OCD UNITED STATE OCT 2 4 2019 OCT 2 4 2019 OCT 2 4 2019 DEPARTMENT OF THE BUREAU OF LAND MAN RECAPPLICATION FOR PERMIT TO I	FORM APPROVED OMB No. 1004-0137 Expires: January 31, 20	7
OCT 2 ENEDDEPARTMENT OF THE BUREAU OF LAND MAN	INTERIOR 5. Lease Serial No. AGEMENT NMLC0063798	
REAPPLICATION FOR PERMIT TO I	ORILL OR REENTER 6. If Indian, Allotee or Tribe Nar	ne
a. Type of work:	REENTER 7. If Unit or CA Agreement, Name	ne and No.
	Other 8. Lease Name and Well No. Single Zone Multiple Zone BLUE KRAIT 23-14 FED 37H 37H 316 729 5	\sum
Name of Operator DEVON ENERGY PRODUCTION COMPANY LP	9. APJ-Well No. 1 & -825 -4-64	
a. Address 333 West Sheridan Avenue Oklahoma City OK 73102	3b. Phone No. (include area code) 10 Field and Pool, or Explorator (800)583-3866 BRINNINSTOOL / WOLFCAN	
. Location of Well (Report location clearly and in accordance At surface SESE / 200 FSL / 1174 FEL / LAT 32.1963 At proposed prod. zone NWNE / 20 FNL / 2317 FEL / L	99 / LONG -103.538382 SEC 23 / T245 / R33E / NMP	rvey or Are
4. Distance in miles and direction from nearest town or post of	fice* 12. County or Parish 13 LEA NI	3. State Vi
5. Distance from proposed* 200 feet location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of acres in lease 17. Spacing, Unit dedicated to this well 320	
B. Distance from proposed location* to nearest well, drilling, completed, 111 feet applied for, on this lease, ft.	19. Proposed Depth 20/BLM/BIA Bond No. in file 12475 feet / 22781 feet FED: CO1104	
1. Elevations (Show whether DF, KDB, RT, GL, etc.) 557 feet	22. Approximate date work will start* 23. Estimated duration 08/25/2019 45 days	
he following, completed in accordance with the requirements of applicable)	24. Attachments of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CI	FR 3162.3-3
Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest Syst SUPO must be filed with the appropriate Forest Service Office		
5. Signature Electronic Submission)	BLM. Date Name (Printed/Typed) Date Rebecca Deal / Ph: (405)552-6556 01/28/2019	
itle (Regulatory Compliance Professional		
pproved by (Signature) Electronic Submission)	Name (Printed/Typed) Date Cody Layton / Ph: (575)234-5959 10/18/2019	9
itle (/	Office CARLSBAD	
pplication approval does not warrant or certify that the applica plicant to conduct operations thereon. onditions of approval, if any, are attached.	nt holds legal or equitable title to those rights in the subject lease which would e	ntitle the
tle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, the United States any false, fictitious or fraudulent statements	nake it a crime for any person knowingly and willfully to make to any departme or representations as to any matter within its jurisdiction.	nt or agenc
ECP Rec 10/23/19	WERN WITH CONDITIONS KEEP 10/26/19	
	VED WITH CONDITIONS	P.G.I.

A 10/18/2019

ŀ

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Rebecca Deal		Signed on: 01/28/2019
Title: Regulatory Com	pliance Professional	
Street Address: 333 V	N. Sheridan Ave	
City: OKC	State: OK	Zip: 73102
Phone: (405)552-6556	3	
Email address: blake.	richardson@dvn.com	

Field Representative

Representative Name: Blake RichardsonStreet Address: 333 W SHERIDAN AVECity: OKCState: OKPhone: (405)552-6556Email address: blake.richardson@dvn.com

Zip: 73102

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

1.

APD ID: 10400038545	Submission Date: 01/28/2019	-
Operator Name: DEVON ENERGY PRODUCTION C	OMPANY LP	
Well Name: BLUE KRAIT 23-14 FED	Well Number: 37H	Show Final Text
Well Type: OIL WELL	Well Work Type: Drill	

Section 1 - General

APD ID:	10400028545		N Submission Da	te. 01/00/0010
APU ID:	10400038545	Tie to previous NOS?	N Submission Da	te: 01/28/2019
BLM Office	e: CARLSBAD	User: Rebecca Deal	Title: Regulatory Com	pliance
Federal/Inc	dian APD: FED	Is the first lease penetra	Professional ted for production Federal or Ind	ian? FED
Lease nun	nber: NMLC0063798	Lease Acres: 2480		
Surface ad	cess agreement in place?	Allotted?	Reservation:	
Agreemen	t in place? NO	Federal or Indian agree	nent:	
Agreemen	t number:			
Agreemen	t name:			
Keep appl	ication confidential? YES		·	
Permitting	Agent? NO	APD Operator: DEVON	ENERGY PRODUCTION COMPAN	Y LP
Operator l	etter of designation:			

Zip: 73102

Operator Info

Operator Organization Name: DEVON ENERGY PRODUCTION COMPANY LP

Operator Address: 333 West Sheridan Avenue

Operator PO Box:

Operator City: Oklahoma City State: OK

Operator Phone: (800)583-3866

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO	Master Development Plan name):
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name:	
Well Name: BLUE KRAIT 23-14 FED	Well Number: 37H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: BRINNINSTOOL	Pool Name: WOLFCAMP
table second and a second s		

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Page 1 of 3

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Is the proposed well in a Helium production	n area? N Use Existin	g Well Pad? NO	New surface disturbance?
Type of Well Pad: MULTIPLE WELL		ell Pad Name: BLUE	Number: 7
Well Class: HORIZONTAL	KRAIT 23 F Number of	ED WELLPAD Legs: 1	
Well Work Type: Drill			
Well Type: OIL WELL			
Describe Well Type:			
Well sub-Type: INFILL			
Describe sub-type:			
Distance to town: Dist	ance to nearest well: 1	11 FT Distand	ce to lease line: 200 FT
Reservoir well spacing assigned acres Mea	surement: 320 Acres		
Well plat: BLUE_KRAIT_23_14_FED_37H	I_C_102_20190128101	517.pdf	
Well work start Date: 08/25/2019	Duration: 4	5 DAYS	
Section 3 - Well Location Tab	le		

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

,

Survey number:

Vertical Datum: NAVD88

Reference Datum:

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL	200	FSL	117	FEL	24S	33E	23	Aliquot	32.19639		LEA			F	NMLC0	355	0	0	
Leg			4					SESE	9	103.5383		MEXI			063798	7			
#1										82		co	co						
KOP	50	FSL	231	FEL	24S	33E	23	Aliquot	32.19600	-	LEA	NEW	NEW	F	NMLCO	-	119	119	
Leg			7					SWSE	9	103.5420		MEXI			063798	834	78	02	
#1										8		co	co			5			
PPP	100	FSL	231	FEL	24S	33E	23	Aliquot	32.19614	-	LEA	NEW	NEW	F	NMLCO	-	122	121	
Leg			7					SWSE	7	103.5420		MEXI			063798	857	20	36	
#1										8		co	co			9			

Page 2 of 3

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

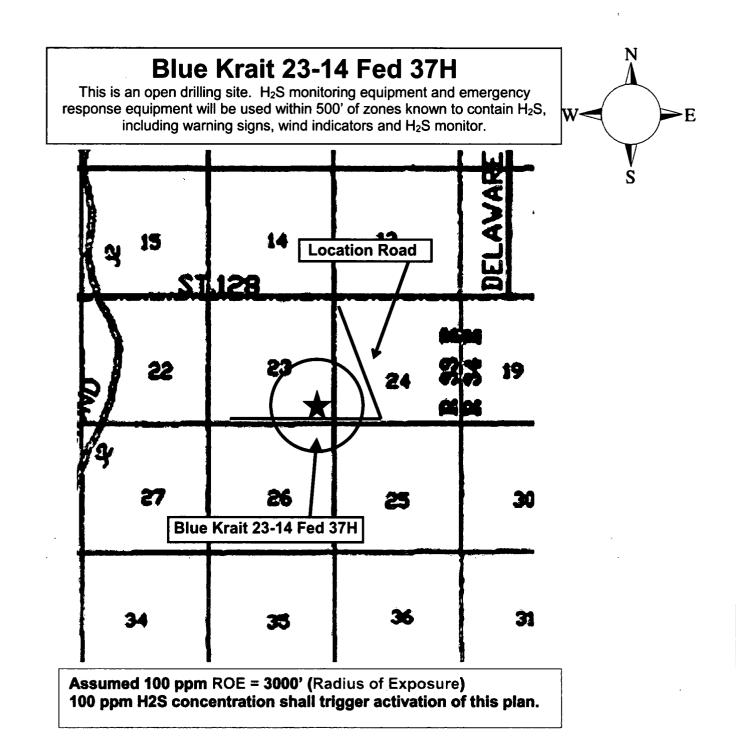
١

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT	Will this well produce from this lease?
EXIT Leg #1	100	FNL	231 7	FEL	24S	33E	14	Aliquot NWNE	32.22458 3	- 103.5420 95	LEA	NEW MEXI CO	NEW MEXI CO		NMLC0 063798		227 01	124 75	
BHL Leg #1	20	FNL	231 7	FEL	24S	33E	14	Aliquot NWNE	32.22480 3	- 103.5420 95		NEW MEXI CO			NMLC0 063798	1	227 81	124 75	

Devon Energy Center 333 West Sheridan Avenue Oklahoma City, Oklahoma 73102-5015


Hydrogen Sulfide (H₂S) Contingency Plan

For

Blue Krait 23-14 Fed 37H

Sec-23 T-24S R-33E 200' FSL & 1174' FEL LAT. = 32.196399' N (NAD83) LONG = 103.538382' W

Lea County NM

Escape

Crews shall escape upwind of escaping gas in the event of an emergency release of gas. Escape can be facilitated from the location entrance road. Crews should then block the entrance to the location from the lease road so as not to allow anyone traversing into a hazardous area. The blockade should be at a safe distance outside of the ROE. <u>There are no homes or buildings in or near the ROE</u>.

Assumed 100 ppm ROE = 3000'

100 ppm H₂S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- Have received training in the
 - Detection of H₂S, and
 - Measures for protection against the gas,
 - Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration						
Hydrogen Sulfide	H ₂ S	1.189 Air = 1	10 ppm	100 ppm/hr	600 ppm						
Sulfur Dioxide	SO ₂	2.21 Air = 1	2 ppm	N/A	1000 ppm						

Characteristics of H₂S and SO₂

Contacting Authorities

Devon Energy Corp. personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available. The following call list of essential and potential responders has been prepared for use during a release. Devon Energy Corp. Company response must be in coordination with the State of New Mexico's 'Hazardous Materials Emergency Response Plan' (HMER)

Hydrogen Sulfide Drilling Operation Plan

I. HYDROGEN SULFIDE (H₂S) TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- 1. The hazards and characteristics of hydrogen sulfide (H₂S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H₂S metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- 3. The contents and requirements of the H₂S Drilling Operations Plan and Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H_2S zone (within 3 days or 500 feet) and weekly H_2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H_2S Drilling Operations Plan and the Public Protection Plan.

II. HYDROGEN SULFIDE TRAINING

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H_2S .

1. Well Control Equipment

- A. Flare line
- B. Choke manifold Remotely Operated
- C. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- D. Auxiliary equipment may include if applicable: annular preventer and rotating head.
- E. Mud/Gas Separator

2. Protective equipment for essential personnel:

30-minute SCBA units located at briefing areas, as indicated on well site diagram, with escape units available in the top doghouse. As it may be difficult to communicate audibly while wearing these units, hand signals shall be utilized.

3. H₂S detection and monitoring equipment:

Portable H₂S monitors positioned on location for best coverage and response. These units have warning lights which activate when H₂S levels reach 10 ppm and audible sirens which activate at 15 ppm. Sensor locations:

- Bell nipple
 Possum Belly/Shale shaker
- Rig floor
- Choke manifold
- Cellar

Visual warning systems:

- A. Wind direction indicators as shown on well site diagram
- B. Caution/ Danger signs shall be posted on roads providing direct access to locations. Signs will be painted a high visibility yellow with black lettering of sufficient size to be reasonable distance from the immediate location. Bilingual signs will be used when appropriate.

4. Mud program:

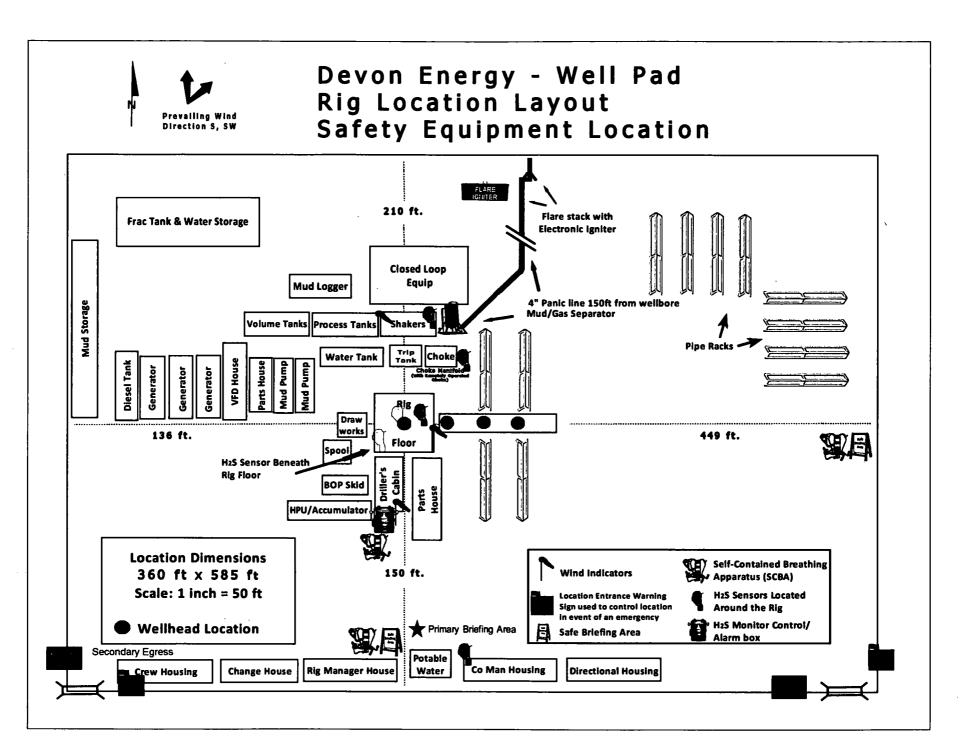
The mud program has been designed to minimize the volume of H₂S circulated to surface. Proper mud weight, safe drilling practices and the use of H₂S scavengers will minimize hazards when penetrating H₂S bearing zones.

5. Metallurgy:

- A. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold lines, and valves shall be H₂S trim.
- B. All elastomers used for packing and seals shall be H₂S trim.

6. Communication:

- A. Company personnel have/use cellular telephones in the field.
- B. Land line (telephone) communications at Office


7. Well testing:

- A. Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safety and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H₂S environment will use the closed chamber method of testing.
- B. There will be no drill stem testing.

	nergy Corp. Company Call List	
Drilling Su	ipervisor – Basin – Mark Kramer	405-823-479
EHS Prof	essional – Laura Wright	405-439-812
Agono	/ Call List	
Ayency		
Lea	Hobbs	
County	Lea County Communication Authority	393-398
(575)	State Police	392-558
	City Police	397-926
	Sheriff's Office	393-251
	Ambulance	91
	Fire Department	397-930
	LEPC (Local Emergency Planning Committee)	393-287
	NMOCD	393-616
	US Bureau of Land Management	393-361
Eddy	Carlsbad	
County	State Police	885-313
575)	City Police	885-211
	Sheriff's Office	887-755
	Ambulance	91
	Fire Department	885-312
	LEPC (Local Emergency Planning Committee)	887-379
	US Bureau of Land Management	887-654
	NM Emergency Response Commission (Santa Fe)	(505) 476-960
	24 HR	(505) 827-912
	National Emergency Response Center	(800) 424-880
	National Pollution Control Center: Direct	(703) 872-600
	For Oil Spills	(800) 280-711
	Emergency Services	(000)200 / / /
	Wild Well Control	(281) 784-470
	Cudd Pressure Control (915) 699-	(915) 563-335
	0139	
	Halliburton	(575) 746-275
	B. J. Services	(575) 746-356
Give	Native Air – Emergency Helicopter – Hobbs	(575) 392-642
GPS	Flight For Life - Lubbock, TX	(806) 743-991
osition:	Aerocare - Lubbock, TX	(806) 747-892
	Med Flight Air Amb - Albuquerque, NM	(575) 842-443
	Lifeguard Air Med Svc. Albuquerque, NM	(800) 222-122
	Poison Control (24/7)	(575) 272-311
	Oil & Gas Pipeline 24 Hour Service	(800) 364-436
	NOAA – Website - www.nhc.noaa.gov	

Prepared in conjunction with Dave Small

WCDSC Permian NM

Lea County (NAD83 New Mexico East) Sec 23-T24S-R33E Blue Krait 23-14 Fed 37H

Wellbore #1

Plan: Permit Plan 1

Standard Planning Report - Geographic

27 December, 2018

Database:	EDM r	5000.141_Pro	od US		Local Co-	ordinate Refe	rence:	Nell Blue Krait 2	3-14 Fed 37⊦	1
Company:		C Permian N			TVD Refe	rence:		RKB @ 3581.80	ft	
roject:	Lea Co	ounty (NAD83	New Mexico	East)	MD Refer	ence:		RKB @ 3581.80		
ite:	Sec 23	3-T24S-R33E			North Ref	erence:		Grid		
Vell:	Blue K	rait 23-14 Fed	1 37H		Survey Ca	alculation Met	hod:	Minimum Curvat	ure	
Vellbore:	Wellbo	ore #1			-					
)esign:	Permit	Plan 1								
Project	Lea Co	unty (NAD83	New Mexico I	East)				;		
		Plane 1983			System Da			an Sea Level		
Map System: Geo Datum:		erican Datum	1983		System Da	cum.	1410	an Sea Level		
Map Zone:	New Me	ico Eastern Z	one							
								(
Site	Sec 23	T24S-R33E								
Site Position:			Nor	thing:	446	,417.68 usft	Latitude:			32.22486
From:	Мар)		ting:	783	,057.71 usft	Longitude:			-103.55165
Position Uncert	•			Radius:		13-3/16 "	Grid Converg	ence:		0.42
	Dhua Ka		274							
Nell Nell Position	Blue Kra	ait 23-14 Fed		Northing:		436,093.12	Pustit Let	tude:		32,19639
	+E/-W			Easting:		787,239.71		gitude:		-103.53838
Position Uncert				Lasung. Wellhead Eleva	tion	101,200.11		und Level:		3,556.80
	amty		0.50 h	Menueao Eleva	iuon.		Gro	una Level:		
Wellbore	Wellbo	re #1								
Magnetics	Mo	del Name	Sam	ple Date	Declina	ation	Dip A	ngle	Field	Strength
				•	(°)		(*	-		nT)
		IGRF2015	5	12/26/2018		6.77		60.02	47,1	767.33612704
Design	Permit	Plan 1						<u> </u>		
Audit Notes:										
Version:			Pha	180:	PROTOTYPE	Tie	On Depth:	1	0.00	
Vertical Section			Depth From (TVD)	+N/-S			Dire	ection	
			. (ft)	·	(ft)	(ft)	((*)	
			0.00		0.00	0	.00	35	3.24	
Plan Survey To	-	Date	12/27/2018	1						
Depth Fro (ft)	m Depth (ft		(Wellbore)		Tool Name		Remarks			
	0.00 00 7	190 07 Deservit								
1	0.00 22,7	80.97 Permit	Plan 1 (Wellt	ore #1)	MWD+HDGN					
					OWSG MWD	+ HDGM				
					·····					
Plan Sections			Vertical			Dogleg	Build	Turn		
		Azimuth	Depth	+N/-S	+E/-W	Rate	Rate	Rate	TFO	
Measured	Inclination	(°)	(ft)	(ft)	(ft)	(°/100usft)	(°/100usft)	(°/100usft)	(°)	Target
Measured Depth	Inclination (°)		· · ·			· · · · · · · · · · · ·				
Measured	Inclination (°)			0.00	0.00	0.00	0.00	0.00	0.00	
Measured Depth		0.00	0.00			0.00	0.00	0.00	0.00	
Measured Depth (ft)	(°)		0.00 2,500.00		0.00					
Measured Depth (ft) 0.00 2,500.00	(°) , 0.00 0.00	0.00		0.00		1.00	1.00	0.00	262.52	
Measured Depth (ft) 0.00 2,500.00 3,281.46	(°) 0.00 0.00 7.81	0.00 0.00 262.52	2,500.00 3,279.04	0.00 -6.92	-52.76	1.00			262.52 0.00	
Measured Depth (ft) 0.00 2,500.00 3,281.46 11,107.74	(°) 0.00 0.00 7.81 7.81	0.00 0.00 262.52 262.52	2,500.00 3,279.04 11,032.64	0.00 -6.92 -145.38	-52.76 1,107.83-	1.00 0.00	0.00	0.00	0.00	
Measured Depth (ft) 0.00 2,500.00 3,281.46 11,107.74 11,628.71	(°) 0.00 0.00 7.81 7.81 0.00	0.00 0.00 262.52 262.52 0.01	2,500.00 3,279.04 11,032.64 11,552.00	0.00 -6.92 -145.38 -150.00	-52.76 -1,107.83 -1,143.00	1.00 0.00 1.50	0.00 -1.50	0.00 0.00	0.00 180.00	
Measured Depth (ft) 0.00 2,500.00 3,281.46 11,107.74 11,628.71 11,978.75	(°) 0.00 7.81 7.81 0.00 0.00	0.00 0.00 262.52 262.52 0.01 0.01	2,500.00 3,279.04 11,032.64 11,552.00 11,902.04	0.00 -6.92 -145.38 -150.00 -150.00	-52.76 -1,107.83 -1,143.00 -1,143.00	1.00 0.00 1.50 0.00	0.00 -1.50 0.00	0.00 0.00 0.00	0.00 180.00 0.01	
Measured Depth (ft) 0.00 2,500.00 3,281.46 11,107.74 11,628.71	(°) 0.00 0.00 7.81 7.81 0.00	0.00 0.00 262.52 262.52 0.01	2,500.00 3,279.04 11,032.64 11,552.00	0.00 -6.92 -145.38 -150.00 -150.00 422.94	-52.76 -1,107.83 -1,143.00 -1,143.00 -1,147.47	1.00 0.00 1.50	0.00 -1.50	0.00 0.00	0.00 180.00 0.01 359.55	PBHL - Blue Krait 23 PBHL - Blue Krait 23

12/27/2018 11:10:55AM

.

COMPASS 5000.14 Build 85

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Blue Krait 23-14 Fed 37h
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3581.80ft
Project:	Lea County (NAD83 New Mexico East)	MD Reference:	RKB @ 3581.80ft
Site:	Sec 23-T24S-R33E	North Reference:	Grid
Well:	Blue Krait 23-14 Fed 37H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Desian:	Permit Plan 1		

Planned Survey

	Measured Depth (ft)	Inclination	Azimuth	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latituda	Longitude
		(°)	(°)						Latitude	
	0.00	0.00	0.00	0.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	100.00	0.00	0.00	100.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	200.00	0.00	0.00	200.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	300.00	0.00	0.00	300.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	400.00	0.00	0.00	400.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	500.00	0.00	0.00	500.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	600.00	0.00	0.00	600.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	700.00	0.00	0.00	700.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382 -103.538382
	800.00 900.00	0.00 0.00	0.00 0.00	800.00 900.00	0.00 0.00	0.00 0.00	436,093.12 436.093.12	787,239.71 787,239.71	32.196399 32.196399	-103.538382
	1,000.00	0.00	0.00	1,000.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	1,100.00	0.00	0.00	1,100.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	1,200.00	0.00	0.00	1,200.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	1,300.00	0.00	0.00	1,300.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	1,400.00	0.00	0.00	1,400.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	1,500.00	0.00	0.00	1,500.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	1,600.00	0.00	0.00	1,600.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	1,700.00	0.00	0.00	1,700.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	1,800.00	0.00	0.00	1,800.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	1,900.00	0.00	0.00	1,900.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	2,000.00	0.00	0.00	2.000.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	2,100.00	0.00	0.00	2,100.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	2,200.00	0.00	0.00	2,200.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	2,300.00	0.00	0.00	2,300.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	2,400.00	0.00	0.00	2,400.00	0.00	0.00	436,093.12	787,239.71	32.196399	-103.538382
	2,500.00	0.00	0.00	2,500.00	0.00	0.00	436,093.12	787,239.71	32,196399	-103.538382
	2,600.00	1.00	262.52	2,599.99	-0.11	-0.87	436,093.01	787,238.84	32.196398	-103.538385
	2,700.00	2.00	262.52	2,699.96	-0.45	-3.46	436,092.67	787,236.25	32.196397	-103.538393
	2,800.00	3.00	262.52	2,799.86	-1.02	-7.79	436,092.10	787 231.92	32.196396	-103.538407
	2,900.00	4.00	262.52	2,899.68	-1.82	-13.84	436,091.30	787,225.87	32.196394	-103.538427
	3,000.00	5.00	262.52	2,999.37	-2.84	-21.62	436,090.28	787,218.09	32.196391	-103.538452
	3,100.00	6.00	262.52	3,098.90	-4.08	-31.12	436,089.04	787,208.59	32.196388	-103.538483
	3,200.00	7.00	262.52	3,198.26	-5.56	-42.34	436,087.56	787,197.36	32.196384	-103.538519
	3,281.46	7.81	262.52	3,279.04	-6.92	-52.76	436,086.20	787,186.95	32.196381	-103.538553
	3,300.00	7.81	262.52	3,297.41	-7.25	-55.26	436,085.87	787,184.45	32.196380	-103.538561
	3,400.00	7.81	262.52	3,396.48	-9.02	-68.74	436,084.10	787,170.97	32.196375	-103.538604
	3,500.00	7.81	262.52	3,495.55	-10.79	-82.22	436,082.33	787,157.49	32.196371	-103.538648
	3,600.00	7.81	262.52	3,594.62	-12.56	-95.70	436,080.56	787,144.01	32.196366	-103.538692
	3,700.00	7.81	262.52	3,693.69	-14.33	-109.18	436,078.79	787,130.53	32.196361	-103.538735
	3,800.00	7.81	262.52	3,792.76	-16.10	-122.66	436,077.02	787,117.05	32.196357	-103.538779
	3,900.00	7.81	262.52	3,891.84	-17.87	-136.14	436,075.25	787,103.56	32.196352	-103.538823
1	4,000.00	7.81	262.52	3,990.91	-19.64	-149.62	436,073.48	787,090.08	32.196348	-103.538866
1	4,100.00	7.81	262.52	4,089.98	-21.40	-163.11	436,071.71	787,076.60	32.196343	-103.538910
	4,200.00	7.81	262.52	4,189.05	-23.17	-176.59	436,069.95	787,063.12	32.196338	-103.538953
	4,300.00	7.81	262.52	4,288.12	-24.94	-190.07	436,068.18	787,049.64	32.196334	-103.538997
	4,400.00	7.81	262.52	4,387.19	-26.71	-203.55	436,066.41	787,036.16	32.196329	-103.539041
	4,500.00	7.81	262.52	4,486.26	-28.48	-217.03	436,064.64	787,022.68	32.196325	-103.539084
	4,600.00	7.81	262.52	4,585.33	-30.25	-230.51	436,062.87	787,009.20	32.196320	-103.539128
1	4,700.00	7.81	262.52	4,684.41	-32.02	-243.99	436,061.10	786,995.72	32.196316	-103.539171
	4,800.00	7.81	262.52	4,783.48	-33.79	-257.47	436,059.33	786,982.23	32.196311	-103.539215
	4,900.00	7.81	262.52	4,882.55	-35.56	-270.95	436,057.56	786,968.75	32.196306	-103.539259
1	5,000.00	7.81	262.52	4,981.62	-37.33	-284.44	436,055.79	786,955.27	32.196302	-103.539302
	5,100.00	7.81	262.52	5,080.69	-39.10	-297.92	436,054.02	786,941.79	32.196297	-103.539346
	5,200.00	7.81	262.52	5,179.76	-40.87	-311.40	436,052.25	786,928.31	32.196293	-103.539390
L	5,300.00	7.81	262.52	5,278.83	-42.64	-324.88	436,050.48	786,914.83	32.196288	-103.539433

12/27/2018 11:10:55AM

COMPASS 5000.14 Build 85

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Blue Krait 23-14 Fed 37
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3581.80ft
Project:	Lea County (NAD83 New Mexico East)	MD Reference:	RKB @ 3581.80ft
Site:	Sec 23-T24S-R33E	North Reference:	Grid
Nell:	Blue Krait 23-14 Fed 37H	Survey Calculation Method:	Minimum Curvature
Nellbore:	Welibore #1		
Deslan:	Permit Plan 1		

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(ft)	(°)	(°)	(ft)	-110-5 (ft)	+EJ- VV (ft)	(usft)	(usft)	Latitude	Longitude
 5,400.00	7.81	262.52	5,377.91	-44.40	-338.36	436,048.72	786,901.35	32.196283	-103.539477
5,400.00	7.81	262.52 262.52	5,476.98	-44.40 -46.17	-336.36 -351.84	436,046.95	786,901.35	32.196279	-103.539477
5,600.00	7.81	262.52	5,576.05	-40.17	-365.32	436,045.18	786,874.39	32.196274	-103.539564
5,700.00	7.81	262.52	5,675.12	-49.71	-378.80	436,043.41	786,860.90	32.196270	-103.539608
5,800.00	7.81	262.52	5,774.19	-51.48	-378.80	436,041.64	786,847.42	32.196265	-103.539651
5,900.00	7.81	262.52	5,873.26	-51.46	-392.20	436,039.87	786,833.94	32.196260	-103.539695
6,000.00	7.81	262.52	5,972.33	-55.02	-419.25	436.038.10	786,820.46	32.196256	-103.539739
6,100.00	7.81	262.52	6.071.40	-56.79	-432.73	436,036.33	786,806.98	32.196251	-103.539782
6,200.00	7.81	262.52	6,170.48	-58.56	-446.21	436,034.56	786,793.50	32.196247	-103.539826
6,300.00	7.81	262.52	6,269.55	-56.50	-459.69	436,032.79	786,780.02	32.196242	-103.539869
6,400.00	7.81	262.52	6,368.62	-62.10	-473.17	436,031.02	786,766.54	32.196238	-103.539913
6,500.00	7.81	262.52	6,467.69	-63.87	-486.65	436,029.25	786,753.06	32.196233	-103.539957
6,600.00	7.81	262.52	6,566.76	-65.63	-488.85	436,029.23	786,739.57	32.196228	-103.540000
6,700.00	7.81	262.52	6,665.83	-67.40	-500.13	436,025.72	786,726.09	32.196224	-103.540044
			-		-513.62		786,712.61		-103.540044
6,800.00 6,900.00	7.81 7.81	262.52 262.52	6,764.90 6,863.98	-69.17 -70.94	-527.10 -540.58	436,023.95 436,022.18	786,699.13	32.196219 32.196215	-103.540088
6,900.00 7,000.00	7.81 7.81	262.52 262.52	-	-70.94 -72.71	-540.58 -554.06	436,022.18 436,020.41	786,699.13	32.196215	-103.540131
		262.52	6,963.05		-554.08 -567.54		786.672.17	32.196205	-103.540175
7,100.00	7.81	262.52	7,062.12 7,161.19	-74.48	-567.54 -581.02	436,018.64		32.196205	-103.540218
7,200.00	7.81		•	-76.25	-581.02 -594.50	436,016.87	786,658.69	32.196196	-103.540262 -103.540306
7,300.00	7.81	262.52	7,260.26	-78.02		436,015.10	786,645.21		
7,400.00	7.81	262.52	7,359.33	-79.79	-607.98	436,013.33	786,631.73	32.196192	-103.540349
7,500.00	7.81	262.52	7,458.40	-81.56	-621.46	436,011.56	786,618.24	32.196187	-103.540393
7,600.00	7.81	262.52	7,557.47	-83.33	-634.95	436,009.79	786,604.76	32.196182	-103.540436
7,700.00	7.81	262.52	7,656.55	-85.10	-648.43	436,008.02	786,591.28	32.196178	-103.540480
7,800.00	7.81	262.52	7,755.62	-86.86	-661.91	436,006.26	786,577.80	32.196173	-103.540524
7,900.00	7.81	262.52	7,854.69	-88.63	-675.39	436,004.49	786,564.32	32.196169	-103.540567
8,000.00	7.81	262.52	7,953.76	-90.40	-688.87	436,002.72	786,550.84	32.196164	-103.540611
8,100.00	7.81	262.52	8,052.83	-92.17	-702.35	436,000.95	786,537.36	32.196159	-103.540655
8,200.00	7.81	262.52	8,151.90	-93.94	-715.83	435,999.18	786,523.88	32.196155	-103.540698
8,300.00	7.81	262.52	8,250.97	-95.71	-729.31	435,997.41	786,510.40	32.196150	-103.540742
8,400.00	7.81	262.52	8,350.05	-97.48	-742.79	435,995.64	786,496.91	32.196146	-103.540785
8,500.00	7.81	262.52	8,449.12	-99.25	-756.28	435,993.87	786,483.43	32.196141	-103.540829
8,600.00	7.81	262.52	8,548.19	-101.02	-769.76	435,992.10	786,469.95	32.196137	-103.540873
8,700.00	7.81	262.52	8,647.26	-102.79	-783.24	435,990.33	786,456.47	32.196132	-103.540916
8,800.00	7.81	262.52	8,746.33	-104.56	-796.72	435,988.56	786,442.99	32.196127	-103.540960
8,900.00	7.81	262.52	8,845.40	-106.33	-810.20	435,986.79	786,429.51	32.196123	-103.541004
9,000.00	7.81	262.52	8,944.47	-108.09	-823.68	435,985.03	786,416.03	32.196118	-103.541047
9,100.00	7.81	262.52	9,043.54	-109.86	-837.16	435,983.26	786,402.55	32.196114	-103.541091
9,200.00	7.81	262.52	9,142.62	-111.63	-850.64	435,981.49	786,389.07	32.196109	-103.541134
9,300.00	7.81	262.52	9,241.69	-113.40	-864.12	435,979.72	786,375.58	32.196104	-103.541178
9,400.00	7.81	262.52	9,340.76	-115.17	-877.61	435,977.95	786,362.10	32.196100	-103.541222
9,500.00	7.81	262.52	9,439.83	-116.94	-891.09	435,976.18	786,348.62	32.196095	-103.541265
9,600.00	7.81	262.52	9,538.90	-118.71	-904.57	435,974.41	786,335.14	32.196091	-103.541309
9,700.00	7.81	262.52	9,637.97	-120.48	-918.05	435,972.64	786,321.66	32.196086	-103.541353
9,800.00	7.81	262.52	9,737.04	-122.25	-931.53	435,970.87	786,308.18	32.196081	-103.541396
9,900.00	7.81	262.52	9,836.12	-124.02	-945.01	435,969.10	786,294.70	32.196077	-103.541440
10,000.00	7.81	262.52	9,935.19	-125.79	-958.49	435,967.33	786,281.22	32.196072	-103.541483
10,100.00	7.81	262.52	10,034.26	-127.56	-971.97	435,965.56	786,267.74	32.196068	-103.541527
10,200.00	7.81	262.52	10,133.33	-129.32	-985.45	435,963.80	786,254.25	32.196063	-103.541571
10,300.00	7.81	262.52	10,232.40	-131.09	-998.94	435,962.03	786,240.77	32.196059	-103.541614
10,400.00	7.81	262.52	10,331.47	-132.86	-1,012.42	435,960.26	786,227.29	32.196054	-103.541658
10,500.00	7.81	262.52	10,430.54	-134.63	-1,025.90	435,958.49	786,213.81	32.196049	-103.541701
10,600.00	7.81	262.52	10,529.61	-136.40	-1,039.38	435,956.72	786,200.33	32.196045	-103.541745
10,700.00	7.81	262.52	10,628.69	-138.17	-1,052.86	435,954.95	786,186.85	32.196040	-103.541789
10,800.00	7.81	262.52	10,727.76	-139.94	-1,066.34	435,953.18	786,173.37	32.196036	-103.541832

12/27/2018 11:10:55AM

COMPASS 5000.14 Build 85

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Blue Krait 23-14 Fed 37
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3581.80ft
Project:	Lea County (NAD83 New Mexico East)	MD Reference:	RKB @ 3581.80ft
Site:	Sec 23-T24S-R33E	North Reference:	Grid
Well:	Blue Krait 23-14 Fed 37H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permit Plan 1		

Planned Survey

Measured			Vertical			Map	Мар		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
10,900.00	7.81	262.52	10,826.83	-141.71	-1,079.82	435,951.41	786,159.89	32.196031	-103.541876
11,000.00	7.81	262.52	10,925.90	-143.48	-1,093.30	435,949.64	786, 146.41	32.196026	-103.541920
11,100.00	7.81	262.52	11,024.97	-145.25	-1,106.79	435,947.87	786,132.92	32.196022	-103.541963
11,107.74	7.81	262.52	11,032.64	-145.38	-1,107.83	435,947.74	786,131.88	32.196021	-103.541967
11,200.00	6.43	262.52	11,124.19	-146.87	-1,119.17	435,946.25	786,120.54	32.196018	-103.542003
11,300.00	4.93	262.52	11,223.69	-148.16	-1,128.98	435,944.96	786,110.73	32.196014	-103.542035
11,400.00	3.43	262.52	11,323.42	-149.11	-1,136.21	435,944.01	786,103.50	32.196012	-103.542058
11,500.00	1.93	262.52	11,423.31	-149.72	-1,140.85	435,943.40	786,098.86	32.196010	-103.542073
11,600.00	0.43	262.52	11,523.29	-149.99	-1,142.89	435,943.13	786,096.82	32.196010	-103.542080
11,628.71	0.00	0.01	11,552.00	-150.00	-1,143.00	435,943.12	786,096.71	32.196009	-103.542080
11,700.00	0.00	0.00	11,623.29	-150.00	-1,143.00	435,943.12	786,096.71	32.196009	-103.542080
11,800.00	0.00	0.00	11,723.29	-150.00	-1,143.00	435,943.12	786,096.71	32.196009	-103.542080
11,900.00	0.00	0.00	11,823.29	-150.00	-1,143.00	435,943.12	786,096.71	32.196009	-103.542080
11,978.75	0.00	0.00	11,902.04	-150.00	-1,143.00	435,943.12	786,096.71	32.196009	-103.542080
KOP @ '	11979' MD, 50'	FSL, 2317' F	EL						
12,000.00		359.55	11,923.28	-149.61	-1,143.00	435,943.51	786,096.71	32.196011	-103.542080
12,100.00		359.55	12,022.38	-137.22	-1,143.10	435,955.90	786,096.61	32.196045	-103.542080
12,200.00		359.55	12,117.83	-107.81	-1,143.33	435,985.31	786,096.38	32,196125	-103.542080
12,220.00		359.55	12,136.22	-99.96	-1,143.39	435,993.16	786,096.32	32.196147	-103.542080
	2220' MD, 100				,				
12,300.00		359.55	12,206.72	-62.28	-1,143.68	436,030.84	786.096.03	32.196251	-103.542080
12,400.00		359.55	12,286.35	-2.00	-1,144.15	436,091.12	786,095.56	32.196416	-103.542081
12,500.00		359.55	12,354.30	71.18	-1,144.72	436,164.30	786,094.99	32.196617	-103.542081
12,600.00		359.55	12,408.52	155.06	-1,145.38	436,248.18	786,094.33	32.196848	-103.542081
12,700.00		359.55	12,447.34	247.08	-1,146.10	436,340.20	786,093.61	32.197101	-103.542081
12,800.00		359.55	12,469.60	344.44	-1,146.85	436,437.55	786,092.86	32.197369	-103.542081
12,878.76		359.55	12,475.00	422.94	-1,147.47	436,516.06	786,092.24	32.197584	-103.542081
12,900.00		359.55	12,475.00	444.18	-1,147.63	436,537.30	786,092.08	32.197643	-103.542081
13,000.00		359.55	12,475.00	544.18	-1,148.41	436,637.30	786,091.30	32.197918	-103.542081
13,100.00		359.55	12,475.00	644.18	-1,149.19	436,737.30	786,090.52	32.198193	-103.542081
13,200.00		359.55	12,475.00	744.18	-1,149.97	436,837.29	786,089.74	32.198467	-103.542082
13,300.00		359.55	12,475.00	844.17	-1,150.75	436,937.29	786,088.96	32.198742	-103.542082
13,400.00		359.55	12,475.00	944.17	-1,151.53	437,037.29	786,088.18	32.199017	-103.542082
13,500.00		359.55	12,475.00	1,044.17	-1,152.31	437,137.28	786,087.40	32.199292	-103.542082
13,600.00		359.55	12,475.00	1,144.16	-1,153.09	437,237.28	786,086.62	32.199567	-103.542082
13,700.00		359.55	12,475.00	1,244.16	-1,153.87	437,337.28	786,085.84	32.199842	-103.542082
13,800.00		359.55	12,475.00	1,344.16	-1,154.65	437,437.27	786,085.06	32.200117	-103.542082
13,900.00		359.55	12,475.00	1,444.15	-1,155.43	437,537.27	786,084.28	32.200391	-103.542083
14,000.00		359.55	12,475.00	1,544.15	-1,156.21	437,637.27	786,083.50	32.200666	-103.542083
14,100.00		359.55	12,475.00	1,644.15	-1,156.99	437,737.26	786,082.72	32.200941	-103.542083
14,100.00		359.55	12,475.00	1,744.15	-1,157.77	437,837.26	786,081.94	32.201216	-103.542083
14,300.00		359.55	12,475.00	1,844.14	-1,158.55	437,937.26	786,081.16	32.201491	-103.542083
14,400.00		359.55	12,475.00	1,944.14	-1,159.33	438,037.25	786,080.38	32.201766	-103.542083
14,500.00		359.55	12,475.00	2,044.14	-1,160.11	438,137.25	786,079.60	32.202041	-103.542083
14,600.00		359.55	12,475.00	2,144.13	-1,160.89	438,237.25	786,078.82	32.202316	-103.542084
							-		-103.542084
14,700.00		359.55	12,475.00 12,475.00	2,244.13	-1,161.66 -1,162.44	438,337.25 438,437.24	786,078.05 786,077.27	32.202590 32.202865	-103.542084
14,800.00		359.55	12,475.00	2,344.13		438,537.24			
14,900.00		359.55	12,475.00	2,444.12	-1,163.22	•	786,076.49	32.203140	-103.542084
15,000.00		359.55	12,475.00	2,544.12	-1,164.00	438,637.24	786,075.71	32.203415	-103.542084
15,100.00		359.55	12,475.00	2,644.12	-1,164.78	438,737.23	786,074.93	32.203690	-103.542084
15,200.00		359.55	12,475.00	2,744.11	-1,165.56	438,837.23	786,074.15	32.203965	-103.542084
15,300.00		359.55	12,475.00	2,844.11	-1,166.34	438,937.23	786,073.37	32.204240	-103.542085
15,400.00		359.55	12,475.00	2,944.11	-1,167.12	439,037.22	786,072.59	32.204515	-103.542085
15,500.00	90.00	359.55	12,475.00	3,044.11	-1,167.90	439,137.22	786,071.81	32.204789	-103.542085

12/27/2018 11:10:55AM

COMPASS 5000.14 Build 85

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Blue Krait 23-14 Fed 37H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3581.80ft
Project:	Lea County (NAD83 New Mexico East)	MD Reference:	RKB @ 3581.80ft
Site:	Sec 23-T24S-R33E	North Reference:	Grid
Well:	Blue Krait 23-14 Fed 37H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	-	
Design:	Permit Plan 1		

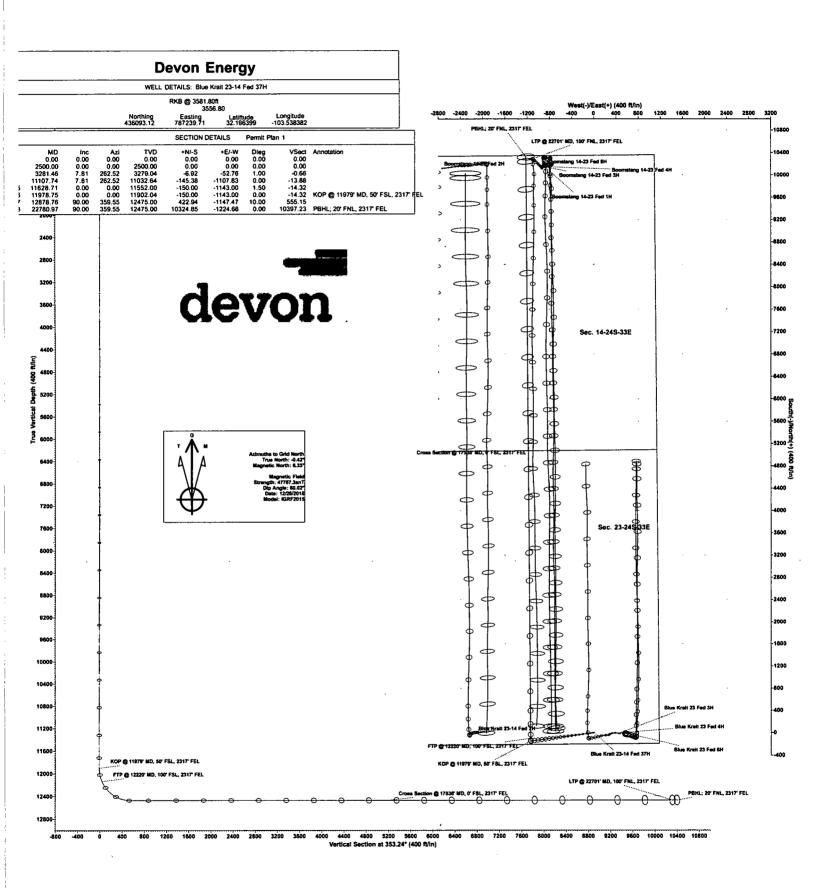
Planned Survey

	Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
	(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
	15,600.00	90.00	359.55	12,475.00	3,144.10	-1,168.68	439,237.22	786,071.03	32.205064	-103.542085
	15,700.00	90.00	359.55	12,475.00	3,244.10	-1,169.46	439,337.21	786,070.25	32.205339	-103.542085
	15,800.00	90.00	359.55	12,475.00	3,344.10	-1,170.24	439,437.21	786,069.47	32.205614	-103.542085
	15,900.00	90.00	359.55	12,475.00	3,444.09	-1,171.02	439,537.21	786,068.69	32.205889	-103.542085
	16,000.00	90.00	359.55	12,475.00	3,544.09	-1,171.80	439,637.20	786,067.91	32.206164	-103.542086
	16,100.00	90.00	359.55	12,475.00	3,644.09	-1,172.58	439,737.20	786,067.13	32.206439	-103.542086
	16,200.00	90.00	359.55	12,475.00	3,744.08	-1,173.36	439,837.20	786,066.35	32.206714	-103.542086
	16,300.00	90.00	359.55	12,475.00	3,844.08	-1,174.14	439,937.19	786,065.57	32.206988	-103.542086
	16,400.00	90.00	359.55	12,475.00	3,944.08	-1,174.92	440,037.19	786,064.79	32.207263	-103.542086
	16,500.00	90.00	359.55	12,475.00	4,044.08	-1,175.70	440,137.19	786,064.01	32.207538	-103.542086
	16,600.00	90.00	359.55	12,475.00	4,144.07	-1,176.48	440,237.18	786,063.23	32.207813	-103.542086
	16,700.00	90.00	359.55	12,475.00	4,244.07	-1,177.26	440,337.18	786,062.45	32.208088	-103.542087
	16,800.00 16,900.00	90.00 90.00	359.55 359.55	12,475.00	4,344.07	-1,178.04 -1,178.82	440,437.18 440,537.17	786,061.67	32.208363 32.208638	-103.542087 -103.542087
	17,000.00	90.00	359.55	12,475.00 12,475.00	4,444.06 4,544.06	-1,179.60	440,637.17	786,060.89 786,060.11	32.208913	-103.542087
ł	17,100.00	90.00	359.55	12,475.00	4,644.06	-1,180.37	440,737.17	786,059.34	32.209187	-103.542087
	17,200.00	90.00	359.55	12,475.00	4,744.05	-1,181.15	440,837.16	786,058.56	32.209462	-103.542087
	17,300.00	90.00	359.55	12,475.00	4,844.05	-1,181.93	440,937.16	786,057.78	32.209737	-103.542087
	17,400.00	90.00	359.55	12,475.00	4,944.05	-1,182.71	441,037.16	786,057.00	32.210012	-103.542088
	17,500.00	90.00	359.55	12,475.00	5,044.04	-1,183.49	441,137.15	786,056.22	32.210287	-103.542088
	17,536.00	90.00	359.55	12,475.00	5,080.04	-1,183.77	441,173.15	786,055.94	32.210386	-103.542088
		ection @ 1753			-,					
	17,600.00	90.00	359.55	12,475.00	5,144.04	-1,184.27	441,237.15	786,055.44	32.210562	-103.542088
	17,700.00	90.00	359.55	12,475.00	5,244.04	-1,185.05	441,337.15	786,054.66	32.210837	-103.542088
Ì	17,800.00	90.00	359.55	12,475.00	5,344.04	-1,185.83	441,437.14	786,053.88	32.211112	-103.542088
	17,900.00	90.00	359.55	12,475.00	5,444.03	-1,186.61	441,537.14	786,053.10	32.211386	-103.542088
	18,000.00	90.00	359.55	12,475.00	5,544.03	-1,187.39	441,637.14	786,052.32	32.211661	-103.542088
	18,100.00	90.00	359.55	12,475.00	5,644.03	-1,188.17	441,737.14	786,051.54	32.211936	-103.542089
	18,200.00	90.00	359.55	12,475.00	5,744.02	-1,188.95	441,837.13	786,050.76	32.212211	-103.542089
	18,300.00	90.00	359.55	12,475.00	5,844.02	-1,189.73	441,937.13	786,049.98	32.212486	-103.542089
	18,400.00	90.00	359.55	12,475.00	5,944.02	-1,190.51	442,037.13	786,049.20	32.212761	-103.542089
1	18,500.00	90.00	359.55	12,475.00	6,044.01	-1,191.29	442,137.12	786,048.42	32.213036	-103.542089
	18,600.00	90.00	359.55	12,475.00	6,144.01	-1,192.07	442,237.12	786,047.64	32.213310	-103.542089
	18,700.00	90.00	359.55	12,475.00	6,244.01	-1,192.85	442,337.12	786,046.86	32.213585	-103.542089
	18,800.00	90.00	359.55	12,475.00	6,344.01	-1,193.63	442,437.11	786,046.08	32.213860	-103.542090
	18,900.00	90.00	359.55	12,475.00	6,444.00	-1,194.41	442,537.11	786,045.30	32.214135	-103.542090 -103.542090
	19,000.00 19,100.00	90.00	359.55 359.55	12,475.00 12,475.00	6,544.00 6,644.00	-1,195.19	442,637.11 442,737.10	786,044.52 786,043.74	32.214410 32.214685	-103.542090
	19,200.00	90.00 90.00	359.55	12,475.00	6,743.99	-1,195.97 -1,196.75	442,837.10	786,042.96	32.214960	-103.542090
	19,300.00	90.00	359.55	12,475.00	6,843.99	-1,197.53	442,937.10	786,042.98	32.215235	-103.542090
	19,400.00	90.00	359.55	12,475.00	6,943.99	-1,198.31	443,037.09	786,041.40	32.215509	-103.542090
	19,500.00	90.00	359.55	12,475.00	7,043.98	-1,199.08	443,137.09	786,040.63	32.215784	-103.542090
1	19,600.00	90.00	359.55	12,475.00	7,143.98	-1,199.86	443,237.09	786,039.85	32.216059	-103.542091
	19,700.00	90.00	359.55	12,475.00	7,243.98	-1,200.64	443,337.08	786,039.07	32.216334	-103.542091
	19,800.00	90.00	359.55	12,475.00	7,343.98	-1,201.42	443,437.08	786,038.29	32.216609	-103.542091
1	19,900.00	90.00	359.55	12,475.00	7,443.97	-1,202.20	443,537.08	786,037.51	32.216884	-103.542091
	20,000.00	90.00	359.55	12,475.00	7,543.97	-1,202.98	443,637.07	786,036.73	32.217159	-103.542091
	20,100.00	90.00	359.55	12,475.00	7,643.97	-1,203.76	443,737.07	786,035.95	32.217434	-103.542091
	20,200.00	90.00	359.55	12,475.00	7,743.96	-1,204.54	443,837.07	786,035.17	32.217708	-103.542091
	20,300.00	90.00	359.55	12,475.00	7,843.96	-1,205.32	443,937.06	786,034.39	32.217983	-103.542092
	20,400.00	90.00	359.55	12,475.00	7,943.96	-1,206.10	444,037.06	786,033.61	32.218258	-103.542092
	20,500.00	90.00	359.55	12,475.00	8,043.95	-1,206.88	444,137.06	786,032.83	32.218533	-103.542092
	20,600.00	90.00	359.55	12,475.00	8,143.95	-1,207.66	444,237.05	786,032.05	32.218808	-103.542092
L	20,700.00	90.00	359.55	12,475.00	8,243.95	-1,208.44	444,337.05	786,031.27	32.219083	-103.542092

12/27/2018 11:10:55AM

COMPASS 5000.14 Build 85

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Blue Krait 23-14 Fed 37H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3581.80ft
Project:	Lea County (NAD83 New Mexico East)	MD Reference:	RKB @ 3581.80ft
Site:	Sec 23-T24S-R33E	North Reference:	Grid
Well:	Blue Krait 23-14 Fed 37H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	·	
Desian:	Permit Plan 1		


Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
20,800.00	90.00	359.55	12,475.00	8,343.94	-1,209.22	444,437.05	786,030.49	32.219358	-103.54209
20,900.00	90.00	359.55	12,475.00	8,443.94	-1.210.00	444,537.04	786,029.71	32.219633	-103.54209
21,000.00	90.00	359.55	12,475.00	8,543.94	-1,210.78	444,637.04	786.028.93	32.219907	-103.54209
21,100.00	90.00	359.55	12,475.00	8,643.94	-1.211.56	444,737.04	786,028.15	32.220182	-103.54209
21,200.00	90.00	359.55	12,475.00	8,743.93	-1,212.34	444.837.03	786,027.37	32.220457	-103.54209
21,300.00	90.00	359.55	12,475.00	8.843.93	-1.213.12	444.937.03	786.026.59	32.220732	-103.54209
21,400.00	90.00	359.55	12,475.00	8,943.93	-1,213.90	445,037.03	786.025.81	32,221007	-103.54209
21,500.00	90,00	359.55	12.475.00	9,043.92	-1,214.68	445,137.03	786,025.03	32.221282	-103.54209
21,600.00	90.00	359.55	12,475.00	9,143.92	-1,215.46	445,237.02	786.024.25	32.221557	-103.54209
21,700.00	90,00	359.55	12.475.00	9,243.92	-1,216.24	445.337.02	786.023.47	32.221831	-103.54209
21,800.00	90.00	359.55	12,475.00	9.343.91	-1,217.02	445,437.02	786,022.69	32,222106	-103.54209
21,900.00	90.00	359.55	12,475.00	9,443.91	-1,217.79	445,537.01	786.021.92	32.222381	-103.54209
22,000.00	90.00	359.55	12,475.00	9,543.91	-1,218.57	445,637.01	786,021,14	32.222656	-103.54209
22,100.00	90.00	359.55	12,475.00	9,643.91	-1,219.35	445,737.01	786,020.36	32.222931	-103.54209
22,200.00	90.00	359.55	12,475.00	9,743.90	-1,220.13	445,837.00	786,019.58	32.223206	-103.54209
22,300.00	90.00	359.55	12,475.00	9,843.90	-1,220.91	445,937.00	786,018.80	32.223481	-103.54209
22,400.00	90.00	359.55	12,475.00	9,943.90	-1,221.69	446,037.00	786,018.02	32.223756	-103.54209
22,500.00	90.00	359.55	12,475.00	10,043.89	-1,222.47	446,136.99	786,017.24	32.224030	-103.54209
22,600.00	90.00	359.55	12,475.00	10,143.89	-1,223.25	446,236.99	786,016.46	32.224305	-103.54209
22,700.00	90.00	359.55	12,475.00	10,243.89	-1,224.03	446,336.99	786,015.68	32.224580	-103.54209
22,700.96	90.00	359.55	12,475.00	10,244.85	-1,224.04	446,337.95	786,015.67	32.224583	-103.54209
LTP @ 223	701' MD, 100'	FNL, 2317' F	EL						
22,780.96	90.00	359.55	12,475.00	10,324.84	-1,224.66	446,417.94	786,015.05	32.224803	-103.54209
PBHL; 20'	' FNL, 2317' F	EL	·				·		
22.780.97	90.00	359.55	12,475.00	10,324.85	-1,224.66	446,417,95	786,015.05	32.224803	-103.54209

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	- +N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PBHL - Blue Krait 23-14 - plan misses target - Point	0.00 Center by 103	0.00 97.23ft at 0.0	0.00 10ft MD (0.0	10,324.85 0 TVD, 0.00 N	-1,224.66 I, 0.00 E)	446,417.95	786,015.05	32.224803	-103.542095

Plan Annotations

Measured	Vertical	Local Coor	dinates	
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment
 11,978.75	11,902.04	-150.00	-1,143.00	KOP @ 11979' MD, 50' FSL, 2317' FEL
12,220.00	12,136.22	-99.96	-1,143.39	FTP @ 12220' MD, 100' FSL, 2317' FEL
17,536.00	12,475.00	5,080.04	-1,183.77	Cross Section @ 17536' MD, 0' FSL, 2317' FEL
22,700.96	12,475.00	10,244.85	-1,224.04	LTP @ 22701' MD, 100' FNL, 2317' FEL
22,780.96	12,475.00	10,324.84	-1,224.66	PBHL, 20' FNL, 2317' FEL

1. Geologic Formations

TVD of target	12475	Pilot hole depth	N/A
MD at TD:	22780	Deepest expected fresh water:	

Basin

•

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Rustler	1101		
Top of Salt	1622		
Base of Salt	5048		
Delaware	5267		
Lower Brushy Canyon	9010		
1st BSPG Lime	9196		
Leonard A	9274		
Leonard B	9617		
Leonard C	9895		
1st BSPG Sand	10200		
2nd BSPG Lime	10447		
2nd BSPG Sand	10860		
2BSSS Target Top	11127		
2BSSS Target Base	11211		
3rd BSPG Lime	11360		
3BSSS	11940		
WLFMP	12350		
WLFMP 100	12505		
WLFMP 120	12640		
			·

*H2S, water flows, loss of circulation, abnormal pressures, etc.

1 Drilling Plan

Hole	Casing Interval		Csg.	Wt Crede	Grade	Com	Min SF	Min SF	Min SF
Size	From	То	Size	(PPF)	Graue	Conn	Collapse	Burst	Tension
14.75"	0	1350	10.75"	40.5	J-55	STC	1.125	1.25	1.6
9.875"	0	11965 TVD	7.625"	29.7	P110	втс	1.125	1.25	1.6
6.75"	0	TD	5.5"	20	P110	Vam SG	1.125	1.25	1.6
	L	1	1	BLM	Minimum S	Safety Factor	1.125	1.00	1.6 Dry 1.8 Wet

2. Casing Program (Primary Design)

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing

• Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.

- Int casing shoe will be selected based on drilling data / gamma, setting depth with be revised accordingly if needed.
- A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.

Hole	Casing	Interval Csg.		Wt.	Crede	Comm	Min SF	Min SF	Min SF	
Size	From	То	Size	(PPF)	PPF) Grade	Conn	Collapse	Burst	Tension	
17.5"	0	Same as above	13.375"	48	H-40	STC	1.125	1.25	1.6	
10.625"	0	Same as above	8.625"	32	P110EC	BTC	1.125	1.25	1.6	
7.875"	0	TD	5.5"	17	P110	BTC	1.125	1.25	1.6	
		4		BLM	Minimum S	Safety Factor	1.125	1.00	1.6 Dry 1.8 Wet	

Casing Program (Alternate Design)

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing

• Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.

• Int 1 casing shoe will be selected based on drilling data / gamma, setting depth with be revised accordingly if needed.

- Option to drill change intermediate 1 hole size to 9.625, (8.625" connection will change from BTC to TLW)
- Option to run 8.625" TLW connection for intermediate 1
- A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.
- Variance is requested for collapse rating on intermediate casing. Operator will keep pipe full while running casing. No losses are expected in subsequent hole section.
- 8-5/8" Intermediate casing will be kept fluid filled to 100%.

2 Drilling Plan

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	1

Casing	# Sks	тос	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description
Surface	864	Surf	13.2	1.33	Lead: Class C Cement + additives
	1160	Surf	9	1.85	Lead: Class C Cement + additives
Int 1	847	4000' above shoe	13.2	1.33	Tail: Class H / C + additives
	580	Surf	9	1.85	1 st stage Lead: Class C Cement + additives
Int 1 Two Stage	55	500' above shoe	13.2	1.33	1 st stage Tail: Class H / C + additives
w DV @ ~4500	600	Surf	9	1.85	2 st stage Lead: Class C Cement + additives
	55	500' above DV	13.2	1.33	2 st stage Tail: Class H / C + additives
	As Needed	Surf	13.2	1.33	Squeeze Lead: Class C Cement + additives
Int 1 Intermediate Squeeze	1160	Surf	9	1.85	Lead: Class C Cement + additives
	847	4000' above shoe	13.2	1.33	Tail: Class H / C + additives
Production	790	500' tieback	13.2	1.33	Lead: Class H / C + additives

3. Cementing Program (Primary Design)

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	%	тос
	Excess	
Surface	50%	0'
Intermediate 1	30%	0'
Intermediate 1 (Two Stage)	25%	0'
Prod	10%	200' Tie-Back to intermediate

Cementing Program (Alternate Design)								
Casing	# Sks	тос	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description			
Surface	1098	Surf	13.2	1.33	Lead: Class C Cement + additives			
	1313	Surf	9	1.85	Lead: Class C Cement + additives			
Int 1	831	4000' above shoe	13.2	1.33	Tail: Class H / C + additives			
	650	Surf	9	1.85	1 st stage Lead: Class C Cement + additives			
Int 1 Two Stage	55	500' above shoe	13.2	1.33	1 st stage Tail: Class H / C + additives			
w DV @ ~4500	670	Surf	9	1.85	2 st stage Lead: Class C Cement + additives			
	55	500' above DV	13.2	1.33	2 st stage Tail: Class H / C + additives			
	As Needed	Surf	13.2	1.33	Squeeze Lead: Class C Cement + additives			
Int 1 Intermediate Squeeze	1313	Surf	9	1.85	Lead: Class C Cement + additives			
	831	4000' above shoe	13.2	1.33	Tail: Class H / C + additives			
Production	1435	500' tieback	13.2	1.33	Lead: Class H / C + additives			

Cementing Program (Alternate Design)

.

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess	тос
Surface	50%	0'
Intermediate 1	30%	0'
Intermediate 1 (Two Stage)	25%	0'
Prod	10%	200' Tie-Back to intermediate

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре	~	Tested to:
			Annular	X	50% of rated working pressure
Int 1	13-5/8"	5M	Blind Ram	X	5M
Int 1	13-5/8		Pipe Ram		
			Double Ram	X	51 VI
			Other*		
			Annular (5M)		100% of rated working pressure
			Blind Ram	X	
Production	13-5/8"	10M	Pipe Ram		
			Double Ram	X	10M
			Other *		

4. Pressure Control Equipment (Three String Design)

N | A variance is requested for the use of a diverter on the surface casing. See attached for schematic.] Devon requests a variance to run a 5M annular on a 10M BOP system. See separately attached variance request and support documents in AFMSS.

5. Mud Program (3 String Design)

Section	Туре	Weight (ppg)	Vis	Water Loss
Surface	FW Gel	8.5 - 9	28-34	N/C
Intermediate	DBE / Cut Brine	9 - 10	28-34	N/C
Production	OBM	10-10.5	28-34	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid? PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logg	Logging, Coring and Testing.					
x	Will run GR/CNL fromTD to surface (horizontal well - vertical portion of hole). Stated logs					
	run will be in the Completion Report and submitted to the BLM.					
	No Logs are planned based on well control or offset log information.					
	Drill stem test? If yes, explain					
	Coring? If yes, explain					

Add	itional logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

6 Drilling Plan

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	6811 psi
Abnormal Temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is
detected in concentrations greater than 100 ppm, the operator will comply with the provisions of
Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations
will be provided to the BLM.NH2S is presentYH2S Plan attached

8. Other facets of operation

Is this a walking operation? Potentially

- 1. If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2. The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3. The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1. Spudder rig will move in and drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.
- 2. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3. The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4. A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5. Spudder rig operations is expected to take 4-5 days per well on a multi well pad.
- 6. The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7. Drilling operations will be performed with the drilling rig. At that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

<u>x</u> Directional Plan

Other, describe

7 Drilling Plan

.

8 Drilling Plan

Metal One Corp.	FLUSHMA	FLUSHMAX-III			44-0 25-Jan-17		
Metal One	Connection D	Connection Data Sheet					
			Rev.	N - 1			
		Imperial S.I.					
	Pipe Body	Pipe Body					
	Pipe OD (D)	7 5/8	in	193.68	mm		
FLUSHMAX-III	Actual weight	29.04		43.21	kg/m		
	Pipe ID (d)	6.875	in	174.63	mm		
	Drift Dia.	6.750	in	171.45	mm		
	Connection						
	PIN ID	6.875	in	174.63	mm		
Box							
critica	I Thread Taper		1 / 16 (3/4	" per ft)			
loss	Performance Propertie	es for Pipe Boo	dy				
loss Pin	Performance Propertie M.I.Y.P.	es for Pipe Boo 9,470	dy psi	65.31	MPa		
	M.I.Y.P. al Note S.M.Y.S.= Spe		psi /	gth of Pipe b	ody		
Pin critic	M.I.Y.P. al Note S.M.Y.S.= Spe	9,470 ecified Minimum Y nimum Internal Yie	psi /IELD Stren eld Pressur	gth of Pipe b	ody		
Pin critic	M.I.Y.P. Note S.M.Y.S.= Spe M.I.Y.P. = Mir	9,470 ecified Minimum Y himum Internal Yid es for Connect	psi /IELD Stren eld Pressur tion	gth of Pipe b	ody		
Pin critic	M.I.Y.P. Note S.M.Y.S.= Spe M.I.Y.P. = Min	9,470 ecified Minimum Y himum Internal Yid es for Connect	psi /IELD Stren eld Pressur tion	igth of Pipe b e of Pipe bod	ody V		
Pin critic area	M.I.Y.P. Note S.M.Y.S.= Spe M.I.Y.P. = Min Performance Propertie Min. Compression Yield	9,470 ecified Minimum Y himum Internal Yid es for Connect	psi /IELD Stren eld Pressur tion	igth of Pipe b e of Pipe bod f S.M.Y.S.)	ody V		
Pin critic area	M.I.Y.P. Note S.M.Y.S.= Spe M.I.Y.P. = Min Performance Propertie Min. Compression Yield	9,470 ecified Minimum Y himum Internal Yid es for Connec 563 kip	psi /IELD Stren eld Pressur tion	igth of Pipe b e of Pipe bod f S.M.Y.S.)	ody V		
Pin critic area	M.I.Y.P. Note S.M.Y.S.= Spe M.I.Y.P. = Min Performance Propertie Min. Compression Yield External Pressure	9,470 ecified Minimum Y himum Internal Yid es for Connec 563 kip	psi /IELD Stren eld Pressur tion	igth of Pipe b e of Pipe bod f S.M.Y.S.)	ody V		
Pin critic area	M.I.Y.P. Note S.M.Y.S.= Spe M.I.Y.P. = Min Performance Propertie Min. Compression Yield External Pressure Recommended Torque	9,470 ecified Minimum Y himum Internal Yid es for Connect 563 kip	psi /IELD Stren eld Pressur tion bs (60% o 100% of	e of Pipe bo of Pipe bod of S.M.Y.S.)	ody V Strength		
Pin critic area	M.I.Y.P. Note S.M.Y.S.= Spe M.I.Y.P. = Min Performance Propertie Min. Compression Yield External Pressure Recommended Torque Opti.	9,470 ecified Minimum Y himum Internal Yid s for Connect 563 kip 563 kip 17,200 23,600	psi dELD Stren eld Pressur tion 55 (60% of 100% of 100% of 100% of	e of Pipe bo of Pipe bod of S.M.Y.S.) Collapse S 23,300 32,000	ody v Strength		
rgal Notice re use of this information is at lilitates (herein collectively refe tas Sheet is for informational gard to safety-related factors,	M.I.Y.P. M.I.Y.P. Mote S.M.Y.S.= Specific Min. Compression Yield Min. Compression Yield External Pressure Recommended Torque Opti. Operational Max. Note : Operational Max. In the reader/user's risk and no warranty is implemented to as "Metal One") with respect to the use purposes only, and was prepared by reference all of which are the sole responsibility of the o	9,470 ecified Minimum Yi es for Connec 563 kip 563 kip 23,600 x. torque can be ap ied or expressed by Meta e of information containe e to engineering informati	psi /IELD Stren eld Pressur tion 55 (60% 0 100% of 100% of 100% of ft-lb oplied for hig al One Corporation d herein. The inion that is specifi	e of Pipe bo e of Pipe bod of S.M.Y.S.) Collapse S 23,300 <u>32,000</u> h torque applic on or its parents, su formation provided c to the subject prov	ody V Strength Strength N-m ation		
gal Notice e use of this information is at ilitates (herein collectively refa- ta Sheet is for informational gard to safety-related factors, sponsibility for any errors with	M.I.Y.P. M.I.Y.P. Mote S.M.Y.S.= Specific Min. Compression Yield Min. Compression Yield External Pressure Recommended Torque Opti. Operational Max. Note : Operational Max. In the reader/user's risk and no warranty is implemented to as "Metal One") with respect to the use purposes only, and was prepared by reference all of which are the sole responsibility of the o	9,470 ecified Minimum Y es for Connec 563 kip 563 kip 23,600 x. torque can be ap ied or expressed by Mete e of information containe to to engineering informati operators and users of the	psi /IELD Stren eld Pressur tion bs (60% 0 100% of 100% of ft-lb oplied for hig d herein. The in ion that is specifi e subject connect	agth of Pipe bo e of Pipe bod of S.M.Y.S.) Collapse S 23,300 32,000 h torque applic on or its parents, su formation provided c to the subject pro- tors. Metal One as	ody V Strength Strength N-m ation ubsidiaries or on this Connect oducts, without issumes no		
gal Notice e use of this information is at iliates (herein collectively refe ta Sheet is for informational gard to safety-related factors, sponsibility for any errors with atements regarding the suitat	M.I.Y.P. M.I.Y.P. Note S.M.Y.S.= Spe M.I.Y.P. = Min Performance Propertie Min. Compression Yield External Pressure Recommended Torque Opti. Opti. Operational Max. Note : Operational Max. Note : Operational Max the reader/user's risk and no warranty is impleared to as "Metal One") with respect to the us purposes only, and was prepared by reference all of which are the sole responsibility of the of respect to this information.	9,470 ecified Minimum Yi es for Connect 563 kip 17,200 23,600 x. torque can be ap ied or expressed by Meta e of information containe to engineering informati operators and users of the ns are based on Metal On nts are not binding stater	psi psi psi idd Pressure tion 55 (60% 0 100% of 100% of ft-lb plied for hig oplied for hig al One Corporati d herein. The in ion that is specifi e subject connece ne's knowledge o ments about the	e of Pipe bo e of Pipe bod of S.M.Y.S.) Collapse S 23,300 32,000 h torque applic formation provided c to the subject pro- tors. Metal One as of typical requireme suitability of produc	ody V Strength Strength N-m ation ubsidiaries or on this Connec ducts, without issumes no		
gal Notice e use of this information is at iliates (herein collectively refe ta Sheet is for information is at iliates (herein collectively refe ta Sheet is for informational jard to safety-related factors, sponsibility for any errors with atements regarding the suitat iced on Metal One products i plication. It is the customer's a particular application e products described in this of	M.I.Y.P. M.I.Y.P. Note S.M.Y.S.= Spec M.I.Y.P. = Min Performance Propertie Min. Compression Yield External Pressure Recommended Torque Opti. Operational Max. Note : Operational Max. Note : Operational Max the reader/user's risk and no warranty is implemented to as "Metal One") with respect to the uspurposes only, and was prepared by reference all of which are the sole responsibility of the on respect to this information. bility of products for certain types of application n standard well configurations. Such stateme	9,470 ecified Minimum Minimum Internal Yie es for Connec 563 kip 17,200 23,600 x. torque can be ap ied or expressed by Metre e of information containe to to engineering information operators and users of the his are based on Metal Or ints are not binding stater duct with the properties d for use in deep water off	PSi PSi PSi PSi PSi PSi PSi PSi	agth of Pipe be e of Pipe bod of S.M.Y.S.) Collapse S 23,300 32,000 h torque applic on or its parents, su formation provided c to the subject pro- tors. Metal One as of typical requiremes suitability of produc roduct specification ms. For more inform	ody V Strength Strength N-m ation ubsidiaries or on this Connect oducts, without ssumes no onts that are offic that are offic		

ASING PERF		Data Shee	et	V	allourec
O.D 8.62		LB/FT 51.13	T&C LB/ 32.00		GRADE P110EC
	Gr	ade - Materi	al Propertie	S	
		125 140	ksi ksi		
	d Strength: e Strength:		135	ksi	
		Pipe Body			
		Geom	etry	7 004	1
	Г	Nominal ID: Wall:		7.921 0.352	inch inch
	Min. Wall % (AP			0.352 87.5	%
		API Drift:		7.796	inch
	Sp	ecial Drift*:		7.875	inch
		Perforn	nance		
	Pipe Body Yiel	d Strenath:		1,144	kips
	•	Resistance:		3,470	psi
Internal Yiel	d Pressure (API	Historical):		8,930	psi
		API Conne	ction Data		
	SC Interna	al Pressure:		8,930	psi
	SC Joir	nt Strength:		793	kips
	LC Interna	al Pressure:		8,930	psi
	LC Joir	nt Strength:		887	kips
	BC Interna	al Pressure:		8,930	psi
	BC Joir	nt Strength:		1,121	kips
		SC Torqu	e (ft-lbs)		
minimum:	5,950	optimum:	7,933	max	kimum: 9,916
		LC Torqu	e (ft-lbs)		
minimum:	6,651	optimum:	8,868	max	imum: 11,085
	*Special drift must be o	ordered or API drift	will be used for act	tual drifting of p	roduct.
**If above API connections	•	-	•	•	
	n is correct, this material	is presented as a r		y. Vallourec ass	racy of all data and that the sumes no responsibility for the

.

U. S. Steel Tubular Products 13.375" 48.00lbs/ft (0.330" Wall) H40

MECHANICAL PROPERVIES	Fip3	ETC	LTC	STC	
Minimum Yield Strength	40,000			-	psi
Maximum Yield Strength	80,000		-		psi
Minimum Tensile Strength	60,000				psi
DIMENSIONS	Pipo	ETC	LTC	STC	
Outside Diameter	13.375		-	14.375	in.
Wall Thickness	0.330		-	-	in.
Inside Diameter	12.715			12.715	in.
Standard Drift	12.559	12.559	-	12.559	in.
Alternate Drift					in.
Nominal Linear Weight, T&C	48.00				lbs/ft
Plain End Weight	46.02		-		lbs/ft
ERFORMANCE	Ripo	BTC	STI	STC	
Minimum Collapse Pressure	740	740		740	psi
Minimum Internal Yield Pressure	1,730	1,730		1,730	psi
Minimum Pipe Body Yield Strength	541				1,000 lbs
Joint Strength			-	322	1,000 lbs
Reference Length				4,473	ft
MANIEUP DATA	শিচ্য	ETC	LTC	STC	·· ·· ·
Make-Up Loss				3.50	in.
Minimum Make-Up Torque				2,420	ft-lbs
Maximum Make-Up Torque				4,030	ft-lbs

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380

1-877-893-9461 connections@uss.com www.usstubular.com

Connection Type:	Size(O.D.):	pecifications Weight (Wall):	Grade:
DWC/C Casing	5-1/2 in	17.00 lb/ft (0.304 in)	
standard	•		
	Material		
P-110RY	Grade		
110,000	Minimum Yield Strength (psi)		USA
125,000	Minimum Ultimate Strength (psi)		VAM-USA
			4424 W. Sam Houston Pkwy. Suite 150
	Pipe Dimensions		Houston, TX 77041 Phone: 713-479-3200
5.500	Nominal Pipe Body O.D. (in)		Fax: 713-479-3234
4.892	Nominal Pipe Body I.D.(in)		E-mail: <u>VAMUSAsales@vam-usa.com</u>
0.304	Nominal Wall Thickness (in)		
17.00	Nominal Weight (lbs/ft)		
16.89	Plain End Weight (lbs/ft)		
4.962	Nominal Pipe Body Area (sq in)		
	Din - Dadu Darfarmanas Davis	-41	
F 40 000	Pipe Body Performance Prope		
546,000	Minimum Pipe Body Yield Streng		
7,480	Minimum Collapse Pressure (psi		
10,640	Minimum Internal Yield Pressure	(psi)	
9,700	Hydrostatic Test Pressure (psi)		
	Connection Dimensions		
6.050	Connection O.D. (in)		
4.892	Connection I.D. (in)		
4.767	Connection Drift Diameter (in)		
4.13	Make-up Loss (in)		
4.962	Critical Area (sq in)		
100.0	Joint Efficiency (%)		
	Connection Performance Prop	erties	
546,000	Joint Strength (lbs)		
22,940	Reference String Length (ft) 1.4	Design Factor	
568,000	API Joint Strength (lbs)		
546,000	Compression Rating (lbs)		
7,480	API Collapse Pressure Rating (p	•	
10,640	API Internal Pressure Resistance		
91.7	Maximum Uniaxial Bend Rating [degrees/100 ft]	
	Appoximated Field End Torque	e Values	
12,000	Minimum Final Torque (ft-lbs)		
13,800	Maximum Final Torque (ft-lbs)		
15,500	Connection Yield Torque (ft-lbs)		

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).

Connection specifications within the control of VAM-USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

11/13/2013 3:17:42 PM

Technical Specifications

DWC Connection Data Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a give pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- 11. DWC connections will accommodate API standard drift diameters.

Connection specifications within the control of VAM-USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

11/13/2013 3:17:42 PM

A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Devon proposes using a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- Wellhead will be installed by wellhead representatives.
- If the welding is performed by a third party, the wellhead representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- Wellhead representative will install the test plug for the initial BOP test.
- Wellhead company will install a solid steel body pack-off to completely isolate the lower head after cementing intermediate casing. After installation of the pack-off, the pack-off and the lower flange will be tested to 5M, as shown on the attached schematic. Everything above the pack-off will not have been altered whatsoever from the initial nipple up. Therefore the BOP components will not be retested at that time.
- If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head will be cut and top out operations will be conducted.
- Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating.
- Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.

After running the surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system and will undergo a 250 psi low pressure test followed by a 5,000 psi high pressure test. The 5,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

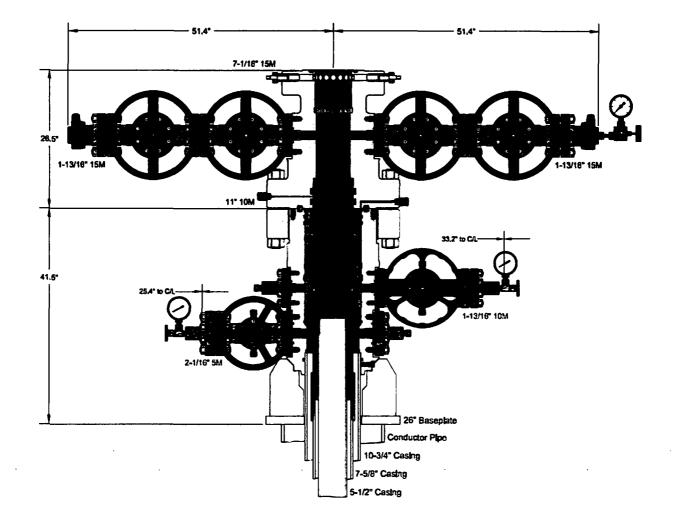
After running the intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 10M will be installed and tested, with 5M annular being tested to 100% of rated working pressure.

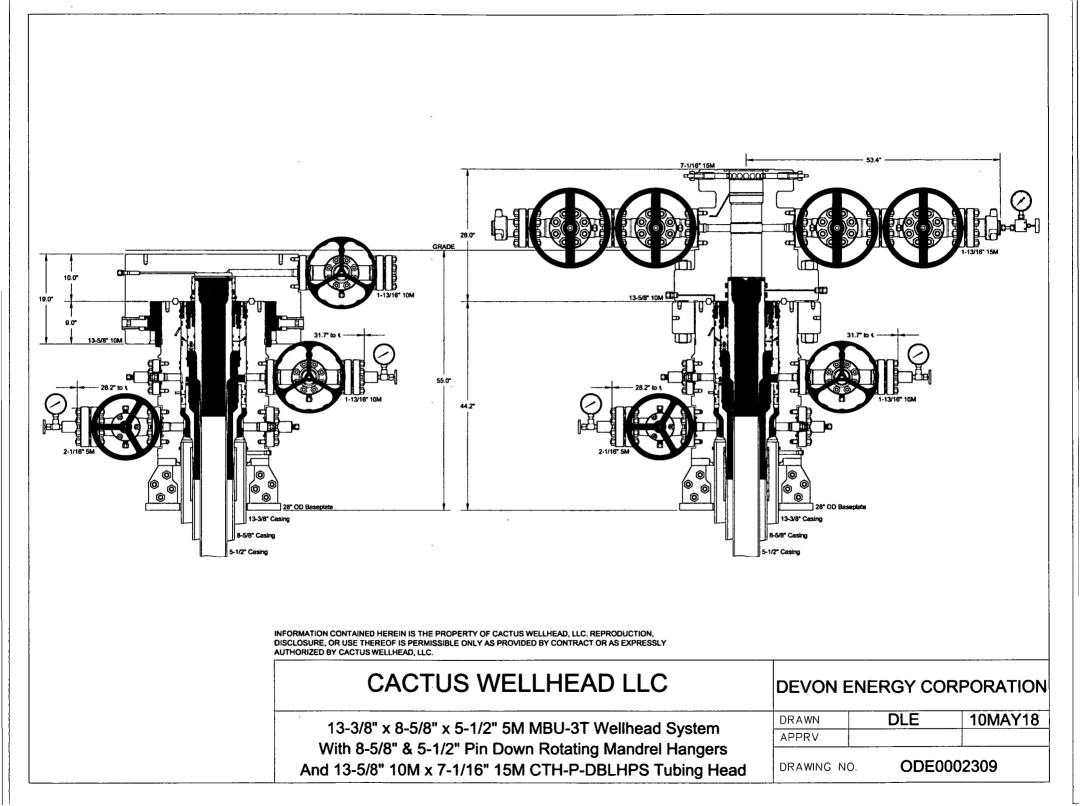
The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 10,000 psi WP.

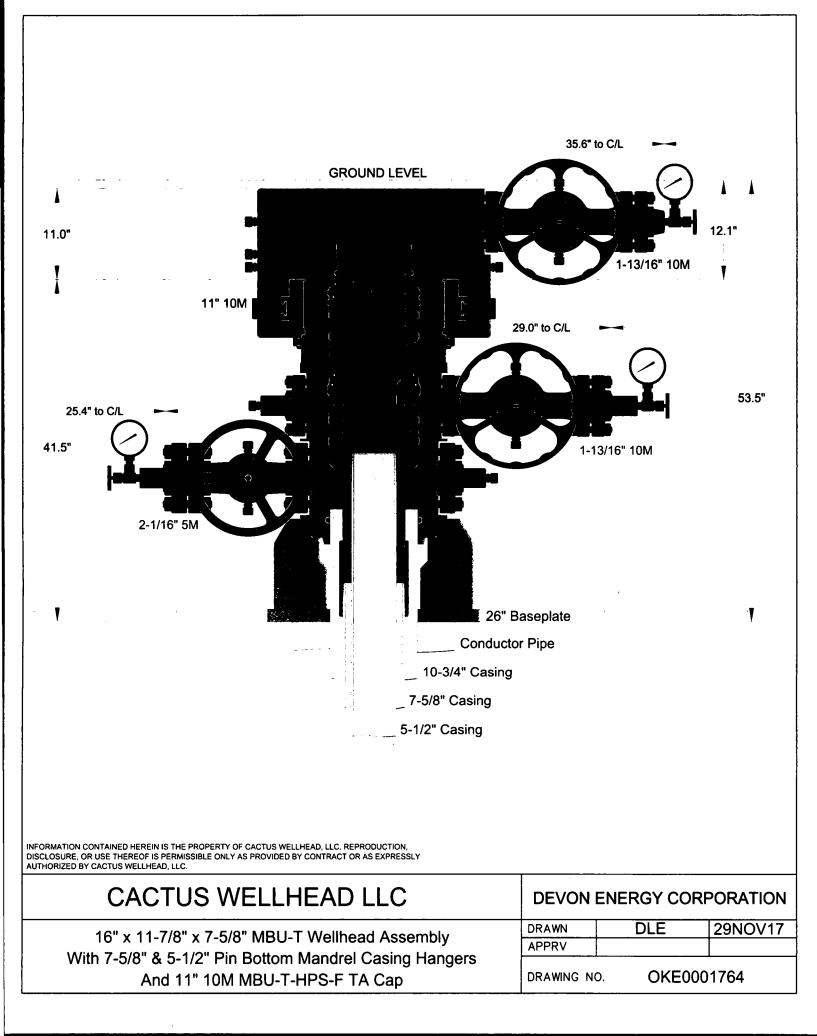
Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.

Devon Energy APD VARIANCE DATA

OPERATOR NAME: Devon Energy


1. SUMMARY OF Variance:


Devon Energy respectfully requests approval for the following additions to the drilling plan:


1. Potential utilization of a spudder rig to pre-set surface casing.

2. Description of Operations

- 1. A spudder rig contractor may move in their rig to drill the surface hole section and pre-set surface casing on this well.
 - **a.** After drilling the surface hole section, the rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - **b.** Rig will utilize fresh water based mud to drill surface hole to TD.
- 2. The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 3. A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wingvalves.
 - **a.** A means for intervention will be maintained while the drilling rig is not over the well.
- 4. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 5. Drilling operation will be performed with the big rig. At that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - **a.** The BLM will be contacted / notified 24 hours before the big rig moves back on to the pad with the pre-set surface casing.
- 6. Devon Energy will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 7. Once the rig is removed, Devon Energy will secure the wellhead area by placing a guard rail around the cellar area.

Commitment Runs Deep

Design Plan Operation and Maintenance Plan Closure Plan

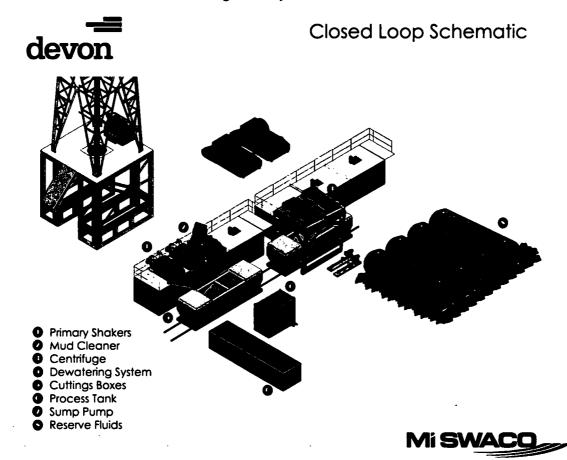
SENM - Closed Loop Systems June 2010

I. Design Plan

Devon uses MI SWACO closed loop system (CLS). The MI SWACO CLS is designed to maintain drill solids at or below 5%. The equipment is arranged to progressively remove solids from the largest to the smallest size. Drilling fluids can thus be reused and savings is realized on mud and disposal costs. Dewatering may be required with the centrifuges to insure removal of ultra fine solids.

The drilling location is constructed to allow storm water to flow to a central sump normally the cellar. This insures no contamination leaves the drilling pad in the event of a spill. Storm water is reused in the mud system or stored in a reserve fluid tank farm until it can be reused. All lubricants, oils, or chemicals are removed immediately from the ground to prevent the contamination of storm water. An oil trap is normally installed on the sump if an oil spill occurs during a storm.

A tank farm is utilized to store drilling fluids including fresh water and brine fluids. The tank farm is constructed on a 20 ml plastic lined, bermed pad to prevent the contamination of the drilling site during a spill. Fluids from other sites may be stored in these tanks for processing by the solids control equipment and reused in the mud system. At the end of the well the fluids are transported from the tank farm to an adjoining well or to the next well for the rig.


Prior to installing a closed-loop system on site, the topsoil, if present, will be stripped and stockpiled for use as the final cover or fill at the time of closure.

Signs will be posted on the fence surrounding the closed-loop system unless the closed-loop system is located on a site where there is an existing well, that is operated by Devon.

II. Operations and Maintenance Plan

Primary Shakers: The primary shakers make the first removal of drill solids from the drilling mud as it leaves the well bore. The shakers are sized to handle maximum drilling rate at optimal screen size. The shakers normally remove solids down to 74 microns.

Mud Cleaner: The Mud Cleaner cleans the fluid after it leaves the shakers. A set of hydrocyclones are sized to handle 1.25 to 1.5 times the maximum circulating rate. This ensures all the fluid is being processed to an average cut point of 25 microns. The wet discharged is dewatered on a shaker equipped with ultra fine mesh screens and generally cut at 40 microns.

Centrifuges: The centrifuges can be one or two in number depending on the well geometry or depth of well. The centrifuges are sized to maintain low gravity solids at 5% or below. They may or may not need a dewatering system to enhance the removal rates. The centrifuges can make a cut point of 8-10 microns depending on bowl speed, feed rate, solids loading and other factors.

The centrifuge system is designed to work on the active system and be flexible to process incoming fluids from other locations. This set-up is also dependent on well factors.

Dewatering System: The dewatering system is a chemical mixing and dosing system designed to enhance the solids removal of the centrifuge. Not commonly used in shallow wells. It may contain pH adjustment, coagulant mixing and dosing, and polymer mixing and dosing. Chemical flocculation binds ultra fine solids into a mass that is within the centrifuge operating design. The

dewatering system improves the centrifuge cut point to infinity or allows for the return of clear water or brine fluid. This ability allows for the ultimate control of low gravity solids.

Cuttings Boxes: Cuttings boxes are utilized to capture drill solids that are discarded from the solids control equipment. These boxes are set upon a rail system that allows for the removal and replacement of a full box of cuttings with an empty one. They are equipped with a cover that insures no product is spilled into the environment during the transportation phase.

Process Tank: (Optional) The process tank allows for the holding and process of fluids that are being transferred into the mud system. Additionally, during times of lost circulation the process tank may hold active fluids that are removed for additional treatment. It can further be used as a mixing tank during well control conditions.

Sump and Sump Pump: The sump is used to collect storm water and the pump is used to transfer this fluid to the active system or to the tank for to hold in reserve. It can also be used to collect fluids that may escape during spills. The location contains drainage ditches that allow the location fluids to drain to the sump.

Reserve Fluids (Tank Farm): A series of frac tanks are used to replace the reserve pit. These are steel tanks that are equipped with a manifold system and a transfer pump. These tanks can contain any number of fluids used during the drilling process. These can include fresh water, cut brine, and saturated salt fluid. The fluid can be from the active well or reclaimed fluid from other locations. A 20 ml liner and berm system is employed to ensure the fluids do not migrate to the environment during a spill.

If a leak develops, the appropriate division district office will be notified within 48 hours of the discovery and the leak will be addressed. Spill prevention is accomplished by maintaining pump packing, hoses, and pipe fittings to insure no leaks are occurring. During an upset condition the source of the spill is isolated and repaired as soon as it is discovered. Free liquid is removed by a diaphragm pump and returned to the mud system. Loose topsoil may be used to stabilize the spill and the contaminated soil is excavated and placed in the cuttings boxes. After the well is finished and the rig has moved, the entire location is scrapped and testing will be performed to determine if a release has occurred.

All trash is kept in a wire mesh enclosure and removed to an approved landfill when full. All spent motor oils are kept in separate containers and they are removed and sent to an approved recycling center. Any spilled lubricants, pipe dope, or regulated chemicals are removed from soil and sent to landfills approved for these products.

These operations are monitored by Mi Swaco service technicians. Daily logs are maintained to ensure optimal equipment operation and maintenance. Screen and chemical use is logged to maintain inventory control. Fluid properties are monitored and recorded and drilling mud volumes are accounted for in the mud storage farm. This data is kept for end of well review to insure performance goals are met. Lessons learned are logged and used to help with continuous improvement.

A MI SWACO field supervisor manages from 3-5 wells. They are responsible for training personnel, supervising installations, and inspecting sites for compliance of MI SWACO safety and operational policy.

III. Closure Plan

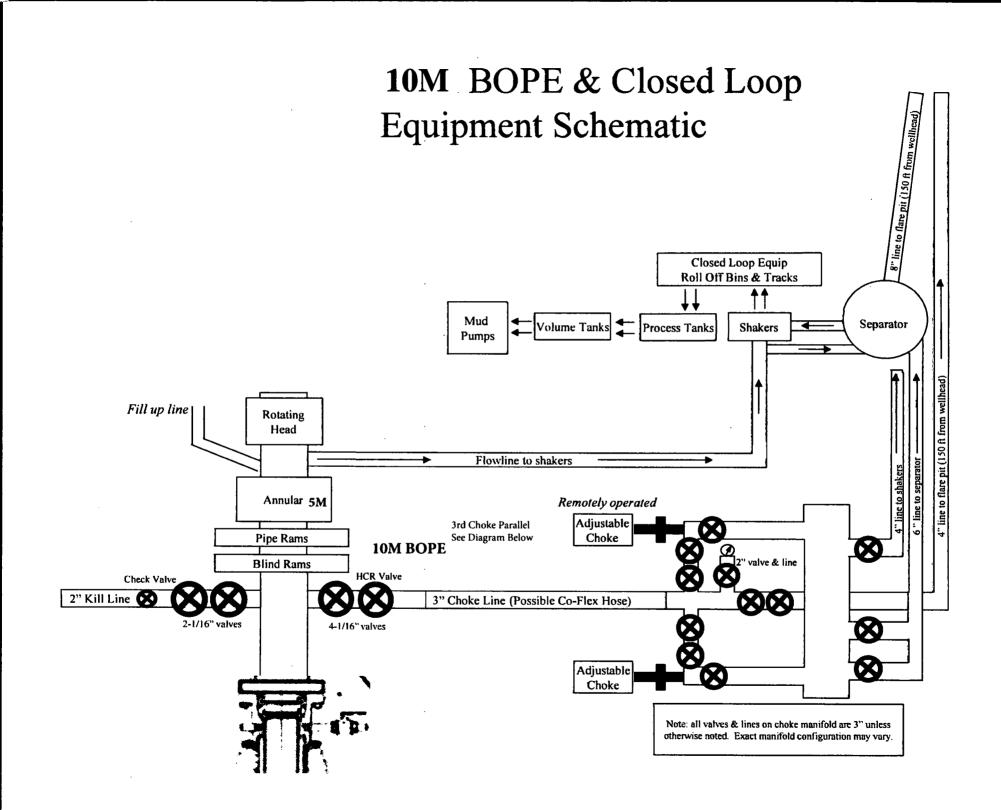
A maximum 340' X 340' caliche pad is built per well. All of the trucks and steel tanks fit on this pad. All fluid cuttings go to the steel tanks to be hauled by various trucking companies to an agency approved disposal.

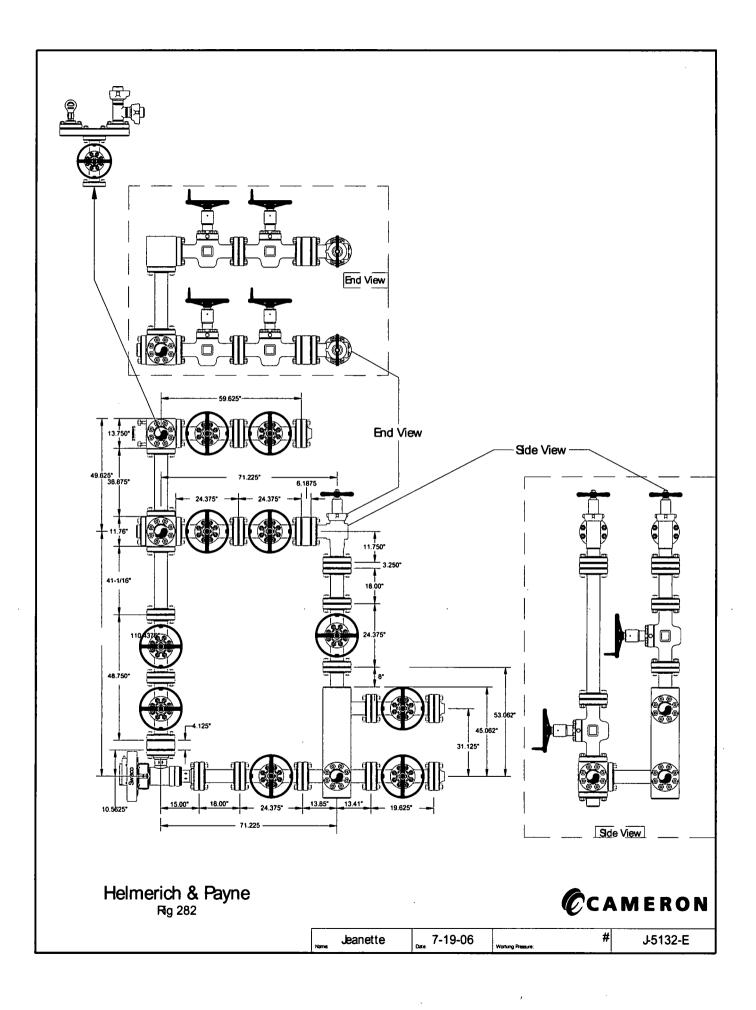
5

1/18/2017 9:30:29 AM

USS

U. S. Steel Tubular Products 10.75 40.5/0.35 J55


MECHANICAL PROPERTIES	Pipe	BTC	LTC	STC	
Minimum Yield Strength	55,000				psi
Maximum Yield Strength	80,000	-		-	psi
Minimum Tensile Strength	75,000	-		-	psi
DIMENSIONS	Pipe	втс	LTC	STC	
Outside Diameter	10.750	11.750		11.750	in.
Wall Thickness	0.350		-	-	in.
Inside Diameter	10.050	10.050		10.050	in.
Standard Drift	9.894	9.894		9.894	in.
Alternate Drift			-		in.
Nominal Linear Weight, T&C	40.50	-			lbs/ft
Plain End Weight	38.91				lbs/ft
PERFORMANCE	Pipe	BTC	LTC	STC	
Minimum Collapse Pressure	1,580	1,580		1,580	psi
Minimum Internal Yield Pressure	3,130	3,130		3,130	psi
Minimum Pipe Body Yield Strength	629,000				lbs
Joint Strength		700		420	lbs
Reference Length		11,522		6,915	ft
Make-Up Loss		4.81		3.50	in.
Minimum Make-Up Torque		-		3,150	ft-lbs


Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

> U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064

1-877-893-9461 connections@uss.com www.usstubular.com

Devon Energy Annular Preventer Summary

1. Component and Preventer Compatibility Table

The table below, which covers the drilling and casing of the 10M MASP portion of the well, outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Component	OD	Preventer	RWP
Drillpipe	4.5"	Fixed lower 4.5" Upper 4.5-7" VBR	10M
HWDP	4.5"	Fixed lower 4.5" Upper 4.5-7" VBR	10M
Drill collars and MWD tools	4.75"	Upper 4.5-7" VBR	10M
Mud Motor	4.75"	Upper 4.5-7" VBR	10M
Production casing	5.5"	Upper 4.5-7" VBR	10M
ALL	0-13-5/8"	Annular	5M
Open-hole	-	Blind Rams	10M

6-3/4" Production hole section, 10M requirement

VBR = Variable Bore Ram. Compatible range listed in chart.

2. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. The pressure at which control is swapped from the annular to another compatible ram is variable, but the operator will document in the submission their operating pressure limit. The operator may chose an operating pressure less than or equal to RWP, but in no case will it exceed the RWP of the annular preventer.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram.

1 Drilling Plan

Devon Energy Annular Preventer Summary

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b.' Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram.

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to compatible pipe ram.

General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams or BSR. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

Drilling Plan

Devon Energy Annular Preventer Summary

General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drillpipe thru the stack.
 - a. Perform flowcheck, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper pipe ram.
 - e. Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the compatible pipe ram.
 - d. Shut-in using compatible pipe ram. (HCR and choke will already be in the closed position.)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
 - c. If impossible to pick up high enough to pull the string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper pipe ram.
 - f. Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

Fluid Technology

ContiTech Beattle Corp. Website: <u>www.contitechbeattie.com</u>

Monday, June 14, 2010

RE:

Drilling & Production Hoses Lifting & Safety Equipment

To Helmerich & Payne,

A Continental ContiTech hose assembly can perform as Intended and suitable for the application regardless of whether the hose is secured or unsecured in its configuration. As a manufacturer of High Pressure Hose Assemblies for use in Drilling & Production, we do offer the corresponding lifting and safety equipment, this has the added benefit of easing the lifting and handling of each hose assembly whilst affording hose longevity by ensuring correct handling methods and procedures as well as securing the hose in the unlikely event of a failure; but in no way does the lifting and safety equipment affect the performance of the hoses providing the hoses have been handled and installed correctly it is good practice to use lifting & safety equipment but not mandatory

Should you have any questions or require any additional Information/darifications then please do not hesitate to contact us.

ContiTech Beattie is part of the Continental AG Corporation and can offer the full support resources associated with a global organization.

Best regards,

Robin Hodgson Sales Manager ContiTech Beattie Corp

ContiTech Beattie Corp, 11535 Brittmoore Park Drive, Houston, TX 77041 Phone: +1 (832) 327-0141 Fax: +1 (832) 327-0148 www.contitechbeattie.com

R16 212

OUALITY DOCUMENT

(. ·

+6728 Szeged, Budapest út 10. Hungary + H-6701 Szeged, P. O. Box 152 hone: (3662) 566-737 • Far: (3662) 566-738 PHOENIX RUBBER

SALES & MARKETING: H-1092 Budapest, Ridday u. 42-44. Hungary • H-1440 Budapest, P. O. 8ox 26 Phone: (361) 456-4200 : Fax: (361) 217-2972, 456-4273 • www.taurusemerge.hu

-	(CONTRÓL ND TEST CERTIF	ICATE	CERT. Nº:	552
PURCHASER: Pr	oenix Beattie Co.		P.O. Nº- 1	519FA-871
	170466 HOSE TY	»E: 3° ID	Choke and	Kill Hose
HOSE SERIAL Nº	34128 NOMINAL	ACTUAL LENGTH	: 11,43	m
W.P. 68,96 MPa 1000	0 psi T.P. 103	3,4 MPa 1500)) psi Duration	: 60 mir
Pressure test with water at ambient temperature	•			·
×		· · ·		• •
:	See attachment	(1 page)	•	
10 mm = 10 Min. → 10 mm = 25 MPa	< ' COL	PLINGS		
Туре	Serial Nº		Quality	Heat N°
3" coupling with 4 1/16" Flange end	720 719		NSI 4130 NSI 4130	C7626 47357
			:	
		API Spec 1 Temperatur		
Ail metal parts are flawless WE CERTIFY THAT THE ABOVE HO PRESSURE TESTED AS ABOVE WIT	SE HAS BEEN MANUFAC H SATISFACTORY RESUL	TURED IN ACCORDA T.	NCE WITH THE TER	MS of the order a
Date: Ins	pector	Quality Cont	rol L'HOENIX RI	IBBER
			Industrial	

1.3.5 (644)20

1.	£ 8 \$ 0 1 0 1 1 1 1 1 1 1 1 1
	CNL +9.923 PC RDL +9.929 PC -9.929 PC -9
	CHU +2. 222 PC 40 13:42 ROU +2. 223 PC 40 3:42 60 60 60 40 00 00 00 00 00 00 00 00 00 00 00 00
ା 	b District Ltd. Hose inspection and Cut La observice the section Dept.
14094-65	GN +0.022 PC 13:20 R0 +0.022 PC 13:20 R0 +0.020 PC 13:20 -8- +1939 PC 13:20
	GN1 +9.999 PC 1.3:09 R01 +9.999 PC 1.3:09 BL +1956 939 PC 1.3:09
NBOOL	
- 15	
40920-0-00015	
40920	
	2
I	

raist starts

M ~4

A & 1.44

1

÷.,

1

VERIFIED TRUE CO. PHOENIX RUBBER Q.C.

; ¹

ad stracts

•• '

· ·

• • 'n

Mary .

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Submission Date: 01/28/2019

Well Number: 37H

Well Work Type: Drill

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: BLUE KRAIT 23-14 FED

Well Type: OIL WELL

APD ID: 10400038545

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

Blue_Krait_23_14_Fed_37H_ACCESS_RD_20190128103410.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

Row(s) Exist? NO

SUPO Data Report

10/21/2019

Show Final Text

ROW ID(s)

ID:

Do the existing roads need to be improved? YES

Existing Road Improvement Description: Improve road to accommodate Drilling and Completion operations.

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

BLUE_KRAIT_23_CTB_2_20190128103437.PDF

BLUE_KRAIT_23_WP_7_20190128103439.PDF

New road type: LOCAL

Length: 2370

Max slope (%): 6

Width (ft.): 30

Max grade (%): 4

Army Corp of Engineers (ACOE) permit required? NO

Feet

ACOE Permit Number(s):

New road travel width: 14

New road access erosion control: Water Drainage Ditch

New road access plan or profile prepared? YES

New road access plan attachment:

New_Access_Rd_Doc_20190124104028.pdf

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

Access road engineering design? YES

Access road engineering design attachment:

New_Access_Rd_Doc_20190124104041.pdf

Turnout? N

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: See attached Interim reclamation diagram.

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Water Drainage Ditch

Road Drainage Control Structures (DCS) description: N/A

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

OneMileBuffer_WA017315276_20190128103530.pdf

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: 9 ATTACHMENTS - WELLPAD PLAT, CTB PLAT, 4 FLOWLINE PLATS, 2 WELLPAD ELECTRIC PLATS, GAS CONNECT PLAT. REMAINING CONNECTS HANDLED BY THIRD PARTY **Production Facilities map:**

BLUE_KRAIT_23_WP_7_TO_CTB_1_FL_BLM_20190128103609.pdf BLUE_KRAIT_23_WP_7_TO_CTB_2_FL_BLM_20190128103610.pdf BLUE_KRAIT_23_CTB_2_20190128103612.PDF BLUE_KRAIT_23_CTB_2_BATCON_20190128103613.pdf

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

BLUE_KRAIT_23_WP_7_20190128103615.PDF BLUE_KRAIT_23_WP_7_TO_CTB_2_FL_20190128103618.pdf EL8271_BLUE_KRAIT_23_CTB_2_EL_P_20190128103619.pdf BLUE_KRAIT_23_WP_7_TO_CTB_1_FL_20190128103616.pdf EL8276_BLUE_KRAIT_23_WP_7_P_20190128103620.pdf

Section 5 - Location and Types of Water Supply

Water Source Tab	le	
Water source type: RECYCLED		
Water source use type:	STIMULATION	
Source latitude:		Source longitude:
Source datum:		
Water source permit type:	OTHER	
Water source transport method:	PIPELINE	
Source land ownership: FEDERA	L	
Source transportation land owner	rship: FEDERAL	
Water source volume (barrels): 50	00000	Source volume (acre-feet): 64.44655
Source volume (gal): 21000000		

Water source and transportation map:

BLUE_KRAIT_23_14_FED_WP_7_Water_Map_20190128104101.PDF

Water source comments: The attached Water Transfer Map is a proposal only and the final route and documentation will be provided by a Devon contractor prior to installation. When available Devon will always follow existing disturbance. New water well? NO

	New Water Well I	nfo		
N	/ell latitude:	Well Longitude:	Well datum:	
N	/ell target aquifer:			
Е	st. depth to top of aquifer(ft):	Est thickness o	of aquifer:	
A	quifer comments:			
A	quifer documentation:			
Wel	II depth (ft):	Well casing type:		
Wel	Il casing outside diameter (in.):	Well casing insid	e diameter (in.):	
Nev	water well casing?	Used casing sour	rce:	

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

Drilling method:	Drill material:
Grout material:	Grout depth:
Casing length (ft.):	Casing top depth (ft.):
Well Production type:	Completion Method:
Water well additional information:	
State appropriation permit:	
Additional information attachment:	,
Section 6 - Construction Materi	als
Using any construction materials: YES	
Construction Materials description: Dirt fill and ca	liche will be used to construct well pad. See attached map.
Construction Materials source location attachme	nt:

Blue_Krait_23_CTB_2_Caliche_Map_20190128081425.pdf Blue_Krait_23_WP_7_Caliche_Map_20190128104124.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Water Based and Oil Based Cuttings

Amount of waste: 1769 barrels

Waste disposal frequency : Daily

Safe containment description: N/A

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

Disposal type description:

FACILITY

Disposal location description: All cuttings will disposed of at R360, Sundance, or equivalent.

Waste type: COMPLETIONS/STIMULATION

Waste content description: Flow back water during completion operations.

Amount of waste: 3000 barrels

Waste disposal frequency : One Time Only

Safe containment description: N/A

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY Disposal type description:

Disposal location description: Various disposal locations in Lea and Eddy counties.

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

Waste type: FLOWBACK

Waste content description: Average produced BWPD over the flowback period (first 30 days of production).

Amount of waste: 6900 barrels

Waste disposal frequency : Daily

Safe containment description: N/A

Safe containmant attachment:

Waste disposal type: OFF-LEASE INJECTION Disposal location ownership: COMMERCIAL

Disposal type description:

Disposal location description: Produced water will primarily be disposed of at commercial disposals connected to the Devon water system.

Waste type: PRODUCED WATER

Waste content description: Average produced BWPD over the first year of production.

Amount of waste: 2500 barrels

Waste disposal frequency : Daily

Safe containment description: N/A

Safe containmant attachment:

Waste disposal type: OFF-LEASE INJECTION Disposal location ownership: COMMERCIAL

Disposal type description:

Disposal location description: Produced water will primarily be disposed of at commercial disposals connected to the Devon water system.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? NO

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

Description of cuttings locationCuttings area length (ft.)Cuttings area width (ft.)Cuttings area depth (ft.)Cuttings area volume (cu. yd.)is at least 50% of the cuttings area in cut?WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

Blue_Krait_23_14_Fed_37H_Well_Layout_20190128104142.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: BLUE KRAIT 23 FED WELLPAD

Multiple Well Pad Number: 7

Recontouring attachment:

Blue_Krait_23_14_Fed_37H_Well_Layout_20190128104155.pdf

Drainage/Erosion control construction: All areas disturbed shall be reclaimed as early and as nearly as practicable to their original condition or their final land use and shall be maintained to control dust and minimize erosion to the extent practicable. **Drainage/Erosion control reclamation:** Topsoils and subsoils shall be replaced to their original relative positions and contoured so as to achieve erosion control, long-term stability and preservation of surface water flow patterns. The disturbed area then shall be reseeded in the first favorable growing season.

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

Well pad proposed disturbance (acres): 6.887	Well pad interim reclamation (acres): 5.394	Well pad long term disturbance (acres): 1.493
Road proposed disturbance (acres): 1.632	Road interim reclamation (acres): 0	Road long term disturbance (acres):
Powerline proposed disturbance (acres): 1.489	Powerline interim reclamation (acres):	Powerline long term disturbance (acres): 1 486
Pipeline proposed disturbance	Pipeline Interim reclamation (acres): 0	Pipeline long term disturbance
(acres): 2.892 Other proposed disturbance (acres): ((acres): 2.892 Other long term disturbance (acres): 0
Total proposed disturbance: 12.9	Total interim reclamation: 5.394	Total long term disturbance: 7.503

Disturbance Comments:

Reconstruction method: Operator will use Best Management Practices"BMP" to mechanically recontour to obtain the desired outcome.

Topsoll redistribution: Topsoils shall be replaced to their original relative positions and contoured so as to achieve erosion control, long-term stability and preservation of surface water flow patterns.

Soil treatment: Topsoils shall be replaced to their original relative positions and contoured so as to achieve erosion control, long-term stability and preservation of surface water flow patterns.

Existing Vegetation at the well pad: Shinnery, yucca, grasses and mesquite.

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Shinnery, yucca, grasses and mesquite.

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: Shinnery, yucca, grasses and mesquite.

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: Shinnery, yucca, grasses and mesquite.

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

	t	
Seed Table		
Seed type:		Seed source:
Seed name:		
Source name:		Source address:
Source phone:		
Seed cultivar:		
Seed use location:		
PLS pounds per acre:		Proposed seeding season:
Seed S	ummary	Total pounds/Acre:
Seed Type	Pounds/Acre	
Operator Contact/	responsible onic	
irst Name: Blake		Last Name: Richardson
		Last Name: Richardson Email: blake.richardson@dvn.con
irst Name: Blake hone: (405)552-6556		
hone: (405)552-6556 adbed prep:		
hone: (405)552-6556 adbed prep: ad BMP:		
hone: (405)552-6556 edbed prep: ed BMP: ed method:		
hone: (405)552-6556 edbed prep: ed BMP: ed method: sting invasive species? N		
hone: (405)552-6556 edbed prep: ed BMP: ed method: sting invasive species? N sting invasive species tre	eatment description:	
hone: (405)552-6556 edbed prep: ed BMP: ed method: sting invasive species? N sting invasive species tre sting invasive species tre	eatment description: eatment attachment:	Email: blake.richardson@dvn.con
hone: (405)552-6556 edbed prep: ed BMP: ed method: sting invasive species? N sting invasive species tre	eatment description: eatment attachment: otion: Maintain weeds or	Email: blake.richardson@dvn.con
hone: (405)552-6556 adbed prep: ad BMP: ad method: sting invasive species? N sting invasive species tre sting invasive species tre ed treatment plan descrip ed treatment plan attachm	eatment description: eatment attachment: otion: Maintain weeds or nent:	Email: blake.richardson@dvn.con
hone: (405)552-6556 adbed prep: ad BMP: ad method: sting invasive species? N sting invasive species tre sting invasive species tre ed treatment plan descrip ed treatment plan attachm hitoring plan description:	eatment description: eatment attachment: otion: Maintain weeds or nent: Monitor as needed.	Email: blake.richardson@dvn.con
hone: (405)552-6556 edbed prep: ed BMP: ed method: sting invasive species? N sting invasive species tre sting invasive species tre ed treatment plan descrip	eatment description: eatment attachment: otion: Maintain weeds or nent: Monitor as needed.	Email: blake.richardson@dvn.con
hone: (405)552-6556 dbed prep: d BMP: d method: sting invasive species? N sting invasive species tre sting invasive species tre ed treatment plan descripted treatment plan attachment: hitoring plan attachment:	eatment description: eatment attachment: otion: Maintain weeds or nent: Monitor as needed.	Email: blake.richardson@dvn.con

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

Section	11	- Surface	Ownership
---------	----	-----------	-----------

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT, PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: EXISTING ACCESS ROAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT, PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: PIPELINE Describe: Surface Owner: BUREAU OF LAND MANAGEMENT,PRIVATE OWNERSHIP Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: USFWS Local Office: Other Local Office:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: WELL PAD
Describe:
Surface Owner: BUREAU OF LAND MANAGEMENT, PRIVATE OWNERSHIP
Other surface owner description:
BIA Local Office:
BOR Local Office:
COE Local Office:
DOD Local Office:
NPS Local Office:
State Local Office:
Military Local Office:

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Section 12 - Other Information

Right of Way needed? YES

Use APD as ROW? YES

ROW Type(s): 281001 ROW - ROADS, 288100 ROW - O&G Pipeline, FLPMA (Powerline), Other

ROW Applications

SUPO Additional Information: See Section 4 for 14 Facility & Infrastructure Plats. See C-102 for grading plats.

Use a previously conducted onsite? YES

Previous Onsite Information: 8/14/2018

Other SUPO Attachment

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400038545

Submission Date: 01/28/2019

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: BLUE KRAIT 23-14 FED

Well Type: OIL WELL

Well Number: 37H Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

PWD disturbance (acres):

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

Injection well API number:

Injection well name:

PWD disturbance (acres):

PWD disturbance (acres):

PWD disturbance (acres):

Well Name: BLUE KRAIT 23-14 FED

Well Number: 37H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report 10/21/2019

States and the second of the

APD ID: 10400038545	Submission Date: 01/28/2019
Operator Name: DEVON ENERGY PRODUCTION COMPANY LP	

Well Name: BLUE KRAIT 23-14 FED

Well Type: OIL WELL

Well Number: 37H Well Work Type: Drill

Show Final Text

Bond Information

Federal/Indian APD: FED

BLM Bond number: CO1104

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: