а Form 3160-5 (June 2015)	UNITED STATE	S			FORM _ OMB N	APPROVED D. 1004-0137
	BUREAU OF LAND MANA	GEMENT			Expires: Ja 5. Lease Serial No.	nuary 31, 2018
SUNDR Do not use t abandoned w	his form for proposals to ell. Use form 3160-3 (AP	drill or to re D) for such t	ELLƏ -enter an proposals.		6. If Indian, Allottee o	r Tribe Name
	I TPIPI ICATE - Other ins	tructions on			7. If Unit or CA/Agree	ement, Name and/or No.
			paye z		0.00.00.00.00.00.00.00.00.00.00.00.00.0	
I. Type of Well Image: Sign Oil Well Image: Sign Oil Well Image: Sign Oil Well	Other				CHARLIE MURPH	IY 6 TB FC 14H
2. Name of Operator MARATHON OIL PERMIAN	Contact: LLC E-Mail: jvancuren(ADRIAN CO @marathonoil.c	VARRUBIAS		9. API Well No. 30-025-46484-0	0-X1
3a. Address 5555 SAN FELIPE STREET HOUSTON, TX 77056		3b. Phone No Ph: 713-29	. (include area code) 6-3368		10. Field and Pool or I WC-025 G08 S2	Exploratory Area 2535340
4. Location of Well (Footage, Sec.,	T., R., M., or Survey Description	i)			11. County or Parish,	State
Sec 6 T26S R35E NENE 27 32.078880 N Lat, 103.40182	2FNL 1171FEL 25 W Lon				LEA COUNTY,	NM
12. CHECK THE A	APPROPRIATE BOX(ES)	TO INDICA	TE NATURE O	F NOTICE,	REPORT, OR OTH	IER DATA
TYPE OF SUBMISSION			TYPE OF	ACTION		
Notice of Intent		🗖 Dee	pen	Product	ion (Start/Resume)	UWater Shut-Off
C Subsequent Deport	Alter Casing	🗖 Hyd	raulic Fracturing	Reclam	ation	Well Integrity
	Casing Repair	🗖 Nev	Construction	Recomp	olete	Change to Original A
Final Abandonment Notice	Change Plans	🖸 Plug	g and Abandon	Tempoi	arily Abandon	PD
Marathon Oil Permian LLC r Please see attachment for d	equest to make changes to etails.	o the Casing a	and Cementing p	lan for this v	HOBB	SOCD
					JAN 2	21 2020
					REC	EIVED
14. I hereby certify that the foregoing	is true and correct. Electronic Submission # For MARATH pommitted to AFMSS for proc	499185 verifie ON OIL PERM essing by PRI	d by the BLM We AN LLC, sent to SCILLA PEREZ of	ll Information the Hobbs n 01/15/2020	n System (20PP0977SE)	
Name (Printed/Typed) ADRIAN	COVARRUBIAS		Title CTR - T	ECHNICIA	N HES	
Signature (Electroni	c Submission)		Date 01/14/2	020		
	THIS SPACE FO	OR FEDER/		OFFICE U	SE	<u></u>
_Approved_By_DYLAN_ROSSMA	NGO			UM ENGIN	EER	Date 01/15/2020
Conditions of approval, if any, are attac certify that the applicant holds legal or of which would entitle the applicant to com	hed. Approval of this notice does quitable title to those rights in the duct operations thereon.	s not warrant or e subject lease	Office Hobbs			
Title 18 U.S.C. Section 1001 and Title 4 States any false, fictitious or frauduler	3 U.S.C. Section 1212, make it a at statements or representations as	crime for any post to any matter w	erson knowingly and ithin its jurisdiction.	willfully to m	ake to any department or	agency of the United
(Instructions on page 2) ** BLM RE	VISED ** BLM REVISE	D ** BLM R	EVISED ** BLN	A REVISEI	D ** BLM REVISE	D** KZ

MARATHON OIL PERMIAN CHARLIE MURPHY 6 TB FC 14H API#: 30-025-46484

SUNDRY: CASING & CEMENT CHANGE - 3 String

String Type	Hole Size	Casing Size	Top Set MD	Bottom Set MD	Top Set TVD	0/L +23 motto			Weight (Ibs/ft)	Grade	Conn.	SF Collapse	SF Burst	SF Tension
Surface	17 1/2	13 3/8	0	1040	0	10	40	5	4.5	J55	STC	3.37	1.71	2.93
Intermediate	9 7/8	7 5/8	0	11800) 0	118	300	2	9.7	P110		2.21	1.18	1.9
Production	6 3/4	5 1/2	0	22826	5 0	127	767		23	P110	Wedge	1.73	1.2	2.09
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity (sx)	Yield (ft3/sx)	Density (ppg)		Slurry Volume	Excess (%)	Cement Type		Additives	
Surface	Lead	N/A	0	832	835	1.73	13.	5	1445	150	Class C		LCM	
Surface	Tail	N/A	832	1040	217	1.33	14.	8	289	100	Class C	A	ccelerato	r
Intermediate	Lead	N/A	0	10800	1863	2.49	11	•	4639	100	Class C	Extend 5	ler, Accele 0/50 Poz (erator, C
Intermediate	Tail	N/A	10800	11800	218	1.28	13.	8	279	30	Class H	Retarc	ler, 35/65	Poz H
Production	Lead	N/A	9300	9800	47	1.29	14.	5	60	30	Class H	Visco	sifier, Reta	arder
Production	Tail	N/A	9800	22826	1319	1.09	14.	5	1438	30	Class H	Exten	der, Fluid Dispersant	Loss,

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity (sx)	Yield (ft3/sx)	Density (ppg)	Slurry Volume (ft3)	Excess (%)	Cement Type	Additives
Intermediate	Stage 2 Lead	5165	0	4665	400	5.54	10.2	2216	70	Class C	Extender, Suspension Agent
Intermediate	Stage 2 Tail	5165	4665	5165	120	1.32	14.8	158.4	30	Class C	Neat
Intermediate	Stage 1 Lead	5165	5165	11000	460	5.54	10.2	2548.4	100	Class C	Extender, Suspension Agent
Intermediate	Stage 1 Tail	5165	12000	12000	215	1.38	13.8	296.7	30	Class C	Extender, Retarder

.

e

ه,

TV Tool Intermediate String Cementing Program

Service Supervisor

michael.rallo@spinnakeroil.com

(405) 808-5364

J. Kim

Spinnaker - Primary Cementing Best Practices

Primary cement job failures are predominately due to a breakdown in the "displacement process." This results in poor zonal isolation manifested by channeling or non-uniform displacement of the annular fluid(s) by the cementing fluid(s). These guidelines will enhance the displacement process and improve the probability of successful primary cementing.

1) Flow Rate: Regardless of the flow regime, high-energy displacement rates are most effective for ensuring good displacement. Turbulent flow conditions are usually more desirable, but frequently cannot be achieved or are not always required. When turbulent flow is not a viable option for a situation, use the highest pump rate that is feasible for the wellbore conditions. The best results are obtained when (1) the spacer and/or cement is pumped in such a way as to deliver maximum energy to the annulus, (2) the spacer or flush is appropriately designed to remove the drilling fluid, (3) and a competent cement is used.

2) Conditioning the Drilling Fluid: The condition of the drilling fluid is one of the most important variables in achieving good displacement during a cement job. A fluid that has excellent properties for drilling may be inappropriate for cementing purposes. Regaining and maintaining good mobility is the key. An easily displaced drilling fluid will have low, non-progressive gel strengths and low fluid loss. Pockets of gelled fluid, which commonly exist following the drilling of a wellbore, make displacement difficult. These volumes of gelled fluid must be broken up and mobilized.

Industry experience has indicated that it may be necessary to circulate up to ten complete hole volumes prior to the cement job in order to ensure that the hole is well conditioned and clean. A minimum of two bottoms-up is recommended in all scenarios prior to pumping.

3) Spacers and Flushes: Spacers and flushes are effective displacement aids because they separate unlike fluids such as cement and drilling fluid, and enhance the removal of gelled mud allowing a better cement bond. Spacers can be designed to serve various needs. For example, weighted spacers can help with well control, and reactive spacers can provide increased mud-removal benefits. Flushes are used for thinning and dispersing drilling fluid particles. Typically, 8 to 10 minutes contact time or 1000 feet of annular space with spacers or flushes, whichever is greater, are adequate.

4. Pipe Centralization: Centralizing the casing with mechanical centralizers across the intervals to be isolated helps optimize drilling fluid displacement. Good pipe standoff insures a uniform flow pattern around the casing and helps equalize the force that the flowing cement exerts around the casing, increasing drilling fluid removal. In a deviated wellbore, standoff is even more critical to prevent a solids bed from accumulating on the low-side of the annulus. Generally, the industry strives for about 70% standoff.

5) Pipe Movement: Pipe movement is one of the most effective methods of transferring energy downhole. Pipe rotation or reciprocation before and during cementing helps break up gelled, stationary pockets of drilling fluid and loosens cuttings trapped in the gelled drilling fluid. If the pipe is poorly centralized, pipe movement can compensate by changing the flow path through the annulus and allowing the slurry to circulate completely around the casing. The industry does not specify a minimum requirement for pipe movement, however it is acknowledged the even a small amount of pipe movement will enhance the displacement process.

6) Hole Size: Best mud displacement under optimum rates is achieved when annular tolerances are approximately 1.5 to 2 inches. Centralization of very small annuli is very difficult, and pipe movement and displacement rates may be severely restricted. Very large annuli may require extreme displacement rates to generate enough flow energy to remove the drilling fluid and cuttings.

7) Wiper Plugs: Top & bottom wiper plugs are recommended on every primary cementing job unless prohibited by mechanical or other special restrictions. The bottom plug serves to minimize contamination of the cement as it is pumped, in some cases it may be prudent to use multiple bottom plugs to separate mud/spacer and spacer/cement interfaces. The top plug is used to prevent any contamination of the cement slurry by the displacement fluid and minimize the chances of leaving a cement sheath inside the casing. Top plug also gives a positive indication that the cement has been displaced.

8) Rat Hole: When applicable, a weighted, viscous pill in the rat hole prevents cement from swapping with lighter weight mud during the cement job or when displacement stops.

9) Shoe Joint: A shoe joint is recommended on all primary casing/liner jobs. The length of the shoe joint will vary. The absolute minimum length is one joint of pipe. If conditions exist, such as not running a bottom plug, two joints of pipe is a minimum requirement.

1/14/2020

Marathon Oil Charlie Murphy 6 TB Fed Com #14H Lea County, New Mexico

JOB TYPE CASING SIZE HOLE SIZE TVD MD MUD EXCESS DV TOOL DEPTH BHST BHCT

SPACER I SPACER II

LEAD I CEMENT SLURRY

WEIGHT YIELD WATER TOC BBLS OF SLURRY

TAIL I CEMENT SLURRY

WEIGHT YIELD WATER TOC BBLS OF SLURRY

DISPLACEMENT

SPACER I SPACER II

LEAD II CEMENT SLURRY

WEIGHT YIELD WATER TOC BBLS OF SLURRY

TAIL II CEMENT SLURRY

WEIGHT YIELD WATER TOC BBLS OF SLURRY

DISPLACEMENT 1/14/2020 Job Data Intermediate 7.625 in., 29.7 lbs, P-110 BTC 9.875 in. 12000 ft 12000 ft **8.9 ppg OBM** Stage I- 30% Tail/100% Lead; Stage II- 30% Tail/70% Lead 5165 ft 180 Degrees 145 Degrees 155 STAGE 20 bbls Mud Flush w/Dye 40 bbls of Fresh Water

OILFIELD SERVICES

KER

460 Sacks 65/35 Class C Premium Plus Cement/Poz, 10% Gypsum, 10% GEL, 18% SFA, 0.5% SADIA-4, 0.5 lbs Poly Flake, 0.2 lbs Fine Super Fiber

10.2 ppg 5.54 cu.ft./sk 36.13 gals/sk 5165 ft (DV Tool Depth) 453.88 bbls

215 Sacks 50/50 Class C Premium Plus Cement/Poz, 2% Gypsum, 2% GEL, 0.5% SFL-2, 0.1% SR-4

13.8 ppg 1.38 cu.ft./sk 6.5 gals/sk 11000 ft 52.85 bbls

548.93 bbls Fresh Water <u>2nd STAGE</u> 20 bbls Mud Flush w/Dye 40 bbls of Fresh Water

400 Sacks 65/35 Class C Premium Plus Cement/Poz, 10% Gypsum, 10% GEL, 18% SFA, 0.5% SADIA-4, 0.35 lbs Poly Flake, 0.2 lbs Fine Super Fiber

10.2 ppg 5.54 cu.ft./sk 36.13 gals/sk **Surface** 393.96 bbls

120 Sacks Class C Premium Plus Cement

14.8 ppg 1.32 cu.ft./sk 6.32 gals/sk 4665 ft (500' of fill) 28.22 bbls

Marathon Oil Charlie Murphy 6 TB Fed Com #14H Lea County, New Mexico

Ref. #	Description	Quantity	Unit Price	Sub Total	Total
	******* Cementing Service ***********				
MLPU2	Pickup Mileage 2 units (roundtrip miles)	100	\$7.88	\$788.00	\$236.40
MLHE14	Heavy Vehicle Mileage 14 units (roundtrip miles)	100	\$94.92	\$9,492.00	\$2,847.60
MLTN	Bulk Cement Delivery/Return (per Ton-Mile)	3,361	\$2.73	\$9,175.53	\$2,752.66
MXBK	Bulk Material Mixing Service Charge (Per cu.ft.)	1,195	\$3.03	\$3,620.85	\$1,086.26
CMTHD	Cement Head with manifold (per Job)	1	<u>\$1,895.00</u>	\$1,895.00	\$568.50
	Portable Field Storage Bin (per unit, per 3 days)	2	\$2,175.00	\$4,350.00	\$1,305.00
	Multiple Stage Cementing	1	\$2,994.75	\$2,994.75	\$898.43
PC12K	Pump Charge 11,001-12,000' (Per 7 hrs)	1	\$12,223.00	\$12,223.00	\$3,666.90
PC6K	Pump Charge 5001-6000° (Per 5 hrs)		\$4,325.75	\$4,325.75	\$1,297.73
	Data Acquisition System	2	\$1,331.00	\$2,662.00	<u> </u>
	Fuer Surcharge (per univper job)	14		\$0,470.00	
	Data Manitaring System/Supervisor	1		⇒211.75 €1.600.00	<u>\$U.UL</u>
CIRON	Circulation Equipment (40' of equipment per job)	<u> </u>		\$1,000.00	\$480.00
	**************************************	۲	ֆ1,512.5U	⊅ 3,025.00	<u>\$901.50</u>
CODMD	Cementing materials	707	\$27.25	\$20 204 45	CO 010 24
	POZ (ner sack)	101		929,394.45 \$11 A35 6A	90,010.34
CEVICEI	GEL (ner lb)	7 900	\$0 \$0.78	\$11,433.04 \$6 162.00	93,430.08
CEXTOVE	Gynsum (ner lb)	7,500	\$0.70 \$0.87	\$6,824,28	\$2 047 28
CEXTSEA	ISFA (ner lb)	13 468	\$0.07 \$1.45	\$19 528 60	\$5 858 59
CASADIA	SADIA-4 (per lb)	379	\$37.60	\$14 250 40	\$4 275 12
CEL 6	SFL-2 (per lb)	91	\$15.19	\$1 382 29	\$414.60
	SR-4 (per lb)	18	\$4 10	\$73.80	\$22.14
CICMPE	Poly Flake (per lb)	430	\$3.86	\$1 659 80	\$497.94
CLCMFBR	Fine Super Fiber (per lb)	172	\$26.03	\$4,477,16	\$1,343,15
CMUDF	Mudflush (per bbl)	40	\$60.25	\$2,410.00	\$723.00
				, , , , , , , , , , , , , , , , , , , 	
	Additional Items if used				
RESTK	Product Restocking Fee (per truck)	0	\$1,250.00	\$0.00	\$0.00
STBYPU	Standby Pump Unit	0	\$4,025.00	\$0.00	\$0.00
PCADD	Pump/Standby Charge Additional Hours	0	\$381.15	\$0.00	\$0.00
DERKC	Derrick Charge (Cement Head Stabbing Above 8 ft)	0	\$726.00	\$0.00	\$0.00
CSPDYE	Spinnaker Spacer/Cement Dye (per pint)	0	\$75.25	\$0.00	\$0.00
CDFDIAL	ATF Cement Defoamer (per gal)	0	\$28.50	\$0.00	<u>\$0.00</u>
FTRP758	7 5/8" Top Rubber Plug	0	\$120.00	\$0.00	\$0.00
	Sugar (per lb)	0	\$1.37	\$0.00	\$0.00
	Book Price			\$162,432.05	
	Estimated Job Cost		:		\$46,125.09
DISCR	Multi-Rig Discount	0%			\$0.00
	Estimated Job Cost after Multi-Rig Discount				\$46,125.09
DISCA	Multi-Asset Discount	3%			-\$1,383.7
	Estimated Job Cost after All Discounts (Exclusive	e of Sales Ta	x)		\$44,741.34
			- · · ·		· · · · · · · · · · · · · · · · · · ·

t.

KER

SPINN DILFIELD SERVICES

.

[

- - --

TEC-LOCK WEDGE

5.500" 23 LB/FT (.415"Wall)

BENTELER P110 CY

Pipe Body Data

Nominal OD:	5.500	in
Nominal Wall:	.415	in
Nominal Weight:	23.00	lb/ft
Plain End Weight:	22.56	lb/ft
Material Grade:	P110 CY	
Mill/Specification:	BENTELER	
Yield Strength:	125,000	psi
Tensile Strength:	130,000	psi
Nominal ID:	4.670	in
API Drift Diameter:	4.545	in
Special Drift Diameter:	None	in
RBW:	87.5 %	
Body Yield:	829,000	lbf
Burst:	16,510	psi
Collapse:	16,910	psi

Connection Data

Standard OD:	5.950	in	
Pin Bored ID:	4.670	in	
Critical Section Area:	6.457	in²	
Tensile Efficiency:	97.4 %		
Compressive Efficiency:	100 %		
Longitudinal Yield Strength:	807,000	lbf	
Compressive Limit:	829,000	lbf	
Internal Pressure Rating:	16,510	psi	
External Pressure Rating:	16,910	psi	
Maximum Bend:	101.5	°/100ft	
-			

Operational Data

Minimum Makeup Torque:	16,400	ft*lbf
Optimum Makeup Torque:	20,500	ft*lbf
Maximum Makeup Torque:	44,300	ft*lbf
Minimum Yield:	49,200	ft*lbf
Makeup Loss:	5.97	in

Notes Operational Torque is equivalent to the Maximum Make-Up Torque

Generated on Mar 12, 2019

EVRAZ 7-5/8" 29.7# HC-P110

High Collapse P110; Seamless

Pipe Body Geometry						
Outside Diameter		7.625	in			
Wall Thickness		0.375	in			
Nominal Linear Mass (T&C)		29.70	lb/ft			
Plain End		29.06	lb/ft			
Inside Diameter		6.875	in			
Drift Diameter		6.750	in			
Alternate Drift Diameter		N/A	in			
Pipe Body Performance	·					
Grade		HC-P110				
Yield Strength Minimum		110,000	psi			
Tensile Strength Minimum		125,000	psi			
Plain End Pipe Body Yield		940	1,000 lbf			
Collapse Resistance [1]		7,000*	psi			
Internal Yield ⁽²⁾		9,470	psi			
Ductile Rupture (Burst)	[3]	10,840	psi			
Connection Geometry						
		LC		BC		
Coupling Outside Diameter		8.500	in	8.500	in	
Coupling Minimum Length		9.250	in	10.375	in	
Connection ID Type		Non-flu	sh	Non-flu	sh	
Make-up Loss		4.125	in	4.688	in	
API Compatible		Yes	.=	Yes		
Connection Performance						
		LC		BC		
Threaded and Coupled Joint S	Strength	769	1,000 lbf	960	1,000 lbf	
Efficiency		72	%	90	%	
Internal Presssure		9,470	psi	9,470	psi	
Make-up Torque [4][5]	optimum	7,690	lb'ft	12350	lb [.] ft	
[minimum	5,770	lb [.] ft	8750	lb [.] ft	
	maximum	9,610	lb [.] ft	15950	lb [.] ft	
Notes						
			CO A			

[1]*Based on 8 x OD collapse testing in accordance with API 5C3 Annex I. [2] The internal yield is calculated using API 5C3 Equation (10).

[3] This is an absolute limit and not safe work limit. Calculated based on API 5C3 Equation (14).

[4]For LC or SC, The values of optimum make-up torque was calculated as 1 % of the calculated joint pull-out strength as determined from API 5C3 Equation (55).

[5]For BC, data is taken from API 5TP, based on utilizing API Modified Thread Compounds assuming phosphate couplings. If other thread compounds are utilized, the torque correction factor noted by the compound manufacturer shall be considered. Torque must be verified by triangle position.