Form 3160-3 (June 2015)			_	FORM OMB N	APPROV 0. 1004-0	ED 137	
UNITED STATES	H	IOBBS O	CD	Expires: Ja	anuary 31,	2018	
DEPARTMENT OF THE IN	ITERIOR		•	5. Lease Serial No.			
		FEB 0 3 202	U	NMNMU160973	or Tribe)	lama	
APPLICATION FOR PERMIT TO DE		DECEN/	=n	o. Il Indian, Anotee		Name	
	ENITED	KEVEN		7. If Unit or CA Ag	reement, N	Name and No.	
Ta. Type of Work:	ENIER			NMNM082045			
16. Type of went: I Understein Gas went Oth	ner			8. Lease Name and	Well No.		
ic. Type of Completion: Hydraulic Fracturing	igie Zone			MESA B 8115 FEI	9-00M 2.6 /4	K)	
2. Name of Operator				9. APJ-Well No. /		<u> </u>	
BTA OIL PRODUCERS LLC (260297)			$\neg \land$	70-025	-46	856	
3a. Address 104 S. Pecos Midland TX 79701	3b. Phone N (432)682-3	No. <i>(include area cod</i> 1753	e)	10 Field and Pool, SANDERS TANK	or Exp lora LUPPER	WOLFCAMP	
4. Location of Well (Report location clearly and in accordance with	ith any State	requirements.*)	\frown	11. Sec., T. R. M. of	Blk. and	Survey or Area	
At surface NENE / 460 FNL / 800 FEL / LAT 32.064032	/ LONG -1	03.60543	$(\frown$	SEC / 1203 / R3		-	
At proposed prod. zone SWSE / 50 FSL / 1650 FEL / LAT	32.050925	5/LONG -103.608	162				
14. Distance in miles and direction from nearest town or post offic 30 miles				12. County or Parisi LEA	h	13. State NM	
15. Distance from proposed* 475 feet	16. No of a	cres in lease	17. Spacin	Unit dedicated to t	his well		
property or lease line, ft. (Also to nearest drig. unit line, if any)	1238,72		160				
18. Distance from proposed location*	19. Propose	d Depth	20/BLM	BIA Bond No. in file			
to nearest well, drilling, completed, 2585 feet applied for, on this lease, ft.	12490 Teet	1 17524 feet	17524 feet FED: NMB001711				
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3300 feet	22. Approxi 05/10/2019	imate date work will	start*	23. Estimated durat 30 days	ion		
	24. Attac	hments					
The following, completed in accordance with the requirements of (as applicable)	Onshore Oil	and Gas Order No. 1	I, and the F	lydraulic Fracturing r	ule per 43	CFR 3162.3-3	
 Well plat certified by a registered surveyor. A Drilling Plan. 	\sum	4. Bond to cover th Item 20 above).	e operation	s unless covered by a	n existing	bond on file (see	
3. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office),	Lands, the	5. Operator certific 6. Such other site sp BLM.	ation. ecific infor	mation and/or plans as	may be re	equested by the	
25. Signature	Name	(Printed/Typed)			Date		
(Electronic Submission)	Samn	ny Hajar / Ph: (432)	682-3753		12/07/2	018	
Regulatory Analyst							
Approved by (Signature)	Name	(Printed/Typed)			Date		
(Electronic Submission)	Cody	Layton / Ph: (575)2	234-5959		01/29/2	020	
Title Assistant Field Manager Lands & Minerals	Office CARL	: .SBAD					
Application approval does not warrant or certify that the applicant applicant to conduct operations thereon. Conditions of approval, if any are attached.	holds legal	or equitable title to th	nose rights	in the subject lease w	hich woul	d entitle the	
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, ma of the United States any false, fictitious or fraudulent statements or	ake it a crime r representat	e for any person know ions as to any matter	wingly and within its j	willfully to make to a urisdiction.	iny depart	ment or agency	
FCP Res 02/05/2020				1/4 1	N		
				KA 1.0 1			
		- In Iff	INNS	Dr V			
		ru convit	IVIN	<i>v</i> .			

APPROVED TITLE APPROVED TITLE APPProval Date: 01/29/2020

4L			
(Continued	on	page	2)

*(Instructions on page 2)

Application for Permit to Drill

APD Package Report

APD ID: 10400036957 APD Received Date: 12/07/2018 08:29 AM Operator: BTA OIL PRODUCERS LLC

APD Package Report Contents

- Form 3160-3
- Operator Certification Report
- Application Report
- Application Attachments -- Well Plat: 1 file(s)
- Drilling Plan Report
- Drilling Plan Attachments
 - -- Blowout Prevention Choke Diagram Attachment: 261e(s)
 - -- Blowout Prevention BOP Diagram Attachment: 3 file(s)
 - -- Casing Taperd String Specs: 4 file(s)
 - -- Casing Design Assumptions and Worksheet(s): 5 file(s)
 - -- Hydrogen sulfide drilling operations plan: 3 file(s)
 - -- Proposed horizontal/directional/multi-lateral plan submission: 3 file(s)
 - -- Other Variances: 2 file(s)
- SUPO Report
- SUPO Attachments
 - -- Existing Road Map: 1 file(s)
 - -- New Road Map 1 file(s)
 - -- Attach Well map: 1 file(s)
 - -- Production Facilities map: 1 file(s)
 - -- Water source and transportation map: 1 file(s)
 - -- Well Site Layout Diagram: 3 file(s)
- PWD Report
- PWD Attachments
 - -- None
- Bond Report
- Bond Attachments

U.S. Department of the Interior Bureau of Land Management

Date Printed: 01/30/2020 07:56 AM

Well Status: AAPD Well Name: MESA B 8115 FED COM Well Number: 16H

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

Approval Date: 01/29/2020

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

SHL: NENE / 460 FNL / 800 FEL / TWSP: 26S / RANGE: 33E / SECTION: 7 / LAT: 32.064032 / LONG: -103.60543 (TVD: 0 feet, MD: 0 feet)
 PPP: NWNE / 100 FNL / 1650 FEL / TWSP: 26S / RANGE: 33E / SECTION: 7 / LAT: 32.06502 / LONG: -103.608195 (TVD: 12020 feet, MD: 12087 feet)
 BHL: SWSE / 50 FSL / 1650 FEL / TWSP: 26S / RANGE: 33E / SECTION: 7 / LAT: 32.050925 / LONG: -103.608162 (TVD: 124904feet, MD: 17524 feet)

BLM Point of Contact

Name: Tanja Baca Title: Admin Support Assistant Phone: 5752345940 Email: tabaca@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above Visted Bureau of Land Management office for further information.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	BTA OIL PRODUCERS LLC
LEASE NO.:	NMNM0160973
WELL NAME & NO.:	16H – MESA B 8115 FED COM
SURFACE HOLE FOOTAGE:	475'/N & 1340'/E
BOTTOM HOLE FOOTAGE	50'/S & 1650'/E
LOCATION:	SECTION 7, T26S, R33E, NMPM
COUNTY:	LEA

H2S	Yes	r No	
Potash	None		r R-111-P
Cave/Karst Potential	C Low	Medium	High
Variance	None	Flex Hose	C Other
Wellhead	Conventional		🕫 Both
Other	□ □ 4 String Area	Capitan Reef	Г WIPP
Other	Fluid Filled	☐ Cement Squeeze	F Pilot Hole
Special Requirements	✓ Water Disposal	COM	U nit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 975 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)

Page 1 of 8

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing shall be set at approximately 4750 feet is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 - In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 7 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.
- 4. The minimum required fill of cement behind the 4-1/2 inch production liner is:
 - Cement should tie-back **100 feet** into the previous casing. Operator shall provide method of verification.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **2000 (2M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing

Page 2 of 8

shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.

Option 2:

- Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be</u> <u>on the sign.</u>

Page 3 of 8

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201. During office hours call (575) 627-0272. After office hours call (575)

\boxtimes Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

Page 4 of 8

- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.
- A. CASING
- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> hours. WOC time will be recorded in the driller's log.
- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

Page 5 of 8

- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the

Page 6 of 8

plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time.
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.
- C. DRILLING MUD

Page 7 of 8

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 8 of 8

<u>,</u>

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Sammy Hajar Signed on: 12/06/2018											
Title: Regulatory Analyst											
Street Address: 104 S. Pecos											
City: Midland	State: TX	Zip : 79701									
Phone: (432)682-3753											
Email address: shajar@btaoil.com											
Field Representative											
Representative Name:											
Street Address: 104 South Pecos											
City: Midland	State: TX	Zip: 79701									
Phone: (432)682-3753											
Email address: neaton@btaoil.co	m										

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Аррисацо	01/30/2020				
APD ID: 10400036957	Submission Date: 12/07/2018						
Operator Name: BTA OIL PRODUCERS LLC							
Well Name: MESA B 8115 FED COM	Well Numb	er : 16H	Show Final Text				
Well Type: OIL WELL	Well Work	Type: Drill					
Section 1 - General							
APD ID: 10400036957	Tie to previous NOS?	Subr	mission Date: 12/07/2018				
BLM Office: CARLSBAD	User: Sammy Hajar	Title: Regu	latory Analyst				
Federal/Indian APD: FED	Is the first lease penetra	ted for production Fed	eral or Indian? FED				
Lease number: NMNM0160973	Lease Acres: 1238.72						
Surface access agreement in place?	Allotted?	Reservation:					
Agreement in place? YES	Federal or Indian agreement: FEDERAL						
Agreement number: NMNM082045							
Agreement name:							
Keep application confidential? YES							
Permitting Agent? NO	APD Operator: BTA OIL	PRODUCERS LLC					
Operator letter of designation:							
Operator Info]						
Operator Organization Name: BTA OIL PRO	DUCERS LLC						
Operator Address: 104 S. Pecos		Zip : 79701					

Operator PO Box:

Operator City: Midland State: TX

Operator Phone: (432)682-3753

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO	Master Development Plan nam	ie:
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name:	
Well Name: MESA B 8115 FED COM	Well Number: 16H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: SANDERS TANK	Pool Name: UPPER WOLFCAMP

Is the proposed well in an area containing other mineral resources? NONE

Uperator Name: BTA OIL PRODUCERS LLC
Well Name: MESA B 8115 FED COM

Well Number: 16H

Is the proposed well in an area containing other mineral resources? NONE

Is the proposed well in a Helium produ	ction area? N	Use Existing Well Pad	New surface disturbance				
Type of Well Pad: MULTIPLE WELL		Multiple Well Pad Name: MESA Number: 14-17					
Well Class: HORIZONTAL		B 8115 FED COM Number of Legs:					
Well Work Type: Drill							
Well Type: OIL WELL							
Describe Well Type:							
Well sub-Type: INFILL							
Describe sub-type:							
Distance to town: 30 Miles	Distance to ne	arest well: 2585 FT	Distanc	e to lease line: 475 FT			
Reservoir well spacing assigned acres	Measurement	: 160 Acres					
Well plat: Mesa_B_8115_Fed_Com_	16H_C102_201	91119130556.pdf					
Well work start Date: 05/10/2019		Duration: 30 DAYS					

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Survey number:

Vertical Datum: NGVD29

Reference Datum:

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	DM	TVD	Will this well produce
SHL		FNL		FEL	26S	33E	7	Aliquot			LEA	NEW	NEW	F	NMNM				
Leg								NENE				MEXI	MEXI		016097				
#1												CO	CO		3				
KOP		FNL		FEL	26S	33E	7	Aliquot			LEA	NEW	NEW	F	NMNM				
Leg								NWNE				MEXI	MEXI		016097				
#1							İ					co	co		3				
PPP		FNL		FEL	26S	33E	7	Aliquot			LEA	NEW	NEW	F	NMNM				
Leg								NWNE				MEXI	MEXI		016097				
#1-1												со	co		3				

Pana 2 of 3

Well Name: MESA B 8115 FED COM

Well Number: 16H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD	Will this well produce
EXIT Leg #1		FSL		FEL	26S	33E	7	Aliquot SWSE			LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 016097 3				
BHL Leg #1		FSL		FEL	26S	33E	7	Aliquot SWSE			LEA	NEW MEXI CO	NEW MEXI CO	F	NMNM 016097 3				

WWLM99

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400036957

Operator Name: BTA OIL PRODUCERS LLC

Submission Date: 12/07/2018

Show Final Text

01/30/2020

Drilling Plan Data Report

Well Name: MESA B 8115 FED COM

Well Type: OIL WELL

Well Number: 16H

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
354490	QUATERNARY	. (ALLUVIUM	NONE	N
354488	RUSTLER	· · ·				NONE	N
354493	TOP SALT	- + ,A ,	net			NONE	N
354495	BASE OF SALT					NONE	N
354494	DELAWARE			· ·		NATURAL GAS, OIL	N
389869	BELL CANYON	:				NATURAL GAS, OIL	N
389925	CHERRY CANYON					NATURAL GAS, OIL	Ν
389926	BRUSHY CANYON					NATURAL GAS, OIL	Ν
354496	BONE SPRING LIME	, · ·				NATURAL GAS, OIL	Ν
389928	FIRST BONE SPRING SAND					NATURAL GAS, OIL	N
389929	BONE SPRING 2ND					NATURAL GAS, OIL	Ν
389930	BONE SPRING 3RD					NATURAL GAS, OIL	N
354497	WOLFCAMP					NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Well Name: MESA B 8115 FED COM

Well Number: 16H

Pressure Rating (PSI): 10M

Rating Depth: 14000

Equipment: The blowout preventer equipment (BOP) shown in Exhibit A will consist of a (10M system) double ram type (10,000 psi WP) preventer and a bag-type (Hydril) preventer (5000 psi WP). Both units will be hydraulically operated and the ram type preventer will be equipped with blind rams on top and 5" drill pipe rams on bottom. The BOP's will be installed on the 13-3/8" surface casing and utilized continuously until total depth is reached. A 2" kill line and 3" choke line will be incorporated in the drilling spool below the ram-type BOP. A remote kill line will be used for the 10M system as per onshore order #2. Other accessory BOP equipment will include a Kelly cock, floor safety valve, choke lines, and choke manifold having a 10,000 psi WP rating. The 5M annular on the 10M system will be tested to 100% of rated working pressure. **Requesting Variance?** YES

Variance request: A Choke Hose Variance is requested. See attached test chart and spec. 5M annular variance requested.

Testing Procedure: Pipe rams will be operated and checked each 24-hour period and each time the drill pipe is out of the hole. These functional tests will be documented on the daily driller's log. All BOP's and associated equipment will be tested as per BLM drilling Operations Order No. 2.

Choke Diagram Attachment:

Choke_Hose___Test_Chart_and_Specs_20181129153440.pdf

10M_choke_mannifold_20181129153440.pdf

BOP Diagram Attachment:

5M_annular_well_control_plan_for_BLM_20181129153535.docx

BLM_10M_BOP_with_5M_annular_20190204153336.pdf

10M_annular_variance__20190204153345.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14.7 5	10.75	NEW	API	N	0	890	0	890			890	J-55	40.5	ST&C	4.1	8.1	DRY	11.7	DRY	17.5
2	INTERMED IATE	9.87 5	7.625	NEW	API	Y	0	8056	0	8000			8056	P- 110	29.7	BUTT	1.4	2.4	DRY	4	DRY	3.9
3	PRODUCTI ON	6.75	5.5	NEW	API	Y	0	11733	0	11667			11733	Р- 110	20	BUTT	1.3	1.5	DRY	2.8	DRY	2.7
4	INTERMED IATE	8.75	7.625	NEW	API	Y	8056	11933	8000	11867			3877	P- 110	29.7	Βυττ	1.7	1.6	DRY	2.7	DRY	2.7
5	PRODUCTI ON	6.75	5.0	NEW	API	Y	11733	17524	11667	12490			5791	P- 110	18	витт	1.3	1.4	DRY	1.9	DRY	1.8

Well Name: MESA B 8115 FED COM

Well Number: 16H

Casing Attachments

Casing ID: 1 String Type: SURFACE
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
New_Mesa_B_16H_casing_assumption_20191119140059.JPG
Casing ID: 2 String Type: INTERMEDIATE
Inspection Document:
Spec Document:
Tanered String Spec
7 5 8 tapered string spec 9 7 8 hole 20191119133931.jpg
Casing Design Assumptions and Worksheet(s):
New_Mesa_B_16H_casing_assumption_20191119140052.JPG
Casing ID: 3 String Type: PRODUCTION
Inspection Document:
Spec Document:
Tanered String Spec
5.5 tapered string spec 20191119134601.jpg
Casing Design Assumptions and Worksheet(s):

New_Mesa_B_16H_casing_assumption_20191119140045.JPG

Well Name: MESA B 8115 FED COM

Well Number: 16H

Casing Attachments

Casing ID: 4 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

7 5 8 tapered string_spec_20191119134449.jpg

Casing Design Assumptions and Worksheet(s):

New_Mesa_B_16H_casing_assumption_20191119140037.JPG

Casing ID: 5 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

5 tapered string spec 20191119135600.jpg

Casing Design Assumptions and Worksheet(s):

New_Mesa_B_16H_casing_assumption_20191119140029.JPG

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	890	OTHER : FW Spud	8.3	8.4							
890	1193 3	OTHER : DBE	9	9.4							
1193 3	1249 0	OIL-BASED MUD	11	14							

Well Name: MESA B 8115 FED COM

Well Number: 16H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Drill Stem Tests will be based on geological sample shows.

List of open and cased hole logs run in the well:

CBL,GR,MUDLOG

Coring operation description for the well:

None planned

Section 7 - Pressure

Anticipated Bottom Hole Temperature(F): 181

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_20181129153648.pdf

H2S_Equipment_Schematic_20181129153733.pdf

BTA_Oil_Producers_LLC___EMERGENCY_CALL_LIST_20190204160022.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Mesa_B__16H_directional_plan_20191119141901.pdf

Mesa_B__16H_Wall_plot_20191119141902.pdf

Mesa_B_8115_Fed_Com_16H_Gas_Capture_Plan_20191119142129.pdf

Other proposed operations facets description:

A variance is requested for a Multi Bowl Wellhead. See the attached schematic and running procedure. *All strings will be kept 1/3 full while running.

Other proposed operations facets attachment:

Other Variance attachment:

Casing_Head_Running_Procedure_20181129153916.pdf Multi_Bowl_Diagram_20181129153852.pdf

	Contifect	خې .	CON	TITEC Industr	H RU rial Kí	BBER t.	No:QC- Page:	DB- 599/ 1 16 / 17	2014 6			
R'1 94					F	1276		244	55			
	ITY CONT	rol. r cei	RTIFIC	CATE		CERT. N	1°:	1592				
PURCHASER:	ContiTech (Oil & M	arine C	Corp.	*********	P.O. N^:		4500461	753			
CONTITECH ORDER Nº:	539225	HOSE	TYPE:	3"	ID	A	Choke & Kill Hose					
HOSE SERIAL Nº:		NOMI	NAL / AC	TUAL LE	ENGTH	:	7,62 m	/ 7,66 m				
W.P. 68,9 MPa	10000 psi	Т.Р,	103,4	MPa	150	00 psi	Duration:	60	min.			
See attachment. (1 page)												
> 10 mi ↑ 50 mF	n. Pa	.266	attach	iment.	(1 pa	nge)						
> 10 мі ↑ 50 мг COUPLINGS Ту	n. Pa 1/pe	.266	attach Seria	nment.	(1 pa	nge) Qua	Jiity	Heal				
> 10 Mi 1 50 MF COUPLINGS Ty 3" coupling Wi	n. Pa /pe	25	attach Seria 74	1 M° 5533	(1 pa	nge) Qua AISI (Jiity 1130	Heat A1582N	N∸ H8672			
> 10 Mi 1 50 MF COUPLINGS Ty 3" coupling Wi 4 1/16" 10K API Swivel	n. Pa rpe Ih Flange end	25	attach Seria 74	1 N° 5533	(1 pa	nge) Qua AISI 4 AISI 4		Heal A1582N 588	N° H8672 55			
> 10 Mi ↑ 50 MF COUPLINGS Ty 3" coupling Wi 4 1/16" 10K API Swivel Hub	n. Pa rpe th Flange end	25	attach Seńa 74	1 N° 5533	(1 pa	Qua AISI AISI AISI	ıliiy 1130 1130 1130	Heal A1582N 588 A1199N	H8672 55 A1423N			
→ 10 Mi ↑ 50 MF COUPLINGS Ty 3" coupling Wi 4 1/16" 10K API Swivel Hub Not Designed For	n. Pa Ih Flange end Well Testin	5ee 25	attach Seria 74	1 N° 5533	(1 pa	Qua Qua AISI 4 AISI 4 AISI 4	liity 1130 1130 1130	Heal A1582N 588 A1199N API Spec	H8672 55 A1423N 16 C			
> 10 Mi † 50 MF COUPLINGS Ty 3" coupling wi 4 1/16" 10K API Swivel Hub Not Designed For Fire Rated	n. Pa th Flange end Well Testin	25 ()	attach Sería 74	1 N° 5533	(1 pa	Qua AISI 4 AISI 4 AISI 4	liity 1130 1130 1130 Tem	Heal A1582N 588 A1199N API Spec aperature	H8672 55 A1423N 16 C rate:"B"			
> 10 Mi † 50 MF COUPLINGS Ty 3" coupling Wi 4 1/16" 10K API Swivel Hub Not Designed For Fire Rated All metal parts are flawless WE CERTIFY THAT THE ABOV INSPECTED AND PRESSURE	n. Pa Ih Flange end Well Testin Vell Testin	See 25	Seria Seria 174	IN° 5533 RED IN AG		Qua Qua AISI 4 AISI 4 AISI 4	liity 1130 1130 1130 Tem 1 THE TERN	Heat A1582N 588 A1199N API Spec aperature as of the or	H8672 55 A1423N 16 C rate:"B"			
> 10 Mi 1 50 MF COUPLINGS Ty 3" coupling Wi 4 1/16" 10K API Swivel Hub Not Designed For Fire Rated All metal parts are flawless WE CERTIFY THAT THE ABOV INSPECTED AND PRESSURE STATEMENT OF CONFORM conditions and specifications accordance with the referenced	n. Pa In Flange end Well Testin Well Testin Well Testin IT: We hereby of the shove Pure standards. codes	See 25 25 () EEN MANI VE WITH certify tha chasser Or a and spa	Seria Seria 74 UFACTUR SATISF/ at the aborder and the criteations	I Nº 5533 REO IN AC ACTORY F ve itenis/c hat lhese f and meet	(1 pa	age) Qua AISI 4 AISI 4 AISI 4 AISI 4 ANCE WITH	Ility 1130 1130 1130 1130 Tem T THE TERN T THE TERN T THE TERN T THE TERN	Heal A1582N 588 A1199N API Spec aperature as OF THE OR conformily with inspected and a and dealgn re	H8672 55 A1423N 16 C rate:"B" DER Iho terms, testad in quiroments.			

.

Contifient (ophar Industrial Kit,) Budapasti de 10-0728 Sanged (11-0701 Problem 152 Sangad, Hungshy Plante, ISB 62 566 TM (Faid, -S6 62 556 538 (diama) into@ebit (diama) (diama) waar det toetheddow na wwa cestingeb bu TH-: Gourt of Oso 1989) County a-: Registry Count (Registry Count No. Co. 08 69 602552 (FB VAT No. Fult 1067208 Updit dats Commenzation Zith, Budapast (14220190-2683269)

.

10M AND 15M CHOKE MANIFOLD EQUIPMENT - CONFIGURATION OF CHOKES MAY VARY [53 FR 49661, Dec. 9, 1988 and 54 FR 39528, Sept. 27, 1989]

Well control plan for 10M BOPE with 5M annular

Drilling

- 1. Sound alarm (alert crew).
- 2. Space out drill string.
- 3. Shut down pumps (stop pumps and rotary).
- 4. Shut-in Well with annular with HCR and choke in closed position.
- 5. Confirm shut-in.
- 6. Notify tool pusher/company representative.
- 7. Read and record the following:
- a. SIDPP & SICP
- b. Time of shut in
- c. Pit gain

8. Regroup and identify forward plan. If pressure has increased to 2500 psi, confirm spacing and close the upper variable bore rams.

9. Prepare for well kill operation.

Tripping

- 1. Sound alarm (alert rig crew)
- 2. Stab full opening safety valve and close valve
- 3. Sapce out drill string
- 4. Shut in the well with the annular with HCR and choke in closed position
- 5. Confirm shut in
- 6. Notify tool pusher/company representative
- 7. Read and record the following
- a. Time of shut in
- b. SIDPP and SICP
- c. Pit gain

8. If pressure has increased to 2500 psi, confirm spacing and close the upper most variable bore ram.

9. Prepare for well kill operation.

While Running Casing

- 1. Sound alarm (alert rig crew)
- 2. Stab crossover and full opening safety valve and close valve
- 3. Space out casing string
- 4. Shut in well with annular with HCR and choke in closed position
- 5. Confirm shut in
- 6. Notify tool pusher/company representative
- 7. Read and record the following:
- a. SIDPP & SICP
- b. Pit gain
- c. Time

8. If pressure has increased to 2500 psi, confirm spacing and close the upper most variable bore ram.

9. Prepare for well kill operation.

No Pipe In Hole (Open Hole)

1. Sound alarm (alert rig crew)

Well control plan for 10M BOPE with 5M annular

- Shut in blind rams with HCR and choke in closed position 2.
- 3. Confirm shut in
- 4. Notify tool pusher/company representative
- Read and record the following: 5.
- SICP а.
- Pit gain b.
- Time С.
- 6. Prepare for well kill operation

- Pulling BHA thru Stack Prior to pulling last joint of drill pipe thru the stack
 - Perform flow check, if flowing: a.
 - Sound Alarm (alert crew) a.i.
 - Stab full opening safety valve and close valve a.ii.
 - Space out drill string a.iii.
 - Shut in using upper most VBR, choke and HCR in closed positon a.iv.
 - Confirm shut in a.v.
 - Notify tool pusher/company representative. a.vi.
 - Read and record the following: a.vii.
 - a.vii.1. SIDPP and SICP
 - a.vii.2. Pit gain
 - a.vii.3. Time
 - Prepare for well kill operation a.viii.
 - With BHA in the stack: 2.
 - If possible pull BHA clear of stack а.
 - Follow 'open hole' procedure above a.i.
 - If unable to pull BHA clear of stack b.
 - Stab crossover with full opening safety valve, close valve. b i
 - Space out b.ii.
 - Shut in using upper most VBR. HCR and choke in closed position. b.iii.
 - Confirm shut in b.iv.
 - Notify tool pusher/company rep b.v.
 - Read and record the following: b.vi.
 - b.vi.1. SIDPP and SICP
 - b.vi.2. Pit gain
 - b.vi.3. Time
 - Prepare for well kill operation b.vii.

13-5/8" 10M PSI BOP Stack

Drilling component and preventer compatibility table for 10M approval

The following table outlines the drilling and production liner components for Wolfcamp targets requiring 10M BOPE approval. Variance is requested to utilize a 5M annular preventer in 6-1/8" hole as all components can be covered using 10M rated VBR's (variable bore rams). 5M annular on the 10M system will be tested to 100% of rated working pressure.

6-1/8" hole section – 10M BOPE requirement (13-5/8" BOP)									
Component	OD	Preventer	RWP						
Drill pipe	4″	3.5"-5.5" VBR	10M						
HWDP	4″	3.5″-5.5″ VBR	10M						
Jars	5″	3.5"-5.5" VBR	10M						
DC's and NMDC's	4-3/4"	3.5"-5.5" VBR	10M						
Mud motor	5″	3.5"-5.5" VBR	10M						
Casing	4-1/2"	3.5"-5.5" VBR	10M						
Open hole	NA	Blind rams	10M						

12-1/4" & 8-3/4" hole sections – 5M BOPE requirement (13-5/8" BOP)									
Component	OD	Preventer	RWP						
Drill pipe	5″	3.5"-5.5" VBR or 5" pipe rams	10M						
HWDP	5″	3.5"-5.5" VBR or 5" pipe rams	10M						
Jars	6-1/4"	Annular	5M						
DC's and NMDC's	7″-8″	Annular	5M						
Mud motor	7″-8″	Annular	5M						
Casing	9-5/8″ & 7″	Annular	5M						
Open hole	NA	Blind rams	10M						

ligi. Bets Pari Fam	oven; ibgs., DP & foe	Fasher The Rectanical	tang Dritt Bit Classificy } Data	Huids Reference	7	Lightweig	ht Solutions	
	₿ġ±			err b erreet	žž			
	M Per Fryder Couptry	88888888 *****************************	_8888888888888888888888888888888888888	883558889588 883558889588	22 82	8 8888 8 8888	8888088888 88880888888 888898899779	
	é é é	521 521 525 525 525 525 525 525 525 525	4 200 4 200 4 200 4 2 200 4 2 200 4 2 200 4 2 200 5 2 200 5 2 200 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ŖŖ		22482 224 224	<i>f</i> uo
	5ª5	2532 2531 2181 2181 2181 2181 2181 2181 2551	2217 2277 2277 2277 2277 2275 2016 2016 2016 2016 2016 2016 2016 2016	2289 2289 2289 2280 2280 2280 2280 2280	55	2012 2012 2012	102 2575 2505 2505 2505 2505 2505 2505 25	or information
SING	ن ه و اع	87288208 18888855	x x x x x x x x x x x x x x x x x x x	288 387 387 588 597 598 597 598 597 597 597 597 597 597 597 597 597 597	222	18 37 19 69 19 60 19 60	28999255559 2694986555559	dard. Shown .
ND 214	Å 5 3				58 58		299998233859998 29998233859998	'Not APt Star
	181				I			
	1 1 1 7							
্র ছিন্দ					82	a 2329	77288885522	
APACIT	528	5125 5125 5125 5125 5125 5125 5125 5125		443 1 995 4999	3 , 3,	1 2444	**********	
0	gr e		17440 177400 177400 177400 17740000000000	2 0155 2 0155 2 0155 2 0155 1 0612 1 1067 1 1067 1 10692 1 10692 1 10692 1 10692 1 15903	1,7558	2 2255	2233 2232 2232 2232 2232 2232 2232 23 23	
	ц),	6 010 5 736 5 736 5 616 5 610 5 610	6 331 6 331 6 331 6 241 6 241 6 241 6 241 6 241 6 241 6 241 5 873 5 875 5 875 7 br>875 7 875 7 875 7 875 7 875 7 875 7 875 7 875 7 875 7 875		855	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 1982 7 1982 7 1982 7 1982 7 1982 7 1982 7 1982 7 1982 7 1982 7 1983 7 1985 7	
	1 . - 2	213 200 200 200 200 200 200 200 200 200 20			83 83 83 83 83 83 83 83 83 83 83 83 83 8	第1 第2 第2 第2 第2 第2 第2	191.8 191.8 191.8 190.8 190.8 190.7 190.7 190.7 190.7 190.7 190.7 190.7 190.7 190.7 190.7 190.7 190.7 190.7 190.7 190.7 190.8 190.7 190.8 190.8 190.8 190.8 190.8 190.7 190.8 190.7 190.8 190.7 190.8 190.7 190.8 190.7 190.7 190.8 190.7 100.7	
	A We A We Carlop	88888888 = 8888888	a = 8222282282223844444823 9 88882588885888854588	8889 8889 8889 8889 8889 8889 8889 888	24 X5	8 888 8 888	888888888888888888888888888888888888888	8
	\vdash	+				11	l I	

		7.625 29.7# P-	110 HC Stinger ¹⁴			
					l.	
Fip Bully	D (G		Make Up	torques		
aminal CO	7.625	Inches	Yield torque	25,950	LAS.	
FUR VENERINESS Anisolat	0375	inches In Alle	Max Operating Torque	23,600		
E Winisht	29.04	ingra Bofft	Cotimum Alabestic	26,558/ 17 200		
iominal ID	6.875	Inches	Minimum Main-Up	15.500	Lus.	
with a second se	6.750	Inches				
dinimum Yield Strength	110,000	PSI				1
Aintmum Tensile Strength	125,000	P\$4			1	
en -	87.5%	Rating			1	
					1	
unin	a Data					4.
Connectice OD	7 634	inches			1	
		inches				
Make-Up loss	3.030	Withes		- 4	1	
Tension Efficiency	60%	Rating				1
Compression Efficiency	60%	fating		3	1	
Tield Strength in Tension	564,000	L IIS .				
Tield Stringth in Compression	564,000	LES.				
Colores Press	7,579	75			1	
a hair and a second sec	0,150	73			1	
	•	oepees				
						ł
1 I					ĺ	
			-			
		• •				1
					1	4
	-					
	ə 	· · · ·				
		· · ·	Field Control of Contr			
		SERVICE PACKAGE	Find Service			
		SERVICE PACKAGE	Find Styres Tard Services			
		SERVICE PACKAGE	Tind Arter a Tard Services & Rig Belance			
		SERVICE PACKAGE	Field Strine Tard So vices S Rig Belluns Hebellun			
	۶ ۰.	SERVICE PACKAGE	Tard Services			
	s 	SERVICE PACKAGE	Field Fryna Tard Sportes Allig Berland Habalian			
	я • .	SERVICE PACKAGE	Tieda Tard Spanies Tard Spanies Bill Spanies Bill Spanies Theorem Theorem Theo			
	- 	SERVICE PACKAGI	Field Frynia Siggerian Siggeri			
		SERVICE PACKAGE	Field Segura Vard Service SEGRELLON HEIGHTLON HEIGHTLON			
		SERVICE PACKAGE	Field Vergeta Radig Sperion Radig Sperion Photosland			
		SERVICE PACKAGE	Field Sergers Tard Sport(an A.R.; Def.org) Maintings			
Technical Salas Supports hereita	d Escantile Jr., C	SERVICE PACKAGE	Tard Sport Cas R B C Per Lora Pacient Constitution			
Technical Sales Supports Refer This document company propri	d Escansille Jr., C	SERVICE PACKAGE	Tard Spinice Tard	Nate of as part, by any		
Technical Sales Supports Refai This document compare propri mighter or in any form withou	d Escansilla Jr., C Intary and condit d Oblaining grad	SERVICE PACKAGE	Tard Services Tard Services Tard Services Tard Services Tard Services Tard Services Tard Services Tard Services Tard Services	Nels or in part, by any		

			DI	VENS	IONS	AND		ST	RENC	STHS	OF C	ASIN	6			
Wi Fer Fl Grado: With C.pig. Lb	Inside Dia. In.	Thread Dnit Dia, in	8 Cpig O D. of Csig, In	Extren Diái Dia. In.	O.D. of Box In	Col'pse Resis- tance PSI		Plan End o Ext. Line	Rou Short	nd Thread Long	But- Mess Thd,	Body Yield Stgth. 1.000 Lbs	Three	Joan; anded & Co nd Thread	Strongin + 1 2 Joint Bul- tress	En. Line
7-95 29 70 7-95 32 60 7-95 35 30 7-95 38 00 7-95 38 00 7-96 49 50 7-96 43 10 HGP-110+ 17 00 P-110 26 00 P-110 26 00 P-125+ 17 00 Q-125+ 20 00 LS-140+ 20 00 LS-140+ 20 00 V-150- 20 00 V-150- 25 00 V-150- 26 00 V-150- 26 00	4 376 4 250 4 126 3 076 3 076 3 076 3 076 3 076 3 076 4 892 4 892 4 892 4 892 4 892 4 892 4 778 4 670 4 548 4 892 4 778 4 670 4 548 4 670 4 548 4 670 4 548 4 670 4 548	4 251 4 125 4 001 3.875 3.751 3.625 4.767 4.767 4.767 4.767 4.545 4.545 4.545 4.545 4.545 4.545 4.545 4.545 4.545 4.545 4.545 4.545 4.545 4.545 4.545		4545		17 430 19.140 20.760 22.380 23.920 25.400 8.580 7.450 12.520 17.390 8.580 6.580 12.080 16.070 19.770 8.580 12.080 12.080 13.450 13.450 13.450 13.450 13.450		16,990 18,870 22,870 22,870 24,540 26,450 10,640 10,640 10,640 14,520 16,660 12,090 12,090 14,360 16,510 16,510 18,490 16,580 18,490 17,230 17,230		10.640 10.640 12.090 12.090 14.360 15.430 15.430 15.430 15.430 17.230 17.230 17.230 17.230 17.230 17.230 17.230	10.640 10.540 12.350 12.090 14.050 14.050 14.050 14.050 13.540 15.740 16.860 16.860 16.860	628 909 987 1.063 1.136 1.208 546 546 546 546 546 546 546 546	5651	Long 	Thd Thd Thd Thd Thd Thd Thd Thd	Jount

.

i

12

Size O D In.

5V,

i.

	DIMENSIONS AND											
		WI,		Thread	& Cpig	Exile	me Line					
Size		Per FL	Inside				0.0.4	Ccipte				
00	Grøde	With	Ua	Unπ	000	Unit		Ress				
In .		Lo.	un.	In.	la la	In	h h	PSI				
5	C-75*	20.30	4.184	-	-	4 059	5 094	11,240				
-	C-75*	23 20	4 044	-	-	3 919	5 0941	12,970				
	HCL-60+	15 00	4 408	4 283	-	 -	- 1	9,380				
	HCL-80+	18 00	4.276	4 151		-		11.880				
	HCL-80+	23 20	4 044	3 919		-		15.820				
	HCN-60+	15.00	4 408	4 283	-	-	·	9.380				
	HCN-80+	18 00	4 276	4 151	-		-	11,880				
	HCN-80+	23 20	4 044	3 919	-	i ~~ '	- 1	15 820				
	1-60	15 00	4 408	4.283	-			7,250				
	L-80	24 10	4 000	3 975	-	-		14,400				
1	L-80	18.00	4 276	4.151	-	~	-	10.500				
	L-80	21 40	4 126	4 001			~	12,760				
	L-80	23 20	4 044	3 8 1 9	-	·	-	13.830				
	N-80	15 00	4 408	4 283	5 563	4 151	5 360	7.250				
	N-80	18.00	4 276	4 151	5.563	4 151	5 360	10,490				
	N-80	20.30	4 184	-	-	4 059	5 250	11,990				
	N-80	23 20	4 044		-	3 9 1 9	5 0941	13,830				
	N-80	21 40	4 126	4 001		-	-	12 760				
	N-80	24 10	4 000	3 875				14,400				
	C-90	15 00	4 408	4 233	-	-	-	7,840				
	C-90	18.00	4 276	4.151	-		-	11,530				
	C-90	21 40	4.128	4.001				14.360				
	C-90	23 20	4 044	3 9 1 9	-		-	15,560				
	C-90	24.10	4 000	3 875	-	-	<u> </u>	16,200				
	C-95	15 00	4 408	4 263	5 563	4 151	5 360	8,090				
	C-95	18.00	4 278	4 151	5 563	4.151	5.360	12,010				
	C-95	20 30	4 184	-		4 059	5.250	14,250				
	C-95	23 20	4.044	I-	-	3 9 19	5 0941	16,430				
	C-95	21 40	4,126	4 001	1-	-	-	15,160				
	C-95	24 10	4 000	3 875	-	1-	- 1	17,100				
	5-95+	15.00	4 408	4 283	-	1-	-	9,380				
	5-85+	18.00	4 276	4 151	-	<u>۲</u>	(- I	12.030				
	5-85+	23.20	4 044	3.919	-		-	10,430				
	1-95	15 00	4 408	4 263	I–	I '	- 1	8,110				
	1-95	18.00	4 276	4.151	1-		-	12,030				
	1-95	21.40	4 126	4 001	-	I-	-	15 160				
	1-95	23 20	4 044	3 919	-	i~ .	-	10,430				
	1.93	24 10	4 000	4 202		A	6 200	9 820				
•		- 13 00	- 400	4.283	2 003	- <u>4. (3)</u>		0,030				
	0.110	70.20		_	_	2750	5.0041	38.490				
		- Mi.40	e 4.184			1 4 0 38	0,0941	10,490				

.

	1911		-14	GIM	5	OF	C,	asii	١C								
		inte	ns) i	and Pres	surə	PSI**		<u> </u>	-	· · · · ·							
	P/pi	n	Ro	und Thre	ad			Bod York		Th		Jent	5.70	ngn-	100	0 Lbs ~	_
	End: Ext	° ŀ			_	100	[- 	Stat			230	COAC	<u>.</u>	Joint		En	_
1	Lina		Sher	1 Lo	ng	The	1	100		80	und	Thread	_	But		Line	
	1071			-	-	<u> </u>		Los		Short	1	Lang	1	The	5.	Joins	
	12,550	ō			Ξ		-	-	- 1	369	t I	-				520+	-
- 1	6,290	5	-	- 82	90 I	8 20	5	-	- 1	369	t	-	- 1	_		52911	•
	10,140	21	-	- 10,1	40	9.91	õ l	622		-	-	311		405			
1	13.380	21	-	10,8	10	9 91	δl	543		-	•	396		492	2		
	10 140		-	8,2	90	8,29	0	350		_		314		515		-	•
- {	13 380		-	10,1	40	9,91	0 [422		-		100		408		-	
1	8,290		_	1.00	20	9.91	1 9	543	1	~	- f	540	1	432		-	
	14,000	1		10.8		0.20	21	350	1		. 1	295	1	379	1		1
	10,140		_	10.1	ю	9.91	11	566		-	- 1	538		510	1	- 2	
Ł	12,240		-	10.8	o I	9.910	1	922	1	_	1	377	1	457	- 1	~	
	13.380		-	10,8	0	9,910	51	543		-	1	466		510	Т	-	
	0 290	ſ.	-	8.29	0	8 290		350	1		1	573	1	510	1		1
1	11 420		_	10,14	٥ [9.910		422		-		398		398	1	437	J
	3,380		_		- 1	-		-		3661	1:	2841+		363+	E.	469	1
11	2,240		_	10.81	- I	A A				388†		284	1	363+	E	95644 D2011	ł
1	4 000			10.81	ŏ	9 010		301			ſ	490		537	1	vott	1
1.	9,320	1		9,32	ō [9.320		200		_	1	558	t	537	1	_	L
13	1,400		-	11,40) 1	1 150		475		-	Ł	311	I	404	J.		L
H	5,770			12.17		1,150		564		_	L	395	1	464	ł.	~	L
Li	5,750	L		12,17	212	1,150		611	1	_	Ł	540	1	537	Ł	-	L
	9 840		_	9.94	יוי	1,150		636	1	-	1	567		537	L	-	L
11	2,040	í		12.040		9.040		416	1		1	326	1	424	£	450	L
13	580		_]	1		1	501	1	-		416		512	Ł	493	Ļ
12	890			-		_		_	ł.	-		-		-	5	8471	
	530		-	12,840	1 1	.770	1	595	1	_					5	B422	ł
ģ	840		~	12,840	11	,770	1	672		_		505		563		~	
12	040		_	12 040	1.5	1,840	í I	416	1		t i	342		203 341		-	1
15	.890		_	12 840	1.	.770		501				436		532		=	
9	.840		-	9,840	14	8:0		645				594		590		<u> </u>	
12	.040			12.040	١ň	770		501		-		326		424		= 1	
14	530		~	12 840	11	770	1	595		- 1		416		512		-	
16	630		- 1	12.840	11	770		845		_ [215	-	563		- 1	
11	400.			12.840	11	770		672				595		203		- 1	
				11-100	Ľ١١,	400		481				398		103		5	
10.0	740 T		_												_		

BTA	BTA Oil Producers, LLC 104 S Pecos Midland, TX 79701	· · · · · · · · · · · ·	WELL: Mesa B 8115 FED COM #16H TVD: 12490 MD: 17524
		DRILLING PLAN	

Casing Program															-
Hole Size	Csg.Size	From (MD)	To (MD)	From (TVD)	To (TVD)	Tapered String	Weight (Ibs)	Grade	Conn.	Collapse	Burst	Body Tension	Joint Tension	Dry/ Buoyant	Mud Weight (ppg)
14 3/4	10 3/4	0	690	0	890	No	40.5	J-55	STC	L 1	8.1	17.5	11.7	Dry	8.3
9 7/8	7 5/8	0	8056	0	9000	Yes	29.7	P110	Buttress	1.4	2.4	3.9	4.0	Dry	9.4
8 3/4	7 5/8	8056	11933	8000	11887	Yes	29.7	P110	Buttress	1.7	1.6	2.7	27	Dry	9.4
5 3/4	51/2	0	11733	0	11687	Yes	20	P110	Buttress	1.3	1.5	2.7	2.8	Dry	14
6 3/4	5	11733	17524	11687	12490	Yes	18	P110	Buttress	1.3	1.4	1.8	1.9	Dry	14

,

•7 5/8" has DV Tool @ 4741'
BTA Oil Producers, LLC 104 S Pecos Midland, TX 79701							WELL: Mesa B 8115 FED COM TVD: 12490 MD: 17524 DRILLING PLAN							OM #16H	
Casing P	rogram				· · · ·	: -	-			•	•	•			
Hole Size	Csg.Size	From (MD)	To (MD)	Fram (TVD)	To (TVD)	Tapered String	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body Tension	Joint Tension	Dry/ Buoyant	Mud Weight (ppg)
14 3/4	10 3/4	0	690	0	890	No	40.5	1-55	STC	4 1	8.1	17.5	11.7	Dry	8.3
9 7/8	7 5/8	0	8056	0	9000	Yes	29.7	P110	Buttress	1.4	2.4	3.9	4.0	Dry	8.4
8 3/4	7 5/8	8056	11933	8000	11967	Yes	29.7	P110	Buttress	1.7	1.6	2.7	2.7	Dry	9.4
6 3/4	5 1/2	0	11733	0	11687	?es	20	P110	Buttress	1.3	1.5	2.7	2.8	Dry	14
6 3/4	5	11733	17524	11687	12490	Yes	18	P110	Buttress	1.3	1.4	1.8	1.9	Dry	14

•7 5/8" has DV Tool @ 4741"

Æ		BTA Oil 104 S Pe Midland,	Producers, Ll cos TX 79701		• • • • • •	•- • •	·			WELL: TVD: MD:	Mesa 12490 17524	B 8115	FED CO	DM #16H	
						D	RILLING PI	AN							
Casing P	sing Program														
Hole Size	Csg.Size	From (MD)	To (MD)	Frans (TVD)	To (TVD)	Tapered String	Weight (Ibs)	Grade	Conn.	Collapse	Burst	Body Tension	Jaint Tension	Dry/ Buoyant	Mud Weight (ppg)
14 3/4	10 3/4	0	890	0	890	No	40.5	1-55	STC	4 .1	8.1	17.5	11.7	Dry	8.3
9 7/8	7 5/8	0	9056	0	9000	Yes	29.7	P110	Buttress	1.4	24	3.9	4.0	Dry	9.4
8 3/4	7 5/8	8056	11933	9000 [°]	11967	?es	29.7	P110	Buttress	1.7	1.6	2.7	2.7	Dry	9.4
6 3/4	5 1/2	0	11733	0	11687	Yes	20	P110	Buttress	1.3	1.5	27	2.8	Dry	14
6 3/4	5	11733	17524	11687	12490	Yes	18	P110	Buttress	1.3	1.4	1.8	1.9	Dry	14
•7 5/8° h	•7 5/8° has DV Tool @ 4741'														

.

•7 5/8" has DV Tool @ 4741

.

-IR	III A		Producers, Ll cos TX 79701	<u>م</u>	•	F 				WELL: TVD: MD:	Mesa 12490 17524	B [.] 8115	FED CO	OM #16H	
						D	RILLING PI	AN							
Casing P	rogram	•		 	- • - •	- •	•			•		• • •			
Hole Size	Csg.Size	From (MD)	To (MD)	From (TVD)	To (TVD)	Tapered String	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body Tension	Joint Tension	Dry/ Buoyant	Mud Weight (ppg)
14 3/4	10 3/4	0	890	0	890	No	40.5	1-22	STC	4 .1	8.1	17.5	11.7	Dry	8.3
9 7/8	7 5/8	0	8056	0	8000	Yes	29.7	P110	Buttress	1.4	2.4	39	4.0	Dry	9.4
8 3/4	7 5/8	8056	11933	8000	11967	Yes	29.7	P110	Buttress	1.7	1.6	27	27	Dry	9.4
8 3/4	5 1/2	0	11733	0	11687	Yes	20	P110	Buttress	1.3	1.5	2.7	2.8	Dry	14
6 3/4	5	11733	17524	11687	12490	Yes	18	P110	Buttress	1.3	1.4	1.8	1.9	Dry	14
•7 5/8° h	as DV Too	l @ 4741'	• <u> </u>				,			-					<u> </u>

N

		BTA Oil 104 S Pe Midland.	Producers. Ll cos TX 79701		•	י - ת			: *	WELL: TVD: MD:	Mesa 12490 17524	B 8115	FED CO	OM #16H	•
Casing P	rogram		•			:				• • .				-	-
Hole Size	Csg.Size	From (MD)	To (MD)	From (TVD)	To (TVD)	Tapered String	Weight (lbs)	Grade	Conn.	Collapse	Burst	Body Tension	Joint Tension	Dry/ Buoyant	Mud Weight (ppg)
14 3/4	10 3/4	D	890	0	890	No	40.5	1-55	STC	6. 1	B. 1	17.5	11.7	Dry	8.3
9 7/8	7 5/8	0	9056	0	9000	үеэ	29.7	P110	Buttress	1.4	2.4	39	L 0	Dry	9.4
8 3/4	7 5/8	8056	11933	8000	11967	Yes	29.7	Pi10	Buttress	1.7	1.6	27	27	Dry	9.4
6 3/4	5 1/2	0	11733	o	11687	Yes	20	P110	Buttress	1.3	1.5	27	2.8	Dr y	14
6 3/4	5	11733	17524	11687	12490	Yes	19	P110	Buttress	1.3	1.4	1.8	1.9	Dry	14
•7 5/8° h	as DV Too	l @ 4741'									,	:			

BTA OIL PRODUCERS LLC

HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. <u>HYDROGEN SULFIDE TRAINING</u>

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

2. <u>H₂S SAFETY EQUIPMENT AND SYSTEMS</u>

Note: All H_2S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

a. Well Control Equipment:

Flare line.

Choke manifold with remotely operated choke.

Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.

Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.

- b. Protective equipment for essential personnel: Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:

2 - portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.

- d. Visual warning systems: Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.
- e. Mud Program: The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy:
 All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.
- g. Communication: Company vehicles equipped with cellular telephone.

WARNING

YOU ARE ENTERING AN H₂S AREA AUTHORIZED PERSONNEL ONLY

- 1. BEARDS OR CONTACT LENSES NOT ALLOWED
- 2. HARD HATS REQUIRED
- 3. SMOKING IN DESIGNATED AREAS ONLY
- 4. BE WIND CONSCIOUS AT ALL TIMES
- 5. CK WITH BTA OIL PRODUCERS LLC FOREMAN AT MAIN OFFICE

BTA OIL PRODUCERS LLC

1-432-682-3753

EMERGENCY CALL LIST

	OFFICE	MOBILE
BTA Oil Producers LLC OFFICE	432-682-3753	
BEN GRIMES, Operations	432-682-3753	432-559-4309
NICK EATON, Drilling	432-682-3753	432-260-7841
TRACE WOHLFAHRT, Completions	432-682-3753	

EMERGENCY RESPONSE NUMBERS

	OFFICE
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

BTA Oil Producers, LLC

Lea County, NM (NAD 83) Mesa B Mesa B #16H

Wellbore #1

Plan: Design #1

Standard Planning Report

06 November, 2019

Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:	Old BTA C Lea C Mesa Mesa Wellbo Desig	Dil Producers, L ounty, NM (NA B B #16H ore #1 n #1	LC D 83)		Local Co- TVD Refe MD Refer North Ref Survey Ca	ordinate Refe rence: ence: erence: alculation Met	rence:	Well Mesa B # GL* @ 3290.0u GL* @ 3290.0u Grid Minimum Curva	16H Isft Isft ature	
Project	Lea Co	ounty, NM (NAE) 83), Lea Cou	inty, NM	· · · · · · · · · · · · · · · · · · ·					
Map System: Geo Datum: Map Zone:	US State North An New Me:	e Plane 1983 nerican Datum xico Eastern Zo	1983 one		System Da	tum:	Gr Us	ound Level	cale factor	
Site	Mesa F	4								
Site Position: From: Position Uncert	Ma; tainty:	o 0.	North Easti 0 usft Slot F	ling: ng: Radius:	383 765	,154.37 usft ,479.20 usft 13-3/16 "	Latitude: Longitude: Grid Converg	ence:		32° 3' 4.704 N 103° 36' 35.543 W 0.38 °
Well	Mesa 8	#16H								
Well Position	+N/-S +E/-W	4,638 1,345 0	3.8 usft N 5.3 usft E 0.0 usft W	orthing: asting: /ellhead Eleva	tion:	387,793.00 766,824.50 0.0) usft Lati) usft Lor) usft Gro	itude: igitude: ound Level:		32° 3' 50.517 N 103° 36' 19.549 W 3,290.0 usft
L										
Wellbore	Wellbo	pre #1	-							
Magnetics	Mo	odel Name	Samp	le Date	Declina (°)	ition	Dip A (*	ngle ')	Field S (n	trength T)
		IGRF200510	n 11	12/31/2009		7.75		60.09	48,69	3.52800624
Design	Desian	#1								
Audit Notes:	Ū									
Version:			Phas	e:	PROTOTYPE	Tie	on Depth:		0.0	
Vertical Section	1:	C) Depth From (T	VD)	+N/-S	+6	E/-W	Di	rection	
			(usft)		(usft)	(u	isft)		(°)	
			7.0		0.0).0	1	89.68	<u>_</u>
Plan Survey To Depth Fro (usft) 1	ol Program om Depti (us 0.0 17,4	Date h To ft) Survey 490.3 Design	11/6/2019 (Wellbore) #1 (Wellbore)	# 1)	Tool Name		Remarks			
Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	. 0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,400.0	8.00	297.37	2,398.7	12.8	-24.8	2.00	2.00	0.00	297.37	
8,876.6	8.00	297.37	8,812.3	427.2	-825.2	0.00	0.00	0.00	0.00	
9,2/6.6	0.00	0.00	9,211.0 11 867 0	440.0 440.0	-650.0	2.00	-2.00	0.00	0.00	
11,932.0	0.00	0.00	11.917.0	440.0	-850.0	0.00	0.00	0.00	0.00	
12,882.7	90.00	179.61	12,490.0	-132.9	-846.1	10.00	10.00	0.00	179.61	
L										

Planning Report

Database:OldCompany:BTA Oil Producers, LLCProject:Lea County, NM (NAD 83)Site:Mesa BWell:Mesa B #16HWellbore:Wellbore #1Design:Design #1

Planned Survey

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well Mesa B #16H GL* @ 3290.0usft GL* @ 3290.0usft Grid Minimum Curvature

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1.100.0	0.0	0.0	0.0	0.00	0.00	0.00
1 200 0	0.00	0.00	1 200 0	0.0	0.0	0.0	0.00	0.00	0.00
1 300 0	0.00	0.00	1 300 0	0.0	0.0	0.0	0.00	0.00	0.00
1 400 0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0,00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2.000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	2.00	297.37	2,100.0	0.8	-1.5	-0.5	2.00	2.00	0.00
2,200,0	4.00	297.37	2,199.8	3.2	-6.2	-2.1	2.00	2.00	0.00
2 300 0	6.00	297 37	2 299 5	72	-13.9	-4.8	2 00	2 00	0.00
2,400.0	8.00	297.37	2,398.7	12.8	-24.8	-8.5	2.00	2.00	0.00
2 500 0	e 00	207.27	2 407 7	10.2	27.1	10.7	0.00	0.00	0.00
2,500.0	8.00	297.37	2,497.7	15.2	-37,1	-12.7	0.00	0.00	0.00
2,600.0	8.00	297.37	2,596.6	25.0	-49.5	-16.9	0.00	0.00	0.00
2,700.0	8.00	297.37	2,695.8	32.0	-61.8	-21.2	0.00	0.00	0.00
2,800.0	8,00	297.37	2,794.8	38.4	-74.2	-25.4	0.00	0.00	0.00
2,900.0	8.00	297.37	2,893.8	44.8	-86.6	-29.6	0.00	0.00	0.00
3,000.0	8.00	297.37	2,992.9	51.2	-98.9	-33.8	0.00	0.00	0.00
3,100.0	8.00	297.37	3,091.9	57.6	-111.3	-38.1	0.00	0.00	0.00
3,200.0	8.00	297.37	3,190.9	64.0	-123.6	-42.3	0.00	0.00	0.00
3,300.0	8.00	297.37	3,289,9	70.4	-136.0	-46.5	0.00	0.00	0.00
3,400.0	8.00	297.37	3,389.0	76.8	-148.4	-50.8	0.00	0.00	0.00
3 500 0	8.00	297.37	3 488 0	83.2	-160 7	-55 0	0 00	0.00	0.00
3 600 0	8.00	297.37	3 587 0	89.6	-173 1	-59.2	0.00	0.00	0.00
3 700 0	9.00 9.00	207.37	0,00,0	00.0 06 0	_185 A	_00.2 _63.4	0.00	0.00	0.00
3,700.0	8.00	297.37	2 785 1	102.4	107.9	-03.4	0.00	0.00	0.00
3,000.0	8.00 8.00	297.37 297.37	3,705.1	102.4	-197.0	-07.7	0.00	0.00	0.00
0,000.0	0.00	201.07	0,004.1		210.2		0.00	0.00	0.00
4,000.0	8.00	297.37	3,983.1	115.2	-222.5	-76.1	0.00	0.00	0.00
4,100.0	8.00	297.37	4,082.2	121.6	-234.9	-80.4	0.00	0.00	0.00
4,200.0	8.00	297.37	4,181.2	128.0	-247.2	-84.6	0.00	0.00	0.00
4,300.0	8.00	297.37	4,280.2	134.4	-259.6	-88.8	0.00	0.00	0.00
4,400.0	8.00	297.37	4,379.2	140.8	-272.0	-93.0	0.00	0.00	0.00
4,500.0	8.00	297.37	4,478.3	147.2	-284.3	-97.3	0.00	0.00	0.00
4,600.0	8.00	297.37	4,577.3	153.6	-296.7	-101.5	0.00	0.00	0.00
4,700.0	8.00	297.37	4,676.3	160.0	-309.0	-105.7	0.00	0.00	0.00
4,800.0	8.00	297.37	4,775.3	166.4	-321.4	-110.0	0.00	0.00	0.00
4,900.0	8.00	297.37	4,874.4	172.8	-333.7	-114.2	0.00	0.00	0.00
5 000 0	8.00	207 37	4 973 A	179.2	-346 1	-118 A	0.00	0.00	0.00
5,000.0	8.00 8.00	297.37	5 072 4	185.6	-358 5	-122 7	0.00	0.00	0.00
5,100.0	0.00	201.01	5 171 5	100.0	.270.9	126.0	0.00	0.00	0.00
5,200.0	0.00	231.31	5,171.5	132.0	-010.0	-120.8	0.00	0.00	0.00

Planning Report

Database:	Old
Company:	BTA Oil Producers, LLC
Project:	Lea County, NM (NAD 83)
Site:	Mesa B
Well:	Mesa B #16H
Wellbore:	Wellbore #1
Design:	Design #1
-	

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Well Mesa B #16H GL* @ 3290.0usft GL* @ 3290.0usft Grid Minimum Curvature

Messaged byshin (n) Admath (n) Vertical byshin (n) Vertical (u,n) Vertical (u,n) Vertical (u,n) Section (u,n) Daples (n) Da	Plann	ed Survey									
5,400,0 0.00 22737 $5,390,5$ 204.8 -395.5 -135.3 0.00 0.00 0.00 $5,500,0$ 6.00 22737 $5,486.5$ 211.2 407.9 -138.6 0.00		Measured Depth (usft)	, Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (*/100usft)
5.800 6.00 297.37 5.405 211.2 -407.9 139.8 0.00 0.00 0.00 5.700 6.00 297.37 5.666.2 223.9 -432.6 -143.0 0.00 0.00 0.00 5.000.0 8.00 297.37 5.864.2 238.7 -145.3 0.165.5 0.00 0.00 0.00 6.000.0 8.00 297.37 5.864.4 238.7 -165.5 0.00 0.00 0.00 6.000.0 8.00 297.37 6.962.7 249.5 -449.4 -168.9 0.00 0.00 0.00 6.000.0 8.00 297.37 6.962.7 242.5 -448.4 -168.9 0.00 0.00 0.00 6.400.0 8.00 297.37 6.458.8 275.1 -543.8 -168.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		5,400.0	8.00	297.37	5,369.5	204.8	-395.5	-135.3	0.00	0.00	0.00
5.600.0 8.00 297.37 5.657.6 217.5 -420.3 -143.8 0.00 0.00 0.00 5.600.0 8.00 297.37 5.786.6 230.3 -445.0 152.3 0.00 0.00 0.00 0.00 5.600.0 8.00 297.37 5.786.6 230.7 -457.3 -166.5 0.00 0.00 0.00 6.000.0 8.00 297.37 5.684.6 238.7 -491.4 -160.7 0.00 0.00 0.00 6.200.0 8.00 297.37 6.458.8 268.7 -519.1 -177.6 0.00 0.00 0.00 6.300.0 8.00 297.37 6.458.8 268.7 -519.1 -177.6 0.00 0.0		5 500 0	8.00	297 37	5 468 5	211.2	-407.9	-139.6	0.00	0.00	0.00
5,700.0 6,00 207,37 5,668.8 212.6 -140.0 0.00 0.00 0.00 5,000.0 8.00 297,37 5,864.8 238.7 -166.5 0.00 0.00 0.00 6,000.0 8.00 297,37 5,864.8 238.7 -457.3 -166.5 0.00 0.00 0.00 6,000.0 8.00 297,37 5,864.8 238.7 -445.9 -160.7 0.00 0.00 0.00 6,000.0 8.00 297,37 6,565.8 266.7 -161.1 -177.4 0.00 0.00 0.00 6,600.0 8.00 297,37 6,556.8 266.7 -516.1 -177.6 0.00 </td <td></td> <td>5,500.0</td> <td>8.00</td> <td>297.37</td> <td>5,400.5</td> <td>217.5</td> <td>-407.9</td> <td>-133.0</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>		5,500.0	8.00	297.37	5,400.5	217.5	-407.9	-133.0	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5,000.0	0.00	297.37	5,507.0	217.5	420.5	-145.0	0.00	0.00	0.00
5 5 6 200		5,700.0	8.00	297.37	5,000.0	223.9	-432.0	-140.0	0.00	0.00	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5,800.0	0.00	297.37	5,705.0	230.3	-445.0	-152.5	0.00	0.00	0.00
6,000.0 8.00 277.37 6,983.7 249.5 -469.7 -160.7 0.00 0.00 0.00 6,200.0 8.00 277.37 6,161.7 225.3 -698.8 1.734 0.00 0.00 0.00 6,400.0 8.00 277.37 6,558.6 265.7 -511.5 -161.9 0.00 0.00 0.00 6,500.0 8.00 277.37 6,555.8 215.5 -543.9 -166.1 0.00 0.00 0.00 6,500.0 8.00 277.37 6,555.9 247.3 -565.2 -190.3 0.00 0.00 0.00 6,600.0 8.00 277.37 6,553.9 300.7 -565.2 -190.3 0.00 0.0		5,900.0	8.00	297.37	5,664.0	230.7	-457.5	-150.5	0.00	0.00	0.00
6,100.0 8.00 297.37 6,062.7 249.5 -482.1 -164.9 0.00 0.00 0.00 6,200.0 8.00 297.37 6,260.7 222.3 -506.8 -173.4 0.00 0.00 0.00 6,400.0 8.00 297.37 6,658.8 275.1 -531.5 -177.6 0.00 0.00 0.00 6,600.0 8.00 297.37 6,656.9 247.9 -566.2 -190.3 0.00 0.00 0.00 6,700.0 8.00 297.37 6,656.9 247.9 -566.6 -194.5 0.00		6,000.0	8.00	297.37	5,963.7	243.1	-469.7	-160.7	0.00	0.00	0.00
6.200.0 8.00 247.37 6.181.7 252.59 -149.4 -169.2 0.00 0.00 0.00 6.400.0 8.00 287.37 6.280.7 282.3 -506.8 -173.4 0.00 0.00 0.00 6.600.0 8.00 287.37 6.456.8 275.1 -51.5 -161.9 0.00 0.00 0.00 6.600.0 8.00 287.37 6.557.8 281.5 -543.9 -168.1 0.00 0.00 0.00 0.00 6.700.0 8.00 287.37 6.555.9 294.3 -556.2 -199.3 0.00		6,100.0	8.00	297.37	6,062.7	249.5	-482.1	-164.9	0.00	0.00	0.00
6,300,0 8,00 27/37 6,38,00 286.7 -10.8.8 -177.5 0.00 0.00 0.00 6,500,0 8,00 297.37 6,458.8 275.1 -531.5 -181.1 -177.5 0.00 0.00 0.00 0.00 6,600,0 8,00 297.37 6,557.8 281.5 -193.3 0.00 0.00 0.00 0.00 6,800,0 8.00 297.37 6,557.9 284.3 -566.6 -194.5 0.00 0.00 0.00 0.00 7,000,0 8.00 297.37 6,553.9 307.1 -593.3 -203.0 0.00 0.00 0.00 7,000,0 8.00 297.37 7,251.0 315.5 -461.0 -211.5 0.00 0.00 0.00 7,000,0 8.00 297.37 7,441.1 339.1 450.4 -215.7 0.00 0.00 0.00 7,600,0 8.00 297.37 7,441.1 339.1 451.4 -245.3 0.00 0.00 </td <td></td> <td>6,200.0</td> <td>8.00</td> <td>297.37</td> <td>6,161.7</td> <td>255.9</td> <td>-494.4</td> <td>-169.2</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>		6,200.0	8.00	297.37	6,161.7	255.9	-494.4	-169.2	0.00	0.00	0.00
6.400.0 8.00 297.37 6.458.8 275.1 -177.8 0.00 0.00 0.00 6.500.0 8.00 297.37 6.557.8 281.5 -453.9 -186.1 0.00 0.00 0.00 6.600.0 8.00 297.37 6.557.8 281.5 -453.9 -186.8 0.00 0.00 0.00 6.800.0 8.00 297.37 6.853.9 307.1 -598.8 -194.5 0.00 0.00 0.00 7.000.0 8.00 297.37 7.653.0 313.5 -466.7 -207.2 0.00 0.00 0.00 7.000.0 8.00 297.37 7.751.0 326.3 +361.4 -211.5 0.00 0.00 0.00 7.300.0 8.00 297.37 7.544.1 338.1 +555.1 -224.1 0.00 0.00 0.00 7.500.0 8.00 297.37 7.645.1 355.9 +67.5 -224.4 0.00 0.00 0.00 7.600.0 8.00 </td <td></td> <td>6,300.0</td> <td>8.00</td> <td>297.37</td> <td>6,260.7</td> <td>262.3</td> <td>-506.8</td> <td>-173.4</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>		6,300.0	8.00	297.37	6,260.7	262.3	-506.8	-173.4	0.00	0.00	0.00
6,500.0 8.00 297.37 6,573 275.1 -531.5 -181.9 0.00 0.00 0.00 6,500.0 8.00 297.37 6,555.9 241.5 -543.8 -104.5 0.00 0.00 0.00 6,500.0 8.00 297.37 6,555.9 294.3 -568.6 -194.5 0.00 0.00 0.00 6,500.0 8.00 297.37 6,553.9 307.1 -593.3 0.00 0.00 0.00 0.00 7,000.0 8.00 297.37 7,153.0 313.5 -657.7 -207.2 0.00 0.00 0.00 7,000.0 8.00 297.37 7,121.0 318.5 -667.5 -201.5 0.00 0.00 0.00 7,500.0 8.00 297.37 7,44.1 339.1 -657.5 -224.4 0.00 0.00 0.00 7,600.0 8.00 297.37 7,44.1 338.3 -492.2 -24.1 0.00 0.00 0.00 7,600.0		6,400.0	8.00	297.37	6,359.8	268.7	-519.1	-177.6	0.00	0.00	0.00
6,600.0 8,00 297.37 6,657.8 281.5 -454.9 -186.1 0.00 0.00 0.00 6,700.0 8.00 297.37 6,658.9 287.9 -556.2 -198.8 0.00 0.00 0.00 7,000.0 8.00 297.37 6,654.8 300.7 -568.6 -198.8 0.00 0.00 0.00 7,000.0 8.00 297.37 7,152.0 319.9 -618.0 -207.2 0.00 0.00 0.00 7,200.0 8.00 297.37 7,152.0 319.9 -618.0 -211.5 0.00 0.00 0.00 7,400.0 8.00 297.37 7,541.1 332.3 -655.1 -224.1 0.00 0.00 0.00 7,600.0 8.00 297.37 7,647.1 351.9 -678.8 -232.6 0.00 0.00 0.00 7,600.0 8.00 297.37 7,645.2 364.7 -704.5 -241.1 0.00 0.00 0.00 7,800.0		6,500.0	8.00	297.37	6,458.8	275.1	-531.5	-181.9	0.00	0.00	0.00
6,700.0 8.00 297.37 6,656.9 287.9 -558.2 -190.3 0.00 0.00 0.00 6,800.0 8.00 297.37 6,854.9 300.7 -580.9 -194.5 0.00 0.00 0.00 7,000.0 8.00 297.37 6,854.9 300.7 -580.3 -207.2 0.00 0.00 0.00 7,000.0 8.00 297.37 7,152.0 318.9 -416.0 -207.2 0.00 0.00 0.00 7,000.0 8.00 297.37 7,152.0 318.9 -416.0 -215.7 0.00 0.00 0.00 7,000.0 8.00 297.37 7,454.1 332.7 -442.7 -219.9 0.00 0.00 0.00 7,000.0 8.00 297.37 7,464.1 335.5 467.5 -224.1 0.00 0.00 0.00 7,000.0 8.00 297.37 7,464.2 371.1 -716.9 -245.3 0.00 0.00 0.00 7,000.0<		6,600.0	8.00	297.37	6,557.8	281.5	-543.9	-186.1	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6,700.0	8.00	297.37	6,656.9	287.9	-556.2	-190.3	0.00	0.00	0.00
6,800.0 8.00 297.37 6,854.9 300.7 -580.9 -198.8 0.00 0.00 0.00 7,000.0 8.00 297.37 7,055.0 313.5 -605.7 -207.2 0.00 0.00 0.00 7,200.0 8.00 297.37 7,152.0 318.5 -616.0 -211.5 0.00 0.00 0.00 7,200.0 8.00 297.37 7,351.0 328.3 -630.4 -215.7 0.00 0.00 0.00 7,000.0 8.00 297.37 7,544.1 334.5 -687.5 -224.4 0.00 0.00 0.00 7,000.0 8.00 297.37 7,442.7 -719.8 -232.6 0.00 0.00 0.00 7,000.0 8.00 297.37 7,442.3 371.1 -776.5 -241.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		6,800.0	8.00	297.37	6,755.9	294.3	-568.6	-194.5	0.00	0.00	0.00
7 000.0 8.00 297.37 7.053.0 307.1 -593.3 -207.2 0.00 0.00 0.00 7 100.0 8.00 297.37 7.152.0 318.9 -418.0 -211.5 0.00 0.00 0.00 7 000.0 8.00 297.37 7.350.0 332.7 -442.7 -219.9 0.00 0.00 0.00 7,600.0 8.00 297.37 7.449.1 339.1 -655.1 -228.4 0.00 0.00 0.00 7,600.0 8.00 297.37 7.449.1 351.9 -679.8 -228.4 0.00 0.00 0.00 7,000.0 8.00 297.37 7.449.1 351.9 -679.8 -228.4 0.00 0.		6,900.0	8.00	297.37	6,854.9	300.7	-580.9	-198.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7,000.0	8.00	297.37	6,953.9	307.1	-593.3	-203.0	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7,100.0	8.00	297.37	7,053.0	313.5	-605.7	-207.2	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.200.0	8.00	297.37	7,152.0	319.9	-618.0	-211.5	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7.300.0	8.00	297.37	7,251.0	326.3	-630.4	-215.7	0.00	0.00	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7,400.0	8,00	297.37	7,350.0	332.7	-642.7	-219.9	0.00	0.00	0.00
7 600. 8.00 297.37 7,548.1 345.5 -667.5 -228.4 0.00 0.00 0.00 7,800.0 8.00 297.37 7,647.1 351.9 -679.8 -232.6 0.00 0.00 0.00 7,800.0 8.00 297.37 7,745.1 358.3 -682.2 -236.8 0.00 0.00 0.00 7,900.0 8.00 297.37 7,845.2 384.7 -704.5 -241.1 0.00 0.00 0.00 8,100.0 8.00 297.37 8,142.3 383.9 -741.6 -253.7 0.00 0.00 0.00 8,300.0 8.00 297.37 8,241.3 390.3 -754.0 -258.0 0.00 0.00 0.00 8,400.0 8.00 297.37 8,340.3 396.7 -766.3 -262.2 0.00		7.500.0	8.00	297.37	7,449,1	339.1	-655.1	-224.1	0.00	0.00	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7,600.0	8.00	297.37	7,548.1	345.5	-667.5	-228.4	0.00	0.00	0.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		7,700.0	8.00	297.37	7,647.1	351.9	-679.8	-232.6	0.00	0.00	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		7,800.0	8.00	297.37	7,746.1	358.3	-692.2	-236.8	0.00	0.00	0.00
8,000,0 8,00 297,37 7,944.2 371.1 -716.9 -245.3 0.00 0.00 0.00 8,100,0 8,00 297,37 8,043.2 377.5 -729.3 -249.5 0.00 0.00 0.00 8,200,0 8,00 297.37 8,121.3 390.3 -754.0 -258.0 0.00 0.00 0.00 8,400,0 8.00 297.37 8,439.3 403.1 -778.7 -266.4 0.00 0.00 0.00 8,500,0 8.00 297.37 8,538.4 409.5 -791.1 -270.7 0.00 0.00 0.00 8,600,0 8.00 297.37 8,637.4 415.9 -803.4 -274.9 0.00 0.00 0.00 8,600,0 8.00 297.37 8,815.5 428.6 -282.0 ~283.3 2.00 -2.00 0.00 8,876.6 8.00 297.37 8,815.4 438.5 -845.2 -280.2 2.00 -2.00 0.00 9,000		7,900.0	8.00	297.37	7,845.2	364.7	-704.5	-241.1	0.00	0.00	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8,000.0	8.00	297.37	7,944.2	371.1	-716.9	-245.3	0.00	0.00	0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8,100.0	8.00	297.37	8.043.2	377.5	-729.3	-249.5	0.00	0.00	0.00
8,300.0 8,00 297.37 8,241.3 390.3 -754.0 -258.0 0.00 0.00 0.00 8,400.0 8.00 297.37 8,340.3 396.7 -766.3 -262.2 0.00 0.00 0.00 8,500.0 8.00 297.37 8,538.4 403.1 -778.7 -266.4 0.00 0.00 0.00 8,600.0 8.00 297.37 8,538.4 409.5 -791.1 -270.7 0.00 0.00 0.00 8,700.0 8.00 297.37 8,637.4 415.9 -403.4 -274.9 0.00 0.00 0.00 8,800.0 8.00 297.37 8,835.5 428.6 -283.3 2.00 -2.00 0.00 8,800.0 7.53 297.37 8,835.5 428.6 -283.3 2.00 -2.00 0.00 9,000.0 5.53 297.37 9,934.5 437.5 -845.2 -288.2 2.00 -2.00 0.00 9,000.0 0.53 297.3		8,200.0	8.00	297.37	8,142.3	383.9	-741.6	-253.7	0.00	0.00	0.00
$\hat{8},400.0$ 8.00 297.37 $\hat{8},340.3$ 396.7 -766.3 -262.2 0.00 0.00 0.00 $8,500.0$ 8.00 297.37 $8,439.3$ 403.1 -778.7 -266.4 0.00 0.00 0.00 $8,600.0$ 8.00 297.37 $8,538.4$ 409.5 -791.1 -270.7 0.00 0.00 0.00 $8,600.0$ 8.00 297.37 $8,637.4$ 415.9 -603.4 -274.9 0.00 0.00 0.00 $8,800.0$ 8.00 297.37 $8,736.4$ 422.3 -815.8 -279.1 0.00 0.00 0.00 $8,876.6$ 8.00 297.37 $8,835.5$ 428.6 -228.2 -228.4 0.00 0.00 0.00 $8,900.0$ 7.53 297.37 $8,934.8$ 433.9 -388.1 -286.8 2.00 -2.00 0.00 $9,000.0$ 5.53 297.37 $8,934.8$ 433.9 -845.2 -289.2 2.00 -2.00 0.00 $9,000.0$ 3.53 297.37 $9,034.5$ 437.5 -845.2 -289.2 2.00 -2.00 0.00 $9,200.0$ 1.53 297.37 $9,034.5$ 437.5 -845.2 -280.8 0.00 -2.00 0.00 $9,200.0$ 0.00 0.00 $9,234.4$ 440.0 -850.0 -290.8 0.00 0.00 $9,200.0$ 0.00 0.00 $9,334.4$ 440.0 -850.0 -290.8 0.00 0.00 </td <td></td> <td>8,300,0</td> <td>8.00</td> <td>297.37</td> <td>8,241.3</td> <td>390,3</td> <td>-754.0</td> <td>-258.0</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>		8,300,0	8.00	297.37	8,241.3	390,3	-754.0	-258.0	0.00	0.00	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8,400.0	8.00	297.37	8,340.3	396.7	-766.3	-262.2	0.00	0.00	0.00
8,600.0 8.00 297.37 $8,538.4$ 409.5 -791.1 -270.7 0.00 0.00 0.00 $8,700.0$ 8.00 297.37 $8,637.4$ 415.9 -803.4 -274.9 0.00 0.00 0.00 $8,876.6$ 8.00 297.37 $8,736.4$ 422.3 -815.8 -279.1 0.00 0.00 0.00 $8,876.6$ 8.00 297.37 $8,812.3$ 427.2 -825.2 -283.3 2.00 -2.00 0.00 $9,000.0$ 5.53 297.37 $8,934.8$ 433.9 -838.1 -286.8 2.00 -2.00 0.00 $9,000.0$ 5.53 297.37 $9,934.5$ 437.5 -845.2 -289.2 2.00 -2.00 0.00 $9,200.0$ 1.53 297.37 $9,934.5$ 437.5 -845.2 -289.2 2.00 -2.00 0.00 $9,200.0$ 1.53 297.37 $9,934.5$ 437.5 -845.2 -289.2 2.00 -2.00 0.00 $9,200.0$ 1.53 297.37 $9,934.4$ 440.0 -850.0 -290.8 0.00 0.00 0.00 $9,200.0$ 0.00 0.00 $9,234.4$ 440.0 -850.0 -290.8 0.00 0.00 0.00 $9,600.0$ 0.00 0.00 $9,334.4$ 440.0 -850.0 -290.8 0.00 0.00 0.00 $9,600.0$ 0.00 0.00 $9,734.4$ 440.0 -850.0 -290.8 0.00 0.00		8,500,0	8.00	297.37	8,439.3	403.1	-778.7	-266.4	0.00	0.00	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8,600.0	8.00	297.37	8,538.4	409.5	-791.1	-270.7	0.00	0.00	0.00
$8,800.0$ 8.00 297.37 $8,736.4$ 422.3 -815.8 -279.1 0.00 0.00 0.00 $8,876.6$ 8.00 297.37 $8,812.3$ 427.2 -825.2 -282.4 0.00 0.00 0.00 $8,900.0$ 7.53 297.37 $8,835.5$ 428.6 -828.0 \sim -283.3 2.00 -2.00 0.00 $9,000.0$ 5.53 297.37 $8,934.8$ 433.9 -838.1 -286.8 2.00 -2.00 0.00 $9,000.0$ 3.53 297.37 $9,134.4$ 439.5 -849.1 -290.5 2.00 -2.00 0.00 $9,200.0$ 1.53 297.37 $9,134.4$ 439.5 -849.1 -290.5 2.00 -2.00 0.00 $9,200.0$ 1.53 297.37 $9,134.4$ 440.0 -850.0 -290.8 0.00 0.00 0.00 $9,200.0$ 0.00 0.00 $9,234.4$ 440.0 -850.0 -290.8 0.00 0.00 0.00 $9,300.0$ 0.00 0.00 $9,334.4$ 440.0 -850.0 -290.8 0.00 0.00 0.00 $9,500.0$ 0.00 0.00 $9,334.4$ 440.0 -850.0 -290.8 0.00 0.00 0.00 $9,600.0$ 0.00 0.00 $9,334.4$ 440.0 -850.0 -290.8 0.00 0.00 0.00 $9,900.0$ 0.00 0.00 $9,334.4$ 440.0 -850.0 -290.8 0.00 <t< td=""><td></td><td>8,700.0</td><td>8.00</td><td>297.37</td><td>8,637.4</td><td>415.9</td><td>-803.4</td><td>-274.9</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>		8,700.0	8.00	297.37	8,637.4	415.9	-803.4	-274.9	0.00	0.00	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8,800.0	8.00	297.37	8,736.4	422.3	-815.8	-279.1	0.00	0.00	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8,876.6	8.00	297.37	8,812.3	427.2	-825.2	-282.4	0.00	0.00	0.00
9,000.0 5.53 297.37 8,934.8 433.9 -838.1 -286.8 2.00 -2.00 0.00 9,100.0 3.53 297.37 9,034.5 437.5 -845.2 -289.2 2.00 -2.00 0.00 9,200.0 1.53 297.37 9,134.4 439.5 -849.1 -290.5 2.00 -2.00 0.00 9,276.6 0.00 0.00 9,211.0 440.0 -850.0 -290.8 2.00 -2.00 0.00 9,300.0 0.00 0.00 9,234.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,400.0 0.00 0.00 9,334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,600.0 0.00 0.00 9,534.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,700.0 0.00 0.00 9,734.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,900.0		8,900.0	7.53	297.37	8,835.5	428.6	-828.0	-283.3	2.00	-2.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9,000.0	5.53	297.37	8,934.8	433.9	-838.1	-286.8	2.00	-2.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9,100.0	3.53	297.37	9,034.5	437.5	-845.2	-289.2	2.00	-2.00	0.00
9,276.6 0.00 9,211.0 440.0 -850.0 -290.8 2.00 -2.00 0.00 9,300.0 0.00 0.00 9,234.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,400.0 0.00 0.00 9,334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,500.0 0.00 0.00 9,434.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,600.0 0.00 0.00 9,534.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,600.0 0.00 0.00 9,634.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,800.0 0.00 0.00 9,734.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,000.0 0.00 0.00 9,834.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,000.0 0.00		9,200.0	1.53	297.37	9,134.4	439.5	-849.1	-290.5	2.00	-2.00	0.00
9,300.0 0.00 9,234.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,400.0 0.00 0.00 9,334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,500.0 0.00 0.00 9,434.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,600.0 0.00 0.00 9,534.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,600.0 0.00 0.00 9,534.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,700.0 0.00 0.00 9,634.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,800.0 0.00 0.00 9,734.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,000.0 0.00 0.00 9,934.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,100.0 0.00		9,276.6	0.00	0.00	9,211.0	440.0	-850.0	-290.8	2.00	-2.00	0.00
9,400.0 0.00 9,334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,500.0 0.00 0.00 9,434.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,600.0 0.00 0.00 9,534.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,700.0 0.00 0.00 9,534.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,700.0 0.00 0.00 9,634.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,800.0 0.00 0.00 9,734.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,800.0 0.00 0.00 9,834.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,000.0 0.00 0.00 10,034.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,200.0 0.00		9,300.0	0.00	0.00	9,234.4	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9,400.0	0.00	0.00	9,334.4	440.0	-850.0	-290.8	0.00	0.00	0.00
9,600.0 0.00 0.00 9,534.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,700.0 0.00 0.00 9,634.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,800.0 0.00 0.00 9,734.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,800.0 0.00 0.00 9,734.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,900.0 0.00 0.00 9,834.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,000.0 0.00 0.00 9,934.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,100.0 0.00 0.00 10,034.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,200.0 0.00 0.00 10,134.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,300.0		9,500.0	0.00	0.00	9,434.4	440.0	-850.0	-290.8	0.00	0.00	0.00
9,700.0 0.00 0.00 9,634.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,800.0 0.00 0.00 9,734.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,900.0 0.00 0.00 9,834.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,000.0 0.00 0.00 9,934.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,000.0 0.00 0.00 10,034.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,200.0 0.00 10,034.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,200.0 0.00 10,134.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,300.0 0.00 0.00 10,234.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,400.0 0.00 0.00		9,600.0	0.00	0.00	9,534,4	440.0	-850.0	-290.8	0.00	0.00	0.00
9,800.0 0.00 9,734.4 440.0 -850.0 -290.8 0.00 0.00 0.00 9,900.0 0.00 0.00 9,834.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,000.0 0.00 0.00 9,934.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,100.0 0.00 0.00 10,034.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,200.0 0.00 10,034.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,200.0 0.00 10,134.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,300.0 0.00 0.00 10,234.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,400.0 0.00 0.00 10,334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,500.0 0.00 0.00 10,434.4		9,700.0	0.00	0.00	9,634.4	440.0	-850.0	-290.8	0.00	0.00	0.00
9,900.0 0.00 9,834.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,000.0 0.00 0.00 9,934.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,100.0 0.00 0.00 10,034.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,200.0 0.00 0.00 10,134.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,300.0 0.00 0.00 10,134.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,300.0 0.00 0.00 10,234.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,400.0 0.00 0.00 10,334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,500.0 0.00 0.00 10,434.4 440.0 -850.0 -290.8 0.00 0.00 0.00		9.800.0	0.00	0.00	9,734.4	440.0	-850.0	-290.8	0.00	0.00	0.00
10,000.0 0.00 0.9334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,000.0 0.00 0.00 10,034.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,200.0 0.00 0.00 10,134.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,300.0 0.00 0.00 10,134.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,300.0 0.00 0.00 10,234.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,400.0 0.00 0.00 10,334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,500.0 0.00 0.00 10,334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,500.0 0.00 0.00 10,434.4 440.0 -850.0 -290.8 0.00 0.00 0.00		9 900 0	0 00	0.00	9,834.4	440.0	-850.0	-290.8	0.00	0.00	0.00
10,100.0 0.00 10,034.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,200.0 0.00 10,134.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,300.0 0.00 0.00 10,234.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,300.0 0.00 0.00 10,234.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,400.0 0.00 0.00 10,334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,500.0 0.00 0.00 10,334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,500.0 0.00 0.00 10,434.4 440.0 -850.0 -290.8 0.00 0.00 0.00		10 000 0	0.00	0.00	9,934.4	440.0	-850.0	-290.8	0.00	0.00	0.00
10,200.0 0.00 0.00 10,134.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,300.0 0.00 0.00 10,234.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,400.0 0.00 0.00 10,334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,500.0 0.00 0.00 10,334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,500.0 0.00 0.00 10,434.4 440.0 -850.0 -290.8 0.00 0.00 0.00		10 100 0	0.00	0.00	10.034.4	440.0	-850.0	-290.8	0.00	0.00	0.00
10,300.0 0.00 0.00 10,234.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,400.0 0.00 0.00 10,334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 10,500.0 0.00 0.00 10,434.4 440.0 -850.0 -290.8 0.00 0.00 0.00		10,200.0	0.00	0.00	10,134.4	440.0	-850.0	-290.8	0.00	0.00	0.00
10,400.0 0.00 0.00 10,334.4 440.0 -850.0 -290.8 0.00 0.00 0.00 0.00 10,500.0 -290.8 0.00 0.00 0.00 0.00		10 300 0	0 00	0.00	10,234.4	440.0	-850.0	-290.8	0.00	0.00	0.00
10,500,0 0.00 0.00 10,434.4 440.0 -850.0 -290.8 0.00 0.00 0.00		10 400 0	0.00	0.00	10.334.4	440.0	-850.0	-290.8	0.00	0.00	0.00
		10.500.0	0.00	0.00	10,434.4	440.0	-850.0	-290.8	0.00	0.00	0.00

Planning Report

Database:OldCompany:BTA Oil Producers, LLCProject:Lea County, NM (NAD 83)Site:Mesa BWell:Mesa B #16HWellbore:Wellbore #1Design:Design #1

Planned Survey

Local Co-ordinate Reference:
TVD Reference:
MD Reference:
North Reference:
Survey Calculation Method:

.. . . .

Well Mesa B #16H GL* @ 3290.0usft GL* @ 3290.0usft Grid Minimum Curvature

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 600 0	0.00	0.00	10 534 4	440.0	-850.0	-290.8	0.00	0.00	0.00
10.800.0 0.00 0.00 10.734.4 440.0 450.0 -290.8 0.00 0.00 11.000.0 0.00 0.00 10.934.4 440.0 450.0 -290.8 0.00 0.00 11.100.0 0.00 0.00 11.334.4 440.0 450.0 -290.8 0.00 0.00 11.300.0 0.00 0.00 11.334.4 440.0 450.0 -290.8 0.00 0.00 11.300.0 0.00 0.00 11.334.4 440.0 450.0 -290.8 0.00 0.00 11.500.0 0.00 0.00 11.334.4 440.0 450.0 -290.8 0.00 0.00 11.700.0 0.00 0.00 11.334.4 440.0 450.0 -290.8 0.00 0.00 11.382.4 440.0 450.0 -290.8 0.00 0.00 11.332.4 440.0 450.0 -290.8 0.00 0.00 11.382.4 440.0 450.0 -290.8 0.00 0.0	10,000.0	0.00	0.00	10,634.4	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				10 70 4 4	440.0	050.0		0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10,800.0	0.00	0.00	10,734.4	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10,900.0	0.00	0.00	10,834.4	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11,000.0	0.00	0.00	10,934.4	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11,100.0	0.00	0.00	11,034.4	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11,200.0	0.00	0.00	11,134.4	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11,300.0	0.00	0.00	11,234.4	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11,400.0	0.00	0.00	11,334.4	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11,500.0	0.00	0.00	11,434.4	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11,600.0	0.00	0.00	11,534.4	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11,700.0	0.00	0.00	11,634.4	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.800.0	0.00	0.00	11,734,4	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11,900.0	0.00	0.00	11.834.4	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 932.6	0.00	0.00	11.867.0	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11.982.7	0.00	0.00	11.917.0	440.0	-850.0	-290.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.000.0	1.73	179.61	11,934,4	439.7	-850.0	-290.6	10.00	10.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		44 70	470.04	40,000,0				40.00	40.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12,100.0	11.73	1/9.61	12,033.6	428.0	-849.9	-279.0	10.00	10.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12,200.0	21.73	1/9.61	12,129.2	399.3	-849.7	-250.7	10.00	10.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12,300.0	31.73	179.61	12,218.4	354.3	-849.4	-206.5	10.00	10.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12,400.0	41./3	1/9.61	12,298.4	294.6	-849.0	-147.7	10.00	10.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12,500.0	51.73	179.61	12,366.9	221.9	-848.5	-76.1	10.00	10.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12,600.0	61.73	179.61	12,421.7	138.4	-847.9	6.1	10.00	10.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12,700.0	71.73	179.61	12,461.1	46.6	-847.3	96.5	10.00	10.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12,800.0	81.73	179.61	12,484.0	-50.6	-846.6	192.2	10.00	10.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12,882.7	90.00	179.61	12,490.0	-132.9	-846.1	273.3	10.00	10.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12,900.0	90.00	179.61	12,490.0	-150.3	-846.0	290.4	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.000.0	90.00	179.61	12,490,0	-250.3	-845.3	388.8	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13,100.0	90.00	179.61	12,490.0	-350.3	-844.6	487.3	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13,200.0	90.00	179.61	12,490.0	-450.3	-843.9	585.7	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13,300,0	90.00	179.61	12,490.0	-550.3	-843.2	684.2	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13,400.0	90.00	179.61	12,490.0	-650.3	-842.5	782.7	0.00	0.00	0.00
13,600.090.00179.6112,490.0 -850.3 -841.1 979.60.000.0013,700.090.00179.6112,490.0 -950.3 -840.5 $1,078.0$ 0.000.0013,800.090.00179.6112,490.0 $-1,050.3$ -839.8 $1,176.5$ 0.000.0013,900.090.00179.6112,490.0 $-1,150.3$ -839.8 $1,176.5$ 0.000.0014,000.090.00179.6112,490.0 $-1,250.2$ -838.4 $1,373.4$ 0.000.0014,000.090.00179.6112,490.0 $-1,250.2$ -837.7 $1,471.9$ 0.000.0014,200.090.00179.6112,490.0 $-1,350.2$ -837.0 $1,570.3$ 0.000.0014,200.090.00179.6112,490.0 $-1,550.2$ -836.3 $1,668.8$ 0.000.0014,200.090.00179.6112,490.0 $-1,550.2$ -836.3 $1,668.8$ 0.000.0014,400.090.00179.6112,490.0 $-1,550.2$ -835.7 $1,767.2$ 0.000.0014,400.090.00179.6112,490.0 $-1,550.2$ -835.7 $1,767.2$ 0.000.0014,600.090.00179.6112,490.0 $-1,550.2$ -835.6 $1,865.7$ 0.000.0014,600.090.00179.6112,490.0 $-2,250.2$ -833.6 $2,062.6$ 0.000.0014,600.090.00179.6112,490.0 <t< td=""><td>13 500 0</td><td>90.00</td><td>179 61</td><td>12 490 0</td><td>-750.3</td><td>-841.8</td><td>881.1</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	13 500 0	90.00	179 61	12 490 0	-750.3	-841.8	881.1	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 600 0	90.00	179.61	12,490.0	-850.3	-841.1	979.6	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 700 0	90.00	179.61	12 490 0	-950.3	-840.5	1 078 0	0.00	0.00	0.00
13,900.090.00179.6112,490.0 $-1,150.3$ -839.1 $1,274.9$ 0.00 0.01 14,000.090.00179.6112,490.0 $-1,250.2$ -838.4 $1,373.4$ 0.00 0.01 14,100.090.00179.6112,490.0 $-1,250.2$ -837.7 $1,471.9$ 0.00 0.00 14,200.090.00179.6112,490.0 $-1,450.2$ -837.7 $1,471.9$ 0.00 0.00 14,200.090.00179.6112,490.0 $-1,450.2$ -837.0 $1,570.3$ 0.00 0.00 14,300.090.00179.6112,490.0 $-1,550.2$ -836.3 $1,668.8$ 0.00 0.00 14,400.090.00179.6112,490.0 $-1,550.2$ -835.7 $1,767.2$ 0.00 0.00 14,400.090.00179.6112,490.0 $-1,550.2$ -835.7 $1,767.2$ 0.00 0.00 14,600.090.00179.6112,490.0 $-1,550.2$ -835.7 $1,767.2$ 0.00 0.00 14,600.090.00179.6112,490.0 $-1,550.2$ -833.6 $2,062.6$ 0.00 0.00 14,700.090.00179.6112,490.0 $-2,250.2$ -832.2 $2,259.5$ 0.00 0.00 14,800.090.00179.6112,490.0 $-2,250.2$ -832.2 $2,259.5$ 0.00 0.00 14,800.090.00179.6112,490.0 $-2,250.2$ -832.2 $2,259.5$ 0.00 0.00 1	13 800 0	90.00	179.61	12 490.0	-1.050.3	-839.8	1,176.5	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13,900,0	90.00	179.61	12,490.0	-1,150.3	-839.1	1,274.9	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14,000,0	00.00	170 61	12 400 0	1 250 2	929.4	4 272 4	0.00	0.00	0.00
14,100.0 90.00 179.61 $12,490.0$ $-1,450.2$ -837.0 $1,471.5$ 0.00 0.01 14,200.0 90.00 179.61 $12,490.0$ $-1,450.2$ -837.0 $1,570.3$ 0.00 0.01 14,300.0 90.00 179.61 $12,490.0$ $-1,550.2$ -836.3 $1,668.8$ 0.00 0.01 14,400.0 90.00 179.61 $12,490.0$ $-1,650.2$ -835.7 $1,767.2$ 0.00 0.01 14,500.0 90.00 179.61 $12,490.0$ $-1,650.2$ -835.7 $1,767.2$ 0.00 0.00 14,600.0 90.00 179.61 $12,490.0$ $-1,850.2$ -833.6 $2,062.6$ 0.00 0.00 14,600.0 90.00 179.61 $12,490.0$ $-1,950.2$ -833.6 $2,062.6$ 0.00 0.00 14,700.0 90.00 179.61 $12,490.0$ $-2,050.2$ -832.9 $2,161.1$ 0.00 0.00 14,800.0 90.00 179.61 $12,490.0$ $-2,250.2$ -832.2 $2,259.5$ 0.00 0.00 14,900.0 90.00 179.61 $12,490.0$ $-2,250.2$ -831.5 $2,358.0$ 0.00 0.00 15,000.0 90.00 179.61 $12,490.0$ $-2,250.2$ -830.9 $2,456.5$ 0.00 0.00 15,200.0 90.00 179.61 $12,490.0$ $-2,250.2$ -830.9 $2,456.5$ 0.00 0.00 15,300.0 90.00 179.61 $12,490.0$ $-2,250.2$ <	14,000.0	90,00	179.01	12,490.0	-1,250.2	-030.4	1,373.4	0.00	0.00	0.00
14,200.0 30.00 179.61 $12,490.0$ $-1,450.2$ -836.3 $1,510.3$ 0.00 0.00 $14,300.0$ 90.00 179.61 $12,490.0$ $-1,550.2$ -836.3 $1,668.8$ 0.00 0.01 $14,400.0$ 90.00 179.61 $12,490.0$ $-1,650.2$ -835.7 $1,767.2$ 0.00 0.01 $14,500.0$ 90.00 179.61 $12,490.0$ $-1,750.2$ -835.0 $1,865.7$ 0.00 0.01 $14,600.0$ 90.00 179.61 $12,490.0$ $-1,750.2$ -834.3 $1,964.2$ 0.00 0.01 $14,600.0$ 90.00 179.61 $12,490.0$ $-1,950.2$ -833.6 $2,062.6$ 0.00 0.01 $14,700.0$ 90.00 179.61 $12,490.0$ $-2,050.2$ -832.9 $2,161.1$ 0.00 0.00 $14,800.0$ 90.00 179.61 $12,490.0$ $-2,250.2$ -832.2 $2,259.5$ 0.00 0.00 $14,900.0$ 90.00 179.61 $12,490.0$ $-2,250.2$ -831.5 $2,358.0$ 0.00 0.00 $15,000.0$ 90.00 179.61 $12,490.0$ $-2,250.2$ -830.9 $2,456.5$ 0.00 0.00 $15,200.0$ 90.00 179.61 $12,490.0$ $-2,250.2$ -830.9 $2,456.5$ 0.00 0.00 $15,300.0$ 90.00 179.61 $12,490.0$ $-2,250.2$ -830.2 $2,554.9$ 0.00 0.00 $15,300.0$ 90.00 179.61 $12,490.0$	14,100.0	90.00	179.01	12,490.0	-1,350.2	-037.7	1,471.9	0.00	0.00	0.00
14,300.0 30.00 179.61 $12,490.0$ $-1,650.2$ -635.7 $1,767.2$ 0.00 0.01 $14,400.0$ 90.00 179.61 $12,490.0$ $-1,650.2$ -835.7 $1,767.2$ 0.00 0.01 $14,500.0$ 90.00 179.61 $12,490.0$ $-1,750.2$ -835.0 $1,865.7$ 0.00 0.01 $14,600.0$ 90.00 179.61 $12,490.0$ $-1,850.2$ -834.3 $1,964.2$ 0.00 0.01 $14,700.0$ 90.00 179.61 $12,490.0$ $-1,950.2$ -833.6 $2,062.6$ 0.00 0.01 $14,800.0$ 90.00 179.61 $12,490.0$ $-2,050.2$ -832.9 $2,161.1$ 0.00 0.00 $14,900.0$ 90.00 179.61 $12,490.0$ $-2,250.2$ -832.2 $2,259.5$ 0.00 0.00 $15,000.0$ 90.00 179.61 $12,490.0$ $-2,250.2$ -831.5 $2,358.0$ 0.00 0.00 $15,000.0$ 90.00 179.61 $12,490.0$ $-2,250.2$ -830.9 $2,456.5$ 0.00 0.00 $15,000.0$ 90.00 179.61 $12,490.0$ $-2,250.2$ -830.9 $2,456.5$ 0.00 0.00 $15,000.0$ 90.00 179.61 $12,490.0$ $-2,250.2$ -830.2 $2,554.9$ 0.00 0.00 $15,300.0$ 90.00 179.61 $12,490.0$ $-2,250.2$ -830.2 $2,554.9$ 0.00 0.00 $15,300.0$ 90.00 179.61 $12,490.0$	14,200.0	90.00	179.01	12,490.0	-1,450.2	-037.0	1,570.5	0.00	0.00	0.00
14,400,0 30,00 110,01 12,400,0 4,000,2 600,1 1,01,2 600 600 14,500,0 90,00 179,61 12,490,0 -1,750,2 -835,0 1,865,7 0,00 0,00 14,600,0 90,00 179,61 12,490,0 -1,850,2 -834,3 1,964,2 0,00 0,00 14,700,0 90,00 179,61 12,490,0 -1,950,2 -833,6 2,062,6 0,00 0,00 14,800,0 90,00 179,61 12,490,0 -2,050,2 -832,9 2,161,1 0,00 0,00 14,900,0 90,00 179,61 12,490,0 -2,250,2 -832,2 2,259,5 0,00 0,00 14,900,0 90,00 179,61 12,490,0 -2,250,2 -831,5 2,358,0 0,00 0,00 15,000,0 90,00 179,61 12,490,0 -2,250,2 -831,5 2,358,0 0,00 0,00 15,000,0 90,00 179,61 12,490,0 -2,250,2 -830,9<	14,300.0	90.00	179.61	12,490.0	-1,550.2	-835.7	1,000.0	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14,400.0	30.00	175.01	12,430.0	-1,000.2	-000.7	1,707.2	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14,500.0	90.00	179.61	12,490.0	-1,750.2	-835.0	1,865.7	0.00	0.00	0.00
14,700.0 90.00 179.61 12,490.0 -1,950.2 -833.6 2,062.6 0.00 0.01 14,800.0 90.00 179.61 12,490.0 -2,050.2 -832.9 2,161.1 0.00 0.00 14,900.0 90.00 179.61 12,490.0 -2,150.2 -832.9 2,161.1 0.00 0.00 14,900.0 90.00 179.61 12,490.0 -2,250.2 -832.2 2,259.5 0.00 0.00 15,000.0 90.00 179.61 12,490.0 -2,250.2 -831.5 2,358.0 0.00 0.00 15,100.0 90.00 179.61 12,490.0 -2,350.2 -830.9 2,456.5 0.00 0.00 15,200.0 90.00 179.61 12,490.0 -2,450.2 -830.2 2,554.9 0.00 0.00 15,300.0 90.00 179.61 12,490.0 -2,550.2 -829.5 2,653.4 0.00 0.00 15,400.0 20.00 179.61 12,490.0 -2,550.2 -8	14,600.0	90.00	179.61	12,490.0	-1,850.2	-834.3	1,964.2	0.00	0.00	0.00
14,800.0 90.00 179.61 12,490.0 -2,050.2 -832.9 2,161.1 0.00 0.01 14,900.0 90.00 179.61 12,490.0 -2,150.2 -832.2 2,259.5 0.00 0.00 15,000.0 90.00 179.61 12,490.0 -2,250.2 -831.5 2,358.0 0.00 0.00 15,100.0 90.00 179.61 12,490.0 -2,350.2 -830.9 2,456.5 0.00 0.00 15,200.0 90.00 179.61 12,490.0 -2,350.2 -830.9 2,456.5 0.00 0.00 15,200.0 90.00 179.61 12,490.0 -2,350.2 -830.2 2,554.9 0.00 0.00 15,300.0 90.00 179.61 12,490.0 -2,550.2 -829.5 2,653.4 0.00 0.00 15,300.0 90.00 179.61 12,490.0 -2,650.2 -829.5 2,653.4 0.00 0.00	14,700.0	90.00	179.61	12,490.0	-1,950.2	-833.6	2,062.6	0.00	0.00	0.00
14,900.0 90.00 179.61 12,490.0 -2,150.2 -832.2 2,259.5 0.00 0.01 15,000.0 90.00 179.61 12,490.0 -2,250.2 -831.5 2,358.0 0.00 0.00 15,100.0 90.00 179.61 12,490.0 -2,350.2 -830.9 2,456.5 0.00 0.00 15,200.0 90.00 179.61 12,490.0 -2,450.2 -830.2 2,554.9 0.00 0.00 15,300.0 90.00 179.61 12,490.0 -2,550.2 -829.5 2,653.4 0.00 0.00 15,300.0 90.00 179.61 12,490.0 -2,550.2 -829.5 2,653.4 0.00 0.00 15,000.0 90.00 179.61 12,490.0 -2,650.2 -829.5 2,653.4 0.00 0.00	14,800.0	90.00	179.61	12,490.0	-2,050.2	-832.9	2,161.1	0.00	0.00	0.00
15,000.0 90.00 179.61 12,490.0 -2,250.2 -831.5 2,358.0 0.00 0.00 15,100.0 90.00 179.61 12,490.0 -2,350.2 -830.9 2,456.5 0.00 0.00 15,200.0 90.00 179.61 12,490.0 -2,450.2 -830.9 2,456.5 0.00 0.00 15,300.0 90.00 179.61 12,490.0 -2,550.2 -829.5 2,554.9 0.00 0.00 15,300.0 90.00 179.61 12,490.0 -2,550.2 -829.5 2,653.4 0.00 0.00 15,400.0 0.00 12,490.0 -2,550.2 -829.5 2,653.4 0.00 0.00	14,900.0	90.00	179.61	12,490.0	-2,150.2	-832.2	2,259.5	0.00	0.00	0.00
15,100.0 90.00 179.61 12,490.0 -2,350.2 -830.9 2,456.5 0.00 0.00 15,200.0 90.00 179.61 12,490.0 -2,450.2 -830.2 2,554.9 0.00 0.00 15,300.0 90.00 179.61 12,490.0 -2,550.2 -839.5 2,653.4 0.00 0.00 15,300.0 90.00 179.61 12,490.0 -2,550.2 -829.5 2,653.4 0.00 0.00	15,000.0	90.00	179.61	12,490.0	-2,250.2	-831.5	2,358.0	0.00	0.00	0.00
15,200.0 90.00 179.61 12,490.0 -2,450.2 -830.2 2,554.9 0.00 0.00 15,300.0 90.00 179.61 12,490.0 -2,550.2 -829.5 2,653.4 0.00 0.00 15,300.0 90.00 179.61 12,490.0 -2,550.2 -829.5 2,653.4 0.00 0.00	15,100.0	90.00	179 61	12,490.0	-2,350.2	-830.9	2,456.5	0.00	0.00	0.00
15,300.0 90.00 179.61 12,490.0 -2,550.2 -829.5 2,653.4 0.00 0.00	15 200 0	90.00	179.61	12,490.0	-2.450.2	-830.2	2,554.9	0.00	0.00	0.00
	15 300 0	90.00	179.61	12,490.0	-2.550.2	-829.5	2,653.4	0.00	0.00	0.00
13.400.0 90.00 1/9.01 12.490.0 -2.650.2 -628.6 2./51.6 0.00 0.00	15,400.0	90.00	179.61	12,490.0	-2,650.2	-828.8	2,751.8	0.00	0.00	0.00
	10,400.0			,	_,					
15,500.0 90.00 179.61 12,490.0 -2,750.2 -828.1 2,850.3 0.00 0.00	15,500.0	90.00	179.61	12,490.0	-2,750.2	-828.1	2,850.3	0.00	0.00	0.00

Planning Report

<pre>/</pre>			
Database:	Old	Local Co-ordinate Reference:	Well Mesa B #16H
Company:	BTA Oil Producers, LLC	TVD Reference:	GL* @ 3290.0usft
Project:	Lea County, NM (NAD 83)	MD Reference:	GL* @ 3290.0usft
Site:	Mesa B	North Reference:	Grid
Well:	Mesa B #16H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
15,700.0	90.00	179.61	12,490.0	-2,950.2	-826.7	3,047.2	0.00	0.00	0.00
15,800.0	90.00	179.61	12,490.0	-3,050.2	-826.1	3,145.7	0.00	0.00	0.00
15,900.0	90.00	179.61	12,490.0	-3,150.2	-825.4	3,244.1	0.00	0.00	0.00
16,000.0	90.00	179.61	12,490.0	-3,250.2	-824.7	3,342.6	0.00	0.00	0.00
16,100.0	90.00	179.61	12,490.0	-3,350.2	-824.0	3,441.0	0.00	0.00	0.00
16,200.0	90.00	179.61	12,490.0	-3,450.2	-823.3	3,539.5	0.00	0.00	0.00
16,300.0	90.00	179.61	12,490.0	-3,550.2	-822.6	3,638.0	0.00	0.00	0.00
16,400.0	90.00	179.61	12,490.0	-3,650.2	-821.9	3,736.4	0.00	0.00	0.00
16,500.0	90.00	179.61	12,490.0	-3,750,2	-821.3	3,834.9	0.00	0.00	0.00
16,600.0	90.00	179.61	12,490.0	-3,850.2	-820.6	3,933.3	0.00	0.00	0.00
16,700.0	90.00	179,61	12,490.0	-3,950.2	-819.9	4,031.8	0.00	0.00	0.00
16,800.0	90.00	179.61	12,490.0	-4,050.2	-819.2	4,130.3	0.00	0.00	0.00
16,900.0	90.00	179.61	12,490.0	-4 150 2	-818.5	4,228.7	0.00	0.00	0.00
17,000.0	90.00	179.61	12,490.0	-4,250.2	-817.8	4,327.2	0.00	0.00	0.00
17,100.0	90.00	179.61	12,490.0	-4,350.2	-817.1	4,425.6	0.00	0.00	0.00
17,200.0	90.00	179.61	12,490.0	-4,450.2	-816.4	4,524.1	0.00	0.00	0.00
17,300.0	90.00	179.61	12,490.0	-4,550.2	-815.8	4,622.6	0.00	0.00	0.00
17,400.0	90.00	179.61	12,490.0	-4,650.2	-815.1	4,721.0	0.00	0.00	0.00
17,500.0	90.00	179.61	12,490.0	-4,750.2	-814.4	4,819.5	0.00	0.00	0.00
17,524.0	90.00	179.61	12,490.0	-4,774.2	-814.2	4,843.1	0.00	0.00	0.00
sign Targets									
rget Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD +N/-S (usft) (usft)	+E/-W (usft)	Northing (usft)	j East (us	ing ft)	l atitude	l ongitude

-814.2

383,019.00

766,010.30

Mesa B #16H BHL

plan hits target center
Point

0.00

0.00 12,490.0

-4,774.2

103° 36' 29.383 W

32° 3' 3.330 N

WFT Casing Head (Slip on Weld with O-Ring) Running Procedure

Publication RP-001 October 21, 2010

© 2010 Weatherford International Inc. All rights reserved

₩	WFT Casing Head (Slip on Weld with O-Ring)	Approved By:	Reviewed By:	RP-001
Weatherford	Running Procedure	RQ	Bene T. Ross	Rev 0
5-2-GL-GL-WES-00052		Date: Oct 21, 2010	Date: Oct 21, 2010	

Install the Casing Head

- 1. Examine the *WFT Casing Head*. Verify the following:
 - bore is clean and free of debris
 - seal areas, threads and ring grooves are clean and undamaged
 - o-ring is properly installed, clean and undamaged
 - all peripheral equipment is intact and undamaged
- 2. Measure the pocket depth of the Casing Head and record this dimension.
- 3. Run the surface casing and cement as required.
- 4. Determine the required elevation of the Casing Head as required by the Drilling Supervisor.
- 5. Use the following calulation to determine the correct final cut location of the surface casing.
- X = Pocket Depth

Y = Overall Casing Head Height

Y-X = Distance from correct elevation point to surface casing cutoff height.

- Lift the riser assembly high enough to rough cut the surface casing a minimum of 12" above the anticipated final cut location, if applicable.
- 7. Remove the spent portion of surface casing and the riser assembly and set aside.
- 8. Determine the correct elevation for the wellhead assembly.
- Rough cut the surface casing a minimum of 12" above the final cut location.
- 10. Cut the conductor pipe a comfortable level below the final cut location of the surface casing.

11. Final cut the surface casing at the correct elevation.

NOTE: Ensure the cut on the surface casing is level as this will determine the orientation of the remainder of the wellhead equipment.

- 12. Bevel the surface casing with a 3/16" x 3/8" bevel and remove any sharp edges from the OD of the casing.
- 13. Break a 1/8" x 45° bevel on the ID of the surface casing.

₩	WFT Casing Head (Slip on Weld with O-Ring)	Approved By:	Reviewed By:	RP-001
Weatherford	Running Procedure	BQ	Bene T. Ross	Rev 0
5-2-GL-GL-WES-00052		Date: Oct 21, 2010	Date: Oct 21, 2010	Page 1

Install the Casing Head

14. Wipe the ID of the o-ring of the Casing Head with a light coat of oil or grease.

NOTE: Excessive oil or grease will prevent a positive seal from forming.

- 15. Lower the Casing Head over the surface casing stub to a positive stop.
- 16. Remove the fitting from the test port and set aside.
- 17. Orient the Casing Head as per the Drilling Superintendents instructions ensuring the face of the Casing Head is level and two holed to the drilling rig substructure.
- Weld and test the surface casing to the Casing Head as per the *REC-OMMENDED FIELD WELDING PROCEDURE* located in the back of this manual.
- 19. Once all welding and testing is completed, replace the fitting into the open port and close the valve on the Casing Head.

RP-001	Reviewed By:	Approved By:
Rev 0	Bene Ross	R
Page 2	Date: Oct 21, 2010	Date: Oct 21, 2010

WFT Casing Head (Slip on Weld with O-Ring) Running Procedure

Recommended Procedure for Field Welding Pipe to Wellhead Parts for Pressure Seal

1. Introduction and Scope. The following recommended procedure has been prepared with particular regard to attaining pressure-tight weld when attaching casing heads, flanges, etc., to casing. Although most of the high strength casing used (such as N-80) is not normally considered field weldable, some success may be obtained by using the following or similar procedures.

Caution: In some wellheads, the seal weld is also a structural weld and can be subjected to high tensile stresses. Consideration must therefore be given by competent authority to the mechanical properties of the weld and its heat affected zone.

a. The steels used in wellhead parts and in casing are high strength steels that are susceptible to cracking when welded. It is imperative that the finished weld and adjacent metal be free from cracks. The heat from welding also affects the mechanical properties. This is especially serious if the weld is subjected to service tension stresses.

b. This procedure is offered only as a recommendation. The responsibility for welding lies with the user and results are largely governed by the welder's skill. Weldability of the several makes and grades of casing varies widely, thus placing added responsibility on the welder. Transporting a qualified welder to the job, rather than using a less-skilled man who may be at hand, will, in most cases, prove economical. The responsible operating representative should ascertain the welder's qualifications and, if necessary, assure himself by instruction or demonstration, that the welder is able to perform the work satisfactorily.

- 2. Welding Conditions. Unfavorable welding conditions must be avoided or minimized in every way possible, as even the most skilled welder cannot successfully weld steels that are susceptible to cracking under adverse working conditions, or when the work is rushed. Work above the welder on the drilling floor should be avoided> The weld should be protected from dripping mud, water, and oil and from wind, rain, or other adverse weather conditions. The drilling mud, water, or other fluids must be lowered in the casing and kept at a low level until the weld has properly cooled. It is the responsibility of the user to provide supervision that will assure favorable working conditions, adequate time, and the necessary cooperation of the rig personnel.
- 3. Welding. The welding should be done by the shielded metal-arc or other approved process.

- 4. Filler Metal. Filler Metals. For root pass, it's recommended to use E6010, E6011 (AC), E6019 or equivalent electrodes. The E7018 or E7018-A1 electrodes may also be used for root pass operations but has the tendency to trap slag in tight grooves. The E6010, E6011 and E6019 offer good penetration and weld deposit ductility with relatively high intrinsic hydrogen content. Since the E7018 and E7018-A1 are less susceptible to hydrogen induced cracking, it is recommended for use as the filler metal for completion of the weld groove after the root pass is completed. The E6010, E6011 (AC), E6019, E7018 and E7018-A1 are classified under one of the following codes AWS A5.1 (latest edition): Mild Steel covered electrodes or the AWS A5.5 (latest edition): Low Alloy Steel Covered Arc-Welding Electrodes. The low hydrogen electrodes, E7018 and E7018-A1, should not be exposed to the atmosphere until ready for use. It's recommended that hydrogen electrodes remain in their sealed containers. When a job arises, the container shall be opened and all unused remaining electrodes to be stored in heat electrode storage ovens. Low hydrogen electrodes exposed to the atmosphere, except water, for more than two hours should be dried 1 to 2 hours at 600°F to 700 °F (316°C to 371 °C) just before use. It's recommended for any low hydrogen electrode containing water on the surface should be scrapped.
- 5. Preparation of Base Metal. The area to be welded should be dry and free of any paint, grease/oil and dirt. All rust and heat-treat surface scale shall be ground to bright metal before welding.
- 6. Preheating. Prior to any heating, the wellhead member shall be inspected for the presence of any o-rings or other polymeric seals. If any o-rings or seals are identified then preheating requires close monitoring as noted in paragraph 6a. Before applying preheat, the fluid should be bailed out of the casing to a point several inches (>6" or 150 mm) below the weld joint/location. Preheat both the casing and wellhead member for a minimum distance of three (3) inches on each side of the weld joint using a suitable preheating torch in accordance with the temperatures shown below in a and b. The preheat temperature should be checked by the use of heat sensitive crayons. Special attention must be given to preheating the thick sections of wellhead parts to be welded, to insure uniform heating and expansion with respect to the relatively thin casing.

a. Wellhead members containing o-rings and other polymeric seals have tight limits on the preheat and interpass temperatures. Those temperatures must be controlled at 200°F to 325°F or 93 °C to 160°C and closely monitored to prevent damage to the o-ring or seals.

b. Wellhead members not containing o-rings and other polymeric seals should be maintained at a preheat and interpass temperature of 400°F to 600°F or 200°C to 300°C.

₩	WFT Casing Head (Slip on Weld with O-Ring)	Approved By:	Reviewed By:	RP-001
Weatherford	Running Procedure	BQ	Bauco T. Rows	Rev 0
5-2-GL-GL-WES-00052		Date: Oct 21, 2010	Date: Oct 21, 2010	Page 3

Recommended Procedure for Field Welding Pipe to Wellhead Parts for Pressure Seal (continued)

7. Welding Technique. Use a 1/8 or 5/32-inch (3.2 or 4.0 mm) E6010 or E7018 electrode and step weld the first bead (root pass); that, weld approximately 2 to 4 inches (50 to 100 mm) and then move diametrically opposite this point and weld 2 to 4 inches (50 to 100 mm) halfway between the first two welds, move diametrically opposite this weld, and so on until the first pass is completed. This second pass should be made with a 5/32-inch (4.0 mm) low hydrogen electrode of the proper strength and may be continuous. The balance of the welding groove may then be filled with continuous passes without back stepping or lacing, using a 3/16-inch (4.8 mm) low hydrogen electrode. All beads should be no undercutting and weld shall be workmanlike in appearance.

a. Test ports should be open when welding is performed to prevent pressure buildup within the test cavity.

b. During welding the temperature of the base metal on either side of the weld should be maintained at 200 to 300°F (93 to 149°C).

- c. Care should be taken to insure that the welding cable is properly grounded to the casing, but ground wire should not be welded to the casing or the wellhead. Ground wire should be firmly clamped to the casing, the wellhead, or fixed in position between pipe slips. Bad contact may cause sparking, with resultant hard spots beneath which incipient cracks may develop. The welding cable should not be grounded to the steel derrick, nor to the rotary-table base.
- 8. Cleaning. All slag or flux remaining on any welding bead should be removed before laying the next bead. This also applies to the completed weld.
- Defects. Any cracks or blow holes that appear on any bead should be removed to sound metal by chipping or grinding before depositing the next bead.
- **10. Postheating.** Post-heating should be performed at the temperatures shown below and held at that temperature for no less than one hour followed by a slow cooling. The post-heating temperature should be in accordance with the following paragraphs.

a. Wellhead members containing o-rings and other polymeric seals have tight limits on the post-heating temperatures. Those temperatures must be controlled at 250°F to 300°F or 120 °C to 150°C and closely monitored to prevent damage to the o-ring or seals.

b. Wellhead members not containing o-rings and other polymeric seals should be post-heated at a temperature of 400°F to 600°F or 200°C to 300°C.

- 11. Cooling. Rapid cooling must be avoided. To assure slow cooling, welds should be protected from extreme weather conditions (cold, rain, high winds, etc.) by the use of suitable insulating material. (Specially designed insulating blankets are available at many welding supply stores.) Particular attention should be given to maintaining uniform cooling of the thick sections of the wellhead parts and the relatively thin casing, as the relatively thin casing will pull away from the head or hanger if allowed to cool more rapidly. The welds should cool in air to less than 200°F (93°C) (measured with a heat sensitive crayon) prior to permitting the mud to rise in the casing.
- **12.** Test the Weld. After cooling, test the weld. The weld must be cool otherwise the test media will crack the weld. The test pressure should be no more than 80% of the casing collapse pressure.

Test Media					
Acceptable Medias	Unacceptable Medias				
Water Water Soluable Oil Inert Gas •Nitrogen •Argon Gas	Oxygen Acetylene Hydraulic Oil Motor Oil Brake Fluid				

RP-001	Reviewed By:	Approved By:
Rev 0	Benco T. Ross	R
Page 4	Date: Oct 21, 2010	Date: Oct 21, 2010

WFT Casing Head (Slip on Weld with O-Ring) Running Procedure

Weatherford® Wellhead Field Service Manual

WFT-SB Wellhead System Running Procedure

Publication: SM-11-1 Release Date: December 2014

©2014 Weatherford International Ltd. All Rights Reserved

**		Prepared By:	Reviewed By:	Approved By:	SM-11-1
Weatherford	Field Service Manual	Maion-Robertson	Bruce Ross	Manuel Zaragoza	Rev WIP
wycauici iui u	Mariaa	Marion Robertson	Bruce Ross	Manuel Zaragoza	Dana 4 of 04
5-3-GL-GL-WES-00XXX		Dec 2014	Dec 2014	Dec 2014	Page 1 of 24

Table of Content

WFT-Split Bowl (SB) Wellhead System	
Wellhead System Assembly Drawing	3
Running Procedure	
Casing Head/Spool Assembly Rig-Up and Installation	4
Testing the BOP	5
Running and Retrieving the Long Bowl Protector	3
Running the Bowl Protector Prior to Drilling	6
Retrieving the Bowl Protector After Drilling	7
Hanging Off the Intermediate Casing	7
Hanging Off the Intermediate Casing- Contingency Completion	9
Installation of the Pack-Off Bushing and Energizing the Seals	10
Installation	10
Energizing the Seal	12
Retesting the BOP Stack	14
Running and Retrieving the Short Bowl Protector	15
Running Short Bowl Protector	15
Retrieving the Short Bowl Protector	16
Running the Production Casing	16
Installation of the Slip-Type Casing Hanger Under the BOP Stack	16
Installation of the Slip-Type Casing Hanger Through the BOP Stack	17
Hanging Off the Production Casing	18
Installation and Testing the Tubing Spool Assembly	20
Installation	20
Testing the Secondary Seal and Flange Connection	20
Testing the BOP	21
Hanging Off the Production Tubing String	22
Installing and Testing of the Production Tree	23
Installation	23
Testing	24

_

•••		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Meethorford	Field Services	Masson Robert ann	Brad Franks	Manual Zaragoza	Rev WIP
weatherioru	Manual	Marion Robertson	Brad Franks	Manual Zaragoza	Page 2 of 24
5-3-GL-GL-WES-00XXX		Dec 2014	Dec 2014	Dec 2014	F age 2 01 24

₩		Prepared By:	Reviewed By:	Approved By:	SM-13-1
▼ Weetherford	Hield Service	Maion Robertson	Brad Franks	Manual Zaragoza	Rev WIP
weameriuru	manuai	Marion Robertson	Brad Franks	Manual Zaragoza	Page 3 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	

WFT Split Bowl (SB) Multi-Bowl/Conventional Wellhead System (Continued)

WFT-SB Casing Head/Spool Assembly Rig Up and Installation

1. Determine the correct elevation for the wellhead system, and cut the conductor pipe at a comfortable elevation, below the surface casing final cut.

NOTE

Ensure that the cut on the conductor is level, as this will determine the orientation of all remaining wellhead equipment.

- 2. Remove any excess conductor pipe and set aside.
- 3. Grind the conductor pipe and remove any sharp edges, ensuring that the conductor pipe cut is level.
- Run the surface casing to the required depth and cement casing in place. Allow the cement to set.
- Lift the blow-out preventer (BOP) or diverter and prepare to cut off the surface casing at a sufficient height above the cellar deck to facilitate the installation of the WFT-SB Casing Head/Spool Assembly with Base Plate.
- Once the surface casing is released from the rig floor, cut it approximately 12 inches (or more) above the final cut location.
- 7. Remove the excess surface casing, and the BOP or diverter, and set aside.
- Bevel the surface casing outer diameter (3/16" x 3/8") and inner diameter (1/8" x 45 degrees). Remove any sharp edges.

- 9. Examine the Casing Head with Slip-On Weld (SOW) bottom prep. Verify the following:
- O-ring seal, bore, ports and exposed ring grooves are clean and in good condition.
- Test fittings, studs and nuts, valves, flanges and bull plugs are intact and in good condition.

- Determine the correct elevation for the wellhead assembly. Measure depth of the surface casing socket in SOW with Oring bottom prep.
- 11. Lightly lubricate the casing stub with an oil or light grease.

Excessive oil or grease will prevent a positive seal from forming.

12. Align and level the WFT-SB Casing Head/Spool Assembly over the casing stub, orienting the outlets to drilling equipment, per the drilling supervisor's direction.

•	Field Service Manual	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weetherford		Hose Roberton	Brad Franks	Manual Zaragoza	Rev WIP
vveaune riuru		Marion Robertson	Brad Franks	Manual Zaragoza	Page 4 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	

- 14. Slowly and carefully lower the assembly over the casing stub until the stub bottoms in the casing socket.
- 15. Remove the test fitting from the casing head test port, and set aside.
- **16.** Ensure that the WFT-SB Casing Head/Spool Assembly is plumb and level.
- **17.** Weld and test the surface casing using the recommended welding procedure located in the Appendices Section of this manual.

Testing the BOP Stack

- 1. Examine the Test Plug/Running & Retrieval Tool. Verify the following:
- Elastomer seals, threads and plugs are intact and in good condition.
- Drill pipe threads are correct size, clean and in good condition.
- Install a new, appropriately sized ring gasket in the ring groove of the WFT-SB Spool and make up the BOP stack.

Immediately after make-up of the BOP stack and periodically during drilling of hole for the casing string, the BOP stack (flanged connections and rams) must be tested.

3. Orient the test plug with elastomer down/ACME threads up, and make up a joint of drill pipe to the test plug.

If pressure is to be supplied through the drill pipe, remove the pipe plug from the weep port.

Ensure that the test plug elastomer is down and Acme threads are up when testing.

- 4. Fully retract all lockscrews in the entire WFT-SB casing head/spool assembly.
- 5. Lubricate the test plug elastomer seal with a light oil or grease.
- 6. Lower the test plug through the BOP stack into the WFT-SB assembly, until it lands on the casing head load shoulder.

•	Field Service	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford Manual	Matter Robertson	Brad Franks	Manual Zaragoza	Rev WIP	
	Mariuar	Marion Robertson	Brad Franks	Manual Zaragoza	Base 5 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	Fage 5 01 24

- 7. Open lower casing head side outlet valve. Monitor any leakage past the test plug seal.
- 8. Close the BOP rams on the drill pipe, and test to **5,000 psi or as required by the drilling supervisor**.
- 9. After a satisfactory test is achieved, release pressure and open the rams.
- 10. Remove as much fluid from the BOP stack as possible.
- 11. Retrieve the test plug assembly slowly to avoid damage to the seal.
- 12. Close all outlet valves on WFT-SB Casing Head/Spool Assembly.
- 13. Repeat Steps 1 thru 12, as required during drilling of the hole.

Running and Retrieval of the Long Bowl Protector

Always use a bowl protector while drilling to protect wellhead load shoulders from damage by drill bit or rotating drill pipe. The bowl protector must be retrieved prior to running the casing string.

Running in the Bowl Protector prior to Drilling

- 1. Examine the Long Bowl Protector. Verify the following:
 - Bore drift is correct size, clean, in good condition, and free of debris
 - Threads are clean and undamaged
 - O-ring seals are properly installed, clean, and undamaged.

- 2. Examine the Bowl Protector Running/Retrieval Tool. Verify the following:
 - Threads are clean, undamaged and free of debris
 - Ports are clean and unobstructed.
 - Drill Pipe threads are correct size, clean and in good condition.
- 3. Orient the Bowl Protector Running Tool with Acme threads down.

Ensure that the left hand (LH) Acme threads are down prior to engaging Bowl Protector Running Tool into Long Bowl Protector.

•	Field Service Manual	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford		Marian Robertson	Brad Franks	Manual Zaragoza	Rev WIP
vvea lneriuru		Marion Robertson	Brad Franks	Manual Zaragoza	Dece 6 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	Page 6 of 24

- 4. Make-up a drill pipe joint to the Running Tool.
- 5. Thread Running Tool into the Long Bowl Protector, rotating two turns counterclockwise.
- Verify that all lockscrews in the WFT-SB Casing Head/Spool Assembly are fully retracted.
- Slowly lower the Running Tool/Bowl Protector Assembly through the BOP stack and into the WFT-SB Casing Head/Spool Assembly, until it lands securely on the casing head load shoulder.
- 8. On WFT-SB Casing Spool, run in two Lockscrews ("snug" tight **ONLY**), 180 degrees apart, to hold Bowl Protector in place.

Do NOT over tighten the lockscrews, as this will cause damage to the Bowl Protector and the lockscrews.

- 9. Remove the running tool from the bowl protector, by rotating the drill pipe clockwise two turns while lifting straight up.
- 10. Drill out and prepare to run the casing string per the drilling supervisor's instruction.

Retrieving the Bowl Protector after Drilling

- 1. Make-up the retrieval tool to the drill pipe, with Acme threads down.
- 2. Slowly lower the retrieval tool through the BOP Stack into the Bowl Protector.
- Rotate the retrieval Tool counterclockwise, two turns, to engage with bowl protector Acme threads.

4. Fully retract both lockscrews on the WFT-SB casing spool, and retrieve the bowl protector.

Ensure that all lockscrews in both the upper flange (casing spool) and lower flange (casing head) of the wellhead Assembly are fully retracted from well bore.

5. Remove the bowl protector and the running and retrieval tool from the drill floor.

Hanging off the Intermediate Casing

1. Run the intermediate casing as required and space out appropriately for the mandrel casing hanger.

If the intermediate casing becomes stuck and the mandrel casing hanger cannot be landed, refer to STAGE 4B.

- 2. Examine the WFT-SBD-SN Mandrel Casing Hanger. Verify the following:
 - Bore drift is correct size, clean and free of debris
 - All threads are clean and undamaged.
 - Flow-By flutes are clear and unobstructed.
 - Slick Neck seal area is clean and undamaged.
- 3. Examine the Mandrel Casing Hanger Running Tool. Verify the following:
 - Threads are clean and in good condition.
 - O-ring seals are clean and undamaged.
- 4. Thread the mandrel hanger onto the last joint of casing to be run. Torque the connection thread to manufacturer's optimum "make-up" torque value.
- Make up a landing joint to the top of the running tool. Torque the connection to thread manufacturer's maximum "make-up" torque valve.

If Steps 4 and 5 were performed prior to being shipped to location, the hanger running tool should be backed off and made back up to ensure it will back off freely.

•		Prepared By:	Reviewed By:	Approved By:	SM-13-1
	Field Service	How Robert an	Brad Franks	Manual Zaragoza	Rev WIP
	Marion Robertson	Brad Franks	Manual Zaragoza	Dogo 7 of 24	
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	Page / of 24

6. Liberally lubricate the outer diameter of the hanger neck and inner diameter of the running tool O-ring seals with a light oil or grease.

Do NOT use pipe dope or other metal based compounds. This will cause galling.

7. Maintaining a neutral weight, rotate the hanger running tool with chain tongs, first clockwise until a thread "jump" can be felt, then counterclockwise, approximately eight turns, to a positive stop, and then back off (clockwise) one guarter (1/4) turn.

Do NOT torque the running tool to the casing hanger connection. Do NOT back off more than one quarter (1/4) turn.

- 8. Remove the flush fitting hex head pipe plug from the outer diameter of the running tool and attach a test pump.
- 9. Apply hydraulic test pressure to 5,000 psi and hold for 15 minutes or as required by the drilling supervisor.
- 10. Upon completion of a successful test, bleed off test pressure through the test pump and remove the pump. Replace the pipe plug.
- 11. Locate indicator groove machined in outer diameter of Running Tool, coat with white paint.

- 12. Verify that all lockscrews in the WFT-SB casing head/casing spool assembly are fully retracted.
- 13. Slowly and carefully lower the mandrel hanger through the BOP stack, and land the hanger onto the casing head load shoulder.
- 14. Slack off weight on the casing.
- 15. Check that the well is stable and no pressure buildup or mud flow is occurring.

**		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford Manual	Hose Roberton	Brad Franks	Manual Zaragoza	Rev WIP	
	manual	Marion Robertson	Brad Franks	Manual Zaragoza	Base 8 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	Fage 8 01 24

- 16. Drain the BOP stack through the casing head side outlet valves.
- 17. Remove the pipe plug from the casing head flange port marked "Inspection Port."
- Visually verify that the running tool groove is in the center of the inspection port, and that the mandrel hanger has landed properly.
- 19. Reinstall the pipe plug and tighten securely.
- 20. Place a paint mark on the landing joint level with the rig floor, and cement casing as required.

If the casing is to be reciprocated during cementing, it is advisable to pick up the mandrel hanger a minimum of eight feet above the landing point. Place a mark on the landing joint, level with the rig floor, and then reciprocate above that point. If at any time resistance is felt, land the mandrel casing hanger immediately.

21. Retrieve the hanger running tool and landing joint by rotating landing joint clockwise (to the right), fourteen full turns.

Hanging off Intermediate Casing – Contingency Completion

The following procedure should ONLY be followed if the intermediate casing should become stuck in the hole. If the casing did NOT get stuck and is successfully hung off with the mandrel casing hanger, skip this stage.

- 1. Cement the intermediate casing in accordance with the program, taking returns through the flow-by flutes of the mandrel casing hanger as required.
- 2. Drain the casing head bowl through the side outlet.
- 3. Separate the WFT-SB casing spool from the casing head.
- 4. Pull up on WFT-SB casing spool and suspend it above casing head, high enough to install a WFT-21 Slip Type Casing Hanger.
- 5. Wash out as required.
- 6. Examine the WFT-21 slip type casing hanger. Verify the following:
 - Hanger is correct size, clean and undamaged.
 - Slip segments are sharp and in proper position.
 - All screws are in place.
- 7. Remove the latch screw to open the slip type hanger.
- 8. Place two boards on the casing head flange, against the casing, to support the hanger.
- 9. Wrap the hanger around the casing and replace the latch screw.
- 10. Prepare to lower the hanger into the casing head bowl.
- 11. Grease the WFT-21 slip type casing hanger body and remove the slip retaining cap screws.
- 12. Remove the boards and allow the hanger to slide down into the casing head.

₩		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Moothorford	Weatherford Manual	Marion Roberton	Brad Franks	Manual Zaragoza	Rev WIP
vvealneriuru		Marion Robertson	Brad Franks	Manual Zaragoza	Bage 9 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	Page 50124

 Once the hanger has landed securely on the casing head bowl load shoulder, pull tension on the casing to the desired hanging weight, and then slack off.

A sharp decrease on weight indicator will signify that the hanger has taken weight. If this does not occur, pull tension again and slack once more.

- 14. Rough cut the casing approximately eight inches, or more, above the top of the casing head flange. Remove the excess casing.
- 15. Final cut the casing at 2 1/2" +/- 1/8" above casing head flange.
- 16. Bevel the casing outer diameter (1/4" x 30 degrees) and inner diameter (1/8" x 30 degrees).
- 17. Remove and discard the used gasket ring from the casing head.
- Clean the mating ring grooves on the WFT-SB casing spool and casing head. Lightly wipe with oil or grease.

Excessive oil or grease will prevent a positive seal from forming.

- 19. Install a new appropriately sized ring gasket into the casing head groove.
- 20. Loosely reconnect or make up the WFT-SB casing spool to the casing head.

The casing spool to casing head connection will be fully tightened after the pack-off bushing is run and proper setting is verified.

Installation of the Pack-Off Bushing and Energizing the P-Seals

WFT-SB Pack-Off Bushing Installation

Installation procedure is identical for both Standard and Emergency WFT-SB Pack-Off Bushings.

- 1. Determine which pack-off bushing to use:
 - If casing has been run normally and is hung off with a mandrel casing hanger, use a standard packoff bushing.
- 2. Examine the appropriate pack-off bushing. Verify the following:
 - All elastomer seals are in place and undamaged.
 - Bore, ports and alignment lugs are clean and in good condition.
 - Coat the lockscrew relief groove with white paint.
- Liberally lubricate the inner diameter of the double P-seal grooves and outer diameter of dovetail seals with a light oil or grease.

**	Field Service Manual	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weetherford		Masion Roberton	Brad Franks	Manual Zaragoza	Rev WIP
weatherint		Marion Robertson	Brad Franks	Manual Zaragoza	Page 10 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	

- 4. Examine the pack-off bushing running tool. Verify the following:
 - All elastomer seals are properly installed, clean and undamaged
 - Threads are clean, undamaged and free of debris
 - Bore and ports are clean and unobstructed.
- 5. Make-up a landing joint to the running tool and rack back assembly.
- 6. Run two or three stands of heavy weight drill pipe or collars in the hole and set floor slips.

Use heavy weight drill pipe or drill collars. Weight required to push Pack-Off Bushing into Casing Head, over Mandrel Hanger slick neck, is approximately 14,000 lbs.

When lowering the drill pipe into the well, extreme caution must be taken to not damage the top of the mandrel hanger with the end of the drill pipe. It is recommended that the drill pipe be centralized to the hanger inner diameter, as closely as possible, when entering the hanger.

- 7. Carefully lower the bushing over the drill pipe and set it on top of floor slips.
- Make up the landing joint/running tool assembly to the drill pipe suspended in floor slips.
- Carefully pick up the pack-off bushing, thread the bushing into the running tool, then rotate the bushing approximately two turns counterclockwise (to the left), coming to a positive stop.

 Lower the assembly through the BOP Stack and the WFT-SB spool assembly until the pack-off bushing lands on the casing hanger.

- 11. Verify, through inspection port that the pack-off bushing has landed properly after:
 - ensuring well is stable and no pressure buildup or mud flow is occurring.
 - drain BOP Stack through Casing Head side outlet valves.
 - remove Pipe Plug (1"-NPT) from Casing Head flange port marked "Inspection Port".
 - Check, to ensure, bottom of Lockscrew relief groove (painted white) on Support Bushing is at bottom of inspection port.
 - Reinstall Pipe Plug and tighten securely.
- 12. Fully run in all Casing Head Lockscrews (lower flange), in an alternating cross pattern.
- 13. Using two chain tongs, 180 apart, rotate Landing Joint/Running Tool approximately 2 turns clockwise (to the

· · ·	Field Service	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Moothorford		Marian Robertson	Brad Franks	Manual Zaragoza	Rev WIP
vvcauleriuru		Marion Robertson	Brad Franks	Manual Zaragoza	Page 11 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

right), coming to a stop and carefully lift tool to Drill Floor, set aside.

NOTE

If the Contingency Pack-Off Bushing is being installed, it is now necessary to make up the Speed Head Casing Head/Casing Spool connection. Tighten all studs in an alternating cross pattern until the flange bolting is fully made up.

Energizing the P-Seals

- Locate the two lower injection fittings ("INJ"), located 180 degrees apart on the casing head. Remove the dust cap from one fitting and remove the second fitting entirely.
- 2. Attach a bleeder tool to the injection fitting without the dust cap, in the casing head. Open the bleeder tool.
- Attach a plastic injection tool to the open port and inject plastic packing into the port until a continuous stream flows from the bleeder tool. Close the bleeder tool.
- 4. Remove the injection tool. Reinstall the injection fitting into the open port and remove the dust cap. Reattach the injection tool.
- 5. Continue injecting plastic packing to 5,000 psi. or to 80% of casing collapse pressure, whichever is less.

The strength of a mandrel casing hanger slick neck is equivalent to P110 Grade casing with the same weight as run in the casing string.

- 6. Hold and monitor pressure for 15 minutes or as required by the drilling supervisor.
- If pressure drops, the plastic packing has not filled the seal area completely. Open the bleeder tool, bleed off the pressure and repeat Steps 5 and 6, until pressure is stabilized.
- 8. Remove the plastic injection tool and bleeder tool. Reinstall the dust caps on both injection fittings.
- 9. Repeat Steps 1 thru 8 to pack off and energize the upper P-Seal.

*	Field Service Manual	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weetherford		Hosion Roberton	Brad Franks	Manual Zaragoza	Rev WIP
vvealueriuru		Marion Robertson	Brad Franks	Manual Zaragoza	Page 12 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	

- 10. Locate the "SEAL TEST" fitting, slightly below and 90 degrees from the injection fittings. Remove the dust cap from this fitting.
- 11. Attach a test pump to the fitting.
- 12. Pump clean test fluid between the P-Seals until a test pressure of 5,000 psi or 80% of casing collapse pressure is attained, whichever is lower.

Do NOT exceed 80% of casing collapse pressure when a slip type casing hanger and contingency pack-off bushing are utilized.

- 13. Hold test pressure for **15 minutes or** as required by the drilling supervisor.
- 14. If pressure drops, a leak has developed. Take the appropriate action per the following table:

Leak Location	Cause	Action
Into the bore of the casing head	Upper P- seal leaking	Bleed off pressure and re-inject plastic packing into leaking upper P- seal port.
Around the casing	Lower P- Seal leaking	Bleed off pressure and re-inject plastic packing into lower P-seal port.

- 15. Repeat Steps 12 thru 14 until a satisfactory test is achieved.
- 16. Once a satisfactory test is achieved, carefully bleed off pressure and remove Test Pump.
- 17. Attach the bleeder tool to the test port fitting and open the tool to vent any remaining trapped pressure.

Always direct the bleeder tool port away from people and property.

18. Remove the bleeder tool and reinstall dust cap in Test Port Fitting.

•		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford Manual	Marion Roberton	Brad Franks	Manual Zaragoza	Rev WIP	
	Mariaa	Marion Robertson	Brad Franks	Manual Zaragoza	Page 13 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

Retesting the BOP Stack

- 1. Examine the Test Plug/Running Tool. Verify the following:
 - Elastomer seals are intact and in good condition.
 - Drill pipe threads are clean and in good condition.

NOTE

Immediately after testing the support bushing seals and periodically during conditioning of the hole prior to running tubing, the BOP stack (flanged connections and rams) must be tested.

2. Orient the test plug with elastomer down/ACME threads up. Make up a joint of drill pipe to the test plug.

Remove the pipe plug from the weep port if pressure is to be supplied through the drill pipe.

Make sure the elastomer is down and ACME threads are up when testing.

3. Fully retract all lockscrews in the upper WFT-SB Spool Assembly.

Do NOT retract the lockscrews located in the casing head (lower flange). Doing so could allow the pack-off support bushing to rise out of position.

- 5. Lower the test plug through the BOP stack into the WFT-SB spool assembly until it lands on top of the pack-off bushing.
- 6. Open the upper WFT-SB casing spool side outlet valves. Monitor for any leakage past the test plug seal.
- 7. Close the BOP rams on the drill pipe and test to **10,000 psi** or as required by the drilling supervisor.
- 8. After a satisfactory test is achieved, release all pressure and open the rams.
- 9. Remove as much fluid from the BOP stack as possible.
- 10. Retrieve the test plug assembly slowly to avoid damage to the seal.
- 11. Close all outlet valves on the WFT-SB casing head/spool assembly.

•••	Field Service Manual	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weetherford		Marion Roberton	Brad Franks	Manual Zaragoza	Rev WIP
vvealneriuru		Marion Robertson	Brad Franks	Manual Zaragoza	Page 14 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	

4. Lubricate the test plug elastomer seal with light oil or grease.

Running and Retrieving the Short Bowl Protector

Always use a bowl protector while drilling to protect the wellhead load shoulders from damage by the drill bit or rotating drill pipe. The bowl protector must be retrieved prior to running the casing string!

Running the Bowl Protector Prior to Drilling

- 1. Examine the short bowl protector. Verify the following:
 - Bore drift is correct size, is clean, in good condition, and free of debris.
 - Threads are correct size and type.
 - Threads are clean and in good condition.
- 2. Orient the bowl protector running tool with ACME threads down.

NOTE

The running tool is the same tool used for handling the long bowl protector.

Make sure that the left hand (LH) ACME threads are down prior to engaging the bowl protector running tool into the short bowl protector.

- 3. Make-up a drill pipe joint to the running tool.
- 4. Thread the running tool into the short bowl protector, rotating two turns counterclockwise (to the left).
- 5. Verify that all upper lockscrews in the WFT-SB spool assembly are fully retracted. Slowly lower the running

tool/bowl protector assembly through the BOP stack into the WFT-SB spool assembly until it lands on top of the pack-off bushing.

Do NOT retract the lower lockscrews located in the WFT-SB casing head, as this could allow the pack-off bushing to rise out of position.

 On the upper WFT-SB spool assembly, run in two lockscrews ("snug" tight ONLY), 180 degrees apart, to hold the bowl protector in place.

Do NOT over tighten the lockscrews, as this will cause damage to both the bowl protector and lockscrews.

- 7. Remove the running tool from the bowl protector, by rotating the drill pipe clockwise two turns while lifting straight up.
- 8. Drill out and prepare to the production casing string per the drilling supervisor's instructions.

**	Field Service Manual	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford		Marion Robertson	Brad Franks	Manual Zaragoza	Rev WIP
		Marion Robertson	Brad Franks	Manual Zaragoza	Page 15 of 24
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	

Retrieval of the Short Bowl Protector After Drilling

- 1. Make up the retrieval tool to the drill pipe with ACME threads down.
- 2. Slowly lower the retrieval tool into the bowl protector.
- Rotate the retrieval tool counterclockwise, two turns, to engage with the bowl protector ACME threads.
- 4. Fully retract both lockscrews on the casing spool (upper flange), and retrieve the bowl protector.
- 5. Remove the bowl protector and retrieval tool from the drill string.

Running the Production Casing

1. Run the production casing to necessary depth and cement as required.

NOTE

There are two methods for installing WFT-22 Slip Type Casing Hangers:

- Under the BOP stack.
- Through the BOP stack.

Installation of the Slip-Type Casing Hanger Under the BOP Stack

- 1. Drain the casing head through the uppermost side outlet valve.
- 2. Lift and suspend the BOP stack above the WFT-SB spool assembly to a minimum of 18 inches.
- 3. Wash out the WFT-SB casing head/spool assembly as required.
- 4. Confirm that ONLY the lockscrews in the casing spool (upper flange) are fully retracted.

- 5. Examine the WFT-22 slip-type casing hanger. Verify the following:
 - Slip segments are clean and undamaged.
 - All screws are in place.
 - Packing element is clean and undamaged.

The packing element should not protrude past the casing hanger outer diameter. If the packing element does extend past the outer diameter, loosen the cap screws in the bottom of the hanger.

- 6. Place two boards across the casing spool face, against the casing, to support the hanger.
- 7. Disengage the spring loaded latch, open the hanger and wrap the hanger around the casing, allowing the support boards to carry weight.
- 8. Re-engage the casing hanger spring loaded latch.
- 9. Remove the slip retaining cap screws from the outer diameter of the hanger body, allowing the slip segments to settle around the casing.
- 10. Supporting the weight of the casing hanger, remove the support boards and lower the hanger into the WFT-SB casing head/spool assembly until it lands on the pack-off bushing load shoulder.

Do NOT drop the hanger; lower it carefully.

•	Field Service Manual	Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford		Maria-Roberton	Brad Franks	Manual Zaragoza	Rev WIP
		Marion Robertson	Brad Franks	Manual Zaragoza	Page 16 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24
Installation of the Slip-Type Casing Hanger through the BOP Stack

- Drain the WFT-SB casing head/spool assembly and BOP stack through the side outlet valves on the spool assembly.
- 2. Wash out the wellhead assembly until clean returns are seen.
- 3. Examine the slip type casing hanger. Verify the following:
 - slip segments are clean and undamaged
 - all screws are in place
 - Packing Element is clean and undamaged.

The packing element should not protrude past the casing hanger outer diameter. If the packing element does extend past the outer diameter, loosen the cap screws in the bottom of the hanger.

- 4. Place two boards across the rotary table, against the casing, to support the hanger.
- Disengage the spring loaded latch, open the hanger and wrap it around the casing, allowing the support boards to carry the weight.
- 6. Re-engage the casing hanger's spring loaded latch.
- 7. Measure the distance from the top flange of the WFT-SB casing spool to the drilling rig floor (RKB).
- 8. Measure out two lengths of soft-line cord (rope) to the same length as the

RKB measurement, and adding an additional 10 feet to each line.

- 9. Mark the soft line cord at the required length.
- 10. Install two eyebolts into the tapped holes in the top of the casing hanger slip segments, 180 degrees apart.
- 11. Securely tie the soft-line cord to the eyebolts.

Measuring the soft-line cord and installing the eyebolts into the hanger segments should be done offline.

**		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weetherford	Field Service Manual	Hose Roberton	Brad Franks	Manual Zaragoza	Rev WIP
weatheritru	Mariuar	Marion Robertson	Brad Franks	Manual Zaragoza	Page 17 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

- 12. Remove the slip retaining cap screws from the outer diameter of the hanger body, allowing the slip segments to settle around the casing.
- Supporting the weight of the casing hanger, remove the support boards and carefully lower the hanger through the BOP stack into the WFT-SB casing head/spool assembly, until it securely lands on the pack-off bushing load shoulder.

Do NOT drop hanger; lower it carefully.

Hanging off the Production Casing

 With the casing hanger now landed onto the pack-off bushing load shoulder, pull tension on the casing to the desired hanging weight, and then slack off.

A sharp decrease on the weight indicator will signify that the hanger has taken weight. If this does not occur, pull tension again and slack off once more.

- Rough cut casing approximately 16" above top of WFT-SB Spool top flange. Remove excess casing.
- 3. Carefully remove BOP stack, set aside.
- Final cut the casing at about 12 7/8" +/-1/8" above the face of the WFT-SB spool, which will allow room for the double studded adapter flange.
- 5. Grind the casing stub level and bevel the casing outer diameter (1/4" x 1/8") and inner diameter (1/8" x 45 degrees).

**		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weetherford	Field Service Manual	Maion Roberton	Brad Franks	Manual Zaragoza	Rev WIP
vvealneriuru	Mariuai	Marion Robertson	Brad Franks	Manual Zaragoza	Page 18 of
5-3-GL-GL-WES-00XXX	1	December 2014	December 2014	December 2014	24

Installation of the Double-Studded Adapter (DSA) Flange

- 1. Examine the double studded adapter (DSA) Flange. Verify the following:
 - Ring grooves are clean and undamaged.
 - Stud threads are clean and undamaged.
- 2. Orient the DSA flange with the 10M side down.
- Thoroughly clean the mating grooves of the DSA flange and the WFT-SB spool assembly. Wipe lightly with oil or grease.

Excessive oil or grease will prevent a positive seal from forming.

- 4. Install a new appropriately sized ring gasket into the WFT-SB spool assembly groove.
- 5. Lift, while holding level, and carefully lower the DSA over the production casing stub until it lands on the ring gasket.
- 6. Make-up the flange connection with appropriate nuts, tightening in alternate cross pattern, as required by API 6A.
- 7. Fill the void area in the DSA around the production casing with a light weight oil.
- 8. Continue filling with a light weight oil to the top of the DSA.

Do NOT allow oil to run into the ring groove. This may prevent a positive seal from forming.

₩		Prepared By:	Reviewed By:	Approved By:	SM-13-1
	Field Service	Maisen Robertson	Brad Franks	Manual Zaragoza	Rev WIP
weathertord	Mariua	Marion Robertson	Brad Franks	Manual Zaragoza	Page 19 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

Installation and Testing of the Tubing Spool Assembly

Installation of the TCM Tubing Spool Assembly

- 1. Examine the tubing spool assembly. Verify the following:
 - bore is clean and free of debris
 - ring grooves and seals are clean and undamaged
 - PE-seal assembly is properly installed, clean and undamaged.
- 2. Thoroughly clean the mating ring grooves of the WFT-TCM Tubing Spool and WFT-SB Casing Spool.
- 3. Lightly lubricate the inner diameter of the PE-seal and outer diameter of the casing stub with oil or grease.

Excessive oil or grease will prevent a positive seal from forming.

- 4. Install a new appropriately sized ring gasket into the WFT-SB casing spool assembly groove.
- 5. Orient the tubing spool assembly as required and carefully lower it over the casing stub, until it lands on the ring gasket.
- 6. Make up the flange connection with the appropriate studs and nuts, tightening in an alternating cross pattern, as required by API 6A.

Testing the Secondary Seal and Flange Connection Test

- 1. Locate the test port fitting on the OD of the tubing spool lower flange. Remove the dust cap from the fitting.
- 2. Attach a test pump to the test port fitting.

- 3. Pump clean test fluid into the void area between the flanges until a test pressure of **10,000 psi or 80% of casing collapse pressure is attained**, whichever is lower.
- 4. Hold and monitor pressure for 15 minutes or as required by the drilling supervisor.
- 5. Once a satisfactory test is achieved, carefully bleed off pressure and remove the test pump
- 6. Attach a bleeder tool to the test port fitting and open the tool to vent any remaining trapped pressure.

Always direct the bleeder tool port away from people and property.

- 7. Remove the bleeder tool and reinstall the dust cap on the test port fitting.
- 8. Install a new appropriately sized ring gasket into the tubing spool groove.

**		Prepared By:	Reviewed By:	Approved By:	SM-13-1
	Hosen Robertson	Brad Franks	Manual Zaragoza	Rev WIP	
weathertoru	Mariuar	Marion Robertson	Brad Franks	Manual Zaragoza	Page 20 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

Testing the BOP

Immediately after the make-up of the BOP Stack and periodically during drilling of hole for the next string, the BOP stack (flanged connections and rams) must be tested.

- 1. Examine the test plug. Verify that:
 - O-ring seals and plugs are properly installed, clean and undamaged.
 - All threads are clean and undamaged.
- 2. Orient the test plug with O-ring seals up and drill pipe pin connection down.
- 3. Make up a joint of drill pipe to the top of the test plug.

If pressure is to be supplied through the drill pipe, the pipe plug should be removed from the weep port.

- 4. Fully retract all lockscrews on the WFT-TCM tubing spool assembly.
- 5. Open the side outlet valves on the tubing spool.
- 6. Wipe the test plug O-ring seals with a light oil or grease.
- 7. Lower the test plug through the BOP until it lands on the tubing spool load shoulder.
- 8. Close the BOP rams on the drill pipe and test to **10,000 psi maximum.**
- 9. Monitor the open outlets for signs of leakage past the test plug.

- 10. Once a satisfactory test is achieved, release pressure and open the rams.
- 11. Close the side outlet valves.
- 12. Remove as much fluid from the BOP stack as possible.
- 13. Slowly retrieve the test plug, avoiding damage to the seals.
- 14. Repeat this procedure, as required, during drilling or conditioning of the hole.

**		Prepared By:	Reviewed By:	Approved By:	SM-13-1
	Marian Roberton	Brad Franks	Manual Zaragoza	Rev WIP	
Weallieling		Marion Robertson	Brad Franks	Manual Zaragoza	Page 21 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

Hanging off the Production Tubing String

- 1. Run the production tubing and space out appropriately for the tubing hanger.
- 2. Examine the TC1AEN Tubing Hanger. Verify the following;
 - Packing element is clean and undamaged.
 - S-seals are properly installed.
 - S-seals are clean and undamaged.
 - All threads are clean and undamaged.
- 3. Make-up a short handling joint to the top of the tubing hanger.
- 4. Pick up the tubing hanger and make it up to the tubing string, tightening the connection to the thread manufacturer's recommended optimum torque value.
- 5. Remove the short handling joint from the top of the hanger. Make up the landing joint to the top of the tubing hanger, tightening the connection to the thread manufacturer's recommended minimum torque values.
- 6. Ensure that all tubing spool lockscrews are fully retracted from the bore and open side outlet valves. Drain the BOP stack.

The side outlet valves should remain open while landing the tubing hanger.

- 7. Calculate the distance from the tubing spool load shoulder to the rig floor. Measure from the face of the tubing spool.
- 8. Carefully lower the tubing hanger into the well, tallying the tubing every five feet, until the tubing hanger lands securely on the tubing spool load shoulder.
- 9. Run in all tubing spool lockscrews, in an alternating cross pattern, to 300 ft-lbs, in 75 ft-lb increments.
- 10. Remove the landing joint from the tubing hanger, and set it aside.

•••		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weetherford	Field Service	Masion Roberton	Brad Franks	Manual Zaragoza	Rev WIP
vvealmeriuru	mariaa	Marion Robertson	Brad Franks	Manual Zaragoza	Page 22 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

- Install the Type H Back Pressure Valve, carefully lowering the BPV through the BOP stack into the tubing hanger. Rotate the BPV counterclockwise (to the left) until it bottoms out in the tubing hanger BPV prep. Continue rotating counterclockwise, approximately 7 turns, to retrieve the running tool.
- 12. With the well safe and under control, the BOP stack may be removed.

Installation and Testing of the Production Tree

Installation

- 1. Examine the production tree assembly. Verify the following;
 - Bore is clean and free of debris.
 - All valves are in the fully open position.
 - All threads and seal areas are clean and undamaged.
 - All fittings, nuts and handwheels are intact and undamaged.
- 2. Thoroughly clean all exposed portions of the tubing hanger, tubing head adapter flange and bottom prep of the tubing head adapter.
- 3. Thoroughly clean mating ring grooves of the tubing head adapter flange and WFT-TCM tubing spool.
- Lightly lubricate the tubing hanger neck outer diameter and tubing head adapter flange bottom prep with oil or grease.

Excessive oil or grease will prevent a positive seal from forming.

5. Install a new appropriately sized ring gasket into the WFT-TCM tubing spool groove.

6. Fill the void area around the hanger with hydraulic fluid, to the top of the tubing spool assembly.

Do NOT overfill the void area, allowing oil to run into the ring groove. This may prevent a positive seal from forming.

₩		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weatherford	Field Service Manual	Marian Robertson	Brad Franks	Manual Zaragoza	Rev WIP
vveauneriuru	Manual	Marion Robertson	Brad Franks	Manual Zaragoza	Page 23 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

7. Align and level the production tree above the tubing hanger and carefully lower it over the tubing hanger neck, landing it on the ring gasket.

Do NOT damage the hanger neck seals, as this will impair their sealing ability.

8. Make up the connection using the appropriate studs and nuts, and tightening in an alternating cross pattern, as required by API 6A.

Testing the Production Tree Connection

- 1. Locate the test port fitting on the outer diameter of the tubing head adapter flange. Remove the dust cap from the fitting.
- 2. Attach a test pump to test port fitting, and open the pump.
- 3. Pump clean test fluid into void area between flanges, test to 10,000 psi maximum.
- 4. Hold and monitor pressure for 15 minutes or as required by the production supervisor.
- 5. Once a satisfactory test is achieved, carefully bleed off test pressure and remove the test pump.
- 6. Attach a bleeder tool to the test port fitting, and open the tool to vent any remaining trapped pressure.

Always direct the bleeder tool away from people and property.

7. Remove the bleeder tool and reinstall the dust cap on the test port fitting.

- 8. Remove the type 'H' back pressure valve (BPV) through the production tree.
- 9. Ensure that the well is safe and secure by closing all gate valves.

**		Prepared By:	Reviewed By:	Approved By:	SM-13-1
Weetherford	Field Service Manual	Maion Roberton	Brad Franks	Manual Zaragoza	Rev WIP
vyealneriuru	Manual	Marion Robertson	Brad Franks	Manual Zaragoza	Page 24 of
5-3-GL-GL-WES-00XXX		December 2014	December 2014	December 2014	24

ACOE Permit Number(s):

New road travel width: 15

New road access erosion control: Road construction requirements and regular maintenance would alleviate potential impacts to the access road from water erosion damage. **New road access plan or profile prepared?** NO

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Well Name: MESA B 8115 FED COM

Well Number: 16H

Turnout? N

Access surfacing type: OTHER

Access topsoil source: BOTH

Access surfacing type description: Native Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description: Material will be obtained from the closest existing caliche pit as designated by the BLM.

Onsite topsoil removal process: The top 6 inches of topsoil is pushed off and stockpiled along the side of the location. An approximate 160' X 160' area is used within the proposed well site to remove caliche. Subsoil is removed and stockpiled within the pad site to build the location and road. Then subsoil is pushed back in the hole and caliche is spread accordingly across proposed access road.

Access other construction information:

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Proposed access road will be crowned and ditched and constructed of 6 inch rolled and compacted caliche. Water will be diverted where necessary to avoid ponding, maintain good drainage, and to be consistent with local drainage patterns.

Road Drainage Control Structures (DCS) description: Any ditches will be at 3:1 slope and 3 feet wide.

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

1137_1_Mile_Radius_20191119142311.pdf

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: If well is productive, we will use the existing well pad for the tank battery and all necessary production facilities.

Production Facilities map:

Production_Facility_Layout_20191119142334.pdf

Well Name: MESA B 8115 FED COM

Well Number: 16H

Section 5 - Location a	nd Types of Water Su	
Water Source Tab		
Water source type: OTHER		
Describe type: null		
Water source use type:	SURFACE CASING	
	STIMULATION	
	DUST CONTROL	
	INTERMEDIATE/PRODUC	ΓΙΟΝ
Source latitude: 32.066757		Source longitude: -103.623
Source datum: NAD83		
Water source permit type:	PRIVATE CONTRACT	
Water source transport method:	TRUCKING	
Source land ownership: PRIVATE		
Source transportation land owner	ship: PRIVATE	
Water source volume (barrels): 10	00000	Source volume (acre-feet): 12.88931
Source volume (gal): 4200000		
Water source and transportation ma MESA_B_8115_FED_COM_14H_17H Water source comments:	p: _WATER_TRANSPORT_MAI	P_Revised_20191119142400.pdf
New water well? NO		
New Water Well I	nfo	
Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		
Est. depth to top of aquifer(ft):	Est thicknes	s of aquifer:
Aquifer comments:		
Aquifer documentation:		
Well depth (ft):	Well casing ty	be:
Well casing outside diameter (in.):	Well casing in	side diameter (in.):

Operator Name: BTA OIL PRODUCERS LLC Well Name: MESA B 8115 FED COM	Well Number: 16H	
New water well casing?	Used casing source:	
Drilling method:	Drill material:	
Grout material:	Grout depth:	
Casing length (ft.):	Casing top depth (ft.):	
Well Production type:	Completion Method:	
Water well additional information:		
State appropriation permit:		
Additional information attachment:		

Section 6 - Construction Materials

Using any construction materials: YES

Construction Materials description: Caliche used for construction of the drilling pad and access road will be obtained from the closest existing caliche pit as approved by the BLM or from prevailing deposits found under the location. If there is not sufficient material available, caliche will be purchased from the nearest caliche pit located in Section 23 T25S R33E Lea County, NM. Alternative location if original location closes will be located in Sec 3 T26S R33E Lea County, NM. **Construction Materials source location attachment:**

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drilling fluids and cuttings.

Amount of waste: 4164 barrels

Waste disposal frequency : One Time Only

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY Disposal type description:

Waste type: SEWAGE

Waste content description: Human waste and grey water.

Amount of waste: 1000 gallons

Waste disposal frequency : One Time Only

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY Disposal type description:

Pane 4 of 10

Well Name: MESA B 8115 FED COM

Well Number: 16H

 $(1, 1, \dots, n) = (1, \dots, n) = (1, \dots, n) = (1, \dots, n)$

Waste type: GARBAGE

Waste content description: Trash

Amount of waste: 500 pounds

Waste disposal frequency : One Time Only

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

 $(t_{ij})_{ij} \in [0, \infty)$, $(t_{ij})_{ij} \in [0,$

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Cuttings area volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? NO

Description of cuttings location

Cuttings area length (ft.) Cuttings area width (ft.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Well Name: MESA B 8115 FED COM

Well Number: 16H

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments: It is possible that a mobile home will be used at the well site during drilling operations.

Section 9 - Well Site Layout

Well Site Layout Diagram:

1135_access_road_for_Mesa_B_14H_17H_pad_20191119142512.pdf 1137_Well_Site_Plan_20191119142512.pdf Rig_Layout_20191119142525.pdf Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: MESA B 8115 FED COM

Multiple Well Pad Number: 14-17

Recontouring attachment:

Drainage/Erosion control construction: During construction proper erosion control methods will be used to control erosion, runoff, and siltation of the surrounding area.

Drainage/Erosion control reclamation: Proper erosion control methods will be used on the area to control erosion, runoff, and siltation of the surrounding area.

Well pad proposed disturbance	Well pad interim reclamation (acres):	Well pad long term disturbance
(acres): 0	4.49	(acres): 4.49
Road proposed disturbance (acres): 0	Road interim reclamation (acres): 0.26	Road long term disturbance (acres):
		0.16
Powerline proposed disturbance	Powerline interim reclamation (acres):	Powerline long term disturbance
(acres): 0	0	(acres): ()
Pipeline proposed disturbance	Pipeline interim reclamation (acres): 0	Pipeline long term disturbance
(acres): 0	Other interim reglamation (acres): ()	(acres): 0
Other proposed disturbance (acres): 0	Other Internit reclamation (acres).	Other long term disturbance (acres): 0
	Total interim reclamation: 4.75	other long term distarbance (acres).
i otal proposed disturbance: U		Total long term disturbance: 4.65

Disturbance Comments: Interim Reclamation will be at South side of well pad, 50' (see attachment under SUPO Section 9).

Reconstruction method: The areas planned for interim reclamation will then be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during interim reclamation.

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations. Topsoil will be at South side of well pad, 30' (see attachment under SUPO Section 9).

Well Name: MESA B 8115 FED COM

Well Number: 16H

Soil treatment: To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites. Existing Vegetation at the well pad: The historic climax plant community is a grassland dominated by black grama, dropseeds, and blue stems with sand sage and shinnery oak distributed evenly throughout. Current landscape displays mesquite, shinnery oak, yucca, desert sage, fourwing saltbush, snakeweed, and bunch grasses. Existing Vegetation at the well pad attachment:
Existing Vegetation Community at the road: Refer to "Existing Vegetation at the well pad"
Existing Vegetation Community at the road attachment:
Existing Vegetation Community at the pipeline: Refer to "Existing Vegetation at the well pad"
Existing Vegetation Community at the pipeline attachment:
Existing Vegetation Community at other disturbances: Refer to "Existing Vegetation at the well pad"
Existing Vegetation Community at other disturbances attachment:
Non native seed used? NO
Non native seed description:
Seedling transplant description:
Will seedlings be transplanted for this project? NO
Seedling transplant description attachment:
Will seed be harvested for use in site reclamation? NO
Seed harvest description:
Seed harvest description attachment:
Seed Management
Seed Table
Seed Summary Total pounds/Acre:
Seed Type Pounds/Acre
Seed reclamation attachment:
Operator Contact/Responsible Official Contact Info

Operator Name:	BTA OIL	PRODUCERS LLC
----------------	---------	---------------

Well Name: MESA B 8115 FED COM

Well Number: 16H

First Name: Chad

Phone: (432)682-3753

Last Name: Smith

Email: csmith@btaoil.com

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: No invasive species present. Standard regular maintenance to maintain a clear location and road.

Weed treatment plan attachment:

Monitoring plan description: Identify areas supporting weeds prior to construction; prevent the introduction and spread of weeds from construction equipment during construction; and contain weed seeds and propagules by preventing segregated topsoil from being spread to adjacent areas. No invasive species present. Standard regular maintenance to maintain a clear location and road.

Monitoring plan attachment:

Success standards: To maintain all disturbed areas as per Gold Book standards.

Pit closure description: N/A

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: WELL PAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

Operator Name: BTA OIL PRODUCERS LLC						
Well Name: MESA B 8115 FED COM	Well Number: 16H					
USFS Forest/Grassland:	USFS Ranger District:					
Fee Owner: Harvey Williams	Fee Owner Address:					
Phone: (325)653-8211	Email:					
Surface use plan certification: NO						
Surface use plan certification document:						
Surface access agreement or bond: Agreemen	t					
Surface Access Agreement Need description: BTA will have a surface use agreement in place, before operations begin. Surface Access Bond BLM or Forest Service:						
BLM Surface Access Bond number:						
USFS Surface access bond number:						
Disturbance type: NEW ACCESS ROAD						
Describe:						
Surface Owner: BUREAU OF LAND MANAGEMENT						
Other surface owner description:						
BIA Local Office:						
BOR Local Office:						
COE Local Office:						
DOD Local Office:						
NPS Local Office:						
State Local Office:						
Military Local Office:						
USFWS Local Office:						
Other Local Office:						
USFS Region:						
USFS Forest/Grassland:	USFS Ranger District:					

Operator Name: BTA OIL PRODUCERS LLC
Well Name: MESA B 8115 FED COM

Well Number: 16H

Use APD as ROW?

Section 12 - Other Information

Right of Way needed? NO

ROW Type(s):

ROW Applications

SUPO Additional Information:

Use a previously conducted onsite? YES

 $(t_{i})_{i} = a_{i} + (t_{i})_{i} + (t_{i}$

Other SUPO Attachment

VICINITY, TOPOGRAPHIC AND ACCESS ROAD MAP

VICINITY, TOPOGRAPHIC AND ACCESS ROAD MAP

DISTRICT 1 1625 N. French Dr. Phone: (373) 393-6 DISTRICT 11 811 S. First St., Art Phone: (375) 788-1 DISTRICT 111 1000 Rio Brazos R. Phone: (305) 334-6 DISTRICT 1V 1220 S. St. Francis	., Hobbs, NM 8824 5161 Fax: (575) 39 tesia, NM 88210 1283 Fax: (575) 74 oad, Aztec, NM 8 5178 Fax: (505) 33 Dr., Santa Fe, NM	40 93-0720 18-9720 7410 4-6170 1.87505	State of New Mexico Energy, Minerals & Natural Resources Departmen OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505						Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office			
Phone: (505) 476-3	A PI Number	6-3462 WEL	L LOCA	ATION A	AND AC	CREAG	E DEDIC	ATION I	PLAT]	
	Arrindhoer			10010000	:		SANDE	RS TAN	K ; UPPER WOLFCAMP			
Proper	rty Code		•		Prope	rty Name			Well Number			
ÖGR	ID No.			IVIES	Opera	ATO FEL			Elevation			
260)297			BTA C	DIL PRO	DDUCE	RS, LLC		3300'			
					Surfac	e Location						
UL or lot No	. Section	Township	Range	Lot Idn	Feet fro	Feet from the North/South line Feet			the East	he East/West line County		
A	7	26-S	33-E		46	0	NORTH	800	E	EAST LEA		
			<u> </u>	Bottom Ho	le Location	If Differen	t From Surface		<u>a I –</u>	<u></u>		
UL or lot No	Section	Township	Range	Lot Idn	Feet fro	m the 1	SOUTH	Feet from	the East	West line	County IEA	
Dedicated Ac	cres Joint	or Infill C	Consolidation (Code Ord	der No.	,	300111	1050				
160												
NO ALLOWABL	E WILL BE ASS	IGNED TO THIS CO	OMPLETION U	NTIL ALL INTE	ERESTS HAVE	E BEEN CON	OLIDATED OR A	NON-STANDAR	RD UNIT HAS BE	EEN APPROVEI	D BY THE DIVISION	
NENE (A)	L1	NENW (C)	NWES- TB)	(Å)	- NWWW L	NEM (C)	v nwne 58-de	5-21602 (A) ¢	LEGENI O DENOTES	<u>D</u> s proposed w	ΓELL.	
SENE (H)	Larr	SENW (F)	SWNE (G)	sene (H)	SWNW (E)	SENV (P)	SWNE (G)					
01 -@5.27600 (1)	L3	NESW 1 (K)	NWSE 30-025-08401	NESE (1)	A. 259.	30 <u>2</u> 02 NESS (K)	5-28144 NWSE	 NES (1)				
SESE (D) 184930-023-028 22 5-42833	L4	SESW (N)	SWSE (0)	SESE (P) Jo	5W5W -025-08400	SESV (N)	Y SWSE (O)	SES 1 ^(P)				
130-025-4295 12-42965 REH5 HILL	5 L1 1	I NENW I (C) I Seiedo Pri	NWNE (8) ##16H	AENE (A)	NWNW (D)	30-025-44534 NEM (C) 30-025-44535 	30-02 30-02 5-44302 (B)	5-44303 VEN 1 A				
S 32E	30-	025-30662			265 33E	·		- - - ! -	CUDVE			
SENE (H	L2 	SENW (F)	SWINE (0) 	SENE (H)	SWNW (E)	30-025-0 (F) ,3294	9402 SWNE (G) n	SEN (H	SURVE I hereby certify was plotted from me or under me	that the wollvior	tion shown on this plat com slutyeys made by topan of calling is true	
12 NESE (1)		 NESW (K)	NWSE (J)	NESE (1)	NWSW (L)	 NESI (K)	V NWSE (J) 	NES	and correct for the second sec	CIOBER CIOBER y seal o Profess		
SESE (9)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SESW (N) 30-005-02127 30-0 86 30-025-4	SWSE (0) 125-42126 30-0 44888	30-02 5-42 462 <u>A</u> SESE (P) 25-4212 5 6899	SWSW (M)	SESU (N)	SWSE (030	 30-025-(A A A A A A A A A A A A A A A A A A A			
	30-025-44129 30-025-44132 - 30-025-44090					1	1		Romald	1 to: Jam	מהמוגהו	
↓ ـــــــد		2000		0	200	0 Feet	·		Gertificate Nu	imber Gary	G. Eidson 12641	
Scale: 1"=2000'								LSL	Ronal	Id J. Eidson 3239 WSC W.O.: 19.11.1137		

BTA OIL PRODUCERS, LLC WATER TRANSPORTATION MAP MESA B 8115 FED COM 14H-17H & 22H-25H WELLPAD TO MESA POND SEC 7 T26S – R33E TO SEC 1 T26S – R32E LEA COUNTY, NM

	111 1	c; 04	WEI		ITE PL.	AN	<u>133.2' (</u> ACCESS F	DF ROAD	
	/	/// <u>EL//A</u>	SU NATURAL UA.	///	-1111111	11111	// _////		
	- =	EL PASO NAT	URAL GAS BPL						
200		4-W ELEC. LĮ	INEF	F -	F	— ε ———	E E -		i !_
		3292.6'			600'	WELL PAD			3315.2'
	REGENCY FIELD' SERVICE			200'	MESA B 8115 FE ELEV. 3299.6' NAD 27 NME LAT.=32.063908° LONG.=103.6049 NAD 83 NME LAT.=32.064032° LONG.=103.6054	ED COM #16H ? N 661° W ? N 30° W			
		1	200'	#14H	200'		~ #22H	200	
600'				*06 #15H ○ #16H O #17H ○			© #23H © #24H © #24H S () #25H	600,	
341. RD.	341. RD.	 		200,					
		₩ <u>3295.0'</u>			RECLAIM ARE.			- +	3309.4
		<u>o</u>					·>		
				600	,				
i, ronald j. Eid	THE MENT		onal surveyor	No. 3239,		NOTE: 1) SEE " MAP" FOI LOCATION	TOPOGRAPHICAL R ACCESS ROAD	AND ACCES	s road And driving
DO HEREBY CER ON THE GROUND OR UNDER MY D	BEY THAT THIS BUDON WHICH REAT SUPERV	SUNTEY PLATE 239 IS BASEDE IN ISION, THAT A	AND THE ACTUA IERE PERFORMED M RESPONSIBLE	l Survey) by me For This	100 E E E		100	2	200 Feet
SURVEY; THAT TH SURVEYING IN NE TO THE BEST OF	H3, SARVEY ME W'HAAXCO: AN MY WADDRAL	TETS THE AND IN THAT OF A THE AND THE AN	UM STANDARDS TRUE AND CORRU	FOR ECT	BTA OI	Scale LPRO	e: 1 "= 100' ODUC	ERS	LLC
Ronald J. Eids	DN April	(Cidson		≻					
DATE:[0/31]	12019 PRC	VIDING SURVEYIN	IG SERVICES		MESA B 8115 FE THE NORTH L SECTION 7, TO	D COM #16H INE AND 800 WNSHIP 26 S	WELL LOCA FEET FROM OUTH, RANGE	IED 460 FI THE EAST E 33 EAST,	LINE OF N.M.P.M.,
	IOHN WE	SINCE 194	16 'ING COMPA			LEA COUNT	IY, NEW MEX		
	JOINT				N	// 0	010 0 · · · · · ·		. D

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO **Produced Water Disposal (PWD) Location: PWD surface owner:** Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: **Pit liner description:** Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment:

PWD disturbance (acres):

Well Name: MESA B 8115 FED COM

Well Number: 16H

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: BTA OIL PRODUCERS LLC	
Well Name: MESA B 8115 FED COM W	ell Number: 16H
Is the reclamation bond a rider under the BLM bond?	
Unlined pit bond number:	
Unlined pit bond amount:	
Additional bond information attachment:	
Section 4 - Injection	
Would you like to utilize Injection PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Injection PWD discharge volume (bbl/day):	
Injection well mineral owner:	
Injection well type:	
Injection well number:	Injection well name:
Assigned injection well API number?	Injection well API number:
Injection well new surface disturbance (acres):	
Minerals protection information:	
Mineral protection attachment:	
Underground Injection Control (UIC) Permit?	
UIC Permit attachment:	
Section 5 - Surface Discharge	
Would you like to utilize Surface Discharge PWD options? No	0
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Surface discharge PWD discharge volume (bbl/day):	
Surface Discharge NPDES Permit?	

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

PWD disturbance (acres):

Well Name: MESA B 8115 FED COM

Well Number: 16H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Bond Information

Federal/Indian APD: FED

BIA Bond number:

Do you have a reclamation bond? NO Is the reclamation bond a rider under the BLM bond? Is the reclamation bond BLM or Forest Service? BLM reclamation bond number: Forest Service reclamation bond number: Forest Service reclamation bond attachment: Reclamation bond number: Reclamation bond amount: Reclamation bond rider amount: Additional reclamation bond information attachment: