Form 3160-3 (June 2015) UNITED STATE DEPARTMENT OF THE I BUREAU OF LAND MAN APPLICATION FOR PERMIT TO D	NTERIOR	OBBS OC OCT 1 6 201 REFERENCE	12	FORM OMB N Expires: Jr 5. Lease Serial No. NMNM137469 6. If Indian, Allotee	137 , 2018		
Ia. Type of work: Image: Drill Image: R Ib. Type of Well: Image: Drill Well Image: Gas Well Image: Drill Well	EENTER Other Fingle Zone	Multiple Zone		 7. If Unit or CA Ag 8. Lease Name and NANDINA FED CO 104H 	Well No.	Name and No. 6 31 FEBELAC 6 47)	C ON
2. Name of Operator AMEREDEV OPERATING LLC 372224				9. API Well No. 70-025	~		
3a. Address 5707 Southwest Parkway, Building 1, Suite 275 Austin TX		No. <i>(include area cod</i> 1700	le)	10. Field and Pool, JAL / JAL; WOLF(•		
 Location of Well (Report location clearly and in accordance At surface LOT N / 230 FSL / 2328 FWL / LAT 32.080 At proposed prod. zone LOT C / 50 FNL / 2318 FWL / L/ 	2 / LONG -1	03.3052	24	11. Sec., T. R. M. o SEC 31 / T25S / F		-	
14. Distance in miles and direction from nearest town or post off 7 miles	fice*			12. County or Paris LEA	h	13. State NM	
15. Distance from proposed* 230 feet location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of a 600.28	cres in lease	17. Spacir 320	ng Unit dedicated to (this well	<u> </u>	
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Propose 11859 feet	ed Depth : / 22463 feet		M/BIA Bond No. in file			
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3017 feet	22. Approx 06/01/2019	imate date work will)	start*	23. Estimated durat 90 days	ion		
The following, completed in accordance with the requirements o	24. Attac		. and the D	Indenulia Emoturina i		CED 2162 2 3	
(as applicable)I. Well plat certified by a registered surveyor.2. A Drilling Plan.		4. Bond to cover th Item 20 above).	e operation	s unless covered by a	-		
3. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office				mation and/or plans a	s may be r	equested by the	
25. Signature (Electronic Submission)		tie Hanna / Ph: (73	7)300-470	0	Date 02/06/2	2019	
Title Senior Engineering Technician							
Approved by (Signature) (Electronic Submission) Title		e <i>(Printed/Typed)</i> Layton / Ph: (575)2	234-5959		Date 10/11/2	2019	
Assistant Field Manager Lands & Minerals	CARL	SBAD				<u></u>	
Application approval does not warrant or certify that the applican applicant to conduct operations thereon. Conditions of approval, if any, are attached.	nt holds legal	or equitable title to th	nose rights i	in the subject lease w	hich wou	ld entitle the	
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, n of the United States any false, fictitious or fraudulent statements					any depar	tment or agency	
(Continued on page 2)	VED WI	TH CONDIT	IONS	KE IN	19 24101	E J NH ns on page 2)	

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

Approval Date: 10/11/2019

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

SHL: LOT N / 230 FSL / 2328 FWL / TWSP: 25S / RANGE: 36E / SECTION: 31 / LAT: 32.0802 / LONG: -103.3052 (TVD: 0 feet, MD: 0 feet)
 PPP: SESW / 0 FSL / 2269 FWL / TWSP: 25S / RANGE: 36E / SECTION: 30 / LAT: 32.09409 / LONG: -103.30524 (TVD: 11859 feet, MD: 17227 feet)
 BHL: LOT C / 50 FNL / 2318 FWL / TWSP: 25S / RANGE: 36E / SECTION: 30 / LAT: 32.10848 / LONG: -103.30524 (TVD: 11859 feet, MD: 22463 feet)

BLM Point of Contact

Name: Deborah Ham Title: Legal Landlaw Examiner Phone: 5752345965 Email: dham@blm.gov

Approval Date: 10/11/2019

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Approval Date: 10/11/2019

(Form 3160-3, page 4)

October 11, 2019

ATTN: Paul Kautz NMOCD 1625 N. French Drive Hobbs, NM 88240 (575) 393-6161 ext. 104

Paul,

Enclosed is a copy of the BLM approved APD COA packet for the Nandina Fed Com 25 36 31 104H well, for your review and approval. Please let me know if you have any questions.

1

Best regards,

Christie Hanna Regulatory Coordinator

5707 Southwest Parkway, Building 1, Suite 275 Austin, TX 78735

Application for Permit to Drill

APD Package Report

APD ID: 10400037359 APD Received Date: 02/06/2019 03:31 PM Operator: AMEREDEV OPERATING LLC

- **APD Package Report Contents**
 - Form 3160-3
 - Operator Certification Report
 - Application Report
 - Application Attachments
 - -- Well Plat: 6 file(s)
 - Drilling Plan Report
 - Drilling Plan Attachments
 - -- Blowout Prevention Choke Diagram Attachment: 1 file(s)
 - -- Blowout Prevention BOP Diagram Attachment: 4 file(s)
 - -- Casing Design Assumptions and Worksheet(s): 6 file(s)
 - -- Hydrogen sulfide drilling operations plan: 1 file(s)
 - -- Proposed horizontal/directional/multi-lateral plan submission: 4 file(s)
 - -- Other Facets: 1 file(s)
 - -- Other Variances: 2 file(s)
 - SUPO Report
 - SUPO Attachments
 - -- Existing Road Map: 1 file(s)
 - -- New Road Map: 1 file(s)
 - -- Attach Well map: 1 file(s)
 - -- Production Facilities map: 2 file(s)
 - -- Water source and transportation map: 2 file(s)
 - -- Construction Materials source location attachment: 1 file(s)
 - -- Well Site Layout Diagram: 1 file(s)
 - -- Recontouring attachment: 1 file(s)
 - -- Other SUPO Attachment: 1 file(s)

- PWD Report

- PWD Attachments

-- None

U.S. Department of the Interior Bureau of Land Management

Date Printed: 10/11/2019 03:55 PM

Well Status: AAPD Well Name: NANDINA FED COM 25 36 3 Well Number: 104H Bond Report
Bond Attachments
-- None

253631N APD Nandina Fed Com 25 36 31 104H 30015 NMNM137469 Ameredev 12-55 06232019 NMK

oposed te nnular olume .6946	Grade J Csg Test psig: o Minimum I 1 Stage Cmt Sx 719 gment(s) A, I side the Grade	Required Co 1 Stage CuFt Cmt 1181	inch hole. Coupling BUTT Tall Cmt ment Volume Min Cu Ft 823 MI > 0.70,	Body 14.18 does not s 1 Stage % Excess 43	Design Collapse 3.85 circ to sfc. Drilling Mud Wt 8.60 Alterna	Burst 0.6 Totals: Calc MASP 3135	Length 1,134 0 1,134 Req'd BOPE 5M	RFACE Weight 77,112 0 77,112 Min Dist Hole-Cpl 1.56
I, 30min Sfc coposed to nnular olume .6946 t(s) for Seg t(s) for Seg asing ins	Csg Test psig: o Minimum I 1 Stage Cmt Sx 719 gment(s) A, I side the Grade	1,500 Required Ce 1 Stage CuFt Cmt 1181 B = , 3.11	Tall Cmt ement Volume Min Cu Ft 823	does not <u>es</u> 1 Stage % Excess	3.85 circ to sfc. Drilling Mud Wt 8.60	Totals: Calc MASP	1,134 0 1,134 Req'd BOPE	77,112 0 77,112 Min Dist Hole-Cpl
oposed to nnular olume .6946 t(s) for Seg asing ins #/ft	o Minimum I 1 Stage Cmt Sx 719 gment(s) A, I side the Grade	Required Ce 1 Stage CuFt Cmt 1181 B = , 3.11	ment Volume Min Cu Ft 823	<u>es</u> 1 Stage % Excess	Drilling Mud Wt 8.60	Calc MASP	1,134 Req'd BOPE	77,112 Min Dist Hole-Cpl
oposed to nnular olume .6946 t(s) for Seg asing ins #/ft	o Minimum I 1 Stage Cmt Sx 719 gment(s) A, I side the Grade	Required Ce 1 Stage CuFt Cmt 1181 B = , 3.11	ment Volume Min Cu Ft 823	<u>es</u> 1 Stage % Excess	Drilling Mud Wt 8.60	Calc MASP	Req'd BOPE	Min Dist Hole-Cpl
nnular olume .6946 t(s) for Seg asing ins #/ft	1 Stage Cmt Sx 719 gment(s) A, I side the Grade	1 Stage CuFt Cmt 1181 B = , 3.11	Min Cu Ft 823	1 Stage % Excess	Mud Wt 8.60	MASP	BOPE	Hole-Cpl
olume .6946 t(s) for Seg asing ins #/ft	Cmt Sx 719 gment(s) A, I side the Grade	CuFt Cmt 1181 B = , 3.11	Cu Ft 823	% Excess	Mud Wt 8.60	MASP	BOPE	Hole-Cpl
.6946 t(s) for Seg asing ins #/ft	719 gment(s) A, I side the Grade	1181 B=,3.11	823		8.60	i i		• •
t(s) for Seg asing ins #/ft	gment(s) A, I side the Grade	B = , 3.11 /	·	43	4	3135	5M	1.56
asing ins #/ft	side the Grade		\ > 0.70,	•	Alterna			
#/ft	Grade	13 3/8			Alterna	bo D	0 2 0 7	
#/ft	Grade	13 3/8				te Burst = 1.1	u > u./ 	
#/ft	Grade				Design	Factors	INTERN	MEDIATE
0.00			Coupling	Body	Collapse	Burst	Length	Weight
	HCL	80	BUTT	1.96	0.74	0.74	11,685	467,400
							Ó	0
, 30min Sfc	Csg Test psig:					Totals:	11,685	467,400
nt volum	e(s) are inte	nded to ach		0	ft from su	rface or a	1109	overlap.
nnular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
olume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cpl
.3132	look 🖌	0	3703		9.40	5135	10M	0.81
		5082				<u>sum of sx</u>	<u>Σ CuFt</u>	Σ%exces
	104	23				2766	6235	68
d > 1.20						MASP is withi	n 10% of 50	00psig, need
(s) for Seg	(ment(s): A,	B, C, D = 0.4	9, b, c, d	Alterna	ate Burst = 1.1	2 > 1 & Alt Co	llapse = 1.4	B > 1.125
							-	
sing inc	side the	95/8			Design Ea	tore		
		5 5/0	Coupling	Body		Burst		
	· · · · · · · · · · · · · · · · · · ·	110	BUTT		Conapse			Woiahi
	HCP		0011	2 68	1 45		Length	· · · · · · · · · · · · · · · · · · ·
		110	BUTT	2.68	1.45 1.29	1.59	11,800	236,000
30min Sfc	Cse Test osie:		BUTT	6.16	1.45 1.29	1.59 1.59	11,800 10,835	236,000 216,690
	Csg Test psig: e(s) are inte	2,596		6.16	1.29	1.59 1.59 Totals:	11,800 10,835 22,635	236,000 216,690 452,690
nt volum	e(s) are inte	2,596 nded to ach	leve a top of	6.16 0	1.29 ft from su	1.59 1.59 Totals: rface or a	11,800 10,835 22,635 11685	236,000 216,690 452,690 overlap.
		2,596 nded to ach 1 Stage		6.16	1.29	1.59 1.59 Totals:	11,800 10,835 22,635	236,000 216,690 452,690 overlap. Min Dist
nt volume nnular olume	e(s) are inter 1 Stage Cmt Sx	2,596 nded to ach 1 Stage CuFt Cmt	ieve a top of Min Cu Ft	6.16 0 1 Stage % Excess	1.29 ft from su Drilling Mud Wt	1.59 1.59 Totals: rface or a Calc	11,800 10,835 22,635 11685 Req'd	236,000 216,690 452,690 overlap. Min Dist Hole-Cpl
nt volume nnular	e(s) are inter 1 Stage	2,596 nded to ach 1 Stage	ieve a top of Min	6.16 0 1 Stage	1.29 ft from su Drilling	1.59 1.59 Totals: rface or a Calc	11,800 10,835 22,635 11685 Req'd	Weight 236,000 216,690 452,690 overlap. Min Dist Hole-Cplg 1.23
nt volum nnular olume 2291	e(s) are inter 1 Stage Cmt Sx	2,596 nded to ach 1 Stage CuFt Cmt	ieve a top of Min Cu Ft	6.16 0 1 Stage % Excess	1.29 ft from su Drilling Mud Wt	1.59 1.59 Totals: rface or a Calc	11,800 10,835 22,635 11685 Req'd	236,000 216,690 452,690 overlap. Min Dist Hole-Cpl
nt volum nnular olume 2291	e(s) are inter 1 Stage Cmt Sx	2,596 nded to ach 1 Stage CuFt Cmt 6427	ieve a top of Min Cu Ft	6.16 0 1 Stage % Excess	1.29 ft from su Drilling Mud Wt 12.50	1.59 1.59 Totals: rface or a Calc MASP	11,800 10,835 22,635 11685 Req'd	236,000 216,690 452,690 overlap. Min Dist Hole-Cpl
nt volum nnular olume 2291	e(s) are inter 1 Stage Cmt Sx	2,596 nded to ach 1 Stage CuFt Cmt	ieve a top of Min Cu Ft	6.16 0 1 Stage % Excess	1.29 ft from su Drilling Mud Wt	1.59 1.59 Totals: rface or a Calc MASP	11,800 10,835 22,635 11685 Req'd	236,000 216,690 452,690 overlap. Min Dist Hole-Cpl 1.23
nt volume olume 2291 d > 1.20	e(s) are inter 1 Stage Cmt Sx 4796	2,596 nded to ach 1 Stage CuFt Cmt 6427	leve a top of Min Cu Ft 5561	6.16 0 1 Stage % Excess 16	1.29 ft from su Drilling Mud Wt 12.50	1.59 1.59 Totals: rface or a Calc MASP	11,800 10,835 22,635 11685 Req'd BOPE	236,000 216,690 452,690 overlap. Min Dist Hole-Cpl 1.23
nt volume olume 2291 d > 1.20	e(s) are inter 1 Stage Cmt Sx 4796	2,596 nded to ach 1 Stage CuFt Cmt 6427	leve a top of Min Cu Ft 5561	6.16 0 1 Stage % Excess 16	1.29 ft from su Drilling Mud Wt 12.50	1.59 1.59 Totals: rface or a Calc MASP	11,800 10,835 22,635 11685 Req'd BOPE	236,000 216,690 452,690 overlap. Min Dist Hole-Cplg 1.23 Weight
	1100 100 131 132 132 132 132 132 132 132 132 132	Image Image Image Cmt Sx Cmt Sx Iook Image Image Image Image <td>Image 1 Stage 1 Stage Cmt Sx CuFt Cmt 3132 look \> 0 5082 0 104 23 > 1.20 (s) for Segment(s): A, B, C, D = 0.49 sing inside the 9 5/8 #/ft Grade</td> <td>Curre Curre <th< td=""><td>Inular 1 Stage 1 Stage Min 1 Stage Curt Sx CuFt Cmt Cu Ft % Excess 3132 Iook \> 0 3703 104 23 104 23 1>1.20 (s) for Segment(s): A, B, C, D = 0.49, b, c, d Alternational state 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1</td><td>Innular I Stage I Stage Min I Stage Drilling Solume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt 3132 Iook \> 0 3703 % Excess Mud Wt 3132 Iook \> 0 3703 9.40 5082 104 23 9.40 > 1.20 (s) for Segment(s): A, B, C, D = 0.49, b, c, d Alternate Burst = 1.12 Alternate Burst = 95/8 Design Face</td><td>Innular 1 Stage 1 Stage Min 1 Stage Drilling Calc Dolume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP 3132 Iook ↘ 0 3703 9.40 5135 5082 sum of sx 2766 104 23 2766 > 1.20 MASP is within (s) for Segment(s): A, B, C, D = 0.49, b, c, d Alternate Burst = 1.12 > 1 & Alt Constant Ising inside the 9 5/8 Design Factors</td><td>Innular 1 Stage 1 Stage Min 1 Stage Drilling Calc Req'd Solume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE 3132 look ↘ 0 3703 9.40 5135 10M 5082 sum of sx ∑ CuFt 2766 6235 104 23 2766 6235 > 1.20 MASP is within 10% of 500 MASP is within 10% of 500 (s) for Segment(s): A, B, C, D = 0.49, b, c, d Alternate Burst = 1.12 > 1 & Alt Collapse = 1.44 sing inside the 9 5/8 Design Factors PROD</td></th<></td>	Image 1 Stage 1 Stage Cmt Sx CuFt Cmt 3132 look \> 0 5082 0 104 23 > 1.20 (s) for Segment(s): A, B, C, D = 0.49 sing inside the 9 5/8 #/ft Grade	Curre Curre <th< td=""><td>Inular 1 Stage 1 Stage Min 1 Stage Curt Sx CuFt Cmt Cu Ft % Excess 3132 Iook \> 0 3703 104 23 104 23 1>1.20 (s) for Segment(s): A, B, C, D = 0.49, b, c, d Alternational state 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1</td><td>Innular I Stage I Stage Min I Stage Drilling Solume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt 3132 Iook \> 0 3703 % Excess Mud Wt 3132 Iook \> 0 3703 9.40 5082 104 23 9.40 > 1.20 (s) for Segment(s): A, B, C, D = 0.49, b, c, d Alternate Burst = 1.12 Alternate Burst = 95/8 Design Face</td><td>Innular 1 Stage 1 Stage Min 1 Stage Drilling Calc Dolume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP 3132 Iook ↘ 0 3703 9.40 5135 5082 sum of sx 2766 104 23 2766 > 1.20 MASP is within (s) for Segment(s): A, B, C, D = 0.49, b, c, d Alternate Burst = 1.12 > 1 & Alt Constant Ising inside the 9 5/8 Design Factors</td><td>Innular 1 Stage 1 Stage Min 1 Stage Drilling Calc Req'd Solume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE 3132 look ↘ 0 3703 9.40 5135 10M 5082 sum of sx ∑ CuFt 2766 6235 104 23 2766 6235 > 1.20 MASP is within 10% of 500 MASP is within 10% of 500 (s) for Segment(s): A, B, C, D = 0.49, b, c, d Alternate Burst = 1.12 > 1 & Alt Collapse = 1.44 sing inside the 9 5/8 Design Factors PROD</td></th<>	Inular 1 Stage 1 Stage Min 1 Stage Curt Sx CuFt Cmt Cu Ft % Excess 3132 Iook \> 0 3703 104 23 104 23 1>1.20 (s) for Segment(s): A, B, C, D = 0.49, b, c, d Alternational state 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	Innular I Stage I Stage Min I Stage Drilling Solume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt 3132 Iook \> 0 3703 % Excess Mud Wt 3132 Iook \> 0 3703 9.40 5082 104 23 9.40 > 1.20 (s) for Segment(s): A, B, C, D = 0.49, b, c, d Alternate Burst = 1.12 Alternate Burst = 95/8 Design Face	Innular 1 Stage 1 Stage Min 1 Stage Drilling Calc Dolume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP 3132 Iook ↘ 0 3703 9.40 5135 5082 sum of sx 2766 104 23 2766 > 1.20 MASP is within (s) for Segment(s): A, B, C, D = 0.49, b, c, d Alternate Burst = 1.12 > 1 & Alt Constant Ising inside the 9 5/8 Design Factors	Innular 1 Stage 1 Stage Min 1 Stage Drilling Calc Req'd Solume Cmt Sx CuFt Cmt Cu Ft % Excess Mud Wt MASP BOPE 3132 look ↘ 0 3703 9.40 5135 10M 5082 sum of sx ∑ CuFt 2766 6235 104 23 2766 6235 > 1.20 MASP is within 10% of 500 MASP is within 10% of 500 (s) for Segment(s): A, B, C, D = 0.49, b, c, d Alternate Burst = 1.12 > 1 & Alt Collapse = 1.44 sing inside the 9 5/8 Design Factors PROD

Carlsbad Field Office

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Ameredev Operating LLC
LEASE NO.:	NMNM137469
WELL NAME & NO.:	Nandina Fed Com 25 36 31 104H
SURFACE HOLE FOOTAGE:	230'/S & 2328'/W
BOTTOM HOLE FOOTAGE	50'/N & 2318'/W
LOCATION:	Section 31, T.25 S., R.36 E., NMPM
COUNTY:	Lea County, New Mexico

H2S	C Yes	le No	
Potash	None	C Secretary	C R-111-P
Cave/Karst Potential	C Low	C Medium	C High
Variance	C None	Flex Hose	C Other
Wellhead	Conventional	Multibowl	C Both
Other	1 4 String Area	Capitan Reef	□ WIPP

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

- 1. The 13-3/8 inch surface casing shall be set at approximately 1109 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of $\underline{8}$ <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours

Page 1 of 9

after bringing cement to surface or 500 pounds compressive strength, whichever is greater.

- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
 - Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
 - Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 9-5/8 inch 1st intermediate casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office. Excess calculates to 23% additional cement might be required.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef Top. Operator shall provide method of verification. Excess calculates to 16% additional cement might be required.

Page 2 of 9

Alternate Casing Design:

2nd Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 3. The minimum required fill of cement behind the 7-5/8 inch 2nd intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. **Excess calculates to 14% additional cement might be required.**

In the case of lost circulation, operator has proposed to pump down 9 5/8" X 7 5/8" annulus. Operator must run a CBL from TD of the 7 5/8" casing to surface. Submit results to the BLM.

Pilot hole is required to have a plug at the bottom of the hole. If two plugs are set, the BLM is to be contacted (575-361-2822) prior to tag of bottom plug, which must be a minimum of 200' in length. Operator can set one plug from bottom of pilot hole to kick-off point and save the WOC time for tagging the first plug. Note plug tops on subsequent drilling report.

- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 50 feet on top of Capitan Reef Top.
 Operator shall provide method of verification. Excess calculates to 18%
 additional cement might be required.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **10,000 (10M)** psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi.

Page 3 of 9

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi.)

D. SPECIAL REQUIREMENT(S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be</u> <u>on the sign.</u>

Page 4 of 9

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties
 Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 During office hours call (575) 627-0272.
 After office hours call (575)
 - Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log (one log per well pad is acceptable) run from TD to surface (horizontal well vertical portion of hole) shall

Page 5 of 9

be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

Page 6 of 9

- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.

Page 7 of 9

- a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

Page 8 of 9

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Waste Minimization Plan (WMP)

In the interest of resource development, submission of additional well gas capture development plan information is deferred but may be required by the BLM Authorized Officer at a later date.

NMK6242019

Page 9 of 9

253631N APD Nandina Fed Com 25 36 31 104H 30015 NMNM137469 Ameredev 12-55 06232019 NMK_ContingencyPlan

13 3/8	surface	csg in a	17 1/2	inch hole.		Design F	actors	SUR	RFACE
Segment	#/ft	Grade	•	Coupling	Body	Collapse	Burst	Length	Weight
"A"	54.50	J	55	BUTT	13.81	2.23	1.12	1,134	61,803
"B"								0	0
w/8.4#/g	g mud, 30min Sfe	c Csg Test psig:	1,416	Tail Cmt	does not	circ to sfc.	Totals:	1,134	61,803
Comparison of	of Proposed	to Minimum	Required C	ement Volum	<u>es</u>				
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Reg'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
17 1/2	0.6946	1537	2621	842	211	8.60	1345	2M	1.56
					· · · -				
95/8	casing in		13 3/8		·	Design F			MEDIATE
Segment	#/ft	Grade		Coupling	Body	Collapse	Burst	Length	Weight
"A" "B"	40.00	HCL	80	BUTT	4.57	1.73	0.71	5,013 0	200,520 0
-	; mud, 30min Sfo	-					Totals:	5,013	200,520
The c	ement volum	e(s) are inte	nded to ach	leve a top of	0	ft from su	rface or a	1134	overlap.
Hole	Annular	1 Stage	1 Stage	Min	1 Stage	Drilling	Calc	Req'd	Min Dist
Size	Volume	Cmt Sx	CuFt Cmt	Cu Ft	% Excess	Mud Wt	MASP	BOPE	Hole-Cplg
12 1/4	0.3132	look 🖌	0	1645		9.40	5655	10M	0.81
						•	MASP is withi		
	idient(s) for Se	egment(s): A,	B, C, D = 1.1	5, b, c, d		, 	· · · · · · · · · · · · · · · · · · ·		
All > 0.70, OK. 7 5/8	casing in	side the	B, C, D = 1.1	<u>A Buc</u>		Design Fac	ctors		MEDIATE
All > 0.70, OK. 7 5/8 Segment		side the Grade	9 5/8	<u>A Buc</u> Coupling	Joint	<u>Design Fac</u> Collapse	<u>ctors</u> Burst	INTERN Length	MEDIATE Weight
All > 0.70, OK. 7 5/8 Segment "A"	casing in	side the	9 5/8	<u>A Buc</u> Coupling FJM		Design Fac	ctors	INTERN	MEDIATE Weight
All > 0.70, OK. 7 5/8 Segment "A" "B"	casing in #/ft 29.70	side the Grade HCL	9 5/8 80	<u>A Buc</u> Coupling	Joint	<u>Design Fac</u> Collapse	ctors Burst 1.1	INTERN Length 11,147 0	MEDIATE Weight 331,066 0
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g	casing in #/ft 29.70	side the Grade HCL	9 5/8 80 2,452	<u>A Buc</u> Coupling FJM FJM	Joint 2.00	Design Fac Collapse 0.83	<mark>ctors</mark> Burst 1.1 Totals:	INTERN Length 11,147 0 11,147	MEDIATE Weight 331,066 0 331,066
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The co	casing in #/ft 29.70 ; mud, 30min Sfo ement volum	side the Grade HCL c Csg Test psig: e(s) are inter	9 5/8 80 2,452 nded to ach	<u>A Buc</u> Coupling FJM FJM	Joint 2.00 0	Design Fac Collapse 0.83 ft from su	ctors Burst 1.1 Totals: rface or a	INTERN Length 11,147 0 11,147 5013	MEDIATE Weight 331,066 0 331,066 overlap.
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The co Hole	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage	9 5/8 80 2,452 nded to ach 1 Stage	<u>A Buc</u> Coupling FJM FJM FJM	Joint 2.00 0 1 Stage	Design Fac Collapse 0.83 ft from su Drilling	<u>ctors</u> Burst 1.1 Totals: rface or a Calc	INTER Length 11,147 0 11,147 5013 Req'd	MEDIATE Weight 331,066 0 331,066 overlap. Min Dist
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The co Hole Size	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage Cmt Sx	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt	<u>A Buc</u> Coupling FJM FJM ieve a top of Min Cu Ft	Joint 2.00 0 1 Stage % Excess	Design Fac Collapse 0.83 ft from su Drilling Mud Wt	ctors Burst 1.1 Totals: rface or a Calc MASP	INTER Length 11,147 0 11,147 5013 Req'd BOPE	MEDIATE Weight 331,066 0 331,066 overlap. Min Dist Hole-Cplg
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The co Hole Size 8 3/4	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339	<u>A Buc</u> Coupling FJM FJM ileve a top of Min Cu Ft 1172	Joint 2.00 0 1 Stage % Excess 14	Design Fac Collapse 0.83 ft from su Drilling Mud Wt 14.00	<u>ctors</u> Burst 1.1 Totals: rface or a Calc	INTER Length 11,147 0 11,147 5013 Req'd	MEDIATE Weight 331,066 0 331,066 overlap. Min Dist
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The co Hole Size	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage Cmt Sx	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339	<u>A Buc</u> Coupling FJM FJM ieve a top of Min Cu Ft	Joint 2.00 0 1 Stage % Excess 14 00psig, need	Design Fac Collapse 0.83 ft from sur Drilling Mud Wt 14.00 exrta equip?	Ctors Burst 1.1 Totals: rface or a Calc MASP 6016	INTER Length 11,147 0 11,147 5013 Req'd BOPE	MEDIATE Weight 331,066 0 331,066 overlap. Min Dist Hole-Cplg
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The co Hole Size 8 3/4	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage Cmt Sx	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339	<u>A Buc</u> Coupling FJM FJM ileve a top of Min Cu Ft 1172	Joint 2.00 0 1 Stage % Excess 14 00psig, need	Design Fac Collapse 0.83 ft from su Drilling Mud Wt 14.00	Ctors Burst 1.1 Totals: rface or a Calc MASP 6016	INTER Length 11,147 0 11,147 5013 Req'd BOPE	MEDIATE Weight 331,066 0 331,066 overlap. Min Dist Hole-Cplg
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The co Hole Size 8 3/4 Class 'H' tail cn	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005	side the Grade HCL c Csg Test psig: re(s) are inter 1 Stage Cmt Sx 683	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339	<u>A Buc</u> Coupling FJM FJM ileve a top of Min Cu Ft 1172	Joint 2.00 0 1 Stage % Excess 14 00psig, need	Design Fac Collapse 0.83 ft from sur Drilling Mud Wt 14.00 exrta equip?	ctors Burst 1.1 Totals: rface or a Calc MASP 6016 1.25 > 1.125	INTER Length 11,147 0 11,147 5013 Req'd BOPE 10M	MEDIATE Weight 331,066 0 331,066 overlap. Min Dist Hole-Cplg
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The co Hole Size 8 3/4 Class 'H' tail cm Tail cmt	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005 nt yld > 1.20	side the Grade HCL c Csg Test psig: re(s) are inter 1 Stage Cmt Sx 683	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339 MASP is wit	<u>A Buc</u> Coupling FJM FJM ileve a top of Min Cu Ft 1172	Joint 2.00 0 1 Stage % Excess 14 00psig, need	Design Fac Collapse 0.83 ft from su Drilling Mud Wt 14.00 exrta equip? Alt Collapse =	ctors Burst 1.1 Totals: rface or a Calc MASP 6016 1.25 > 1.125	INTER Length 11,147 0 11,147 5013 Req'd BOPE 10M	MEDIATE Weight 331,066 overlap. Min Dist Hole-Cplg 0.56
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The cd Hole Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005 mt yld > 1.20 casing in	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage Cmt Sx 683 side the	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339 MASP is with 7 5/8	A Buc Coupling FJM FJM ileve a top of Min Cu Ft 1172 thin 10% of 500	Joint 2.00 1 Stage % Excess 14 00psig, need	Design Fac Collapse 0.83 ft from su Drilling Mud Wt 14.00 exrta equip? Alt Collapse = 3	tors Burst 1.1 Totals: frace or a Calc MASP 6016 1.25 > 1.125	INTER Length 11,147 0 11,147 5013 Req'd BOPE 10M	MEDIATE Weight 331,066 0 331,066 overlap. Min Dist Hole-Cplg 0.56
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The co Hole Size 8 3/4 Class 'H' tail cm <u>Tail cmt</u> 5 1/2 Segment	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005 mt yld > 1.20 casing in #/ft	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage Cmt Sx 683 side the Grade	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339 MASP is with 7 5/8	<u>A Buc</u> Coupling FJM FJM Nin Cu Ft 1172 thin 10% of 500	Joint 2.00 1 Stage % Excess 14 00psig, need	Design Fac Collapse 0.83 ft from su Drilling Mud Wt 14.00 exrta equip? Alt Collapse = Design F Collapse	Ctors Burst 1.1 Totals: rface or a Calc MASP 6016 1.25 > 1.125 Cactors Burst	INTER Length 11,147 0 11,147 5013 Req'd BOPE 10M PROD Length	MEDIATE Weight 331,066 0 331,066 overlap. Min Dist Hole-Cplg 0.56 UCTION Weight 222,940
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The co Hole Size 8 3/4 Class 'H' tail cm <u>Tail cmt</u> 5 1/2 Segment "A" "B"	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005 mt yld > 1.20 casing in #/ft 20.00	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage Cmt Sx 683 side the Grade CYHP CYHP	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339 MASP is with 7 5/8 110	A Buc Coupling FJM FJM ileve a top of Min Cu Ft 1172 thin 10% of 500 Coupling TMK UPSF	Joint 2.00 1 Stage % Excess 14 Dopsig, need Joint 2.76	Design Fac Collapse 0.83 ft from su Drilling Mud Wt 14.00 exrta equip? Alt Collapse = 3 Design F Collapse 1.58	ctors Burst 1.1 Totals: rface or a Calc MASP 6016 1.25 > 1.125 actors Burst 1.66	INTER Length 11,147 0 11,147 5013 Req'd BOPE 10M PROD Length 11,147	VEDIATE Weight 331,066 overlap. Min Dist Hole-Cplg 0.56 UCTION Weight 222,940 226,320
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The co Hole Size 8 3/4 Class 'H' tail cm <u>Tail cmt</u> 5 1/2 Segment "A" "B" w/8.4#/g	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005 mt yld > 1.20 casing in #/ft 20.00 20.00	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage Cmt Sx 683 side the Grade CYHP CYHP	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339 MASP is with 7 5/8 110 110 2,452	<u>A Buc</u> Coupling FJM FJM Nieve a top of Min Cu Ft 1172 thin 10% of 500 Coupling TMK UPSF TMK UPSF	Joint 2.00 1 Stage % Excess 14 Dopsig, need Joint 2.76	Design Fac Collapse 0.83 ft from su Drilling Mud Wt 14.00 exrta equip? Alt Collapse = : Design F Collapse 1.58 1.37	ctors Burst 1.1 Totals: rface or a Calc MASP 6016 1.25 > 1.125 actors Burst 1.66 1.66	INTER Length 11,147 0 11,147 5013 Req'd BOPE 10M PROD Length 11,147 11,316 22,463	MEDIATE Weight 331,066 overlap. Min Dist Hole-Cplg 0.56 UCTION Weight 222,940 226,320 449,260
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The co Hole Size 8 3/4 Class 'H' tail cm <u>Tail cmt</u> 5 1/2 Segment "A" "B" w/8.4#/g Bie	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005 mt yld > 1.20 casing in #/ft 20.00 20.00 gmud, 30min Sfo egment Desi	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage Cmt Sx 683 side the Grade CYHP CYHP c Csg Test psig: ign Factors	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339 MASP is with 7 5/8 110 110 2,452	<u>A Buc</u> Coupling FJM FJM Nieve a top of Min Cu Ft 1172 thin 10% of 500 Coupling TMK UPSF TMK UPSF	Joint 2.00 1 Stage % Excess 14 00psig, need Joint 2.76 6.70	Design Fac Collapse 0.83 ft from su Drilling Mud Wt 14.00 exrta equip? Alt Collapse = : Design F Collapse 1.58 1.37	ctors Burst 1.1 Totals: rface or a Calc MASP 6016 1.25 > 1.125 actors Burst 1.66 1.66 Totals:	INTER Length 11,147 0 11,147 5013 Req'd BOPE 10M PROD Length 11,147 11,316 22,463	MEDIATE Weight 331,066 overlap. Min Dist Hole-Cplg 0.56 UCTION Weight 222,940 226,320 449,260
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The cd Hole Size 8 3/4 Class 'H' tail cm <u>Tail cmt</u> 5 1/2 Segment "A" "B" w/8.4#/g Bie No Pile	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005 mt yld > 1.20 casing in #/ft 20.00 20.00 gmud, 30min Sfo egment Desi lot Hole Plan	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage Cmt Sx 683 side the Grade CYHP CYHP c Csg Test psig: gn Factors nned	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339 MASP is with 7 5/8 110 110 2,452 would be: MTD 22463	A Buc Coupling FJM FJM Nin Cu Ft 1172 thin 10% of 500 Coupling TMK UPSF TMK UPSF TMK UPSF	Joint 2.00 1 Stage % Excess 14 00psig, need Joint 2.76 6.70 46.00	Design Fac Collapse 0.83 ft from su Drilling Mud Wt 14.00 exrta equip? Alt Collapse 1.58 1.37 1.48 i	ctors Burst 1.1 Totals: rface or a Calc MASP 6016 1.25 > 1.125 Cactors Burst 1.66 1.66 Totals: f it were a verse	INTER Length 11,147 0 11,147 5013 Req'd BOPE 10M PROD Length 11,147 11,316 22,463 ertical wellb	MEDIATE Weight 331,066 0 331,066 overlap. Min Dist Hole-Cplg 0.56 UCTION Weight 222,940 226,320 449,260 pore. MEOC
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The cd Hole Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g Bie No Pile	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005 mt yld > 1.20 casing in #/ft 20.00 20.00 gmud, 30min Sfo egment Desi	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage Cmt Sx 683 side the Grade CYHP CYHP c Csg Test psig: gn Factors nned	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339 MASP is with 7 5/8 110 110 2,452 would be: MTD 22463	A Buc Coupling FJM FJM Nin Cu Ft 1172 thin 10% of 500 Coupling TMK UPSF TMK UPSF TMK UPSF	Joint 2.00 1 Stage % Excess 14 00psig, need Joint 2.76 6.70 46.00 Csg VD	Design Fac Collapse 0.83 ft from su Drilling Mud Wt 14.00 exrta equip? Alt Collapse = 1 Design F Collapse 1.58 1.37 1.48 i Curve KOP	ctors Burst 1.1 Totals: rface or a Calc MASP 6016 1.25 > 1.125 Cactors Burst 1.66 1.66 Totals: f it were a very Dogleg ^o 90	INTER Length 11,147 0 11,147 5013 Req'd BOPE 10M PROD Length 11,147 11,316 22,463 ertical wellb Severity ^o	MEDIATE Weight 331,066 0 331,066 overlap. Min Dist Hole-Cplg 0.56 UCTION Weight 222,940 226,320 449,260 pore. MEOC
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The cd Hole Size 8 3/4 Class 'H' tail cm Tail cmt 5 1/2 Segment "A" "B" w/8.4#/g Bie No Pile	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005 mt yld > 1.20 casing in #/ft 20.00 20.00 gmud, 30min Sfo egment Desi lot Hole Plan	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage Cmt Sx 683 side the Grade CYHP CYHP c Csg Test psig: gn Factors nned	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339 MASP is with 7 5/8 110 110 2,452 would be: MTD 22463	A Buc Coupling FJM FJM Nin Cu Ft 1172 thin 10% of 500 Coupling TMK UPSF TMK UPSF TMK UPSF	Joint 2.00 1 Stage % Excess 14 00psig, need Joint 2.76 6.70 46.00 Csg VD 11859	Design Fac Collapse 0.83 ft from sur Drilling Mud Wt 14.00 exrta equip? Alt Collapse = 3 Design F Collapse 1.58 1.37 1.48 i Curve KOP 11500	ctors Burst 1.1 Totals: rface or a Calc MASP 6016 1.25 > 1.125 Cactors Burst 1.66 1.66 Totals: f it were a very Dogleg ^o 90	INTER Length 11,147 0 11,147 5013 Req'd BOPE 10M PROD Length 11,147 11,316 22,463 ertical wellb Severity° 12	MEDIATE Weight 331,066 overlap. Min Dist Hole-Cplg 0.56 UCTION Weight 222,940 226,320 449,260 pore. MEOC 12246.7
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The co Hole Size 8 3/4 Class 'H' tail cm <u>Tail cmt</u> 5 1/2 Segment "A" "B" w/8.4#/g B:e No Pile The co	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005 mt yld > 1.20 casing in #/ft 20.00 20.00 gmud, 30min Sfo egment Desi lot Hole Plan ement volum	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage Cmt Sx 683 side the Grade CYHP CYHP c Csg Test psig: ign Factors nned e(s) are inter	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339 MASP is with 7 5/8 110 110 2,452 would be: MTD 22463 nded to ach	A Buc Coupling FJM FJM ileve a top of Min Cu Ft 1172 thin 10% of 500 Coupling TMK UPSF TMK UPSF TMK UPSF Max VTD 11859 ileve a top of	Joint 2.00 1 Stage % Excess 14 00psig, need Joint 2.76 6.70 46.00 Csg VD 11859 0	Design Fac Collapse 0.83 ft from sur Drilling Mud Wt 14.00 exrta equip? Alt Collapse = 3 Design F Collapse 1.58 1.37 1.48 i Curve KOP 11500 ft from sur	ctors Burst 1.1 Totals: rface or a Calc MASP 6016 1.25 > 1.125 Gactors Burst 1.66 Totals: fit were a vo Dogleg° 90 rface or a	INTER Length 11,147 0 11,147 5013 Req'd BOPE 10M PROD Length 11,147 11,316 22,463 ertical wellb Severity ^o 12 11147	VEDIATE Weight 331,066 overlap. Min Dist Hole-Cplg 0.56 VCTION Weight 222,940 226,320 449,260 pore. MEOC 12246.7 overlap. Min Dist
All > 0.70, OK. 7 5/8 Segment "A" "B" w/8.4#/g The co Hole Size 8 3/4 Class 'H' tail cm Tail Cmt 5 1/2 Segment "A" "B" w/8.4#/g Bie No Pile The co Hole	casing in #/ft 29.70 mud, 30min Sfo ement volum Annular Volume 0.1005 mt yld > 1.20 casing in #/ft 20.00 20.00 gmud, 30min Sfo egment Desi lot Hole Plan ement volum Annular	side the Grade HCL c Csg Test psig: e(s) are inter 1 Stage Cmt Sx 683 side the Grade CYHP CYHP c Csg Test psig: gn Factors nned e(s) are inter 1 Stage	9 5/8 80 2,452 nded to ach 1 Stage CuFt Cmt 1339 MASP is with 7 5/8 110 110 2,452 would be: MTD 22463 nded to ach 1 Stage	A Buc Coupling FJM FJM ileve a top of Min Cu Ft 1172 thin 10% of 500 Coupling TMK UPSF TMK UPSF TMK UPSF Max VTD 11859 ileve a top of Min	Joint 2.00 1 Stage % Excess 14 00psig, need Joint 2.76 6.70 46.00 Csg VD 11859 0 1 Stage	Design Fac Collapse 0.83 ft from sur Drilling Mud Wt 14.00 exrta equip? Alt Collapse 1.58 1.37 1.48 i Curve KOP 11500 ft from sur Drilling	ctors Burst 1.1 Totals: rface or a Calc MASP 6016 1.25 > 1.125 Sactors Burst 1.66 Totals: fit were a vol Dogleg° 90 rface or a Calc	INTER Length 11,147 0 11,147 5013 Req'd BOPE 10M PROD Length 11,147 11,316 22,463 ertical wellb Severity ^o 12 11147 Req'd	VEDIATE Weight 331,066 0 331,066 overlap. Min Dist Hole-Cplg 0.56 UCTION Weight 222,940 226,320 449,260 pore. MEOC 12246.7 overlap.

Carlsbad Field Office

Approval Date: 10/11/2019

_

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

Pad 1:

Nandina Fed Com 25 36 31 104H:

Surface Hole Location: 230' FSL & 2328' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: 50' FNL & 2318' FWL, Section 30, T. 25 S., R. 36 E.

Nandina Fed Com 25 36 31 114H: Surface Hole Location: 230' FSL & 2348' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: 50' FNL & 2318' FWL, Section 30, T. 25 S., R. 36 E.

Nandina Fed Com 25 36 31 124H: Surface Hole Location: 230' FSL & 2368' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: 50' FNL & 2318' FWL, Section 30, T. 25 S., R. 36 E.

Goldenbell Fed Com 26 36 06 104H: Surface Hole Location: 230' FSL & 2268' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: To Be Determined

Goldenbell Fed Com 26 36 06 114H: Surface Hole Location: 230' FSL & 2288' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: To Be Determined

Goldenbell Fed Com 26 36 06 124H: Surface Hole Location: 230' FSL & 2308' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: To Be Determined

<u>Pad 2:</u>

Nandina Fed Com 25 36 31 106H: Surface Hole Location: 230' FSL & 390' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: To Be Determined

Nandina Fed Com 25 36 31 116H: Surface Hole Location: 230' FSL & 410' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: To Be Determined

Nandina Fed Com 25 36 31 126H: Surface Hole Location: 230' FSL & 430' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: 200' FNL & 380' FWL, Section 30, T. 25 S., R. 36 E.

Goldenbell Fed Com 26 36 06 106H: Surface Hole Location: 230' FSL & 370' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: To Be Determined

Goldenbell Fed Com 26 36 06 116H: Surface Hole Location: 230' FSL & 350' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: To Be Determined

Goldenbell Fed Com 26 36 06 126H: Surface Hole Location: 230' FSL & 370' FWL, Section 31, T. 25 S., R. 36 E. Bottom Hole Location: To Be Determined

Page 1 of 14

<u>Pad 3:</u>

Goldenbell Fed Com 26 36 06 122H: Surface Hole Location: 200' FNL & 1040' FWL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: To Be Determined
Goldenbell Fed Com 26 36 06 112H: Surface Hole Location: 200' FNL & 1020' FWL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: To Be Determined
Goldenbell Fed Com 26 36 06 102H: Surface Hole Location: 200' FNL & 1000' FWL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: 200' FNL & 1000' FWL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: 50' FSL & 1026' FWL, Section 7, T. 26 S., R. 36 E.
Goldenbell Fed Com 26 36 06 091H:

Surface Hole Location: 200' FNL & 980' FWL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: To Be Determined

Goldenbell Fed Com 26 36 06 081H: Surface Hole Location: 200' FNL & 960' FWL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: To Be Determined

Goldenbell Fed Com 26 36 06 071H: Surface Hole Location: 200' FNL & 940' FWL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: To Be Determined

Pad 4:

Nandina Fed Com 25 36 31 077H: Surface Hole Location: 230' FSL & 690' FEL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: To Be Determined

Nandina Fed Com 25 36 31 097H: Surface Hole Location: 230' FSL & 670' FEL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: To Be Determined.

Nandina Fed Com 25 36 31 087H: Surface Hole Location: 230' FNL & 650' FEL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: 50' FNL & 660' FEL, Section 30, T. 25 S., R. 36 E.

Goldenbell Fed Com 26 36 06 097H: Surface Hole Location: 230' FSL & 630' FEL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: To Be Determined

Goldenbell Fed Com 26 36 06 087H: Surface Hole Location: 230' FSL & 610' FEL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: To Be Determined

Goldenbell Fed Com 26 36 06 077H: Surface Hole Location: 230' FSL & 590' FWL, Section 6, T. 26 S., R. 36 E. Bottom Hole Location: To Be Determined.

TABLE OF CONTENTS

Page 2 of 14

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
Special Requirements
Lesser Prairie-Chicken Timing Stipulations
Ground-level Abandoned Well Marker
Hydrology
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
Production (Post Drilling)
Well Structures & Facilities
Interim Reclamation
Final Abandonment & Reclamation

Page 3 of 14

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

Page 4 of 14

V. SPECIAL REQUIREMENT(S)

Timing Limitation Stipulation / Condition of Approval for lesser prairie-chicken:

Oil and gas activities including 3-D geophysical exploration, and drilling will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Additionally, no new drilling will be allowed within up to 200 meters of leks known at the time of permitting. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 feet from the source of the noise.

<u>Ground-level Abandoned Well Marker to avoid raptor perching</u>: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well. For more installation details, contact the Carlsbad Field Office at 575-234-5972.

Hydrology:

The entire well pad(s) will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. The compacted berm shall be constructed at a minimum of 12 inches with impermeable mineral material (e.g. caliche). Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed. Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion. Stockpiling of topsoil is required. The top soil shall be stockpiled in an appropriate location to prevent loss of soil due to water or wind erosion and not used for berming or erosion control. If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.

Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain $1\frac{1}{2}$ times the content of the largest tank or 24 hour production, whichever is greater. Automatic shut off, check valves, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.

When crossing ephemeral drainages the pipeline(s) will be buried to a minimum depth of 48 inches from the top of pipe to ground level. Erosion control methods such as gabions and/or rock aprons should be placed on both up and downstream sides of the pipeline

Page 5 of 14

crossing. In addition, curled (weed free) wood/straw fiber wattles/logs and/or silt fences should be placed on the downstream side for sediment control during construction and maintained until soils and vegetation have stabilized. Water bars should be placed within the ROW to divert and dissipate surface runoff. A pipeline access road is not permitted to cross these ephemeral drainages. Traffic should be diverted to a preexisting route. Additional seeding may be required in floodplains and drainages to restore energy dissipating vegetation.

Prior to pipeline installation/construction a leak detection plan will be developed. The method(s) could incorporate gauges to detect pressure drops, situating valves and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.

Any water erosion that may occur due to the construction of overhead electric line and during the life of the power line will be quickly corrected and proper measures will be taken to prevent future erosion. A power pole should not be placed in drainages, playas, wetlands, riparian areas, or floodplains and must span across the features at a distance away that would not promote further erosion.

Temporary Fresh Water Frac Line: once the temporary use exceeds the timeline of 180 days and/or with a 90 day extension status; further analysis will be required if the applicant pursues to turn the temporary ROW into a permanent ROW.

Page 6 of 14

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Page 7 of 14

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

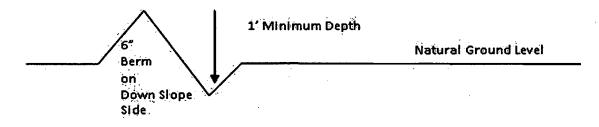
Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.


Drainage

Page 8 of 14

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

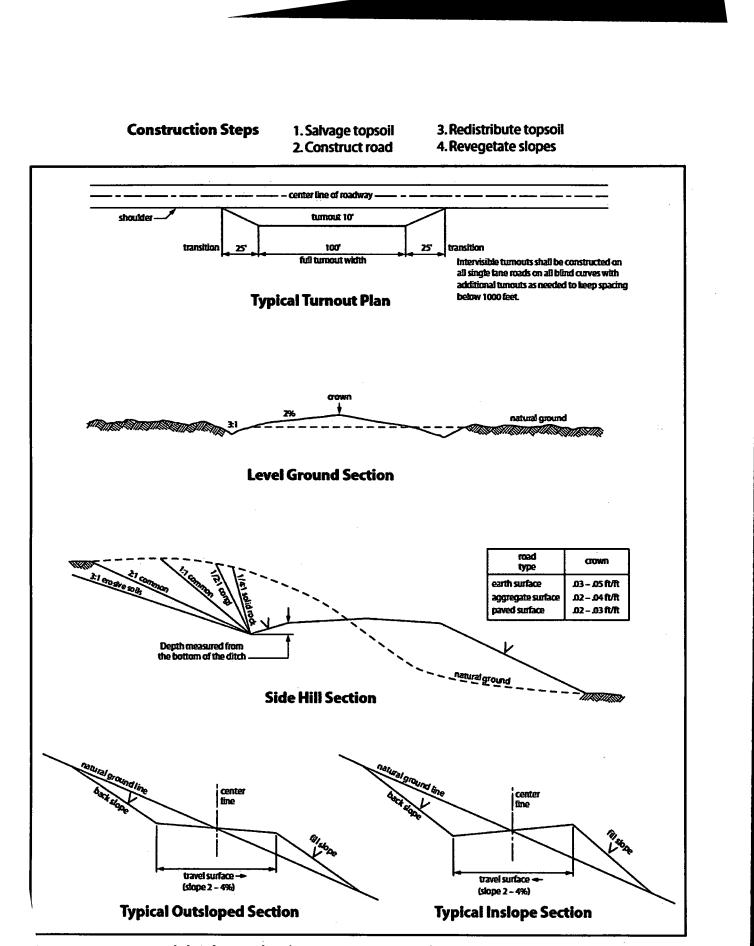
Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: 400' + 100' = 200' lead-off ditch interval 4%

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.


Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 9 of 14

gure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.

Page 10 of 14

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Page 11 of 14

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory

Page 12 of 14

revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well.

Page 13 of 14

(Insert Seed Mixture Here)

Page 14 of 14

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie Hanna

Signed on: 04/16/2019

Zip: 78735

Operator Certification Data Report

10/11/2019

Title: Senior Engineering Technician

Street Address: 5707 SOUTHWEST PKWY BLDG 1 STE 275

State: TX

City: AUSTIN

Phone: (737)300-4700

Email address: zboyd@ameredev.com

Field Representative

Representative Name: Zachary Boyd

Street Address: 5707 SOUTHWEST PARKWAY, BLDG 1, STE. 275

State: TX

City: AUSTIN

Zip: 78735

Phone: (580)940-5054

Email address: zboyd@ameredev.com

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT**

APD ID: 10400037359

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Type: OIL WELL

Well Number: 104H Well Work Type: Drill

Submission Date: 02/06/2019

Show Final Text

10/11/2019

Application Data Report

Section 1 - General APD ID: 10400037359 Tie to previous NOS? Submission Date: 02/06/2019 Title: Senior Engineering Technician **BLM Office: CARLSBAD User: Christie Hanna** Federal/Indian APD: FED Is the first lease penetrated for production Federal or Indian? FED Lease Acres: 600.28 Lease number: NMNM137469 Allotted? Surface access agreement in place? Reservation: Agreement in place? NO Federal or Indian agreement: Agreement number: Agreement name: Keep application confidential? NO APD Operator: AMEREDEV OPERATING LLC Permitting Agent? NO

Operator letter of designation:

A	1
Operator	into

Operator Organization Name: AMEREDEV OPERATING LLC

Operator Address: 5707 Southwest Parkway, Building 1, Suite 275

Operator PO Box:

State: TX **Operator City: Austin**

Operator Phone: (737)300-4700

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Well in Master SUPO? NO

Well in Master Drilling Plan? NO

Well Name: NANDINA FED COM 25 36 31

Field/Pool or Exploratory? Field and Pool

Master Development Plan name: Master SUPO name: Master Drilling Plan name:

Zip: 78735

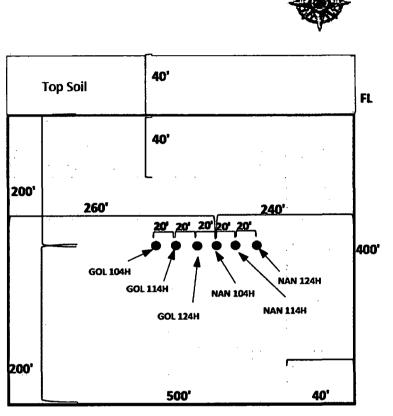
Well Number: 104H

Field Name: JAL

Well API Number:

Pool Name: JAL; WOLFCAMP, WEST

Is the proposed well in an area containing other minoral resources? LISEARI E MATER NATURAL GAS CO2 OII

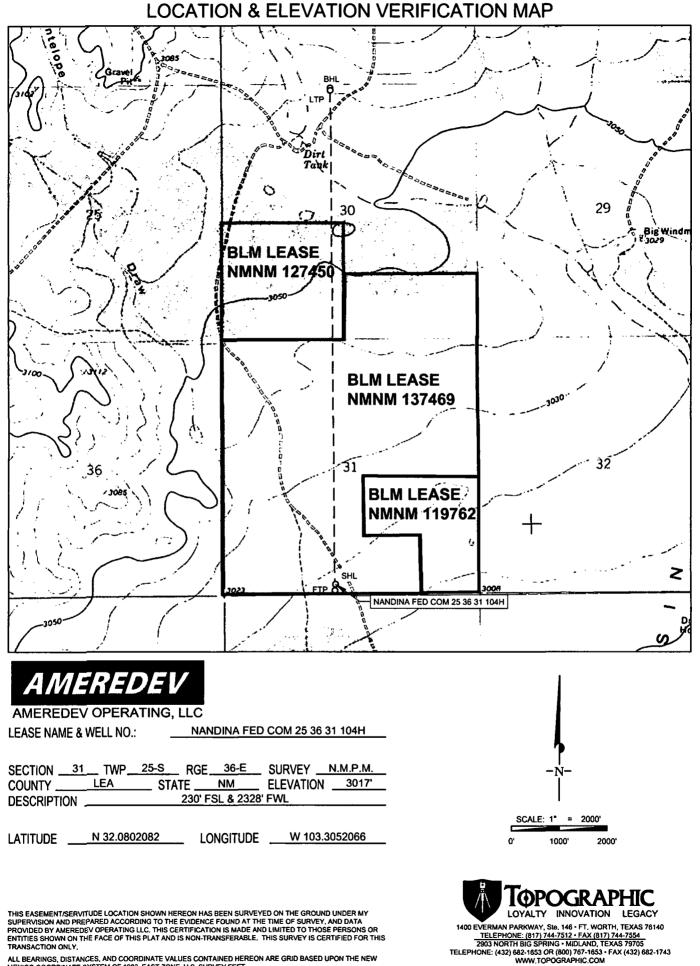

Ope	rator N	Name:	AME	REDE	V OPI	ERAT	ING L	LC										
Well	Name	e: NAI	NDINA	FED	СОМ	25 36	5 31			Well Numbe	er: 104	Н						
ls the	e prop	osed v	well in	an ar	ea cor	ntainir	ng oth	er mine	ral resou	rces? USEA	BLE W	ATER,	NATUF	RAL	GAS,CC	D2,OIL	-	
ls the	e prop	osed v	well in	a Heli	ium pr	oduct	tion a	rea? N	Use	Existing We	ell Pad	? NO	Ne	ew s	surface d	isturba	ance?	
Гуре	of We	ell Pac	: MUL	TIPLE	E WEI	.L												
Nell	Class:	HOR	IZON	TAL					Nur	nber of Legs	s: 1							
Nell '	Work	Туре:	Drill															
Well	Туре:	OIL V	VELL															
Desc	ribe W	Vell Ty	/pe:															
Nell :	sub-T	ype: Il	NFILL															
Desc	ribe si	ub-typ	e:									<u>.</u>						
Dista	nce to	town	: 7 Mil	es		:												
Rese	rvoir v							irement	320 Acr	es		·		-			,	
Well	plat:		FF_20								·							
				—				_		M_LEASE_N	_			34.p	odf			
					_					102_SIG_20								
				_	_					1_2AB_2019								
					_													
		N/		A_FE	D_CC	M_25	5_36_	31_104				N_2019	904151	608	347.pdf			
` -	0								Dur	ation: 90 DA	YS							
	Sec	tion	3 - V	Vell	Loca	ation	Tal	ble										
Surve	эу Тур	e: RE	CTAN	IGULA	R													
Desc	ribe S	urvey	Туре:															
Datur	n: NA	D83							Ver	ical Datum:	NAVD	38						
Surve	ey nun	n ber : '	18329						Ref	erence Datu	m:							
								act	: .						<u> </u>			
		to		ator				Aliquot/Lot/Tract							Lease Number			
	oot	NS Indicator	Foot	EW Indicator		je	<u>io</u>	iot/L(apr	Longitude	<u>≩</u>		dian	ease Type	ie Nr	Elevation		
	NS-Foot	NS II	EW-Foot	EW	Twsp	Range	Section	Aliqu	Latitude	Long	County	State	Meridian	Lease	Leas	Elev	Q.	٩ ۲
		FSL		FWL		_	31	Lot			LEA	NEW	NEW	F	NMNM	301		0
SHL	230											MEXI	MEXI		137469	7		

Operator Name: AMEREDEV OPERATING LLC Well Name: NANDINA FED COM 25 36 31

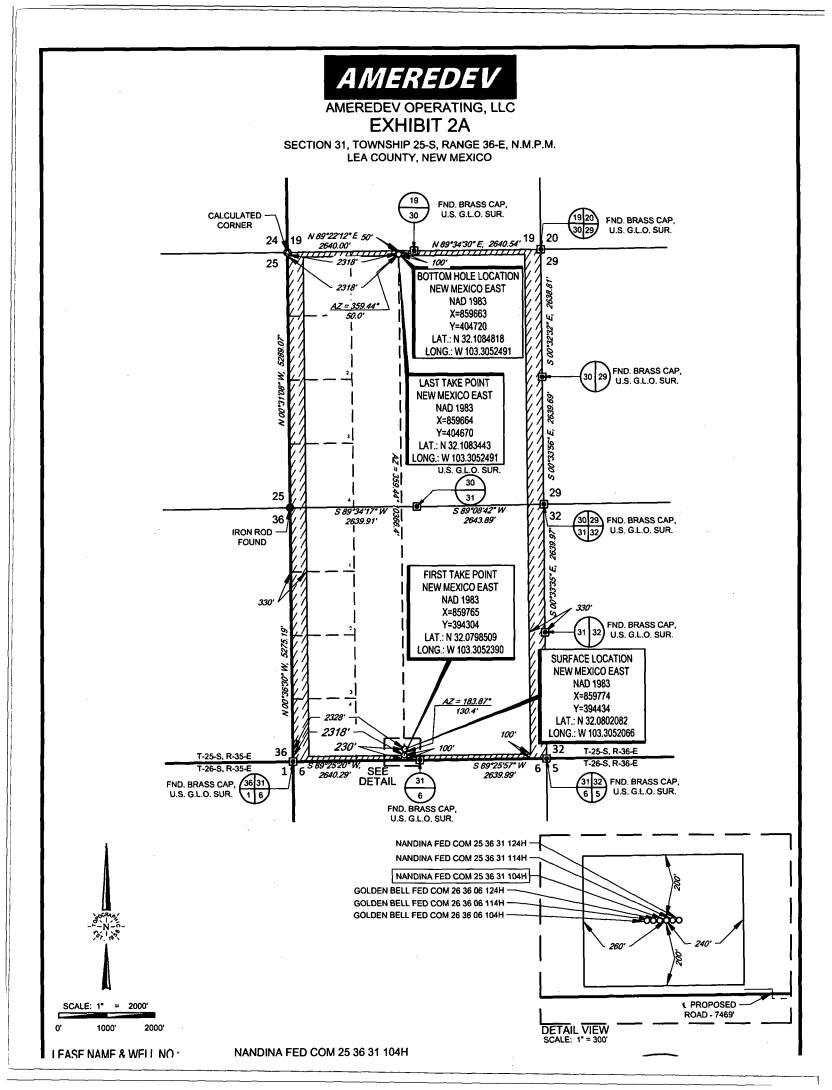
Well Number: 104H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
KOP Leg #1	260	FNL	jetis Internet	FWL	26S	36E	6	Aliquot NENW			LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 137471	- 835 8		113 75
PPP Leg #1	0	FSL		FWL	25S	36E	30	Aliquot SESW				NEW MEXI CO	NEW MEXI CO	F	NMNM 127450	- 884 2		118 59
EXIT Leg #1	50	FNL		FWL	25S	36E	30	Aliquot NENW			LEA	NEW MEXI CO	NEW MEXI CO	F	FEE	- 884 2		118 59
BHL Leg #1	50	FNL		FWL	25S	36E	30	Lot C			LEA	NEW MEXI CO	NEW MEXI CO	F	FEE	- 884 2		118 59

Ameredev Operating, LLC Nandina Fed Com 25 36 31 114H Section 31, Township 25S, Range 36E Lea County, New Mexico



Road


Flowline Reclaimed Area Road Top Soil AMEREDE

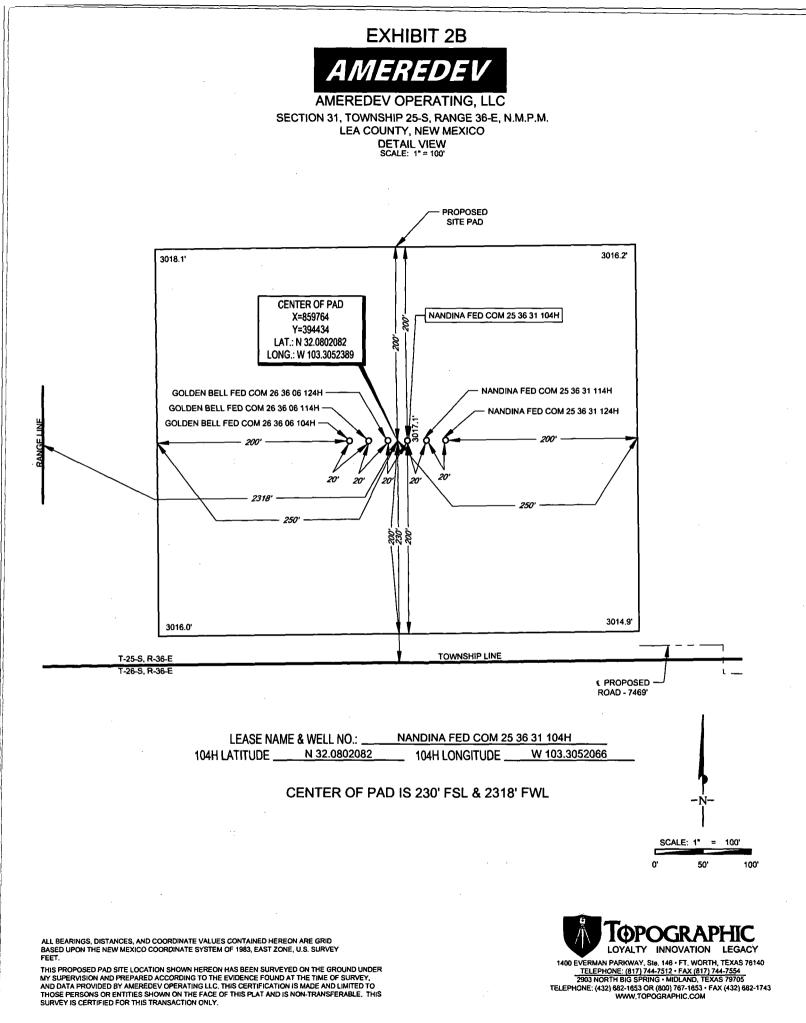
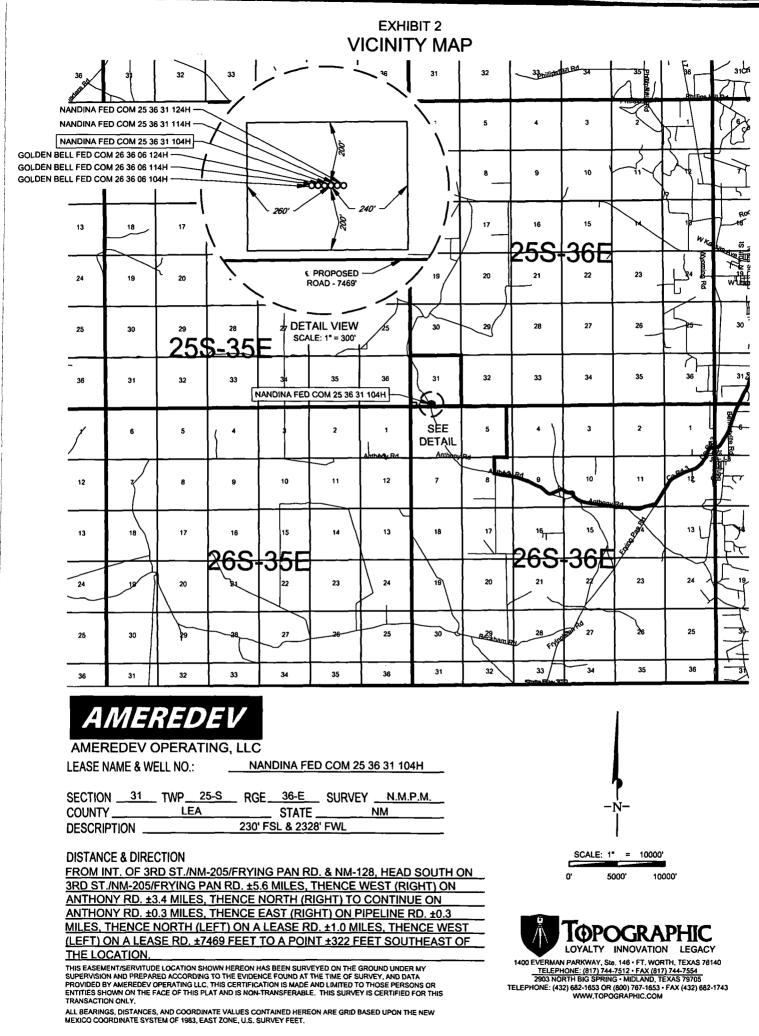

Golden Bell Fed Com 26 36 06 104H SHL: 26S 36E 230' FSL 2268' FWL Golden Bell Fed Com 26 36 06 114H SHL: 26S 36E 230' FSL 2288' FWL Golden Bell Fed Com 26 36 06 124H SHL: 26S 36E 230' FSL 2308' FWL Nandina Fed Com 25 36 31 104H SHL: 25S 36E 230' FSL 2328' FWL Nandina Fed Com 25 36 31 114H SHL: 25S 36E 230' FSL 2348' FWL Nandina Fed Com 25 36 31 124H SHL: 25S 36E 230' FSL 2368' FWL

Exhibit 3 – Well Site Diagram


ALL BEARINGS, DISTANCES, AND COORDINATE VALUES CONTAINED HEREON ARE GRID BASED UPON THE NEW MEXICO COORDINATE SYSTEM OF 1983, EAST ZONE, U.S. SURVEY FEET.

ORIGINAL DOCUMENT_SIZE: 8.5" X 11"

S:SURVEYAMEREDEV_OPERATING_LLCNANDINA_FED_COM/FINAL_PRODUCTS/LO_NANDINA_FED_COM_25_36_31_104H_REV1.DWG 11/20/2018 10:25:52 AM ocasion

S:SURVEYAMEREDEV_OPERATING_LLCWANDINA_FED_COMFINAL_PRODUCTS'LO_NANDINA_FED_COM_25_36_31_104H_REV1.DWG 11/20/2018 10:25:52 AM coastan

U.S. Department of the interior BUREAU OF LAND MANAGEMENT Drilling Plan Data Report

1.1

APD ID: 10400037359

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Number: 104H

Submission Date: 02/06/2019

Show Final Text

2007 -

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing Formation
1	RUSTLER ANHYDRITE	3017	1009	1009	ANHYDRITE	NONE	N
2	SALADO	1555	1462	1462	SALT	NONE	N
3	TANSILL	-370	3387	3387	LIMESTONE	NONE	N
4	CAPITAN REEF	-763	3780	3780	LIMESTONE	USEABLE WATER	N
5	LAMAR	-2015	5032	5032	LIMESTONE	NONE	N
6	BELL CANYON	-2114	5131	5131	SANDSTONE	NATURAL GAS,OIL	N
7	BRUSHY CANYON	-4241	7258	7258	SANDSTONE	NATURAL GAS,OIL	N
8	BONE SPRING LIME	-5367	8384	8384	LIMESTONE	NONE	N
9	BONE SPRING 1ST	-6725	9742	9742	SANDSTONE	NATURAL GAS,OIL	N
10	BONE SPRING 2ND	-7220	10237	10237	SANDSTONE	NATURAL GAS,OIL	N
11	BONE SPRING 3RD	-7772	10789	10789	LIMESTONE	NATURAL GAS,OIL	N
12	BONE SPRING 3RD	-8396	11413	11413	SANDSTONE	NATURAL GAS,OIL	N
13	WOLFCAMP	-8668	11685	11685	SHALE	NATURAL GAS,OIL	Ŷ

Section 2 - Blowout Prevention

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Number: 104H

Pressure Rating (PSI): 10M Rating Depth: 15000

Equipment: 10M BOPE SYSTEM WILL BE USED AFTER THE SURFACE CASING IS SET. A KELLY COCK WILL BE KEPT IN THE DRILL STRING AT ALL TIMES. A FULL OPENING DRILL PIPE STABBING VALVE WITH PROPER DRILL PIPE CONNECTIONS WILL BE ON THE RIG FLOOR AT ALL TIMES. Requesting Variance? YES

Variance request: Co-Flex Choke Line, 5M Annular Preventer

Testing Procedure: See attachment

Choke Diagram Attachment:

10M_Choke_Manifold_REV_20190415161753.pdf

BOP Diagram Attachment:

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190415161815.pdf

5M_BOP_System_20190415161815.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190415161816.pdf

4_String_MB_Ameredev_Wellhead_Drawing_net_REV_20190415161826.pdf

S	ection	3 -	Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1134	0	1134	3017		1134	J-55		OTHER - BTC	8.09	0.65	DRY	11.8 7	DRY	13.8 7
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	10914	0	10914			10914	HCL -80		OTHER - BTC	1.26	1.23	DRY	2.14	DRY	2.15
-	PRODUCTI ON	8.5	5.5	NEW	API	N	0	22463	0	11859			22463	OTH ER		OTHER - BTC	1.71	1.86	DRY	2.76	DRY	3.07

Casing Attachments

Operator Name: AMEREDEV OPERATING LLC Well Name: NANDINA FED COM 25 36 31

Well Number: 104H

Casing Attachments

Casing ID: 1

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

13.375_68.00__J55_BTC_20190415161940.pdf

NANDINA_FED_COM_25_36_31_104H___WELLBORE_DIAGRAM_AND_CDA_20190415161949.pdf

Casing ID: 2 String Type:INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

NANDINA_FED_COM_25_36_31_104H___WELLBORE_DIAGRAM_AND_CDA_20190415162036.pdf

9.625_40_SeAH80HC_4100_Collapse_20190415162047.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

5.5_20_P110HP_Eagle_SFH_20190415162141.pdf

NANDINA_FED_COM_25_36_31_104H___WELLBORE_DIAGRAM_AND_CDA_20190415162150.pdf

Operator Name: AMEREDEV OPERATING LLC Well Name: NANDINA FED COM 25 36 31

Well Number: 104H

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead					1.76	13.5		50	CLASS C	
SURFACE	Tail				200	1.34	14.8	268	100	CLASS C	SALT
INTERMEDIATE	Lead	:				2.47	11.9		25	CLASS C	
INTERMEDIATE	Tail				200	1.33	14.8	266	25	CLASS C	RETARDER
INTERMEDIATE	Lead					2.47	11.9		25	CLASS H	
INTERMEDIATE	Tail	· · · ·			300	1.24	14.5	371.1	25	CLASS H	Salt, Bentonite, Retarder, Dispersant, Fluid Loss
PRODUCTION	Lead					1.34	14.2		25	CLASS H	

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary supplies (e.g. bentonite, cedar bark) for fluid control will be on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure, and pump rate.

Circulating Medium Table

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Number: 104H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1134	WATER-BASED MUD	8.4	8.6							
1134	1091 4	OTHER : DIESEL BRINE EMULSION	8.5	9.4							
1091 4	1185 9	OIL-BASED MUD	10.5	12.5							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 5000

Anticipated Surface Pressure: 2391.02

Anticipated Bottom Hole Temperature(F): 160

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_20190206145027.pdf

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Number: 104H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

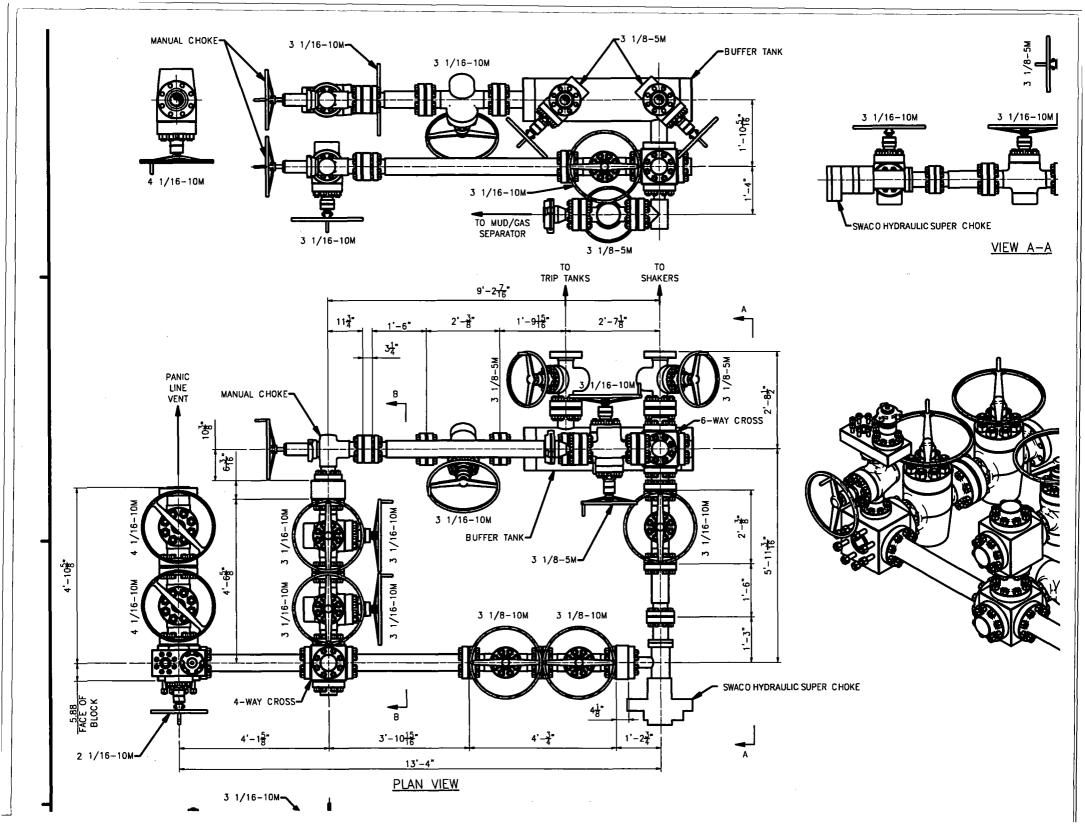
Nan104_DR_20190415162659.pdf

Nan104_LLR_20190415162700.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20190415162719.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20190415162719.pdf

Other proposed operations facets description:


and the second second

Other proposed operations facets attachment:

CAPITAN_PROTECTION_CONTINGENCY_PLAN_20190415162735.pdf

Other Variance attachment:

R616___CoC_for_hoses_12_18_17_20190415162752.pdf Requested_Exceptions___3_String_Revised_01312019_20190415162752.pdf

AMEREDEV

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - 3-1/2" 5-1/2" Variable Bore Ram ,

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
<u>├──</u> ──────────────────────────────────	10 - 10			

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- Descud data (CIDD CICD Dit Cain and Tima)

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

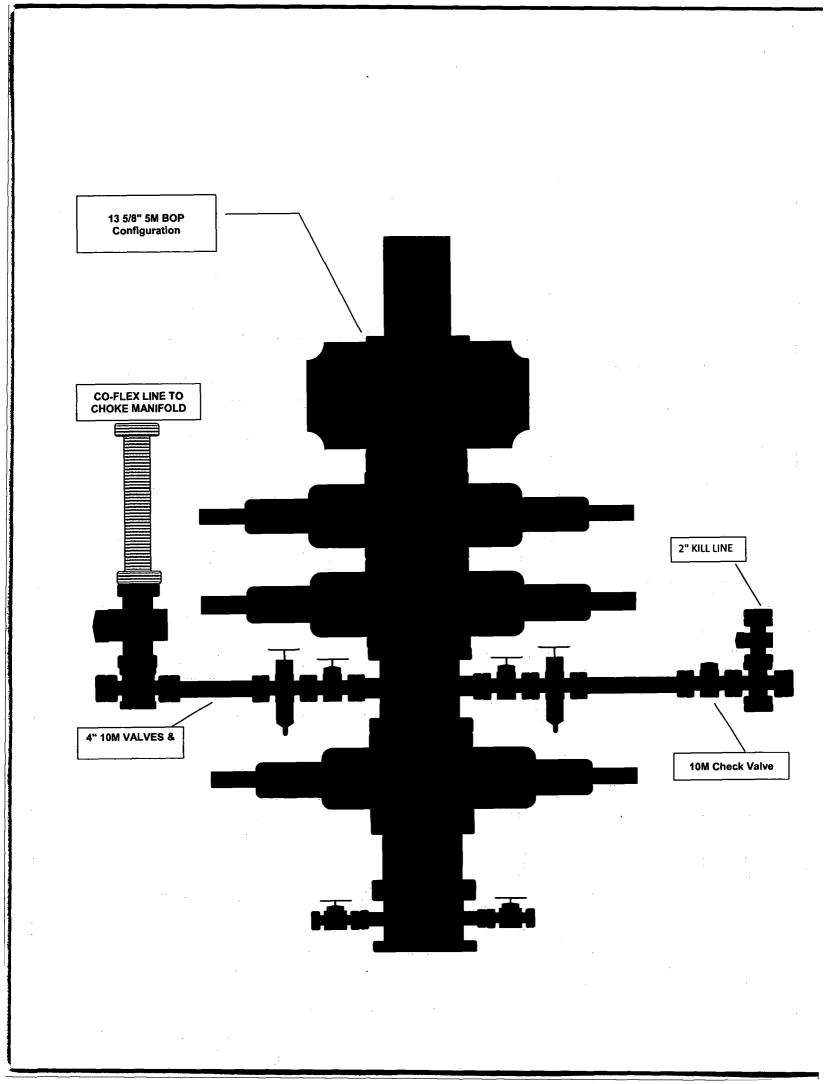
Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure


*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

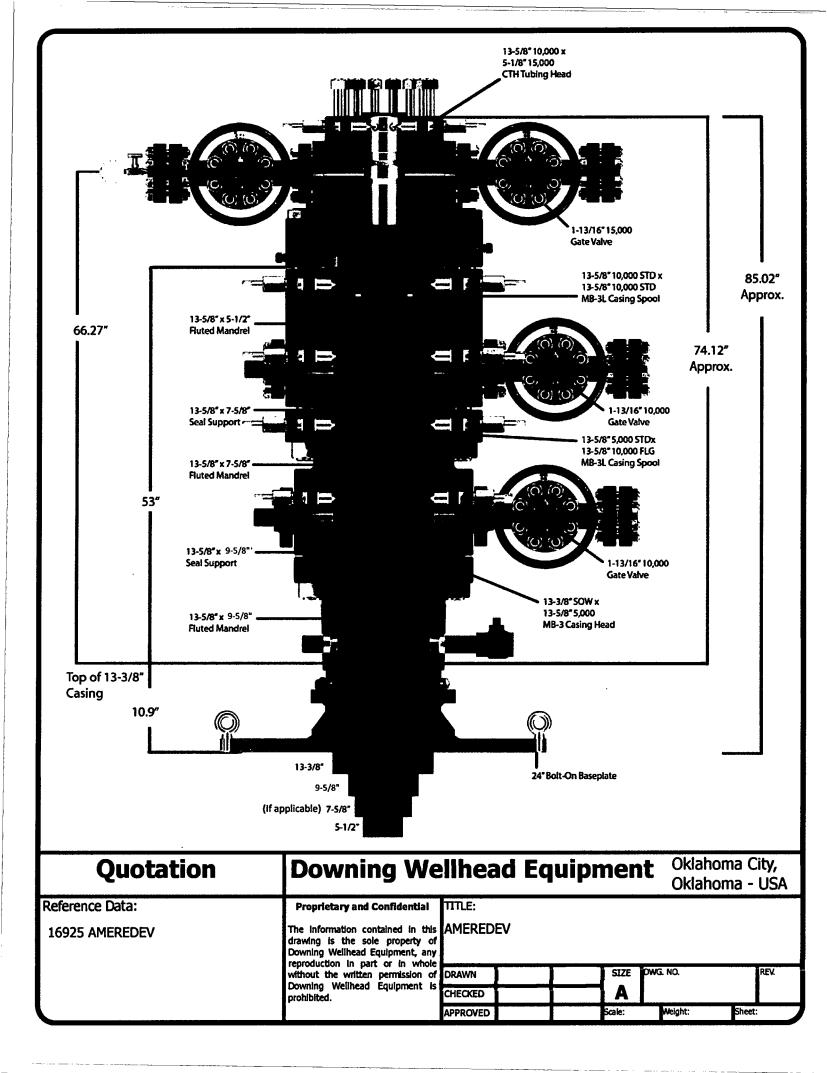
Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan


Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a 5M System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

Pressure Control Plan

- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

.

PERFORMANCE DATA

API BTC Technical Data Sheet

13.375 in

J-55

68.00 lbs/ft

Tubular Parameters			······································		
Size	13.375	in	Minimum Yield	55,000	psi
Nominal Weight	68.00	lbs/ft	Minimum Tensile	75,000	psi
Grade	J-55		Yield Load	1,069,000	lbs
PE Weight	66.10	lbs/ft	Tensile Load	1,458,000	lbs
Wall Thickness	0.480	in	Min. Internal Yield Pressure	3,500	psi
Nominal ID	12.415	in	Collapse Pressure	1,950	psi
Drift Diameter	12.259	in		•	ſ
Nom. Pipe Body Area	19.445	in²			

Connection Parameters

Connection OD	14.375	in
Coupling Length	10.625	in
Threads Per Inch	5.000	in
Standoff Thread Turns	1.000	
Make-Up Loss	4.513	in
Yield Load In Tension		lbs
Min. Internal Yield Pressure	3,500	psi

Printed on: February-13-2015

NOTE:

The content of this Technical Data Sheet is for general information only and does not guarantee performance or imply fitness for a particular purpose, which only a competent drilling professional can determine considering the specific installation and operation parameters. Information that is printed or downloaded is no longer controlled by TMK IPSCO and might not be the latest information. Anyone using the information herein does so at their own risk. To verify that you have the latest TMK IPSCO technical information, please contact TMK IPSCO Technical Sales toll-free at 1-888-258-2000.

Wellbore Schematic

Well:	Nandina Fed Com 25-36-31 104H	Co. Well ID:	xxxxxx
SHL:	Sec. 31 25S-36E 230' FSL & 2328' FWL	AFE No.:	XXXX-XXX
BHL:	Sec. 31 25S-36E 50' FNL & 2318' FWL	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	3,017'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp A
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	11,859'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	22,463'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB : 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size		Formation Tops		Logs	Cemen	t	Mud Weight
17.5"		Rustler	1,009'		719 Sacks TOC 0'	100% Excess	8.4-8.6 ppg WBM
		13.375" 68# J-55 BTC	1,134'	ļ	14	10	<u>∞</u>
	i i	Salado	1,462'				
		Tansill	3,387'				
		Capitan Reef	3,780'		S	SS	5
		Lamar	5,032'		897 Sacks TOC 0'	50% Excess	mulsic
		DV Tool	5,082'		897 Sat TOC 0'	50%	ше
12.25"		Bell Canyon	5,131'				8.5 - 9.4 ppg Diesel Brine Emulsion
		Brushy Canyon	7,258'				og Die
		Bone Spring Lime	8,384'				9.4 pr
		First Bone Spring	9,742'				8.5 -
		Second Bone Spring	10,237'		sks	SSS	
		Third Bone Spring Upper	10,789'		1,723 Sacks TOC 0'	50% Excess	
		9.625" 40# L-80HC BTC	10,914'		1,7 T0	50%	
8.5"		Third Bone Spring	11,413'				Σ
12° Build		Wolfcamp A	11,685'				ppg OBM
@ 11,400' MD							
thru	5.5"	20# P-110CYHP BTC	22,463'		Sacks 0'	sse	10.5 - 12.5
12,247' MD	Target Wolfca	amp A 11859 TVD // 22463 MD	<u> </u>	4	6 Sa : 0'	Excess	10.5
					4,796 S TOC 0'	25%	

Casing Design and Safety Factor Check

	Casing Specifications									
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling				
Surface	17.5	1,134'	13.375	68	J-55	BTC				
Intermediate	12.25	10,914'	9.625	40	HCL-80	BTC				
Prod Segment A	8.5	11,400'	5.5	20	CYHP-110	BTC				
Prod Segment B	8.5	22,463'	5.5	20	CYHP-110	BTC				

	Chec	k Surface (Casing							
OD Cplg	Body	Joint	Collapse	Burst						
inches	1000 lbs	1000 lbs	psi	psi						
14.375	1,069	915	4,100	3,450						
Safety Factors										
1.56	13.87	11.87	8.09	0.65						
	Check I	ntermedia	te Casing							
OD Cplg	Body	Joint	Collapse	Burst						
inches	1000 lbs	1000 lbs	psi	psi						
7.625	940	558	6700	9460						
Safety Factors										
2.31	2.15	2.14	1.26	1.23						
	Check Pro	od Casing,	Segment A							
OD Cplg	Body	Joint	Collapse	Burst						
inches	1000 lbs	1000 lbs	psi	psi						
5.777	728	655	12780	14360						
	S	afety Facto	ors							
1.36	3.07	2.76	1.73	1.86						
	Check Pro	od Casing,	Segment B							
OD Cplg	Body	Joint	Collapse	Burst						
inches	1000 lbs	1000 lbs	psi	psi						
5.777	728	655	12780	14360						
Safety Factors										
1.36	79.30	71.35	1.66	1.86						

Wellbore Schematic

Well:	Nandina Fed Com 25-36-31 104H	Co. Well ID:	XXXXXX
SHL:	Sec. 31 25S-36E 230' FSL & 2328' FWL	AFE No.:	xxxx-xxx
BHL:	Sec. 31 25S-36E 50' FNL & 2318' FWL	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	3,017'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp A
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	11,859'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	22,463'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB: 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size		Formation Tops		Logs	Cemer	it	Mud Weight
17.5"		Rustler	1,009'		719 Sacks TOC 0'	100% Excess	8.4-8.6 ppg WBM
		13.375" 68# J-55 BTC	1,134'		κ F	7	
		Salado	1,462'				
		Tansill	3,387'				
		Capitan Reef	3,780'		S	SSS	5
		Lamar	5,032'		897 Sacks TOC 0'	50% Excess	mulsic
		DV Tool	5,082'		897 Sat TOC 0'	50%	
12.25"		Bell Canyon	5,131'				8.5 - 9.4 ppg Diesel Brine Emulsion
		Brushy Canyon	7,258'				g Die
		Bone Spring Lime	8,384'				9.4 pp
		First Bone Spring	9,742'				8.5 -
		Second Bone Spring	10,237'		sks	SSS	
		Third Bone Spring Upper	10,789'		1,723 Sacks TOC 0'	50% Excess	
	N	9.625" 40# L-80HC BTC	10,914'		1,7	50%	
8.5"		Third Bone Spring	11,413'				5
12° Build		Wolfcamp A	11,685'				ppg OBM
@ 11,400' MD			/				
	5.5" 2	20# P-110CYHP BTC	22,463']	cks	ess	10.5 - 12.5
12,247' MD Target W	Volfca	mp A 11859 TVD // 22463 MD			s Sac	Excess	10.5
					4,796 Sacks TOC 0'	25%	

.

Casing Design and Safety Factor Check

Casing Specifications							
Segment	Hole ID	Depth	OD	Weight	Grade	Coupling	
Surface	17.5	1,134'	13.375	68	J-55	BTC	
Intermediate	12.25	10,914'	9.625	40	HCL-80	BTC	
Prod Segment A	8.5	11,400'	5.5	20	CYHP-110	BTC	
Prod Segment B	8.5	22,463'	5.5	20	CYHP-110	BTC	

Check Surface Casing								
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
14.375	1,069	915	4,100	3,450				
	Safety Factors							
1.56	13.87	11.87	8.09	0.65				
	Check I	ntermedia	te Casing					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
7.625	940	558	6700	9460				
Safety Factors								
2.31	2.15	2.14	1.26	1.23				
	Check Pro	od Casing,	Segment A					
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
	S	afety Facto	ors					
1.36	3.07	2.76	1.73	1.86				
Check Prod Casing, Segment B								
OD Cplg	Body	Joint	Collapse	Burst				
inches	1000 lbs	1000 lbs	psi	psi				
5.777	728	655	12780	14360				
		afety Facto	ors					
1.36	79.30	71.35	1.66	1.86				

9.625"

<u>.395"</u>

SEAH-80 HIGH COLLAPSE

(SEAH-80 IS A NON HEAT TREATED PRODUCT)

Dimensions (Nominal)

40#

Outside Diameter	9.625	in.
Wall	0.395	in.
Inside Diameter	8.835	in.
Drift	8.750	in.
Weight, T&C	40.000	lbs./ft.
Weight, PE	38.970	lbs./ft.

Performance Properties

Collapse	4100	psi
Internal Yield Pressure at Minimum Yield		
PE	5750	psi
LTC	5750	psi
BTC	5750	psi
Yield Strength, Pipe Body	916	1000 lbs.
Joint Strength		
LTC	717	1000 lbs.
BTC	915	1000 lbs.

Note: SeAH Steel has produced this specification sheet for general information only. SeAH does not assume liability or responsibility for any loss or injury resulting from the use of information or data contained herein. All applications for the material described are at the customer's own risk and responsibility.

U. S. Steel Tubular Products

5 1/2 20.00 lb (0.361) P110 HP

USS-EAGLE SFH™

	PIPE	CONNECTION	
ECHANICAL PROPERTIES			
Minimum Yield Strength	125,000	125,000	psi
Maximum Yield Strength	140,000	140,000	psi
Minimum Tensile Strength	130,000	130,000	psi
INTENETIONS			
Outside Diameter	5.500	5.830	in.
Wall Thickness	0.361		in.
Inside Diameter	4.778	4.693	in.
Drift - API	4.653	4.653	in.
Nominal Linear Weight, T&C	19.83		lbs/ft
Plain End Weight	19.83	19.83	lbs/ft
ECTION AREA			
Cross Sectional Area Critical Area	5.828	5.054	sq. in.
Joint Efficiency		86.25	%
BRFORMANCE			
Minimum Collapse Pressure	13,150	13,150	psi
External Pressure Leak Resistance		10,000	psi
Minimum Internal Yield Pressure	14,360	14,360	psi
Minimum Pipe Body Yield Strength	729,000		lbs
Joint Strength		631,750	lbs
Compression Rating		631,750	lbs
Reference Length		21,240	ft
Maximum Uniaxial Bend Rating		89.9	<i>deg/100 f</i> t
Minimum Make-Up Torque		14,000	ft-lbs
Maximum Make-Up Torque		16,900	ft-lbs
Maximum Operating Torque		25,000	ft-lbs
Make-Up Loss		5.92	in.

Notes:

1) Other than proprietary collapse and connection values, performance properties have been calculated using standard equations defined by API 5C3 and do not incorporate any additional design or safety factors. Calculations assume nominal pipe OD, nominal wall thickness, and Specified Minimum Yield Strength (SMYS).

2) Compressive & Tensile Connection Efficiencies are calculated by dividing the connection critical area by the pipe body area.

3) Uniaxial bending rating shown is structural only, and equal to compression efficiency.

4) Torques have been calculated assuming a thread compound friction factor of 1.0 and are recommended only. Field make-up torques may require adjustment based on actual field conditions (e.g. make-up speed, temperature, thread compound, etc.).

5) Reference length is calculated by joint strength divided by plain end weight with 1.5 safety factor.

6) Connection external pressure resistance has been verified to 10,000 psi (Application specific testing).

Legal Notice: All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability, and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application. Manuel USS Product Data Sheet 2017 rev25 (April)

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064 1-877-893-9461 connections@uss.com www.usstubular.com

Wellbore Schematic

Well:	Nandina Fed Com 25-36-31 104H	Co. Well ID:	xxxxxx
SHL:	Sec. 31 25S-36E 230' FSL & 2328' FWL	AFE No.:	XXXX-XXX
BHL:	Sec. 31 25S-36E 50' FNL & 2318' FWL	API No.:	XXXXXXXXXXXX ,
	Lea, NM	GL:	3,017'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp A
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	11,859'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	22,463'
Xmas Tree:	2-9/16" 10M	Rig:	TBD KB: 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com

Hole Size		Formation Tops		Logs	Cemer	t	Mud Weight
17.5"		Rustler	1,009'		719 Sacks TOC 0'	100% Excess	8.4-8.6 ppg WBM
		13.375" 68# J-55 BTC	1,134'		719 Sa TOC 0'	100	8.4
		Salado	1,462'				
		Tansill	3,387'				
		Capitan Reef	3,780'		6	SS	s s
		Lamar	5,032'		897 Sacks TOC 0'	50% Excess	8.5 - 9.4 ppg Diesel Brine Emulsion
		DV Tool	5,082'		897 Sat TOC 0'	50%	ine E
12.25"		Bell Canyon	5,131'				sel Br
		Brushy Canyon	7,258'				g Die
		Bone Spring Lime	8,384'				9.4 pp
		First Bone Spring	9,742'	-			8.5 -
		Second Bone Spring	10,237'	i	sks	SSS	
		Third Bone Spring Upper	10,789'		1,723 Sacks TOC 0'	50% Excess	
		9.625" 40# L-80HC BTC	10,914'		1,7 <u>;</u> T0(50%	
8.5"		Third Bone Spring	11,413'				Σ
12° Build		Wolfcamp A	11,685'				DPg OBM
@ 11,400' MD	L		/				<u> </u>
thru		20# P-110CYHP BTC	22,463'		acks	Excess	5 - 12.5
12,247' MD	Target Wolfca	mp A 11859 TVD // 22463 MD			4,796 Sacks TOC 0'	Exc	10.5
		<u> </u>			4,796 TOC	25%	

Casing Design and Safety Factor Check

Casing Specifications							
Segment Hole ID Depth OD Weight Grade Coupling							
Surface	17.5	1,134'	13.375	68	J-55	BTC	
Intermediate	12.25	10,914'	9.625	40	HCL-80	BTC	
Prod Segment A	8.5	11,400'	5.5	20	CYHP-110	BTC	
Prod Segment B	8.5	22,463'	5.5	20	CYHP-110	BTC	

	Chec	k Surface	Casing				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
14.375	1,069	915	4,100	3,450			
	S	afety Facto	ors				
1.56	13.87	11.87	8.09	0.65			
	Check I	ntermedia	te Casing				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
7.625	940	558	6700	9460			
Safety Factors							
2.31	2.15	2.14	1.26	1.23			
	Check Pro	od Casing,	Segment A				
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
5.777	728	655	12780	14360			
	S	afety Facto	ors				
1.36	3.07	2.76	1.73	1.86			
	Check Prod Casing, Segment B						
OD Cplg	Body	Joint	Collapse	Burst			
inches	1000 lbs	1000 lbs	psi	psi			
5.777	728	655	12780	14360			
	5	afety Facto	ors				
1.36	79.30	71.35	1.66	1.86			

H₂S Drilling Operation Plan

- 1. <u>All Company and Contract personnel admitted on location must be trained by a qualified H₂S</u> safety instructor to the following:
 - a. Characteristics of H₂S
 - **b.** Physical effects and hazards
 - c. Principal and operation of H₂s detectors, warning system and briefing areas
 - d. Evacuation procedure, routes and first aid
 - e. Proper use of safety equipment and life support systems
 - f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- b. Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

3. H₂S Detection and Alarm Systems:

- a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- **b.** An audio alarm will be installed on the derrick floor and in the top doghouse.

4. <u>Protective Equipment for Essential Personnel:</u>

- a. Breathing Apparatus:
 - i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
 - ii. Two (SCBA) Units will be stored in safety trailer on location.
 - iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.
- b. <u>Auxiliary Rescue Equipment:</u>
 - i. Stretcher
 - ii. 2 OSHA full body harnesses
 - iii. 100 ft. 5/8" OSHA approved rope
 - iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- b. Windsock on the rig floor should be high enough to be visible.

6. <u>Communication:</u>

- a. While working under mask scripting boards will be used for communication where applicable.
- b. Hand signals will be used when script boards are not applicable.

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. Drill Stem Testing: No Planned DST at this time.
- 8. Mud program:
 - a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

9. <u>Metallurgy:</u>

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
- b. Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H₂S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
- Have received training in the:
 - Detection of H₂S and
 - o Measures for protection against the gas,
 - Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating	LLC – Emergency Phone 737-300	-4799	
Key Personnel:			
Name	Title	Office	Mobile
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996
Blake Estrada	Construction Foreman		432-385-5831

Artesia	
Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283
Carlsbad	
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
US Bureau of Land Management	575-887-6544
Santa Fe	
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
National	
National Emergency Response Center (Washington, D.C.)	800-424-8802
Medical	
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433
.'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, NM	505-842-4949

Ameredev Operating, LLC.

NAN/GB NAN/GB #5N Nandina 104H

Wellbore #1

Plan: FTP100

Standard Planning Report

06 February, 2019

Ameredev Operating, LLC

Planning Report

Database:	EDM	5000				Lead Co	ordinate Refe		Well Nandina 1		
Company:		edev Opera	ting IIC			TVD Refe					
•••	NAN/	•	ung, LLO.						KB @ 3044.0u		
Project:						MD Refer			KB @ 3044.0u	SIL	
Site:		GB #5N				North Ref			Grid		
Well:		ina 104H				Survey Ca	alculation Met	hod:	Minimum Curva	ature	
Wellbore:		ore #1									
Design:	FTP1	00		*					<u></u>		
Project	NAN/G	B		· · · · · · · · · · · · · · · · · · ·	-		· · · ·				
Map System:	US State	e Plane 198	3			System Da	tum:	Me	an Sea Level		
Geo Datum:	North Ar	nerican Dat	um 1983			•					
Map Zone:	New Me	xico Easter	n Zone								
· · · ·	· ·				~				· · ·		·
Site	NAN/G	B #5N			· · · ·				<u> </u>		and the second
Site Position:				Northing:			,434.39 usft	Latitude:			32° 4' 48.75
From:	Lat	/Long		Easting:		859	,774.27 usft	Longitude:			103° 18' 18.744
Position Uncerta	inty:		0.0 usft	Slot Radius:			13-3/16 "	Grid Converg	ence:		0.5
Well	Nandia	a 104H					~		· · · ·		
		a 104⊓		••••							
Well Position	+N/-S		0.0 usft	Northing:			394,434.39		tude:		32° 4' 48.75
	+E/-W		0.0 usft	Easting:			859,774.27		gitude:		103° 18' 18.744
Position Uncerta	inty		0.0 usft	Wellhead	Elevati	on:		Gro	und Level:		3,017.0
Wellbore	Wellbo	ore #1									
Magnetics	Mo	odel Name		Sample Date		Declina	tion	Dip A	nale	Field	Strength
magnetice				Campio Dato		(°)		·,,	-		nT)
·		IGRF20)15	11/5/20	18		6.67		59.95	47,7	740.81295715
Design	FTP10	0					······		· · · ·		
Audit Notes:											
Version:				Phase:	Pi	ROTOTYPE	Tie	On Depth:		0.0	
Vertical Section:			Depth F	rom (TVD)		+N/-S	+E		DI	rection	
				isft)		(usft)	(u	sft)		(°)	
			().0		0.0	C	0.0	3	59.38	
Plan Survey Too	-		nte 2/6/20)19							
Depth From (usft)	m Dept (us		vey (Wellb	ore)		Tool Name		Remarks			
	0.0 22,4	463.0 FTF				MWD					
	5.0 22,4	403.0 FTF	TOO (AAGUE	018 #1)			Chandrad				
					(OWSG MWD	- Standard				
Plan Sections			Vertic	al			Dogleg	Build	Turn		
			Dep		2	+E/-W	Rate	Rate	Rate	TEO	
Measured	nclination					+E/-W (usft)	rate (°/100usft)	rate (°/100usft)	rtate (°/100usft)	TFO	Target
Measured Depth	nclination	Azimuth (°)	-	[] /11044	1	(2011)	(1	/andold	(°)	iai Bar
Measured	nclination (°)	Azimuth (°)	(ust	t) (usfi							
Measured Depth			(usi	t) (ush 0.0	0.0	0.0	0.00	0.00	0.00	0.00	
Measured Depth (usft) 0.0	(°)	(°)	(us)		0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	
Measured Depth (usft) 0.0 2,000.0	(°) 0.00 0.00	(°) 0.0 0.0	(ust)0)0 2,	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
Measured Depth (usft) 0.0 2,000.0 2,300.0	(°) 0.00 0.00 6.00	(°) 0.0 0.0 169.0	(ust 00 00 2, 00 2,	0.0 000.0 299.5	0.0 -15.4	0.0 3.0	0.00 2.00	0.00 2.00	0.00 0.00	0.00 169.00	
Measured Depth (usft) 0.0 2,000.0 2,300.0 6,775.1	(°) 0.00 0.00 6.00 6.00	(°) 0.0 169.0 169.0	(ust 00 00 2, 00 2, 00 6,	0.0 000.0 299.5 750.0 -4	0.0 -15.4 74.6	0.0 3.0 92.2	0.00 2.00 0.00	0.00 2.00 0.00	0.00 0.00 0.00	0.00 169.00 0.00	
Measured Depth (usft) 0.0 2,000.0 2,300.0 6,775.1 7,075.1	(°) 0.00 0.00 6.00 6.00 0.00	(°) 0.0 169.0 169.0 0.0	(usi 00 2, 00 2, 00 2, 00 6, 00 7,	0.0 000.0 299.5 750.0 -4 049.5 -4	0.0 -15.4 74.6 90.0	0.0 3.0 92.2 95.2	0.00 2.00 0.00 2.00	0.00 2.00 0.00 -2.00	0.00 0.00 0.00 0.00	0.00 169.00 0.00 180.00	
Measured Depth (usft) 0.0 2,000.0 2,300.0 6,775.1	(°) 0.00 0.00 6.00 6.00	(°) 0.0 169.0 169.0	(usi 00 2, 00 2, 00 2, 00 6, 00 7,	0.0 200.0 299.5 750.0 -4 249.5 -4 375.0 -4	0.0 -15.4 -74.6 90.0	0.0 3.0 92.2 95.2 95.2	0.00 2.00 0.00	0.00 2.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 169.00 0.00 180.00 0.00	
Measured Depth (usft) 0.0 2,000.0 2,300.0 6,775.1 7,075.1	(°) 0.00 0.00 6.00 6.00 0.00	(°) 0.0 169.0 169.0 0.0	(usi 00 00 2, 00 2, 00 6, 00 7, 00 11,	0.0 200.0 299.5 750.0 -4 249.5 -4 375.0 -4	0.0 -15.4 74.6 90.0	0.0 3.0 92.2 95.2	0.00 2.00 0.00 2.00	0.00 2.00 0.00 -2.00	0.00 0.00 0.00 0.00	0.00 169.00 0.00 180.00	
Measured Depth (usft) 0.0 2,000.0 2,300.0 6,775.1 7,075.1 11,400.6	(°) 0.00 6.00 6.00 0.00 0.00	(°) 0.0 169.0 169.0 0.0	(usi 00 2, 00 2, 00 6, 00 6, 00 7, 00 11, 51 11,	0.0 200.0 299.5 750.0 -4 249.5 -4 375.0 -4	0.0 -15.4 -74.6 90.0	0.0 3.0 92.2 95.2 95.2	0.00 2.00 0.00 2.00 0.00	0.00 2.00 0.00 -2.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 169.00 0.00 180.00 0.00 348.61	Nan104 FTP2
Measured Depth (usft) 0.0 2,000.0 2,300.0 6,775.1 7,075.1 11,400.6 12,155.3	(°) 0.00 6.00 6.00 0.00 0.00 89.42	(°) 0.0 169.0 169.0 0.0 348.6	(us) 00 2, 00 2, 00 2, 00 6, 00 7, 00 11, 31 11, 13 11,	0.0 000.0 299.5 750.0 4 375.0 358.5 359.0	0.0 -15.4 -74.6 -90.0 -90.0 -20.8	0.0 3.0 92.2 95.2 95.2 0.7	0.00 2.00 0.00 2.00 0.00 11.85	0.00 2.00 0.00 -2.00 0.00 11.85	0.00 0.00 0.00 0.00 0.00 0.00	0.00 169.00 0.00 180.00 0.00 348.61 86.95	Nan104 FTP2 Nan104 BHL

2/6/2019 1:46:35PM

COMPASS 5000.15 Build 90

Planned Survey

Ameredev Operating, LLC

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Nandina 104H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3044.0usft
Project:	NAN/GB	MD Reference:	KB @ 3044.0usft
Site:	NAN/GB #5N	North Reference:	Grid
Well:	Nandina 104H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		х х
Design:	FTP100		· · · · · · · · · · · · · · · · · · ·

Measured	4	A	Vertical			Vertical	Dogleg Rate	Bulld Rate	Turn Rate
Depth (usft)	inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/- W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	2.00	169.00	2,100.0	-1.7	0.3	-1.7	2.00	2.00	0.00
2,200.0	4.00	169.00	2,199.8	-6.9	1.3	-6.9	2.00	2.00	0.00
2,300.0	6.00	169.00	2,299.5	-15.4	3.0	-15.4	2.00	2.00	0.00
2,400.0	6.00	169.00	2,398.9	-25.7	5.0	-25.7	0.00	0.00	0.00
2,500.0	6.00	169.00	2,498.4	-35.9	7.0	-36.0	0.00	0.00	0.00
2,600.0	6.00	169.00	2,597.8	-46.2	9.0	-46.3	0.00	0.00	0.00
2,700.0	6.00	169.00	2,697.3	-56.4	11.0	-56.6	0.00	0.00	0.00
2,800.0	6.00	169.00	2,796.7	-66.7	13.0	-66.8	0.00	0.00	0.00
2,900.0	6.00	169.00	2,896.2	-77.0	15.0	-77.1	0.00	0.00	0.00
3,000.0	6.00	169.00	2,995.6	-87.2	17.0	-87.4	0.00	0.00	0.00
3,100.0	6.00	169.00	3,095.1	-97.5	19.0	-97.7	0.00	0.00	0.00
3,200.0	6.00	169.00	3,194.5	-107.8	20.9	-108.0	0.00	0.00	0.00
3,300.0	6.00	169.00	3,294.0	-118.0	22.9	-118.3	0.00	0.00	0.00
3,400.0	6.00	169.00	3,393.4	-128.3	24.9	-128.5	0.00	0.00	0.00
3,500.0	6.00	169.00	3,492.9	-138.5	26.9	-138.8	0.00	0.00	0.00
3,600.0	6.00	169.00	3,592.3	-148.8	28.9	-149.1	0.00	0.00	0.00
3,700.0	6.00	169.00	3,691.8	-159.1	30.9	-159.4	0.00	0.00	0.00
3,800.0	6.00	169.00	3,791.2	-169.3	32.9	-169.7	0.00	0.00	0.00
3,900.0	6.00	169.00	3,890.7	-179.6	34.9	-179.9	0.00	0.00	0.00
4,000.0	6.00	169.00	3,990.1	-189.8	36.9	-190.2	0.00	0.00	0.00
4,100.0	6.00	169.00	4,089.6	-200.1	38.9	-200.5	0.00	0.00	0.00
4,200.0	6.00	169.00	4,189.0	-210.4	40.9	-210.8	0.00	0.00	0.00
4,300.0	6.00	169.00	4,288.5	-220.6	42.9	-221.1	0.00	0.00	0.00
4,400.0	6.00	169.00	4,387.9	-230.9	44.9	-231.4	0.00	0.00	0.00
4,500.0	6.00	169.00	4,487.4	-241.1	46.9	-241.6	0.00	0.00	0.00
4,600.0	6.00	169.00	4,586.9	-251.4	48.9	-251.9	0.00	0.00	0.00
4,700.0	6.00	169.00	4,686.3	-261.7	50.9	-262.2	0.00	0.00	0.00
4,800.0	6.00	169.00	4,785.8	-271.9	52.9	-272.5	0.00	0.00	0.00
4,900.0	6.00	169.00	4,885.2	-282.2	54.9	-282.8	0.00	0.00	0.00
5,000.0	6.00	169.00	4,984.7	-292.4	56.8	-293.0	0.00	0.00	0.00
5,100.0	6.00	169.00	5,084.1	-302.7	58.8	-303.3	0.00	0.00	0.00
5,200.0	6.00	169.00	5,183.6	-313.0	60.8	-313.6	0.00	0.00	0.00
5,300.0	6.00	169.00	5,283.0	-323.2	62.8	-323.9	0.00	0.00	0.00

COMPASS 5000.15 Build 90

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Nandina 104H	
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3044.0usft	3
Project:	NAN/GB	MD Reference:	KB @ 3044.0usft	2
Site:	NAN/GB #5N	North Reference:	Grid)
Well:	Nandina 104H	Survey Calculation Method:	Minimum Curvature	2
Wellbore:	Wellbore #1			
Design:	ETP100	·	· · · · · · · · · · · · · · · · · · ·	
Planned Survey		· · · · · · · · · · · · · · · · · · ·		

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,400.0	6.00	169.00	5,382.5	-333.5	64.8	-334.2	0.00	0.00	0.00
-									0.00
5,500.0	6.00	169.00	5,481.9	-343.8	66.8	-344.5	0.00	0.00	
5,600.0	6.00	169.00	5,581.4	-354.0	68.8	-354.7	0.00	0.00	0.00
5,700.0	6.00	169.00	5,680.8	-364.3	70.8	-365.0	0.00	0.00	0.00
5,800.0	6.00	169.00 169.00	5,780.3	-374.5	72.8	-375.3 -385.6	0.00	0.00 0.00	0.00 0.00
5,900.0	6.00	109.00	5,879.7	-384.8	74.8	-303.0	0.00	0.00	0.00
6,000.0	6.00	169.00	5,979.2	-395.1	76.8	-395.9	0.00	0.00	0.00
6,100.0	6.00	169.00	6,078.6	-405.3	78.8	-406.1	0.00	0.00	0.00
6,200.0	6.00	169.00	6,178.1	-415.6	80.8	-416.4	0.00	0.00	0.00
6,300.0	6.00	169.00	6,277.5	-425.8	82.8	-426.7	0.00	0.00	0.00
6,400.0	6.00	169.00	6,377.0	-436.1	84.8	-437.0	0.00	0.00	0.00
6,500.0	6.00	169.00	6,476.4	-446.4	86.8	-447.3	0.00	0.00	0.00
6,600.0	6.00	169.00	6,575.9	-456.6	88.8	-447.3	0.00	0.00	0.00
6,700.0	6.00	169.00	6,675.3	-466.9	90.8	-467.8	0.00	0.00	0.00
6,700.0	6.00	169.00	6,750.0	-400.9 -474.6	90.8	-475.6	0.00	0.00	0.00
6,800.0	5.50	169.00	6,774.8	-474.0	92.2	-478.0	2.00	-2.00	0.00
6,900.0	3.50	169.00	6,874.5	-484.7	94.2	-485.7	2.00	-2.00	0.00
7,000.0	1.50	169.00	6,974.4	-489.0	95.1	-490.0	2.00	-2.00	0.00
7,075.1	0.00	0.00	7,049.5	-490.0	95.2	-491.0	2.00	-2.00	0.00
7,100.0	0.00	0.00	7,074.4	-490.0	95.2	-491.0	0.00	0.00	0.00
7,200.0	0.00	0.00	7,174.4	-490.0	95.2	-491.0	0.00	0.00	0.00
7,300.0	0.00	0.00	7,274.4	-490.0	95.2	-491.0	0.00	0.00	0.00
7,400.0	0.00	0.00	7,374.4	-490.0	95.2	-491.0	0.00	0.00	0.00
7,500.0	0.00	0.00	7,474.4	-490.0	95.2	-491.0	0.00	0.00	0.00
7,600.0	0.00	0.00	7,574.4	-490.0	95.2	-491.0	0.00	0.00	0.00
7,700.0	0.00	0.00	7,674.4	-490.0	95.2	-491.0	0.00	0.00	0.00
7,800.0	0.00	0.00	7,774.4	-490.0	95.2	-491.0	0.00	0.00	0.00
7,900.0	0.00	0.00	7,874.4	-490.0	95.2	-491.0	0.00	0.00	0.00
8,000.0	0.00	0.00	7,974.4	-490.0	95.2	-491.0	0.00	0.00	0.00
8,100.0	0.00	0.00	8,074.4	-490.0	95.2	-491.0	0.00	0.00	0.00
8,200.0	0.00	0.00	8,174.4	-490.0	95.2	-491.0	0.00	0.00	0.00
8,300.0	0.00	0.00	8,274.4	-490.0	95.2	-491.0	0.00	0.00	0.00
8,400.0	0.00	0.00	8,374.4	-490.0	95.2	-491.0	0.00	0.00	0.00
8,500.0	0.00	0.00	8,474.4	-490.0	95.2	-491.0	0.00	0.00	0.00
8,600.0	0.00	0.00	8,574.4	-490.0	95.2	-491.0	0.00	0.00	0.00
8,700.0	0.00	0.00	8,674.4	-490.0	95.2	-491.0	0.00	0.00	0.00
8,800.0	0.00	0.00	8,774.4	-490.0	95.2	-491.0	0.00	0.00	0.00
8,800.0	0.00	0.00	8,874.4	-490.0	95.2 95.2	-491.0	0.00	0.00	0.00
9,000.0	0.00	0.00	8,974.4	-490.0	95.2	-491.0	0.00	0.00	0.00
9,000.0	0.00	0.00	9,074.4	-490.0	95.2	-491.0	0.00	0.00	0.00
9,200.0	0.00	0.00	9,174.4	-490.0	95.2	-491.0	0.00	0.00	0.00
9,300.0	0.00	0.00	9,274.4	-490.0	95.2	-491.0	0.00	0.00	0.00
9,400.0	0.00	0.00	9,374.4	-490.0	95.2	-491.0	0.00	0.00	0.00
9,500.0	0.00	0.00	9,474.4	-490.0	95.2	-491.0	0.00	0.00	0.00
9,600.0	0.00	0.00	9,574.4	-490.0	95.2	-491.0	0.00	0.00	0.00
9,700.0	0.00	0.00	9,674.4	-490.0	95.2	-491.0	0.00	0.00	0.00
9,800.0	0.00	0.00	9,774.4	-490.0	95.2	-491.0	0.00	0.00	0.00
9,900.0	0.00	0.00	9,874.4	-490.0	95.2	-491.0	0.00	0.00	0.00
10,000.0	0.00	0.00	9,974.4	-490.0	95.2	-491.0	0.00	0.00	0.00
10,000.0	0.00	0.00	10,074.4	-490.0	95.2	-491.0	0.00	0.00	0.00
10,200.0	0.00	0.00	10,174.4	-490.0	95.2	-491.0	0.00	0.00	0.00
10,300.0	0.00	0.00	10,274.4	-490.0	95.2	-491.0	0.00	0.00	0.00
10,400.0	0.00	0.00	10,374.4	-490.0	95.2	-491.0	0.00	0.00	0.00
10,500.0	0.00	0.00	10,474.4	-490.0	95.2	-491.0	0.00	0.00	0.00

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Nandina 104H	· · · · · · · · · · · · · · · · · · ·
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3044.0usft	
Project:	NAN/GB	MD Reference:	KB @ 3044.0usft	1
Site:	NAN/GB #5N	North Reference:	Grid	1
Well:	Nandina 104H	Survey Calculation Method:	Minimum Curvature	
Wellbore:	Wellbore #1			5
Design:	FTP100)) 		1
Planned Survey		· · · · · · · · · · · · · · · · · · ·		· · · · ·

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,600.0	0.00	0.00	10,574.4	-490.0	95.2	-491.0	0.00	0.00	0.00
10,700.0	0.00	0.00	10,674.4	-490.0	95.2	-491.0	0.00	0.00	0.00
10,800.0	0.00	0.00	10,774,4	-490.0	95.2	-491.0	0.00	0.00	0.00
10,900.0	0.00	0.00	10,874.4	-490.0	95.2	-491.0	0.00	0.00	0.00
11,000.0	0.00	0.00	10,974.4	-490.0	95.2 95.2	-491.0	0.00	0.00	0.00
11,100.0	0.00		11,074.4	-490.0	95.2 95.2	-491.0	0.00	0.00	0.00
		0.00							0.00
11,200.0	0.00	0.00	11,174.4	-490.0	95.2	-491.0	0.00	0.00	
11,300.0	0.00	0.00	11,274.4	-490.0	95.2	-491.0	0.00	0.00	0.00
11,400.0	0.00	0.00	11,374.4	-490.0	95.2	-491.0	0.00	0.00	0.00
11,400.6	0.00	0.00	11,375.0	-490.0	95.2	-491.0	0.00	0.00	0.00
Nan104 KOP									
11,500.0	11.78	348.61	11,473.7	-480.0	93.2	-481.0	11.85	11.85	0.00
11,600.0	23.63	348.61	11,568.8	-450.3	87.2	-451.2	11.85	11.85	0.00
11,700.0	35.47	348.61	11,655.6	-402.0	77.5	-402.8	11.85	11.85	0.00
,	35.47 47.32	348.61	11,055.0	-402.0	64.5	-402.8 -338.0	11.85	11.85	0.00
11,800.0									
11,900.0	59.17 71.02	348.61	11,790.2	-258.9	48.7	-259.4	11.85	11.85	0.00
12,000.0	71.02	348.61	11,832.3	-170.1	30.8	-170.4	11.85	11.85	0.00
12,052.0	77.18	348.61	11,846.5	-121.1	20.9	-121.4	11.85	11.85	0.00
Nan104 FTP									
12,100.0	82.87	348.61	11,854.8	-74.8	11.6	-74.9	11.85	11.85	0.00
12,155.3	89.42	348.61	11,858.5	-20.8	0.7	-20.8	11.85	11.85	0.00
12,200.0	89.70	353.90	11,858.9	23.4	-6.1	23.5	11.85	0.64	11.83
12,246.7	90.00	359.43	11,859.0	70.0	-8.8	70.1	11.85	0.64	11.83
Nan104 FTP2									
12,300.0	90.00	359.43	11,859.0	123.3	-9.3	123.4	0.00	0.00	0.00
12,400.0	90.00	359.43	11,859.0	223.3	-10.3	223.4	0.00	0.00	0.00
12,500.0	90.00	359.43	11,859.0	323.3	-11.3	323.4	0.00	0.00	0.00
12,600.0	90.00	359.43	11,859.0	423.3	-12.3	423.4	0.00	0.00	0.00
12,700.0	90.00	359.43	11,859.0	523.3	-13.3	523.4	0.00	0.00	0.00
12,800.0	90.00	359.43	11,859.0	623.3	-14.3	623.4	0.00	0.00	0.00
12,900.0	90.00	359.43	11,859.0	723.3	-15.3	723.4	0.00	0.00	0.00
12,900.0	90.00	359.43	11,659.0	823.3	-15.3 -16.4	823.4	0.00	0.00	0.00
13,100.0	90.00	359.43	11,859.0	923.3	-16.4	923.4 923.4	0.00	0.00	0.00
13,200.0	90.00	359.43	11,859.0	1,023.3	-17.4	1,023.4	0.00	0.00	0.00
13,300.0	90.00	359.43	11,859.0	1,123.3	-19.4	1,123.4	0.00	0.00	0.00
13,400.0	90.00	359.43	11,859.0	1,223.3	-20.4	1,223.4	0.00	0.00	0.00
13,500.0	90.00	359.43	11,859.0	1,323.3	-21.4	1,323.4	0.00	0.00	0.00
13,600.0	90.00	359.43	11,859.0	1,423.3	-22.4	1,423.4	0.00	0.00	0.00
13,700.0	90.00	359.43	11,859.0	1,523.3	-23.4	1,523.4	0.00	0.00	0.00
13,800.0	90.00	359.43	11,859.0	1,623.2	-24.4	1,623.4	0.00	0.00	0.00
13,900.0	90.00	359.43	11,859.0	1,723.2	-25.4	1,723.4	0.00	0.00	0.00
14,000.0	90.00	359.43	11,859.0	1,823.2	-26.4	1,823.4	0.00	0.00	0.00
14,100.0	90.00	359.43	11,859.0	1,923.2	-27.4	1,923.4	0.00	0.00	0.00
14,200.0	90.00	359.43	11,859.0	2,023.2	-28.4	2,023.4	0.00	0.00	0.00
14,300.0	90.00	359.43	11,859.0	2,123.2	-29.4	2,123.4	0.00	0.00	0.00
		359.43	11,859.0	2,223.2	-30.4	2,223.4	0.00	0.00	0.00
14,400.0	90.00		-						
14,500.0	90.00	359.43	11,859.0	2,323.2	-31.4	2,323.4	0.00	0.00	0.00
14,600.0	90.00	359.43	11,859.0	2,423.2	-32.4	2,423.4	0.00	0.00	0.00
14,700.0	90.00	359.43	11,859.0	2,523.2	-33.4	2,523.4	0.00	0.00	0.00
14,800.0	90.00	359.43	11,859.0	2,623.2	-34.4	2,623.4	0.00	0.00	0.00
14,900.0	90.00	359.43	11,859.0	2,723.2	-35.4	2,723.4	0.00	0.00	0.00
15,000.0	90.00	359.43	11,859.0	2,823.2	-36.4	2,823.4	0.00	0.00	0.00
15,100.0	90.00	359.43	11,859.0	2,923.2	-37.4	2,923.4	0.00	0.00	0.00

COMPASS 5000.15 Build 90

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Nandina 104H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3044.0usft
Project:	NAN/GB	MD Reference:	KB @ 3044.0usft
Site:	NAN/GB #5N	North Reference:	Grid
Well:	Nandina 104H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	FTP100	>	
Planned Survey			

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
15,200.0	90.00	359.43	11,859.0	3,023.2	-38.4	3,023.4	0.00	0.00	0.00
15,300.0	90.00	359.43	11,859.0	3,123.2	-39.4	3,123.4	0.00	0.00	0.00
15,400.0	90.00	359.43	11,859.0	3,223.2	-40.4	3,223.4	0.00	0.00	0.00
15,500.0	90.00	359.43	11,859.0	3,323.2	-41.4	3,323.4	0.00	0.00	0.00
15,600.0	90.00	359.43	11,859.0	3,423.2	-42.4	3,423.4	0.00	0.00	0.00
15,700.0	90.00	359.43	11,859.0	3,523.2	-43.4	3,523.4	0.00	0.00	0.00
15,800.0	90.00	359.43	11,859.0	3,623.1	-44.4	3,623.4	0.00	0.00	0.00
15,900.0	90.00	359.43	11,859.0	3,723.1	-45.4	3,723.4	0.00	0.00	0.00
16,000.0	90.00	359.43	11,859.0	3,823.1	-46.4	3,823.4	0.00	0.00	0.00
16,100.0	90.00	359.43	11,859.0	3,923.1	-47.4	3,923.4	0.00	0.00	0.00
16,200.0	90.00	359.43	11,859.0	4,023.1	-48.4	4,023.4	0.00	0.00	0.00
16,300.0	90.00	359.43	11,859.0	4,123.1	-49.4	4,123.4	0.00	0.00	0.00
16,400.0	90.00	359.43	11,859.0	4,223.1	-50.4	4,223.4	0.00	0.00	0.00
16,500.0	90.00	359.43	11,859.0	4,323.1	-51.4	4,323.4	0.00	0.00	0.00
16,600.0	90.00	359.43	11,859.0	4,423.1	-52.4	4,423.4	0.00	0.00	0.00
16,700.0	90.00	359.43	11,859.0	4,523.1	-53.5	4,523.4	0.00	0.00	0.00
16,800.0	90.00	359.43	11,859.0	4,623.1	-54.5	4,623.4	0.00	0.00	0.00
16,900.0	90.00	359.43	11,859.0	4,723.1	-55.5	4,723.4	0.00	0.00	0.00
17,000.0	90.00	359.43	11,859.0	4,823.1	-56.5	4,823.4	0.00	0.00	0.00
17,100.0	90.00	359.43	11,859.0	4,923.1	-57.5	4,923.4	0.00	0.00	0.00
17,200.0	90.00	359.43	11,859.0	5,023.1	-58.5	5,023.4	0.00	0.00	0.00
17,227.0	90.00	359.43	11,859.0	5,050.1	-58.7	5,050.4	0.00	0.00	0.00
Nan104 Into	NMNM127450								
17,300.0	90.00	359.43	11,859.0	5,123.1	-59.5	5,123.4	0.00	0.00	0.00
17,400.0	90.00	359.43	11,859.0	5,223.1	-60.5	5,223.4	0.00	0.00	0.00
17,500.0	90.00	359.43	11,859.0	5,323.1	-61.5	5,323.4	0.00	0.00	0.00
17,600.0	90.00	359.43	11,859.0	5,423.1	-62.5	5,423.4	0.00	0.00	0.00
17,700.0	90.00	359.43	11,859.0	5,523.1	-63.5	5,523.4	0.00	0.00	0.00
17,800.0	90.00	359.43	11,859.0	5,623.0	-64.5	5,623.4	0.00	0.00	0.00
17,800.0	90.00	359.43	11,859.0	5,623.0	-65.5	5,023.4 5,723.4	0.00	0.00	0.00
18,000.0	90.00	359.43	11,859.0	5,823.0	-66.5	5,823.4	0.00	0.00	0.00
		359.43	11,859.0	5,823.0	-67.5	5,823.4	0.00	0.00	0.00
18,100.0 18,200.0	90.00 90.00	359.43	11,859.0	5,923.0 6,023.0	-67.5	5,923.4 6,023.4	0.00	0.00	0.00
18,300.0	90.00	359.43	11,859.0	6,123.0	-69.5	6,123.4	0.00	0.00	0.00
18,400.0	90.00	359.43	11,859.0	6,223.0	-70.5	6,223.4	0.00	0.00	0.00
18,500.0	90.00	359.43	11,859.0	6,323.0	-71.5	6,323.4	0.00	0.00	0.00
18,600.0	90.00	359.43	11,859.0	6,423.0	-72.5	6,423.4	0.00	0.00	0.00
18,700.0	90.00	359.43	11,859.0	6,523.0	-73.5	6,523.4	0.00	0.00	0.00
18,800.0	90.00	359.43	11,859.0	6,623.0	-74.5	6,623.4	0.00	0.00	0.00
18,900.0	90.00	359.43	11,859.0	6,723.0	-75.5	6,723.4	0.00	0.00	0.00
19,000.0	90.00	359.43	11,859.0	6,823.0	-76.5	6,823.4	0.00	0.00	0.00
19,100.0	90.00	359.43	11,859.0	6,923.0	-77.5	6,923.4	0.00	0.00	0.00
19,200.0	90.00	359.43	11,859.0	7,023.0	-78.5	7,023.4	0.00	0.00	0.00
19,300.0	90.00	359.43	11,859.0	7,123.0	-79.5	7,123.4	0.00	0.00	0.00
19,300.0	90.00	359.43	11,859.0	7,123.0	-80.5	7,123.4	0.00	0.00	0.00
19,400.0	90.00	359.43	11,859.0	7,323.0	-80.5	7,323.4	0.00	0.00	0.00
19,500.0	90.00	359.43	11,859.0	7,323.0	-82.5	7,323.4	0.00	0.00	0.00
19,800.0	90.00	359.43	11,859.0	7,523.0	-82.5	7,523.4	0.00	0.00	0.00
									0.00
19,800.0	90.00	359.43	11,859.0	7,622.9	-84.5	7,623.4 7,723.4	0.00 0.00	0.00 0.00	0.00
19,900.0	90.00	359.43	11,859.0	7,722.9	-85.5				
20,000.0	90.00	359.43	11,859.0	7,822.9	-86.5	7,823.4	0.00	0.00	0.00
20,100.0	90.00	359.43	11,859.0	7,922.9	-87.5	7,923.4	0.00	0.00	0.00 0.00
20,200.0	90.00	359.43	11,859.0	8,022.9	-88.5	8,023.4	0.00	0.00	0.00

COMPASS 5000.15 Build 90

Planning Report

Database:	EDM5000	Local Co-ordinate Reference:	Well Nandina 104H
Company:	Ameredev Operating, LLC.	TVD Reference:	KB @ 3044.0usft
Project:	NAN/GB	MD Reference:	KB @ 3044.0usft
Site:	NAN/GB #5N	North Reference:	Grid
Well:	Nandina 104H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	« FTP100		1

. .

.

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
20,300.0	90.00	359.43	11,859.0	8,122.9	-89.5	8,123.4	0.00	0.00	0.00
20,400.0	90.00	359.43	11,859.0	8,222.9	-90.6	8,223.4	0.00	0.00	0.00
20,500.0	90,00	359,43	11,859.0	8,322.9	-91,6	8,323.4	0.00	0.00	0.00
20,600.0	90.00	359.43	11,859.0	8,422.9	-92.6	8,423.4	0.00	0.00	0.00
20,700.0	90.00	359.43	11,859.0	8,522.9	-93.6	8,523.4	0.00	0.00	0.00
20,800.0	90.00	359.43	11,859.0	8,622.9	-94.6	8,623.4	0.00	0.00	0.00
20,900.0	90.00	359.43	11,859.0	8,722.9	-95.6	8,723.4	0.00	0.00	0.00
21,000.0	90.00	359.43	11,859.0	8,822.9	-96.6	8,823.4	0.00	0.00	0.00
21,100.0	90.00	359.43	11,859.0	8,922.9	-97.6	8,923.4	0.00	0.00	0.00
21,200.0	90.00	359.43	11,859.0	9,022.9	-98.6	9,023.4	0.00	0.00	0.00
21,300.0	90.00	359.43	11,859.0	9,122.9	-99.6	9,123.4	0.00	0.00	0.00
21,400.0	90.00	359.43	11,859.0	9,222.9	-100.6	9,223.4	0.00	0.00	0.00
21,500.0	90.00	359.43	11,859.0	9,322.9	-101.6	9,323.4	0.00	0.00	0.00
21,600.0	90.00	359.43	11,859.0	9,422.9	-102.6	9,423.4	0.00	0.00	0.00
21,700.0	90.00	359.43	11,859.0	9,522.9	-103.6	9,523.4	0.00	0.00	0.00
21,800.0	90.00	359.43	11,859.0	9,622.8	-104.6	9,623.4	0.00	0.00	0.00
21,900.0	90.00	359.43	11,859.0	9,722.8	-105.6	9,723.4	0.00	0.00	0.00
22,000.0	90.00	359.43	11,859.0	9,822.8	-106.6	9,823.4	0.00	0.00	0.00
22,100.0	90.00	359.43	11,859.0	9,922.8	-107.6	9,923.4	0.00	0.00	0.00
22,200.0	90.00	359.43	11,859.0	10,022.8	-108.6	10,023.4	0.00	0.00	0.00
22,300.0	90.00	359.43	11,859.0	10,122.8	-109.6	10,123.4	0.00	0.00	0.00
22,400.0	90.00	359.43	11,859.0	10,222.8	-110.6	10,223.4	0.00	0.00	0.00
Nan104 LTP									
22,463.0	90.00	359.43	11,859.0	10,285.8	-111.2	10,286.4	0.00	0.00	0.00
Nan104 BHL									
lesign Targets									· · · · · · · · · · · · · · · · · · ·
arget Name									
- hit/miss target - Shape	Dip Angle (°)	•	TVD +N/-S (usft) (usft)	+E/-W (usft)	Northin (usft)	•	sting Isft)	Latitude	Longitude
									<u> </u>
lan104 KOP - plan hits target ce	0.00 nter	0.00 1	11,375.0 -49	0.0 95.2	393,9	44.40 8	59,869.51	32° 4' 43.892 N	103° 18' 17.691

- Point									
Nan104 LTP	0.00	0.00	11,859.0	10,235.8	-110.8	404,670.16	859,663.51	32° 6' 30.039 N	103° 18' 18.897 W
 plan misses target cente Point 	r by 12.9us	aft at 2240	0.0usft MD (11859.0 TVD, 1	0222.8 N, -11	0.6 E)			
Nan104 BHL - plan hits target center - Point	0.00	0.00	11,859.0	10,285.8	-111.2	404,720.18	859,663.03	32° 6' 30.534 N	103° 18' 18.897 W
Nan104 FTP	0.00	0.00	11,859.0	-130.1	-8.8	394,304.31	859,765.47	32° 4' 47.463 N	103° 18' 18.860 W
 plan misses target cente Point 	r by 33.5us	aft at 1205	2.0usft MD (11846.5 TVD, -	121.1 N, 20.9	E)			
Nan104 FTP2 - plan hits target center	0.00	0.00	11,859.0	70.0	-8.8	394,504.39	859,765.47	32° 4' 49.443 N	103° 18' 18.838 W

- Point

Planning Report

Database: Company: Project: Site: Well: Well: Wellbore:	EDMSC Amerec NAN/G NAN/G Nandin Wellbo	dev Operating, LL B B #5N a 104H	C.	TVD Refe MD Refe North Re	rence:	Well Nandina 104H KB @ 3044.0usft KB @ 3044.0usft Grid Minimum Curvature	
Design: Plan Annotatio	FTP10		 				
	Measured Depth (usft)	Vertical Depth (usft)	Local Coor +N/-S (usft)	dinates +E/-W (usft)	Comment	and an address of the second	
· · · · · · · · · · · · · · · · · · ·	17,227.0	11,859.0	5,050.1	-58.7	Nan104 into NMNM12	7450	

NAN/GB NAN/GB #5N Nandina 104H Wellbore #1

Plan: FTP100

Lease Penetration Section Line Foot

06 February, 2019

Lease Penetration Section Line Footages

Project: N Site: N Well: N Wellbore: N	Ameredev Operati NAN/GB NAN/GB #5N Nandina 104H Wellbore #1 FTP100	ng, LLC.		TVD Referen MD Referen North Refer	ce:	e: Well Nandin KB @ 3044. KB @ 3044. Grid Minimum Cu EDM5000	Ousft Ousft	
Project Map System: Geo Datum: Map Zone:	NAN/GB US State Plane North Americar New Mexico Ea	Datum 1983		System Da	atum:	Mean Sea	Level	
Site	NAN/GB #5N							
Site Position: From: Position Uncertain	Lat/Long ty:	0.0 usft	Northing: Easting: Slot Radius:		9,774.27 usft L	Latitude: Longitude: Brid Convergence:		32° 4' 48.750 N 103° 18' 18.744 W 0.55 °
Well	Nandina 104F	l		· · ·			······································	
Well Position Position Uncertain	+N/-S +E/-W	0.0 usft 0.0 usft 0.0 usft	Northing: Easting: Wellhead El		394,434.39 u 859,774.27 u			32° 4' 48.750 N 103° 18' 18.744 W 3,017.0 usft
	ıy	0.0 USN	Weinlead Ei	evauon.			er.	
Wellbore	Wellbore #1					· · · · · · · · · · · · · · · · · · ·		
Magnetics	Model Na	me	Sample Date	Declin (°)		Dip Angle (°)	Field St (n]	
	IG	RF2015	11/5/2018	· · · · · · · · · · · · · · · · · · ·	6.67	5	9.95 47,74	0.81295714
			11/5/2018) 	0.01			
Design Audit Notes: Version:	FTP100		Phase:	PROTOTYPE			0.0	
Audit Notes:		Depth F				Dn Depth: W	0.0 Direction (°)	
Audit Notes: Version:		Depth F	Phase: rom (TVD)	PROTOTYPE +N/-S	Tie C +E/-1	Dn Depth: W t)	0.0 Direction	
Audit Notes: Version:	FTP100	Depth F	Phase: rom (TVD) sft) 0.0 19 re)	PROTOTYPE +N/-S (usft) 0.0	Tie C +E/-I (usf	Dn Depth: W t)) Description	0.0 Direction (°) 359.38	
Audit Notes: Version: Vertical Section: Survey Tool Progra From (usft)	FTP100	Depth Fi (u Date 2/6/20 Survey (Wellbo	Phase: rom (TVD) sft) 0.0 19 re)	PROTOTYPE +N/-S (usft) 0.0	Tie C +E/J (usf 0.0	Dn Depth: W t)) Description	0.0 Direction (°) 359.38	· · · · · · · · · · · · · · · · · · ·
Audit Notes: Version: Vertical Section: Survey Tool Progra From (usft) 0.0	FTP100	Depth Fi (u Date 2/6/20 Survey (Wellbo	Phase: rom (TVD) sft)).0 19 ore) ore #1)	PROTOTYPE +N/-S (usft) 0.0	Tie C +E/J (usf 0.0	Dn Depth: W t)) Description	0.0 Direction (°) 359.38	Longitude
Audit Notes: Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0.1	FTP100 To (usft) 0 22,463.0 inc (°) 0	Depth Fri (u Date 2/6/20 Survey (Wellbo FTP100 (Wellbo Azi (az (1 0.00	Phase: rom (TVD) sft)).0 19 ore) ore #1) imuth)) 0.00	PROTOTYPE +N/-S (usft) 0.0 TVD (usft) 0.0	Tie C +E/-1 (usf 0.0 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Dn Depth: W t)) Description OWSG MW +FWL/-FEL (usft)) 2,328.0	0.0 Direction (°) 359.38 n /D - Standard Latitude) 32° 4' 48.750 N	Longitude 103° 18' 18.744 W
Audit Notes: Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0. 100.	FTP100 To (usft) 0 22,463.0 inc (°) 0 0	Depth Fri (u Date 2/6/20 Survey (Wellbo FTP100 (Wellbo Azi (az (1 0.00 0.00	Phase: rom (TVD) sft) 0.0 19 ore) ore #1) imuth)) 0.00 0.00	PROTOTYPE +N/-S (usft) 0.0 Tro TVD (usft) 0.0 100.0	Tie C +E/-1 (usf 0.0 bol Name WD +FSL/-FNL (usft) 230.0 230.0	Dn Depth: W t)) +FWL/-FEL (usft)) 2,328.0) 2,328.0	0.0 Direction (°) 359.38 n /D - Standard Latitude) 32° 4' 48.750 N 32° 4' 48.750 N	Longitude 103° 18' 18.744 W 103° 18' 18.744 W
Audit Notes: Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0.100. 200.	FTP100 To (usft) 0 22,463.0 inc (°) 0 0	Depth F (u Date 2/6/20 Survey (Wellbo FTP100 (Wellb Azi (az (* 0.00 0.00	Phase: rom (TVD) (TVD) (19) (19) (19) (19) (19) (19) (19) (19) (10)	PROTOTYPE +N/-S (usft) 0.0 TC M TVD (usft) 0.0 100.0 200.0	Tie C +E/-1 (usf 0.0 bol Name WD +FSL/-FNL (usft) 230.0 230.0 230.0	Dn Depth: W it)) +FWL/-FEL (usft)) 2,328.0) 2,328.0) 2,328.0	0.0 Direction (°) 359.38 h //D - Standard Latitude 32° 4' 48.750 N 32° 4' 48.750 N 32° 4' 48.750 N	Longitude 103° 18' 18.744 W 103° 18' 18.744 W 103° 18' 18.744 W
Audit Notes: Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0. 100. 200. 300.	FTP100 am To (usft) 0 22,463.0 0 22,463.0 (°) 0 0 0 0	Depth Fi (u Date 2/6/20 Survey (Wellbo FTP100 (Wellb Azi (az (* 0.00 0.00 0.00 0.00	Phase: rom (TVD) sft) 0.0 19 ore #1) imuth)) 0.00 0.00 0.00 0.00 0.00 0.00	PROTOTYPE +N/-S (usft) 0.0 Tc M TVD (usft) 0.0 100.0 200.0 300.0	Tie C +E/- (usf 0.0 bol Name WD +FSL/-FNL (usft) 230.0 230.0 230.0 230.0	Dn Depth: W t) Description OWSG MW +FWL/-FEL (usft) 2,328.0 2,328.0 2,328.0 2,328.0 2,328.0 2,328.0	0.0 Direction (°) 359.38 n /D - Standard Latitude 32° 4' 48.750 N 32° 4' 48.750 N 32° 4' 48.750 N 32° 4' 48.750 N	Longitude 103° 18' 18.744 W 103° 18' 18.744 W 103° 18' 18.744 W 103° 18' 18.744 W
Audit Notes: Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0. 100. 200. 300. 400.	FTP100 To (usft) D 22,463.0 inc (*) 0 0 0 0 0 0	Depth Fr (u Date 2/6/20 Survey (Wellbo FTP100 (Wellbo Azi (az (* 0.00 0.00 0.00 0.00 0.00	Phase: rom (TVD) sft) 0.0 19 ore) ore #1) imuth)) 0.00 0.00 0.00 0.00 0.00 0.00	PROTOTYPE +N/-S (usft) 0.0 TVD (usft) 0.0 100.0 200.0 300.0 400.0	Tie C +E/J (usf 0.0 bol Name WD +FSL/-FNL (usft) 230.0 230.0 230.0 230.0 230.0	Dn Depth: W t) Description OWSG MW +FWL/-FEL (usft) 2,328.0 2,328.0 2,328.0 2,328.0 2,328.0 2,328.0 2,328.0	0.0 Direction (°) 359.38 n /D - Standard Latitude 32° 4' 48.750 N 32° 4' 48.750 N 32° 4' 48.750 N 32° 4' 48.750 N 32° 4' 48.750 N	Longitude 103° 18' 18.744 W 103° 18' 18.744 W 103° 18' 18.744 W
Audit Notes: Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0. 100. 200. 300. 400. 500.	FTP100 To (usft) 0 22,463.0 inc (°) 0 0 0 0 0 0 0	Depth Fri (u Date 2/6/20 Survey (Wellbo FTP100 (Wellbo Azi (az (1 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Phase: rom (TVD) sft) 0.0 19 ore #1) imuth) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	PROTOTYPE +N/-S (usft) 0.0 TVD (usft) 0.0 100.0 200.0 300.0 400.0 500.0	Tie C +E/-1 (usf 0.0 bol Name WD +FSL/-FNL (usft) 230.0 230.0 230.0 230.0 230.0 230.0	Dn Depth: W t) Description OWSG MW +FWL/-FEL (usft) 2,328.0	0.0 Direction (°) 359.38 n /D - Standard Latitude 32° 4' 48.750 N 32° 4' 48.750 N	Longitude 103° 18' 18.744 W 103° 18' 18.744 W
Audit Notes: Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0. 100. 200. 300. 400.	FTP100 To (usft) 0 22,463.0 inc (°) 0 0 0 0 0 0 0 0 0 0 0 0 0	Depth Fr (u Date 2/6/20 Survey (Wellbo FTP100 (Wellbo Azi (az (10 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Phase: rom (TVD) sft) 0.0 19 ore #1) imuth)) 0.00	PROTOTYPE +N/-S (usft) 0.0 TVD (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0	Tie C +E/-1 (usf 0.0 001 Name WD +FSL/-FNL (usft) 230.0 230.0 230.0 230.0 230.0 230.0 230.0	Dn Depth: W t) Description OWSG MW +FWL/-FEL (usft) 2,328.0	0.0 Direction (°) 359.38 n /D - Standard Latitude 32° 4' 48.750 N 32° 4' 48.750 N	Longitude 103° 18' 18.744 W 103° 18' 18.744 W 103° 18' 18.744 W 103° 18' 18.744 W 103° 18' 18.744 W
Audit Notes: Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0. 100. 200. 300. 400. 500.	FTP100 To (usft) 0 22,463.0 inc (°) 0 0 0 0 0 0 0 0 0 0 0 0 0	Depth Fri (u Date 2/6/20 Survey (Wellbo FTP100 (Wellbo Azi (az (1 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Phase: rom (TVD) sft) 0.0 19 ore #1) imuth) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	PROTOTYPE +N/-S (usft) 0.0 TVD (usft) 0.0 100.0 200.0 300.0 400.0 500.0	Tie C +E/-1 (usf 0.0 bol Name WD +FSL/-FNL (usft) 230.0 230.0 230.0 230.0 230.0 230.0	Dn Depth: W t) Description OWSG MW +FWL/-FEL (usft) 2,328.0	0.0 Direction (°) 359.38 n /D - Standard Latitude 32° 4' 48.750 N 32° 4' 48.750 N	Longitude 103° 18' 18.744 W 103° 18' 18.744 W
Audit Notes: Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0. 100. 200. 300. 400. 500. 600.	FTP100 am To (usft) 0 22,463.0 inc (°) 0 0 0 0 0 0 0 0 0 0 0 0 0	Depth Fr (u Date 2/6/20 Survey (Wellbo FTP100 (Wellbo Azi (az (10 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Phase: rom (TVD) sft) 0.0 19 ore #1) imuth)) 0.00	PROTOTYPE +N/-S (usft) 0.0 TVD (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0	Tie C +E/-1 (usf 0.0 001 Name WD +FSL/-FNL (usft) 230.0 230.0 230.0 230.0 230.0 230.0 230.0	Dn Depth: W t) Description OWSG MM +FWL/-FEL (usft) 2,328.0	0.0 Direction (°) 359.38 /D - Standard Latitude 32° 4' 48.750 N 32° 4' 48.750 N	Longitude 103° 18' 18.744 W 103° 18' 18.744 W
Audit Notes: Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0. 100. 200. 300. 400. 500. 600. 700. 800. 900.	FTP100 To (usft) D 22,463.0 inc (°) 0 0 0 0 0 0 0 0 0 0 0 0 0	Depth Fri (u Date 2/6/20 Survey (Wellbo FTP100 (Wellbo Azi (az (* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Phase: rom (TVD) sft) 0.0 19 ore #1) imuth) 0.00 0.0	PROTOTYPE +N/-S (usft) 0.0 TVD (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0	Tie C +E/J (usf 0.0 bol Name WD +FSL/-FNL (usft) 230.0 230.0 230.0 230.0 230.0 230.0 230.0 230.0 230.0 230.0 230.0	Dn Depth: W t) Description OWSG MW +FWL/-FEL (usft) 2,328.0	0.0 Direction (°) 359.38 /D - Standard Latitude 32° 4' 48.750 N 32° 4' 48.750 N	Longitude 103° 18' 18.744 W 103° 18' 18.744 W
Audit Notes: Version: Vertical Section: Survey Tool Progra From (usft) 0.0 Planned Survey MD (usft) 0. 100. 200. 300. 400. 500. 600. 700. 800.	FTP100 To (usft) 0 22,463.0 inc (°) 0 0 0 0 0 0 0 0 0 0 0 0 0	Depth Fi (u Date 2/6/20 Survey (Wellbo FTP100 (Wellb Azi (az (* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Phase: rom (TVD) sft) 0.0 19 ore #1) imuth)) 0.00	PROTOTYPE +N/-S (usft) 0.0 TVD (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0	Tie C +E/- (usf 0.0 bol Name WD +FSL/-FNL (usft) 230.0 230.0 230.0 230.0 230.0 230.0 230.0 230.0 230.0 230.0 230.0 230.0	Dn Depth: W t) Description OWSG MM +FWL/-FEL (usft) 2,328.0	0.0 Direction (°) 359.38 Latitude 1.22° 4' 48.750 N 32° 4' 48.750 N	Longitude 103° 18' 18.744 W 103° 18' 18.744 W

COMPASS 5000.15 Build 90

1

Lease Penetration Section Line Footages

[
Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Nandina 104H
Project:	NAN/GB	TVD Reference:	KB @ 3044.0usft
Site:	NAN/GB #5N	MD Reference:	KB @ 3044.0usft
Well:	Nandina 104H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	FTP100	Database:	EDM5000

Planned Survey

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
1,200.0	0.00	0.00	1,200.0	230.0	2,328.0	32° 4' 48.750 N	103° 18' 18.744 W
1,300.0	0.00	0.00	1,300.0	230.0	2,328.0	32° 4' 48.750 N	103° 18' 18.744 W
1,400.0	0.00	0.00	1,400.0	230.0	2,328.0	32° 4' 48.750 N	103° 18' 18.744 W
1,500.0	0.00	0.00	1,500.0	230.0	2,328.0	32° 4' 48.750 N	103° 18' 18.744 W
1,600.0	0.00	0.00	1,600.0	230.0	2,328.0	32° 4' 48.750 N	103° 18' 18.744 W
1,700.0	0.00	0.00	1,700.0	230.0	2,328.0	32° 4' 48.750 N	103° 18' 18.744 W
1,800.0	0.00	0.00	1,800.0	230.0	2,328.0	32° 4' 48.750 N	103° 18' 18.744 W
1,900.0	0.00	0.00	1,900.0	230.0	2,328.0	32° 4' 48.750 N	103° 18' 18.744 W
2,000.0	0.00	0.00	2,000.0	230.0	2,328.0	32° 4' 48.750 N	103° 18' 18.744 W
2,100.0	2.00	169.00	2,100.0	228.3	2,328.3	32° 4' 48.733 N	103° 18' 18.740 W
2,200.0	4.00	169.00	2,199.8	223.1	2,329.3	32° 4' 48.682 N	103° 18' 18.729 W
2,300.0	6.00	169.00	2,299.5	214.6	2,331.0	32° 4' 48.597 N	103° 18' 18.711 W
2,400.0	6.00	169.00	2,398.9	204.3	2,333.0	32° 4' 48.495 N	103° 18' 18.689 W
2,500.0	6.00	169.00	2,498.4	194.1	2,335.0	32° 4' 48.393 N	103° 18' 18.667 W
2,600.0	6.00	169.00	2,597.8	183.8	2,337.0	32° 4' 48.292 N	103° 18' 18.645 W
2,700.0	6.00	169.00	2,697.3	173.6	2,339.0	32° 4' 48.190 N	103° 18' 18.622 W
2,800.0	6.00	169.00	2,796.7	163.3	2,341.0	32° 4' 48.088 N	103° 18' 18.600 W
2,900.0	6.00	169.00	2,896.2	153.0	2,343.0	32° 4' 47.987 N	103° 18' 18.578 W
3,000.0	6.00	169.00	2,995.6	142.8	2,345.0	32° 4' 47.885 N	103° 18' 18.556 W
3,100.0	6.00	169.00	3,095.1	132.5	2,347.0	32° 4' 47.783 N	103° 18' 18.534 W
3,200.0	6.00	169.00	3,194.5	122.2	2,348.9	32° 4' 47.681 N	103° 18' 18.512 W
3,300.0	6.00	169.00	3,294.0	112.0	2,350.9	32° 4' 47.580 N	103° 18' 18.490 W
3,400.0	6.00	169.00	3,393.4	101.7	2,352.9	32° 4' 47.478 N	103° 18' 18.468 W
3,500.0	6.00	169.00	3,492.9	91.5	2,354.9	32° 4' 47.376 N	103° 18' 18.446 W
3,600.0	6.00	169.00	3,592.3	81.2	2,356.9	32° 4' 47,275 N	103° 18' 18.424 W
3,700.0	6.00	169.00	3,691.8	70.9	2,358.9	32° 4' 47.173 N	103° 18' 18.402 W
3,800.0	6.00	169.00	3,791.2	60.7	2,360.9	32° 4' 47.071 N	103° 18' 18.380 W
3,900.0	6.00	169.00	3,890.7	50.4	2,362.9	32° 4' 46.969 N	103° 18' 18.358 W
4,000.0	6.00	169.00	3,990.1	40.2	2,364.9	32° 4' 46.868 N	103° 18' 18.336 W
4,100.0	6.00	169.00	4,089.6	29.9	2,366.9	32° 4' 46.766 N	103° 18' 18.314 W
4,200.0	6.00	169.00	4,189.0	19.6	2,368.9	32° 4' 46.664 N	103° 18' 18.292 W
4,300.0	6.00	169.00	4,288.5	9.4	2,370.9	32° 4' 46.562 N	103° 18' 18.270 W
4,400.0	6.00	169.00	4,387.9	-0.9	2,372.9	32° 4' 46.461 N	103° 18' 18.248 W
4,500.0	6.00	169.00	4,487.4	-11.1	2,374.9	32° 4' 46.359 N	103° 18' 18.226 W
4,600.0	6.00	169.00	4,586.9	-21.4	2,376.9	32° 4' 46.257 N	103° 18' 18.204 W
4,700.0	6.00	169.00	4,686.3	-31.7	2,378.9	32° 4' 46.156 N	103° 18' 18.182 W
4,800.0	6.00	169.00	4,785.8	-41.9	2,380.9	32° 4' 46.054 N	103° 18' 18.160 W
4,900.0	6.00	169.00	4,885.2	-52.2	2,382.9	32° 4' 45.952 N	103° 18' 18.138 W
5,000.0	6.00	169.00	4,984.7	-62.4	2,384.8	32° 4' 45.850 N	103° 18' 18.116 W
5,100.0	6.00	169.00	5,084.1	-72.7	2,386.8	32° 4' 45.749 N	103° 18' 18.093 W
5,200.0	6.00	169.00	5,183.6	-83.0	2,388.8	32° 4' 45.647 N	103° 18' 18.071 W
5,300.0	6.00	169.00	5,283.0	-93.2	2,390.8	32° 4' 45.545 N	103° 18' 18.049 W
5,400.0	6.00	169.00	5,382.5	-103.5	2,392.8	32° 4' 45.444 N	103° 18' 18.027 W
5,500.0	6.00	169.00	5,481.9	-113.8	2,394.8	32° 4' 45.342 N	103° 18' 18.005 W

COMPASS 5000.15 Build 90

Lease Penetration Section Line Footages

r- · · · · ·			
Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Nandina 104H
Project:	NAN/GB	TVD Reference:	KB @ 3044.0usft
Site:	NAN/GB #5N	MD Reference:	KB @ 3044.0usft
Well:	Nandina 104H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	FTP100	Database:	EDM5000

Planned Survey

MD (usft)	inc (°)	Azl (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
5,600.0	6.00	169.00	5,581.4	-124.0	2,396.8	32° 4' 45.240 N	103° 18' 17.983 W
5,700.0	6.00	169.00	5,680.8	-134.3	2,398.8	32° 4' 45.138 N	103° 18' 17.961 W
5,800.0	6.00	169.00	5,780.3	-144.5	2,400.8	32° 4' 45.037 N	103° 18' 17.939 W
5,900.0	6.00	169.00	5,879.7	-154.8	2,402.8	32° 4' 44.935 N	103° 18' 17.917 W
6,000.0	6.00	169.00	5,979.2	-165.1	2,404.8	32° 4' 44.833 N	103° 18' 17.895 W
6,100.0	6.00	169.00	6,078.6	-175.3	2,406.8	32° 4' 44.732 N	103° 18' 17.873 W
6,200.0	6.00	169.00	6,178.1	-185.6	2,408.8	32° 4' 44.630 N	103° 18' 17.851 W
6,300.0	6.00	169.00	6,277.5	-195.8	2,410.8	32° 4' 44.528 N	103° 18' 17.829 W
6,400.0	6.00	169.00	6,377.0	-206.1	2,412.8	32° 4' 44.426 N	103° 18' 17.807 W
6,500.0	6.00	169.00	6,476.4	-216.4	2,414.8	32° 4' 44.325 N	103° 18' 17.785 W
6,600.0	6.00	169.00	6,575.9	-226.6	2,416.8	32° 4' 44.223 N	103° 18' 17.763 W
6,700.0	6.00	169.00	6,675.3	-236.9	2,418.8	32° 4' 44.121 N	103° 18' 17.741 W
6,775.1	6.00	169.00	6,750.0	-244.6	2,420.2	32° 4' 44.045 N	103° 18' 17.724 W
6,800.0	5.50	169.00	6,774.8	-247.0	2,420.7	32° 4' 44.021 N	103° 18' 17.719 W
6,900.0	3.50	169.00	6,874.5	-254.7	2,422.2	32° 4' 43.944 N	103° 18' 17.702 W
7,000.0	1.50	169.00	6,974.4	-259.0	2,423.1	32° 4' 43.902 N	103° 18' 17.693 W
7,075.1	0.00	0.00	7,049.5	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
7,100.0	0.00	0.00	7,074.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
7,200.0	0.00	0.00	7,174.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
7,300.0	0.00	0.00	7,274.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
7,400.0	0.00	0.00	7,374.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
7,500.0	0.00	0.00	7,474.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
7,600.0	0.00	0.00	7,574.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
7,700.0	0.00	0.00	7,674.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
7,800.0	0.00	0.00	7,774.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
7,900.0	0.00	0.00	7,874.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
8,000.0	0.00	0.00	7,974.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
8,100.0	0.00	0.00	8,074.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
8,200.0	0.00	0.00	8,174.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
8,300.0	0.00	0.00	8,274.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
8,400.0	0.00	0.00	8,374.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
8,500.0	0.00	0.00	8,474.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
8,600.0	0.00	0.00	8,574.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
8,700.0	0.00	0.00	8,674.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
8,800.0	0.00	0.00	8,774.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
8,900.0	0.00	0.00	8,874.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
9,000.0	0.00	0.00	8,974.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
9,100.0	0.00	0.00	9,074.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
9,200.0	0.00	0.00	9,174.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
9,300.0	0.00	0.00	9,274.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
9,400.0	0.00	0.00	9,374.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
9,500.0	0.00	0.00	9,474.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
9,600.0	0.00	0.00	9,574.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
9,700.0	0.00	0.00	9,674.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W

COMPASS 5000.15 Build 90

1

Lease Penetration Section Line Footages

Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Nandina 104H
Project:	NAN/GB	TVD Reference:	KB @ 3044.0usft
Site:	NAN/GB #5N	MD Reference:	KB @ 3044.0usft
Well:	Nandina 104H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	FTP100	Database:	EDM5000

Planned Survey

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
9,800.0	0.00	0.00	9,774.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
9,900.0	0.00	0.00	9,874.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
10,000.0	0.00	0.00	9,974.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
10,100.0	0.00	0.00	10,074.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
10,200.0	0.00	0.00	10,174.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
10,300.0	0.00	0.00	10,274.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
10,400.0	0.00	0.00	10,374.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
10,500.0	0.00	0.00	10,474.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
10,600.0	0.00	0.00	10,574.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
10,700.0	0.00	0.00	10,674.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
10,800.0	0.00	0.00	10,774.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
10,900.0	0.00	0.00	10,874.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
11,000.0	0.00	0.00	10,974.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
11,100.0	0.00	0.00	11,074.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
11,200.0	0.00	0.00	11,174.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
11,300.0	0.00	0.00	11,274.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
11,400.0	0.00	0.00	11,374.4	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
11,400.6	0.00	0.00	11,375.0	-260.0	2,423.2	32° 4' 43.892 N	103° 18' 17.691 W
Nan104 KOP							
11,500.0	11.78	348.61	11,473.7	-250.0	2,421.2	32° 4' 43.991 N	103° 18' 17.713 W
11,600.0	23.63	348.61	11,568.8	-220.3	2,415.2	32° 4' 44.286 N	103° 18' 17.780 W
11,700.0	35.47	348.61	11,655.6	-172.0	2,405.5	32° 4' 44.765 N	103° 18' 17.887 W
11,800.0	47.32	348.61	11,730.5	-107.3	2,392.5	32° 4' 45.406 N	103° 18' 18.032 W
11,900.0	59.17	348.61	11,790.2	-28.9	2,376.7	32° 4' 46.183 N	103° 18' 18.207 W
12,000.0	71.02	348.61	11,832.3	59.9	2,358.8	32° 4' 47.063 N	103° 18' 18.405 V
12,052.0	77.18	348.61	11,846.5	108.9	2,348.9	32° 4' 47.549 N	103° 18' 18.514 V
Nan104 FTP							
12,100.0	82.87	348.61	11,854.8	155.2	2,339.6	32° 4' 48.008 N	103° 18' 18.617 V
12,155.3	89.42	348.61	11,858.5	209.2	2,328.7	32° 4' 48.544 N	103° 18' 18.738 V
12,200.0	89.70	353.90	11,858.9	253.4	2,321.9	32° 4' 48.982 N	103° 18' 18.812 V
12,246.7	90.00	359.43	11,859.0	300.0	2,319.2	32° 4' 49,443 N	103° 18' 18.838 V
Nan104 FTP2 12,300.0	90.00	359.43	11,859.0	353.3	2,318.7	32° 4' 49.971 N	103° 18' 18.839 V
12,400.0	90.00	359.43	11,859.0	453.3	2,317.7	32° 4' 50.960 N	103° 18' 18.839 W
12,500.0	90.00	359.43	11,859.0	553.3	2,316.7	32° 4' 51.950 N	103° 18' 18.840 W
12,600.0	90.00	359.43	11,859.0	653.3	2,315.7	32° 4' 52.939 N	103° 18' 18.840 V
12,700.0	90.00	359.43	11,859.0	753.3	2,313.7	32° 4' 53.929 N	103° 18' 18.841 V
12,800.0	90.00	359.43	11,859.0	853.3	2,314.7	32° 4' 53.929 N 32° 4' 54.918 N	103 18 18.841 V
12,900.0	90.00	359.43	11,859.0	953.3	2,312.7	32° 4' 55.908 N	103° 18' 18.842 W
13,000.0	90.00	359.43	11,859.0	1,053.3	2,311.6	32° 4' 56.897 N	103° 18' 18.843 W
13,100.0	90.00	359.43	11,859.0	1,153.3	2,310.6	32° 4' 57.887 N	103° 18' 18.843 V
13,200.0	90.00	359.43	11,859.0	1,253.3	2,309.6	32° 4' 58.876 N	103° 18' 18.844 V
13,200.0	90.00	359.43	11,859.0	1,353.3	2,308.6	32° 4' 59.866 N	103° 18' 18.844 V
	90.00				2,308.6	32° 5' 0.855 N	103° 18' 18.845 W
13,400.0		359.43	11,859.0 11,859.0	1,453.3			
13,500.0	90.00	359.43	11,859.0	1,553.3	2,306.6	32° 5' 1.845 N	103° 18' 18.845 W

COMPASS 5000.15 Build 90

1

Ameredev Operating, LLC

Lease Penetration Section Line Footages

Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Nandina 104H
Project:	NAN/GB	TVD Reference:	KB @ 3044.0usft
Site:	NAN/GB #5N	MD Reference:	KB @ 3044.0usft
Well:	Nandina 104H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	FTP100	Database:	EDM5000

.

Planned Survey

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
13,600.0	90.00	359.43	11,859.0	1,653.3	2,305.6	32° 5' 2.834 N	103° 18' 18.846 W
13,700.0	90.00	359.43	11,859.0	1,753.3	2,304.6	32° 5' 3.824 N	103° 18' 18.847 W
13,800.0	90.00	359.43	11,859.0	1,853.2	2,303.6	32° 5' 4.813 N	103° 18' 18.847 W
13,900.0	90.00	359.43	11,859.0	1,953.2	2,302.6	32° 5' 5.803 N	103° 18' 18.848 W
14,000.0	90.00	359.43	11,859.0	2,053.2	2,301.6	32° 5' 6.792 N	103° 18' 18.848 W
14,100.0	90.00	359.43	11,859.0	2,153.2	2,300.6	32° 5' 7.782 N	103° 18' 18.849 W
14,200.0	90.00	359.43	11,859.0	2,253.2	2,299.6	32° 5' 8.771 N	103° 18' 18.849 W
14,300.0	90.00	359.43	11,859.0	2,353.2	2,298.6	32° 5' 9.761 N	103° 18' 18.850 W
14,400.0	90.00	359.43	11,859.0	2,453.2	2,297.6	32° 5' 10.750 N	103° 18' 18.851 W
14,500.0	90.00	359.43	11,859.0	2,553.2	2,296.6	32° 5' 11.740 N	103° 18' 18.851 W
14,600.0	90.00	359.43	11,859.0	2,653.2	2,295.6	32° 5' 12.729 N	103° 18' 18.852 W
14,700.0	90.00	359.43	11,859.0	2,753.2	2,294.6	32° 5' 13.719 N	103° 18' 18.852 W
14,800.0	90.00	359.43	11,859.0	2,853.2	2,293.6	32° 5' 14.708 N	103° 18' 18.853 W
14,900.0	90.00	359.43	11,859.0	2,953.2	2,292.6	32° 5' 15.698 N	103° 18' 18.854 W
15,000.0	90.00	359.43	11,859.0	3,053.2	2,291.6	32° 5' 16.688 N	103° 18' 18.854 W
15,100.0	90.00	359.43	11,859.0	3,153.2	2,290.6	32° 5' 17.677 N	103° 18' 18.855 W
15,200.0	90.00	359.43	11,859.0	3,253.2	2,289.6	32° 5' 18.667 N	103° 18' 18.855 W
15,300.0	90.00	359.43	11,859.0	3,353.2	2,288.6	32° 5' 19.656 N	103° 18' 18.856 W
15,400.0	90.00	359.43	11,859.0	3,453.2	2,287.6	32° 5' 20.646 N	103° 18' 18.856 W
15,500.0	90.00	359.43	11,859.0	3,553.2	2,286.6	32° 5' 21.635 N	103° 18' 18.857 W
15,600.0	90.00	359.43	11,859.0	3,653.2	2,285.6	32° 5' 22.625 N	103° 18' 18.858 W
15,700.0	90.00	359.43	11,859.0	3,753.2	2,284.6	32° 5' 23.614 N	103° 18' 18.858 W
15,800.0	90.00	359.43	11,859.0	3,853.1	2,283.6	32° 5' 24.604 N	103° 18' 18.859 W
15,900.0	90.00	359.43	11,859.0	3,953.1	2,282.6	32° 5' 25.593 N	103° 18' 18.859 W
16,000.0	90.00	359.43	11,859.0	4,053.1	2,281.6	32° 5' 26.583 N	103° 18' 18.860 W
16,100.0	90.00	359.43	11,859.0	4,153.1	2,280.6	32° 5' 27.572 N	103° 18' 18.860 W
16,200.0	90.00	359.43	11,859.0	4,253.1	2,279.6	32° 5' 28.562 N	103° 18' 18.861 W
16,300.0	90.00	359.43	11,859.0	4,353.1	2,278.6	32° 5' 29.551 N	103° 18' 18.862 W
16,400.0	90.00	359.43	11,859.0	4,453.1	2,277.6	32° 5' 30.541 N	103° 18' 18.862 W
16,500.0	90.00	359.43	11,859.0	4,553.1	2,276.6	32° 5' 31.530 N	103° 18' 18.863 W
16,600.0	90.00	359.43	11,859.0	4,653.1	2,275.6	32° 5' 32.520 N	103° 18' 18.863 W
16,700.0	90.00	359.43	11,859.0	4,753.1	2,274.5	32° 5' 33.509 N	103° 18' 18.864 W
16,800.0	90.00	359.43	11,859.0	4,853.1	2,273.5	32° 5' 34.499 N	103° 18' 18.864 W
16,900.0	90.00	359.43	11,859.0	4,953.1	2,272.5	32° 5' 35.488 N	103° 18' 18.865 W
17,000.0	90.00	359.43	11,859.0	5,053.1	2,271.5	32° 5' 36.478 N	103° 18' 18.866 W
17,100.0	90.00	359.43	11,859.0	5,153.1	2,270.5	32° 5' 37.467 N	103° 18' 18.866 W
17,200.0	90.00	359.43	11,859.0	5,253.1	2,269.5	32° 5' 38.457 N	103° 18' 18.867 W
17,227.0	90.00	359.43	11,859.0	5,280.1	2,269.3	32° 5' 38.724 N	103° 18' 18.867 W
Nan104 into NMN	M127450						
17,300.0	90.00	359.43	11,859.0	5,353.1	2,268.5	32° 5' 39.446 N	103° 18' 18.867 W
17,400.0	90.00	359.43	11,859.0	5,453.1	2,267.5	32° 5' 40.436 N	103° 18' 18.868 W
17,500.0	90.00	359.43	11,859.0	5,553.1	2,266.5	32° 5' 41.425 N	103° 18' 18.868 W
17,600.0	90.00	359.43	11,859.0	5,653.1	2,265.5	32° 5' 42.415 N	103° 18' 18.869 W
17,700.0	90.00	359.43	11,859.0	5,753.1	2,264.5	32° 5' 43.404 N	103° 18' 18.870 W

COMPASS 5000.15 Build 90

Lease Penetration Section Line Footages

Company:	Ameredev Operating, LLC.	Local Co-ordinate Reference:	Well Nandina 104H
Project:	NAN/GB	TVD Reference:	KB @ 3044.0usft
Site:	NAN/GB #5N	MD Reference:	KB @ 3044.0usft
Well:	Nandina 104H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	FTP100	Database:	EDM5000

Planned Survey

	MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
	17,800.0	90.00	359.43	11,859.0	5,853.0	2,263.5	32° 5' 44.394 N	103° 18' 18.870 W
	17,900.0	90.00	359.43	11,859.0	5,953.0	2,262.5	32° 5' 45.383 N	103° 18' 18.871 W
	18,000.0	90.00	359.43	11,859.0	6,053.0	2,261.5	32° 5' 46.373 N	103° 18' 18.871 W
	18,100.0	90.00	359.43	11,859.0	6,153.0	2,260.5	32° 5' 47.362 N	103° 18' 18.872 W
	18,200.0	90.00	359.43	11,859.0	6,253.0	2,259.5	32° 5' 48.352 N	103° 18' 18.872 W
	18,300.0	90.00	359.43	11,859.0	6,353.0	2,258.5	32° 5' 49.341 N	103° 18' 18.873 W
	18,400.0	90.00	359.43	11,859.0	6,453.0	2,257.5	32° 5' 50.331 N	103° 18' 18.874 W
	18,500.0	90.00	359.43	11,859.0	6,553.0	2,256.5	32° 5' 51.320 N	103° 18' 18.874 W
	18,600.0	90.00	359.43	11,859.0	6,653.0	2,255.5	32° 5' 52.310 N	103° 18' 18.875 W
	18,700.0	90.00	359.43	11,859.0	6,753.0	2,254.5	32° 5' 53.299 N	103° 18' 18.875 W
	18,800.0	90.00	359.43	11,859.0	6,853.0	2,253.5	32° 5' 54.289 N	103° 18' 18.876 W
	18,900.0	90.00	359.43	11,859.0	6,953.0	2,252.5	32° 5' 55.278 N	103° 18' 18.876 W
	19,000.0	90.00	359.43	11,859.0	7,053.0	2,251.5	32° 5' 56.268 N	103° 18' 18.877 W
	19,100.0	90.00	359.43	11,859.0	7,153.0	2,250.5	32° 5' 57.258 N	103° 18' 18.878 W
	19,200.0	90.00	359.43	11,859.0	7,253.0	2,249.5	32° 5' 58.247 N	103° 18' 18.878 W
	19,300.0	90.00	359.43	11,859.0	7,353.0	2,248.5	32° 5' 59.237 N	103° 18' 18.879 W
	19,400.0	90.00	359.43	11,859.0	7,453.0	2,247.5	32° 6' 0.226 N	103° 18' 18.879 W
	19,500.0	90.00	359.43	11,859.0	7,553.0	2,246.5	32° 6' 1.216 N	103° 18' 18.880 W
	19,600.0	90.00	359.43	11,859.0	7,653.0	2,245.5	32° 6' 2.205 N	103° 18' 18.880 W
	19,700.0	90.00	359.43	11,859.0	7,753.0	2,244.5	32° 6' 3.195 N	103° 18' 18.881 W
	19,800.0	90.00	359.43	11,859.0	7,852.9	2,243.5	32° 6' 4.184 N	103° 18' 18.882 W
	19,900.0	90.00	359.43	11,859.0	7,952.9	2,242.5	32° 6' 5.174 N	103° 18' 18.882 W
	20,000.0	90.00	359.43	11,859.0	8,052.9	2,241.5	32° 6' 6.163 N	103° 18' 18.883 W
	20,100.0	90.00	359.43	11,859.0	8,152.9	2,240.5	32° 6' 7.153 N	103° 18' 18.883 W
	20,200.0	90.00	359.43	11,859.0	8,252.9	2,239.5	32° 6' 8.142 N	103° 18' 18.884 W
	20,300.0	90.00	359.43	11,859.0	8,352.9	2,238.5	32° 6' 9.132 N	103° 18' 18.884 W
	20,400.0	90.00	359.43	11,859.0	8,452.9	2,237.4	32° 6' 10.121 N	103° 18' 18.885 W
	20,500.0	90.00	359.43	11,859.0	8,552.9	2,236.4	32° 6' 11.111 N	103° 18' 18.886 W
	20,600.0	90.00	359.43	11,859.0	8,652.9	2,235.4	32° 6' 12.100 N	103° 18' 18.886 W
1	20,700.0	90.00	359.43	11,859.0	8,752.9	2,234.4	32° 6' 13.090 N	103° 18' 18.887 W
	20,800.0	90.00	359.43	11,859.0	8,852.9	2,233.4	32° 6' 14.079 N	103° 18' 18.887 W
	20,900.0	90.00	359.43	11,859.0	8,952.9	2,232.4	32° 6' 15.069 N	103° 18' 18.888 W
	21,000.0	90.00	359.43	11,859.0	9,052.9	2,231.4	32° 6' 16.058 N	103° 18' 18.888 W
	21,100.0	90.00	359.43	11,859.0	9,152.9	2,230.4	32° 6' 17.048 N	103° 18' 18.889 W
	21,200.0	90.00	359.43	11,859.0	9,252.9	2,229.4	32° 6' 18.037 N	103° 18' 18.890 W
	21,300.0	90.00	359.43	11,859.0	9,352.9	2,228.4	32° 6' 19.027 N	103° 18' 18.890 W
	21,400.0	90.00	359.43	11,859.0	9,452.9	2,227.4	32° 6' 20.016 N	103° 18' 18.891 W
	21,500.0	90.00	359.43	11,859.0	9,552.9	2,226.4	32° 6' 21.006 N	103° 18' 18.891 W
	21,600.0	90.00	359.43	11,859.0	9,652.9	2,225.4	32° 6' 21.995 N	103° 18' 18.892 W
	21,700.0	90.00	359.43	11,859.0	9,752.9	2,224.4	32° 6' 22.985 N	103° 18' 18.892 W
	21,800.0	90.00	359.43	11,859.0	9,852.8	2,223.4	32° 6' 23.974 N	103° 18' 18.893 W
	21,900.0	90.00	359.43	11,859.0	9,952.8	2,222.4	32° 6' 24.964 N	103° 18' 18.894 W
	22,000.0	90.00	359.43	11,859.0	10,052.8	2,221.4	32° 6' 25.953 N	103° 18' 18.894 W
	22,100.0	90.00	359.43	11,859.0	10,152.8	2,220.4	32° 6' 26.943 N	103° 18' 18.895 W
	22,200.0	90.00	359.43	11,859.0	10,252.8	2,219.4	32° 6' 27.932 N	103° 18' 18.895 W

COMPASS 5000.15 Build 90

Lease Penetration Section Line Footages

Company: Project: Site: Well: Wellbore:	Amered NAN/GE NAN/GE Nandina Wellbord	3 #5N a 104H	С.	TVD Refere MD Refere North Refe	nce:	Well Nandina 1 KB @ 3044.0us KB @ 3044.0us Grid Minimum Curva	ft ift	
Design: Planned Survey	FTP100			Database:		EDM5000	<u></u>	
MD (usft)		Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
22,3	300.0	90.00	359.43	11,859.0	10,352.8	2,218.4	32° 6' 28.922 N	103° 18' 18.896 V
22,4	0.00	90.00	359.43	11,859.0	10,452.8	2,217.4	32° 6' 29.911 N	103° 18' 18.896 V
Nan104 22,4	LTP 163.0	90.00	359.43	11,859.0	10,515.8	2,216.8	32° 6' 30.534 N	103° 18' 18.897 V
Nan104	RHI							

Plan Annotations				
Measu	red Vertical	Local C	oordinates	
Dep	h Depth	+N/-S	+E/-W	
(usf		(usft)	(usft)	Comment
17,	227.0 11,859	0 5,050.1	-58.7	Nan104 into NMNM127450

1

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

• 13-5/8" 5M Annular

AMEREDE

- 13-5/8" 10M Upper Pipe Rams
 - 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
· ··· · · · · · · · · · · · · · · · ·				

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- Deserved data (CIDD, CIDD, Dit Calin, and Tima)

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure

*FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Pressure Control Plan

Pressure Control Equipment

- Following setting of 13-3/8" Surface Casing Ameredev will install 13-5/8 MB4 Multi Bowl Casing Head by welding on a 13-5/8 SOW x 13-5/8" 5M in combination with 13-5/8 5M x 13-5/8 10M B-Sec to Land Intm #1 and a 13-5/8 10M x 13-5/8 10M shouldered to land C-Sec to Land Intm #2 (Installation procedure witnessed and verified by a manufacturer's representative).
- Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Ameredev will install a SM System Blowout Preventer (BOPE) with a 5M Annular Preventer and related equipment (BOPE). Full testing will be performed utilizing a full isolation test plug and limited to 5,000 psi MOP of MB4 Multi Bowl Casing Head. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 50% of approved working pressure (2,500 psi). Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Setting of 9-5/8" Intermediate will be done by landing a wellhead hanger in the 13-5/8" 5M Bowl, Cementing and setting Well Head Packing seals and testing same. (Installation procedure witnessed and verified by a manufacturer's representative) Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- Full testing will be performed utilizing a full isolation test plug to 10,000 psi MOP of MB4 Multi Bowl B-Section. Pressure will be held for 10 min or until provisions of test are met on all valves and rams. The 5M Annular Preventer will be tested to 100% of approved working pressure (5,000 psi).
- Before drilling >20ft of new formation under the 9-5/8" Casing Shoe a pressure integrity test of the Casing Shoe will be performed to minimum of the MWE anticipated to control formation pressure to the next casing depth.
- Following setting of 5-1/2" Production Casing and adequate WOC time Ameredev will break 10M System Blowout Preventer (BOP) from 10M DOL-2 Casing Head, install annulus casing slips and test same (Installation procedure witnessed and verified by a manufacturer's representative) and install 11" 10M x 5-1/8" 15M Tubing Head (Installation procedure witnessed and verified by a manufacturer's representative). Ameredev will test head to 70% casing design and install Dry Hole cap with needle valve and pressure gauge to monitor well awaiting completion.

Pressure Control Plan

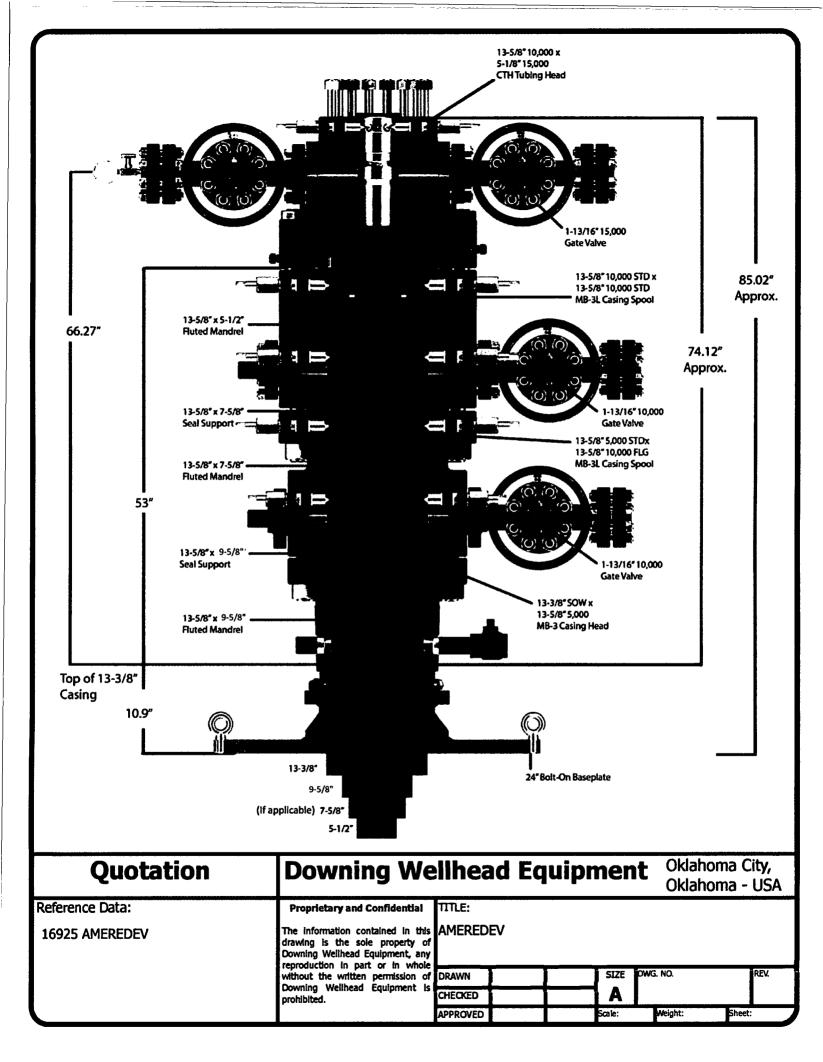
- Slow pump speeds will be taken daily by each crew and recorded on Daily Drilling Report after mudding up.
- A choke manifold and accumulator with floor and remote operating stations will be functional and in place after installation of BOPE, as well as full functioning mud gas separator.
- Weekly BOPE pit level drills will be conducted by each crew and recorded on Daily Drilling Report.
- BOP will be fully operated when out of hole and will be documented on the daily drilling log.
- All B.O.P.s and associated equipment will be tested in accordance with Onshore Order #2
- All B.O.P. testing will be done by an independent service company.
- The B.O.P. will be tested within 21 days of the original test if drilling takes more time than planned.
- Ameredev requests a variance to connect the B.O.P. choke outlet to the choke manifold using a co-flex hose with a 10,000 psi working pressure that has been tested to 15,000psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. (certifications will be sent to Carlsbad BLM Office prior to install)
- Ameredev requests a variance to install a 5M Annular Preventer on the 10M System to drill the Production Hole below the 9-5/8" Intermediate Section. 5M Annular will be tested to 100% working pressure (5,000 psi). A full well control procedure will be included to isolate well bore.

Ameredev Drilling Plan: 3 String with 4 String Contingency

- Contingency Plan If Losses Exceed 50% in Intermediate Interval
 - We will utilize a MB4 wellhead that will enable us to convert a 3 string design to a 4 string design. (Schematic Attached)
 - We will displace well with FW and drill or condition to run 9-5/8" Casing at the Lamar Limestone, we will utilize DV Tool w/ ACP @ the Tansill to Isolate Capitan Reef and cement to surface.
 - Casing will be tested to 1500 psi or .22 psi/ft whichever is greater for 30 minutes with <10% leak off, but will not exceed 70% of the burst rating per Onshore Order No. 2.
- 7.625 Casing will be Additional 4th String
 - Drill remaining hole section to 10,670'
 - o Run 7.625 29.7# HCL80 FJM Casing

4-String Contingency Wellbore Schematic

Well:	(Well Name)	Co. Well ID:	XXXXXX
SHL:	(SHL)	AFE No.:	xxxx-xxx
BHL:	(BHL)	API No.:	XXXXXXXXXXX
	Lea, NM	GL:	(Elevation)'
Wellhead:	A - 13-5/8" 10M x 13-5/8" SOW	Field:	Delaware
	B - 13-5/8" 10M x 13-5/8" 10M	Objective:	Wolfcamp B
	C - 13-5/8" 10M x 13-5/8" 10M	TVD:	(TVD)'
	Tubing Spool - 5-1/8" 15M x 13-3/8" 10M	MD:	(MD)'
Xmas Tree	: 2-9/16" 10M	Rig:	TBD KB 27'
Tubing:	2-7/8" L-80 6.5# 8rd EUE	E-Mail:	Wellsite2@ameredev.com


Hole Size	Formation Tops	Logs	Cement	Mud Weight
17.5"	Rustler 125' below 13.375'' 54.5# J-55 BTC Rustler		TOC 0' 100% Excess	8.4-8.6 ppg WBM
	Salado DV Tool with ACP At Tansill		TOC 0' 50% Excess	sh Water
12.25"	Tansill Capitan Reef Lamar 50' below 9.625" 40# L-80HC BTC		TOC 0' 50% Excess	8.3-10.2 Fresh Water
8.75"	Bell Canyon Brushy Canyon Bone Spring Lime First Bone Spring Second Bone Spring Third Bone Spring Upper 125' below 7.625'' 29.7# L-80HC FJM		TOC 0' 25% Excess	8.5-9.4 Diesel Brine Emulsion
6.75" 12° Build @ KOP	Third Bone Spring Wolfcamp Wolfcamp B (If Applicable) 5.5" 20# P-110CYHP TMK UP SF TORQ (MD) Target Wolfcamp B TVD // MD		TOC 0' 25% Excess	10.5-14 ppg OBM

****EXAMPLE ONLY - NOT FOR CONSTRUCTION****

Casing Specifications						
Segment Hole ID Depth OD Weight Gra				Grade	Coupling	
Surface	17.5	1,888'	13.375	54.5	J-55	BTC
Int #1	12.25	5,013'	9.625	40	HCL-80	BTC
Int #2	8.75	11,147'	7.625	29.7	HCL-80	FJM
Prod Segment A	6.75	11,147'	5.5	20	CYHP-110	TMK UPSF
Prod Segment B	6.75	22,496'	5.5	20	CYHP-110	TMK UPSF

Contingency Casing Design and Safety Factor Check

Check Surface CasingOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi14.388539091,1302,73014.388539091,1302,730Safety Factors1.568.298.831.150.91Check Int #1 CasingOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi10.625916104242305750Check Int #2 CasingOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi0.814.575.201.410.95Check Int #2 CasingOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi7.62594055867009460Safety Factors0.562.841.961.101.24Check Prod Casing, Segment AOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi5.7777286551278014360Safety Factors0.493.112.791.771.89Check Prod Casing, Segment BOD CplgBodyJointCollapseBurst <trb< th=""><th colspan="7"></th></trb<>							
inches1000 lbs1000 lbspsipsi14.388539091,1302,73014.388539091,1302,730Safety Factors1.568.298.831.150.91Check Int #1 CasingOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi10.625916104242305750Safety Factors0.814.575.201.410.95Check Int #2 Casing0D CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi7.62594055867009460Safety Factors0.562.841.961.101.24OD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi5.7777286551278014360Safety Factors0.493.112.791.771.89OD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi5.7777286551278014360Safety Factors0.493.112.791.771.89Safety Factors0.4980dyJointCollapseBurstinch		Chec	k Surface (Casing			
14.38 853 909 1,130 2,730 Safety Factors 1.56 8.29 8.83 1.15 0.91 Check Int #1 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 10.625 916 1042 4230 5750 Check Int #2 Casing 0.81 4.57 5.20 1.41 0.95 Check Int #2 Casing 0D Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 7.625 940 558 6700 9460 Safety Factors 0.56 2.84 1.96 1.10 1.24 Check Prod Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777	OD Cplg	Body	Joint	Collapse	Burst		
Safety Factors 1.56 8.29 8.83 1.15 0.91 Check Int #1 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 10.625 916 1042 4230 5750 Safety Factors 0.81 4.57 5.20 1.41 0.95 Check Int #2 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 7.625 940 558 6700 9460 Safety Factors 0.56 2.84 1.96 1.10 1.24 Check Prod Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 GD Cplg </td <td>inches</td> <td>1000 lbs</td> <td>1000 lbs</td> <td>psi</td> <td>psi</td>	inches	1000 lbs	1000 lbs	psi	psi		
1.56 8.29 8.83 1.15 0.91 Check Int #1 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 10.625 916 1042 4230 5750 Safety Factors 0.81 4.57 5.20 1.41 0.95 Check Int #2 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 7.625 940 558 6700 9460 Safety Factors 0.56 2.84 1.96 1.10 1.24 Check Prod Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors 0D Cplg	14.38	853	909	1,130	2,730		
Check Int #1 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 10.625 916 1042 4230 5750 Safety Factors 0.81 4.57 5.20 1.41 0.95 Check Int #2 Casing OD Cplg Body Joint Collapse Burst 0.81 4.57 5.20 1.41 0.95 Check Int #2 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 7.625 940 558 6700 9460 Safety Factors 0.56 2.84 1.96 1.10 1.24 Check Prod Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 <td></td> <td>S</td> <td>afety Facto</td> <td>ors</td> <td></td>		S	afety Facto	ors			
OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 10.625 916 1042 4230 5750 Safety Factors 0.81 4.57 5.20 1.41 0.95 Check Int #2 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 7.625 940 558 6700 9460 Safety Factors 0.56 2.84 1.96 1.10 1.24 Check Prod Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors 0.49 3.11 2.79 1.77 1.89 OD Cplg Body Joint Collaps	1.56	8.29	8.83	1.15	0.91		
inches 1000 lbs 1000 lbs psi psi 10.625 916 1042 4230 5750 Safety Factors 0.81 4.57 5.20 1.41 0.95 Check Int #2 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 7.625 940 558 6700 9460 Safety Factors 0.56 2.84 1.96 1.10 1.24 Check Prot Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors 0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B OD Cplg Body Joint Collapse Burst inches		Che	ck Int #1 C	asing			
10.625 916 1042 4230 5750 Safety Factors Safety Factors 0.81 4.57 5.20 1.41 0.95 Check Int #2 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 7.625 940 558 6700 9460 Safety Factors 0.56 2.84 1.96 1.10 1.24 Check Prod Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors 0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi <th colspase<="" t<="" td=""><td>OD Cplg</td><td>Body</td><td>Joint</td><td>Collapse</td><td>Burst</td></th>	<td>OD Cplg</td> <td>Body</td> <td>Joint</td> <td>Collapse</td> <td>Burst</td>	OD Cplg	Body	Joint	Collapse	Burst	
Safety Factors O.81 4.57 5.20 1.41 0.95 Check Int #2 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 7.625 940 558 6700 9460 Safety Factors 0.56 2.84 1.96 1.10 1.24 Check Prot Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Check Prot Casing, Segment B OD Cplg Body Joint Collapse Burst 0.49 3.11 2.79 1.77 1.89 Check Prot Casing, Segment B OD Cplg Body Joint Collapse	inches	1000 lbs	1000 lbs	psi	psi		
0.81 4.57 5.20 1.41 0.95 Check Int #2 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 7.625 940 558 6700 9460 Safety Factors 0.56 2.84 1.96 1.10 1.24 Check Prod Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors 0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs	10.625	916	1042	4230	5750		
Check Int #2 Casing OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 7.625 940 558 6700 9460 Safety Factors 0.56 2.84 1.96 1.10 1.24 Check Prot Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Check Prot Casing, Segment B OD Cplg Body Joint Collapse Burst 0.49 3.11 2.79 1.77 1.89 Check Prot Casing, Segment B OD Cplg Body Joint Collapse Burst inches 1000 lbs		S	afety Facto	ors			
OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 7.625 940 558 6700 9460 Safety Factors 0.56 2.84 1.96 1.10 1.24 Check Prod Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Sufety Factors 0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B OD Cplg Body Joint Collapse Burst 0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655	0.81	4.57	5.20	1.41	0.95		
inches 1000 lbs 1000 lbs psi psi 7.625 940 558 6700 9460 Safety Factors 0.56 2.84 1.96 1.10 1.24 Check Prot Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Check Prot Casing, Segment B 0.49 3.11 2.79 1.77 1.89 Check Prot Casing, Segment B OD Cplg Body Joint Collapse Burst 0.49 3.11 2.79 1.77 1.89 Check Prot Casing, Segment B OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors		Che	ck Int #2 C	asing			
7.625 940 558 6700 9460 Safety Factors 0.56 2.84 1.96 1.10 1.24 Check Prod Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors 0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B 0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors Safety Factors Safety Factors	OD Cplg	Body	Joint	Collapse	Burst		
Safety Factors 0.56 2.84 1.96 1.10 1.24 Check Prod Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors 0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi ST777 728 655 12780 14360 Safety Factors OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors	inches	1000 lbs	1000 lbs	psi	psi		
0.56 2.84 1.96 1.10 1.24 Check Prod Casing, Segment A OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors 0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B OD Cplg Body Joint Collapse Burst 0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors	7.625	940	558	6700	9460		
Check Prod Casing, Segment AOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi5.7777286551278014360Safety Factors0.493.112.791.771.89Check Prod Casing, Segment BOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi5.7777286551278014360Safety Factors		S	afety Facto	ors			
OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors 0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors Safety Factors Safety Factors Safety Factors	0.56	2.84	1.96	1.10	1.24		
inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors 0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors Safety Factors Safety Factors Safety Factors							
5.777 728 655 12780 14360 Safety Factors 0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors	OD Cplg	Body	Joint	Collapse	Burst		
Safety Factors 0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors	inches	1000 lbs	1000 lbs	psi	psi		
0.49 3.11 2.79 1.77 1.89 Check Prod Casing, Segment B OD Cplg Body Joint Collapse Burst inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors	5.777	728	655	12780	14360		
Check Prod Casing, Segment BOD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi5.7777286551278014360Safety Factors	Safety Factors						
OD CplgBodyJointCollapseBurstinches1000 lbs1000 lbspsipsi5.7777286551278014360Safety Factors	0.49	3.11	2.79	1.77	1.89		
inches 1000 lbs 1000 lbs psi psi 5.777 728 655 12780 14360 Safety Factors	Check Prod Casing, Segment B						
5.777 728 655 12780 14360 Safety Factors	OD Cplg	Body	Joint	Collapse	Burst		
Safety Factors		1000 lbs	1000 lbs	psi			
	5.777				14360		
0.49 63.53 57.16 1.68 1.89							
	0.49	63.53	57.16	1.68	1.89		

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

APD ID: 10400037359

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Type: OIL WELL

Submission Date: 02/06/2019

PWD disturbance (acres):

Well Number: 104H Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

I ask detection evetem attachment.

Operator Name: AMEREDEV OPERATING LLC Well Name: NANDINA FED COM 25 36 31

Well Number: 104H

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Number: 104H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Injection well name:

Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Number: 104H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

BUREAU OF LAND MANAGEMENT

APD ID: 10400037359

Operator Name: AMEREDEV OPERATING LLC

Well Name: NANDINA FED COM 25 36 31

Well Type: OIL WELL

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Submission Date: 02/06/2019

Well Number: 104H Well Work Type: Drill

Show Final Text

10/11/2019

Bond Info Data Report