Form 3160-3 (June 2015)

(Continued on page 2)

### **UNITED STATES** DEPARTMENT OF THE INTERIOR **BUREAU OF LAND MANAGEMENT**

HOBBS OCD
FEB 1 0 2020 5.

FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018

\*(Instructions on page 2)

5. Lease Serial No. NMNM116574

| APPLICATION FOR PERMIT TO DRILL                                                                                                                                                                                                                                                                       | OR REENTER CEIVE                                                                   | If Indian, Allotee or Tribe Name                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 1a. Type of work:       ✓ DRILL       □ REENTI         1b. Type of Well:       ✓ Oil Well       □ Gas Well       □ Other         1c. Type of Completion:       □ Hydraulic Fracturing       ✓ Single Z                                                                                                | ER                                                                                 | 7. If Unit or CA Agreement, Name and No.  8. Lease Name and Well No.  BELL LAKE 24 FED.  16H    |
| 2. Name of Operator DEVON ENERGY PRODUCTION COMPANY LP (6/37)                                                                                                                                                                                                                                         |                                                                                    | 9. API-Well No.                                                                                 |
|                                                                                                                                                                                                                                                                                                       | Phone No. (include area code)<br>)583-3866                                         | 10/Field and Pool, of Exploratory<br>WO-025 G-09-\$263416B / UPPER WOLF                         |
| <ol> <li>Location of Well (Report location clearly and in accordance with an<br/>At surface SWSW / 197 FSL / 1151 FWL / LAT 32.196436 / I<br/>At proposed prod. zone NWNW / 20 FNL / 990 FWL / LAT 32.2</li> </ol>                                                                                    | LONG -103.633152                                                                   | 11. Sec., T. R. M. or Blk. and Survey or Area<br>SEC 24 \ T24S / R32E / NMP                     |
| 14. Distance in miles and direction from nearest town or post office*                                                                                                                                                                                                                                 |                                                                                    | 12. County or Parish LEA 13. State NM                                                           |
| location to nearest property or lease line, ft.  (Also to nearest drig. unit line, if any)  18. Distance from proposed location*                                                                                                                                                                      | 160                                                                                | BIA Bond No. in file                                                                            |
| to nearest well, drilling, completed, 490 feet applied for, on this lease, ft.                                                                                                                                                                                                                        | 00 feet / 17487 feet FED: NM                                                       | B000801                                                                                         |
| 3576 feet 09/3(                                                                                                                                                                                                                                                                                       | Approximate date work will start* 0/2020 Attachments                               | 23. Estimated duration<br>45 days                                                               |
| The following, completed in accordance with the requirements of Onshi (as applicable)  1. Well plat certified by a registered surveyor.  2. A Drilling Plan.  3. A Surface Use Plan (if the location is on National Forest System Land SUPO must be filed with the appropriate Forest Service Office) | 4. Bond to cover the operations ltem 20 above). ds, the 5. Operator certification. | lydraulic Fracturing rule per 43 CFR 3162.3-3 s unless covered by an existing bond on file (see |
| 25. Signature (Electronic Submission)                                                                                                                                                                                                                                                                 | Name (Printed/Typed) Rebecca Deal / Ph: (405)228-8429                              | Date 07/30/2019                                                                                 |
| Title Regulatory Compliance Professional                                                                                                                                                                                                                                                              | N (D : 177   1)                                                                    | Date                                                                                            |
| Approved by (Signature) (Electronic Submission)                                                                                                                                                                                                                                                       | Name (Printed/Typed) Cody Layton / Ph: (575)234-5959                               | 01/29/2020                                                                                      |
| Title Assistant,Field Manager Lands & Minerals                                                                                                                                                                                                                                                        | Office<br>CARLSBAD                                                                 |                                                                                                 |
| Application approval does not warrant or certify that the applicant holds applicant to conduct operations thereon.  Conditions of approval, if any, are attached.  Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it                                                             |                                                                                    | ·                                                                                               |
| of the United States any false, fictitious or fraudulent statements or repr                                                                                                                                                                                                                           |                                                                                    | urisdiction.                                                                                    |

pproval Date: 01/29/2020

# PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Devon Energy Production Company LP

**LEASE NO.: | NMNM116574** 

WELL NAME & NO.: | Bell Lake 24 Fed 16H SURFACE HOLE FOOTAGE: | 197'/S & 1151'/W

**BOTTOM HOLE FOOTAGE** | 20'N & 990'/W

LOCATION: | Section 24, T.24 S., R.32 E., NMP

COUNTY: Lea County, New Mexico

### COA

| H2S                  | <b>€</b> Yes                             | C.No                    |                  |
|----------------------|------------------------------------------|-------------------------|------------------|
| Potash               | None     None     None     None     None | ○ Secretary             | <b>C</b> R-111-P |
| Cave/Karst Potential | € Low                                    | ← Medium                | ← High           |
| Cave/Karst Potential | Critical                                 |                         |                  |
| Variance             | None                                     | Flex Hose               | <b>○</b> Other   |
| Wellhead             | Conventional                             | ← Multibowl             | <b>☞</b> Both    |
| Other                | √4 String Area                           | Capitan Reef            | □WIPP            |
| Other                | Fluid Filled                             | <b>☞</b> Cement Squeeze | ☐ Pilot Hole     |
| Special Requirements | ☐ Water Disposal                         | ГСОМ                    | ☐ Unit           |

### A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Delaware Mountain Group**. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

### **B.** CASING

### **Primary Casing Design:**

- 1. The 13-3/8 inch surface casing shall be set at approximately 1201 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
  - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after

Page 1 of 10

**Approval Date: 01/29/2020** 

- completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:

### **Option 1 (Single Stage):**

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Cement excess is less than 25%, more cement might be required.

### Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
  - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
     Cement excess is less than 25%, more cement might be required.

Operator has proposed to pump down 13-3/8" X 7-5/8" annulus. Operator must run a CBL from TD of the 7-5/8" casing to surface. Submit results to BLM.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
  - Cement should tie-back at least 200 feet into previous casing string.
     Operator shall provide method of verification.
     Cement excess is less than 25%, more cement might be required.

### **Alternate Casing Design:**

- 4. The 13-3/8 inch surface casing shall be set at approximately 1201 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
  - e. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
  - f. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
  - g. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
  - h. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

5. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

### **Option 1 (Single Stage):**

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Cement excess is less than 25%, more cement might be required.

### **Option 2:**

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- c. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- d. Second stage above DV tool:
  - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Cement excess is less than 25%, more cement might be required.

Operator has proposed to pump down 13-3/8" X 8-5/8" annulus. Operator must run a CBL from TD of the 8-5/8" casing to surface. Submit results to BLM.

Operator is approved to drill 10.625" hole instead of 9.875" for intermediate 1 with a BTC connection.

Production casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 6. The minimum required fill of cement behind the 5-1/2 inch production casing is:
  - Cement should tie-back at least 200 feet into previous casing string.
     Operator shall provide method of verification.
     Cement excess is less than 25%, more cement might be required.

### C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

### **Option 1:**

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be **5000 (5M)** psi.

### Option 2:

- 1. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
  - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
  - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.

- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

### **GENERAL REQUIREMENTS**

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
  - Eddy County
     Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
  - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
  - b. When the operator proposes to set surface casing with Spudder Rig
    - Notify the BLM when moving in and removing the Spudder Rig.
    - Notify the BLM when moving in the 2<sup>nd</sup> Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
    - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

Page 6 of 10

**Approval Date: 01/29/2020** 

### A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
  - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
  - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
  - c. Manufacturer representative shall install the test plug for the initial BOP test.
  - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
  - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
  - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not

Page 8 of 10

**Approval Date: 01/29/2020** 

- hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

### C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

### D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 10 of 10

**Approval Date: 01/29/2020** 



U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

# Operator Certification Data Report 02/06/2020

Zip: 73102

Zip: 73102

### **Operator Certification**

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Rebecca Deal Signed on: 07/30/2019

Title: Regulatory Compliance Professional

Street Address: 333 West Sheridan Avenue

City: Oklahoma City State: OK

Phone: (405)228-8429

Email address: Rebecca.Deal@dvn.com

### **Field Representative**

Representative Name:

Street Address: 333 WEST SHERIDAN AVENUE

City: Oklahoma City State: OK

Phone: (405)552-6556

Email address: BLAKE.RICHARDSON@DVN.COM



### U.S. Department of the Interior BUREAU OF LAND MANAGEMENT



APD ID: 10400044961 Submission Date: 07/30/2019

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: BELL LAKE 24 FED

Well Number: 16H

Well Type: OIL WELL Well Work Type: Drill

**Show Final Text** 

### Section 1 - General

APD ID:

10400044961

Tie to previous NOS?

Submission Date: 07/30/2019

**BLM Office: CARLSBAD** 

User: Rebecca Deal

Title: Regulatory Compliance

Professional Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM116574

Federal/Indian APD: FED

Lease Acres: 680

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? Y

Permitting Agent? NO

APD Operator: DEVON ENERGY PRODUCTION COMPANY LP

Operator letter of designation:

### Operator Info

Operator Organization Name: DEVON ENERGY PRODUCTION COMPANY LP

Operator Address: 333 West Sheridan Avenue

Operator PO Box:

Zip: 73102

Operator City: Oklahoma City

State: OK

Operator Phone: (800)583-3866

Operator Internet Address:

### **Section 2 - Well Information**

Well in Master Development Plan? NO

Master Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: BELL LAKE 24 FED

Well Number: 16H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: WC-025 G-09

Pool Name: UPPER

S263416B

WOLFCAMP

Well Name: BELL LAKE 24 FED

Well Number: 16H

Is the proposed well in an area containing other mineral resources? NATURAL GAS,OIL

Is the proposed well in a Helium production area? N

Use Existing Well Pad? N

New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name: Bell

Number: 3

Well Class: HORIZONTAL

Lake 24 Wellpad Number of Legs: 1

Well Work Type: Drill Well Type: OIL WELL

Describe Well Type:

Well sub-Type: INFILL

Describe sub-type:
Distance to town:

Distance to nearest well: 490 FT

Distance to lease line: 197 FT

Reservoir well spacing assigned acres Measurement: 160 Acres

Well plat: BELL\_LAKE\_24\_FED\_016H\_C\_102\_20190730110534.pdf

Well work start Date: 09/30/2020 Duration: 45 DAYS

### **Section 3 - Well Location Table**

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number:

Reference Datum: GROUND LEVEL

| Wellbore  | NS-Foot | NS Indicator | EW-Foot | EW Indicator | Twsp | Range | Section | Aliquot/Lot/Tract | Latitude | Longitude      | County | State | Meridian   | Lease Type | Lease Number | Elevation | MD  | TVD              | Will this well produce from this lease? |
|-----------|---------|--------------|---------|--------------|------|-------|---------|-------------------|----------|----------------|--------|-------|------------|------------|--------------|-----------|-----|------------------|-----------------------------------------|
| SHL       | 197     | FSL          | 115     | FW           | 248  | 32E   | 24      | Aliquot           | 32.19643 | -              | LEA    | NEW   | NEW        | F          | NMNM         | 357       | 0   | 0                | Υ                                       |
| Leg<br>#1 |         |              | 1       | L            |      |       |         | SWS<br>W          | 6        | 103.6331<br>52 |        | CO    | MEXI<br>CO |            | 116574       | 6         |     |                  |                                         |
| КОР       | 50      | FSL          | 990     | FW           | 248  | 32E   | 24      | Aliquot           | 32.19603 | -              | LEA    | NEW   | NEW        | F          | NMNM         | -         | 119 | 119              | Y                                       |
| Leg       |         |              |         | L            |      |       |         | sws               | 5        | 103.6336       |        | MEXI  | I          |            | 116574       | 835       | 30  | 27               |                                         |
| #1        |         |              | _       |              |      |       |         | W                 |          | 76             |        | СО    | СО         |            |              | 1         |     |                  |                                         |
| PPP       | 100     | FSL          | 990     | FW           | 248  | 32E   | 24      | Aliquot           | 32.19616 | -              | LEA    | NEW   |            | F          | NMNM         | -         | 121 | · <del>-</del> · | Υ                                       |
| Leg       |         |              |         | L            |      |       |         | SWS               | 9        | 103.6336       |        | MEXI  | 1          |            | 116574       | 858       | 71  | 61               |                                         |
| #1-1      |         |              |         |              |      |       |         | W                 |          | 73             |        | СО    | СО         |            |              | 5         |     |                  |                                         |

Well Name: BELL LAKE 24 FED

Well Number: 16H

| Wellbore          | NS-Foot | NS Indicator | EW-Foot | EW Indicator | Twsp | Range | Section | Aliquot/Lot/Tract   | Latitude       | Longitude           | County | State             | Meridian          | Lease Type | Lease Number   | Elevation     | MD        | ΟVT       | Will this well produce from this lease? |
|-------------------|---------|--------------|---------|--------------|------|-------|---------|---------------------|----------------|---------------------|--------|-------------------|-------------------|------------|----------------|---------------|-----------|-----------|-----------------------------------------|
| EXIT<br>Leg<br>#1 | 100     | FNL          | 990     | FW<br>L      | 24S  | 32E   | 24      | Aliquot<br>NWN<br>W | 32.21019<br>29 | -<br>103.6336<br>41 | LEA    | NEW<br>MEXI<br>CO | NEW<br>MEXI<br>CO | 1          | NMNM<br>116574 | -<br>892<br>4 | 174<br>07 | 125<br>00 | Y                                       |
| BHL<br>Leg<br>#1  | 20      | FNL          | 990     | FW<br>L      | 24S  | 32E   | 24      | Aliquot<br>NWN<br>W | 32.21041<br>2  | -<br>103.6336<br>41 | LEA    | NEW<br>MEXI<br>CO | NEW<br>MEXI<br>CO | F          | NMNM<br>116574 | -<br>892<br>4 | 174<br>87 | 125<br>00 | Y                                       |



### U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

### Drilling Plan Data Report

02/06/2020

APD ID: 10400044961

Submission Date: 07/30/2019

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: BELL LAKE 24 FED

Well Number: 16H

**Show Final Text** 

Well Type: OIL WELL

Well Work Type: Drill

### **Section 1 - Geologic Formations**

| Formation ID | Formation Name   | Elevation | True Vertical<br>Depth | Measured<br>Depth | Lithologies     | Mineral Resources | Producing Formation |
|--------------|------------------|-----------|------------------------|-------------------|-----------------|-------------------|---------------------|
| 505306       |                  | 3576      | Ó                      | Ó                 | OTHER : SURFACE | NONE              | N                   |
| 505307       | RUSTLER          | 2400      | 1176                   | 1176              | ANHYDRITE       | NONE              | N                   |
| 505308       | SALADO           | 2076      | 1500                   | 1500              | SALT            | NONE              | N                   |
| 505309       | BASE OF SALT     | -1400     | 4976                   | 4976              | SANDSTONE       | NATURAL GAS, OIL  | N                   |
| 505310       | BELL CANYON      | -1439     | 5015                   | 5015              | SANDSTONE       | NATURAL GAS, OIL  | N                   |
| 505311       | CHERRY CANYON    | -2369     | 5945                   | 5945              | SANDSTONE       | NATURAL GAS, OIL  | N                   |
| 505312       | BRUSHY CANYON    | -3885     | 7461                   | 7461              | SANDSTONE       | NATURAL GAS, OIL  | N                   |
| 505313       | BONE SPRING LIME | -5341     | 8917                   | 8917              | LIMESTONE       | NONE              | N                   |
| 505314       | BONE SPRING 1ST  | -6448     | 10024                  | 10024             | SANDSTONE       | NATURAL GAS, OIL  | N                   |
| 505315       | BONE SPRING 2ND  | -7013     | 10589                  | 10589             | SANDSTONE       | NATURAL GAS       | N                   |
| 505316       | BONE SPRING 3RD  | -8309     | 11885                  | 11885             | SANDSTONE       | NATURAL GAS, OIL  | N                   |
| 505317       | WOLFCAMP         | -8623     | 12199                  | 12199             | SANDSTONE       | NATURAL GAS, OIL  | Y                   |

### **Section 2 - Blowout Prevention**

Pressure Rating (PSI): 10M

Rating Depth: 12500

Equipment: BOP/BOPE will be installed per Onshore Oil & Gas Order #2 requirements prior to drilling below intermediate casing, a 13-5/8" BOP/BOPE system with a minimum rating of 10M will be installed on the wellhead system. BOP/BOPE will be tested by an independent service company per Onshore Oil & Gas Order #2 requirements and MASP (Maximum Anticipated Surface Pressure) calculations. If the system is upgraded, all the components installed will be functional and tested.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP stack to the choke manifold. See attached for specs for hydrostatic test chart. Devon requests a variance to run a 5M annular on a 10M BOP system. See

Well Name: BELL LAKE 24 FED Well Number: 16H

separately attached variance request and support documents in AFMSS.

Testing Procedure: A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested. 5M annular on 10M system will be tested to 100% of rated working pressure.

### **Choke Diagram Attachment:**

10M BOPE CHK DR\_CLS\_RKL\_20190730112951.pdf

### **BOP Diagram Attachment:**

10M\_BOPE\_CHK\_DR\_CLS\_RKL\_20190730113000.pdf

Pressure Rating (PSI): 5M

Rating Depth: 10790

Equipment: BOP/BOPE will be installed per Onshore Oil & Gas Order #2 requirements prior to drilling below surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system. BOP/BOPE will be tested by an independent service company per Onshore Oil & Gas Order #2 requirements and MASP (Maximum Anticipated Surface Pressure) calculations. If the system is upgraded, all the components installed will be functional and tested. Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP stack to the choke manifold. See attached for specs for hydrostatic test chart.

Testing Procedure: A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

### **Choke Diagram Attachment:**

5M\_BOPE\_CK\_20190730113129.pdf

### **BOP Diagram Attachment:**

5M\_BOPE\_\_CK\_20190730113136.pdf

### Section 3 - Casing

| Casing ID | String Type      | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing length MD | Grade     | Weight | Joint Type          | Collapse SF | Burst SF | Joint SF Type | Joint SF | Body SF Type | Body SF |
|-----------|------------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|-----------------------------|-----------|--------|---------------------|-------------|----------|---------------|----------|--------------|---------|
| 1         | SURFACE          | 17.5      | 13.375   | NEW       | API      | N              | 0          | 1201          | 0           | 1201           | 3576        | 2375           | 1201                        | H-40      | 48     | ST&C                | 1.12<br>5   | 1        | BUOY          | 1.6      | BUOY         | 1.6     |
| _         | INTERMED<br>IATE | 9.87<br>5 | 7.625    | NEW       | API      | N              | 0          | 10790         | 0           | 10790          | 3576        | -7214          | 10790                       | P-<br>110 |        | OTHER -<br>FLUSHMAX | 1.12<br>5   | 1        | BUOY          | 1.6      | BUOY         | 1.6     |
| 3         | PRODUCTI<br>ON   | 6.75      | 5.5      | NEW       | API      | N              | 0          | 17487         | 0           | 12500          | 3576        | -8924          | 17487                       | P-<br>110 |        | OTHER -<br>VAM SG   | 1.12<br>5   | 1        | BUOY          | 1.6      | BUOY         | 1.6     |

**Casing Attachments** Casing ID: 1 String Type: SURFACE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Surf\_Csg\_Ass\_20190730113310.pdf Casing ID: 2 **String Type:**INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Int\_Csg\_Ass\_20190730113522.pdf Casing ID: 3 **String Type:**PRODUCTION **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): Prod\_Csg\_Ass\_20190730113701.pdf

Well Number: 16H

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: BELL LAKE 24 FED

**Section 4 - Cement** 

Well Name: BELL LAKE 24 FED

Well Number: 16H

| String Type | Lead/Tail | Stage Tool<br>Depth | Top MD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type | Additives      |
|-------------|-----------|---------------------|--------|-----------|--------------|-------|---------|-------|---------|-------------|----------------|
| SURFACE     | Lead      |                     | 0      | 1201      | 908          | 1.44  | 13.2    | 1307  | 50      | С           | Class C + adds |

| INTERMEDIATE | Lead | 0         | 6790      | 685 | 3.27 | 9    | 2238.<br>5 | 30 | С     | Class C + adds                                                                                                                     |
|--------------|------|-----------|-----------|-----|------|------|------------|----|-------|------------------------------------------------------------------------------------------------------------------------------------|
| INTERMEDIATE | Tail | 6790      | 1079<br>0 | 783 | 1.44 | 13.2 | 1128       | 30 | С     | Class C + adds                                                                                                                     |
| PRODUCTION   | Lead | 9930      | 1193<br>0 | 59  | 3.27 | 9    | 192.5      | 25 | TUNED | Class C + adds                                                                                                                     |
| PRODUCTION   | Tail | 1193<br>0 | 1748<br>7 | 355 | 1.44 | 13.2 | 510.6      | 25 | Н     | (50:50) Clas H Cement:<br>Poz (Fly Ash) + 0.5%<br>bwoc HALAD-344 +<br>0.4% bwoc CFR-3 +<br>0.2% BWOC HR-601 +<br>2% bwoc Bentonite |

### **Section 5 - Circulating Medium**

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring

### **Circulating Medium Table**

| Top Depth | Bottom Depth | Mud Type           | Min Weight (lbs/gal) | Max Weight (lbs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | ЬН | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics |
|-----------|--------------|--------------------|----------------------|----------------------|---------------------|-----------------------------|----|----------------|----------------|-----------------|----------------------------|
| 0         | 1201         | WATER-BASED<br>MUD | 8.5                  | 9                    |                     |                             |    | 2              |                |                 |                            |

Well Name: BELL LAKE 24 FED

Well Number: 16H

| Top Depth | Bottom Depth | Mud Type          | Min Weight (Ibs/gal) | Max Weight (lbs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | Н | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics |
|-----------|--------------|-------------------|----------------------|----------------------|---------------------|-----------------------------|---|----------------|----------------|-----------------|----------------------------|
| 1201      | 1079<br>0    | SALT<br>SATURATED | 10                   | 10.5                 |                     |                             |   | 2              |                |                 |                            |
| 1079<br>0 | 1748<br>7    | OIL-BASED<br>MUD  | 10                   | 10.5                 |                     |                             |   | 12             |                |                 |                            |

### Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Will run GRMWD from TD to from KOP. Cement bond logs will be run in vertical to determine top of cement. Stated logs run will be in the Completion Report and submitted to the BLM.

List of open and cased hole logs run in the well:

CALIPER, CEMENT BOND LOG, DIRECTIONAL SURVEY, GAMMA RAY LOG, MUD LOG/GEOLOGICAL LITHOLOGY LOG,

Coring operation description for the well:

N/A

### **Section 7 - Pressure**

Anticipated Bottom Hole Pressure: 6825

Anticipated Surface Pressure: 4075

Anticipated Bottom Hole Temperature(F): 175

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Bell\_Lake\_24\_Fed\_016H\_20190730114406.pdf

Well Name: BELL LAKE 24 FED Well Number: 16H

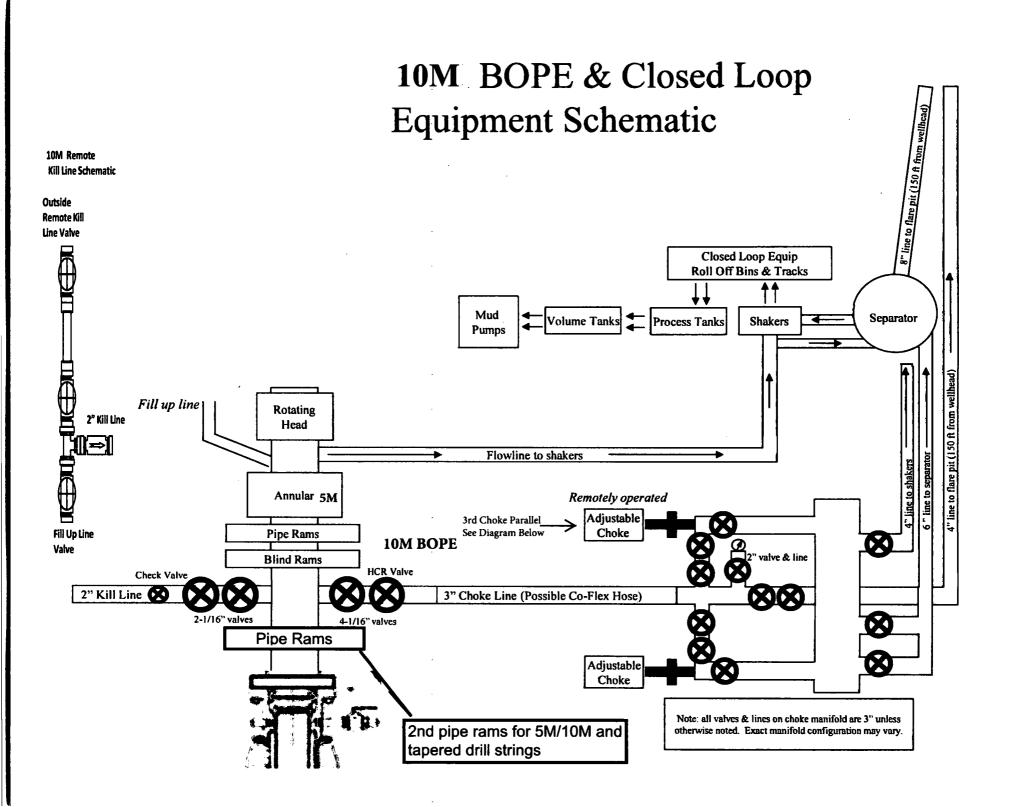
### **Section 8 - Other Information**

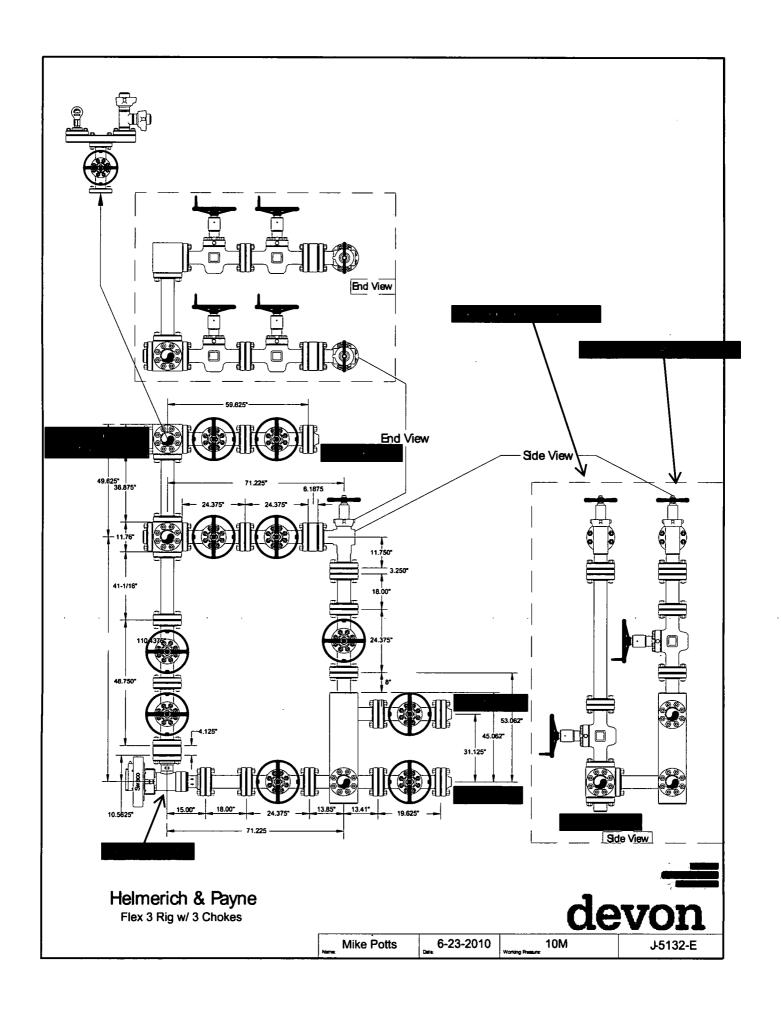
### Proposed horizontal/directional/multi-lateral plan submission:

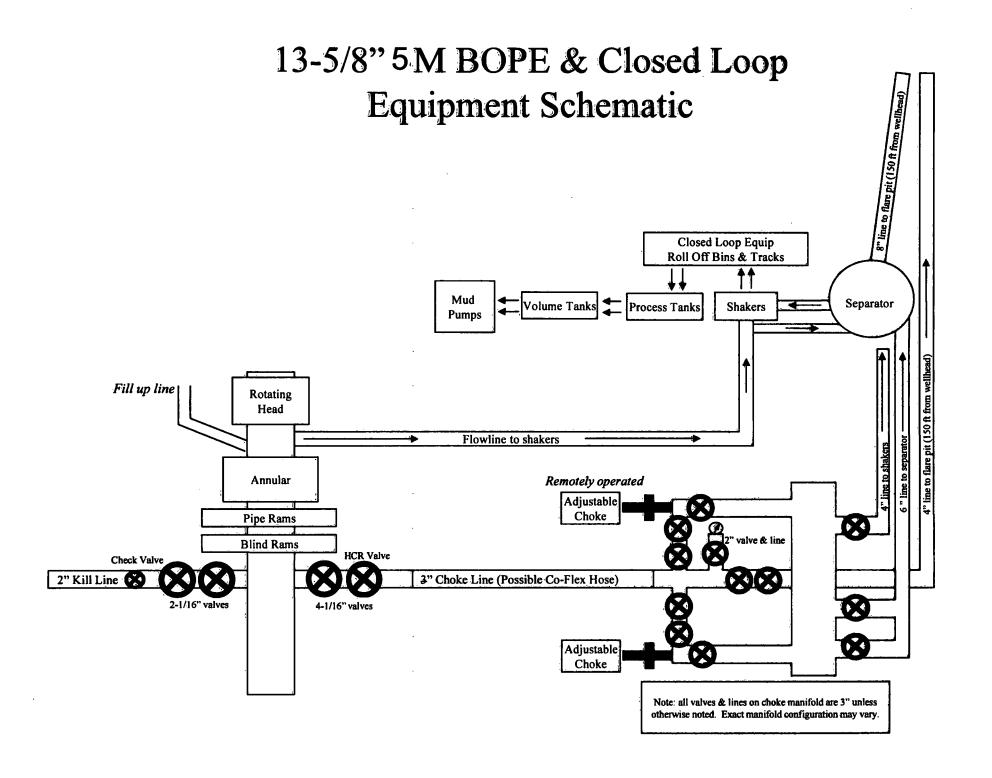
Devon\_Bell\_Lake\_24\_Fed\_16H\_Dir\_Svy\_20190730115002.pdf
Devon\_Bell\_Lake\_24\_Fed\_16H\_Plot\_20190730115002.pdf

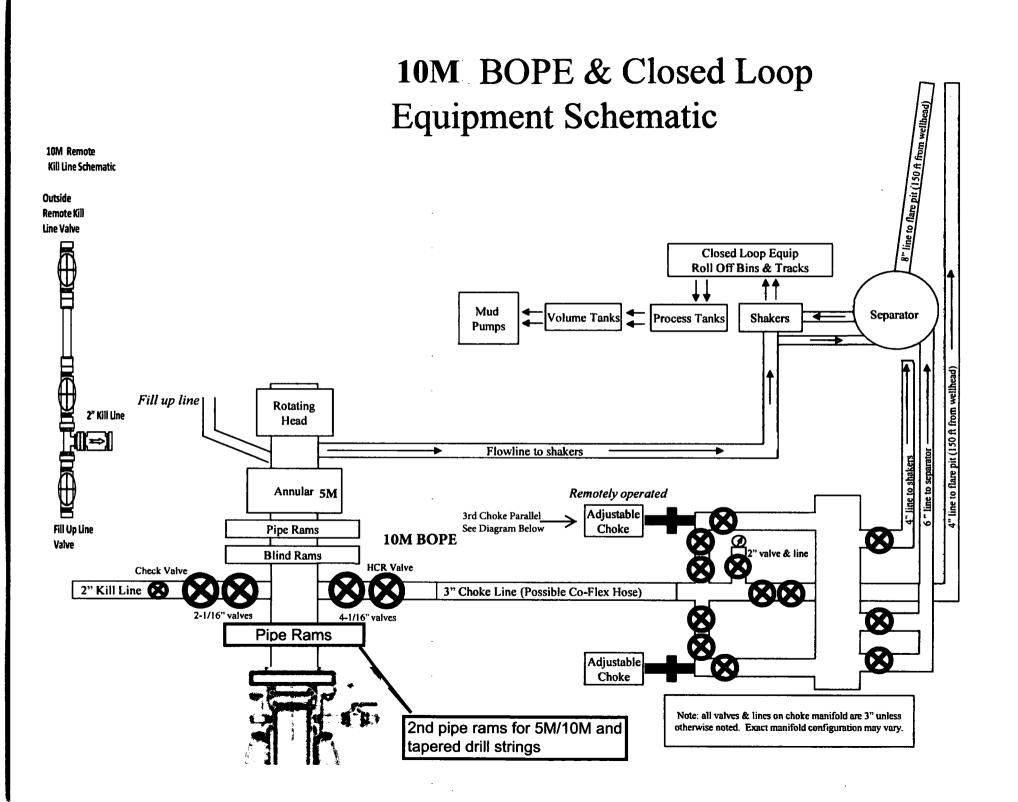
### Other proposed operations facets description:

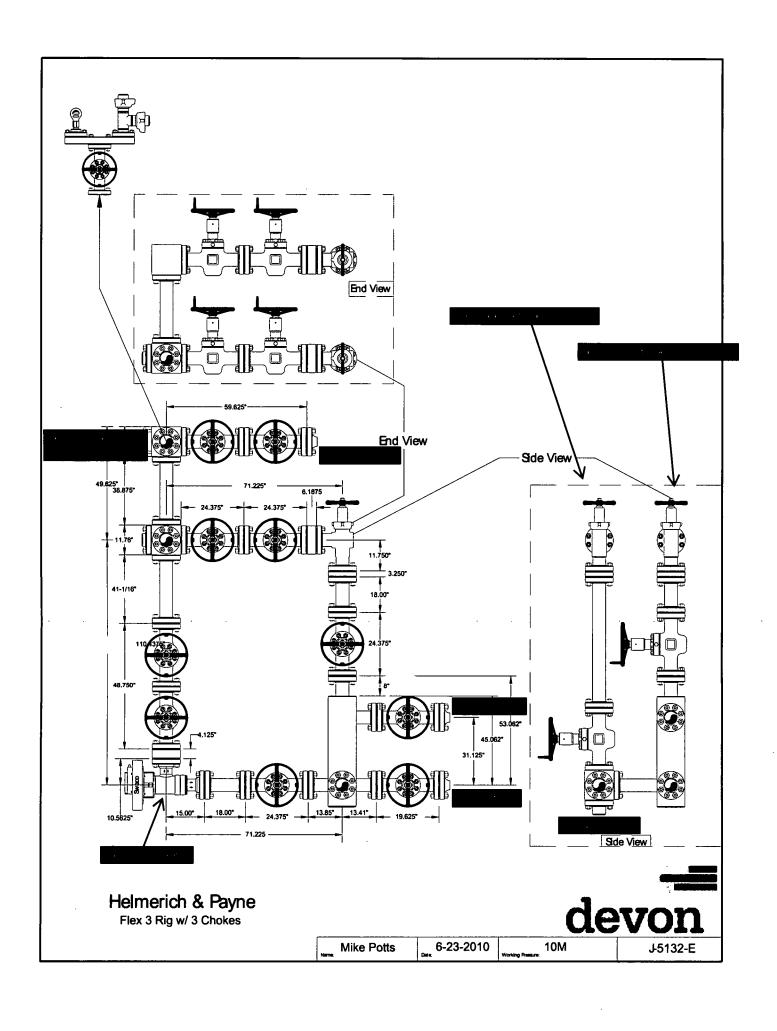
DIRECTIONAL SURVEY
PLOT
DRILLING PLAN
SPEC SHEETS
MB WELLHEAD
MB VERBIAGE
CLOSED LOOP DOC
SPUDDER RIG REQUEST
GAS CAPTURE PLAN
ANNULAR VARIANCE REQUEST DOC

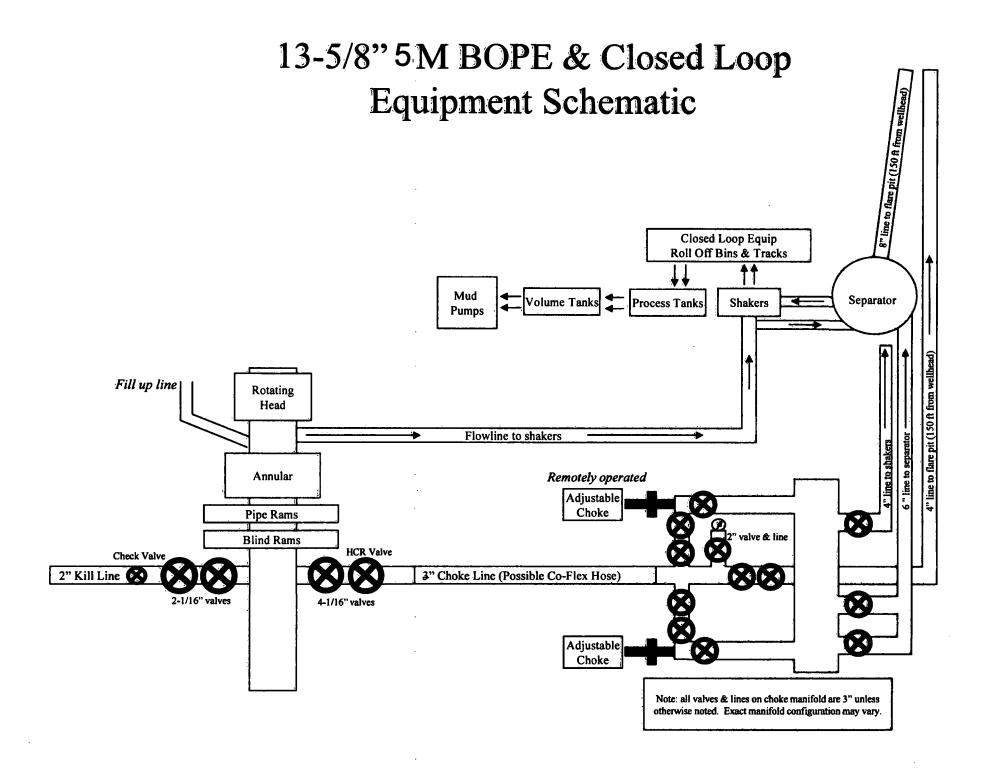

### Other proposed operations facets attachment:


**COFLEX DOC** 


Bell\_Lake\_24\_Fed\_16H\_Permit\_Plan\_1\_20190730115115.pdf
7.625\_29.70\_P110\_Flushmax\_20190730115303.pdf
5.5\_20\_P110\_EC\_VAMSG\_20190730115304.pdf
MB\_Verb\_10M\_20190730115304.pdf
Spudder\_Rig\_Info\_20190730115304.pdf
Clsd\_Loop\_20190730115304.pdf
8.625\_32.00\_P110HSCY\_TLW\_20190730115304.PDF
MB\_Wellhd\_10M\_13.375\_8.625\_20190730115305.PDF
MB\_Wellhd\_10M\_13.375\_7.625\_5.5\_\_20190730115340.pdf
13.375\_48\_H40\_20190730115538.pdf
5.5\_17\_P\_110\_BTC\_20190730115614.pdf
Bell\_Lake\_WP3\_GCP\_Form\_20190730120000.pdf


#### **Other Variance attachment:**


Annular\_Variance\_\_\_Preventer\_Summary\_20190730115410.pdf
Co\_flex\_20190730115411.pdf
10M\_BOPE\_CHK\_DR\_CLS\_RKL\_20190730115411.pdf














Surface

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

| Surface Casing Burst Design |                         |                                                       |  |  |  |  |  |  |  |
|-----------------------------|-------------------------|-------------------------------------------------------|--|--|--|--|--|--|--|
| Load Case                   | External Pressure       | Internal Pressure                                     |  |  |  |  |  |  |  |
| Pressure Test               | Formation Pore Pressure | Max mud weight of next hole-<br>section plus Test psi |  |  |  |  |  |  |  |
| Drill Ahead                 | Formation Pore Pressure | Max mud weight of next hole section                   |  |  |  |  |  |  |  |
| Displace to Gas             | Formation Pore Pressure | Dry gas from next casing point                        |  |  |  |  |  |  |  |

| Surface Casing Collapse Design                |                                         |                 |  |  |  |  |  |  |  |
|-----------------------------------------------|-----------------------------------------|-----------------|--|--|--|--|--|--|--|
| Load Case External Pressure Internal Pressure |                                         |                 |  |  |  |  |  |  |  |
| Full Evacuation                               | Water gradient in cement, mud above TOC | None            |  |  |  |  |  |  |  |
| Cementing                                     | Wet cement weight                       | Water (8.33ppg) |  |  |  |  |  |  |  |

| Surface Casing Tension Design |         |  |  |
|-------------------------------|---------|--|--|
| Load Case Assumptions         |         |  |  |
| Overpull                      | 100kips |  |  |
| Runing in hole 3 ft/s         |         |  |  |
| Service Loads N/A             |         |  |  |

### **Casing Assumptions and Load Cases**

### Intermediate

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

| Intermediate Casing Burst Design |                         |                                                                     |  |
|----------------------------------|-------------------------|---------------------------------------------------------------------|--|
| Load Case                        | External Pressure       | Internal Pressure  Max mud weight of next holesection plus Test psi |  |
| Pressure Test                    | Formation Pore Pressure |                                                                     |  |
| Drill Ahead                      | Formation Pore Pressure | Max mud weight of next hole section                                 |  |
| Fracture @ Shoe                  | Formation Pore Pressure | Dry gas                                                             |  |

| Intermediate Casing Collapse Design           |                                         |                 |  |  |
|-----------------------------------------------|-----------------------------------------|-----------------|--|--|
| Load Case External Pressure Internal Pressure |                                         |                 |  |  |
| Full Evacuation                               | Water gradient in cement, mud above TOC | None            |  |  |
| Cementing                                     | Wet cement weight                       | Water (8.33ppg) |  |  |

| Intermediate Casing Tension Design |         |  |  |
|------------------------------------|---------|--|--|
| Load Case Assumptions              |         |  |  |
| Overpull                           | 100kips |  |  |
| Runing in hole 2 ft/s              |         |  |  |
| Service Loads N/A                  |         |  |  |

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

| Production Casing Burst Design |                         |                                                                      |  |
|--------------------------------|-------------------------|----------------------------------------------------------------------|--|
| Load Case                      | External Pressure       | Internal Pressure Fluid in hole (water or produced water) + test psi |  |
| Pressure Test                  | Formation Pore Pressure |                                                                      |  |
| Tubing Leak                    | Formation Pore Pressure | Packer @ KOP, leak below surface 8.6 ppg packer fluid                |  |
| Stimulation                    | Formation Pore Pressure | Max frac pressure with heaviest frac fluid                           |  |

| Production Casing Collapse Design             |                                          |                 |  |  |
|-----------------------------------------------|------------------------------------------|-----------------|--|--|
| Load Case External Pressure Internal Pressure |                                          |                 |  |  |
| Full Evacuation                               | Water gradient in cement, mud above TOC. | None            |  |  |
| Cementing                                     | Wet cement weight                        | Water (8.33ppg) |  |  |

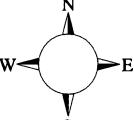
| Production Casing Tension Design |         |  |  |
|----------------------------------|---------|--|--|
| Load Case Assumptions            |         |  |  |
| Overpull                         | 100kips |  |  |
| Runing in hole                   | 2 ft/s  |  |  |
| Service Loads                    | N/A     |  |  |

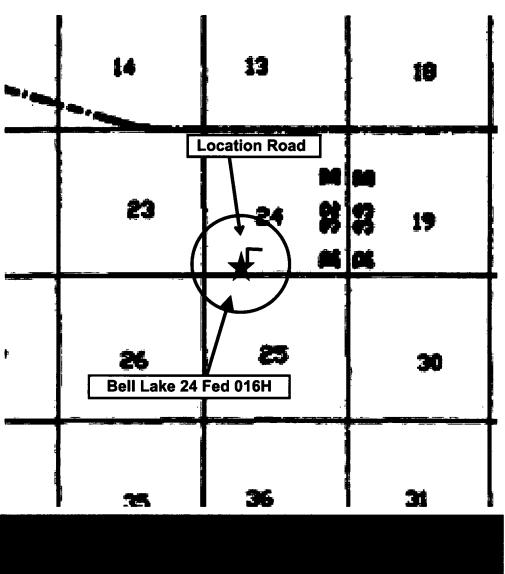


Devon Energy Center 333 West Sheridan Avenue Oklahoma City, Oklahoma 73102-5015

## Hydrogen Sulfide (H₂S) Contingency Plan

For


Bell Lake 24 Fed 016H


Sec-24 T-24S R-32E 197' FSL & 1151 FWL LAT. = 32.196436' N (NAD83) LONG = 103.633152' W

**Lea County NM** 

### Bell Lake 24 Fed 016H

This is an open drilling site.  $H_2S$  monitoring equipment and emergency response equipment will be used within 500' of zones known to contain  $H_2S$ , including warning signs, wind indicators and  $H_2S$  monitor.





### **Escape**

Crews shall escape upwind of escaping gas in the event of an emergency release of gas. Escape can be facilitated from the location entrance road. Crews should then block the entrance to the location from the lease road so as not to allow anyone traversing into a hazardous area. The blockade should be at a safe distance outside of the ROE. There are no homes or buildings in or near the ROE.

# Assumed 100 ppm ROE = 3000' 100 ppm H<sub>2</sub>S concentration shall trigger activation of this plan.

### **Emergency Procedures**

In the event of a release of gas containing H<sub>2</sub>S, the first responder(s) must

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H<sub>2</sub>S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- Have received training in the
  - o Detection of H<sub>2</sub>S, and
  - o Measures for protection against the gas,
  - o Equipment used for protection and emergency response.

### **Ignition of Gas Source**

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO<sub>2</sub>). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas

### Characteristics of H<sub>2</sub>S and SO<sub>2</sub>

| Common<br>Name      | Chemical<br>Formula | Specific<br>Gravity | Threshold<br>Limit | Hazardous<br>Limit | Lethal<br>Concentration |
|---------------------|---------------------|---------------------|--------------------|--------------------|-------------------------|
| Hydrogen<br>Sulfide | H <sub>2</sub> S    | 1.189<br>Air = 1    | 10 ppm             | 100 ppm/hr         | 600 ppm                 |
| Sulfur<br>Dioxide   | SO <sub>2</sub>     | 2.21<br>Air = 1     | 2 ppm              | N/A                | 1000 ppm                |

### **Contacting Authorities**

Devon Energy Corp. personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available. The following call list of essential and potential responders has been prepared for use during a release. Devon Energy Corp. Company response must be in coordination with

the State of New Mexico's 'Hazardous Materials Emergency Response Plan' (HMER)

### **Hydrogen Sulfide Drilling Operation Plan**

### I. HYDROGEN SULFIDE (H2S) TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- 1. The hazards and characteristics of hydrogen sulfide (H<sub>2</sub>S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H<sub>2</sub>S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H<sub>2</sub>S metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- 3. The contents and requirements of the H<sub>2</sub>S Drilling Operations Plan and Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H<sub>2</sub>S zone (within 3 days or 500 feet) and weekly H<sub>2</sub>S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H<sub>2</sub>S Drilling Operations Plan and the Public Protection Plan.

### II. HYDROGEN SULFIDE TRAINING

Note: All  $H_2S$  safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain  $H_2S$ .

### 1. Well Control Equipment

- A. Flare line
- B. Choke manifold Remotely Operated
- C. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- D. Auxiliary equipment may include if applicable: annular preventer and rotating head.
- E. Mud/Gas Separator

### 2. Protective equipment for essential personnel:

30-minute SCBA units located at briefing areas, as indicated on well site diagram, with escape units available in the top doghouse. As it may be difficult to communicate audibly while wearing these units, hand signals shall be utilized.

### 3. H<sub>2</sub>S detection and monitoring equipment:

Portable H<sub>2</sub>S monitors positioned on location for best coverage and response. These units have warning lights which activate when H<sub>2</sub>S levels reach 10 ppm and audible sirens which activate at 15 ppm. Sensor locations:

- Bell nipple
- Possum Belly/Shale shaker
- Rig floor
- Choke manifold
- Cellar

### Visual warning systems:

- A. Wind direction indicators as shown on well site diagram
- B. Caution/ Danger signs shall be posted on roads providing direct access to locations. Signs will be painted a high visibility yellow with black lettering of sufficient size to be reasonable distance from the immediate location. Bilingual signs will be used when appropriate.

### 4. Mud program:

The mud program has been designed to minimize the volume of H<sub>2</sub>S circulated to surface. Proper mud weight, safe drilling practices and the use of H<sub>2</sub>S scavengers will minimize hazards when penetrating H<sub>2</sub>S bearing zones.

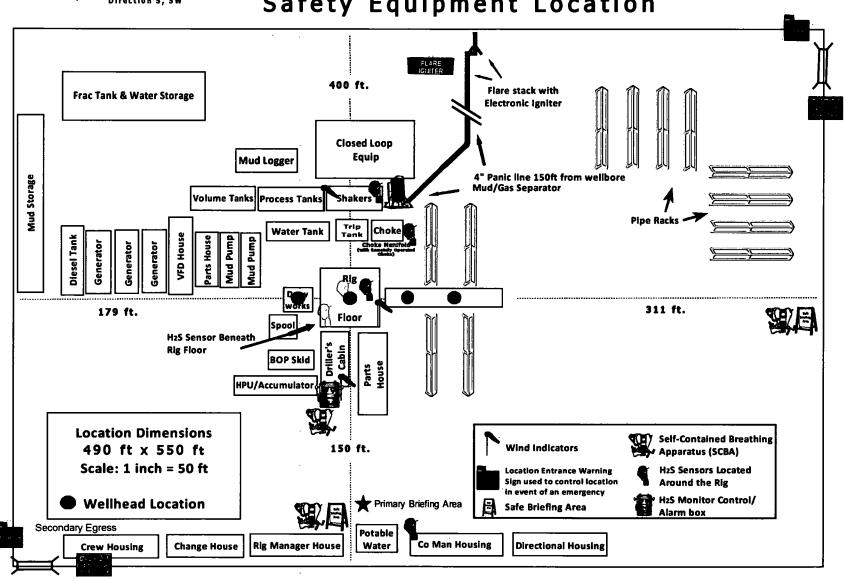
### 5. Metallurgy:

- A. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold lines, and valves shall be H<sub>2</sub>S trim.
- B. All elastomers used for packing and seals shall be H<sub>2</sub>S trim.

### 6. Communication:

- A. Company personnel have/use cellular telephones in the field.
- B. Land line (telephone) communications at Office

### 7. Well testing:


- A. Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safety and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H<sub>2</sub>S environment will use the closed chamber method of testing.
- B. There will be no drill stem testing.

| Devon En     | ergy Corp. Company Call List                                                      |                |
|--------------|-----------------------------------------------------------------------------------|----------------|
| Drilling Su  | pervisor – Basin – Mark Kramer                                                    | 405-823-4796   |
| EHS Profe    | essional – Laura Wright                                                           | 405-439-8129   |
| Agency       | Call List                                                                         |                |
| Lea          | Hobbs                                                                             |                |
| County       | Lea County Communication Authority                                                | 393-3981       |
| (575)        | State Police                                                                      | 392-5588       |
|              | City Police                                                                       | 397-9265       |
|              | Sheriff's Office                                                                  | 393-2515       |
|              | Ambulance                                                                         | 911            |
|              | Fire Department                                                                   | 397-9308       |
|              | LEPC (Local Emergency Planning Committee)                                         | 393-2870       |
|              | NMOCD                                                                             | 393-6161       |
|              | US Bureau of Land Management                                                      | 393-3612       |
| Eddy         | Carlsbad                                                                          | <del> </del>   |
| County       | State Police                                                                      | 885-3137       |
| <u>(575)</u> | City Police                                                                       | 885-2111       |
| 10.01        | Sheriff's Office                                                                  | 887-7551       |
|              | Ambulance                                                                         | 911            |
|              | Fire Department                                                                   | 885-3125       |
|              | LEPC (Local Emergency Planning Committee)                                         | 887-3798       |
|              | US Bureau of Land Management                                                      | 887-6544       |
|              | NM Emergency Response Commission (Santa Fe)                                       | (505) 476-9600 |
|              | 24 HR                                                                             | (505) 827-9126 |
|              | National Emergency Response Center                                                | (800) 424-8802 |
|              | National Pollution Control Center: Direct                                         | (703) 872-6000 |
|              | For Oil Spills                                                                    | (800) 280-7118 |
| •            | Emergency Services                                                                | (000) 200-1110 |
|              | Wild Well Control                                                                 | (281) 784-4700 |
|              | Cudd Pressure Control (915) 699-0139                                              | (915) 563-3356 |
|              | Halliburton (913) 099-0139                                                        | (575) 746-2757 |
|              | B. J. Services                                                                    | (575) 746-3569 |
| Give         |                                                                                   | (800) 642-7828 |
| GPS          | Native Air – Emergency Helicopter – Hobbs (TX & NM) Flight For Life - Lubbock, TX | (806) 743-9911 |
| position:    | Aerocare - Lubbock, TX                                                            | (806) 747-8923 |
| poortioni    | Med Flight Air Amb - Albuquerque, NM                                              | (575) 842-4433 |
|              | Lifeguard Air Med Svc. Albuquerque, NM                                            | (800) 222-1222 |
|              | Poison Control (24/7)                                                             | (575) 272-3115 |
|              | Oil & Gas Pipeline 24 Hour Service                                                | (800) 364-4366 |
|              | NOAA – Website - www.nhc.noaa.gov                                                 | (000) 00000    |
|              | 110771 - Website - www.iiio.iioaa.gov                                             |                |

Prepared in conjunction with Dave Small



# Devon Energy - Well Pad Rig Location Layout Safety Equipment Location



# **WCDSC Permian NM**

Lea County (NAD83 New Mexico East) Sec 24-24S-32E Bell Lake 24 Fed 16H

Wellbore #1

Plan: Permit Plan 1

**Standard Planning Report - Geographic** 

10 June, 2019

Database:

EDM r5000.141\_Prod US

Local Co-ordinate Reference

Well Bell Lake 24 Fed 16H

Company:

WCDSC Permian NM

TVD Reference:

RKB @ 3600.30ft

Project:

Lea County (NAD83 New Mexico East)

MD Reference:

RKB @ 3600.30ft

Site:

Sec 24-24S-32E

North Reference:

Grid

Well: Wellbore:

Bell Lake 24 Fed 16H Wellbore #1

Design:

Permit Plan 1

**Survey Calculation Method:** 

Minimum Curvature

Project

Lea County (NAD83 New Mexico East)

Map System:

US State Plane 1983

System Datum:

Mean Sea Level

Geo Datum:

North American Datum 1983

Map Zone:

New Mexico Eastern Zone

Site

Sec 24-24S-32E

Site Position:

Northing:

-0.83 usft

Latitude:

30.988439

From:

**Position Uncertainty:** 

Мар

Easting: 0.00 ft Slot Radius: -99.96 usft 13-3/16 "

Longitude: **Grid Convergence:**  -106.061149

-0.89°

Well **Well Position** 

Bell Lake 24 Fed 16H +N/-S

0.00 ft

Northing:

435,903.02 usft

Latitude:

32.196436

**Position Uncertainty** 

0.00 ft +E/-W 0.50 ft

IGRF2015

Easting: Wellhead Elevation:

6/10/2019

757,923.57 usft

6.77

Longitude: **Ground Level:**  -103.633153 3,575.30 ft

Wellbore

Wellbore #1

Permit Plan 1

Magnetics **Model Name** 

Sample Date

Declination (°)

Dip Angle (°)

Field Strength

(nT) 47,710.62877566

Design

**Audit Notes:** 

Version:

Phase:

**PROTOTYPE** 

Tie On Depth:

60.00

Vertical Section:

Depth From (TVD)

+N/-S

+E/-W

0.00 Direction

(ft) 0.00

(ft) 0.00

(ft) 0.00

(°) 357.93

Plan Survey Tool Program

6/10/2019

Depth From (ft)

Depth To (ft)

Survey (Wellbore)

**Tool Name** 

Remarks

1

0.00

17,487.30 Permit Plan 1 (Wellbore #1)

MWD+HDGM OWSG MWD + HDGM

| lan Sections      |             |         |                   |          |         |                |               |              |        |                       |
|-------------------|-------------|---------|-------------------|----------|---------|----------------|---------------|--------------|--------|-----------------------|
| Measured<br>Depth | Inclination | Azimuth | Vertical<br>Depth | +N/-S    | +E/-W   | Dogleg<br>Rate | Build<br>Rate | Turn<br>Rate | TFO    |                       |
| (ft)              | (°)         | (°)     | (ft)              | (ft)     | (ft)    | (°/100usft)    | (°/100usft)   | (°/100usft)  | (°)    | Target                |
| 0.00              | 0.00        | 0.00    | 0.00              | 0.00     | 0.00    | 0.00           | 0.00          | 0.00         | 0.00   |                       |
| 2,750.00          | 0.00        | 0.00    | 2,750.00          | 0.00     | 0.00    | 0.00           | 0.00          | 0.00         | 0.00   |                       |
| 2,893.42          | 1.43        | 227.60  | 2,893.41          | -1.21    | -1.33   | 1.00           | 1.00          | 0.00         | 227.60 |                       |
| 11,484.10         | 1.43        | 227.60  | 11,481.39         | -146.19  | -160.12 | 0.00           | 0.00          | 0.00         | 0.00   |                       |
| 11,579.72         | 0.00        | 0.00    | 11,577.00         | -147.00  | -161.00 | 1.50           | -1.50         | 0.00         | 180.00 |                       |
| 11,929.76         | 0.00        | 0.00    | 11,927.04         | -147.00  | -161.00 | 0.00           | 0.00          | 0.00         | 0.00   |                       |
| 12,829.76         | 90.00       | 359.75  | 12,500.00         | 425.95   | -163.54 | 10.00          | 10.00         | 0.00         | 359.75 | PBHL - Bell Lake 24   |
| 17,487.30         | 90.00       | 359.75  | 12,500.00         | 5,083.45 | -184.17 | 0.00           | 0.00          | 0.00         | 0.00   | PBHL - Bell Lake 24 l |

Database:

EDM r5000.141\_Prod US

Company:

WCDSC Permian NM

Project:

Lea County (NAD83 New Mexico East)

Site: Well: Sec 24-24S-32E

Wellbore:

Bell Lake 24 Fed 16H

Design:

Wellbore #1 Permit Plan 1 Local Co-ordinate Reference

**TVD Reference:** 

MD Reference:

North Reference: Survey Calculation Method: Well Bell Lake 24 Fed 16H

RKB @ 3600.30ft

RKB @ 3600.30ft

Grid

Minimum Curvature

| nned Survey          |              |                  |                      |                  |                              |                          | -                        |           |                    |
|----------------------|--------------|------------------|----------------------|------------------|------------------------------|--------------------------|--------------------------|-----------|--------------------|
| Measured             |              |                  | Vertical             |                  |                              | Мар                      | Мар                      |           |                    |
| Depth                | Inclination  | Azimuth          | Depth                | +N/-S            | +E/-W                        | Northing                 | Easting                  | l otitudo | Lamattuda          |
| (ft)                 | (°)          | (°)              | (ft)                 | (ft)             | (ft)                         | (usft)                   | (usft)                   | Latitude  | Longitude          |
| 0.00                 | 0.00         | 0.00             | 0.00                 | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.633           |
| 100.00               | 0.00         | 0.00             | 100.00               | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.633           |
| 200.00               | 0.00         | 0.00             | 200.00               | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.633           |
| 300.00               | 0.00         | 0.00             | 300.00               | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 400.00               | 0.00         | 0.00             | 400.00               | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 500.00               | 0.00         | 0.00             | 500.00               | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 600.00               | 0.00         | 0.00             | 600.00               | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 700.00               | 0.00         | 0.00             | 700.00               | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 800.00               | 0.00         | 0.00             | 800.00               | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 900.00               | 0.00         | 0.00             | 900.00               | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 1,000.00             | 0.00         | 0.00             | 1,000.00             | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 1,100.00             | 0.00         | 0.00             | 1,100.00             | 0.00<br>0.00     | 0.00<br>0.00                 | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 1,200.00             | 0.00<br>0.00 | 0.00             | 1,200.00             |                  | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 1,300.00             | 0.00         | 0.00             | 1,300.00             | 0.00<br>0.00     | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 1,400.00             |              | 0.00             | 1,400.00             |                  |                              | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 1,500.00             | 0.00         | 0.00             | 1,500.00             | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 1,600.00             | 0.00         | 0.00             | 1,600.00             | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 1,700.00             | 0.00         | 0.00             | 1,700.00             | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 1,800.00             | 0.00         | 0.00             | 1,800.00             | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 1,900.00             | 0.00         | 0.00             | 1,900.00             | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 2,000.00             | 0.00         | 0.00             | 2,000.00             | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 2,100.00             | 0.00         | 0.00             | 2,100.00             | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 2,200.00             | 0.00         | 0.00             | 2,200.00             | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 2,300.00             | 0.00         | 0.00             | 2,300.00             | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 2,400.00             | 0.00         | 0.00             | 2,400.00             | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 2,500.00             | 0.00         | 0.00             | 2,500.00             | 0.00<br>0.00     | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 2,600.00             | 0.00<br>0.00 | 0.00<br>0.00     | 2,600.00             | 0.00             | 0.00<br>0.00                 | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 2,700.00             |              | -                | 2,700.00             | •                |                              | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 2,750.00             | 0.00         | 0.00             | 2,750.00             | 0.00             | 0.00                         | 435,903.02               | 757,923.57               | 32.196436 | -103.63            |
| 2,800.00             | 0.50         | 227.60           | 2,800.00             | -0.15            | -0.16                        | 435,902.87               | 757,923.41               | 32.196436 | -103.63            |
| 2,893.42             | 1.43         | 227.60           | 2,893.41             | -1.21            | -1.33                        | 435,901.81               | 757,922.24               | 32.196433 | -103.63            |
| 2,900.00             | 1.43         | 227.60           | 2,899.98             | -1.32            | -1.45                        | 435,901.70               | 757,922.12               | 32.196433 | -103.63            |
| 3,000.00             | 1.43         | 227.60           | 2,999.95             | -3.01            | -3.30                        | 435,900.01               | 757,920.27               | 32.196428 | -103.63            |
| 3,100.00             | 1.43         | 227.60           | 3,099.92             | -4.70<br>c.20    | -5.14                        | 435,898.32               | 757,918.42               | 32.196423 | -103.63            |
| 3,200.00             | 1.43         | 227.60           | 3,199.89             | -6.38            | -6.99                        | 435,896.64               | 757,916.57               | 32.196419 | -103.63            |
| 3,300.00             | 1.43         | 227.60           | 3,299.86             | -8.07<br>0.76    | -8.84<br>40.60               | 435,894.95<br>435.893.26 | 757,914.73               | 32.196414 | -103.63            |
| 3,400.00<br>3,500.00 | 1.43         | 227.60<br>227.60 | 3,399.83             | -9.76<br>-11.45  | -10.69<br>-12.54             |                          | 757,912.88               | 32.196410 | -103.63            |
| 3,600.00             | 1.43<br>1.43 | 227.60           | 3,499.80<br>3,599.76 | -11.45<br>-13.14 | -12.5 <del>4</del><br>-14.39 | 435,891.57<br>435,889.88 | 757,911.03               | 32.196405 | -103.63<br>-103.63 |
| -                    | 1.43         | 227.60           |                      |                  |                              | •                        | 757,909.18               | 32.196400 |                    |
| 3,700.00             |              |                  | 3,699.73             | -14.82           | -16.23                       | 435,888.20               | 757,907.33               | 32.196396 | -103.63            |
| 3,800.00<br>3,900.00 | 1.43         | 227.60           | 3,799.70             | -16.51<br>49.20  | -18.08<br>-10.03             | 435,886.51               | 757,905.48               | 32.196391 | -103.63            |
|                      | 1.43         | 227.60           | 3,899.67             | -18.20<br>40.80  | -19.93                       | 435,884.82               | 757,903.64<br>757,901.79 | 32.196387 | -103.63            |
| 4,000.00             | 1.43         | 227.60           | 3,999.64             | -19.89           | -21.78                       | 435,883.13               | •                        | 32.196382 | -103.63            |
| 4,100.00             | 1.43         | 227.60           | 4,099.61             | -21.57           | -23.63<br>25.49              | 435,881.45               | 757,899.94               | 32.196377 | -103.63            |
| 4,200.00             | 1.43         | 227.60           | 4,199.58             | -23.26           | -25.48                       | 435,879.76               | 757,898.09               | 32.196373 | -103.63            |
| 4,300.00             | 1.43         | 227.60           | 4,299.54             | -24.95           | -27.32                       | 435,878.07               | 757,896.24               | 32.196368 | -103.63            |
| 4,400.00             | 1.43         | 227.60           | 4,399.51             | -26.64           | -29.17                       | 435,876.38               | 757,894.39               | 32.196364 | -103.63            |
| 4,500.00             | 1.43         | 227.60           | 4,499.48             | -28.32           | -31.02                       | 435,874.70               | 757,892.55               | 32.196359 | -103.63            |
| 4,600.00             | 1.43         | 227.60           | 4,599.45             | -30.01           | -32.87                       | 435,873.01               | 757,890.70               | 32.196354 | -103.63            |
| 4,700.00             | 1.43         | 227.60           | 4,699.42             | -31.70           | -34.72                       | 435,871.32               | 757,888.85               | 32.196350 | -103.63            |
| 4,800.00             | 1.43         | 227.60           | 4,799.39             | -33.39           | -36.57                       | 435,869.63               | 757,887.00               | 32.196345 | -103.63            |
| 4,900.00             | 1.43         | 227.60           | 4,899.36             | -35.07           | -38.42                       | 435,867.94               | 757,885.15               | 32.196341 | -103.63            |
| 5,000.00             | 1.43         | 227.60           | 4,999.33             | -36.76           | -40.26                       | 435,866.26               | 757,883.30               | 32.196336 | -103.63            |
| 5,100.00             | 1.43         | 227.60           | 5,099.29             | -38.45           | -42.11                       | 435,864.57               | 757,881.45               | 32.196331 | -103.633           |

Database:

EDM r5000.141\_Prod US

Company:

WCDSC Permian NM

Project:

Lea County (NAD83 New Mexico East)

Site: Well: Sec 24-24S-32E

Wellbore:

Bell Lake 24 Fed 16H Wellbore #1

Design:

Permit Plan 1

**Local Co-ordinate Reference** 

**Survey Calculation Method:** 

TVD Reference:

MD Reference:

North Reference:

Well Bell Lake 24 Fed 16H

RKB @ 3600.30ft

RKB @ 3600.30ft

Grid

Minimum Curvature

| Planned Survey       | •           |                  |                      |                    | -                  |                          |                          |                        |                            |
|----------------------|-------------|------------------|----------------------|--------------------|--------------------|--------------------------|--------------------------|------------------------|----------------------------|
| Measured             |             |                  | Vertical             |                    |                    | Мар                      | Мар                      |                        |                            |
| Depth                | Inclination | Azimuth          | Depth                | +N/-S              | +E/-W              | Northing                 | Easting                  |                        |                            |
| (ft)                 | (°)         | (°)              | (ft)                 | (ft)               | (ft)               | (usft)                   | (usft)                   | Latitude               | Longitude                  |
| 5,200.00             | 1.43        | 227.60           | 5,199.26             | -40.14             | -43.96             | 435,862.88               | 757,879.61               | 32.196327              | -103.633296                |
| 5,300.00             | 1.43        | 227.60           | 5,299.23             | -41.83             | -45.81             | 435,861.19               | 757,877.76               | 32.196322              | -103.633302                |
| 5,400.00             | 1.43        | 227.60           | 5,399.20             | -43.51             | -47.66             | 435,859.51               | 757,875.91               | 32.196318              | -103.633308                |
| 5,500.00             | 1.43        | 227.60           | 5,499.17             | -45.20             | -49.51             | 435,857.82               | 757,874.06               | 32.196313              | -103.633314                |
| 5,600.00             | 1.43        | 227.60           | 5,599.14             | -46.89             | -51.35             | 435,856.13               | 757,872.21               | 32.196308              | -103.633320                |
| 5,700.00             | 1.43        | 227.60           | 5,699.11             | -48.58             | -53.20             | 435,854.44               | 757,870.36               | 32.196304              | -103.633326                |
| 5,800.00             | 1.43        | 227.60           | 5,799.07             | -50.26             | -55.05             | 435,852.76               | 757,868.52               | 32.196299              | -103.633332                |
| 5,900.00             |             | 227.60           | 5,899.04             | -51.95             | -56.90             | 435,851.07               | 757,866.67               | 32.196295              | -103.633338                |
| 6,000.00             |             | 227.60           | 5,999.01             | -53.64             | <b>-58.75</b>      | 435,849.38               | 757,864.82               | 32.196290              | -103.633344                |
| 6,100.00             |             | 227.60           | 6,098.98             | -55.33             | -60.60             | 435,847.69               | 757,862.97               | 32.196285              | -103.633350                |
| 6,200.00             |             | 227.60           | 6,198.95             | -57.01             | -62.44             | 435,846.01               | 757,861.12               | 32.196281              | -103.633356                |
| 6,300.00             |             | 227.60           | 6,298.92             | -58.70             | -64.29             | 435,844.32               | 757,859.27               | 32.196276              | -103.633362                |
| 6,400.00             |             | 227.60           | 6,398.89             | -60.39             | -66.14             | 435,842.63               | 757,857.43               | 32.196271              | -103.633368                |
| 6,500.00             |             | 227.60           | 6,498.86             | -62.08             | -67.99             | 435,840.94               | 757,855.58               | 32.196267              | -103.633374                |
| 6,600.00             |             | 227.60           | 6,598.82             | -63.77             | -69.84             | 435,839.25               | 757,853.73               | 32.196262              | -103.633380                |
| 6,700.00             |             | 227.60           | 6,698.79             | -65.45             | -71.69             | 435,837.57               | 757,851.88               | 32.196258              | -103.633386                |
| 6,800.00             |             | 227.60           | 6,798.76             | -67.14             | -73.54             | 435,835.88               | 757,850.03               | 32.196253              | -103.633392                |
| 6,900.00             |             | 227.60           | 6,898.73             | -68.83             | -75.38             | 435,834.19               | 757,848.18               | 32.196248              | -103.633398                |
| 7,000.00             |             | 227.60           | 6,998.70             | -70.52             | -77.23             | 435,832.50               | 757,846.34               | 32.196244              | -103.633404                |
| 7,100.00             |             | 227.60           | 7,098.67             | -72.20             | -79.08             | 435,830.82               | 757,844.49               | 32.196239              | -103.633410                |
| 7,200.00             |             | 227.60           | 7,198.64             | -73.89             | -80.93             | 435,829.13               | 757,842.64               | 32.196235              | -103.633416                |
| 7,300.00             |             | 227.60           | 7,298.60             | -75.58             | -82.78             | 435,827.44               | 757,840.79               | 32.196230              | -103.633422                |
| 7,400.00             |             | 227.60           | 7,398.57             | -77.27             | -84.63             | 435,825.75               | 757,838.94               | 32.196225              | -103.633428                |
| 7,500.00             |             | 227.60           | 7,498.54             | -78.95             | -86.47             | 435,824.07               | 757,837.09               | 32.196221              | -103.633434                |
| 7,600.00             |             | 227.60           | 7,598.51             | -80.64             | -88.32             | 435,822.38               | 757,835.24               | 32.196216              | -103.633440                |
| 7,700.00             |             | 227.60           | 7,698.48             | -82.33             | -90.17             | 435,820.69               | 757,833.40               | 32.196212              | -103.633446                |
| 7,800.00             |             | 227.60           | 7,798.45             | -84.02             | -92.02             | 435,819.00               | 757,831.55               | 32.196207              | -103.633452                |
| 7,900.00             |             | 227.60           | 7,898.42             | -85.71             | -93.87             | 435,817.31               | 757,829.70               | 32.196202              | -103.633458                |
| 8,000.00             |             | 227.60           | 7,998.39             | -87.39             | -95.72             | 435,815.63               | 757,827.85               | 32.196198              | -103.633464                |
| 8,100.00             |             | 227.60           | 8,098.35             | -89.08             | -97.56             | 435,813.94               | 757,826.00               | 32.196193              | -103.633470                |
| 8,200.00             |             | 227.60           | 8,198.32             | -90.77             | -99.41             | 435,812.25               | 757,824.15               | 32.196189              | -103.633476                |
| 8,300.00             |             | 227.60           | 8,298.29             | -92.46             | -101.26            | 435,810.56               | 757,822.31               | 32.196184              | -103.633482                |
| 8,400.00             |             | 227.60           | 8,398.26             | -94.14<br>05.00    | -103.11            | 435,808.88               | 757,820.46               | 32.196179              | -103.633488                |
| 8,500.00             |             | 227.60           | 8,498.23             | -95.83             | -104.96            | 435,807.19               | 757,818.61               | 32.196175              | -103.633494                |
| 8,600.00             |             | 227.60           | 8,598.20             | -97.52             | -106.81            | 435,805.50               | 757,816.76               | 32.196170              | -103.633500                |
| 8,700.00<br>8,800.00 |             | 227.60<br>227.60 | 8,698.17             | -99.21             | -108.65            | 435,803.81               | 757,814.91               | 32.196166              | -103.633506                |
| 8,900.00             |             | 227.60           | 8,798.13             | -100.89            | -110.50<br>-112.35 | 435,802.13<br>435.800.44 | 757,813.06               | 32.196161              | -103.633512                |
| 9,000.00             |             | 227.60           | 8,898.10<br>8,998.07 | -102.58<br>-104.27 | -112.35<br>-114.20 | 435,798.75               | 757,811.22<br>757,809.37 | 32.196156<br>32.196152 | -103.633518<br>-103.633524 |
| 9,100.00             |             | 227.60           | 9,098.04             | -104.27            | -116.05            | 435,797.06               | 757,807.52               | 32.196147              | -103.633530                |
| 9,200.00             |             | 227.60           | 9,198.01             | -103.50            | -117.90            | 435,795.38               | 757,805.67               | 32.196143              | -103.633536                |
| 9,300.00             |             | 227.60           | 9,297.98             | -107.04            | -119.75            | 435,793.69               | 757,803.82               | 32.196138              | -103.633542                |
| 9,400.00             |             | 227.60           | 9,397.95             | -109.33            | -119.75            | 435,792.00               | 757,801.97               | 32.196133              | -103.633548                |
| 9,500.00             |             | 227.60           | 9,497.92             | -112.71            | -123.44            | 435,790.31               | 757,800.13               | 32.196129              | -103.633554                |
| 9,600.00             |             | 227.60           | 9,597.88             | -114.40            | -125.29            |                          |                          |                        | -103.633554                |
|                      |             | 227.60           |                      |                    | -125.29            | 435,788.62<br>435,786.94 | 757,798.28               | 32.196124              |                            |
| 9,700.00             |             | 227.60           | 9,697.85             | -116.08            | -127.14            | •                        | 757,796.43               | 32.196119<br>32.196115 | -103.633566                |
| 9,800.00             | 1.43        |                  | 9,797.82             | -117.77            |                    | 435,785.25               | 757,794.58               |                        | -103.633572                |
| 9,900.00             | 1.43        | 227.60           | 9,897.79             | -119.46            | -130.84            | 435,783.56               | 757,792.73               | 32.196110              | -103.633578                |
| 10,000.00            | 1.43        | 227.60           | 9,997.76             | -121.15            | -132.68<br>-134.53 | 435,781.87               | 757,790.88               | 32.196106              | -103.633584                |
| 10,100.00            | 1.43        | 227.60           | 10,097.73            | -122.83            | -134.53            | 435,780.19               | 757,789.03               | 32.196101              | -103.633590                |
| 10,200.00            | 1.43        | 227.60           | 10,197.70            | -124.52            | -136.38            | 435,778.50               | 757,787.19               | 32.196096              | -103.633596                |
| 10,300.00            | 1.43        | 227.60           | 10,297.66            | -126.21            | -138.23            | 435,776.81               | 757,785.34               | 32.196092              | -103.633602                |
| 10,400.00            | 1.43        | 227.60           | 10,397.63            | -127.90            | -140.08            | 435,775.12               | 757,783.49               | 32.196087              | -103.633608                |
| 10,500.00            | 1.43        | 227.60           | 10,497.60            | -129.58            | -141.93            | 435,773.44               | 757,781.64               | 32.196083              | -103.633614                |

Database:

EDM r5000.141\_Prod US

Company:

WCDSC Permian NM

Project:

Lea County (NAD83 New Mexico East)

Site:

Sec 24-24S-32E

Well:

Bell Lake 24 Fed 16H

Wellbore:

Wellbore #1

Design:

Permit Plan 1

Local Co-ordinate Reference

**Survey Calculation Method:** 

TVD Reference:

MD Reference: North Reference:

Well Bell Lake 24 Fed 16H

RKB @ 3600.30ft

RKB @ 3600.30ft

Grid

Minimum Curvature

| Planned Survey    | ,              |         |                   | •        |                 | . * * :         |                |           |             |
|-------------------|----------------|---------|-------------------|----------|-----------------|-----------------|----------------|-----------|-------------|
| Measured<br>Depth | Inclination    | Azimuth | Vertical<br>Depth | +N/-S    | +E/-W           | Map<br>Northing | Map<br>Easting |           |             |
| (ft)              | (°)            | (°)     | (ft)              | (ft)     | (ft)            | (usft)          | (usft)         | Latitude  | Longitude   |
| 10,600.00         | 1.43           | 227.60  | 10,597.57         | -131.27  | -143.77         | 435,771.75      | 757,779.79     | 32.196078 | -103.633620 |
| 10,700.00         | 1.43           | 227.60  | 10,697.54         | -132.96  | -145.62         | 435,770.06      | 757,777.94     | 32.196073 | -103.633626 |
| 10,800.00         | 1.43           | 227.60  | 10,797.51         | -134.65  | -147.47         | 435,768.37      | 757,776.10     | 32.196069 | -103.633632 |
| 10,900.00         | 1.43           | 227.60  | 10,897.48         | -136.34  | -149.32         | 435,766.68      | 757,774.25     | 32.196064 | -103.633638 |
| 11,000.00         | 1.43           | 227.60  | 10,997.45         | -138.02  | -151.17         | 435,765.00      | 757,772.40     | 32.196060 | -103.633644 |
| 11,100.00         | 1.43           | 227.60  | 11,097.41         | -139.71  | -153.02         | 435,763.31      | 757,770.55     | 32.196055 | -103.633650 |
| 11,200.00         | 1.43           | 227.60  | 11,197.38         | -141.40  | -154.86         | 435,761.62      | 757,768.70     | 32.196050 | -103.633656 |
| 11,300.00         | 1.43           | 227.60  | 11,297.35         | -143.09  | <b>-156.7</b> 1 | 435,759.93      | 757,766.85     | 32.196046 | -103.633662 |
| 11,400.00         | 1.43           | 227.60  | 11,397.32         | -144.77  | -158.56         | 435,758.25      | 757,765.01     | 32.196041 | -103.633668 |
| 11,484.10         | 1.43           | 227.60  | 11,481.39         | -146.19  | -160.12         | 435,756.83      | 757,763.45     | 32.196037 | -103.633673 |
| 11,500.00         | 1.20           | 227.60  | 11,497.29         | -146.44  | -160.39         | 435,756.58      | 757,763.18     | 32.196037 | -103.633674 |
| 11,579.72         | 0.00           | 0.00    | 11,577.00         | -147.00  | -161.00         | 435,756.02      | 757,762.57     | 32.196035 | -103.633676 |
| 11,600.00         | 0.00           | 0.00    | 11,597.28         | -147.00  | -161.00         | 435,756.02      | 757,762.57     | 32.196035 | -103.633676 |
| 11,700.00         | 0.00           | 0.00    | 11,697.28         | -147.00  | -161.00         | 435,756.02      | 757,762.57     | 32.196035 | -103.633676 |
| 11,800.00         | 0.00           | 0.00    | 11,797.28         | -147.00  | -161.00         | 435,756.02      | 757,762.57     | 32.196035 | -103.633676 |
| 11,900.00         | 0.00           | 0.00    | 11,897.28         | -147.00  | -161.00         | 435,756.02      | 757,762.57     | 32.196035 | -103.633676 |
| 11,929.76         | 0.00           | 0.00    | 11,927.04         | -147.00  | -161.00         | 435,756.02      | 757,762.57     | 32.196035 | -103.633676 |
|                   | 11930' MD, 50' |         |                   |          |                 | ,               | ,              |           |             |
| 12,000.00         | 7.02           | 359.75  | 11,997.11         | -142.70  | -161.02         | 435,760.32      | 757,762.55     | 32.196047 | -103.633676 |
| 12,100.00         | 17.02          | 359.75  | 12,094.79         | -121.89  | -161.11         | 435,781.13      | 757,762.46     | 32.196104 | -103.633676 |
| 12,170.90         | 24.11          | 359.75  | 12,161.13         | -97.00   | -161.22         | 435,806.02      | 757,762.35     | 32.196173 | -103.633676 |
|                   |                |         |                   | -37.00   | -101.22         | 433,000.02      | 757,702.55     | 32.130173 | -103.033070 |
|                   | 2171' MD, 100  |         |                   | 04.44    | 464.00          | 405 040 50      | 757 700 00     | 00.400007 | 400 000070  |
| 12,200.00         | 27.02          | 359.75  | 12,187.37         | -84.44   | -161.28         | 435,818.58      | 757,762.29     | 32.196207 | -103.633676 |
| 12,300.00         | 37.02          | 359.75  | 12,272.05         | -31.48   | -161.51         | 435,871.54      | 757,762.06     | 32.196353 | -103.633675 |
| 12,400.00         | 47.02          | 359.75  | 12,346.24         | 35.38    | -161.81         | 435,938.40      | 757,761.76     | 32.196536 | -103.633675 |
| 12,500.00         | 57.02          | 359.75  | 12,407.70         | 114.10   | -162.16         | 436,017.12      | 757,761.41     | 32.196753 | -103.633674 |
| 12,600.00         | 67.02          | 359.75  | 12,454.55         | 202.31   | -162.55         | 436,105.33      | 757,761.02     | 32.196995 | -103.633674 |
| 12,700.00         | 77.02          | 359.75  | 12,485.37         | 297.30   | -162.97         | 436,200.32      | 757,760.60     | 32.197256 | -103.633673 |
| 12,800.00         | 87.02          | 359.75  | 12,499.23         | 396.21   | -163.41         | 436,299.23      | 757,760.16     | 32.197528 | -103.633673 |
| 12,829.76         | 90.00          | 359.75  | 12,500.00         | 425.95   | -163.54         | 436,328.97      | 757,760.03     | 32.197610 | -103.633672 |
| 12,900.00         | 90.00          | 359.75  | 12,500.00         | 496.19   | -163.85         | 436,399.21      | 757,759.72     | 32.197803 | -103.633672 |
| 13,000.00         | 90.00          | 359.75  | 12,500.00         | 596.19   | -164.29         | 436,499.21      | 757,759.27     | 32.198078 | -103.633671 |
| 13,100.00         | 90.00          | 359.75  | 12,500.00         | 696.19   | -164.74         | 436,599.21      | 757,758.83     | 32.198353 | -103.633671 |
| 13,200.00         | 90.00          | 359.75  | 12,500.00         | 796.19   | -165.18         | 436,699.21      | 757,758.39     | 32.198628 | -103.633670 |
| 13,300.00         | 90.00          | 359.75  | 12,500.00         | 896.19   | -165.62         | 436,799.21      | 757,757.95     | 32.198903 | -103.633669 |
| 13,400.00         | 90.00          | 359.75  | 12,500.00         | 996.19   | -166.06         | 436,899.21      | 757,757.50     | 32.199178 | -103.633668 |
| 13,500.00         | 90.00          | 359.75  | 12,500.00         | 1,096.19 | -166.51         | 436,999.21      | 757,757.06     | 32.199452 | -103.633668 |
| 13,600.00         | 90.00          | 359.75  | 12,500.00         | 1,196.19 | -166.95         | 437,099.20      | 757,756.62     | 32.199727 | -103.633667 |
| 13,700.00         | 90.00          | 359.75  | 12,500.00         | 1,296.19 | -167.39         | 437,199.20      | 757,756.17     | 32.200002 | -103.633666 |
| 13,800.00         | 90.00          | 359.75  | 12,500.00         | 1,396.19 | -167.84         | 437,299.20      | 757,755.73     | 32.200277 | -103.633666 |
| 13,900.00         | 90.00          | 359.75  | 12,500.00         | 1,496.18 | -168.28         | 437,399.20      | 757,755.29     | 32.200552 | -103.633665 |
| 14,000.00         | 90.00          | 359.75  | 12,500.00         | 1,596.18 | -168.72         | 437,499.20      | 757,754.85     | 32.200827 | -103.633664 |
| 14,100.00         | 90.00          | 359.75  | 12,500.00         | 1,696.18 | -169.17         | 437,599.20      | 757,754.40     | 32.201102 | -103.633664 |
| 14,200.00         | 90.00          | 359.75  | 12,500.00         | 1,796.18 | -169.61         | 437,699.20      | 757,753.96     | 32.201377 | -103.633663 |
| 14,300.00         | 90.00          | 359.75  | 12,500.00         | 1,896.18 | -170.05         | 437,799.20      | 757,753.52     | 32.201651 | -103.633662 |
| 14,400.00         | 90.00          | 359.75  | 12,500.00         | 1,996.18 | -170.49         | 437,899.20      | 757,753.07     | 32.201926 | -103.633662 |
| 14,500.00         | 90.00          | 359.75  | 12,500.00         | 2,096.18 | -170.94         | 437,999.19      | 757,752.63     | 32.202201 | -103.633661 |
| 14,600.00         | 90.00          | 359.75  | 12,500.00         | 2,196.18 | -171.38         | 438,099.19      | 757,752.19     | 32.202476 | -103.633660 |
| 14,700.00         | 90.00          | 359.75  | 12,500.00         | 2,296.18 | -171.82         | 438,199.19      | 757,751.74     | 32.202751 | -103.633660 |
| 14,800.00         | 90.00          | 359.75  | 12,500.00         | 2,396.18 | -172.27         | 438,299.19      | 757,751.30     | 32.203026 | -103.633659 |
| 14,900.00         | 90.00          | 359.75  | 12,500.00         | 2,496.17 | -172.71         | 438,399.19      | 757,750.86     | 32.203301 | -103.633658 |
| 15,000.00         | 90.00          | 359.75  | 12,500.00         | 2,490.17 | -173.15         | 438,499.19      | 757,750.42     | 32.203576 | -103.633658 |
|                   |                |         |                   |          |                 | •               |                |           |             |
| 15,100.00         | 90.00          | 359.75  | 12,500.00         | 2,696.17 | -173.59         | 438,599.19      | 757,749.97     | 32.203850 | -103.633657 |

Database:

EDM r5000.141\_Prod US

Company:

WCDSC Permian NM

Project:

Lea County (NAD83 New Mexico East)

Site:

Sec 24-24S-32E

Well:

Bell Lake 24 Fed 16H

Wellbore #1 Wellbore: Permit Plan 1 Design:

**Local Co-ordinate Reference** 

**Survey Calculation Method:** 

**TVD Reference:** 

MD Reference:

North Reference:

Well Bell Lake 24 Fed 16H

RKB @ 3600.30ft

RKB @ 3600.30ft

Grid

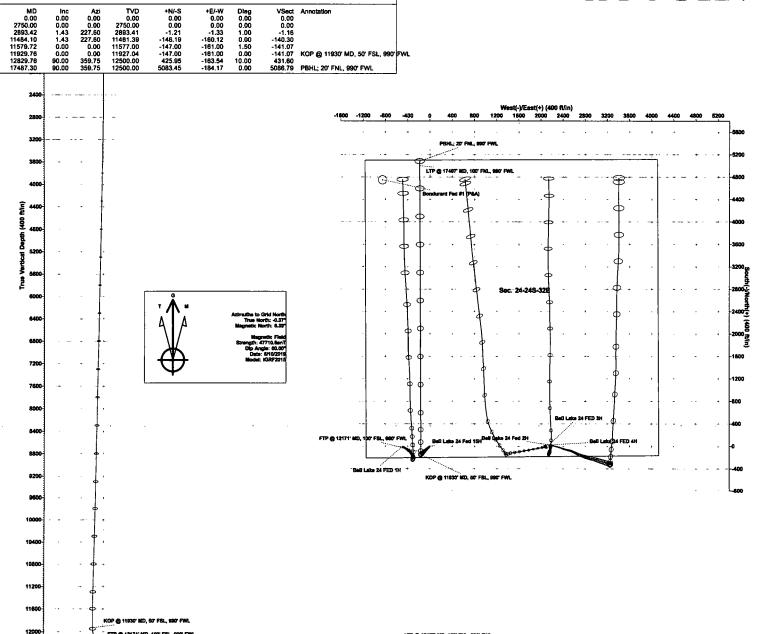
Minimum Curvature

| Planned Sur | vey |
|-------------|-----|
|-------------|-----|

| Measured  |                 |                | Vertical  |          |         | Мар        | Мар        |           |            |
|-----------|-----------------|----------------|-----------|----------|---------|------------|------------|-----------|------------|
| Depth     | Inclination     | Azimuth        | Depth     | +N/-S    | +E/-W   | Northing   | Easting    |           |            |
| (ft)      | (°)             | (°)            | (ft)      | (ft)     | (ft)    | (usft)     | (usft)     | Latitude  | Longitude  |
| 15,200.00 | 90.00           | 359.75         | 12,500.00 | 2,796.17 | -174.04 | 438,699.19 | 757,749.53 | 32.204125 | -103.63365 |
| 15,300.00 | 90.00           | 359.75         | 12,500.00 | 2,896.17 | -174.48 | 438,799.18 | 757,749.09 | 32.204400 | -103.63365 |
| 15,400.00 | 90.00           | 359.75         | 12,500.00 | 2,996.17 | -174.92 | 438,899.18 | 757,748.64 | 32.204675 | -103.63365 |
| 15,500.00 | 90.00           | 359.75         | 12,500.00 | 3,096.17 | -175.37 | 438,999.18 | 757,748.20 | 32,204950 | -103.63365 |
| 15,600.00 | 90.00           | 359.75         | 12,500.00 | 3,196.17 | -175.81 | 439,099.18 | 757,747.76 | 32.205225 | -103.63365 |
| 15,700.00 | 90.00           | 359.75         | 12,500.00 | 3,296.17 | -176.25 | 439,199.18 | 757,747.31 | 32.205500 | -103.63365 |
| 15,800.00 | 90.00           | 359.75         | 12,500.00 | 3,396.17 | -176.70 | 439,299.18 | 757,746.87 | 32.205775 | -103.63365 |
| 15,900.00 | 90.00           | 359.75         | 12,500.00 | 3,496.17 | -177.14 | 439,399.18 | 757,746.43 | 32.206049 | -103.63365 |
| 16,000.00 | 90.00           | 359.75         | 12,500.00 | 3,596.16 | -177.58 | 439,499.18 | 757,745.99 | 32.206324 | -103.63365 |
| 16,100.00 | 90.00           | 359.75         | 12,500.00 | 3,696.16 | -178.02 | 439,599.18 | 757,745.54 | 32.206599 | -103.63365 |
| 16,200.00 | 90.00           | 359.75         | 12,500.00 | 3,796.16 | -178.47 | 439,699.17 | 757,745.10 | 32.206874 | -103.63365 |
| 16,300.00 | 90.00           | 359.75         | 12,500.00 | 3,896.16 | -178.91 | 439,799.17 | 757,744.66 | 32.207149 | -103.63364 |
| 16,400.00 | 90.00           | 359.75         | 12,500.00 | 3,996.16 | -179.35 | 439,899.17 | 757,744.21 | 32.207424 | -103.63364 |
| 16,500.00 | 90.00           | 359.75         | 12,500.00 | 4,096.16 | -179.80 | 439,999.17 | 757,743.77 | 32.207699 | -103.63364 |
| 16,600.00 | 90.00           | 359.75         | 12,500.00 | 4,196.16 | -180.24 | 440,099.17 | 757,743.33 | 32.207974 | -103.63364 |
| 16,700.00 | 90.00           | 359.75         | 12,500.00 | 4,296.16 | -180.68 | 440,199.17 | 757,742.88 | 32.208248 | -103.63364 |
| 16,800.00 | 90.00           | 359.75         | 12,500.00 | 4,396.16 | -181.13 | 440,299.17 | 757,742.44 | 32.208523 | -103.63364 |
| 16,900.00 | 90.00           | 359.75         | 12,500.00 | 4,496.16 | -181.57 | 440,399.17 | 757,742.00 | 32.208798 | -103.63364 |
| 17,000.00 | 90.00           | 359.75         | 12,500.00 | 4,596.15 | -182.01 | 440,499.16 | 757,741.56 | 32.209073 | -103.63364 |
| 17,100.00 | 90.00           | 359.75         | 12,500.00 | 4,696.15 | -182.45 | 440,599.16 | 757,741.11 | 32.209348 | -103.63364 |
| 17,200.00 | 90.00           | 359.75         | 12,500.00 | 4,796.15 | -182.90 | 440,699.16 | 757,740.67 | 32.209623 | -103.63364 |
| 17,300.00 | 90.00           | 359.75         | 12,500.00 | 4,896.15 | -183.34 | 440,799.16 | 757,740.23 | 32.209898 | -103.63364 |
| 17,400.00 | 90.00           | 359.75         | 12,500.00 | 4,996.15 | -183.78 | 440,899.16 | 757,739.78 | 32.210173 | -103.63364 |
| 17,407.30 | 90.00           | 359.75         | 12,500.00 | 5,003.45 | -183.82 | 440,906.46 | 757,739.75 | 32.210193 | -103.63364 |
| LTP @ 1   | 7407' MD. 100   | ' FNL. 990' FV | VL        | •        |         | •          | ·          |           |            |
| 17,487.29 | 90.00           | 359.75         | 12,500.00 | 5.083.44 | -184.17 | 440,986,45 | 757,739.40 | 32,210412 | -103.63364 |
| PBHL: 2   | D' FNL, 990' F1 | WL             | •         | •        |         | •          | ·          |           |            |
| 17,487.30 | •               | 359.75         | 12,500.00 | 5,083.45 | -184.17 | 440,986.46 | 757,739.40 | 32,210412 | -103.63364 |

| ı | Des | lan | <b>Targets</b> |
|---|-----|-----|----------------|
|   | 200 |     | iai goto       |

| To. | P/S | aŧ | N | 26 | ne |
|-----|-----|----|---|----|----|
|     |     |    |   |    |    |


| Target Name             |           |          |      |          |         |            |            |           |             |
|-------------------------|-----------|----------|------|----------|---------|------------|------------|-----------|-------------|
| - hit/miss target       | Dip Angle | Dip Dir. | TVD  | +N/-S    | +E/-W   | Northing   | Easting    |           | Ì           |
| - Shape                 | (°)       | (°)      | (ft) | (ft)     | (ft)    | (usft)     | (usft)     | Latitude  | Longitude   |
| PBHL - Bell Lake 24 Fec | 0.00      | 0.00     | 0.00 | 5,083.45 | -184.17 | 440,986.46 | 757,739.40 | 32.210412 | -103.633641 |

- plan misses target center by 5086.79ft at 0.00ft MD (0.00 TVD, 0.00 N, 0.00 E)
- Point

| Plan Annota | tions     |           |                   |         | •                                   |  |  |  |
|-------------|-----------|-----------|-------------------|---------|-------------------------------------|--|--|--|
|             | Measured  | Vertical  | Local Coordinates |         | Local Coordinates                   |  |  |  |
|             | Depth     | Depth     | +N/-S             | +E/-W   |                                     |  |  |  |
|             | (ft)      | (ft)      | (ft)              | (ft)    | Comment                             |  |  |  |
| ,           | 11,929.76 | 11,927.04 | -147.00           | -161.00 | KOP @ 11930' MD, 50' FSL, 990' FWL  |  |  |  |
|             | 12,170.90 | 12,161.13 | <b>-97.00</b>     | -161.22 | FTP @ 12171' MD, 100' FSL, 990' FWL |  |  |  |
|             | 17,407.30 | 12,500.00 | 5,003.45          | -183.82 | LTP @ 17407' MD, 100' FNL, 990' FWL |  |  |  |
|             | 17,487.29 | 12,500.00 | 5,083.44          | -184.17 | PBHL; 20' FNL, 990' FWL             |  |  |  |

# **Devon Energy** WELL DETAILS: Bell Lake 24 Fed 16H RKB @ 3600,30ft 3575.30 Easting 757923,57 SECTION DETAILS





800 2100 2400 2700 3000 Vertical Section at 357.93°(300 ft/in)

1800 2100 2400

# 1. Geologic Formations

| TVD of target | 12500 | Pilot hole depth             | N/A |
|---------------|-------|------------------------------|-----|
| MD at TD:     | 17487 | Deepest expected fresh water |     |

# Basin

|                 | Depth   | Water/Mineral                       |          |
|-----------------|---------|-------------------------------------|----------|
| Formation       | (TVD)   | Bearing/Target                      | Hazards* |
|                 | from KB | Zone?                               |          |
| Rustler         | 1176    |                                     |          |
| Salt            | 1500    |                                     |          |
| Base of Salt    | 4976    |                                     |          |
| Delaware        | 5015    |                                     |          |
| Bone Spring 1st | 8917    |                                     |          |
| Bone Spring 2nd | 10242   |                                     |          |
| Bone Spring 3rd | 10790   |                                     |          |
| Wolfcamp        | 12199   |                                     |          |
|                 |         | · · · · · · · · · · · · · · · · · · |          |
|                 |         |                                     |          |
|                 |         |                                     |          |
|                 |         |                                     |          |
|                 |         |                                     |          |
|                 |         |                                     | ·        |
|                 |         |                                     |          |
|                 |         |                                     |          |
|                 |         |                                     |          |
|                 |         |                                     |          |

<sup>\*</sup>H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

| Hole Size | Casing | Interval  | Csg. Size | Wt    | Grade      | Conn            | Min SF   | Min SF | Min SF             |
|-----------|--------|-----------|-----------|-------|------------|-----------------|----------|--------|--------------------|
| Hole Size | From   | To        | Csg. Size | (PPF) | Grade      | Conn            | Collapse | Burst  | Tension            |
| 17 1/2    | 0      | 1201 TVD  | 13 3/8    | 48.0  | H40        | STC             | 1.125    | 1.25   | 1.6                |
| 9 7/8     | 0      | 10790 TVD | 7 5/8     | 29.7  | P110       | Flushmax<br>III | 1.125    | 1.25   | 1.6                |
| 6 3/4     | 0      | TD        | 5 1/2     | 20.0  | P110       | Vam SG          | 1.125    | 1.25   | 1.6                |
|           | •      |           | •         | BLM N | Ainimum Sa | fety Factor     | 1.125    | 1      | 1.6 Dry<br>1.8 Wet |

- All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.
- Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.
- A variance is requested for collapse rating on intermediate casing. Operator will keep pipe full while running casing.
- Int casing shoe will be selected based on drilling data/gamma, setting depth with be revised accordingly if needed.
- A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.
- A variance is requested to set intermediate casing in the curve if hole conditions dictate that a higher shoe strength is required.

Casing Program (Alternative Design)

| Hole Size | Casing | g Interval | Con Sino  | Wt          | Grade       | Conn  | Min SF   | Min SF             | Min SF  |
|-----------|--------|------------|-----------|-------------|-------------|-------|----------|--------------------|---------|
| Hole Size | From   | To         | Csg. Size | (PPF)       | Grade       | Conn  | Collapse | Burst              | Tension |
| 17 1/2    | 0      | 1201 TVD   | 13 3/8    | 48.0        | H40         | STC   | 1.125    | 1.25               | 1.6     |
| 9 7/8     | 0      | 10790 TVD  | 8 5/8     | 32.0        | P110        | TLW   | 1.125    | 1.25               | 1.6     |
| 7 7/8     | 0      | TD         | 5 1/2     | 17.0        | P110        | BTC   | 1.125    | 1.25               | 1.6     |
|           |        |            | BLM N     | Ainimum Sai | fety Factor | 1.125 | 1        | 1.6 Dry<br>1.8 Wet |         |

- All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.
- Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.
- A variance is requested for collapse rating on intermediate casing. Operator will keep pipe full while running casing.
- Int casing shoe will be selected based on drilling data/gamma, setting depth with be revised accordingly if needed.
- A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.
- •Variance requested to drill 10.625" hole instead of 9.875" for intermediate 1, the 8.625" connection will change from TLW to BTC.
- A variance is requested to set intermediate casing in the curve if hole conditions dictate that a higher shoe strength is required.

|                                                                                                                                                  | Y or N |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Is casing new? If used, attach certification as required in Onshore Order #1                                                                     | Y      |
| Does casing meet API specifications? If no, attach casing specification sheet.                                                                   | Y      |
| Is premium or uncommon casing planned? If yes attach casing specification sheet.                                                                 | N      |
| Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria). | Y      |
| Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?                | Y      |
| Is well located within Capitan Reef?                                                                                                             | N      |
| If yes, does production casing cement tie back a minimum of 50' above the Reef?                                                                  |        |
| Is well within the designated 4 string boundary.                                                                                                 |        |
| Is well located in SOPA but not in R-111-P?                                                                                                      | N      |
| If yes, are the first 2 strings cemented to surface and 3 <sup>rd</sup> string cement tied back 500' into previous casing?                       |        |
| Is well located in R-111-P and SOPA?                                                                                                             | N      |
| If yes, are the first three strings cemented to surface?                                                                                         | -      |
| Is 2 <sup>nd</sup> string set 100' to 600' below the base of salt?                                                                               |        |
| Is well located in high Cave/Karst?                                                                                                              | N      |
| If yes, are there two strings cemented to surface?                                                                                               |        |
| (For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?                                                           |        |
| Is well located in critical Cave/Karst?                                                                                                          | N      |
| If yes, are there three strings cemented to surface?                                                                                             |        |

3. Cementing Program (Primary Design)

| Casing                     | # Sks        | тос                 | Wt.<br>(lb/gal) | Yld<br>(ft3/sack) | Slurry Description                         |
|----------------------------|--------------|---------------------|-----------------|-------------------|--------------------------------------------|
| Surface                    | 908          | Surf                | 13.2            | 1.44              | Lead: Class C Cement + additives           |
| Total 1                    | 685          | Surf                | 9               | 3.27              | Lead: Class C Cement + additives           |
| Int 1                      | 783          | 4000'<br>above shoe | 13.2            | 1.44              | Tail: Class H / C + additives              |
|                            | 845          | Surf                | 9               | 3.27              | 1st stage Lead: Class C Cement + additives |
| Int 1<br>Two Stage         | 93           | 500'<br>above shoe  | 13.2            | 1.44              | 1st stage Tail: Class H / C + additives    |
| w/ DV @<br>TVD of Delaware | 479          | Surf                | 9               | 3.27              | 2nd stage Lead: Class C Cement + additives |
|                            | 93           | 500' above<br>DV    | 13.2            | 1.44              | 2nd stage Tail: Class H / C + additives    |
| Int 1                      | As<br>Needed | Surf                | 9               | 1.44              | Squeeze Lead: Class C Cement + additives   |
| Intermediate               | 685          | Surf                | 9               | 3.27              | Lead: Class C Cement + additives           |
| Squeeze                    | 783          | 4000'<br>above shoe | 13.2            | 1.44              | Tail: Class H / C + additives              |
| Production                 | 59           | 9930                | 9.0             | 3.3               | Lead: Class H /C + additives               |
| Production                 | 355          | 11930               | 13.2            | 1.4               | Tail: Class H / C + additives              |

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

| Casing String              | % Excess |
|----------------------------|----------|
| Surface                    | 50%      |
| Intermediate 1             | 30%      |
| Intermediate 1 (Two Stage) | 25%      |
| Prod                       | 10%      |

3. Cementing Program (Alternative Design)

| Casing                    | # Sks        | TOC                 | Wt.<br>PPg | Yld<br>(ft3/sack) | Slurry Description                         |
|---------------------------|--------------|---------------------|------------|-------------------|--------------------------------------------|
| Surface                   | 908          | Surf                | 13.2       | 1.44              | Lead: Class C Cement + additives           |
|                           | 455          | Surf                | 9          | 3.27              | Lead: Class C Cement + additives           |
| Int 1                     | 465          | 4000'<br>above shoe | 13.2       | 1.44              | Tail: Class H / C + additives              |
|                           | 496          | Surf                | 9          | 3.27              | 1st stage Lead: Class C Cement + additives |
| Int 1<br>Two Stage        | 55           | 500'<br>above shoe  | 13.2       | 1.44              | 1st stage Tail: Class H / C + additives    |
| w DV @<br>~4500           | 335          | Surf                | 9          | 3.27              | 2nd stage Lead: Class C Cement + additives |
| .500                      | 55           | 500' above<br>DV    | 13.2       | 1.44              | 2nd stage Tail: Class H / C + additives    |
| Int 1                     | As<br>Needed | Surf                | 13.2       | 1.44              | Squeeze Lead: Class C Cement + additives   |
| Intermediate              | 455          | Surf                | 9          | 3.27              | Lead: Class C Cement + additives           |
| Squeeze                   | 465          | 4000'<br>above shoe | 13.2       | 1.44              | Tail: Class H / C + additives              |
| Int 1 (10.625" Hole Size) | 641          | Surf                | 9          | 3.27              | Lead: Class C Cement + additives           |
|                           | 768          | 4000'<br>above shoe | 13.2       | 1.44              | Tail: Class H / C + additives              |
|                           | 117          | 9930                | 9.0        | 3.3               | Lead: Class H /C + additives               |
| Production                | 736          | 11930               | 13.2       | 1.4               | Tail: Class H / C + additives              |

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

| Casing String              | % Excess |
|----------------------------|----------|
| Surface                    | 50%      |
| Intermediate 1             | 30%      |
| Intermediate 1 (Two Stage) | 25%      |
| Prod                       | 10%      |

4. Pressure Control Equipment (Three String Design)

| BOP installed and tested before drilling which hole? | Size?        | Min.<br>Require<br>d WP | Туре         |             | *            | Tested to:                     |       |     |     |     |     |       |      |     |  |     |
|------------------------------------------------------|--------------|-------------------------|--------------|-------------|--------------|--------------------------------|-------|-----|-----|-----|-----|-------|------|-----|--|-----|
|                                                      |              |                         | Anı          | nular       | Х            | 50% of rated working pressure  |       |     |     |     |     |       |      |     |  |     |
| Int 1                                                | 13-58"       | 5M                      | Bline        | d Ram       | X            |                                |       |     |     |     |     |       |      |     |  |     |
| IIII 1                                               | 13-36        | 3141                    | Pipe         | Ram         |              | 5M                             |       |     |     |     |     |       |      |     |  |     |
|                                                      |              |                         | Doub         | le Ram      | X            | JIVI                           |       |     |     |     |     |       |      |     |  |     |
|                                                      |              |                         | Other*       |             |              |                                |       |     |     |     |     |       |      |     |  |     |
|                                                      | 13-5/8"      |                         | Annular (5M) |             | Х            | 100% of rated working pressure |       |     |     |     |     |       |      |     |  |     |
| Production                                           |              | 10M                     | Blind Ram    |             | X            |                                |       |     |     |     |     |       |      |     |  |     |
| Production                                           |              | TOM                     | TOM          | 101         | 10M          | 10M                            | 1 TOW | 10M | 10M | IOM | TOW | 10141 | Pipe | Ram |  | 10M |
|                                                      |              |                         |              | Doub        | le Ram       | X                              | TOW   |     |     |     |     |       |      |     |  |     |
|                                                      |              |                         | Other*       |             |              |                                |       |     |     |     |     |       |      |     |  |     |
|                                                      |              |                         | Annul        | ar (5M)     |              |                                |       |     |     |     |     |       |      |     |  |     |
|                                                      |              | Į.                      | Bline        | d Ram       | 1            |                                |       |     |     |     |     |       |      |     |  |     |
|                                                      |              |                         | Pipe Ram     |             |              | 7                              |       |     |     |     |     |       |      |     |  |     |
|                                                      |              |                         | Double Ram   |             |              | 7                              |       |     |     |     |     |       |      |     |  |     |
|                                                      |              |                         | Other*       |             |              | <b>1</b>                       |       |     |     |     |     |       |      |     |  |     |
| N A variance is requested for                        | the use of a | diverter or             | the surface  | casing. See | attached for | schematic.                     |       |     |     |     |     |       |      |     |  |     |
| Y A variance is requested to                         | run a 5 M an | nular on a              | 10M system   |             |              |                                |       |     |     |     |     |       |      |     |  |     |

5. Mud Program (Three String Design)

| Section      | Туре            | Weight<br>(ppg) |
|--------------|-----------------|-----------------|
| Surface      | FW Gel          | 8.5-9           |
| Intermediate | DBE / Cut Brine | 10-10.5         |
| Production   | OBM             | 10-10.5         |

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

| What will be used to monitor the loss or gain of fluid? | PVT/Pason/Visual Monitoring |
|---------------------------------------------------------|-----------------------------|

6. Logging and Testing Procedures

| Logging, Coring and Testing |                                                                                                                 |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
|                             | Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the |  |  |
| X                           | Completion Report and sbumitted to the BLM.                                                                     |  |  |
|                             | No logs are planned based on well control or offset log information.                                            |  |  |
|                             | Drill stem test? If yes, explain.                                                                               |  |  |
|                             | Coring? If yes, explain.                                                                                        |  |  |

| Additional logs planned |             | Interval                |  |
|-------------------------|-------------|-------------------------|--|
|                         | Resistivity | Int. shoe to KOP        |  |
|                         | Density     | Int. shoe to KOP        |  |
| X                       | CBL         | Production casing       |  |
| X                       | Mud log     | Intermediate shoe to TD |  |
|                         | PEX         |                         |  |

7. Drilling Conditions

| Condition                  | Specfiy what type and where? |
|----------------------------|------------------------------|
| BH pressure at deepest TVD | 6825                         |
| Abnormal temperature       | No                           |

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

| one of the state o |                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H2S is present     |  |
| Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H2S plan attached. |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |

## 8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

#### Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
  - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- <sup>3</sup> The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
  - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

| Attachments | •                |
|-------------|------------------|
| X           | Directional Plan |
|             | Other, describe  |



# U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

# PWD Data Report

APD ID: 10400044961 Submission Date: 07/30/2019

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: BELL LAKE 24 FED Well Number: 16H

Well Type: OIL WELL Well Work Type: Drill

# Section 1 - General

Would you like to address long-term produced water disposal? NO

# **Section 2 - Lined Pits**

Would you like to utilize Lined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined plt precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: BELL LAKE 24 FED Well Number: 16H

Lined pit Monitor description:

#### **Lined pit Monitor attachment:**

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

#### **Additional bond information attachment:**

# Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? N

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

#### Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

# Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

### Unlined pit reclamation attachment:

Unlined pit Monitor description:

#### Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

#### Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

## Geologic and hydrologic evidence:

State authorization:

#### **Unlined Produced Water Pit Estimated percolation:**

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP Well Name: BELL LAKE 24 FED Well Number: 16H Is the reclamation bond a rider under the BLM bond? Unlined pit bond number: Unlined pit bond amount: Additional bond information attachment: **Section 4 - Injection** Would you like to utilize Injection PWD options? N Produced Water Disposal (PWD) Location: PWD surface owner: PWD disturbance (acres): Injection PWD discharge volume (bbl/day): Injection well mineral owner: Injection well type: Injection well number: Injection well name: Assigned injection well API number? Injection well API number: Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: Underground Injection Control (UIC) Permit? **UIC Permit attachment:** Section 5 - Surface Discharge Would you like to utilize Surface Discharge PWD options? N Produced Water Disposal (PWD) Location: PWD surface owner: PWD disturbance (acres): Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? **Surface Discharge NPDES Permit attachment:** Surface Discharge site facilities information: Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? N

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Other PWD discharge volume (bbl/day):

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: BELL LAKE 24 FED Well Number: 16H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:



U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

# **Bond Info Data Report**

02/06/2020

APD ID: 10400044961

Submission Date: 07/30/2019

Operator Name: DEVON ENERGY PRODUCTION COMPANY LP

Well Name: BELL LAKE 24 FED

Well Number: 16H

Well Type: OIL WELL Well Work Type: Drill



**Show Final Text** 

# **Bond Information**

Federal/Indian APD: FED

BLM Bond number: NMB000801

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

### Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: