Form 3160-5 (June 2015) SUNDRY Do not use the		OMB NO	APPROVED 0. 1004-0137 muary 31, 2018						
abandoned we	li. Use form 3160-3 (API	D) for such	proposals.		6. If Indian, Allottee o	r Tribe Name			
SUBMIT IN		7. If Unit or CA/Agree	ment, Name and/or No.						
1. Type of Well Oil Well Gas Well Oth									
2. Name of Operator DEVON ENERGY PRODUCT	Contact: ION COME-Mail: Rebecca.D	REBECCA I eal@dvn.com	DEAL		9. API Well No. 30-025-43732-0	0-X1			
3a. Address P O BOX 250 ARTESIA, NM 88201	10. Field and Pool or E TRIPLE X	Exploratory Area							
4. Location of Well <i>(Footage, Sec., 7</i> Sec 21 T23S R33E NENE 28 32.296696 N Lat, 103.571510	5FNL 850FEL)	HOBBS C		11. County or Parish, S LEA COUNTY, 1				
12. CHECK THE AI	PROPRIATE BOX(ES)	TO INDICA	TE NATURE O	F NOTICE.	REPORT, OR OTH	IER DATA			
TYPE OF SUBMISSION				ACTION					
 Notice of Intent Subsequent Report 	Acidize Deepen Produce Alter Casing Hydraulic Fracturing Reclar					 Water Shut-Off Well Integrity Other 			
Final Abandonment Notice	 Casing Repair Change Plans Convert to Injection 	🗖 Plu	w Construction g and Abandon g Back	 Recomp Tempor Water D 	arily Abandon	Change to Original A PD			
testing has been completed. Final Al determined that the site is ready for fi Devon Energy Production Co. Unit 121H. SHL move from 285 FNL & 85 BHL move from 2630 FNL & 1 TVD/MD change from 10,138 Annular Variance Request Please see attached revised C request documents and other	SHL move from 285 FNL & 850 FEL to 438 FNL & 764 FEL, both 21-23S-33E BHL move from 2630 FNL & 1340 FEL, 28-23S-33E to 20 FSL & 2105 FEL, 33-23S-33E TVD/MD change from 10,138'/17,625' Bone Spring to 12,600'/28,248' Wolfcamp								
14 I hereby certify that the foregoing is	by yolanda mutad charact.	Jun	Γ	-25/1	5 11-27-1				
	Electronic Submission #4 For DEVON ENER(Imitted to AFMSS for proce	SY PRODUCT	ON COM LP, sen SCILLA PEREZ on	t to the Hobi 11/15/2019 (05 (20PP0392SE)				
Name (Printed/Typed) REBECCA					MPLIANCE PROFE	<u>SSI</u>			
Signature (Electronic S	THIS SPACE FO	R FEDER	Date 11/14/20		 SE	<u></u>			
1/2 12/1	\ \		ting I	≥m		Date 11/27/19			
Conditions of approval, if any, are attached certify that the applicant holds legal or equ	Approved By Date 11/2 11 Conditions of approval, if any, are attached. Approval of this notice does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.								
Title 18 U.S.C. Section 1001 and Title 43 States any false, fictitious or fraudulent s	U.S.C. Section 1212, make it a tatements or representations as	crime for any p to any matter w	erson knowingly and ithin its jurisdiction.	willfully to ma	ke to any department or a	agency of the United			
(Instructions on page 2) ** BLM REV	SED ** BLM REVISED	+* BLM R	EVISED ** BLM	REVISED	** BLM REVISED	··· KZ			

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Devon Energy Production Company, LP
LEASE NO.:	NMNM94186
WELL NAME & NO.:	121H-Thistle Unit
SURFACE HOLE FOOTAGE:	438'/N & 764'/E
BOTTOM HOLE FOOTAGE	20'/N & 2105'/E
LOCATION:	Section 21, T.23 S., R.33 E., NMPM
COUNTY:	Lea County, New Mexico

COA

H2S	Yes	C No	
Potash	None	C Secretary	⊂ R-111-P
Cave/Karst Potential	• Low	C Medium	
Cave/Karst Potential	Critical		
Variance		Flex Hose	C Other
Wellhead	Conventional	Multibowl	∩ Both
Other	☐ 4 String Area	Capitan Reef	☐ WIPP
Other	Fluid Filled	Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	ГСОМ	🔽 Unit

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Wolfcamp** formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

- 1. The 13-3/8 inch surface casing shall be set at approximately 1450 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after

completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:

Option 1 (Single Stage):

- Cement to surface. If cement does not circulate see B.1.a, c-d above.
- Cement excess is below 25%. More cement might be required.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
 - Cement excess is below 25%. More cement might be required.

Operator has proposed to pump down 13-3/8" X 7-5/8" annulus. <u>Operator must run</u> a CBL from TD of the 7-5/8" casing to surface. Submit results to BLM.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
 - Cement excess is below 25%. More cement might be required.

Alternate Casing Design:

ŧ

- 4. The 13-3/8 inch surface casing shall be set at approximately 1450 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

5. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- c. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- d. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Operator has proposed to pump down 13-3/8" X 8-5/8" annulus. <u>Operator must run</u> a CBL from TD of the 8-5/8" casing to surface. Submit results to BLM.

Operator is approved to drill 10.625" hole for Intermediate 1 with BTC connection.

- 6. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

Yolanda Jimenez

D. SPECIAL REQUIREMENT (S)

Unit Wells

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

Commercial Well Determination

1

A commercial well determination shall be submitted after production has been established for at least six months.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> <u>hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including

lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, no tests shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

1. Component and Preventer Compatibility Table

The table below, which covers the drilling and casing of the 10M MASP portion of the well, outlines the tubulars and the compatible preventers in use. This table, combined with the mud program, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Component	OD	Preventer	RWP
Drillpipe	4.5"	Fixed lower 4.5" Upper 4.5-7" VBR	10M
HWDP	4.5"	Fixed lower 4.5" Upper 4.5-7" VBR	10M
Drill collars and MWD tools	4.75"	Upper 4.5-7" VBR	10M
Mud Motor	4.75"	Upper 4.5-7" VBR	10M
Production casing	5.5"	Upper 4.5-7" VBR	10M
ALL	0-13-5/8"	Annular	5M
Open-hole	-	Blind Rams	10M

6-3/4" Production hole section, 10M requirement

VBR = Variable Bore Ram. Compatible range listed in chart.

2. Well Control Procedures

Well control procedures are specific to the rig equipment and the operation at the time the kick occurs. Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. The pressure at which control is swapped from the annular to another compatible ram is variable, but the operator will document in the submission their operating pressure limit. The operator may chose an operating pressure less than or equal to RWP, but in no case will it exceed the RWP of the annular preventer.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in Well (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram.

1 Drilling Plan

Devon Energy Annular Preventer Summary

General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full opening safety valve and close
- 3. Space out drill string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to the upper pipe ram.

General Procedure While Running Casing

- 1. Sound alarm (alert crew)
- 2. Stab crossover and full opening safety valve and close
- 3. Space out string
- 4. Shut-in (uppermost applicable BOP, typically annular preventer first. HCR and choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP and SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach the RWP of the annular preventer, confirm spacing and swap to compatible pipe ram.

General Procedure With No Pipe In Hole (Open Hole)

- I. Sound alarm (alert crew)
- 2. Shut-in with blind rams or BSR. (HCR and choke will already be in the closed position.)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

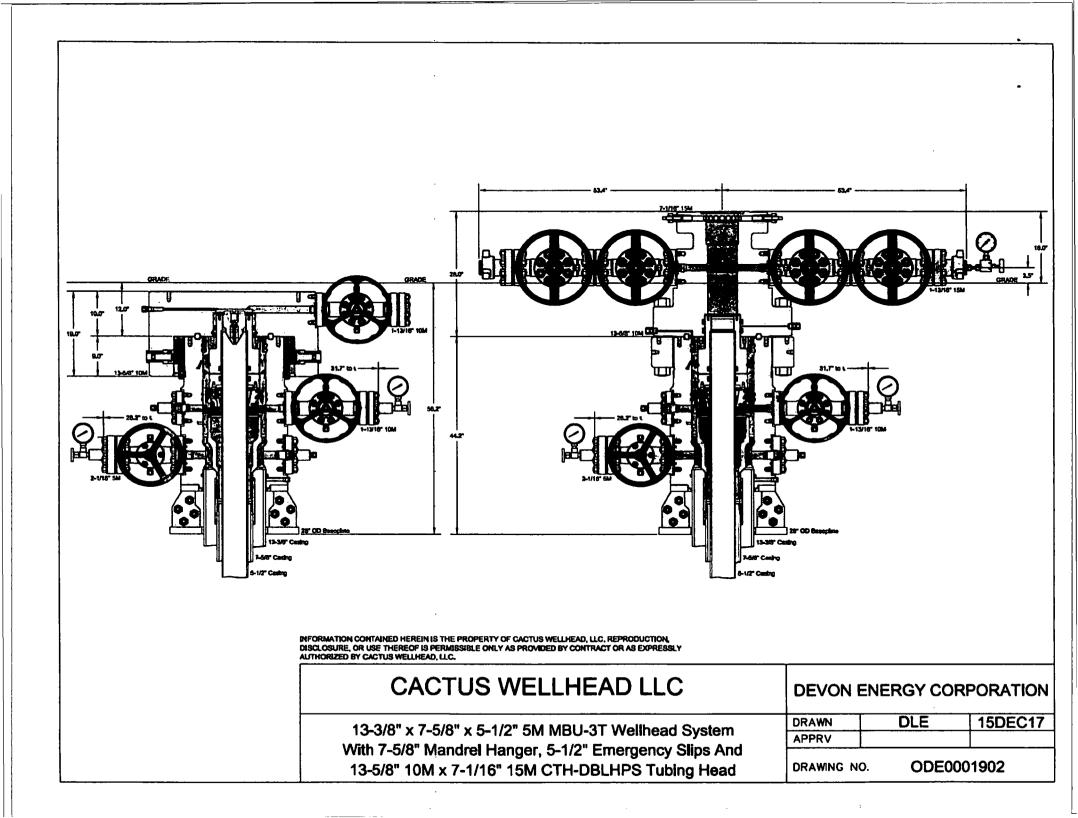
Devon Energy Annular Preventer Summary

General Procedures While Pulling BHA thru Stack

- 1. PRIOR to pulling last joint of drillpipe thru the stack.
 - a. Perform flowcheck, if flowing:
 - b. Sound alarm (alert crew)
 - c. Stab full opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper pipe ram.
 - e. Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full opening safety valve and close
 - c. Space out drill string with upset just beneath the compatible pipe ram.
 - d. Shut-in using compatible pipe ram. (HCR and choke will already be in the closed position.)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combo immediately available.
 - a. Sound alarm (alert crew)
 - b. If possible to pick up high enough, pull string clear of the stack and follow "Open Hole" scenario.
 - c. If impossible to pick up high enough to pull the string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe, and full opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper pipe ram.
 - f. Shut-in using upper pipe ram. (HCR and choke will already be in the closed position.)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP and SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Devon proposes using a multi-bowl wellhead assembly. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.


- Wellhead will be installed by wellhead representatives.
- If the welding is performed by a third party, the wellhead representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- Wellhead representative will install the test plug for the initial BOP test.
- Wellhead company will install a solid steel body pack-off to completely isolate the lower head after cementing intermediate casing. After installation of the pack-off, the pack-off and the lower flange will be tested to 5M, as shown on the attached schematic. Everything above the pack-off will not have been altered whatsoever from the initial nipple up. Therefore the BOP components will not be retested at that time.
- If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head will be cut and top out operations will be conducted.
- Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating.
- Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.

After running the surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system and will undergo a 250 psi low pressure test followed by a 5,000 psi high pressure test. The 5,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

After running the intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 10M will be installed and tested, with 5M annular being tested to 100% of rated working pressure.

The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 10,000 psi WP.

Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.

1. Geologic Formations

TVD of target	12600	Pilot hole depth	N/A
MD at TD:	28248	Deepest expected fresh water	

Basin

٩

a

Formation	Depth (TVD) from KB	Water/Mineral Bearing/Target Zone?	Hazards*
Rustler	1365		·····
			· · · · · · · · · · · · · · · · · · ·
Salt	1869		
Base of Salt	5180		
Delaware	5214		
Bone Spring 1st	9095		
Bone Spring 2nd	10466		
Bone Spring 3rd	11308		
Wolfcamp	12285		
			· · · · · · · · · · · · · · · · · · ·
		· · · · ·	
· · · · · · · · · · · · · · · · · · ·			

.

.

*H2S, water flows, loss of circulation, abnormal pressures, etc.

Thistle Unit 121H

Hole Size	Casin	g Interval	Csg. Size	Wt	Grade	Conn	Min SF	Min SF	Min SF			
HUIC SIZE	From	To	Cag. Size	(PPF)	(PPF) Grade		7) Grade Coun		Collapse	Burst Tensi		1
17 1/2	0	1390 TVD	13 3/8	48.0	H40	STC	1.125	1.25	1.6			
9 7/8	0	11308 TVD	7 5/8	29.7	P110	Flushmax III	1.125	1.25	1.6	Fluid		
6 3/4	0	TD	5 1/2	20.0	P110	Vam SG	1.125	1.25	1.6			
	L			BLM N	linimum Sa	fety Factor	1.125	1	1.6 Dry 1.8 Wet	1		

2. Casing Program (Primary Design)

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.

• Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.

• A variance is requested for collapse rating on intermediate casing. Operator will keep pipe full while running casing.

• Int casing shoe will be selected based on drilling data/gamma, setting depth with be revised accordingly if needed.

• A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.

• A variance is requested to set intermediate casing in the curve if hole conditions dictate that a higher shoe strength is required.

Hole Size		, Interval		Wt	Crede	Conn	Min SF	Min SF	Min SF
Hole Size	From	To	Csg. Size	(PPF)	Grade	Conn	Collapse	Burst	Tension
17 1/2	0	1390 TVD	13 3/8	48.0	H40	STC	1.125	1.25	1.6
9 7/8	0	11308 TVD	8 5/8	32.0	P110	TLW	1.125	1.25	1.6
7 7/8	0	TD	5 1/2	17.0	P110	BTC	1.125	1.25	1.6
		-		BLM N	/inimum Sai	fety Factor	1.125	1	1.6 Dry 1.8 Wet

Casing Program (Alternative Design)

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.

• Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.

• A variance is requested for collapse rating on intermediate casing. Operator will keep pipe full while running casing.

• Int casing shoe will be selected based on drilling data/gamma, setting depth with be revised accordingly if needed.

• A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.

LK

• A variance is requested to set intermediate casing in the curve if hole conditions dictate that a higher shoe strength is required.

Thistle Unit 121H

3

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specificition sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	Ň
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program	(Primary Des	<u>ugn)</u>			
Casing	# Sks	тос	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description
Surface	1044	Surf	13.2	1.44	Lead: Class C Cement + additives
• • •	745	Surf	9	3.27	Lead: Class C Cement + additives
Int 1 Tement less than 2	5% 783	4000' above shoe	13.2	1.44	Tail: Class H / C + additives
excess	887	Surf	9	3.27	1st stage Lead: Class C Cement + additives
Int 1 Two Stage	93	500' above shoe	13.2	1.44	1 st stage Tail: Class H / C + additives
w/ DV @ TVD of Delaware	513	Surf	9	3.27	2nd stage Lead: Class C Cement + additives
	93	500' above DV	13.2	1.44	2nd stage Tail: Class H / C + additives
Int 1	As Needed	Surf	9	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	745	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	783	4000' above shoe	13.2	1.44	Tail: Class H / C + additives
Less-than 25%	60	10130	9.0	3.3	Lead: Class H /C + additives
Production excess	1028	12130	13.2	1.4	Tail: Class H / C + additives

ΰK

3. Cementing Program (Primary Design)

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

Thistle Unit 121H

J. Cementing I togram	a (Alternative Design)							
Casing	# Sks	тос	Wt. ppg	Yld (ft3/sack)	Slurry Description			
Surface	1044	Surf	13.2	1.44	Lead: Class C Cement + additives			
hess than 25%	499	Surf	9	3.27	Lead: Class C Cement + additives			
tx ress	465	4000' above shoe	13.2	1.44	Tail: Class H / C + additives			
	521	Surf	9	3.27	1st stage Lead: Class C Cement + additives			
Int 1 Two Stage	55	500' above shoe	13.2	1.44	1st stage Tail: Class H / C + additives			
w DV @ ~4500	363	Surf	9	3.27	2nd stage Lead: Class C Cement + additives			
	55	500' above DV	13.2	1.44	2nd stage Tail: Class H / C + additives			
Int 1	As Needed	Surf	13.2	1.44	Squeeze Lead: Class C Cement + additives			
Intermediate	499	Surf	9	3.27	Lead: Class C Cement + additives			
Squeeze	465	4000' above shoe	13.2	1.44	Tail: Class H / C + additives			
Int 1 (10.625" Hole Size)	696	Surf	9	3.27	Lead: Class C Cement + additives			
	768	4000' above shoe	13.2	1.44	Tail: Class H / C + additives			
Less than 25%	117	10130	9.0	3.3	Lead: Class H /C + additives			
Production FxCeSS	2133	12130	13.2	1.4	Tail: Class H / C + additives			

3. Cementing Program (Alternative Design)

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

Thistle Unit 121H

BOP installed and tested before drilling which hole?	Size?	Min. Require d WP	Т	ype	1	Tested to:		
			Annular		Annular X			
Int 1	13-58"	5M	Blin	d Ram	X			
Int i	13-30	JIVI	Pipe	e Ram		5M		
			Doub	ole Ram	X			
			Other*					
	13-5/8"	1 0M	Annular (SM)		x	100% of rated workin pressure		
Production			Blind Ram		X			
Troduction			10141		Pipe	e Ram		10M
			Doub	ole Ram	X			
			Other*					
			Annul	ar (5M)				
		{	Blin	d Ram				
			Pipe Ram					
			Doub	le Ram				
			Other*					
A variance is requested for	A variance is requested for the use of a diverter on the surface casing. See attached for schematic.							
A variance is requested to	run a 5 M an	nular on a	10M system					

4. Pressure Control Equipment (Three String Design)

Devon Internal

.

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	
	PVT/Pason/Visual Monitoring
and will be abee to include: and tobe of Brain of Indian	

6. Logging and Testing Procedures

Logging, C	Coring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
X	Completion Report and sbumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Addition	al logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfly what type and where?
BH pressure at deepest TVD	6880
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrog	ren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations
greater	than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is
encount	tered measured values and formations will be provided to the BLM.
N	H2S is present
Y	H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).

 3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.

- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan Other, describe

Devon - internati

WCDSC Permian NM

Lea County (NAD83 New Mexico East) Sec 21-T23S-R33E Thistle Unit 121H

Wellbore #1

Plan: Permit Plan 1

Standard Planning Report - Geographic

12 November, 2019

Database: Company: Project: Site: Well: Wellbore: Design: Project	WCD Lea (Sec 2 Thist Wellt Perm	21-T23S-R33E le Unit 121H pore #1 lit Plan 1	M I New Mexico E		TVD Refe MD Refer North Re	ence:		Well Thistle Unit RKB @ 3749.20 RKB @ 3749.20 Grid Minimum Curvat	ht ht	
Map System: Geo Datum: Map Zone:	US Stat North A	te Plane 1983 merican Datum zxico Eastern Z	1983	,	System Da	tum:	M	ean Sea Level		
Site	Sec 2	1-T23S-R33E					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
Site Position: From: Position Uncerta	Ma Inty:	•	North Easti 0.00 ft Slot I	-		2,758.13 usft 2,310.54 usft 13-3/16 "	Latitude: Longitude: Grid Converg	jence:		32.297473 -103.585816 0.40 *
Well	Thistle	Unit 121H								
Well Position Position Uncerta	+N/-S +E/-W inty		0.00 ft E	orthing: asting: fellhead Elev	ation:	472,353.0 776,816.8	4 usft Loi	itude: ngitude: pund Level:		32.296272 -103.571243 3,724.20 ft
Wellbore	Wellb	ore #1								
Magnetics	M	odel Name	Samp	le Date	Declini (*)		-	Angte ")		trength T)
	<u></u>	IGRF2015	·	11/12/2019		6.70		60.10	47,7	31.28337678
Design Audit Notes:	Permit	Plan 1								
Version:			Phas	ю:	PROTOTYPE	Tie	e On Depth:	1	0.00	
Vertical Section:			Depth From (T (ft) 0.00	VD)	+N/-S (ft) 0.00		EJ-W (ft) 1.00		ection (*) 4.53	
Plan Survey Tool	Program	Date	11/12/2019		•••••••••••	· · · · · · · · · · · · · · · · · · ·		· ·		······································
Depth From (ft)	•	th To	(Wellbore)		Tool Name		Remarks			
1 0	.00 28,	247.52 Permit	Plan 1 (Wellbo	re #1)	MWD+HDGN OWSG MWD					
Plan Sections				<u> </u>	- <u></u> -	·	<u></u>			
Measured	nclination (°)	Azimuth (*)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (*/100usft)	Build Rate (*/100usft)	Turn Rate ("/100usft)	TF0 (")	Target
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,800.00	0.00	0.00	1,800.00	0.00		0.00	0.00	0.00	0.00	
2,667.19	8.67	286.14	2,663.88	18.21		1.00	1.00	0.00	286.14	
11,201,95	8.67	286,14	11,101,08	375.86	-	0.00	0.00	0.00	0.00	
11,780.08	0.00	0.00	11,677.00	388.00		1.50	-1.50	0.00	180.00	
12,130.12	0.00	0.00	12,027.04	388.00	-	0.00	0.00	0.00	0.00	
13,030.12	90.00	179.56	12,600.00	-184.94		10.00	10.00	0.00		BHL - Thistle Unit 12
28,247.52	90.00	179.56	12,600.00	-15,401,89	-1,219.91	0.00	0.00	0.00	U.UU F	BHL - Thistle Unit 12

11/12/2019 8:29:14AM

.

ø

 Database:
 EDM r5000.141_Prod US

 Company:
 WCDSC Permian NM

 Project:
 Lea County (NAD83 New Mexico East)

 Site:
 Sec 21-T23S-R33E

 Well:
 Thistle Unit 121H

 Wellbore:
 Wellbore #1

 Design:
 Permit Plain 1

Planned Survey

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well Thistle Unit 121H RKB @ 3749.20ft RKB @ 3749.20ft Grid Minimum Curvature

Measured Depth	In alter attac	A1_ Ab	Vertical Depth	ANU 0	+E/-₩	Map Northing	Map Easting		
(ft)	Inclination (*)	Azimuth (*)	(ft)	+N/-S (ft)	+E/-W	(usit)	(usft)	Latitude	Longitude
0.0		0.00	0,00	0.00	0.00	472,353,00	776,816.84	32,296272	-103,571243
100.0		0.00	100.00	0.00	0.00	472,353.00	776,816.84	32.296272	-103.571243
200.0	0.00	0.00	200.00	0.00	0.00	472,353.00	776,816.84	32.296272	-103.571243
300.0	0.00	0.00	300.00	0,00	0.00	472,353.00	776,816.84	32.296272	-103,571243
400.0	0.00	0.00	400.00	0.00	0.00	472,353.00	776,816.84	32,296272	-103.571243
500.0	0.00	0.00	500.00	0.00	0.00	472,353.00	776,816.84	32,296272	-103.571243
600.0	0.00	0.00	600.00	0.00	0.00	472,353.00	776,816.84	32.296272	-103.571243
700.0	0.00	0.00	700.00	0.00	0.00	472,353.00	776,816.84	32.296272	-103.571243
800.0		0.00	800.008	0.00	0.00	472,353.00	776,816.84	32,296272	-103.571243
900.0		0.00	900.00	0.00	0.00	472,353.00	776,816.84	32.296272	-103.571243
1,000.0		0.00	1,000.00	0.00	0.00	472,353.00	776,816.84	32.296272	-103.571243
1,100.0		0.00	1,100.00	0.00	0.00	472,353.00	776,816.84	32.298272	-103.571243
1,200.0		0.00	1,200.00	0.00	0.00	472,353.00	776,816.84	32.298272	-103.571243
1,300.0		0.00	1,300.00	0.00	0.00	472,353.00	776,816.84	32.298272	-103.571243
1,400.0		0.00	1,400.00	0.00	0.00	472,353.00	776,816.84	32.296272	-103.571243
1,500.0		0.00	1,500.00	0.00	0.00	472,353.00	776,816.84	32.296272	-103.571243
1,600.0		0.00	1,600.00	0.00	0.00	472,353.00	776,816.84	32.296272	-103.571243
1,700.00		0.00	1,700.00	0.00	0.00	472,353.00	776,816.84	32.296272 32.296272	-103.571243
1,800.0		0.00 286.14	1,800.00 1,899,99	0.00 0.24	0.00 -0.84	472,353.00 472,353 <u>.</u> 24	776,816.84	32.296272	-103.571243 -103.571245
2,000.04		286,14	1,099.99	0.24 0.97	-0.84 -3.35	472,353,24 472,353,97	776,816.00 776,813.48	32.296274	-103.571253
2,000.04		286.14	2,099.86	2,18	-5.55	472,355,18	776,809.29	32,296278	-103.571287
2,100.00		286.14	2,099.88	3.88	-13.41	472,355.18	776,803.43	32.296283	-103.571286
2,300.00		288.14	2,783.00	6.06	-20.94	472,359.08	776,795.89	32.296289	-103.571310
2,400.00		286,14	2,398.90	8.72	-30,15	472,358.08	776,788.69	32.296296	-103.571340
2,500.00		286.14	2,498.26	11,87	-41.02	472,364.87	776,775.81	32,296305	-103.571375
2,600.00		288.14	2,597.40	15.50	-53,56	472,368.50	776,763.27	32.296315	-103.571416
2,667.19		286,14	2,663.88	18.21	-62,92	472,371,21	776,753.92	32,296323	-103.571448
2,700.00		286.14	2,696.32	19.58	-87.67	472,372.58	776,749.17	32,296327	-103.571461
2,800.00		286.14	2,795.17	23.77	-82.16	472,376,77	776,734.68	32.296339	-103.571508
2,900.00	8.67	286.14	2,894.03	27.96	-96.64	472,380.96	776,720.20	32.296351	-103.571555
3,000.00	8.67	286.14	2,992.89	32.15	-111.12	472,385.15	776,705.72	32,296362	-103.571601
3,100.00	8.67	286.14	3,091.75	36.34	-125.61	472,389.34	776,691,23	32,298374	-103.571648
3,200.00	8.67	286,14	3,190.60	40.53	-140.09	472,393.53	776,676.75	32,296386	-103.571695
3,300.04) 8.67	286.14	3,289.48	44.72	-154.57	472,397.72	776,662.26	32,296398	-103.571742
3,400.00		286.14	3,388.32	48.91	-169.06	472,401.91	776,647.78	32.296410	-103.571788
3,500.00		286,14	3,487,17	53,10	-183,54	472,408,11	776,633,30	32,298421	-103.571835
3,600.00		286.14	3,586.03	57.30	-188.02	472,410.30	776,618.81	32.296433	-103.571882
3,700.00		286.14	3,684.89	61.49	-212.51	472,414.49	776,604.33	32.298445	-103.571929
3,800.00		286.14	3,783.74	65.68	-226.99	472,418.68	776,589.85	32.296457	-103.571976
3,900.00		288.14	3,882.60	69.87	-241.47	472,422.87	776,575.38	32.296469	-103.572022
4,000.00		286.14	3,981.46	74.06	-255.96	472,427.06	776,560.88	32,296480	-103.572069
4,100.00		288.14	4,080.31 4,179,17	78.25	-270.44 -284.92	472,431.25 472,435,44	776,546.40 776,531.91	32.296492 32.296504	-103.572118
4,200.00		286.14	• •	82.44	-204.92 -299.41	472,439.63	776,517,43		-103.572163 -103.572209
4,300.00		286.14	4,278.03	86.63				32.296516	
4,400.00		286.14 286.14	4,376.88 4,475.74	90.82 95.01	-313.89 -328.38	472,443.82 472,448.01	776,502.95 776,488.46	32.296528 32.296539	-103.572256 -103.572303
4,500.00		286,14	4,475.74 4,574.60	95.01 99.20	-320.30 -342.86	472,448.01	776,473.98	32.296551	-103.572303
4,800.00		286.14	4,574.60 4,673.45	103.39	-342.88	472,452.20	776,459.50	32.296563	-103.572397
4,700.00		286.14	4,772.31	103.55	-357.34	472,460.58	776,445.01	32,296575	-103.572443
4,900.00		286.14	4,871.17	111.77	-386.31	472,464.77	776,430.53	32,296587	-103.572490
5,000.00		286.14	4,970.02	115.96	-400.79	472,468.96	776,416.05	32.296598	-103.572537
5,100.00		286.14	5,068.88	120.15	-415.28	472,473.15	776,401.56	32,296610	-103.572584
5,200.00		286.14	5,167.74	124.35	-429.76	472,477.35	776,387.08	32.296622	-103.572630
5,300.00		286,14	5,266.59	128.54	-444,24	472,481.54	776,372.60	32.296634	-103.572677

11/12/2019 8:29:14AM

Page 3

Database: EDM r5000.141_Prod US Local Co-ordinate Reference: WCDSC Permian NM Company: **TVD Reference:** Project: Lea County (NAD83 New Maxico East) MD Reference: Site: Sec 21-T23S-R33E North Reference: Grid Well: Thistle Unit 121H Survey Calculation Method: Wellbore: Wellbore #1 Design: Permit Plan 1

Well Thistle Unit 121H RKB @ 3749.20ft RKB @ 3749.20ft Minimum Curvature

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(ft)	(*)	(*)	(ft)	(ft)	(ft)	(usit)	(usit)	Latitude	Longitude
5,400.00	8.67	286.14	5,385,45	132.73	-458.73	472,485,73	776,358,11	32.296646	-103,5727
5,500.00	8.67	286.14	5,464.31	136.92	-473.21	472,489,92	776,343.63	32,296657	-103.5727
5,600.00	8.67	286.14	5,563,17	141.11	-487.69	472,494.11	776,329.14	32.296669	-103.5728
5,700.00	8.67	286.14	5,682.02	145.30	-502.18	472,498.30	776,314.66	32,296681	-103.5728
5,800,00	8.67	286,14	5,760,88	149.49	-516,66	472,502,49	776,300.18	32.296693	-103.5729
5,900.00	8.67	286.14	5,859.74	153.68	-531.14	472,508,68	776,285.69	32,298705	-103,5729
8,000.00	8.67	286.14	5,958,59	157.87	-545.63	472,510.87	776,271,21	32.296716	-103.5730
6,100.00	8.67	286.14	6,057.45	162.06	-560,11	472,515.06	776,256.73	32.296728	-103,5730
6,200.00	8.67	286.14	6,156.31	166.25	-574.59	472,519,25	776,242.24	32,296740	-103,5730
6,300.00	8.67	286.14	6,255,16	170.44	-589.08	472,523,44	776,227.76	32,298752	-103.5731
6,400.00	8.67	288.14	6,354.02	174.63	-603.56	472,527.63	776,213.28	32.296764	-103.5731
6,500.00	8.67	286.14	6,452.88	178.82	-618.05	472,531.82	776,198.79	32.296775	-103.5732
6,600.00	8.67	286,14	6,551.73	183.01	-632.53	472,536.01	776,184.31	32,296787	-103.5732
6,700.00	8.67	286.14	6,650,59	187.20	-647.01	472,540,20	776,169.83	32.296799	-103.5733
6,800.00	8.67	286.14	6,749.45	191.39	-661.50	472,544.39	776,155.34	32.296811	-103.5733
6,900.00	8.67	286.14	6,848.30	195.59	-675.98	472,548,59	776,140.86	32.296823	-103.5734
7,000.00	8.67	286.14	6,947.16	199,78	-690,46	472,552.78	776,126.38	32,296834	-103.5734
7.100.00	8.67	286.14	7,046.02	203.97	-704.95	472,556.97	776,111.89	32.296846	-103.573
7,200.00	8.67	286.14	7,144.87	208.16	-719.43	472,561,16	776,097.41	32.296858	-103.573
7,300.00	8.67	286.14	7,243.73	212.35	-733.91	472,565.35	776,082.93	32.296870	-103.573
7,400.00	8.67	286.14	7,342.59	216.54	-748,40	472,569,54	776,068,44	32,296882	-103,573
7,500.00	8.67	286.14	7,441.44	220.73	-762.88	472,573.73	776,053.96	32,296893	-103.573
7,600.00	8,67	286.14	7,540.30	224,92	-777,36	472,577,92	776,039.47	32.296905	-103.573
7,700.00	8.67	286.14	7,639.16	229.11	-791.85	472,582.11	776,024.99	32.296917	-103.573
7,800.00	8.67	286,14	7,738.01	233.30	-806,33	472,586.30	776,010.51	32,296929	-103.573
7,900.00	8.67	286.14	7,838.87	235.30	-820.81	472,590,49	775,998.02	32.296941	-103.573
8,000.00	8.67	286.14	7,935,73	241.68	-835.30	472,594.68	775,981.54	32.296952	-103.5739
8,100.00	8,67	286.14	8,034.59	241.88	-849,78	472,598.87	775,967.06	32,296984	-103.5739
8,200.00	8.67	286.14	8,133.44	250.08	-864.27	472,603,08	775,952.57	32.296976	-103.5740
8,300.00	8.67	286.14	8,232,30	254.25	-878.75	472,607,25	775,938.09	32.296988	-103.5740
8,400.00	8.67	286.14	8,331.16	254.25	-893.23	472,611,44	775,923.61	32.297000	-103.5741
8,500.00	8.67	286.14	8,430.01	258.44	-907.72	472,615.64	775,909.12	32.297000	-103.5741
8,600.00	8.67	286.14	-	266,83	-907.72	-	775,894.64	32,297023	
8,700.00	8.67	286,14	8,528.87	200.03	-922.20	472,619.83	775,880,16	32,297035	-103.5742 -103,5742
-	8.67	286,14	8,627.73			472,624.02	•		
8,800.00		266,14 286,14	8,726.58	275.21	-951.17 -965.65	472,628,21	775,865.67	32.297047	-103.5743
8,900.00	8.67		8,825.44	279.40		472,632.40	775,851.19	32.297059	-103.5743
9,000.00	8.67	286,14	8,924.30	283,59	-980,13	472,636,59	775,836.71	32.297070	-103.5744
9,100.00	8,67	286.14	9,023,15	287.78	-994.62	472,640.78	775,822.22	32,297082	-103.5744
9,200.00	8.67	286.14	9,122.01	291.97	-1,009.10	472,644.97	775,807.74	32,297094	-103.574
9,300.00	8.67	286.14	9,220.87	296.16	-1,023.58	472,649.16	775,793.26	32.297106	-103.574
9,400.00	8.67	286.14	9,319.72	300.35	-1,038.07	472,653.35	775,778.77	32,297118	-103.5745
9,500.00	8.67	286.14	9,418.58	304.54	-1,052.55	472,857.54	775,764,29	32.297129	-103.5746
9,600.00	8.67	286.14	9,517.44	308.73	-1,087.03	472,661.73	775,749.81	32.297141	-103.5746
9,700.00	8.67	286.14	9,616.29	312.92	-1,081.52	472,685.92	775,735.32	32.297153	-103.5747
9,800.00	8.67	286.14	9,715.15	317.11	-1,096.00	472,670.11	775,720.84	32.297165	-103.5747
9,900.00	8.67	286.14	9,814.01	321.30	-1,110.48	472,674,30	775,708.35	32,297177	-103.5748
10,000.00	8.67	286.14	9,912.88	325.49	-1,124.97	472,678.49	775,691.87	32.297188	-103.5748
10,100.00	8.67	286.14	10,011.72	329.68	-1,139.45	472,682.68	775,677.39	32.297200	-103.5749
10,200.00	8.67	286.14	10,110.58	333,88	-1,153.94	472,686.88	775,662.90	32.297212	-103.5749
10,300.00	8.67	286.14	10,209.43	338.07	-1,168.42	472,691.07	775,648.42	32.297224	-103.575(
10,400.00	8.67	286.14	10,308.29	342.26	-1,182.90	472,695.26	775,633.94	32.297236	-103.5750
10,500.00	8.67	286.14	10,407.15	346.45	-1,197.39	472,699.45	775,619.45	32.297247	-103.5751
10,600.00	8.67	286.14	10,506.01	350.64	-1,211.87	472,703.64	775,604.97	32,297259	-103,5751
10,700.00	8.67	286,14	10,604.86	354.83	-1,226.35	472,707.83	775,590.49	32.297271	-103.5752
10,800.00	8.67	286.14	10,703.72	359.02	-1,240.84	472,712.02	775,576.00	32,297283	-103.5752

11/12/2019 8:29:14AM

Planned Survey

Page 4

Database;	EDM r5000,141_Prod US	Local Co-ordinate Reference:	Well Thistle Unit 121H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3749.20ft
Project:	Lea County (NAD83 New Mexico East)	MD Reference:	RKB @ 3749.20ft
Site:	Sec 21-T23S-R33E	North Reference:	Grid
Well:	Thistle Unit 121H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permit Plan 1		

Planned Survey

4

•

Measured			Vertical			Мар	Мар		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(ft)	(*)	(7)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
10,900.00	8.67	286,14	10,802.58	363,21	-1,255.32	472,716.21	775,561.52	32.297295	-103.575297
11,000.00	8.67	286.14	10,901.43	367.40	-1,269.80	472,720.40	775,547.04	32.297308	-103.575343
11,100.00	8.67	288.14	11,000.29	371.59	-1,284.29	472,724.59	775,532.55	32.297318	-103.575390
11,200.00	8.67	286.14	11,099.15	375.78	-1,298.77	472,728.78	775,518.07	32.297330	-103.575437
11,201,95	8.67	286,14	11,101.08	375.86	-1,299.05	472,728.86	775,517.79	32.297330	-103,575438
11,300.00	7.20	286.14	11,198.18	379.63	-1,312.06	472,732.63	775,504.78	32.297341	-103.575480
11,400.00	5.70	286.14	11,297.55	382.75	-1,322.85	472,735.75	775,493.99	32.297350	-103.575515
11,500.00	4.20	286.14	11,397.17	385.15	-1,331.14	472,738.15	775,485.70	32,297356	-103.575541
11,600,00	2.70	286.14	11,496.99	386.82	-1,336.92	472,739.82	775,479.92	32,297361	-103,575560
11,700.00	1.20	286.14	11,596.92	387,77	-1,340,19	472,740.77	775,476.65	32.297364	-103.575571
11,780.08	0.00	0.00	11,677.00	388.00	-1,341.00	472,741.00	775,475.84	32.297364	-103.575573
11,800.00	0.00	0.00	11,696.92	388.00	-1,341.00	472,741.00	775,475.84	32.297364	-103.575573
11,900.00	0.00	0.00	11,796.92	388,00	-1,341.00	472,741.00	775,475.84	32.297364	-103.575573
12,000.00	0.00	0.00	11,898.92	388.00	-1,341.00	472,741.00	775,475.84	32.297364	-103.575573
12,100.00	0.00	0.00	11,998.92	388.00	-1,341.00	472,741.00	775,475.84	32.297384	-103.575573
12,130.12	0.00	0.00	12,027.04	388.00	-1,341.00	472,741.00	775,475.84	32.297384	-103.575573
	2130' MD, 50'							-	
12,200.00	6.99	179,56	12,096.75	383.74	-1,340.97	472,738.74	775,475.87	32.297353	-103.575573
12,300.00	16.99	179.56	12,194.44	363.00	-1,340.81	472,716.00	775,476.03	32.297298	-103.575573
12,371.00	24.09	179.56	12,260.89	338.11	-1,340.62	472,691.11	775,476.22	32.297227	-103.575573
FTP @ 12	-	' FNL, 2105' I							
12,400.00	26.99	179.56	12,287.05	325.61	-1,340.52	472,678.61	775,476.32	32.297193	-103.575573
12,500.00	36.99	179.56	12,371.76	272.70	-1,340.12	472,625.70	775,476.72	32.297047	-103.575573
12,600.00	46.99	179.56	12,445.99	205.89	-1,339.60	472,558.89	775,477.24	32.296864	-103.575573
12,700.00	56.99	179.56	12,507.50	127.21	-1,339,00	472,480.21	775,477.84	32.296647	-103.575573
12,800.00	66.99	179.56	12,554.40	39.04	-1,338.32	472,392.04	775,478.52	32.296405	-103.575573
12,900.00	76.99	179.56	12,585.29	-55.94	-1,337.60	472,297.08	775,479,24	32,296144	-103.575572 -103.575572
13,000.00 13,030,12	86.99 90.00	179.56 179,56	12,599.21 12,600.00	-154.83	-1,336.84 -1,336.61	472,198.17 472,168.06	775,480.00 775,480.23	32,295872 32,295789	-103.575572
13,100.00	90.00		12,600.00	-184.94	-1,336.07	472,098.18	775,480.77	32,295597	-103.575572
13,200.00	90,00	179,56 179,56	12,600.00	-254.82 -354.81	-1,335.30	472,058.18	775,481.54	32.295323	-103.575572
13,300.00	90.00	179.56	12,600.00	-454.81	-1,333.50	471,898.19	775,482.30	32.285048	-103.575572
13,400.00	90.00	179.56	12,600.00	-554.81	-1,333.77	471,798.19	775,483.07	32.294773	-103.575571
13,500,00	90.00	179.56	12,600.00	-654,81	-1,333.00	471,698.20	775,483,84	32,294498	-103.575571
13,600.00	90.00	179.56	12,600.00	-754.80	-1,332,24	471,598.20	775,484.60	32.294223	-103.575571
13,700.00	90.00	179.56	12,600.00	-854.80	-1,331.47	471,498.20	775,485.37	32.293948	-103.575571
13,800,00	90.00	179.56	12,600.00	-954.80	-1,330.70	471,398.21	775,486,14	32.293673	-103.575571
13,800,00	90.00	179,56	12,600.00	-1,054,79	-1,329.94	471,298,21	775.488.90	32,293398	-103,575570
14,000.00	90.00	179.56	12,600.00	-1,154.79	-1,329.17	471,198,21	775,487.67	32.293124	-103.575570
14,100.00	90.00	179.56	12,600.00	-1,254.79	-1,328.40	471,098.22	775,488.44	32.292849	-103.575570
14.200.00	90.00	179.56	12,600.00	-1,354,78	-1,327.64	470,998.22	775,489,20	32.292574	-103.575570
14,300.00	90.00	179.56	12,600.00	-1,454.78	-1,326.87	470,898.22	775,489.97	32,292299	-103,575570
14,400.00	90.00	179.56	12,600.00	-1,554.78	-1,326.10	470,798.22	775,490.74	32.292024	-103.575569
14,500.00	90.00	179.56	12,600.00	-1,654.78	-1,325.33	470,698.23	775,491.51	32.291749	-103.575569
14,600.00	90.00	179.56	12,600.00	-1,754.77	-1,324.57	470,598.23	775,492,27	32.291474	-103,575569
14,700.00	90.00	179.56	12,600.00	-1,854.77	-1,323.80	470,498.23	775,493.04	32,291199	-103,575569
14.800.00	90.00	179.56	12,600.00	-1,954.77	-1,323.03	470,398.24	775,493.81	32.290925	-103.575569
14,900.00	90.00	179.56	12,600.00	-2,054.76	-1,322.27	470,298.24	775,494.57	32.290650	-103.575568
15,000,00	90.00	179.56	12,600.00	-2,154.76	-1,321.50	470,198,24	775,495.34	32.290375	-103.575568
15,100.00	90,00	179,56	12,600.00	-2,254.76	-1,320.73	470,098.25	775,496.11	32,290100	-103.575568
15,200.00	90.00	179.56	12,600.00	-2,354.76	-1,319.97	469,998.25	775,496.87	32.289825	-103.575568
15,300.00	90.00	179.56	12,600.00	-2,454.75	-1,319.20	469,898.25	775,497.64	32.289550	-103.575568
15,400,00	90.00	179.56	12,600.00	-2,554.75	-1,318.43	469,798.26	775,498.41	32.289275	-103.575568
15,500.00	90.00	179,56	12,600.00	-2,654,75	-1,317.67	469,698.26	775,499.17	32,289001	-103.575567

11/12/2019 B:29:14AM

 Database:
 EDM r5000.141_Prod US

 Company:
 WCDSC Permian NM

 Project:
 Lea County (NAD83 New Mexico East)

 Sita:
 Sec 21-T23S-R33E

 Well:
 Thistie Unit 121H

 Wellbore:
 Wellbore #1

 Design:
 Permit Pian 1

Planned Survey

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Celculation Method; Well Thistie Unit 121H RKB @ 3749.20ft RKB @ 3749.20ft Grid Minimum Curvature

	Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
	(ft)	n	(*)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
	15,600,00	90.00	179.56	12,600.00	-2,754,74	-1,316.90	469,598,26	775.499.94	32.288726	-103,575587
	15,700.00	90.00	179.56	12,600.00	-2,854,74	-1,316.13	469,498.27	775,500,71	32,288451	-103,575587
	15,800.00	90.00	179.58	12,600.00	-2,954,74	-1,315.37	469,398.27	775,501.47	32.288176	-103.575587
	15,900.00	90.00	179.56	12,600.00	-3,054,73	-1,314,60	469,298.27	775,502,24	32,287901	-103.575587
	16,000.00	90.00	179.56	12,600.00	-3,154,73	-1,313.83	469,198.28	775,503,01	32.287626	-103,575566
	16,100.00	90.00	179.56	12,600.00	-3,254.73	-1,313.07	469,098.28	775,503.77	32.287351	-103.575568
	16,200.00	90.00	179.56	12,600.00	-3,354.73	-1,312.30	468,998.28	775,504.54	32.287076	-103.575566
	16,300.00	90.00	179.56	12,600.00	-3,454.72	-1,311.53	468,898.28	775,505.31	32.286802	-103.575566
	16,400.00	90.00	179,56	12,600.00	-3,554.72	-1,310.76	468,798,29	775,506.08	32,286527	-103,575586
	16,500.00	90.00	179.56	12,600.00	-3,654.72	-1,310.00	468,698.29	775,506.84	32.286252	-103.575565
	16,600.00	90.00	179.56	12,600.00	-3,754.71	-1,309.23	468,598.29	775,507.81	32.285977	-103.575565
	18,700.00	90.00	179.56	12,600.00	-3,854.71	-1,308.48	468,498.30	775, 5 08.38	32.285702	-103.575585
	16,800.00	90,00	179.56	12,600.00	-3,954,71	-1,307.70	468,398.30	775,509.14	32.285427	-103,575565
	16,900.00	90.00	179,56	12,600.00	-4,054.71	-1,306.93	468,298.30	775,509.91	32.285152	-103,575565
	17,000.00	90.00	179.56	12,600.00	-4,154.70	-1,306.16	468,198.31	775,510.68	32.284877	-103.575584
	17,100.00	90.00	179.56	12,600.00	-4,254.70	-1,305.40	468,098.31	775,511.44	32.284603	-103.575 5 84
	17,200.00	90.00	179,56	12,600.00	-4,354.70	-1,304,63	467,998.31	775,512.21	32.284328	-103.575 56 4
	17,300.00	90.00	179.56	12,600.00	-4,454.69	-1,303.86	467,898.32	775,512.98	32.284053	-103.575564
	17,400.00	90.00	179.56	12,600.00	-4,554.69	-1,303.10	467,798.32	775,513.74	32.283778	-103.575564
	17,500.00	90.00	179.56	12,600.00	-4,654.69	-1,302.33	467,698.32	775,514.51	32.283503	-103.575563
	17,600.00	90.00	179.56	12,600.00	-4,754.68	-1,301.56	467,598.33	775,515.28	32,283228	-103,575583
i.	17,692.00	90.00	179.56	12,600.00	-4,846.68	-1,300.86	467,508.33	775,515.98	32.282975	-103.575563
		ction @ 1769;	•	•						
	17,700.00	90.00	179.56	12,600.00	-4,854.68	-1,300.80	467,498.33	775,516.04	32.282953	-103.575583
	17,800.00	90.00	179.56	12,600.00	-4,954.68	-1,300.03	467,398.33	775,516.81	32.282678	-103.575563
	17,900.00	90.00	179.56	12,600.00	-5,054.68	-1,299.26	467,298.33	775,517.58	32.282404	-103.575583
	18,000.00	90.00	179.56	12,600.00	-5,154.67	-1,298.50	467,198.34	775,518.34	32.282129	-103.575562
	18,100.00	90.00	179.58	12,600.00	-5,254.87	-1,297.73	467,098.34	775,519.11	32,281854	-103.575562
	18,200.00	90.00	179,56	12,600.00	-5,354.87	-1,296.96	466,998.34	775,519.88	32,281579	-103.575562
	18,300.00		179.56	12,600.00	-5,454.66	-1,296.19	466,898,35	775,520.65	32,281304	-103.575562
	18,400.00 18,500.00	90.00 90.00	179.56 179.56	12,600.00 12,600.00	-5,554.66 -5,654.66	-1,295.43 -1,294.66	466,798.35 466,698.35	775,521.41 775,522.18	32.281029 32.280754	-103.575582 -103.575561
	18,600.00	90.00	179.56	12,600.00	-5,054.68 -5,754.68	-1,293.89	466,598.36	775,522.95	32.280480	-103,575561
	18,700.00	90.00	179.56	12,600.00	-5,854.65	-1,293.13	466,498,36	775,523.71	32,280205	-103,575561
	18,800.00	90.00	179.56	12,600.00	-5,954,65	-1,292.36	466,398,36	775,524.48	32.279930	-103,575561
	18,900.00	90.00	179.56	12,600.00	-6,054.65	-1,291.59	466,298.37	775,525.25	32.279655	-103,575561
	19,000.00	80.00	179.56	12,600,00	-6,154,64	-1,290.83	466,198,37	775,526.01	32.279380	-103.575560
	19,100.00	90.00	179.56	12,600,00	-6,254.64	-1,290.06	466,098,37	775,528.78	32.279105	-103,575560
1	19,200.00	90,00	179.56	12,600.00	-6,354,64	-1.289.29	465,998.38	775.527.55	32.278830	-103.575560
	19,300.00	90.00	179.56	12,600.00	-6.454.63	-1,288.53	465,898,38	775,528,31	32,278555	-103.575560
	19,400.00	90.00	179.56	12,600,00	-6,554,63	-1,287,76	465,798,38	775,529,08	32,278281	-103,575560
	19,500.00	90.00	179.56	12,600.00	-6,654.63	-1,286.99	465,698.38	775,529.85	32.278006	-103.575559
	19,600.00	90.00	179.56	12,800.00	-6,754.63	-1,286.23	465,598.39	775,530.61	32.277731	-103.575559
	19,700.00	90,00	179.56	12,600.00	-6,854.62	-1,285.46	465,498.39	775,531.38	32.277456	-103.575559
1	19,800,00	90.00	179,56	12,600.00	-6,954,62	-1,284.69	465,398.39	775,532,15	32,277181	-103,575559
	19,900.00	90.00	179.56	12,600.00	-7,054.62	-1,283.93	465,298.40	775,532.91	32,276906	-103,575559
1	20,000.00	90.00	179.56	12,600.00	-7,154.61	-1,283.16	465,198.40	775,533.68	32.276631	-103.575559
1	20,100.00	90.00	179.56	12,600.00	-7,254.61	-1,282.39	465,098.40	775,534.45	32.276356	-103,575558
	20,200.00	90.00	179.56	12,600.00	-7,354.61	-1,281.62	464,998.41	775,535.22	32,276082	-103,575558
1	20,300.00	90.00	179.56	12,600.00	-7,454,61	-1,280.86	464,898.41	775,535.98	32.275807	-103.575558
	20,400.00	90.00	1 79.56	12,600.00	-7,554,60	-1,280.09	484,798.41	775,536.75	32.275532	-103.575558
1	20,500.00	90.00	179.56	12,600.00	-7,654.60	-1,279.32	464,698.42	775,537.52	32.275257	-103.575558
1	20,600.00	90.00	179.56	12,600.00	-7,754.60	-1,278.56	464,598.42	775,538.28	32.274982	-103.575557
L	20,700.00	90.00	1 79.56	12,600.00	-7,854.59	-1,277.79	464,498.42	775,539.05	32,274707	-103.575557

11/12/2019 8:29:14AM

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Thistle Unit 121H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3749.20ft
Project:	Les County (NAD83 New Mexico East)	MD Reference:	RKB @ 3749.20ft
Site:	Sec 21-T23S-R33E	North Reference:	Grid
Well:	Thistle Unit 121H	Survey Calculation Method:	Minimum Curvature
Wellbore: Design:	Wellbore #1 Permit Plan 1	Survey Carculation Metricu.	

Planned	Survey
---------	--------

a

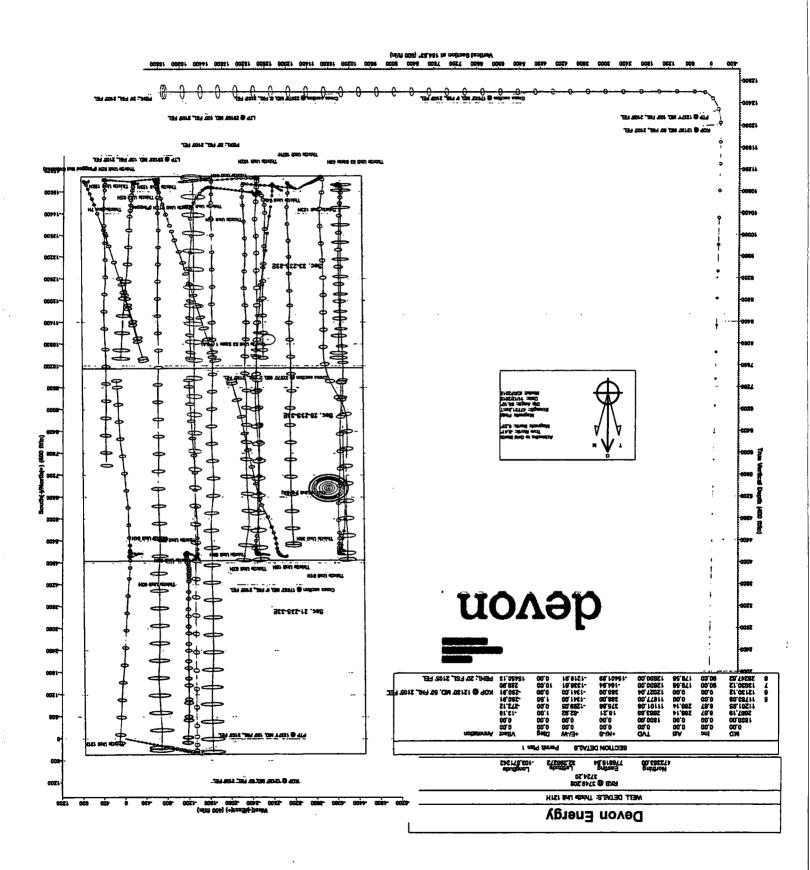
đ

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(ft)	(*)	(*)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
20,800.00		179.56	12,600.00	-7,954.59	-1,277.02	464,398,43	775,539,82	32,274432	-103,575557
20,900.00		179.56	12,600.00	-8,054.59	-1,276.26	464,298.43	775,540.58	32.274158	-103,575557
21,000.00		179.56	12,600.00	-8,154.58	-1,275.49	464,198.43	775,541.35	32.273883	-103,575557
21,100.00		179,56	12,600.00	-8,254.58	-1.274.72	464,098.44	775,542.12	32.273608	-103,575556
21,200.00		179,56	12,600.00	-8,354.58	-1,273,96	463,998.44	775,542.88	32.273333	-103,575556
21,300.00		179.58	12,600.00	-8,454.58	-1,273,19	463,898.44	775,543.65	32,273058	-103.575556
21,400.00		179.56	12,600.00	-8,554.57	-1,272.42	463,798.44	775,544.42	32.272783	-103.575556
21,500.00		179.56	12,600.00	-8,654,57	-1,271.68	463,698.45	775,545.18	32.272508	-103,575556
21,600.00		179.56	12,600.00	-8,754.57	-1,270.89	463,598,45	775.545.95	32.272233	-103,575555
21,700.00		179.56	12,600.00	-8,854.56	-1,270.12	463,498.45	775.546.72	32.271959	-103.575555
21,800.00		179.56	12,600.00	-8,954.56	-1,269.35	463,398.46	775,547.48	32.271684	-103.575555
21,900.00		179.56	12,600.00	-9,054.56	-1,268.59	463,298.46	775,548.25	32.271409	-103.575555
22,000.00	90.00	179.56	12,600.00	-9,154.56	-1,267.82	463,198.46	775,549.02	32.271134	-103,575555
22,100.00	90.00	179.56	12,600.00	-9,254.55	-1,267.05	463,098.47	775,549.79	32.270859	-103.575554
22,200.00	90.00	179,56	12,600.00	-9,354.55	-1,266.29	482,998.47	775,550.55	32.270584	-103.575554
22,300.00	90.08	179.56	12,600.00	-9,454.55	-1,265.52	462,898.47	775,551.32	32.270309	-103.575554
22,400.00	90.00	179,56	12,600.00	-9,554.54	-1,264.75	462,798.48	775,552.09	32,270034	-103.575554
22,500.00	90.00	179.56	12,600.00	-9,654.54	-1,263.99	462,698.48	775,552.85	32.269760	-103.575554
22,600.00	90.00	179.56	12,600.00	-9,754.54	-1,263.22	462,598.48	775,553.62	32.269485	-103.575553
22,700.00	90.00	179.56	12,600.00	-9,854.53	-1,262.45	462,498.49	775,554.39	32.269210	-103.575553
22,800.00	90,00	179.56	12,600.00	-9,954.53	-1,261.69	462,398.49	775,555.15	32,268935	-103.575553
22,900.00	90.00	179. 56	12,600.00	-10,054,53	-1,260.92	462,298.49	775,555.92	32.268660	-103.575553
22,970.00	90.00	179.56	12,600.00	-10,124.53	-1,260.38	462,228.49	775,556.46	32.268468	-103.575553
Cross a	ection @ 2297	0' MD, 0' FNL	, 2105' FEL						
23,000.00		179,56	12,600.00	-10,154.53	-1,260,15	462,198.49	775,558.89	32.268385	-103.575553
23,100.00		179.56	12,600.00	-10,254.52	-1,259.39	462,098.50	775,557.45	32.268110	-103.575552
23,200.00		179. 56	12,600.00	-10,354.52	-1,258.62	461,998.50	775,558.22	32.267835	-103.575552
23,300.00		179.56	12,600.00	-10,454.52	-1,257.85	461,898.50	775,558.99	32.267561	-103.575552
23,400.00		179.56	12,600.00	-10,554.51	-1,257.09	481,798.51	775,559.75	32,267286	-103.575552
23,500.00		179.56	12,600.00	-10,654.51	-1,256.32	461,698.51	775,560,52	32,267011	-103.575552
23,600.00		179.56	12,600.00	-10,754.51	-1,255.55	481,598.51	775,561.29	32.266738	-103.575551
23,700.00		179.56	12,600.00	-10,854.51	-1,254.78	461,498.52	775,582.05	32.266461	-103.575551
23,800.00		179,56	12,600.00	-10,954.50	-1,254.02	461,398.52	775,582.82	32,266186	-103.575551 -103.575551
23,900.00		179.56	12,600.00	-11,054,50	-1,253,25 -1,252,48	461,298.52 461,198.53	775,563.59 775,564.36	32.265911 32.265637	-103.575551
24,000.00		179.56 179.56	12,600.00 12,600.00	-11,154.50 -11,254.49	-1,252.46	461,098.53	775,565.12	32,265362	-103.575550
24,100.00		179,56	12,600.00	-11,354,49	-1,250.95	460,998.53	775,565.89	32,265087	-103.575550
24,300.00		179.56	12,600.00	-11,454,49	-1,250,18	460,898.54	775,566.66	32,264812	-103.575550
24,400.00		179.56	12,600.00	-11,554.48	-1,249.42	460,798.54	775,587.42	32.264537	-103.575550
24,500.00		179.56	12,600.00	-11,654.48	-1,248.65	460,698.54	775,568.19	32.264262	-103.575550
24,600.00		179.56	12,600.00	-11,754,48	-1,247.88	460,598.55	775,568,96	32,263987	-103.575549
24,700.00		179.56	12,600.00	-11,854.48	-1,247.12	460,498,55	775,569,72	32,263712	-103.575549
24,800.00		179,56	12,600.00	-11.954.47	-1,246.35	460,398.55	775,570.49	32,263438	-103.575549
24,900.00		179,56	12,600.00	-12,054.47	-1,245.58	460,298,55	775,571.26	32.263163	-103.575549
25,000.00		179,56	12,600,00	-12,154,47	-1,244.82	460,198.56	775,572.02	32,262888	-103.575549
25,100.00		179.56	12,600.00	-12,254.46	-1,244.05	460,098.56	775,572.79	32.262613	-103.575549
25,200.00		179.56	12,600.00	-12,354.48	-1,243,28	459,998.56	775,573,56	32.262338	-103.575548
25,300.00		179.56	12,600.00	-12,454.48	-1,242.52	459,898.57	775,574.32	32.262063	-103.575548
25,400.00		179,56	12,600.00	-12,554,46	-1,241.75	459,798.57	775,575.09	32,261788	-103,575548
25,500.00		179.56	12,600.00	-12,654,45	-1,240.98	459,698,57	775,575.88	32,261513	-103,575548
25,600.00		179.56	12,600.00	-12,754.45	-1,240.21	459,598.58	775,578.63	32.261239	-103.575548
25,700.00	90.00	179.56	12,600.00	-12,854.45	-1,239.45	459,498.58	775,577.39	32.260964	-103.575547
25,800.00		179.56	12,600.00	-12,954.44	-1,238.68	459,398.58	775,578.16	32.260689	-103.575547
25,900.00		179.56	12,600.00	-13,054.44	-1,237.91	459,298,59	775,578.93	32.260414	-103.575547
····									

11/12/2019 8:29:14AM

Database: Company:	EDM r5000.141_Prod US WCDSC Permian NM	Local Co-ordinate Reference: TVD Reference:	Well Thistle Unit 121H RKB @ 3749,20ft
Project:	Lea County (NAD83 New Mexico East)	MD Reference:	RKB @ 3749.20ft
Site:	Sec 21-T23S-R33E	North Reference:	Grid
Well:	Thistle Unit 121H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1	-	
Design:	Permit Plan 1		

Planned S	Burvey
-----------	--------


٩

Measure Depth (ft)	d Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
26,000	.00 90.00	179.56	12.600.00	-13,154,44	-1.237.15	459,198,59	775,579,69	32,260139	-103.575547
26,100		179.56	12,600.00	-13,254,43	-1,236,38	459,098,59	775.580.46	32.259884	-103.575547
26,200		179.56	12,600.00	-13,354.43	-1,235.61	458,998.60	775,581,23	32,259589	-103.575546
26,300		179.56	12.600.00	-13,454.43	-1,234.85	458,898.60	775.581.99	32.259314	-103.575546
26,400		179.56	12,600,00	-13,554,43	-1,234.08	458,798,60	775,582,76	32,259040	-103,575546
26,500		179.56	12,600.00	-13,654,42	-1.233.31	458,698,60	775.583.53	32,258765	-103.575546
26,600		179.56	12,600.00	-13.754.42	-1,232.55	458,598,61	775,584.29	32,258490	-103.575548
26,700		179.56	12,600.00	-13,854,42	-1,231,78	458,498.61	775,585.06	32,258215	-103.575545
26,800		179.58	12.600.00	-13,954,41	-1,231.01	458,398,61	775,585,83	32,257940	-103.575545
26,900	.00 90.00	179.56	12,600.00	-14,054.41	-1,230.25	458,298.62	775,586,59	32.257865	-103,575545
27,000	.00 90.00	179.58	12,600,00	-14,154,41	-1,229.48	458,198.62	775,587.38	32.257390	-103.575545
27,100	.00 90.00	179.56	12,600.00	-14,254.41	-1,228.71	458,098.62	775,588,13	32,257116	-103,575545
27,200	.00 90.00	179.56	12,600.00	-14,354.40	-1,227.95	457,998.63	775,588.89	32.256841	-103.575544
27,300	.00 90.00	179.56	12,600.00	-14,454.40	-1,227.18	457,898.63	775,589.66	32.256566	-103.575544
27,400	.00 90.00	179.56	12,600.00	-14,554.40	-1,226.41	457,798.63	775,590.43	32.256291	-103.575544
27,500	.00 90.00	179. 56	12,600.00	-14,654,39	-1,225.64	457,698.64	775,591,20	32.256016	-103.575544
27,600	.00 90.00	179.56	12,600.00	-14,754.39	-1,224,88	457,598.64	775,591,96	32,255741	-103.575544
27,700	.00 90.00	179.56	12,600.00	-14,854.39	-1,224.11	457,498.64	775,592.73	32.255466	-103.575543
27,800	.00 90.00	179.56	12,600.00	-14,954.39	-1,223.34	457,398.65	775,593.50	32.255191	-103.575543
27,900	.00 90.00	179.56	12,600.00	-15,054.38	-1,222.58	457,298.65	775,594.28	32.254917	-103.575543
28,000	.00 90.09	179,56	12,600.00	-15,154,38	-1,221.81	457,198.65	775,595.03	32,254642	-103,575543
28,100	.00 90.09	179.56	12,600.00	-15,254.38	-1,221.04	457,098.65	775,595.80	32,254367	-103.575543
28,168	.00 90.00	179.56	12,600.00	-15,322.37	-1,220.52	457,030.66	775,598.32	32.254180	-103.575542
LTP (28168' MD, 100	' FSL, 2105' F	el.						
28,200	00,08 00,0	179,56	12,600.00	-15,354.37	-1,220.28	456,998.66	775,596,56	32,254092	-103.575542
28,247	.51 90.00	179,56	12,600.00	-15,401.88	-1,219.91	456,951.15	775,598.93	32.253981	-103.575542
PBHI	.; 20' FSL, 2105' I	FEL							
28,247	52 90.00	179.56	12,600.00	-15,401.89	-1,219.91	456,951.14	775,596.93	32,253961	-103.575542

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (*)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/JW (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PBHL - Thistle Unit 121F - plan misses target - Point		0.00 00.00ft at 282	0.00 247.52ft ME	-15,401.89) (12600.00 T\	-1,219.91 /D, -15401.89 (456,951.14 N, -1219.91 E)	775,596.93	32.253961	-103.575542

Measured	Vertical	Local Coor	dinates	
Depth	Depth	+N/-S	+E/-₩	
(ft)	(ft)	(ft)	(ft)	Comment
12,130.12	12,027.04	388.00	-1,341.00	KOP @ 12130' MD, 50' FNL, 2105' FEL
12,371.00	12,260.89	338.11	-1,340.62	FTP @ 12371' MD, 100' FNL, 2105' FEL
17,692.00	12,600.00	-4,846.68	-1,300.86	Cross section @ 17692' MD, 0' FNL, 2105' FEI
22,970.00	12,600.00	-10,124.53	-1,260.38	Cross section @ 22970' MD, 0' FNL, 2105' FEI
28,168.00	12,600.00	-15,322.37	-1,220.52	LTP @ 28168' MD, 100' FSL, 2105' FEL
28,247,51	12,600.00	-15,401.88	-1,219,91	PBHL: 20' FSL, 2105' FEL

11/12/2019 8:29:14AM

