Form 3160-3 (June 2015)

UNITED STATES

KECEINED

FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018

DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT 0707 17 NY

APPLICATION FOR PERMIT TO DRILL OR REENTER

5. Lease Serial No. NMNM018848 6. If Indian, Allotee or Tribe Name

		990 S88	HOP		`
1a. Type of work: DRILL R	EENTE			7. If Unit or CA Agr	eement, Name and No.
1b. Type of Well: Oil Well Gas Well O	Other				
		ne Multiple Zone		8. Lease Name and \	
1c. Type of Completion: Hydraulic Fracturing	ingle Zo	me Multiple Zone		PURRITO 18-19 FI	= \
				211H	27016)
2. Name of Operator DEVON ENERGY PRODUCTION COMPANY LP	7)			9. API Well No.	46787
3a. Address	3b. Ph	one No. (include area cod	(e)	10. Field and Pool, o	
333 West Sheridan Avenue Oklahoma City OK 73102	(800)	583-3866		SAND DUNES / BO	NESPRING
4. Location of Well (Report location clearly and in accordance	with any	State requirements.*)		11. Sec., T. R. M. or	Blk. and Survey or Area
At surface NENW / 525 FNL / 1790 FWL / LAT 32.310	2777 /	LONG -103.7171674		SEC 18 / T23S / R3	B2E / NMP
At proposed prod. zone LOT 4 / 20 FSL / 1360 FWL / LA	AT 32.2	827577 / LONG -103.71	B5675		
14. Distance in miles and direction from nearest town or post off	fice*			12. County or Parish LEA	13. State NM
15. Distance from proposed* location to nearest property or lease line, ft.	16. No	o of acres in lease	17. Spacii 640	ng Unit dedicated to th	nis well
(Also to nearest drig, unit line, if any)	1934.		940		
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 702 feet		oposed Depth ofeet / 20483 feet		BIA Bond No. in file	
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3555 feet	22. A ₁	oproximate date work will /2019	start*	23. Estimated duration 45 days	on
	24.	Attachments		·	<u></u>
The following, completed in accordance with the requirements o (as applicable)	of Onsho	re Oil and Gas Order No. 1	I, and the F	lydraulic Fracturing ru	ale per 43 CFR 3162.3-3
Well plat certified by a registered surveyor. A Drilling Plan.		4. Bond to cover the ltem 20 above).	e operation	s unless covered by an	existing bond on file (see
3. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office	_	•		mation and/or plans as	may be requested by the
25. Signature (Electronic Submission)		Name <i>(Printed/Typed)</i> Jenny Harms / Ph: (405)	552-6560		Date 05/30/2019
Title Regulatory Compliance Professional					
Approved by (Signature) (Electronic Submission)		Name <i>(Printed/Typed)</i> Cody Layton / Ph: (575)2	234-5959		Date 12/23/2019
Title Assistant Field Manager Lands & Minerals		Office CARLSBAD			
Application approval does not warrant or certify that the applican	nt holds	legal or equitable title to the	nose rights	in the subject lease wh	nich would entitle the

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

GCP Rec UITIADON

applicant to conduct operations thereon. Conditions of approval, if any, are attached.

(Continued on page 2)

Froval Date: 12/23/2019

*(Instructions on page 2)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Devon Energy Production Company LP

LEASE NO.: | NMNM018848

WELL NAME & NO.: Purrito 18-19 Fed Com 211H

SURFACE HOLE FOOTAGE: | 525'/N & 1790'/W **BOTTOM HOLE FOOTAGE** | 20'/N & 480'/W

LOCATION: | Section 18, T.23 S., R.32 E., NMP

COUNTY: Lea County, New Mexico

H2S	Yes	No	
Potash	None	Secretary	R-111-P
Cave/Karst Potential	Low	Medium	High
Cave/Karst Potential	Critical		
Variance	None	Flex Hose	Other
Wellhead	Conventional	Multibowl	Both
Other	4 String Area	Capitan Reef	WIPP
Other	Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	Water Disposal	COM	Unit

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the Sand Dunes formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

- The 13-3/8 inch surface casing shall be set at approximately 1048 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of

- six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Operator has proposed to pump down 13-3/8" X 9-5/8" annulus. Operator must run a CBL from TD of the 9-5/8" casing to surface. Submit results to BLM.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Page 2 of 9

Cement excess is less than 25%, more cement might be required.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **2000 (2M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be 3000 (3M) psi.

Option 2:

- 1. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

Page 3 of 9

e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

Page 4 of 9

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - ☐ Eddy County
 Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - ☐ Lea County

 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 3933612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).

- b. When the operator proposes to set surface casing with Spudder Rig
- Notify the BLM when moving in and removing the Spudder Rig.
- Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
- BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.

Page 6 of 9

- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:

Page 7 of 9

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - a. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - b. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

Page 8 of 9

- c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- d. The results of the test shall be reported to the appropriate BLM office.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 9 of 9

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are

NAME: Jenny Harms Signed on: 05/24/2019

Title: Regulatory Compliance Professional

Street Address: 333 West Sheridan Avenue

City: Oklahoma City State: OK

Phone: (405)552-6560

Email address: jennifer.harms@dvn.com

Field Representative

Representative Name:

Street Address: 333 WEST SHERIDAN AVENUE

City: OKLAHOMA CITY

State: OK

Zip: 73102-5015

Zip: 73102

Phone: (405)552-4902

Email address: ray.vaz@dvn.com

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

APD ID: 10400042154

Submission Date: 05/30/2019

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: PURRITO 18-19 FED COM

Well Number: 211H

Well Type: OIL WELL

Well Work Type: Drill

Show Final Text

Section 1 - General

APD ID:

10400042154

Tie to previous NOS?

Submission Date: 05/30/2019

BLM Office: CARLSBAD

User: Jenny Harms

Title: Regulatory Compliance

Federal/Indian APD: FED

Professional Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM018848

Lease Acres: 1954.13

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? YES

Permitting Agent? NO

APD Operator: DEVON ENERGY PRODUCTION COMPANY LP

Operator letter of designation:

Operator Info

Operator Organization Name: DEVON ENERGY PRODUCTION COMPANY LP

Operator Address: 333 West Sheridan Avenue

Operator PO Box:

Zip: 73102

Operator City: Oklahoma City

State: OK

Operator Phone: (800)583-3866

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Master Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: PURRITO 18-19 FED COM

Well Number: 211H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: SAND DUNES

Pool Name: BONESPRING

Well Name: PURRITO 18-19 FED COM

Well Number: 211H

Is the proposed well in an area containing other mineral resources? POTASH

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO

New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name:

Number: 2

Well Class: HORIZONTAL

PURRITO 18 WELLPAD Number of Legs: 1

Well Work Type: Drill

Well Type: OIL WELL

Describe Well Type:

Well sub-Type: INFILL

Describe sub-type: Distance to town:

Distance to nearest well: 702 FT

Distance to lease line: 525 FT

Reservoir well spacing assigned acres Measurement: 640 Acres

Well plat:

PURRITO_18_19_FED_COM_211H_C102_5_24_2019_20190524123509.pdf

Well work start Date: 12/01/2019

Duration: 45 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number: 7277

Reference Datum:

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce from this lease?
SHL	525	FNL	179	FW	238	32E	18		32.31027			NEW	NEW	F	NMNM	355	0	0	
Leg			0	L				NENW	77			MEXI	MEXI		139370	5			ŀ
#1																			
КОР	200	FNL	136	FW	238	32E	18		32.31117			NEW	NEW	F	NMNM	-	981	979	
Leg			0	L				1	8			MEXI	MEXI		018848	623	6	2	
#1																7			
PPP	100	FNL	136	FW	238	32E	18		32.31143			NEW	NEW	F	NMNM	-	981	979	
Leg			0	L				1	91			MEXI	MEXI		018848	623	6	2	
#1-1																7			

Well Name: PURRITO 18-19 FED COM

Well Number: 211H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT	Will this well produce from this lease?
EXIT Leg #1	100	FSL	136 0	FW L	235	32E	19	4	32.28297 75			NEW MEXI	112		NMNM 018848	ı	204 02	103 66	
BHL Leg #1	20	FSL	136 0	FW L	238	32E	19	4	32.28275 77			NEW MEXI	14544		NMNM 018848	ı	204 83	103 66	

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

12/23/2019

APD ID: 10400042154

Submission Date: 05/30/2019

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: PURRITO 18-19 FED COM

Well Number: 211H

Well Type: OIL WELL

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
463909	UNKNOWN	3555	0	0	ALLUVIUM	NONE	N
463910	RUSTLER	2533	1023	1023	SALT	NONE	N
463915	TOP SALT	2206	1350	1350		NONE	N
463912	BASE OF SALT	-866	4422	4422	SALT	NONE	N
463913	DELAWARE	-1099	4655	4665	SANDSTONE	NATURAL GAS, OIL	N
463911	BONE SPRING	-6100	9656	9656	SANDSTONE	NATURAL GAS, OIL	N N
463914	BONE SPRING 2ND	-6706	10262	10262	SANDSTONE	NATURAL GAS, OIL	Ÿ
463916	BONE SPRING 3RD	-7956	11512	11512	SANDSTONE	NATURAL GAS, OIL	N
463917	WOLFCAMP	-8355	11911	11911	SANDSTONE	NATURAL GAS, OIL	N

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 6000

Equipment: BOP/BOPE will be installed per Onshore Oil & Gas Order #2 requirements prior to drilling below surface casing, a BOP/BOPE system with the above minimum rating will be installed on the wellhead system. BOP/BOPE will be tested by an independent service company per Onshore Oil & Gas Order #2 requirements and MASP (Maximum Anticipated Surface Pressure) calculations. If the system is upgraded, all the components installed will be functional and tested.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP stack to the choke manifold. See attached for specs for hydrostatic test chart.

Testing Procedure: A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Choke Diagram Attachment:

5M BOPE CK 20190516140732.pdf

Well Name: PURRITO 18-19 FED COM Well Number: 211H

5M_BOPE__CK_20190516140732.pdf

BOP Diagram Attachment:

5M_BOPE__CK_20190516140744.pdf

Pressure Rating (PSI): 5M

Rating Depth: 10366

Equipment: BOP/BOPE will be installed per Onshore Oil & Samp; Gas Order #2 requirements prior to drilling below intermediate casing, a BOP/BOPE system with the above minimum rating will be installed on the wellhead system. BOP/BOPE will be tested by an independent service company per Onshore Oil & Samp; Gas Order #2 requirements and MASP (Maximum Anticipated Surface Pressure) calculations. If the system is upgraded, all the components installed will be functional and tested.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP stack to the choke manifold. See attached for specs for hydrostatic test chart.

Testing Procedure: A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Choke Diagram Attachment:

5M_BOPE__CK_20190416143350.pdf

BOP Diagram Attachment:

5M_BOPE__CK_20190416143359.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1048	0	1048	-6768	-7557	1048	H-40	_	OTHER - BTC	1.12 5	1	BUOY	1.6	BUOY	1.6
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	6000	0	6000	-6768	- 11036		J-55			1.12 5	1	BUOY	1.6	BUOY	1.6
1 -	PRODUCTI ON	8.75	5.5	NEW	API	N	0	20483	0	10366	-6768	- 16768	20483	P- 110	l		1.12 5	1	BUOY	1.6	BUOY	1.6

Casing Attachments Casing ID: 1 **String Type:**SURFACE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Surf_Csg_Ass_20181126124403.pdf Casing ID: 2 String Type: INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Int_Csg_Ass_20181126124414.pdf Casing ID: 3 **String Type:**PRODUCTION **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Prod_Csg_Ass_20181126124428.pdf

Well Number: 211H

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: PURRITO 18-19 FED COM

Section 4 - Cement

Well Name: PURRITO 18-19 FED COM

Well Number: 211H

String Type	Lead/Tail	Stage Tool	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead					1.44					

INTERMEDIATE	Lead		3.3			
INTERMEDIATE	Tail					
PRODUCTION	Lead		3.3			
PRODUCTION	Tail					

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1048	OTHER : FW Gel	8.5	9				2			
1048	6000	OTHER : BRINE	10	10.5				2			

Well Name: PURRITO 18-19 FED COM Well Number: 211H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
6000	1036	WATER-BASED	8.5	9							
	6	MUD									

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will run GRMWD from TD to from KOP. Cement bond logs will be run in vertical to determine top of cement. Stated logs run will be in the completion report and submitted to the BLM.

List of open and cased hole logs run in the well:

CALIPER, CBL, DS, GR, MUDLOG

Coring operation description for the well:

N/A

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4851

Anticipated Surface Pressure: 2570.48

Anticipated Bottom Hole Temperature(F): 145

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Purrito_18_19_Fed_Com_211H H2S_20190524124402.pdf

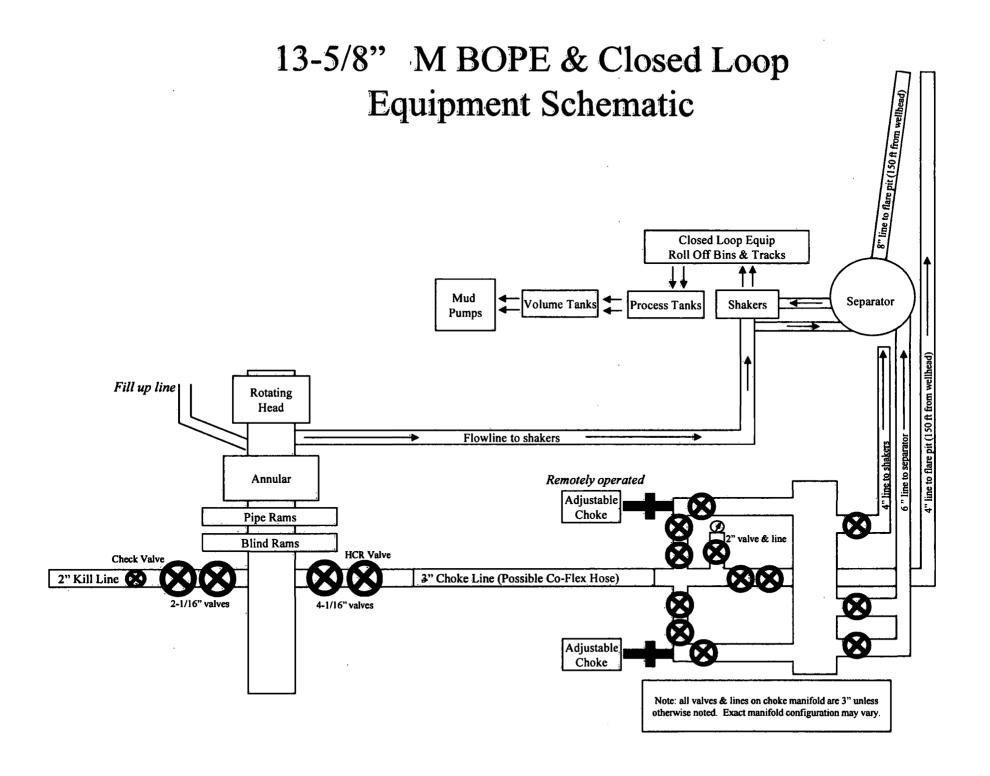
Well Name: PURRITO 18-19 FED COM Well Number: 211H

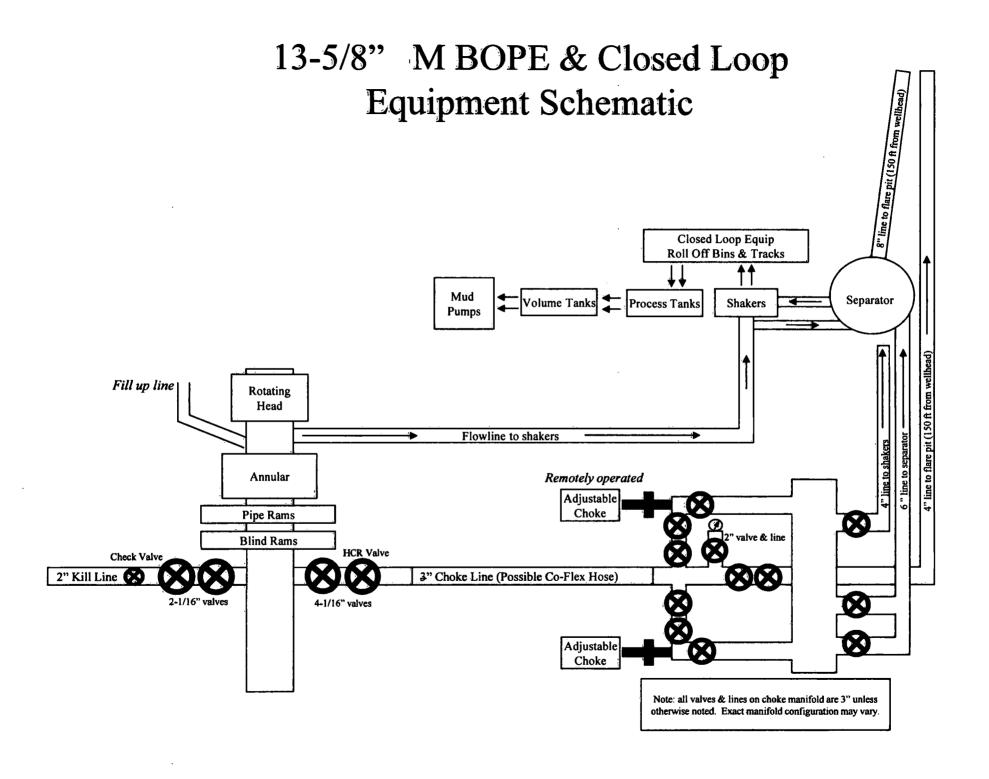
Section 8 - Other Information

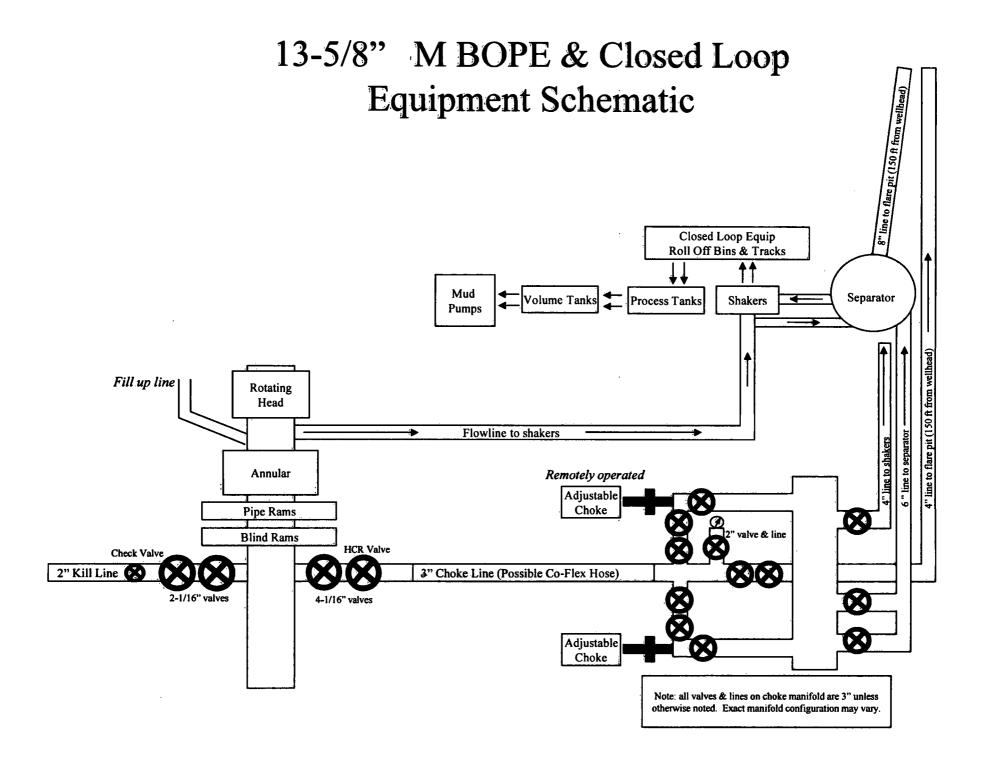
Proposed horizontal/directional/multi-lateral plan submission:

Devon_Purrito_18_19_Fed_Com_211H_AC_Report_Permit_Plan_1_20190524124441.pdf
Devon_Purrito_18_19_Fed_Com_211H_Permit_Plan_1_20190524124442.pdf
Purrito_18_19_Fed_Com_211H_Permit_Plan_1_20190524124443.pdf
Devon_Purrito_18_19_Fed_Com_211H_Plot_Plan_1_20190524124442.pdf

Other proposed operations facets description:


Multi-Bowl Verbiage Multi-Bowl Wellhead Closed-Loop Design Plan DRILL PLAN GAS CAPTURE PLAN SPUDDER RIG


Other proposed operations facets attachment:


Spudder_Rig_Info_20190426131159.pdf
Clsd_Loop_20181126130115.pdf
MB_Wellhd_5M_13.375_9.625_20190516142338.pdf
MB_Verb_5M_20190516142336.pdf
GAS_CAPTURE_PLAN_BOUNDARY_RAIDER_7_CTB_2_20190520103629.pdf

Other Variance attachment:

Co_flex_20181126130144.pdf

Surface

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

	Surface Casing Burst Design							
Load Case	External Pressure	Internal Pressure						
Pressure Test	Formation Pore Pressure	Max mud weight of next hole- section plus Test psi						
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole section						
Displace to Gas	Formation Pore Pressure	Dry gas from next casing point						

Surface Casing Collapse Design							
Load Case	External Pressure	Internal Pressure					
Full Evacuation	Water gradient in cement, mud above TOC	None					
Cementing	Wet cement weight	Water (8.33ppg)					

Surface Casing Tension Design				
Load Case Assumptions				
Overpull	100kips			
Runing in hole	3 ft/s			
Service Loads N/A				

Casing Assumptions and Load Cases

Intermediate

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

Intermediate Casing Burst Design							
Load Case External Pressure Internal Pressure							
Pressure Test	Formation Pore Pressure	Max mud weight of next hole- section plus Test psi					
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole section					
Fracture @ Shoe	Formation Pore Pressure	Dry gas					

Intermediate Casing Collapse Design						
Load Case External Pressure Internal Pressure						
Full Evacuation	Water gradient in cement, mud above TOC	None ·				
Cementing	Wet cement weight	Water (8.33ppg)				

Intermediate Casing Tension Design				
Load Case Assumptions				
Overpull	100kips			
Runing in hole	2 ft/s			
Service Loads N/A				

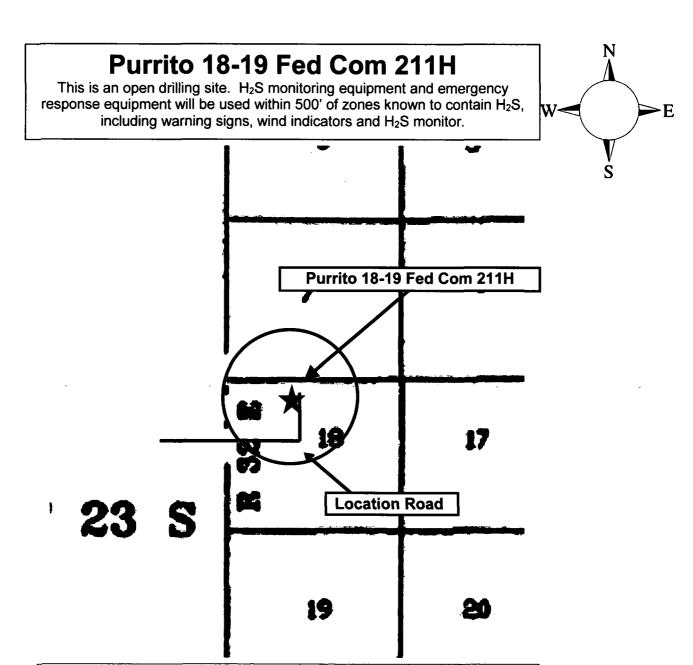
All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

Production Casing Burst Design							
Load Case External Pressure Internal Pressure							
Pressure Test	Formation Pore Pressure	Fluid in hole (water or produced water) + test psi					
Tubing Leak	Formation Pore Pressure	Packer @ KOP, leak below surface 8.6 ppg packer fluid					
Stimulation	Formation Pore Pressure	Max frac pressure with heaviest frac fluid					

Production Casing Collapse Design						
Load Case External Pressure Internal Pressure						
Full Evacuation	None					
Cementing Wet cement weight Water (8.33ppg)						

Production Casing Tension Design				
Load Case Assumptions				
Overpull	100kips			
Runing in hole	2 ft/s			
Service Loads N/A				

Devon Energy Center 333 West Sheridan Avenue Oklahoma City, Oklahoma 73102-5015


Hydrogen Sulfide (H₂S) Contingency Plan

For

Purrito 18-19 Fed Com 211H

Sec-18 T-23S R-32E 525' FNL & 1790' FWL LAT. = 32.3102777' N (NAD83) LONG = 103.7171674' W

Lea County NM

Assumed 100 ppm ROE = 3000' (Radius of Exposure)
100 ppm H2S concentration shall trigger activation of this plan.

Escape

Crews shall escape upwind of escaping gas in the event of an emergency release of gas. Escape can be facilitated from the location entrance road. Crews should then block the entrance to the location from the lease road so as not to allow anyone traversing into a hazardous area. The blockade should be at a safe distance outside of the ROE. There are no homes or buildings in or near the ROE.

Assumed 100 ppm ROE = 3000'

100 ppm H₂S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- Have received training in the
 - o Detection of H₂S, and
 - o Measures for protection against the gas,
 - Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	•		Hazardous Limit	Lethal Concentration	
Hydrogen Sulfide H ₂ S		1.189 10 pp Air = 1		100 ppm/hr	600 ppm	
Sulfur Dioxide SO ₂		2.21 Air = 1	2 ppm	N/A	1000 ppm	

Contacting Authorities

Devon Energy Corp. personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available. The following call list of essential and potential responders has been prepared for use during a release. Devon Energy Corp. Company response must be in coordination with the State of New Mexico's 'Hazardous Materials Emergency Response Plan' (HMER)

Hydrogen Sulfide Drilling Operation Plan

I. HYDROGEN SULFIDE (H2S) TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- 1. The hazards and characteristics of hydrogen sulfide (H₂S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H₂S metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- 3. The contents and requirements of the H₂S Drilling Operations Plan and Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H₂S zone (within 3 days or 500 feet) and weekly H₂S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H₂S Drilling Operations Plan and the Public Protection Plan.

II. HYDROGEN SULFIDE TRAINING

Note: All H_2S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H_2S .

1. Well Control Equipment

- A. Flare line
- B. Choke manifold Remotely Operated
- C. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- D. Auxiliary equipment may include if applicable: annular preventer and rotating head.
- E. Mud/Gas Separator

2. Protective equipment for essential personnel:

30-minute SCBA units located at briefing areas, as indicated on well site diagram, with escape units available in the top doghouse. As it may be difficult to communicate audibly while wearing these units, hand signals shall be utilized.

3. H₂S detection and monitoring equipment:

Portable H₂S monitors positioned on location for best coverage and response. These units have warning lights which activate when H₂S levels reach 10 ppm and audible sirens which activate at 15 ppm. Sensor locations:

- Bell nipple
- Possum Belly/Shale shaker
- Rig floor
- Choke manifold
- Cellar

Visual warning systems:

- A. Wind direction indicators as shown on well site diagram
- B. Caution/ Danger signs shall be posted on roads providing direct access to locations. Signs will be painted a high visibility yellow with black lettering of sufficient size to be reasonable distance from the immediate location. Bilingual signs will be used when appropriate.

4. Mud program:

The mud program has been designed to minimize the volume of H₂S circulated to surface. Proper mud weight, safe drilling practices and the use of H₂S scavengers will minimize hazards when penetrating H₂S bearing zones.

5. Metallurgy:

- A. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold lines, and valves shall be H₂S trim.
- B. All elastomers used for packing and seals shall be H₂S trim.

6. Communication:

- A. Company personnel have/use cellular telephones in the field.
- B. Land line (telephone) communications at Office

7. Well testing:

- A. Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safety and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H₂S environment will use the closed chamber method of testing.
- B. There will be no drill stem testing.

	405-823-4796			
	405-439-8129			
iy	393-3981			
	392-5588			
	397-9265			
	393-2515			
	911			
	397-9308			
ommittee)	393-2870			
	393-6161			
	393-3612			
	885-3137			
State Police City Police				
Sheriff's Office				
	887-7551 91 1			
	885-3125			
committee)	887-3798			
ommittee)	887-6544			
ion (Santa Fe)	(505) 476-9600			
ion (Santa i e)	(505) 827-9126			
ter	(800) 424-8802			
rect				
rect	(703) 872-6000			
	(800) 280-7118			
	(004) 704 470			
(0.4.5), 0.00, 0.400	(281) 784-4700			
(915) 699-0139	(915) 563-3356			
	(575) 746-2757			
	(575) 746-3569			
Hobbs (TX & NM)	(800) 642-7828 (806) 743-9911			
Flight For Life - Lubbock, TX				
Aerocare - Lubbock, TX Med Flight Air Amb - Albuquerque, NM				
	(575) 842-4433			
, NM	(800) 222-1222			
	(575) 272-3115			
	(800) 364-4366			
ov				
ov				

Prepared in conjunction with Dave Small

WCDSC Permian NM

Lea County (NAD83 New Mexico East) Sec 18-T23S-R32E Purrito 18-19 Fed Com 211H

Wellbore #1

Plan: Permit Plan 1

Standard Planning Report - Geographic

17 May, 2019

Planning Report - Geographic

TVD Reference:

MD Reference:

North Reference:

Local Co-ordinate Reference:

Survey Calculation Method:

Database:

EDM r5000.141 Prod US

Company:

WCDSC Permian NM

Project:

Lea County (NAD83 New Mexico East)

Site:

Sec 18-T23S-R32E

Well:

Purrito 18-19 Fed Com 211H

Weilbore:

Wellbore #1

Design:

Permit Plan 1

Project

Lea County (NAD83 New Mexico East)

Map System:

US State Plane 1983

Geo Datum: Map Zone:

North American Datum 1983 New Mexico Eastern Zone

System Datum:

Mean Sea Level

Well Purrito 18-19 Fed Com 211H

RKB @ 3580.30ft

RKB @ 3580.30ft

Minimum Curvature

Grid

Site

Well

Sec 18-T23S-R32E

Site Position: From:

Мар

Northing: Easting:

477,663.17 usft

Latitude:

Longitude:

-103.722960

Position Uncertainty:

0.00 ft

Slot Radius:

729,904.77 usft 13-3/16 "

6.82

Grid Convergence:

32.311693

0.33°

Purrito 18-19 Fed Com 211H

Well Position

+N/-S 0.00 ft +E/-W

0.00 ft

Northing: Easting:

477.158.53 usft 731,697.15 usft

Latitude: Longitude:

32.310278 -103.717168

Position Uncertainty

0.50 ft

Wellhead Elevation:

5/16/2019

Ground Level:

3,555.30 ft

Wellbore

Wellbore #1

Magnetics

Model Name

Sample Date

Declination (°)

Dip Angle (°)

Field Strength

47,776.31723430

(nT)

IGRF2015

Permit Plan 1

Audit Notes:

Design

Version:

Phase:

0.00

PROTOTYPE

Tie On Depth:

0.00

Vertical Section:

Depth From (TVD) (ft)

+N/-S (ft) 0.00

+E/-W (ft) 0.00

Direction

(°) 182.15

60.09

Plan Survey Tool Program

Date 5/17/2019

Depth From (ft)

Depth To (ft)

Survey (Wellbore)

Tool Name

Remarks

0.00

20,482.87 Permit Plan 1 (Wellbore #1)

MWD+HDGM

OWSG MWD + HDGM

Plan Sections

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Dogleg Rate	Build Rate	Turn Rate	TFO	T-
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(°/100usft)	(°/100usft)	(°/100usft)	(°)	Target
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
3,000.00	0.00	0.00	3,000.00	0.00	0.00	0.00	0.00	0.00	0.00	
3,511.97	5.12	307.08	3,511.29	13.78	-18.24	1.00	1.00	0.00	307.08	
9,125.22	5.12	307.08	9,102.14	315.81	-417.84	0.00	0.00	0.00	0.00	
9,466.53	0.00	0.00	9,443.00	325.00	-430.00	1.50	-1.50	0.00	180.00	
9,816.57	0.00	0.00	9,793.04	325.00	-430.00	0.00	0.00	0.00	0.00	
10,716.57	90.00	179.70	10,366.00	-247.95	-426.96	10.00	10.00	0.00	179.70 F	PBHL - Purrito 18-19
20,482.87	90.00	179.70	10,366.00	-10,014.11	-375.14	0.00	0.00	0.00	0.00 F	PBHL - Purrito 18-19

Database:

EDM r5000.141_Prod US

WCDSC Permian NM Company:

Project: Site:

Lea County (NAD83 New Mexico East)

Sec 18-T23S-R32E

Well:

Purrito 18-19 Fed Com 211H

Wellbore: Design:

Permit Plan 1

Wellbore #1

Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Well Purrito 18-19 Fed Com 211H

RKB @ 3580.30ft RKB @ 3580.30ft

Grid

Minimum Curvature

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
0.00	0.00	0.00	0.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
100.00	0.00	0.00	100.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
200.00	0.00	0.00	200.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
300.00	0.00	0.00	300.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
400.00	0.00	0.00	400.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
500.00	0.00	0.00	500.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
600.00	0.00	0.00	600.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
700.00	0.00	0.00	700.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
800.00	0.00	0.00	800.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
900.00	0.00	0.00	900.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
1,000.00	0.00	0.00	1,000.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
1,100.00	0.00	0.00	1,100.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
1,200.00	0.00	0.00	1,200.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
1,300.00	0.00	0.00	1,300.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
1,400.00	0.00	0.00	1,400.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
1,500.00	0.00	0.00	1,500.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
1,600.00	0.00	0.00	1,600.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
1,700.00	0.00	0.00	1,700.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
1,800.00	0.00	0.00	1,800.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
1,900.00	0.00	0.00	1,900.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
2,000.00	0.00	0.00	2,000.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
2,100.00	0.00	0.00	2,100.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
2,200.00	0.00	0.00	2,200.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
2,300.00	0.00	0.00	2,300.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
2,400.00	0.00	0.00	2,400.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
2,500.00	0.00	0.00	2,500.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
2,600.00	0.00	0.00	2,600.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
2,700.00	0.00	0.00	2,700.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
2,800.00	0.00	0.00	2,800.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
2,900.00	0.00	0.00	2,900.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
3,000.00	0.00	0.00	3,000.00	0.00	0.00	477,158.53	731,697.15	32.310278	-103.717168
3,100.00	1.00	307.08	3,099.99	0.53	-0.70	477,159.06	731,696.45	32.310279	-103.717170
3,200.00	2.00	307.08	3,199.96	2.10	-2.78	477,160.64	731,694.36	32.310284	-103.717177
3,300.00	3.00	307.08	3,299.86	4.73	-6.26	477,163.27	731,690.88	32.310291	-103.717188
3,400.00	4.00	307.08	3,399.68	8.42	-11.13 47.20	477,166.95	731,686.01	32.310301	-103.717204
3,500.00	5.00	307.08	3,499.37	13.15	-17.39	477,171.68	731,679.75	32.310314	-103.717224 -103.717226
3,511.97	5.12 5.12	307.08 307.08	3,511.29 3,598.97	13.78 18.52	-18.24 -24.50	477,172.31 477,177.05	731,678.91 731,672.64	32.310316 32.310329	-103.717226
3,600.00 3,700.00	5.12	307.08	3,698.57	23.90	-24.50 -31.62	477,177.05	731,665,52	32.310344	-103.717247
3,800.00	5.12	307.08	3,798.17	29.28	-38.74	477,187.81	731,658.41	32.310359	-103.717270
3,900.00	5.12	307.08	3,897.77	34.66	-36.74 -45.86	477,193.19	731,651.29	32.310374	-103.717293
4,000.00	5.12	307.08	3,997.37	40.04	-52.98	477,198.57	731,644.17	32.310389	-103.717338
4,100.00	5.12	307.08	4,096.97	45.42	-60.10	477,203.95	731,637.05	32.310404	-103.717361
4,200.00	5.12	307.08	4,196.57	50.80	-67.22	477,209.33	731,629.93	32.310418	-103.717384
4,300.00	5.12	307.08	4,296.18	56.18	-74.34	477,214.71	731,622.81	32.310433	-103.717407
4,400.00	5.12	307.08	4,395.78	61.56	-81.45	477,220.10	731,615.69	32.310448	-103.717430
4,500.00	5.12	307.08	4,495.38	66.95	-88.57	477,225.48	731,608.57	32.310463	-103.717453
4,600.00	5.12	307.08	4,594.98	72.33	-95.69	477,230.86	731,601.45	32.310478	-103.717476
4,700.00	5.12	307.08	4,694.58	72.33 77.71	-102.81	477,236.24	731,594.33	32.310493	-103.717479
4,800.00	5.12	307.08	4,794.18	83.09	-102.81	477,241.62	731,587.22	32.310508	-103.717522
4,900.00	5.12 5.12	307.08	4,794.18	88.47	-117.05	477,247.00	731,580.10	32.310508	-103.717545
5,000.00	5.12	307.08	4,993.38	93.85	-124.17	477,252.38	731,572.98	32.310538	-103.717568
5,100.00	5.12	307.08	5,092.98	99.23	-131.29	477,257.76	731,565.86	32.310553	-103.717591
5,200.00	5.12	307.08	5,092.58 5,192.58	104.61	-131.29	477,263.14	731,558.74	32.310567	-103.717614
5,300.00	5.12	307.08	5,292.19	109.99	-145.53	477,268.52	731,551.62	32.310582	-103.717637
3,000.00	J. 12	557.00	0,202.10		140.00	-11,200.02	701,001.02	32.01000Z	.55.7 17657

Database:

EDM r5000.141_Prod US

Company:

WCDSC Permian NM Lea County (NAD83 New Mexico East)

Project: Site:

Sec 18-T23S-R32E

Well:

Purrito 18-19 Fed Com 211H

Wellbore:

Wellbore #1

Design:

Permit Plan 1

Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Well Purrito 18-19 Fed Com 211H

RKB @ 3580.30ft

RKB @ 3580.30ft Grid

Minimum Curvature

Measured			Vertical			Мар	Мар		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
5,400.00	5.12	307.08	5,391.79	115.37	-152.64	477,273.90	731,544.50	32.310597	-103.717660
5,500.00	5.12	307.08	5,491.39	120.75	-159.76	477,279.28	731,537.38	32.310612	-103.717683
5,600.00	5.12	307.08	5,590.99	126.13	-166.88	477,284.66	731,530.26	32.310627	-103.717705
5,700.00	5.12	307.08	5,690.59	131.51	-174.00	477,290.04	731,523.15	32.310642	-103.717728
5,800.00	5.12	307.08	5,790.19	136.89	-181.12	477,295.42	731,516.03	32.310657	-103.717751
5,900.00	5.12	307.08	5,889.79	142.27	-188.24	477,300.80	731,508.91	32.310672	-103.717774
6,000.00	5.12	307.08	5,989.39	147.65	-195.36	477,306.19	731,501.79	32.310687	-103.717797
6,100.00	5.12	307.08	6,088.99	153.04	-202.48	477,311.57	731,494.67	32.310702	-103.717820
6,200.00	5.12	307.08	6,188.60	158.42	-209.60	477,316.95	731,487.55	32.310717	-103.717843
6,300.00	5.12	307.08	6,288.20	163.80	-216.72	477,322.33	731,480.43	32.310731	-103.717866
6,400.00	5.12	307.08	6,387.80	169.18	-223.83	477,327.71	731,473.31	32.310746	-103.717889
6,500.00	5.12	307.08	6,487.40	174.56	-230.95	477,333.09	731,466.19	32.310761	-103.717912
6,600.00	5.12	307.08	6,587.00	179.94	-238.07	477,338.47	731,459.07	32.310776	-103.717935
6,700.00	5.12	307.08	6,686.60	185.32	-245.19	477,343.85	731,451.96	32.310791	-103.717958
6,800.00	5.12	307.08	6,786.20	190.70	-252.31	477,349.23	731,444.84	32.310806	-103.717981
6,900.00	5.12	307.08	6,885.80	196.08	-259.43	477,354.61	731,437.72	32.310821	-103.718004
7,000.00	5.12	307.08	6,985.40	201.46	-266.55	477,359.99	731,430.60	32.310836	-103.718027
7,100.00	5.12	307.08	7,085.00	206.84	-273.67	477,365.37	731,423.48	32.310851	-103.718050
7,200.00	5.12	307.08	7,184.61	212.22	-280.79	477,370.75	731,416.36	32.310866	-103.718073
7,300.00	5.12	307.08	7,284.21	217.60	-287.91	477,376.13	731,409.24	32.310880	-103.718095
7,400.00	5.12	307.08	7,383.81	222.98	-295.02	477,381.51	731,402.12	32.310895	-103.718118
7,500.00	5.12	307.08	7,483.41	228.36	-302.14	477,386.89	731,395.00	32.310910	-103.718141
7,600.00	5.12	307.08	7,583.01	233.75	-309.26	477,392.28	731,387.88	32.310925	-103.718164
7,700.00	5.12	307.08	7,682.61	239.13	-316.38	477,397.66	731,380.77	32.310940	-103.718187
7,800.00	5.12	307.08	7,782.21	244.51	-323.50	477,403.04	731,373.65	32.310955	-103.718210
7,900.00	5.12	307.08	7,881.81	249.89	-330.62	477,408.42	731,366.53	32.310970	-103.718233
8,000.00	5.12	307.08	7,981.41	255.27	-337.74	477,413.80	731,359.41	32.310985	-103.718256
8,100.00	5.12	307.08	8,081.02	260.65	-344.86	477,419.18	731,352.29	32.311000	-103.718279
8,200.00	5.12	307.08	8,180.62	266.03	-351.98	477,424.56	731,345.17	32.311015	-103.718302
8,300.00	5.12	307.08	8,280.22	271.41	-359.10	477,429.94	731,338.05	32.311029	-103.718325
8,400.00	5.12	307.08	8,379.82	276.79	-366.21	477,435.32	731,330.93	32.311044	-103.718348
8,500.00	5.12	307.08	8,479.42	282.17	-373.33	477,440.70	731,323.81	32.311059	-103.718371
8,600.00	5.12	307.08	8,579.02	287.55	-380.45	477,446.08	731,316.69	32.311074	-103.718394
8,700.00	5.12	307.08	8,678.62	292.93	-387.57	477,451.46	731,309.58	32.311089	-103.718417
8,800.00	5.12	307.08	8,778.22	298.31	-394.69	477,456.84	731,302.46	32.311104	-103.718440
8,900.00	5.12	307.08	8,877.82	303.69	-401.81	477,462.22	731,295.34	32.311119	-103.718463
9,000.00	5.12	307.08	8,977.42	309.07	-408.93	477,467.60	731,288.22	32.311134	-103.718486
9,100.00	5.12	307.08	9,077.03	314.45	-416.05	477,472.98	731,281.10	32.311149	-103.718508
9,125.22	5.12	307.08	9,102.14	315.81	-417.84	477,474.34	731,279.30	32.311152	-103.718514
9,200.00	4.00	307.08	9,176.69	319.40	-422.58	477,477.93	731,274.56	32.311162	-103.718530
9,300.00	2.50	307.08	9,276.52	322.81	-427.10	477,481.34	731,270.04	32.311172	-103.718544
9,400.00	1.00	307.08	9,376.47	324.65	-429.54	477,483.18	731,267.61	32.311177	-103.718552
9,466.53	0.00	0.00	9,443.00	325.00	-430.00	477,483.53	731,267.15	32.311178	-103.718553
9,500.00	0.00	0.00	9,476.47	325.00	-430.00	477,483.53	731,267.15	32.311178	-103.718553
9,600.00	0.00	0.00	9,576.47	325.00	-430.00	477,483.53	731,267.15	32.311178	-103.718553
9,700.00	0.00	0.00	9,676.47	325.00	-430.00	477,483.53	731,267.15	32.311178	-103.718553
9,800.00	0.00	0.00	9,776.47	325.00	-430.00	477,483.53	731,267.15	32.311178	-103.718553
9,815.57	0.00	0.00	9,792.04	325.00	-430.00	477,483.53	731,267.15	32.311178	-103.718553
KOP & F	TP @ 9816' M	D, 200' FNL,	1360' FWL						
9,816.57	0.00	0.00	9,793.04	325.00	-430.00	477,483.53	731,267.15	32.311178	-103.718553
9,900.00	8.34	179.70	9,876.18	318.94	-429.97	477,477.47	731,267.18	32.311161	-103.718553
10,000.00	18.34	179.70	9,973.35	295.89	-429.85	477,454.42	731,267.30	32.311098	-103.718553
10,100.00	28.34	179.70	10,065.05	256.32	-429.64	477,414.85	731,267.51	32.310989	-103.718554
10,200.00	38.34	179.70	10,148.49	201.42	-429.34	477,359.95	731,267.80	32.310838	-103.718554

Database:

EDM r5000.141_Prod US

Company:

WCDSC Permian NM Lea County (NAD83 New Mexico East)

Project: Site:

Sec 18-T23S-R32E

Well:

Purrito 18-19 Fed Com 211H

Wellbore:

Wellbore #1

Design:

Permit Plan 1

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Well Purrito 18-19 Fed Com 211H

RKB @ 3580.30ft RKB @ 3580.30ft

Grid

Minimum Curvature

Measured			Vertical			Мар	Мар		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
10,300.00	48.34	179.70	10,221.12	132.87	-428.98	477,291.40	731,268.17	32.310650	-103.718554
10,400.00	58.34	179.70	10,280.75	52.75	-428.56	477,211.28	731,268.59	32.310430	-103.718554
10,500.00	68.34	179.70	10,325.55	-36.50	-428.08	477,122.03	731,269.07	32.310184	-103.718554
10,600.00	78.34	179.70	10,354.18	-132.18	-427.57	477,026.35	731,269.57	32.309921	-103.718554
10,700.00	88.34	179.70	10,365.76	-231.38	-427.05	476,927.15	731,270.10	32.309648	-103.718554
10,716.57	90.00	179.70	10,366.00	-247.95	-426.96	476,910.58	731,270.19	32.309603	-103.718554
10,800.00	90.00	179.70	10,366.00	-331.38	-426.52	476,827.15	731,270.63	32.309374	-103.718554
10,900.00	90.00	179.70	10,366.00	-431.38	-425.99	476,727.15	731,271.16	32.309099	-103.718554
11,000.00	90.00	179.70	10,366.00	-531.38	-425.46	476,627.16	731,271.69	32.308824	-103.718555
11,100.00	90.00	179.70	10,366.00	-631.37	-424.93	476,527.16	731,272.22	32.308549	-103.718555
11,200.00	90.00	179.70	10,366.00	-731.37	-424.39	476,427.16	731,272.75	32.308274	-103.718555
11,300.00	90.00	179.70	10,366.00	-831.37	-423.86	476,327.16	731,273.28	32.307999	-103.718555
11,400.00	- 90.00	179.70	10,366.00	-931.37	-423.33	476,227.16	731,273.81	32.307724	-103.718555
11,500.00	90.00	179.70	10,366.00	-1,031.37	-422.80	476,127.16	731,274.34	32.307450	-103.718555
11,600.00	90.00	179.70	10,366.00	-1,131.37	-422.27	476,027.17	731,274.87	32.307175	-103.718555
11,700.00	90.00	179.70	10,366.00	-1,231.37	-421.74	475,927.17	731,275.41	32.306900	-103.718556
11,800.00	90.00	179.70	10,366.00	-1,331.36	-421.21	475,827.17	731,275.94	32.306625	-103.718556
11,900.00	90.00	179.70	10,366.00	-1,431.36	-420.68	475,727.17	731,276.47	32.306350	-103.718556
12,000.00	90.00	179.70	10,366.00	-1,531.36	-420.15	475,627.17	731,277.00	32.306075	-103.718556
12,100.00	90.00	179.70	10,366.00	-1,631.36	-419.62	475,527.17	731,277.53	32.305800	-103.718556
12,200.00	90.00	179.70	10,366.00	-1,731.36	-4 19.09	475,427.18	731,278.06	32.305525	-103.718556
12,300.00	90.00	179.70	10,366.00	-1,831.36	-418.56	475,327.18	731,278.59	32.305251	-103.718556
12,400.00	90.00	179.70	10,366.00	-1,931.36	-418.03	475,227.18	731,279.12	32.304976	-103.718557
12,500.00	90.00	179.70	10,366.00	-2,031.35	-417.50	475,127.18	731,279.65	32.304701	-103.718557
12,600.00	90.00	179.70	10,366.00	-2,131.35	-416.97	475,027.18	731,280.18	32.304426	-103.718557
12,700.00	90.00	179.70	10,366.00	-2,231.35	-416.44	474,927.18	731,280.71	32.304151	-103.718557
12,800.00	90.00	179.70	10,366.00	-2,331.35	-415.91	474,827.18	731,281.24	32.303876	-103.718557
12,900.00	90.00	179.70	10,366.00	-2,431.35	-415.37	474,727.19	731,281.77	32.303601	-103.718557
13,000.00	90.00	179.70	10,366.00	-2,531.35	-414.84	474,627.19	731,282.30	32.303326	-103.718557
13,100.00	90.00	179.70	10,366.00	-2,631.35	-414.31	474,527.19	731,282.83	32.303052	-103.718558
13,200.00	90.00	179.70	10,366.00	-2,731.34	-413.78	474,427.19	731,283.36	32.302777	-103.718558
13,300.00	90.00	179.70	10,366.00	-2,831.34	-413.25	474,327.19	731,283.89	32.302502	-103.718558
13,400.00	90.00	179.70	10,366.00	-2,931.34	-412.72	474,227.19	731,284.43	32.302227	-103.718558
13,500.00	90.00	179.70	10,366.00	-3,031.34	-412.19	474,127.20	731,284.96	32.301952	-103.718558
13,600.00	90.00	179.70	10,366.00	-3,131.34	-4 11.66	474,027.20	731,285.49	32.301677	-103.718558
13,700.00	90.00	179.70	10,366.00	-3,231.34	-411.13	473,927.20	731,286.02	32.301402	-103.718558
13,800.00	90.00	179.70	10,366.00	-3,331.34	-410.60	473,827.20	731,286.55	32.301127	-103.718558
13,900.00	90.00	179.70	10,366.00	-3,431.34	-410.07	473,727.20	731,287.08	32.300852	-103.718559
14,000.00	90.00	179.70	10,366.00	-3,531.33	-409.54	473,627.20	731,287.61	32.300578	-103.718559
14,100.00	90.00	179.70	10,366.00	-3,631.33	-409.01	473,527.21	731,288.14	32.300303	-103.718559
14,200.00	90.00	179.70	10,366.00	-3,731.33	-408.48	473,427.21	731,288.67	32.300028	-103.718559
14,300.00	90.00	179.70	10,366.00	-3,831.33	-407.95	473,327.21	731,289.20	32.299753	-103.718559
14,400.00	90.00	179.70	10,366.00	-3,931.33	-407.42	473,227.21	731,289.73	32.299478	-103.718559
14,500.00	90.00	179.70	10,366.00	-4,031.33	-406.89	473,127.21	731,290.26	32.299203	-103.718559
14,600.00	90.00	179.70	10,366.00	-4,131.33	-406.35	473,027.21	731,290.79	32.298928	-103.718560
14,700.00	90.00	179.70	10,366.00	-4,231.32	-405.82	472,927.22	731,291.32	32.298653	-103.718560
14,800.00	90.00	179.70	10,366.00	-4,331.32	-405.29	472,827.22	731,291.85	32.298379	-103.718560
14,900.00	90.00	179.70	10,366.00	-4,431.32	-404.76	472,727.22	731,292.38	32.298104	-103.718560
15,000.00	90.00	179.70	10,366.00	-4,531.32	-404.23	472,627.22	731,292.91	32.297829	-103.718560
15,100.00	90.00	179.70	10,366.00	-4,631.32	-403.70	472,527.22	731,293.45	32.297554	-103.718560
15,200.00	90.00	179.70	10,366.00	-4,731.32	-403.17	472,427.22	731,293.98	32.297279	-103.718560
15,224.00	90.00	179.70	10,366.00	-4,755.32	-403.04	472,403.22	731,294.10	32.297213	-103.718560
Cross se	ction @ 1522	4' MD, 0' FNL	, 1360' FWL						
15,300.00	90.00	179.70	10,366.00	-4,831.32	-402.64	472,327.22	731,294.51	32.297004	-103.718561

Database:

EDM r5000.141_Prod US WCDSC Permian NM

Company:

Project: Site:

Lea County (NAD83 New Mexico East)

Well:

Sec 18-T23S-R32E

Wellbore:

Purrito 18-19 Fed Com 211H Wellbore #1

Design:

Permit Plan 1

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Well Purrito 18-19 Fed Com 211H

RKB @ 3580.30ft

RKB @ 3580.30ft

Grid

Minimum Curvature

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
15,400.00	90.00	179.70	10,366.00	-4,931.31	-402.11	472,227.23	731,295.04	32.296729	-103.718561
15,500.00	90.00	179.70	10,366.00	-5,031.31	-401.58	472,127.23	731,295.57	32.296454	-103.718561
15,600.00	90.00	179.70	10,366.00	-5,131.31	-401.05	472,027.23	731,296.10	32.296180	-103.718561
15,700.00	90.00	179.70	10,366.00	-5,231.31	-400.52	471,927.23	731,296.63	32.295905	-103.718561
15,800.00	90.00	179.70	10,366.00	-5,331.31	-399.99	471,827.23	731,297.16	32.295630	-103.718561
15,900.00	90.00	179.70	10,366.00	-5,431.31	-399.46	471,727.23	731,297.69	32.295355	-103.718561
16,000.00	90.00	179.70	10,366.00	-5,531.31	-398.93	471,627.24	731,298.22	32.295080	-103.718562
16,100.00	90.00	179.70	10,366.00	-5,631.30	-398.40	471,527.24	731,298.75	32.294805	-103.718562
16,200.00	90.00	179.70	10,366.00	-5,731.30	-397.87	471,427.24	731,299.28	32.294530	-103.718562
16,300.00	90.00	179.70	10,366.00	-5,831.30	-397.33	471,327.24	731,299.81	32.294255	-103.718562
16,400.00	90.00	179.70	10,366.00	-5,931.30	-396.80	471,227.24	731,300.34	32.293981	-103.718562
16,500.00	90.00	179.70	10,366.00	-6,031.30	-396.27	471,127.24	731,300.87	32.293706	-103.718562
16,600.00	√90.00	179.70	10,366.00	-6,131.30	-395.74	471,027.25	731,301.40	32.293431	-103.718562
16,700.00	90.00	179.70	10,366.00	-6,231.30	-395.21	470,927.25	731,301.93	32.293156	-103.718562
16,800.00	90.00	179.70	10,366.00	-6,331.29	-394.68	470,827.25	731,302.47	32.292881	-103.718563
16,900.00	90.00	179.70	10,366.00	-6,431.29	-394.15	470,727.25	731,303.00	32.292606	-103.718563
17,000.00	90.00	179.70	10,366.00	-6,531.29	-393.62	470,627.25	731,303.53	32.292331	-103.718563
17,100.00	90.00	179.70	10,366.00	-6,631.29	-393.09	470,527.25	731,304.06	32.292056	-103.718563
17,200.00	90.00	179.70	10,366.00	-6,731.29	-392.56	470,427.26	731,304.59	32.291782	-103.718563
17,300.00	90.00	179.70	10,366.00	-6,831.29	-392.03	470,327.26	731,305.12	32.291507	-103.718563
17,400.00	90.00	179.70	10,366.00	-6,931.29	-391.50	470,227.26	731,305.65	32.291232	-103.718563
17,500.00	90.00	179.70	10,366.00	-7,031.28	-390.97	470,127.26	731,306.18	32.290957	-103.718564
17,600.00	90.00	179.70	10,366.00	-7,131.28	-390.44	470,027.26	731,306.71	32.290682	-103.718564
17,700.00	90.00	179.70	10,366.00	-7,231.28	-389.91	469,927.26	731,307.24	32.290407	-103.718564
17,800.00	90.00	179.70	10,366.00	-7,331.28	-389.38	469,827.27	731,307.77	32.290132	-103.718564
17,900.00	90.00	179.70	10,366.00	-7,431.28	-388.85	469,727.27	731,308.30	32.289857	-103.718564
18,000.00	90.00	179.70	10,366.00	-7,531.28	-388.31	469,627.27	731,308.83	32.289583	-103.718564
18,100.00	90.00	179.70	10,366.00	-7,631.28	-387.78	469,527.27	731,309.36	32.289308	-103.718564
18,200.00	90.00	179.70	10,366.00	-7,731.27	-387.25	469,427.27	731,309.89	32.289033	-103.718565
18,300.00	90.00	179.70	10,366.00	-7,831.27	-386.72	469,327.27	731,310.42	32.288758	-103.718565
18,400.00	90.00	179.70	10,366.00	-7,931.27	-386.19	469,227.27	731,310.95	32.288483	-103.718565
18,500.00	90.00	179.70	10,366.00	-8,031.27	-385.66	469,127.28	731,311.49	32.288208	-103.718565
18,600.00	90.00	179.70	10,366.00	-8,131.27	-385.13	469,027.28	731,312.02	32.287933	-103.718565
18,700.00	90.00	179.70	10,366.00	-8,231.27	-384.60	468,927.28	731,312.55	32.287658	-103.718565
18,800.00	90.00	179.70	10,366.00	-8,331.27	-384.07	468,827.28	731,313.08	32.287384	-103.718565
18,900.00	90.00	179.70	10,366.00	-8,431.26	-383.54	468,727.28	731,313.61	32.287109	-103.718566
19,000.00	90.00	179.70	10,366.00	-8,531.26	-383.01	468,627.28	731,314.14	32.286834	-103.718566
19,100.00	90.00	179.70	10,366.00	-8,631.26	-382.48	468,527.29	731,314.67	32.286559	-103.718566
19,200.00	90.00	179.70	10,366.00	-8,731.26	-381.95	468,427.29	731,315.20	32.286284	-103.718566
19,300.00	90.00	179.70	10,366.00	-8,831.26	-381.42	468,327.29	731,315.73	32.286009	-103.718566
19,400.00	90.00	179.70	10,366.00	-8,931.26	-380.89	468,227.29	731,316.26	32.285734	-103.718566
19,500.00	90.00	179.70	10,366.00	-9,031.26	-380.36	468,127.29	731,316.79	32.285459	-103.718566
19,600.00	90.00	179.70	10,366.00	-9,131.25	-379.83	468,027.29	731,317.32	32.285185	-103.718566
19,700.00	90.00	179.70	10,366.00	-9,231.25	-379.29	467,927.30	731,317.85	32.284910	-103.718567
19,800.00	90.00	179.70	10,366.00	-9,331.25	-378.76	467,827.30	731,318.38	32.284635	-103.718567
19,900.00	90.00	179.70	10,366.00	-9,431.25	-378.23	467,727.30	731,318.91	32.284360	-103.718567
20,000.00	90.00	179.70	10,366.00	-9,531.25	-377.70	467,627.30	731,319.44	32.284085	-103.718567
20,100.00	90.00	179.70	10,366.00	-9,631.25	-377.17	467,527.30	731,319.97	32.283810	-103.718567
20,200.00	90.00	179.70	10,366.00	-9,731.25	-376.64	467,427.30	731,320.51	32.283535	-103.718567
20,300.00	90.00	179.70	10,366.00	-9,831.25	-376.11	467,327.31	731,321.04	32.283260	-103.718567
20,400.00	90.00	179.70	10,366.00	-9,931.24	-375.58	467,227.31	731,321.57	32.282986	-103.718568
20,402.87	90.00	179.70	10,366.00	-9,934.11	-375.57	467,224.44	731,321.58	32.282978	-103.718568
LTP @ 20	0403' MD, 100	' FSL, 1360' I	FWL						

Database:

EDM r5000.141_Prod US

Company:

WCDSC Permian NM

Project:

Lea County (NAD83 New Mexico East)

Site:

Sec 18-T23S-R32E

Well:

Purrito 18-19 Fed Com 211H

Wellbore: Design:

Wellbore #1 Permit Plan 1 Local Co-ordinate Reference:

Well Purrito 18-19 Fed Com 211H RKB @ 3580.30ft

TVD Reference:

RKB @ 3580.30ft

MD Reference: North Reference:

Survey Calculation Method:

Grid

Minimum Curvature

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
20,482.86	90.00	179.70	10,366.00	-10,014.10	-375.14	467,144.45	731,322.01	32.282758	-103.718568
PBHL; 2 0,482.87	0' FSL, 1360' I 90.00	FWL 179.70	10,366.00	-10,014.11	-375.14	467,144.44	731,322.01	32.282758	-103.718568

Design	largets

Ta

Target Name									!	
hit/miss targetShape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude	
PBHL - Purrito 18-19 Fe	0.00	0.00	0.00	-10,014.11	-375.14	467,144.44	731,322.01	32.282758	-103.718568	

- plan misses target center by 10021.13ft at 0.00ft MD (0.00 TVD, 0.00 N, 0.00 E)

- Point

0	1	nnotations

Measured	Vertical	Local Coor	dinates	
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment
9,815.57	9,792.04	325.00	-430.00	KOP & FTP @ 9816' MD, 200' FNL, 1360' FWL
15,224.00	10,366.00	-4,755.32	-403.04	Cross section @ 15224' MD, 0' FNL, 1360' FWL
20,402.87	10,366.00	-9,934.11	-375.57	LTP @ 20403' MD, 100' FSL, 1360' FWL
20,482.86	10,366.00	-10,014.10	-375.14	PBHL; 20' FSL, 1360' FWL
	Depth (ft) 9,815.57 15,224.00 20,402.87	Depth (ft) (ft) 9,815.57 9,792.04 15,224.00 10,366.00 20,402.87 10,366.00	Depth (ft) Depth (ft) +N/-S (ft) 9,815.57 9,792.04 325.00 15,224.00 10,366.00 -4,755.32 20,402.87 10,366.00 -9,934.11	Depth (ft) Depth (ft) +N/-S (ft) +E/-W (ft) 9,815.57 9,792.04 325.00 -430.00 15,224.00 10,366.00 -4,755.32 -403.04 20,402.87 10,366.00 -9,934.11 -375.57

1. Geologic Formations

TVD of target	10366	Pilot hole depth	N/A
MD at TD:	20483	Deepest expected fresh water	

Basin

Formation	Depth (TVD)	Water/Mineral Bearing/Target	Hazards*
TO MUNION	from KB	Zone?	11azarus
Rustler	1023		
Top of Salt	1350		
Base of Salt	4422		
Delaware	4665		
2BSSS	10262		
3BSSS	11512		
Wolfcamp	11911		
			
<u> </u>			
_			

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

Hole Size	Casing Interval		Csg. Size	Wt	Grade	Conn	Min SF	Min SF	Min SF
Hole Size	From	To	Csg. Size	(PPF) Grade	Collapse		Burst	Tension	
17 1/2	0	1048 TVD	13 3/8	48.0	H40	ВТС	1.125	1.25	1.6
12 1/4	0	6000 TVD	9 5/8	40.0	J-55	втс	1.125	1.25	1.6
8 3/4	0	TD	5 1/2	17.0	P110	ВТС	1.125	1.25	1.6
				BLM M	linimum Safe	ety Factor	1.125	1	1.6 Dry 1.8 Wet

- All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.
- Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.
- A variance is requested for collapse rating on intermediate casing. Operator will keep pipe full while running casing.
- Int casing shoe will be selected based on drilling data, gamma, and flows experienced while drilling. Setting depth with be revised accordingly if needed.
- A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating	Y
of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program (3-String Primary Design)

Casing	# Sks	тос	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description
Surface	797	Surf	13.2	1.4	Lead: Class C Cement + additives
1	675	Surf	9.0	3.3	Lead: Class C Cement + additives
Int	154	500' above shoe	13.2	1.4	Tail: Class H / C + additives
	658	Surf	9.0	3.3	1st stage Lead: Class C Cement + additives
Int 1 Two Stage	136	500' above shoe	13.2	1.4	1st stage Tail: Class H / C + additives
w/ DV @ TVD of Delaware	494	Surf	9.0	3.3	2nd stage Lead: Class C Cement + additives
	136	500' above DV	13.2	1.4	2nd stage Tail: Class H / C + additives
Int 1	As Needed	Surf	9.0	3.3	Squeeze Lead: Class C Cement + additives
Intermediate	675	Surf	9.0	3.3	Lead: Class C Cement + additives
Squeeze	154	500' above shoe	13.2	1.4	Tail: Class H / C + additives
Production	368	500' tieback	9.0	3.3	Lead: Class H /C + additives
Froduction	2058	KOP	13.2	1.4	Tail: Class H / C + additives

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate	30%
Production	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Т	уре	1	Tested to:															
		5)4	An	nular	Х	50% of rated working pressure															
Tet 1	13-58"		Blin	d Ram	X																
Int 1	13-38	5M	Pipe	e Ram		J 5M															
			Doub	le Ram	X	- 5M															
		L	Other*			7															
		5M	An	nular	х	50% of rated working pressure															
Production	13-5/8"		5M	5M	5M	5M	5M	Blin	d Ram	Х											
Production	13-5/8"							JIVI	JIVI	13-3/6	3101	3141	3141	JIVI	JIVI	JIVI	3101	3141	١٧١	3141	Pipe Ram
											Doub	le Ram	X	JIVI							
			Other*																		
			Annul	lar (5M)																	
			Blin	d Ram																	
			Pipe Ram			7															
		Doub	le Ram																		
		1	Other*	I		7															

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	Brine	10-10.5
Production	WBM	8.5-9

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging,	Coring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
X	Completion Report and sbumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Addition	al logs planned	Interval
	Resistivity	
	Density	
X	CBL	Production casing
X	Mud log	KOP to TD
	PEX	

7. Drilling Conditions

71 Diming Conditions						
Condition	Specfiy what type and where?					
BH pressure at deepest TVD	4851					
Abnormal temperature	No					

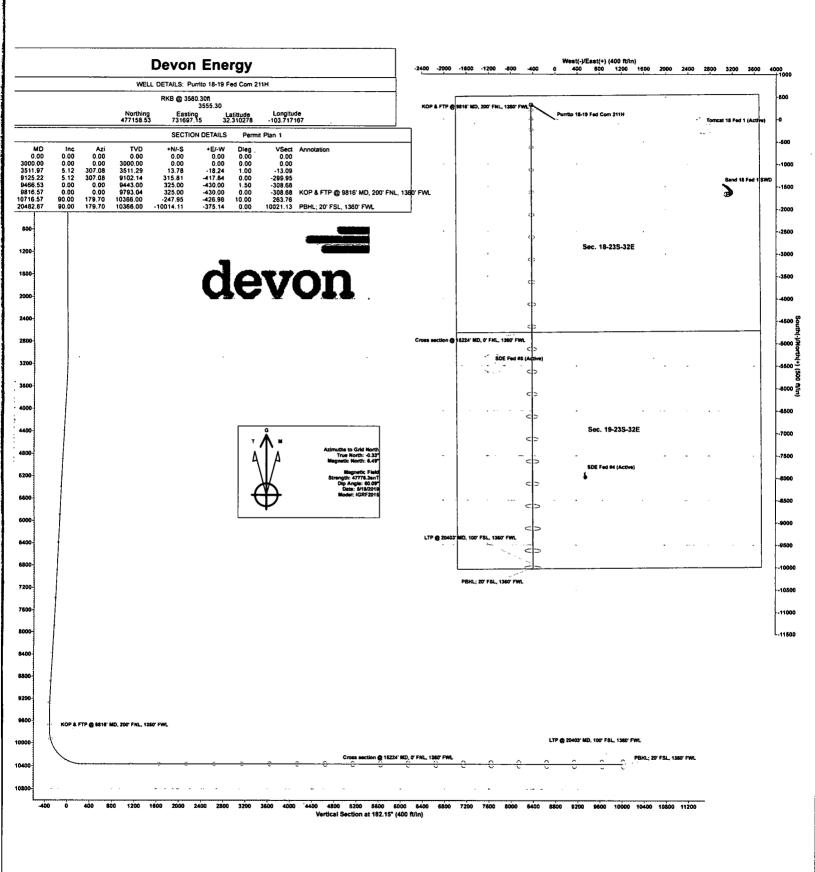
Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

checante	to measured values and formations will be provided to the BEW.
N	H2S is present
Y	H2S plan attached.

8. Other facets of operation

Is this a walking operation? Potentially


- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- ³ The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pad.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. At that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

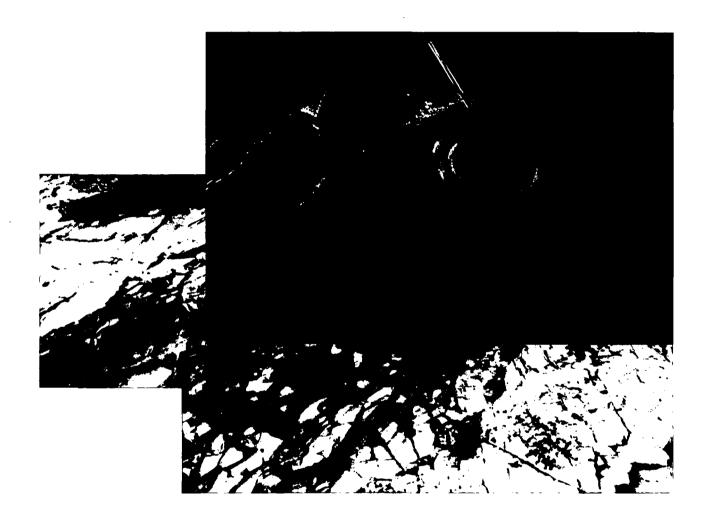
Attachments	}
X	Directional Plan
	Other, describe

Devon Energy APD VARIANCE DATA

OPERATOR NAME: Devon Energy

1. SUMMARY OF Variance:

Devon Energy respectfully requests approval for the following additions to the drilling plan:


1. Potential utilization of a spudder rig to pre-set surface casing.

2. Description of Operations

- 1. A spudder rig contractor may move in their rig to drill the surface hole section and pre-set surface casing on this well.
 - **a.** After drilling the surface hole section, the rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - b. Rig will utilize fresh water based mud to drill surface hole to TD.
- 2. The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 3. A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wingvalves.
 - a. A means for intervention will be maintained while the drilling rig is not over the well.
- 4. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 5. Drilling operation will be performed with the big rig. At that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The BLM will be contacted / notified 24 hours before the big rig moves back on to the pad with the pre-set surface casing.
- **6.** Devon Energy will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 7. Once the rig is removed, Devon Energy will secure the wellhead area by placing a guard rail around the cellar area.

Commitment Runs Deep

Design Plan Operation and Maintenance Plan Closure Plan

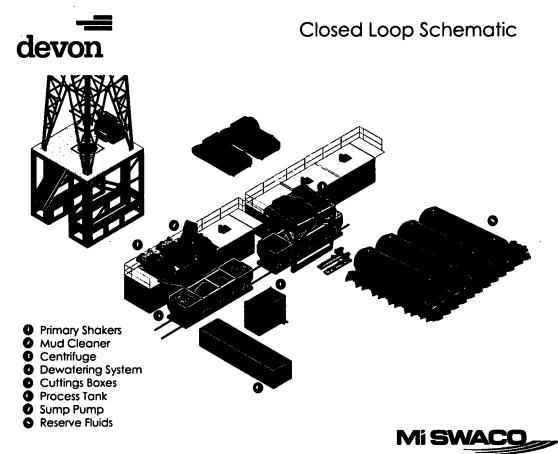
SENM - Closed Loop Systems June 2010

I. Design Plan

Devon uses MI SWACO closed loop system (CLS). The MI SWACO CLS is designed to maintain drill solids at or below 5%. The equipment is arranged to progressively remove solids from the largest to the smallest size. Drilling fluids can thus be reused and savings is realized on mud and disposal costs. Dewatering may be required with the centrifuges to insure removal of ultra fine solids.

The drilling location is constructed to allow storm water to flow to a central sump normally the cellar. This insures no contamination leaves the drilling pad in the event of a spill. Storm water is reused in the mud system or stored in a reserve fluid tank farm until it can be reused. All lubricants, oils, or chemicals are removed immediately from the ground to prevent the contamination of storm water. An oil trap is normally installed on the sump if an oil spill occurs during a storm.

A tank farm is utilized to store drilling fluids including fresh water and brine fluids. The tank farm is constructed on a 20 ml plastic lined, bermed pad to prevent the contamination of the drilling site during a spill. Fluids from other sites may be stored in these tanks for processing by the solids control equipment and reused in the mud system. At the end of the well the fluids are transported from the tank farm to an adjoining well or to the next well for the rig.


Prior to installing a closed-loop system on site, the topsoil, if present, will be stripped and stockpiled for use as the final cover or fill at the time of closure.

Signs will be posted on the fence surrounding the closed-loop system unless the closed-loop system is located on a site where there is an existing well, that is operated by Devon.

II. Operations and Maintenance Plan

Primary Shakers: The primary shakers make the first removal of drill solids from the drilling mud as it leaves the well bore. The shakers are sized to handle maximum drilling rate at optimal screen size. The shakers normally remove solids down to 74 microns.

Mud Cleaner: The Mud Cleaner cleans the fluid after it leaves the shakers. A set of hydrocyclones are sized to handle 1.25 to 1.5 times the maximum circulating rate. This ensures all the fluid is being processed to an average cut point of 25 microns. The wet discharged is dewatered on a shaker equipped with ultra fine mesh screens and generally cut at 40 microns.

Centrifuges: The centrifuges can be one or two in number depending on the well geometry or depth of well. The centrifuges are sized to maintain low gravity solids at 5% or below. They may or may not need a dewatering system to enhance the removal rates. The centrifuges can make a cut point of 8-10 microns depending on bowl speed, feed rate, solids loading and other factors.

The centrifuge system is designed to work on the active system and be flexible to process incoming fluids from other locations. This set-up is also dependant on well factors.

Dewatering System: The dewatering system is a chemical mixing and dosing system designed to enhance the solids removal of the centrifuge. Not commonly used in shallow wells. It may contain pH adjustment, coagulant mixing and dosing, and polymer mixing and dosing. Chemical flocculation binds ultra fine solids into a mass that is within the centrifuge operating design. The

dewatering system improves the centrifuge cut point to infinity or allows for the return of clear water or brine fluid. This ability allows for the ultimate control of low gravity solids.

Cuttings Boxes: Cuttings boxes are utilized to capture drill solids that are discarded from the solids control equipment. These boxes are set upon a rail system that allows for the removal and replacement of a full box of cuttings with an empty one. They are equipped with a cover that insures no product is spilled into the environment during the transportation phase.

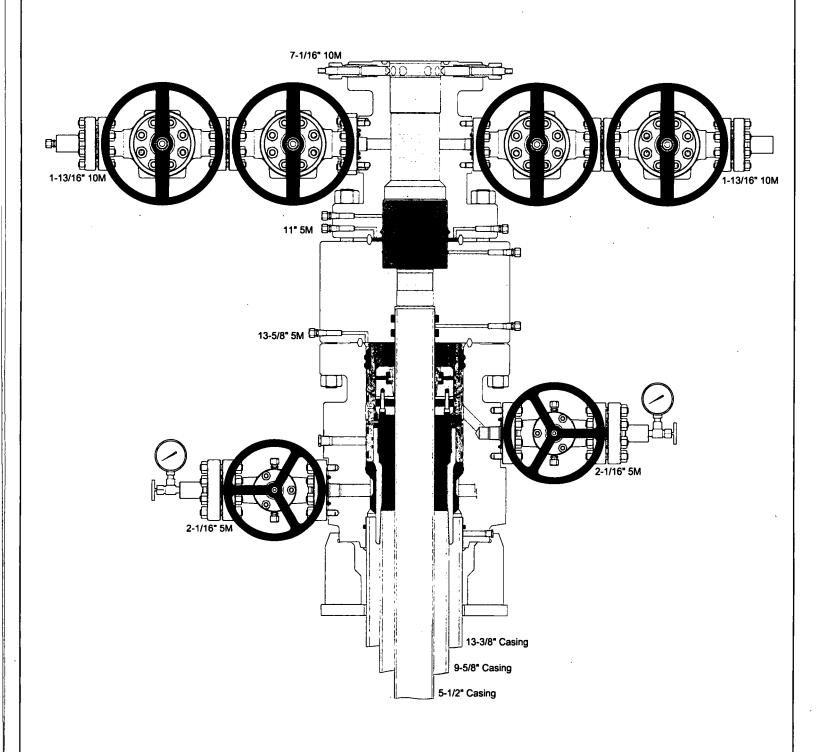
Process Tank: (Optional) The process tank allows for the holding and process of fluids that are being transferred into the mud system. Additionally, during times of lost circulation the process tank may hold active fluids that are removed for additional treatment. It can further be used as a mixing tank during well control conditions.

Sump and Sump Pump: The sump is used to collect storm water and the pump is used to transfer this fluid to the active system or to the tank for to hold in reserve. It can also be used to collect fluids that may escape during spills. The location contains drainage ditches that allow the location fluids to drain to the sump.

Reserve Fluids (Tank Farm): A series of frac tanks are used to replace the reserve pit. These are steel tanks that are equipped with a manifold system and a transfer pump. These tanks can contain any number of fluids used during the drilling process. These can include fresh water, cut brine, and saturated salt fluid. The fluid can be from the active well or reclaimed fluid from other locations. A 20 ml liner and berm system is employed to ensure the fluids do not migrate to the environment during a spill.

If a leak develops, the appropriate division district office will be notified within 48 hours of the discovery and the leak will be addressed. Spill prevention is accomplished by maintaining pump packing, hoses, and pipe fittings to insure no leaks are occurring. During an upset condition the source of the spill is isolated and repaired as soon as it is discovered. Free liquid is removed by a diaphragm pump and returned to the mud system. Loose topsoil may be used to stabilize the spill and the contaminated soil is excavated and placed in the cuttings boxes. After the well is finished and the rig has moved, the entire location is scrapped and testing will be performed to determine if a release has occurred.

All trash is kept in a wire mesh enclosure and removed to an approved landfill when full. All spent motor oils are kept in separate containers and they are removed and sent to an approved recycling center. Any spilled lubricants, pipe


dope, or regulated chemicals are removed from soil and sent to landfills approved for these products.

These operations are monitored by Mi Swaco service technicians. Daily logs are maintained to ensure optimal equipment operation and maintenance. Screen and chemical use is logged to maintain inventory control. Fluid properties are monitored and recorded and drilling mud volumes are accounted for in the mud storage farm. This data is kept for end of well review to insure performance goals are met. Lessons learned are logged and used to help with continuous improvement.

A MI SWACO field supervisor manages from 3-5 wells. They are responsible for training personnel, supervising installations, and inspecting sites for compliance of MI SWACO safety and operational policy.

III. Closure Plan

A maximum 340' X 340' caliche pad is built per well. All of the trucks and steel tanks fit on this pad. All fluid cuttings go to the steel tanks to be hauled by various trucking companies to an agency approved disposal.

A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Devon proposes using a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- Wellhead will be installed by wellhead representatives.
- If the welding is performed by a third party, the wellhead representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- Wellhead representative will install the test plug for the initial BOP test.
- Wellhead company will install a solid steel body pack-off to completely isolate the lower head after cementing intermediate casing. After installation of the pack-off, the pack-off and the lower flange will be tested to 5M, as shown on the attached schematic. Everything above the pack-off will not have been altered whatsoever from the initial nipple up. Therefore the BOP components will not be retested at that time.
- If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head will be cut and top out operations will be conducted.
- Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating.
- Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.

After running the surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system and will undergo a 250 psi low pressure test followed by a 5,000 psi high pressure test. The 5,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

After running the intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 5M will already be installed on the wellhead.

The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 5,000 psi WP.

Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

PWD Data Report

APD ID: 10400042154

Submission Date: 05/30/2019

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: PURRITO 18-19 FED COM

Well Number: 211H

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: PURRITO 18-19 FED COM Well Number: 211H

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP Well Name: PURRITO 18-19 FED COM Well Number: 211H Is the reclamation bond a rider under the BLM bond? Unlined pit bond number: Unlined pit bond amount: Additional bond information attachment: Section 4 - Injection Would you like to utilize Injection PWD options? NO **Produced Water Disposal (PWD) Location:** PWD surface owner: PWD disturbance (acres): Injection PWD discharge volume (bbl/day): Injection well mineral owner: Injection well type: Injection well name: Injection well number: Assigned injection well API number? Injection well API number: Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: **Underground Injection Control (UIC) Permit? UIC Permit attachment:** Section 5 - Surface Discharge Would you like to utilize Surface Discharge PWD options? NO **Produced Water Disposal (PWD) Location:** PWD surface owner: PWD disturbance (acres): Surface discharge PWD discharge volume (bbl/day): **Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment:** Surface Discharge site facilities information: Surface discharge site facilities map: Section 6 - Other Would you like to utilize Other PWD options? NO **Produced Water Disposal (PWD) Location:** PWD surface owner: PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: PURRITO 18-19 FED COM Well Number: 211H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

12/23/2019

APD ID: 10400042154

Submission Date: 05/30/2019

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: PURRITO 18-19 FED COM

Well Number: 211H

Well Work Type: Drill

Show Final Text

Bond Information

Well Type: OIL WELL

Federal/Indian APD: FED

BLM Bond number: NMB000801

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: