAS,OIL	N
·7	CHERRY CANYON	-2085	5778	5778		NATURAL GAS,OIL	N
8	BRUSHY CANYON	-3143	6836	6836		NATURAL GAS,OIL	N
9	BONE SPRING	-4895	8588	8588		NATURAL GAS,OIL	N
10	BONE SPRING 1ST	-6115	9808	9908		NATURAL GAS,OIL	Y

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 15000

Equipment: Rotating head with a rating of 500psi will be used. A remote kill line and gas buster will be used

Requesting Variance? YES

Variance request: Variance is requested for the use of a coflex hose for the choke line to from the BOP to the choke manifold. A variance is requested to use 1502(15,000psi working pressure) hammer unions downstream of the Choke Manifold used to connect the mud/gas separator and panic line. See choke manifold diagram

Testing Procedure: Minimum Working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 13-3/8 inch casing shoe shall be 5000 (5M) psi. 5M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips the minimum wait time before

Well Name: IGLOO 19-24 STATE FED COM Well Number: 14H

cut-off is eight hours after bumping the pug. BOP/BOPE testing can begin after cut-off or once cement reaches 500PSI compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified). The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (18 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater prior to initiating the test (see casing segment as lead cement may be critical item). a. The results of the test shall be reported to the appropriate BLM office. b. All Tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office. c. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug.

Choke Diagram Attachment:

Igloo_19_24_State_Fed_Com_14H_Choke_Schematic_20190326195308.pdf

Igloo_19_24_State_Fed_Com_14H_Coflex_Test_20190326195311.pdf

Igloo_19_24_State_Fed_Com_14H_Coflex_Hose_Cert_20190326195310.pdf

BOP Diagram Attachment:

Igloo_19_24_State_Fed_Com_14H_BOP_Schematic_20190326195320.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	CONDUCT OR	26	20.0	NEW	API	N	0	120	0	120	3693	3573	120	H-40		SLIM LINE HIGH PERFORMA NCE						
2	SURFACE	17.5	13.375	NEW	API	N	0	1881	0	1881	3693	1812	1881	J-55	54.5	ST&C	1.3	1.8	DRY	5.01	DRY	8.32
3	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	3900	0	3900	3693	-207	3900	J-55	40	LT&C	1.27	1.35	DRY	2.35	DRY	2.84
4	INTERMED IATE	12.2 5	9.625	NEW	API	N	3900	5542	3900	5542	-207	-1849	1642	HCL -80	40	LT&C	1.47	1.96	DRY	12.4 7	DRY	13.9 5
	PRODUCTI ON	8.75	5.5	NEW	API	N	0	17418	0	9883	3693	-5913	17418	P- 110	17	BUTT	1.7	2.28	DRY	3.38	DRY	3.25

Casing Attachments

Casing Attachments	
Casing ID: 1 String Type: CONDUCTOR Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet(s):	
Casing ID: 2 String Type:SURFACE Inspection Document:	<u> </u>
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet(s): IGLOO_19_24_STATE_FED_COM_14H_Casing_and_Cement_20180313080236.pdf	
Casing ID: 3 String Type: INTERMEDIATE Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet(s):	
IGLOO_19_24_STATE_FED_COM_14H_Casing_and_Cement_20180313080245.pdf	

Well Number: 14H

Operator Name: CAZA OPERATING LLC
Well Name: IGLOO 19-24 STATE FED COM

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

Casing Attachments

Casing ID: 4

String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

IGLOO_19_24_STATE_FED_COM_14H_Casing_and_Cement_20180313080254.pdf

Casing ID: 5

String Type:PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

IGLOO_19_24_STATE_FED_COM_14H_Casing_and_Cement_20180313080303.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
CONDUCTOR	Lead		0.	120	100	1.93	13.5	190	5		+ 4% bwoc Bentonite II + 2% bwoc Calcium Chloride + 0.25 lbs/sack Cello Flake + 0.005% bwoc Static Free + 0.005 gps FP-6L

SURFACE	Lead		0	1581	815	1.93	13.5	1573	100	Class C	+ 4% bwoc Bentonite II
		}									+ 2% bwoc Calcium
											Chloride + 0.25 lbs/sack

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
											Cello Flake + 0.005% bwoc Static Free + 0.005 gps FP- 6L
SURFACE	Tail		1581	1881	166	1.34	14.8	222	50	Class C	1.5% bwoc Calcium Chloride + 0.005 lbs/sack Static Free + 0.005 gps FP-6L
INTERMEDIATE	Lead	3900	0	3900	1265	1.93	13.5	2442	100	Class C	(35:65) + Poz (Fly Ash) + 4% bwoc Bentonite II + 5% bwoc MPA-5 + 0.25% bwoc FL-52 + 5 lbs/sack LCM- 1 + 0.125 lbs/sack Cello Flake + 0.005 lbs/sack Static Free + 0.005 gps FP-6L + 1.2% bwoc Sodium Metasilicate + 5% bwow Sodium Chloride

INTERMEDIATE	Lead	3900	3900	5042	370	1.93	13.5	715	100	Class C	(35:65) + Poz (Fly Ash) + 4% bwoc Bentonite II + 5% bwoc MPA-5 + 0.25% bwoc FL-52 + 5 lbs/sack LCM- 1 + 0.125 lbs/sack Cello Flake + 0.005 lbs/sack Static Free + 0.005 gps FP-6L + 1.2% bwoc Sodium Metasilicate + 5% bwow Sodium Chloride
INTERMEDIATE	Tail		5042	5542	235	1.33	14.8	313	100	Class C	CaCl2
PRODUCTION	Lead		0	9900	2347	2.13	11.9	5001	100	Class H	(50:50) + Poz (Fly Ash) + 10% bwoc Bentonite II + 5% bwow Sodium Chloride + 5 lbs/sack LCM-1 + 0.005 lbs/sack Static Free + 0.005 gps FP-6L
PRODUCTION	Tail		9900	1741 8	3244	1.62	13.5	3798	100	Class H	(15:61:11) Poz (Fly Ash):Class H Cement:CSE-2 + 4% bwow Sodium Chloride

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud will be on location to control any abnormal conditions encountered. Such as but not limited to a kick, lost circulation and hole sloughing

Describe the mud monitoring system utilized: A Pason PVT system will be rigged up prior to spudding the well. A volume monitoring system that measures, calculates, and displays readings from the mud system on the rig to alert the rig crew of impending gas kicks and lost circulation issues. Components a) PVT Pit Bull monitor: Acts as the heart of the system, containing all the controls, switches, and alarms. Typically, it is mounted near the driller's console. b) Junction box: Provides a safe, convenient place for making the wiring connections. c) Mud probes: Measure the volume of drilling fluid in each individual tank. d) Flow sensor: Measures the relative amount of mud flowing in the return line.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1881	SPUD MUD	8.4	8.9	62.8	0.1	9.5	2	0	0	
1881	5542	SALT SATURATED	9.2	10	75	0.1	9.5	2	150000	18	
5542	9883	SALT SATURATED	8.6	9.2	71	0.4	9.5	6	125000	18	Cut Brine

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

no production tests

List of open and cased hole logs run in the well:

DS,GR,MWD,MUDLOG

Coring operation description for the well:

no coring

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4000

Anticipated Surface Pressure: 1842.9

Anticipated Bottom Hole Temperature(F): 165

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? NO

Hydrogen sulfide drilling operations plan:

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Igloo_19___24_State_Fed_Com_14H_Plot_20180313093715.pdf

Igloo_19___24_State_Fed_Com_14H_Directional_Plan_20180313093831.pdf

Other proposed operations facets description:

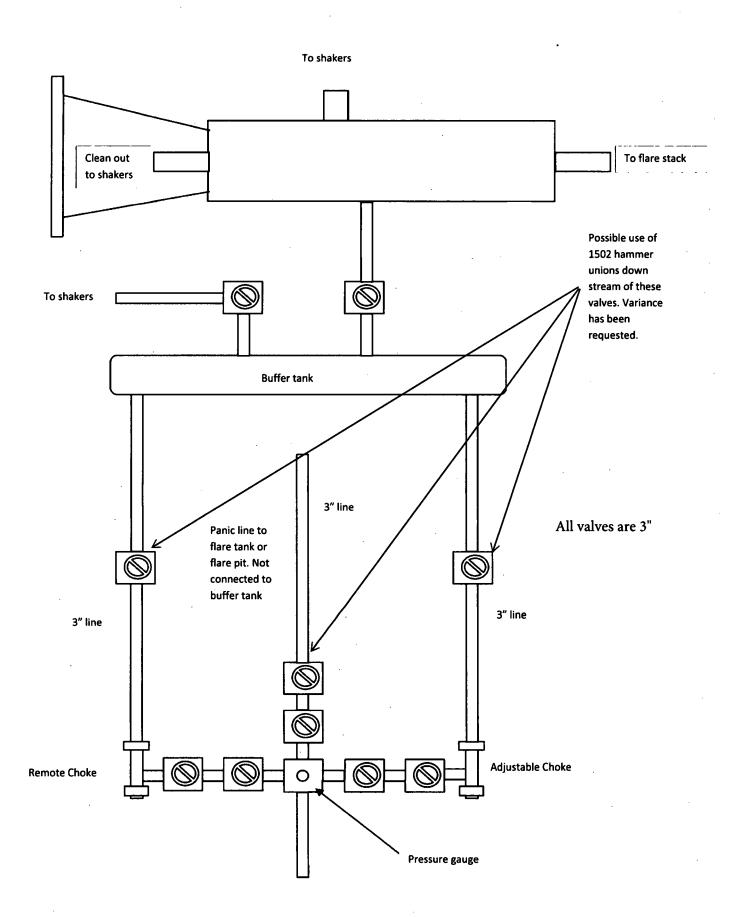
Colflex cert

1 Mile Radius Circles

Interim Reclamation Plat

Gas Capture Plan

Other proposed operations facets attachment:


Igloo 19 24 State Fed Com 14H Coflex Test 20180312074758.pdf

Igloo_19_24_State_Fed_Com_14H_1_Mile_Circles_20180313092420.pdf

IGLOO 19 24 STATE FED COM 14H Interim Reclamation Plat 20180313093406.pdf

Igloo 19 24 State Fed Com 14H_Gas_Capture_Plan 20190326200138.pdf

Other Variance attachment:

In a Lesser Prairie-Chicken section.

13 3/8	surface	csg in a	16	inch hole.	<u>D</u>	esign Factor	<u>rs</u>	SUR	FACE
Segment	#/ft	Gr	ade	Coupling	Joint	Collapse	Burst	Length	Weight
"A"	54.50	J	55	ST&C	5.01	1.3	0.95	1,881	102,515
"B"								0	0
w/8.4#/g	mud, 30min Sfo	Csg Test psig	: 1,090	Tail Cmt	does not	circ to sfc.	Totals:	1,881	102,515
Comparison	of Proposed t	o Minimum	Required Co	ement Volume	<u>s_</u>				
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
16	0.4206	981	1795	898	100	8.90	1660	2M	0.81

	: 1,063	Coupling LT&C LT&C	Joint 2.35 12.74	1.27 1.47	Burst 0.85 1.23 Totals:	Length 3,900 1,642 5,542	Weight 156,000 65,680 221,680
HCL Sfc Csg Test psig	. 80 : 1,063	LT&C	12.74	1.47	1.23	1,642	65,680
Sfc Csg Test psig	: 1,063						
		·			Totals:	5,542	221,680
ume(s) are inte	ended to achi	: 4 6					
		ieve a top of	0	ft from su	urface or a	1881	overlap.
1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpt
1730	3685	1848	99	10.00	2498	3 M	0.81
for D V Tool(s):	: 4000				sum of sx	Σ CuFt	Σ%exces
%: 343	9	•			1815	3690 .	100
5		•					
e 2	e Cmt Sx 2 1730 s for D V Tool(s) s % : 343	e Cmt Sx CuFt Cmt 2 1730 3685 s for D V Tool(s): 4000 s %: 343 9 35	e Cmt Sx CuFt Cmt Cu Ft 2 1730 3685 1848 s for D V Tool(s): 4000 s %: 343 9 35	e Cmt Sx CuFt Cmt Cu Ft % Excess 2 1730 3685 1848 99 s for D V Tool(s): 4000 s %: 343 9 35	e Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt 2 1730 3685 1848 99 10.00 s for D V Tool(s): 4000 s %: 343 9 35	e Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP 2 1730 3685 1848 99 10.00 2498 s for D V Tool(s): 4000 sum of sx 1 %: 343 9 1815 35	e Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE 2 1730 3685 1848 99 10.00 2498 3M s for D V Tool(s): 4000 sum of sx Σ CuFt : %: 343 9 1815 3690

51/2	casing in	side the	9 5/8			Design Fa	ctors P	RODUCTIO	N
Segment	#/ft	Gra	ade	Coupling	Body	Collapse	Burst	Length	Weight
"A"	17.00	Р	110	BUTT	3.25	1.7	2.28	9,321	158,457
"B"	17.00	P	110	BUTT	7.82	1.45	2.28	8,097	137,649
w/8.4#/g	mud, 30min Sfo	: Csg Test psig:	2,051				Totals:	17,418	296,106
В	Segme	nt Design	Factors	would be:	57.13	1.60	if it were a	vertical we	ellbore.
Na Dil	lat I lala Dia		MTD	Max VTD	Csg VD	Curve KOP	Dogleg®	Severity®	MEOC
NO PII	No Pilot Hole Planned			9883	9883	9321	92	10	10221
The c	ement volum	e(s) are inter	nded to ach	ieve a top of	0	ft from si	urface or a	5542	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
8 3/4	0.2526	3764	7800	4451	75	9.10			1.35
lass 'H' tail cr	nt yld > 1.20								

In a Lesser Prairie-Chicken section.

13 3/8	surface	csg in a	16	inch hole.	<u>D</u>	esign Facto	rs	SUR	FACE
Segment	#/ft	Gr	ade	Coupling	Joint	Collapse	Burst	Length	Weight
"A"	54.50	J	55	ST&C	5.01	1.3	0.95	1,881	102,515
"B"								0	0
w/8.4#/	g mud, 30min Sfe	: Csg Test psig	1,090	Tail Cmt	does not	circ to sfc.	Totals:	1,881	102,515
omparison	of Proposed t	o Minimum	Required Co	ement Volume	<u>s_</u>				
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
16	0.4206	981	1795	898	100	8.90	1660	2M	0.81

9 5/8	casing ins	ide the	13 3/8		- <i></i> -	Design Fa	ctors	INTER	MEDIATE
Segment	#/ft .	Gra	ade	Coupling	Joint	Collapse	Burst	Length	Weight
"A"	40.00	J	55	LT&C	2.35	1.27	0.85	3,900	156,000
"B"	40.00	HCL	80	LT&C	12.74	1.47	1.23	1,642	65,680
w/8.4#/g	mud, 30min Sfc	Csg Test psig:	1,063				Totals:	5,542	221,680
The c	ement volume	e(s) are inte	nded to ach	ieve a top of	0	ft from su	ırface or a	1881	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Rea'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
12 1/4	0.3132	1730	3685	1848	99	10.00	2498	3M	0.81
Setti	ng Depths for I	D V Tool(s):	4000				sum of sx	Σ CuFt	Σ%exces
excess cn	nt by stage %:	343	9				1815	3690	100
lass 'C' tail cr	nt yld > 1.35								
urst Frac Gra	idient(s) for Seg	gment(s): A,	B, C, D = 1.0	1, b, c, d Ali	> 0.70, OK.				

5 1/2	casing in	side the	9 5/8	_	•	Design Fa	<u>ictors</u> P	PRODUCTIO	N
Segment	#/ft	Gra	ıde	Coupling	Body	Collapse	Burst	Length	Weight
"A"	17.00	Р	110	BUTT	3.25	1.7	2.28	9,321	158,457
"B"	17.00	P	110	BUTT	7.82	1.45	2.28	8,097	137,649
w/8.4#/g	mud, 30min Sfo	: Csg Test psig:	2,051				Totals:	17,418	296,106
В	Segme	nt Design	Factors	would be:	57.13	1.60	if it were a	vertical we	ellbore.
No Dil	No Pilot Hole Planned			Max VTD	Csg VD	Curve KOP	Dogleg ^o	Severity®	MEOC
NO PII	lot noie Pia	nnea	17418	9883	9883	9321	92	10	10221
The c	The cement volume(s) are intended to achieve a t					ft from s	urface or a	5542	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
8 3/4	0.2526	3764	7800	4451	75	9.10			1.35
lass 'H' tail cn	nt yld > 1.20								
	,								

In a Lesser Prairie-Chicken section.

13 3/8	surface	csg in a	16	inch hole.	D	esign Facto	rs	SUR	FACE
Segment	#/ft	Gr	ade	Coupling	Joint	Collapse	Burst	Length	Weight
"A"	54.50	J	55	ST&C	5.01	1.3	0.95	1,881	102,515
"B"								0	0
w/8.4#/g	mud, 30min Sf	Csg Test psig	: 1,090	Tail Cmt	does not	circ to sfc.	Totals:	1,881	102,515
Comparison	of Proposed t	o Minimum	Required Co	ement Volume	<u>s</u>				
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
16	0.4206	981	1795	898	100	8.90	1660	2M	0.81

#/ft 40.00 40.00		1de 55	Coupling	Joint	Collapse	Burst	Length	Weight
	J	55					Lengui	Meilin
40.00		55	LT&C	2.35	1.27	0.85	3,900	156,000
	HCL	80	LT&C	12.74	1.47	1.23	1,642	65,680
d, 30min Sfc C	ig Test psig:	1,063				Totals:	5,542	221,680
ent volume(s	s) are inte	nded to ach	ieve a top of	0	ft from su	rface or a	1881	overlap.
Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
/olume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
0.3132	1730	3685	1848	99	10.00	2498	3M	0.81
Depths for D	V Tool(s):	4000				sum of sx	Σ CuFt	Σ%exces
y stage %:	343	9				1815	3690	100
ld > 1.35				•				
	ent volume(s Annular Volume 0.3132	nent volume(s) are inter Annular 1 Stage Volume Cmt Sx 0.3132 1730 Depths for D V Tool(s): y stage %: 343	nent volume(s) are intended to achi Annular 1 Stage 1 Stage Volume Cmt Sx CuFt Cmt 0.3132 1730 3685 Depths for D V Tool(s): 4000 y stage %: 343 9	nent volume(s) are intended to achieve a top of Annular 1 Stage 1 Stage Min Volume Cmt Sx CuFt Cmt Cu Ft 0.3132 1730 3685 1848 Depths for D V Tool(s): 4000 y stage %: 343 9	nent volume(s) are intended to achieve a top of 0 Annular 1 Stage 1 Stage Min 1 Stage Volume Cmt Sx CuFt Cmt Cu Ft % Excess 0.3132 1730 3685 1848 99 Depths for D V Tool(s): 4000 by stage %: 343 9	nent volume(s) are intended to achieve a top of 0 ft from su Annular 1 Stage 1 Stage Min 1 Stage Drilling Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt 0.3132 1730 3685 1848 99 10.00 Depths for D V Tool(s): 4000 y stage %: 343 9	nent volume(s) are intended to achieve a top of 0 ft from surface or a Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP 0.3132 1730 3685 1848 99 10.00 2498 Depths for D V Tool(s): 4000 sum of sx y stage %: 343 9	The process of the pr

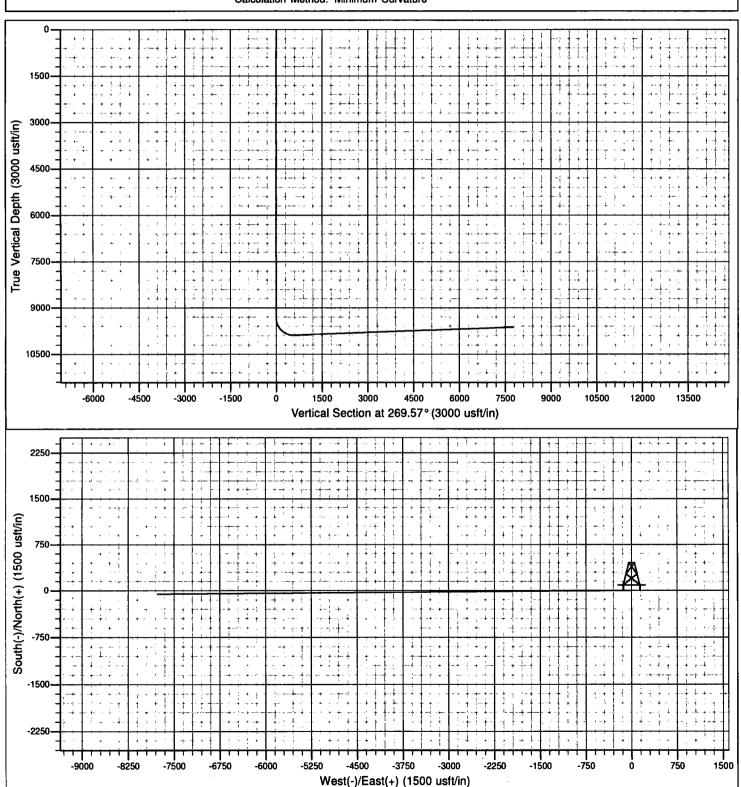
#/ft	Gra	ıde	Coupling	Body	Collapse	Burst	Lenath	Weight
17.00	Р	110	BUTT	3.25	1.7	2.28	9.321	158,457
17.00	Р	110	BUTT	7.82	1.45	2.28	8,097	137,649
mud, 30min Sfo	: Csg Test psig:	2,051				Totals:	17,418	296,106
Segme	ent Design	Factors	would be:	57.13	1.60	if it were a	vertical we	ellbore.
let Hele Die	nnad	MTD	Max VTD	Csg VD	Curve KOP	Dogleg°	Severity®	MEOC
ioi noie Pia	nnea	17418	9883	9883	9321	92 10		10221
ement volum	e(s) are inter	nded to ach	ieve a top of	0	ft from s	urface or a	5542	overlap.
Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Rea'd	Min Dist
Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
0.2526	3764	7800	4451	75	9.10			1.35
	17.00 17.00 mud, 30min Sfo Segme lot Hole Pla sement volum Annular Volume	17.00 P 17.00 P mud, 30min Sfc Csg Test psig: Segment Design lot Hole Planned rement volume(s) are inter Annular 1 Stage Volume Cmt Sx	17.00 P 110 17.00 P 110 mud, 30min Sfc Csg Test psig: 2,051 Segment Design Factors lot Hole Planned mement volume(s) are intended to ach Annular 1 Stage 1 Stage Volume Cmt Sx CuFt Cmt	17.00 P 110 BUTT 17.00 P 110 BUTT mud, 30min Sfc Csg Test psig: 2,051 Segment Design Factors would be: lot Hole Planned MTD Max VTD 17418 9883 rement volume(s) are intended to achieve a top of Annular 1 Stage 1 Stage Min Volume Cmt Sx CuFt Cmt Cu Ft	17.00 P 110 BUTT 3.25 17.00 P 110 BUTT 7.82 mud, 30min Sfc Csg Test psig: 2,051 Segment Design Factors would be: 57.13 lot Hole Planned MTD Max VTD Csg VD 17418 9883 9883 sement volume(s) are intended to achieve a top of Annular 1 Stage 1 Stage Min 1 Stage Volume Cmt Sx CuFt Cmt Cu Ft % Excess	17.00 P 110 BUTT 3.25 1.7 17.00 P 110 BUTT 7.82 1.45 mud, 30min Sfc Csg Test psig: 2,051 Segment Design Factors would be: 57.13 1.60 lot Hole Planned MTD Max VTD Csg VD Curve KOP 17418 9883 9883 9321 sement volume(s) are intended to achieve a top of Annular 1 Stage 1 Stage Min 1 Stage Drilling Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt	17.00 P 110 BUTT 3.25 1.7 2.28 17.00 P 110 BUTT 7.82 1.45 2.28 mud, 30min Sfc Csg Test psig: 2,051 Totals: Segment Design Factors would be: 57.13 1.60 if it were a segment Planned MTD Max ∨TD Csg ∨D Curve KOP Doglego 17418 9883 9883 9321 92 sement volume(s) are intended to achieve a top of 0 ft from surface or a Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP	17.00 P 110 BUTT 3.25 1.7 2.28 9,321 17.00 P 110 BUTT 7.82 1.45 2.28 8,097 mud, 30min Sfc Csg Test psig: 2,051 Totals: 17,418 Segment Design Factors would be: 57.13 1.60 if it were a vertical we lot Hole Planned MTD Max VTD Csg VD Curve KOP Dogleg® Severity® 17418 9883 9883 9321 92 10 sement volume(s) are intended to achieve a top of 0 ft from surface or a 5542 Annular 1 Stage 1 Stage Min 1 Stage Drilling Calc Req'd Volume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE

Project: Igloo 19 - 24 State Fed Com 141 Site: Igloo 19 - 24 State Fed Com 141
Well: Igloo 19 - 24 State Fed Com 141
Wellbore: Igloo 19 - 24 State Fed Com 141

Azimuths to Grid North True North: -0.45 Magnetic North: 6.29

Magnetic Field Strength: 48143.6snT Dip Angle: 60.33° Date: 03/13/2018 Model: IGRF2010

REFERENCE INFORMATION


Co-ordinate (N/E) Reference: Site Igloo 19 - 24 State Fed Com 14H, Grid North

Vertical (TVD) Reference: WELL @ 3715.0usft (Original Well Elev)

Section (VS) Reference: Slot - (0.0N, 0.0E)

Measured Depth Reference: WELL @ 3715.0usft (Original Well Elev)

Calculation Method: Minimum Curvature

HOBBS OCD

OCT 0 4 2019

RECEIVED

Caza Operating LLC

Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Plan: 190911 Igloo 19-24 State Fed Com 14H

Morcor Standard Plan

17 September, 2019

Morcor Standard Plan

Company: Project:

Caza Operating LLC

Site:

Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Well: Wellbore: Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Design:

190911 Igloo 19-24 State Fed Com 14H

Local Co-ordinate Reference: TVD Reference:

Well Igloo 19-24 State Fed Com 14H WELL @ 3715.0usft (Original Well Elev) WELL @ 3715.0usft (Original Well Elev)

MD Reference:

Database:

North Reference:

Grid

Survey Calculation Method:

Minimum Curvature

EDM 5000.1 Single User Db

Project

Igloo 19-24 State Fed Com 14H

Map System:

US State Plane 1983

Geo Datum: Map Zone:

North American Datum 1983 New Mexico Eastern Zone

System Datum:

Mean Sea Level

Site

Igloo 19-24 State Fed Com 14H

Site Position:

Map

Northing:

565,785.90 usft

Latitude: Lonaitude:

32° 33' 9.378 N 103° 29' 41.054 W

Position Uncertainty:

1.0 usft

Easting: **Slot Radius:** 799,725,00 usft 17-1/2 '

Grid Convergence:

0.45 °

Well

From:

Igloo 19-24 State Fed Com 14H

Well Position

+N/-S +E/-W 0.0 usft 0.0 usft Northing: Easting:

565,785,90 usft 799,275.00 usft

Latitude: Longitude:

32° 33' 9.413 N 103° 29' 46,311 W

Position Uncertainty

1.0 usft

Wellhead Elevation:

usft

Ground Level:

3,693,0 usft

Wellbore

Igloo 19-24 State Fed Com 14H

Magnetics

Model Name

IGRF2010

Sample Date

8/26/2019

Declination **(°)**

Dip Angle (°)

60.29

Field Strength

(nT)

47,998

Design

190911 Igloo 19-24 State Fed Com 14H

Audit Notes:

Version:

Phase:

PLAN

6.55

Tie On Depth:

0.0

277.84

Vertical Section:

Depth From (TVD) (usft) 0.0

+N/-S (usft) 0.0

+E/-W (usft) 0.0

Direction (°)

Survey Tool Program

Date 9/17/2019

From (usft)

To (usft)

Survey (Wellbore)

Tool Name

Description

0.0

19,280.0 190911 Igloo 19-24 State Fed Com 14H (I

MWD

MWD - Standard

Morcor Standard Plan

Company: Project: Caza Operating LLC

Site:

Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Well: Wellbore:

Igloo 19-24 State Fed Com 14H

Design:

190911 Igloo 19-24 State Fed Com 14H

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

WELL @ 3715.0usft (Original Well Elev)
WELL @ 3715.0usft (Original Well Elev)

North Reference: Grid

Survey Calculation Method:

Database:

Minimum Curvature

EDM 5000.1 Single User Db

Well Igloo 19-24 State Fed Com 14H

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
0.0	0.00	0.00	0.0	-3,715.0	0.0	0.0	799,275.00	565,785.90	0.00	0.
100.0	0.00	0.00	100.0	-3,615.0	0.0	0.0	799,275.00	565,785.90	0.00	0.
120.0	0.00	0.00	120.0	-3,595.0	0.0	0.0	799,275.00	565,785.90	0.00	0.
20" Conductor										
200.0	0.00	0.00	200.0	-3,515.0	0.0	0.0	799,275.00	565,785.90	0.00	0.
300.0	0.00	0.00	300.0	-3,415.0	0.0	0.0	799,275.00	565,785.90	0.00	0.
400.0	0.00	0.00	400.0	-3,315.0	0.0	0.0	799,275.00	565,785.90	0.00	. 0.
500.0	0.00	0.00	500.0	-3,215.0	0.0	0.0	799,275.00	565,785.90	0.00	0.
600.0	0.00	0.00	600.0	-3,115.0	0.0	0.0	799,275.00	565,785.90	0.00	0.
700.0	0.00	0.00	700.0	-3,015.0	0.0	0.0	799,275.00	565,785.90	0.00	0.
800.0	0.00	0.00	800.0	-2,915.0	0.0	0.0	799,275.00	565,785.90	0.00	0.
900.0	0.00	0.00	900.0	-2,815.0	0.0	0.0	799,275.00	565,785.90	0.00	0
1,000.0	0.00	0.00	1,000.0	-2,715.0	0.0	0.0	799,275.00	565,785.90	0.00	0.
1,100.0	0.00	0.00	1,100.0	-2,615.0	0.0	0.0	799,275.00	565,785.90	0.00	0.
1,200.0	0.00	0.00	1,200.0	-2,515.0	0.0	0.0	799,275.00	565,785.90	0.00	0.
1,300.0	0,00	0.00	1,300.0	-2,415.0	0.0	0.0	799,275.00	565,785.90	0.00	0.
1,400.0	0.00	0.00	1,400.0	-2,315.0	0.0	0.0	799,275.00	565,785.90	0.00	0
1,500.0	0.00	0.00	1,500.0	-2,215.0	0.0	0.0	799,275.00	565,785.90	0.00	0
1,600.0	0.00	0.00	1,600.0	-2,115.0	0.0	0.0	799,275.00	565,785.90	0.00	0
Start Build 4.25										
1,700.0	4.25	8.00	1,699.9	-2,015.1	3.7	0.5	799,275.52	565,789.57	-0.01	4.
1,800.0	8.50	8.00	1,799.3	-1,915.7	14.7	2.1	799,277.06	565,800.56	-0.04	4.
Start 8200.0 hold	at 1800.0 MD									
1,858.4	8.50	8.00	1,857.0	-1,858.0	23.2	3.3	799,278.26	565,809.11	-0.06	0
Rustler 1,867.5	8.50	8.00	1,866.0	-1,849.0	24.5	3.4	799,278.45	565,810.44	-0.07	0
13 3/8" Surface C	asing 8.50	8.00	1,898.2	-1,816.8	29.3	4.1	799,279.12	565,815.20	-0.08	O

Morcor Standard Plan

Company:

Caza Operating LLC

Project: Site: Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Well:

Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Wellbore: Design:

190911 Igloo 19-24 State Fed Com 14H

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Igloo 19-24 State Fed Com 14H

WELL @ 3715.0usft (Original Well Elev) WELL @ 3715.0usft (Original Well Elev)

Grid

Minimum Curvature

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
2,000.0	8.50	8.00	1,997.1	-1,717.9	43.9	6.2	799,281.18	565,829.84	-0.12	Ö.
2,059.6	8.50	8.00	2,056.0	-1,659.0	52.7	7.4	799,282.40	565,838.56	-0.15	0
Top of Salt										
2,100.0	8.50	8.00	2,096.0	-1,619.0	58.6	8.2	799,283.23	565,844.48	-0.16	d
2,200.0	8.50	8.00	2,194.9	-1,520.1	73.2	10.3	799,285.29	565,859.11	-0.20	C
2,300.0	8.50	8.00	2,293.8	-1,421.2	87.8	12.3	799,287.35	565,873.75	-0.24	O
2,400.0	8.50	8.00	2,392.7	-1,322.3	102.5	14.4	799,289.40	565,888.39	-0.28	C
2,500.0	8.50	8.00	2,491.6	-1,223.4	117.1	16.5	799,291.46	565,903.02	-0.32	
2,600.0	8.50	8.00	2,590.5	-1,124.5	131.8	18.5	799,293.52	565,917.66	-0.36	(
2,700.0	8.50	8.00	2,689.4	-1,025.6	146.4	20.6	799,295.57	565,932.30	-0.40	(
2,800.0	8.50	8.00	2,788.3	-926.7	161.0	22.6	799,297.63	565,946.93	-0.44	(
2,900.0	8.50	8.00	2,887.2	-827.8	175.7	24.7	799,299.69	565,961.57	-0.48	(
3,000.0	8.50	8.00	2,986.1	-728.9	190.3	26.7	799,301.75	565,976.21	-0.52	(
3,100.0	8.50	8.00	3,085.0	-630.0	204.9	28.8	799,303.80	565,990.85	-0.57	(
3,200.0	8.50	8.00	3,183.9	-531.1	219.6	30.9	799,305.86	566,005.48	-0.61	(
3,300.0	8.50	8.00	3,282.8	-432.2	234.2	32.9	799,307.92	566,020.12	-0.65	
3,400.0	8.50	8.00	3,381.7	-333.3	248.9	35.0	799,309.97	566,034.76	-0.69	(
3,486.3	8.50	8.00	3,467.0	-248.0	261.5	36.7	799,311.75	566,047.38	-0.72	(
Base of Salt										
3,500.0	8.50	8.00	3,480.6	-234.4	263.5	37.0	799,312.03	566,049.39	-0.73	(
3,600.0	8.50	8.00	3,579.5	-135.5	278.1	39.1	799,314.09	566,064.03	-0.77	(
3,700.0	8.50	8.00	3,678.4	-36.6	292.8	41.1	799,316.15	566,078.67	-0.81	(
3,800.0	8.50	8.00	3,777.3	62.3	307.4	43.2	799,318.20	566,093.31	-0.85	. (
3,805.8	8.50	8.00	3,783.0	68.0	308.2	43.3	799,318.32	566,094.15	-0.85	(
Yates										
3,900.0	8.50	8.00	3,876.2	161.2	322.0	45.3	799,320.26	566,107.94	-0.89	
4,000.0	8.50	8.00	3,975.1	260.1	336.7	47.3	799,322.32	566,122.58	-0.93	

Morcor Standard Plan

Company: Project: Caza Operating LLC

Site: Well: Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Wellbore: Design: Igloo 19-24 State Fed Com 14H 190911 Igloo 19-24 State Fed Com 14H Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method: Database: Well Igloo 19-24 State Fed Com 14H WELL @ 3715.0usft (Original Well Ele

WELL @ 3715.0usft (Original Well Elev)
WELL @ 3715.0usft (Original Well Elev)

Grid

Minimum Curvature

Planned Survey

4,090.9	(°)	(°)	(usft)	(usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
	8.50	8.00	4,065.0	350.0	350.0	49.2	799,324.19	566,135.88	-0.97	0.0
Capitan		•								
4,100.0	8.50	8.00	4,074.0	359.0	351.3	49.4	799,324.37	566,137.22	-0.97	0.
4,200.0	8.50	8.00	4,172.9	457.9	366.0	51.4	799,326.43	566,151.85	-1.01	0.
4,300.0	8.50	8.00	4,271.8	556.8	380.6	53.5	799,328.49	566,166.49	-1.05	0.
4,400.0	8.50	8.00	4,370.7	655.7	395.2	55.5	799,330.55	566,181.13	-1.09	0.
4,500.0	8.50	8.00	4,469.6	754.6	409.9	57.6	799,332.60	566,195.77	-1.13	0.
4,600.0	8.50	8.00	4,568.5	853.5	424.5	59.7	799,334.66	566,210.40	-1.17	0.
4,700.0	8.50	8.00	4,667.4	952.4	439.1	61.7	799,336.72	566,225.04	-1.21	0.
4,800.0	8.50	8.00	4,766.3	1,051.3	453.8	63.8	799,338.77	566,239.68	-1.25	0.
4,900.0	8.50	8.00	4,865.2	1,150.2	468.4	65.8	799,340.83	566,254.31	-1.29	0.
5,000.0	8.50	8.00	4,964.1	1,249.1	483.1	67.9	799,342.89	566,268.95	-1.33	0.
5,100.0	8.50	8.00	5,063.0	1,348.0	497.7	69.9	799,344.95	566,283.59	-1.37	0.
5,200.0	8.50	8.00	5,161.9	1,446.9	512.3	72.0	799,347.00	566,298.23	-1.41	0.
5,300.0	8.50	8.00	5,260.8	1,545.8	527.0	74.1	799,349.06	566,312.86	-1.45	0.
5,400.0	8.50	8.00	5,359.7	1,644.7	541.6	76.1	799,351.12	566,327.50	-1.49	0.
5,500.0	8.50	8.00	5,458.6	1,743.6	556.2	78.2	799,353.17	566,342.14	-1.53	0.
5,593.4	8.50	8.00	5,551.0	1,836.0	569.9	80.1	799,355.10	566,355.81	-1.57	. 0.
9 5/8" Intermedia	te Casing								-	
5,600.0	8.50	8.00	5,557.5	1,842.5	570.9	80.2	799,355.23	566,356.77	-1.57	0.
5,634.9	8.50	8.00	5,592.0	1,877.0	576.0	80.9	799,355.95	566,361.88	-1.59	0.
Delaware										
5,700.0	8.50	8.00	5,656.4	1,941.4	585.5	82.3	799,357.29	566,371.41	-1.61	0.
5,800.0	8.50	8.00	5,755.3	2,040.3	600.1	84.3	799,359.35	566,386.05	-1.65	0.
5,849.2	8.50	8.00	5,804.0	2,089.0	607.4	85.4	799,360.36	566,393.25	-1.67	0.
Cherry Canyon 5,900.0	8,50	8.00	5,854.2	2,139.2	614.8	86.4	799,361,40	566,400.68	-1,70	0

Morcor Standard Plan

Company: Project: Caza Operating LLC

Site:

Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Well: Wellbore: Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Design:

190911 Igloo 19-24 State Fed Com 14H

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Igloo 19-24 State Fed Com 14H WELL @ 3715.0usft (Original Well Elev)

WELL @ 3715.0usit (Original Well Elev)

Grid

Minimum Curvature

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
6,000.0	8.50	8.00	5,953.1	2,238.1	629.4	88.5	799,363.46	566,415.32	-1.74	0.
6,100.0	8.50	8.00	6,052.0	2,337.0	644.1	90.5	799,365.52	566,429.96	-1.78	0.
6,200.0	8.50	8.00	6,150.9	2,435.9	658.7	92.6	799,367.57	566,444.60	-1.82	0
6,300.0	8.50	8.00	6,249.8	2,534.8	673.3	94.6	799,369.63	566,459.23	-1.86	0
6,400.0	8.50	8.00	6,348.7	2,633.7	688.0	96.7	799,371.69	566,473.87	-1.90	0
6,500.0	8.50	8.00	6,447.6	2,732.6	702.6	98.7	799,373.75	566,488.51	-1.94	0
6,600.0	8.50	8.00	6,546.5	2,831.5	717.2	100.8	799,375.80	566,503.14	-1.98	0
6,700.0	8.50	8.00	6,645.4	2,930.4	731.9	102.9	799,377.86	566,517.78	-2.02	0
6,800.0	8.50	8.00	6,744.3	3,029.3	746.5	104.9	799,379.92	566,532.42	-2.06	0
6,900.0	8.50	8.00	6,843.2	3,128.2	761.2	107.0	799,381.97	566,547.06	-2.10	0
6,919.0	8.50	8.00	6,862.0	3,147.0	763.9	107.4	799,382.36	566,549.83	-2.11	C
Brushy Canyon										
7,000.0	8.50	8.00	6,942.1	3,227.1	775.8	109.0	799,384.03	566,561.69	-2.14	(
7,100.0	8.50	8.00	7,041.1	3,326.1	790.4	111,1	799,386.09	566,576.33	-2.18	(
7,200.0	8.50	8.00	7,140.0	3,425.0	805.1	113.1	799,388.14	566,590.97	-2.22	(
7,300.0	8.50	8.00	7,238.9	3,523.9	819.7	115.2	799,390.20	566,605.60	-2.26	(
7,400.0	8.50	8.00	7,337.8	3,622.8	834.3	117.3	799,392.26	566,620.24	-2.30	(
7,500.0	8.50	8.00	7,436.7	3,721.7	849.0	119.3	799,394.32	566,634.88	-2.34	(
7,600.0	8.50	8.00	7,535.6	3,820.6	863.6	121.4	799,396.37	566,649.52	-2.38	(
7,700.0	8.50	8.00	7,634.5	3,919.5	878.3	123.4	799,398.43	566,664.15	-2.42	C
7,800.0	8.50	8.00	7,733.4	4,018.4	892.9	125.5	799,400.49	566,678.79	-2.46	. (
7,900.0	8.50	8.00	7,832.3	4,117.3	907.5	127.5	799,402.54	566,693.43	-2.50	(
8,000.0	8.50	8.00	7,931.2	4,216.2	922.2	129.6	799,404.60	566,708.06	-2.54	(
8,100.0	8.50	8.00	8,030.1	4,315.1	936.8	131.7	799,406.66	566,722.70	-2.58	(
8,200.0	8.50	8.00	8,129.0	4,414.0	951.4	133.7	799,408.72	566,737.34	-2.62	(
8,300.0	8.50	8.00	8,227.9	4,512.9	966.1	135.8	799,410.77	566,751.98	-2.66	(
8,400,0	8.50	8.00	8,326.8	4,611.8	980,7	137.8	799,412,83	566,766.61	-2.70	(

Morcor Standard Plan

Company:

Caza Operating LLC

Project: Site: Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Well: Wellbore:

Igloo 19-24 State Fed Com 14H

Design:

190911 Igloo 19-24 State Fed Com 14H

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Igloo 19-24 State Fed Com 14H

WELL @ 3715.0usft (Original Well Elev) WELL @ 3715.0usft (Original Well Elev)

Grid

Minimum Curvature

ed Survey MD	Inc	Azi (azimuth)	TVD	TVDSS	N/S	E/W	Easting	Northing	V. Sec	DLeg
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°/100usft)
8,500.0	8.50	8.00	8,425.7	4,710.7	995.3	139.9	799,414.89	566,781.25	-2.74	0.
8,600.0	8.50	8.00	8,524.6	4,809.6	1,010.0	141.9	799,416.94	566,795.89	-2.79	0.
8,690.4	8.50	8.00	8,614.0	4,899.0	1,023.2	143.8	799,418.80	566,809.12	-2.82	. 0.
Bone Spring 8,700.0	8.50	8.00	8,623.5	4,908.5	1,024.6	144.0	799,419.00	566,810.52	-2.83	0.
8,800.0	8.50	8.00	8,722.4	5,007.4	1,039.3	146.1	799,421.06	566,825.16	-2.87	0.
8,900.0	8.50	8.00	8,821.3	5,106.3	1,053.9	148.1	799,423.12	566,839.80	-2.91	0
9,000.0	8.50	8.00	8,920.2	5,205.2	1,068.5	150.2	799,425.17	566,854.43	-2.95	0
9,100.0	8.50	8.00	9,019.1	5,304.1	1,083.2	152.2	799,427.23	566,869.07	-2.99	. 0
9,200.0	8.50	8.00	9,118.0	5,403.0	1,097.8	154.3	799,429.29	566,883.71	-3.03	. 0
9,300.0	8.50	8.00	9,216.9	5,501.9	1,112.4	156.3	799,431.34	566,898.35	-3.07	0
9,400.0	8.50	8.00	9,315.8	5,600.8	1,127.1	158.4	799,433.40	566,912.98	-3.11	0
9,500.0	8.50	8.00	9,414.7	5,699.7	1,141.7	160.5	799,435.46	566,927.62	-3.15	0
9,600.0	8.50	8.00	9,513.6	5,798.6	1,156.4	162.5	799,437.52	566,942.26	-3.19	0
9,700.0	8.50	8.00	9,612.5	5,897.5	1,171.0	164.6	799,439.57	566,956.89	-3.23	0
9,800.0	8.50	8.00	9,711.4	5,996.4	1,185.6	166.6	799,441.63	566,971.53	-3.27	. 0
9,900.0	8.50	8.00	9,810.3	6,095.3	1,200.3	168.7	799,443.69	566,986.17	-3.31	0
9,924.0	8.50	8.00	9,834.0	6,119.0	1,203.8	169.2	799,444.18	566,989.68	-3.32	0
1st Bone Spring 8 10,000.0	Sand 8.50	8.00	9,909.2	6,194.2	1,214.9	170.7	799,445.74	567,000.81	-3.35	0
Start Drop -4.25 10,100.0	4.25	8.00	10,008.6	6,293.6	1,225.9	172.3	799,447.29	567,011.80	-3.38	4
10,200.0	0.00	0.00	10,108.5	6,393.5	1,229.6	172.8	799,447.80	567,015.47	-3.39	4
Start 120.0 hold a	at 10200.0 MD 0.00	0.00	10,208.5	6,493.5	1,229.6	172.8	799,447.80	567,015.47	-3.39	o
10,320.0	0.00	0.00	10,228.5	6,513.5	1,229.6	172.8	799,447.80	567,015.47	-3.39	C
Start Build 11.10 10,400.0	8.88	269.60	10,308.1	6,593.1	1,229.5	166.6	799,441.62	567,015.43	2.73	1

Morcor Standard Plan

Company: Project: Caza Operating LLC

Site: Well: Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Wellbore:

Igloo 19-24 State Fed Com 14H

Design:

190911 Igloo 19-24 State Fed Com 14H

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Igloo 19-24 State Fed Com 14H

WELL @ 3715.0usft (Original Well Elev) WELL @ 3715.0usft (Original Well Elev)

Grid

Minimum Curvature

anned Survey				•		•		÷ -		1
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
10,500.0	19.98	269.60	10,404.8	6,689.8	1,229.4	141.7	799,416.74	567,015.25	27.35	11.1
10,588.5	29.79	269.60	10,485.0	6,770.0	1;229.1	104.6	799,379.56	567,014.99	64.15	11.1
2nd Bone Spring	s Sand		*							
10,600.0	31.07	269.60	10,494.9	6,779.9	1,229.1	98.7	799,373.72	567,014.95	69.93	11.1
10,700.0	42.17	269.60	10,575.1	6,860.1	1,228.6	39.2	799,314.16	567,014.54	128.87	11.1
10,800.0	53.27	269.60	10,642.2	6,927.2	1,228.1	-34.7	799,240.30	567,014.02	201.98	11.1
10,900.0	64.37	269.60	10,693.9	6,978.9	1,227.5	-120.1	799,154.88	567,013.42	286.52	11.1
11,000.0	75.46	269.60	10,728.2	7,013.2	1,226.9	-213.9	799,061.11	567,012.77	379.32	11.1
11,100.0	86.56	269.60	10,743.8	7,028.8	1,226.2	-312.5	798,962.49	567,012.08	476.92	11.1
11,150.0	92.11	269.60	10,744.4	7,029.4	1,225.8	-362.5	798,912.52	567,011.73	526,38	11.1
Start Turn 0.00										
11,200.0	92.11	269.60	10,742.6	7,027.6	1,225.5	-412.4	798,862.55	567,011.38	575.83	0.0
11,300.0	92.11	269.60	10,738.9	7,023.9	1,224.8	-512.4	798,762.62	567,010.69	674.73	0.0
11,400.0	92.11	269.60	10,735.2	7,020.2	1,224.1	-612.3	798,662.69	567,009.99	773.63	0.0
11,500.0	92.11	269.60	10,731.5	7,016.5	1,223.4	-712.2	798,562.76	567,009.29	872.53	0.0
11,600.0	92.11	269.60	10,727.8	7,012.8	1,222.7	-812.2	798,462.83	567,008,59	971,43	. 0.0
11,700.0	92.11	269.60	10,724.2	7,009.2	1,222.0	-912.1	798,362.90	567,007.90	1,070.33	0.0
11,800.0	92.11	269.60	10,720.5	7,005.5	1,221.3	-1,012.0	798,262.98	567,007.20	1,169.23	0.0
11,900.0	92.11	269.60	10,716.8	7,001.8	1,220.6	-1,112.0	798,163.05	567,006.50	1,268.12	0.0
12,000.0	92.11	. 269.60	10,713.1	6,998.1	1,219.9	-1,211.9	798,063.12	567,005.80	1,367.02	0.0
12,100.0	92.11	269.60	10,709.4	6,994.4	1,219.2	-1,311.8	797,963.19	567,005.10	1,465.92	0.0
12,200.0	92.11	269.60	10,705.7	6,990.7	1,218.5	-1,411.7	797,863.26	567,004.41	1,564.82	0.0
12,300.0	92.11	269.60	10,702.1	6,987.1	1,217.8	-1,511.7	797,763.33	567,003.71	1,663.72	0.0
12,400.0	92.11	269.60	10,698.4	6,983.4	1,217.1	-1,611.6	797,663.40	567,003.01	1,762.62	0.0
12,500.0	92.11	269.60	10,694.7	6,979.7	1,216.4	-1,711.5	797,563.47	567,002.31	1,861.52	0.0
12,600.0	92.11	269.60	10,691.0	6,976.0	1,215.7	-1,811.5	797,463.54	567,001.62	1,960.42	0.0
12,700.0	92.11	269.60	10,687.3	6,972.3	1,215.0	-1,911.4	797,363.61	567,000.92	2,059.32	0.0

Morcor Standard Plan

Company: Project: Caza Operating LLC

Site: Well: Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Wellbore:

Igloo 19-24 State Fed Com 14H

Design:

190911 Igloo 19-24 State Fed Com 14H

Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Database:

Well Igloo 19-24 State Fed Com 14H

WELL @ 3715.0usft (Original Well Elev) WELL @ 3715.0usft (Original Well Elev)

Grid

Minimum Curvature

ed Survey	1	A = 1 (a = 1 - a - a 4 b)	7.0	7.000	NIO	F444	Facility	Mandalas	M 6	
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
12,800.0	92.11	269.60	10,683.7	6,968.7	1,214.3	-2,011.3	797,263.68	567,000.22	2,158.22	
12,900.0	92.11	269.60	10,680.0	6,965.0	1,213.6	-2,111.3	797,163.75	566,999.52	2,257.12	(
13,000.0	92.11	269.60	10,676.3	6,961.3	1,212.9	-2,211.2	797,063.82	566,998.83	2,356.02	(
13,100.0	92.11	269,60	10,672.6	6,957.6	1,212.2	-2,311.1	796,963.89	566,998.13	2,454.92	(
13,200.0	92.11	269.60	10,668.9	6,953.9	1,211.5	-2,411.0	796,863.96	566,997.43	2,553.82	
13,300.0	92.11	269.60	10,665.2	6,950.2	1,210.8	-2,511.0	796,764.03	566,996.73	2,652.72	
13,400.0	92.11	269.60	10,661.6	6,946.6	1,210.1	-2,610.9	796,664.10	566,996.04	2,751.62	
13,500.0	92.11	269.60	10,657.9	6,942.9	1,209.4	-2,710.8	796,564.17	566,995.34	2,850.52	
13,600.0	92.11	269.60	10,654.2	6,939.2	1,208.7	-2,810.8	796,464.24	566,994.64	2,949.42	
13,700.0	92.11	269.60	10,650.5	6,935.5	1,208.0	-2,910.7	796,364.31	566,993.94	3,048.32	
13,800.0	92.11	269.60	10,646.8	6,931.8	1,207.3	-3,010.6	796,264.38	566,993.24	3,147.22	
13,900.0	92.11	269.60	10,643.2	6,928.2	1,206.6	-3,110.5	796,164.45	566,992.55	3,246.12	
14,000.0	92.11	269.60	10,639.5	6,924.5	1,205.9	-3,210.5	796,064.52	566,991.85	3,345.02	
14,100.0	92.11	269.60	10,635.8	6,920.8	1,205.3	-3,310.4	795,964.59	566,991.15	3,443.92	
14,200.0	92.11	269.60	10,632.1	6,917.1	1,204.6	-3,410.3	795,864.66	566,990.45	3,542.82	
14,300.0	92.11	269.60	10,628.4	6,913.4	1,203.9	-3,510.3	795,764.73	566,989.76	3,641.72	
14,400.0	92.11	269.60	10,624.7	6,909.7	1,203.2	-3,610.2	795,664.80	566,989.06	3,740.62	
14,500.0	92.11	269,60	10,621.1	6,906.1	1,202.5	-3,710.1	795,564.87	566,988.36	3,839.52	
14,600.0	92.11	269.60	10,617.4	6,902.4	1,201.8	-3,810.1	795,464.94	566,987.66	3,938.42	
14,700.0	92.11	269.60	10,613.7	6,898.7	1,201.1	-3,910.0	795,365.01	566,986.97	4,037.32	
14,800.0	92.11	269.60	10,610.0	6,895.0	1,200.4	-4,009.9	795,265.08	566,986.27	4,136.21	
14,900.0	92.11	269.60	10,606.3	6,891.3	1,199.7	-4,109.8	795,165.15	566,985.57	4,235.11	
15,000.0	92.11	269.60	10,602.7	6,887.7	1,199.0	-4,209.8	795,065.22	566,984.87	4,334.01	
15,100.0	92.11	269.60	10,599.0	6,884.0	1,198.3	-4,309.7	794,965.29	566,984.18	4,432.91	
15,200.0	92.11	269.60	10,595.3	6,880.3	1,197.6	-4,409.6	794,865.36	566,983.48	4,531.81	
15,300.0	92.11	269.60	10,591.6	6,876.6	1,196.9	-4,509.6	794,765.43	566,982.78	4,630.71	
15,400.0	92.11	269.60	10,587.9	6,872.9	1,196.2	-4,609.5	794,665.50	566,982.08	4,729.61	

Morcor Engineering

Morcor Standard Plan

Company:

Caza Operating LLC

Project: Site:

Igloo 19-24 State Fed Corn 14H Igloo 19-24 State Fed Com 14H

Well: Wellbore: Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Design:

190911 Igloo 19-24 State Fed Com 14H

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Igloo 19-24 State Fed Com 14H

WELL @ 3715.0usft (Original Well Elev) WELL @ 3715.0usft (Original Well Elev)

Grid

Minimum Curvature

EDM 5000.1 Single User Db

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	TVDSS (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
15,500.0	92.11	269.60	10,584.2	6,869.2	1,195.5	-4,709.4	794,565.57	566,981.38	4,828.51	0.
15,600.0	92.11	269.60	10,580.6	6,865.6	1,194.8	-4,809.4	794,465.64	566,980.69	4,927.41	0.
15,700.0	92.11	269.60	10,576.9	6,861.9	1,194.1	-4,909.3	794,365.71	566,979.99	5,026.31	. O.
15,800.0	92.11	269.60	10,573.2	6,858.2	1,193.4	-5,009.2	794,265.78	566,979.29	5,125.21	0.
15,900.0	92.11	269.60	10,569.5	6,854.5	1,192.7	-5,109.1	794,165.85	566,978.59	5,224.11	0.
16,000.0	92.11	269,60	10,565.8	6,850.8	1,192.0	-5,209.1	794,065.93	566,977.90	5,323.01	0.
16,100.0	92.11	269.60	10,562.2	6,847.2	1,191.3	-5,309.0	793,966.00	566,977.20	5,421.91	0.
16,200.0	92.11	269.60	10,558.5	6,843.5	1,190.6	-5,408.9	793,866.07	566,976.50	5,520.81	0.
16,300.0	92.11	269.60	10,554.8	6,839.8	1,189.9	-5,508.9	793,766.14	566,975.80	5,619.71	0.
16,400.0	92.11	269.60	10,551.1	6,836.1	1,189.2	-5,608.8	793,666.21	566,975.11	5,718.61	0
16,500.0	92.11	269.60	10,547.4	6,832.4	1,188.5	-5,708.7	793,566.28	566,974.41	5,817.51	0
16,600.0	92.11	269,60	10,543.7	6,828.7	1,187.8	-5,808.7	793,466.35	566,973.71	5,916.41	0
16,700.0	92.11	269.60	10,540.1	6,825.1	1,187.1	-5,908.6	793,366.42	566,973.01	6,015.31	0
16,800.0	92.11	269.60	10,536.4	6,821.4	1,186.4	-6,008.5	793,266.49	566,972.32	6,114.21	0
16,900.0	92.11	269.60	10,532.7	6,817.7	1,185.7	-6,108.4	793,166.56	566,971.62	6,213.11	0
17,000.0	92.11	269.60	10,529.0	6,814.0	1,185.0	-6,208.4	793,066.63	566,970.92	6,312.01	0
17,100.0	92.11	269.60	10,525.3	6,810.3	1,184.3	-6,308.3	792,966.70	566,970.22	6,410.91	0
17,200.0	92.11	269.60	10,521.7	6,806.7	1,183.6	-6,408.2	792,866.77	566,969.52	6,509.81	0
17,300.0	92.11	269.60	10,518.0	6,803.0	1,182.9	-6,508.2	792,766.84	566,968.83	6,608.71	0
17,400.0	92.11	269.60	10,514.3	6,799.3	1,182.2	-6,608.1	792,666.91	566,968.13	6,707.61	0
17,500.0	92.11	269.60	10,510.6	6,795.6	1,181.5	-6,708.0	792,566.98	566,967.43	6,806.51	0
17,600.0	92.11	269.60	10,506.9	6,791.9	1,180.8	-6,808.0	792,467.05	566,966.73	6,905.41	0
17,700.0	92.11	269.60	10,503.2	6,788.2	1,180.1	-6,907.9	792,367.12	566,966.04	7,004.30	0
17,800.0	92.11	269.60	10,499.6	6,784.6	1,179.4	-7,007.8	792,267.19	566,965.34	7,103.20	C
17,900.0	92.11	269.60	. 10,495.9	6,780.9	1,178.7	-7,107.7	792,167.26	566,964.64	7,202.10	c
18,000.0	92.11	269.60	10,492.2	6,777.2	1,178.0	-7,207.7	792,067.33	566,963.94	7,301.00	O
18,100.0	92.11	269.60	10,488.5	6,773.5	1,177.3	-7,307.6	791,967,40	566,963.25	7,399.90	0

Morcor Engineering

Morcor Standard Plan

Company: Project: Caza Operating LLC

Site:

Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Well: Wellbore:

Igloo 19-24 State Fed Com 14H

Design:

190911 Igloo 19-24 State Fed Com 14H

Local Co-ordinate Reference:

TVD Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Igloo 19-24 State Fed Com 14H WELL @ 3715.0usft (Original Well Elev)

WELL @ 3715.0usft (Original Well Elev)

Grid

Minimum Curvature

EDM 5000.1 Single User Db

Planned	Survey
---------	--------

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	TVD\$S (usft)	N/S (usft)	E/W (usft)	Easting (usft)	Northing (usft)	V. Sec (usft)	DLeg (°/100usft)
18,200.0	92.11	269.60	10,484.8	6,769.8	1,176.6	-7,407.5	791,867.47	566,962.55	7,498.80	0.0
18,300.0	92.11	269.60	10,481.2	6,766.2	1,176.0	-7,507.5	791,767.54	566,961.85	7,597.70	0.0
18,400.0	92.11	269.60	10,477.5	6,762.5	1,175.3	-7,607.4	791,667.61	566,961.15	7,696.60	0.0
18,500.0	92.11	269.60	10,473.8	6,758.8	1,174.6	-7,707.3	791,567.68	566,960.46	7,795.50	0.0
18,600.0	92.11	269.60	10,470.1	6,755.1	1,173.9	-7,807.2	791,467.75	566,959.76	7,894.40	0.0
18,700.0	92.11	269.60	10,466.4	6,751.4	1,173.2	-7,907.2	791,367.82	566,959.06	7,993.30	0.0
18,800.0	92.11	269.60	10,462.7	6,747.7	1,172.5	-8,007.1	791,267.89	566,958.36	8,092.20	0.0
18,900.0	92.11	269.60	10,459.1	6,744.1	1,171.8	-8,107.0	791,167.96	566,957.66	8,191.10	0.0
19,000.0	92.11	269.60	10,455.4	6,740.4	1,171.1	-8,207.0	791,068.03	566,956.97	8,290.00	0.0
19,100.0	92.11	269.60	10,451.7	6,736.7	1,170.4	-8,306.9	790,968.10	566,956.27	8,388.90	0.0
19,200.0	92.11	269.60	10,448.0	6,733.0	1,169.7	-8,406.8	790,868.17	566,955.57	8,487.80	0.0
19,280.0	92.11	269.60	10,445.1	6,730.1	1,169.1	-8,486.8	790,788.23	566,955.01	8,566.92	0.0

Cas	ina	Pai	nte

Measured Depth	Vertical Depth		Casing Diameter	Hole Diameter	
(usft)	(usft)	Name	(")	(")	
1,867.5	1,866.0	13 3/8" Surface Casing	13-3/8	17-1/2	
19,280.0	10,445.1	5 1/2" Production Casing	5-1/2	8-3/4	
5,593.4	5,551.0	9 5/8" Intermediate Casing	9-5/8	12-1/4	
120.0	120.0	20" Conductor	20	26	

Morcor Engineering

Morcor Standard Plan

Company:

Caza Operating LLC

Project: Site:

Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H Igloo 19-24 State Fed Com 14H

Well: Wellbore:

Igloo 19-24 State Fed Com 14H

Design:

190911 Igloo 19-24 State Fed Com 14H

Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Database:

Well Igloo 19-24 State Fed Com 14H

WELL @ 3715.0usft (Original Well Elev) WELL @ 3715.0usft (Original Well Elev)

Minimum Curvature

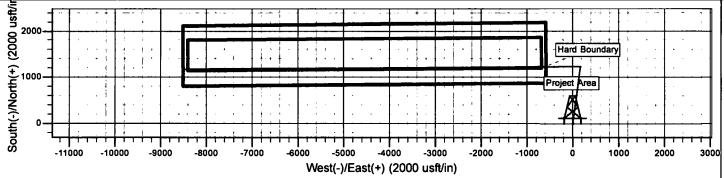
EDM 5000.1 Single User Db

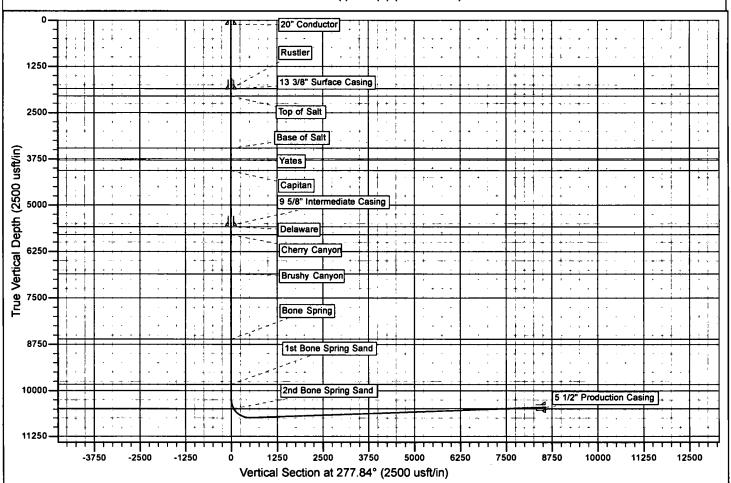
Formations						-		 	
	Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)			
	1,858.4	1,857.0	Rustler		0.00			 	
	4,090.9	4,065.0	Capitan		0.00				
	5,849.2	5,804.0	Cherry Canyon		0.00				
	9,924.0	9,834.0	1st Bone Spring Sand		0.00				
	10,588.5	10,485.0	2nd Bone Spring Sand	•	0.00		•		
	3,805.8	3,783.0	Yates		0.00				
	5,634.9	5,592.0	Delaware	•	0.00			•	
	8,690.4	8,614.0	Bone Spring		0.00				•
	6,919.0	6,862.0	Brushy Canyon		0.00				
	2,059.6	2,056.0	Top of Salt		0.00				
	3,486.3	3,467.0	Base of Salt	•	0.00				

Measured	Vertical	Local Coor	dinates	
Depth	Depth	+N/-S	+E/-W	
(usft)	(usft)	(usft)	(usft)	Comment
1,600.0	1,600.0	0.0	0.0	Start Build 4.25
1,800.0	1,799.3	14.7	2.1	Start 8200.0 hold at 1800.0 MD
10,000.0	9,909.2	1,214.9	170.7	Start Drop -4.25
10,200.0	10,108.5	1,229.6	172.8	Start 120.0 hold at 10200.0 MD
10,320.0	10,228.5	1,229.6	172.8	Start Build 11.10
11,150.0	10,744.4	1,225.8	-362.5	Start Turn 0.00
19,280.0	10,445,1	1,169.1	-8.486.8	TD at 19280.0

Checked By:	Approved By:	Date:	
1		_	

Project: Igloo 19-24 State Fed Com 14H
Site: Igloo 19-24 State Fed Com 14H
Well: Igloo 19-24 State Fed Com 14H
Wellbore: Igloo 19-24 State Fed Com 14H
Design: 190911 Igloo 19-24 State Fed Com 14H





Azimuths to Grid North True North: -0.45° Magnetic North: 6.10°

Magnetic Field Strength: 47997.8snT Dip Angle: 60.29° Date: 8/26/2019 Model: IGRF2010

CASING DETAILS					FORMATION TOP DETAI	LS		
TVD 120. 1866 5551 1044	.0 1867.5 .0 5593.4	Name 20" Conductor 13 3/8" Surface Casing 9 5/8" Intermediate Casing 5 1/2" Production Casing	Size 20 13-3/8 9-5/8 5-1/2	TVDPath 1857.0 2056.0 3467.0 3783.0 4065.0 5592.0 5804.0 6862.0 8614.0 9834.0	MDPath 1858.4 2059.6 3486.3 3805.8 4090.9 5634.9 5849.2 6919.0 8690.4 9924.0 10588.5	Formation Rustler Top of Salt Base of Salt Yates Capitan Delaware Cherry Canyon Brushy Canyon Bone Spring 1st Bone Spring Sand 2nd Bone Spring Sand	DipAngle 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	DipDir

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

SUPO Data Report

Submission Date: 03/13/2018

Operator Name: CAZA OPERATING LLC

Well Name: IGLOO 19-24 STATE FED COM

Ven Maine: 10200 13-24 OTATE I ED COM

Well Type: OIL WELL

APD ID: 10400027887

Well Number: 14H

Well Work Type: Drill

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

IGLOO_19_24_STATE_FED_COM_14H_Existing_Road_Map_20180205071604.pdf

Existing Road Purpose: ACCESS

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? NO

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Igloo_19_24_State_Fed_Com_14H_1_Mile_Circles_20180313093930.pdf

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: Existing production facility will have 3 tanks, 1 separator and 1 heater added to it.

Production Facilities map:

Igloo_19_24_State_Fed_Com_14H_Production_Facility_Map_20180313094310.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source type: GW WELL

Water source use type:

SURFACE CASING

INTERMEDIATE/PRODUCTION

CASING

STIMULATION

Source latitude: 32.52175

Source longitude: -103.52479

Source datum: NAD83

Water source permit type:

PRIVATE CONTRACT

Water source transport method:

TRUCKING

Source land ownership: PRIVATE

Source transportation land ownership: FEDERAL

Water source volume (barrels): 320000

Source volume (acre-feet): 41.245792

Source volume (gal): 13440000

Water source and transportation map:

Igloo_19_24_State_Fed_Com_14H_Water_Supply_Map_20180313094732.pdf

Water source comments:

New water well? NO

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well depth (ft):

Well casing type:

Well casing outside diameter (in.):

Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method:

Drill material:

Grout material:

Grout depth:

Casing length (ft.):

Casing top depth (ft.):

Well Production type:

Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Using any construction materials: NO

Construction Materials description:

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill Cuttings

Amount of waste: 1163640 pounds

Waste disposal frequency: Daily

Safe containment description: roll off bins

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL

Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: R360 commercial disposal facility

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? NO

Description of cuttings location

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

Igloo_19_24_State_Fed_Com_14H_Wellsite_Layout_20180313095459.pdf

Comments:

Well Name: IGLOO 19-24 STATE FED COM Well Number: 14H

Section 10 - Plans for Surface Reclamation

Type of disturbance: No New Surface Disturbance Multiple Well Pad Name: IGLOO 19-24 STATE FED COM

Multiple Well Pad Number: 12H

Recontouring attachment:

Drainage/Erosion control construction: Per BLM instructions as identified during onsite

Drainage/Erosion control reclamation: Per BLM instructions as identified during onsite

Well pad proposed disturbance

(acres): 0

Road proposed disturbance (acres): 0

Powerline proposed disturbance

(acres): 0

Pipeline proposed disturbance

(acres): 0

Other proposed disturbance (acres): 0

Total proposed disturbance: 0

Well pad interim reclamation (acres):

Road interim reclamation (acres):

Powerline interim reclamation (acres):

0

Pipeline interim reclamation (acres):

Other interim reclamation (acres):

Total interim reclamation:

Well pad long term disturbance

(acres):

Road long term disturbance (acres):

Powerline long term disturbance

(acres): 0

Pipeline long term disturbance

(acres):

Other long term disturbance (acres):

Total long term disturbance:

Disturbance Comments:

Reconstruction method: Interim reclamation as identified during onsite

Topsoil redistribution: Interim reclamation as identified during onsite

Soil treatment: Interim reclamation as identified during onsite

Existing Vegetation at the well pad: Sage brush and native grasses

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Sage brush and native grasses

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: Sage brush and native grasses

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: Sage brush and native grasses

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed source:

Seed name:

Source name:

Source address:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Seed	Summary.	

Seed Type

Pounds/Acre

Total pounds/Acre:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Kevin

Last Name: Garrett

Phone: (432)682-7424

Email: kgarrett@cazapetro.com

Seedbed prep: Harrow

Seed BMP: Per BLM instructions

Seed method: Broadcast followed by a drag chain

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: Spray for cheat grass

Weed treatment plan attachment:

Monitoring plan description: Visual inspection in spring and late fall

Monitoring plan attachment:

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

Success standards: 80% coverage by 2nd growing season of native species with less than 5% invasive species

Pit closure description: No pits to be used

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: STATE GOVERNMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office: HOBBS, NM

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Section 12 - Other Information

Right of Way needed? NO

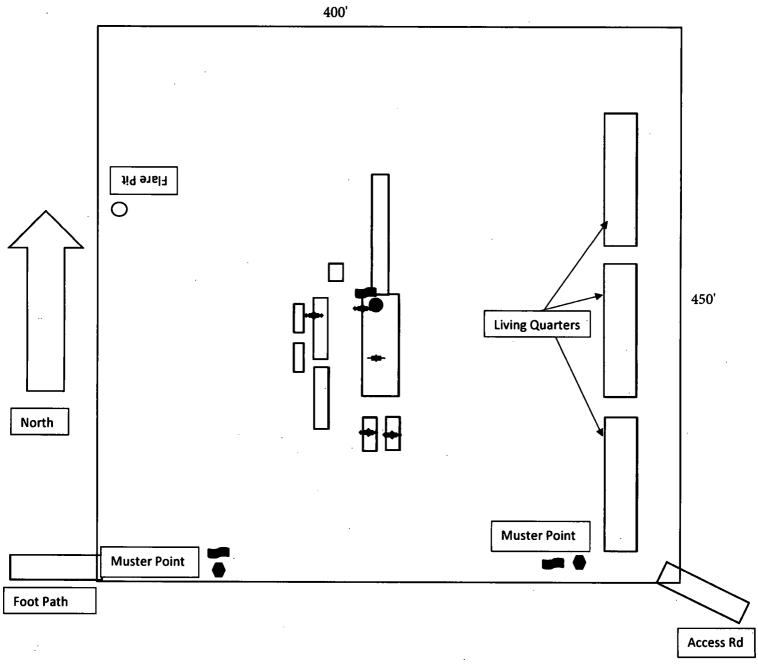
Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES


Previous Onsite information: Igloo 19-24 State Fed Com 12H

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

Other SUPO Attachment

emar_bta_blm_well_location_access_ltr_20190328053946.pdf
IGLOO_19_24_STATE_FED_COM_14H_Interim_Reclamation_Plat_20190328054013.pdf

Wind Sock Alarm

March 27, 2019

Bureau of Land Management

620 E. Green street Carlsbad, NM 88220 Attn: Mr. Matt Wirth

Re:

Request for BLM Access to Caza's Well Locations

Section 19, Township 20 South, Range 35 East

Lea County, New Mexico

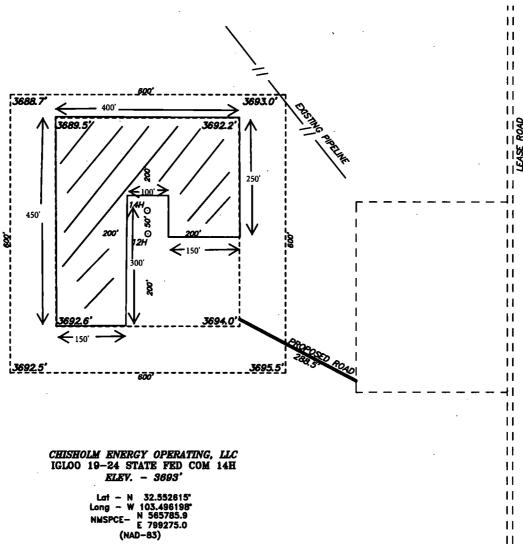
Dear Mr. Wirth:

Pursuant to several conversations you have had with Steve Morris regarding Caza Operating, LLC's ("Caza") APD's for its Igloo 19-24 State Fed Com #12H, #13H and #14H Wells, specifically the BLM's right to access Caza's well locations, Caza hereby grants the BLM permission to access the well locations pursuant to that certain Entry, Roadway and Location Agreement dated September 30, 2014 (the "SUA"), by and between Caza Petroleum, LLC, Caza's parent company, and S&S, Inc., the fee surface owner. The SUA calls for Caza to notify the surface owner prior to entry upon the lands. Therefore, the BLM's representative will need to coordinate location access with Caza's Production Engineer, Kevin Garrett. Mr. Garrett can be contacted using the following contact information:

Mr. Kevin Garrett Caza Operating, LLC Production Engineer Office: 432-682-7424 Mobile: 432-556-8508

Email: Kgarrett@cazapetro.com

Thank you for your cooperation with this matter. If you have questions or require additional information regarding the permissions granted hereunder, or if you wish to discuss this matter in more detail, please contact me at 432-661-7424 or via email at ralbro@cazapetro.com.


Very truly yours,

Richard R. Albro Vice President, Land

cc: Ms. Deborah Ham, Land/Law Examiner BLM Carlsbad Office 620 E. Green street Carlsbad, NM 88220

Caza Petroleum Inc •200 N. Loraine Suite 1550 • Midland, Texas 79701 • T: 432-682-7424 • F: 432-682-7425

SECTION 19, TOWNSHIP 20 SOUTH, RANGE 35 EAST, N.M.P.M., LEA COUNTY, NEW MEXICO.

(NAD-83)

MONUMENT, NM IS ±14 MILES TO THE NORTHEAST OF LOCATION.

11

200 200 400 FEET BBBBB SCALE: 1" = 200'

Directions to Location:

FROM HIGHWAY 62-180 GO SOUTH ON MARATHON ROAD 5.5 MILES TO LEASE ROAD THEN GO EAST 1.7 MILES THEN SOUTH 0.3 MILES TO PROPOSED ROAD.

P.O. Box 1786 (575) 393-7316 - Office 1120 N. West County Rd. (575) 392-2206 - Fax Hobbs, New Mexico 88241 basinsurveys.com

CAZA OPERATING, LLC.

REF: IGLOO 19-24 STATE FED COM 14H / WELL PAD TOPO THE IGLOO 19-24 STATE FED COM 14H LOCATED 450' FROM THE SOUTH LINE AND 2514' FROM THE EAST LINE OF SECTION 19, TOWNSHIP 20 SOUTH, RANGE 35 EAST, N.M.P.M., LEA COUNTY, NEW MEXICO.

Drawn By: K GOAD Sheet 1 of 1 **Sheets** W.O. Number: 33494 Date: 01-23-2018 Survey Date: 01-22-2018

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

PWD Data Report

APD ID: 10400027887 **Submission Date:** 03/13/2018

Operator Name: CAZA OPERATING LLC

Well Name: IGLOO 19-24 STATE FED COM

Well Type: OIL WELL

Well Number: 14H

Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: CAZA OPERATING LLC Well Name: IGLOO 19-24 STATE FED COM Well Number: 14H Is the reclamation bond a rider under the BLM bond? Unlined pit bond number: Unlined pit bond amount: Additional bond information attachment: Section 4 - Injection Would you like to utilize Injection PWD options? NO **Produced Water Disposal (PWD) Location:** PWD surface owner: PWD disturbance (acres): Injection PWD discharge volume (bbl/day): Injection well mineral owner: Injection well type: Injection well number: Injection well name: Assigned injection well API number? Injection well API number: Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: **Underground Injection Control (UIC) Permit? UIC Permit attachment:** Section 5 - Surface Discharge Would you like to utilize Surface Discharge PWD options? NO **Produced Water Disposal (PWD) Location:** PWD surface owner: PWD disturbance (acres): Surface discharge PWD discharge volume (bbl/day): **Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment:**

PWD disturbance (acres):

Surface Discharge site facilities information:

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

Other PWD discharge volume (bbl/day):

Surface discharge site facilities map:

Section 6 - Other

PWD surface owner:

Well Name: IGLOO 19-24 STATE FED COM

Well Number: 14H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT**

Bond Info Data Report

09/26/2019

APD ID: 10400027887

Submission Date: 03/13/2018

Operator Name: CAZA OPERATING LLC

Well Number: 14H

Show Final Text

Well Name: IGLOO 19-24 STATE FED COM Well Type: OIL WELL

Well Work Type: Drill

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB000471

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: