Form 3160-3 (June 2015)

HOBBS OCD

FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018

UNITED STATES DEPARTMENT OF THE INTERIOR **BUREAU OF LAND MANAGEMENT**

MAR 0 3 2020

5. Lease Serial No.

NMNM137471

APPLICATION FOR PERMIT TO DRILL OR REENTER RECEIVED 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. DRILL REENTER Ia. Type of work: 1b. Type of Well: Oil Well Gas Well Other 8. Lease Name and Well No. 1c. Type of Completion: Hydraulic Fracturing Single Zone Multiple Zone GOLDEN BELL FED COM 26 36 06 2. Name of Operator 9. API Well No **AMEREDEV OPERATING LLC** 30-02 3b. Phone No. (include area code) 3a. Address (737)300-4700 WC-025 G-08:S2036Z0C7-LWR*BONE SI 5707 Southwest Parkway, Building 1, Suite 275 Austin TX 4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk. and Survey or Area SEC 6 / T26S / R36E / NMP At surface LOT B / 230 FNL / 2010 FEL / LAT 32.0789449 / LONG -103.302163 At proposed prod. zone LOT O / 200 FSL / 1980 FEL / LAT 32.0510838 / LONG -103.3020221 14. Distance in miles and direction from nearest town or post office® 12. County or Parish 13. State LEA NM 6.5 miles 15. Distance from proposed* 16. No of acres in lease 17. Spacing Unit dedicated to this well 200 feet location to nearest property or lease line, ft. 360 (Also to nearest drig. unit line, if any) 20. BLM/BIA Bond No. in file 18. Distance from proposed location® 19. Proposed Depth to nearest well, drilling, completed, 2941 feet 10520 feet / 20467 feet FED: NMB001478 applied for, on this lease, ft. 21. Elevations (Show whether DF, KDB, RT, GL, etc.) 23. Estimated duration 22. Approximate date work will start* 90 days 10/02/2020 3011 feet 24. Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No. 1, and the Hydraulic Fracturing rule per 43 CFR 3162.3-3 (as applicable) 1. Well plat certified by a registered surveyor. 4. Bond to cover the operations unless covered by an existing bond on file (see 2. A Drilling Plan. Item 20 above). 3. A Surface Use Plan (if the location is on National Forest System Lands, the 5. Operator certification. SUPO must be filed with the appropriate Forest Service Office). 6. Such other site specific information and/or plans as may be requested by the RLM. Name (Printed/Typed) 25. Signature (Electronic Submission) Julia Steger / Ph: (737)300-4733 08/31/2018 Title Engineer Date Approved by (Signature) Name (Printed/Typed) 02/26/2020 (Electronic Submission) Cody Layton / Ph: (575)234-5959 Title Office CARLSBAD Assistant Field Manager Lands & Minerals Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon. Conditions of approval, if any, are attached. Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction. 03/00/2000 GCP Dec 03/03/2020

(Continued on page 2)

oproval Date: 02/26/2020

(Instructions on page 2)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: AMEREDEV OPERATING LLC
WELL NAME & NO.: NMNM137471
SURFACE HOLE FOOTAGE: GOLDEN BELL FED COM 26 36 06 085H
BOTTOM HOLE FOOTAGE 230'/N & 2010'/E
LOCATION: 200'/S & 1980'/E
COUNTY: SECTION 6, T26S, R36E, NMPM

COA

H2S	↑ Yes	€ No	
Potash	• None	C Secretary	ℂ R-111-P
Cave/Karst Potential	€ Low		← High
Cave/Karst Potential	C Critical		
Variance	C None	Flex Hose	• Other
Wellhead	Conventional	← Multibowl	© Both
Other	□ 4 String Area		□ WIPP
Other	Fluid Filled	□ Cement Squeeze	Pilot Hole
Special Requirements	■ Water Disposal	▼ COM	□ Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 1,415 feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface. Surface casing depth may change depth based off competent bedding. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

Page 1 of 9

Approval Date: 02/26/2020

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the Choose an item. inch intermediate casing is:

Option 1 (Single Stage):

Cement to surface. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
- ❖ In <u>Capitan Reef Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
 (Use this for 3 string wells in the Capitan Reef, if 4 string well ensure FW based mud used across the capitan interval)
 - Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.

- Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- 3. The minimum required fill of cement behind the Choose an item. inch production casing is:

Option 1 (Single Stage):

Cement should tie-back at least 50 feet on top of Capitan Reef top. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement should tie-back at least 50 feet on top of Capitan Reef top. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
- 4. The minimum required fill of cement behind the Choose an item. inch production liner is:
 - Cement should tie-back **100 feet** into the previous casing. Operator shall provide method of verification.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be Choose an item. psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be Choose an item. psi. Variance is approved to use a Choose an item. Annular which shall be tested to Choose an item. psi.

Option 2:

- 1. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be Choose an item. psi. Variance is approved to use a Choose an item. Annular which shall be tested to Choose an item. psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

• The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases

- subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County
 Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - ✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.

Page 5 of 9

- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

Page 7 of 9

- e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. The results of the test shall be reported to the appropriate BLM office.
 - f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.

- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 9 of 9

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie Hanna Signed on: 08/10/2018

Title: Senior Engineering Technician

Street Address: 5707 SOUTHWEST PKWY BLDG 1 STE 275

City: AUSTIN State: TX Zip: 78735

Phone: (737)300-4723

Email address: channa@ameredev.com

Field Representative

Representative Name: ZACHARY BOYD

Street Address: 5707 SOUTHWEST PARKWAY, BLDG. 1 #275

City: AUSTIN State: TX Zip: 78735

Phone: (580)940-5054

Email address: zboyd@ameredev.com

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400032990 **Submission Date:** 08/31/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: GOLDEN BELL FED COM 26 36 06

Well Type: OIL WELL

Well Number: 085H

Well Work Type: Drill

Show Final Text

Section 1 - General

APD ID: 10400

10400032990

Tie to previous NOS? Y

Submission Date: 08/31/2018

BLM Office: CARLSBAD

User: Christie Hanna

Title: Senior Engineering Technician

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM137471

Lease Acres: 360

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? NO

APD Operator: AMEREDEV OPERATING LLC

Operator letter of designation:

Operator Info

Operator Organization Name: AMEREDEV OPERATING LLC

Operator Address: 5707 Southwest Parkway, Building 1, Suite 275

Zip: 78735

Operator PO Box:

Operator City: Austin

State: TX

Operator Phone: (737)300-4700

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO Master Development Plan name:

Well in Master SUPO? NO Master SUPO name:

Well in Master Drilling Plan? NO Master Drilling Plan name:

· ·

Well Name: GOLDEN BELL FED COM 26 36 06 Well Number: 085H Well API Number:

Field/Pool or Exploratory? Field and Pool Field Name: WC-025 G-08 Pool Name: LWR BONE

S263620C SPRING
Is the proposed well in an area containing other mineral resources? NATURAL GAS CO2 OII

Well Name: GOLDEN BELL FED COM 26 36 06 Well Number: 085H

Is the proposed well in an area containing other mineral resources? NATURAL GAS,CO2,OIL

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO

New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name:

Number: 085H

Well Class: HORIZONTAL

GOLDEN BELL Number of Legs: 1

Well Work Type: Drill

Well Type: OIL WELL

Distance to town: 6.5 Miles

Describe Well Type:

Well sub-Type: INFILL

Describe sub-type:

Distance to nearest well: 2941 FT

Distance to lease line: 200 FT

Reservoir well spacing assigned acres Measurement: 320 Acres

Well plat:

GOLDEN_BELL_FED_COM_26_36_06_085H___BLM_LEASES_20180810090105.pdf

GOLDEN_BELL FED COM 26 36 06 085H GAS CAPTURE PLAN 20180810090117.pdf

GOLDEN BELL FED COM 26 36 06 085H EXHIBIT 2A 2B 20180827074849.pdf

GOLDEN_BELL_FED_COM_26_36_06_085H___VICINITY_MAP_20180827074857.pdf

GOLDEN_BELL_FED_COM_26_36_06_085H___C102_SIGNED_20180831100411.pdf

Well work start Date: 10/02/2020

Duration: 90 DAYS

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 **Vertical Datum: NAVD88**

Survey number: 19642 **Reference Datum:**

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type		Elevation	MD	TVD	Will this well produce from this lease?
SHL Leg	230	l	201 0	FEL	26S	36E	6	Lot B	32.07894 49	- 103.3021 63	LEA	1	NEW MEXI CO		NMNM 137471		0	0	

Well Name: GOLDEN BELL FED COM 26 36 06

Well Number: 085H

Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT	Will this well produce from this lease?
KOP Leg #1	185	FNL	210 5	FEL	26S	36E	6	Aliquot NWNE	32.07906 97	- 103.3024 695	LEA	1	NEW MEXI CO	F	NMNM 137471	- 693 6	994 9	994 7	
PPP Leg #1-1	0	FSL	198 0	FEL	26S	36E	6	Aliquot SWSE	32.06505 72	- 103.3020 472	LEA	NEW MEXI CO	' ' - ' '	F	NMNM 137471	- 750 9	153 83	105 20	į
PPP Leg #1-2	230	FNL	201 0	FEL	26S	36E	6	Lot B	32.07894 49	- 103.3021 63	LEA		NEW MEXI CO	F	NMNM 137471	301 1	0	0	
EXIT Leg #1	0	FNL	198 0	FEL	26S	36E	7	Aliquot NWNE	32.06505 72	- 103.3020 472	LEA		NEW MEXI CO	F	NMNM 137472	- 750 9	153 83	105 20	
BHL Leg #1	200	FSL	198 0	FEL	26S	36E	7	Lot O	32.05108 38	- 103.3020 221	LEA	NEW MEXI CO		F	NMNM 137472	- 750 9	204 67	105 20	

U.S. Department of the interior **BUREAU OF LAND MANAGEMENT**

Drilling Plan Data Report 02/28/2020

APD ID: 10400032990

Submission Date: 08/31/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: GOLDEN BELL FED COM 26 36 06

Well Type: OIL WELL

Well Number: 085H

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

283618	RUSTLER	1948	1066	1066	ANHYDRITE	NONE	N
283619	SALADO	442	1506	1506	SALT	NONE	N
283620	TANSILL	-1286	3234	3234	LIMESTONE	NONE	N
283621	CAPITAN REEF	-1788	3736	3736	LIMESTONE	USEABLE WATER	N
283622	LAMAR	-3085	5033	5033	LIMESTONE	NONE	N
283623	BELL CANYON	-3120	5068	5068	SANDSTONE	NATURAL GAS, OIL	N
283624	BRUSHY CANYON	-5163	7111	7111	SANDSTONE	NATURAL GAS, OIL	N
283625	BONE SPRING LIME	-6388	8336	8336	LIMESTONE	NONE	N
283626	BONE SPRING 1ST	-7764	9712	9712	SANDSTONE	NATURAL GAS, OIL	N
283627	BONE SPRING 2ND	-8323	10271	10271	SANDSTONE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Rating Depth: 15000

Requesting Variance? YES

Testing Procedure: See attachment

Choke Diagram Attachment:

10M_Choke_Manifold_REV_20191119101425.pdf

Well Name: GOLDEN BELL FED COM 26 36 06

Well Number: 085H

10M_Choke_Manifold_REV_20191119101425.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20191119101440.pdf

5M_BOP_System_20191119101440.pdf

 $Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20191119101441.pdf$

4_String_MB_Ameredev_Wellhead_Drawing_net_REV_20191119143738.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1191	0	1191	3011		l	HCL -80		OTHER - BTC	7.71	0.67	DRY	11.3	DRY	13.2 1
	INTERMED IATE	9.87 5	7.625	NEW	API	N	0	10520	0	10520				HCL -80		OTHER - BTC	1.3	1.84	DRY	2.09	DRY	3.01
	PRODUCTI ON	6.75	5.5	NEW	API	N	0	21106	0	10520			21106	P- 110		OTHER - BTC	1.97	2.1	DRY	3.11	DRY	3.46

Casing Attachments

Casing ID: 1

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

13.375_68.00__J55_BTC_20191119101627.pdf

 $Golden_Bell_Fed_Com_26_36_06_085H__Wellbore_Diagram_and_CDA_20191119101638.pdf$

Well Name: GOLDEN BELL FED COM 26 36 06

Well Number: 085H

Casing Attachments

Casing ID: 2

String Type:INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

7.625_29.70_L80HC_BORUSAN_20191119101734.pdf

Golden_Bell_Fed_Com_26_36_06_085H___Wellbore_Diagram_and_CDA_20191119101744.pdf

Casing ID: 3

String Type:PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

5.50_20_USS_P110_HC_BTC_API_20191119101835.pdf

Golden_Bell_Fed_Com_26_36_06_085H___Wellbore_Diagram_and_CDA_20191119101844.pdf

Section 4 - Cement

Lead

INTERMEDIATE

Section	4-0	cilicii	· ·									
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives	
SURFACE	Lead					1.76						
SURFACE	Tail											

2.47

Well Name: GOLDEN BELL FED COM 26 36 06

Well Number: 085H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives	
INTERMEDIATE	Tail								• •			
INTERMEDIATE	Lead					2.47						
INTERMEDIATE	Tail											
PRODUCTION	Lead					1.34						

Section 5 - Circulating Medium

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary supplies (e.g. bentonite, cedar bark) for fluid control will be on site.

Describe the mud monitoring system utilized: An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure, and pump rate.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	1191	WATER-BASED MUD	8.4	8.6							

Well Name: GOLDEN BELL FED COM 26 36 06

Well Number: 085H

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1191	1052 0	OTHER : Diesel Brine Emulsion	8.5	9.4							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

Coring operation description for the well:

No coring will be done on this well.

Section 7 - Pressure

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Plan_20180809142040.pdf

Well Name: GOLDEN BELL FED COM 26 36 06 Well Number: 085H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

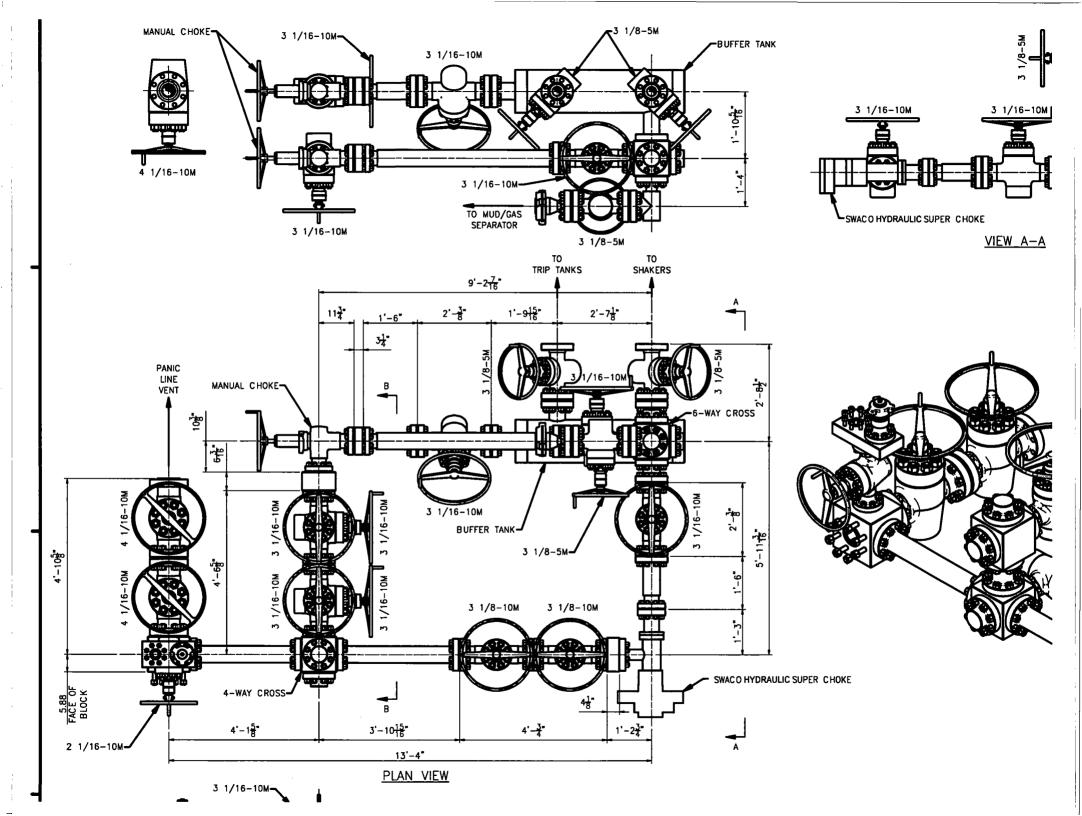
GB085_DR_20191119144951.pdf

GB085 LLR 20191119144952.pdf

5M_Annular_Preventer_Variance_and_Well_Control_Plan_20191119145020.pdf

Pressure_Control_Plan_Single_Well_MB4_3String_Big_Hole_BLM_20191119145021.pdf

Other proposed operations facets description:


Other proposed operations facets attachment:

CAPITAN_PROTECTION_CONTINGENCY_PLAN_BS_PACKET_20190905_20191119145044.pdf Rig_Skid_Procedure_20191119145056.pdf

Other Variance attachment:

R616___CoC_for_hoses_12_18_17_20191119145131.pdf

Requested_Exceptions___3_String_Revised_01312019_20191119145132.pdf

5M Annular Preventer Variance Request and Well Control Procedures

Note: A copy of the Well Control Plan must be available at multiple locations on the rig for review by rig personnel, as well as review by the BLM PET/PE, and a copy must be maintained on the rig floor.

Dual Isolation Design for 5M Annular Exception

Ameredev will utilize 13-5/8" 10M (5M Annular) BOPE System consisting of:

- 13-5/8" 5M Annular
- 13-5/8" 10M Upper Pipe Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram
- 13-5/8" 10M Blind Rams
- 13-5/8" 10M Drilling Spool /w 2 4" 10M Outlets Double 10M Isolation Valves
- 13-5/8" 10M Lower Blind Rams
 - o 3-1/2" 5-1/2" Variable Bore Ram

All drilling components and casing associated to exposure > 5000 psi BHP requiring a 10M system will have a double isolation (secondary barrier) below the 5M Annular that would provide a barrier to flow. The mud system will always be primary barrier, it will be maintained by adjusting values based on tourly mud tests and monitoring a PVT System to maintain static wellbore conditions, displacement procedures will be followed and recorded on daily drilling reports during tripping operations. Surge and swab pressure values will be calculated and maintained and static flow check will be monitored at previous casing shoe and verified static well conditions prior to tripping out of hole and again prior to pulling last joint of drill pipe through BOPE. The below table, documents that two barriers to flow can be maintained at all times, independent of the rating of the annular preventer.

Drill Components	Size	Primary Barrier	Secondary Barrier	Third Barrier
Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
HWDP Drillpipe	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Drill Collars	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
Production Casing	3-1/2"-5-1/2"	Drilling Fluid	Upper Pipe Rams	Lower Pipe Rams
	10 = 10			

Well Control Procedures

Proper well control procedures are dependent to differentiating well conditions, to cover the basic well control operations there are will be standard drilling ahead, tripping pipe, tripping BHA, running casing, and pipe out of the hole/open hole scenarios that will be defined by procedures below. Initial Shut In Pressure can be taken against the Uppermost BOPE component the 5M Annular, pressure control can be transferred from the lesser 5M Annular to the 10M Upper Pipe Rams if needed. Shut In Pressures may be equal to or less than the Rated Working Pressure but at no time will the pressure on the annular preventer exceed the Rated Working Pressure of the annular. The annular will be tested to 5,000 psi. This will be the Rated Working Pressure of the annular preventer. All scenarios will be written such as shut in will be performed by closing the 10,000 psi Upper Pipe Rams for faster Accumulator pressure recovery to allow safer reaction to controlling wellbore pressure.

Shutting In While Drilling

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut down pumps
- 4. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 5. Install open, full open safety valve and close valve, Close Chokes
- 6. Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

Shutting In While Tripping

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out drill string to allow FOSV installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7 Daniel Jose (CIDD CICD Dis Cair and Time)

Shutting In While Running Casing

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out casing to allow circulating swedge installation
- 3. Shut in Upper Pipe Rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install circulating swedge, Close high pressure, low torque valves, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold Pre-job safety meeting and discuss kill procedure

Shutting in while out of hole

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut-in well: close blind rams and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Close Chokes, Verify well is shut-in and monitor pressures
- 4. Notify supervisory personnel
- 5. Record data (SIDP, SICP, Pit Gain, and Time)
- 6. Hold Pre-job safety meeting and discuss kill procedure

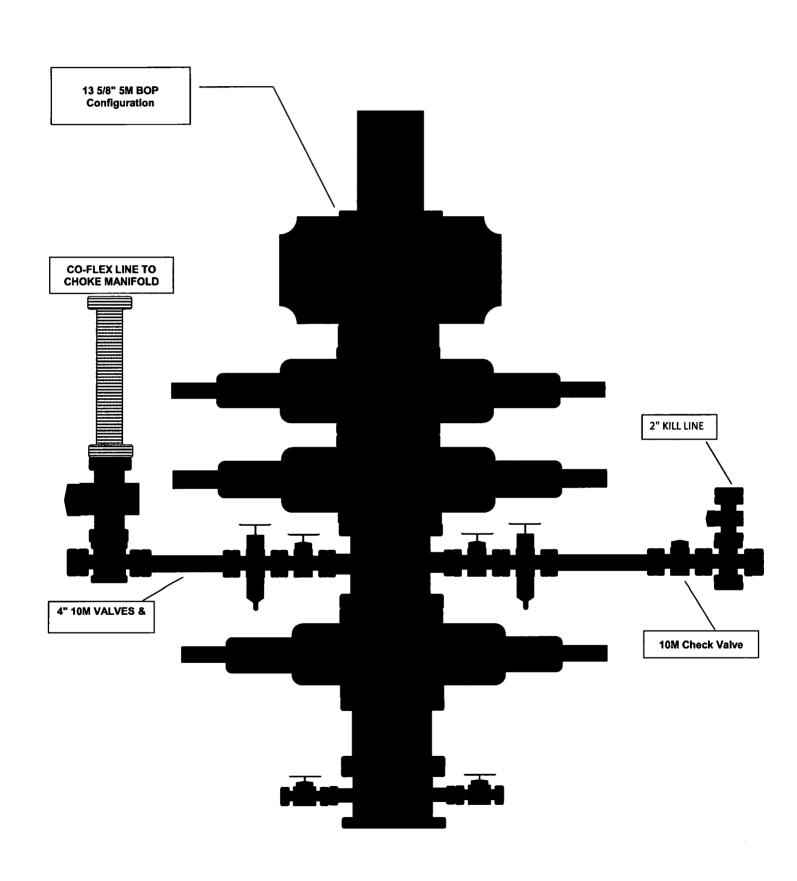
Shutting in prior to pulling BHA through stack

Prior to pulling last joint of drill pipe thru the stack space out and check flow If flowing see steps below.

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Shut in upper pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 3. Install open, full open safety valve and close valve, Close Chokes
- 4. Verify well is shut-in and flow has stopped
- 5. Notify supervisory personnel
- 6. Record data (SIDP, SICP, Pit Gain, and Time)
- 7. Hold pre-job safety meeting and discuss kill procedure

Shutting in while BHA is in the stack and ram preventer and combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. Space out BHA with upset just beneath the compatible pipe ram
- 3. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 4. Install open, full open safety valve and close valve, Close Chokes
- 5. Verify well is shut-in and flow has stopped
- 6. Notify supervisory personnel
- 7. Record data (SIDP, SICP, Pit Gain, and Time)
- 8. Hold pre-job safety meeting and discuss kill procedure


Shutting in while BHA is in the stack and no ram preventer or combo immediately available

- 1. Sound alarm signaling well control event to Rig Crew
- 2. If possible pick up high enough, to pull string clear and follow "Open Hole" scenario

If not possible to pick up high enough:

- 3. Stab Crossover, make up one joint/stand of drill pipe, and install open, full open safety valve (Leave Open)
- 4. Space out drill string with upset just beneath the compatible pipe ram.
- 5. Shut in upper compatible pipe ram and open HCR against Open Chokes and Valves Open to working pressure gauge
- 6. Close FOSV, Close Chokes, Verify well is shut-in and flow has stopped
- 7. Notify supervisory personnel
- 8. Record data (SIDP, SICP, Pit Gain, and Time)
- 9. Hold pre-job safety meeting and discuss kill procedure

^{*}FOSV will be on rig floor in open position with operating handle for each type of connection utilized and tested to 10,000 psi

Wellbore Schematic

Well: Golden Bell Fed Com 26-36-06 085H

SHL: Sec. 06 26S-36E 230' FNL & 2010' FEL

BHL: Sec. 07 26S-36E 50' FSL & 1980' FEL

Lea, NM

Wellhead: A - 13-5/8" 10M x 13-5/8" SOW

> B - 13-5/8" 10M x 13-5/8" 10M C - 13-5/8" 10M x 13-5/8" 10M

Tubing Spool - 5-1/8" 15M x 13-3/8" 10M

Xmas Tree: 2-9/16" 10M

Tubing: 2-7/8" L-80 6.5# 8rd EUE Co. Well ID:

XXXXX AFE No.: XXXX-XXX

API No.: xxxxxxxxx

> 3,011' GL:

Field: Delaware Objective: **Second Bone Spring**

10,520' TVD:

MD: 21,106'

Rig: TBD KB: 27'

E-Mail: Wellsite2@ameredev.com

Hole Size	Formation Tops	Logs	Cement	Mud Weight
17.5"		066'	752 Sacks TOC 0'	50% Excess 8.4-8.6 ppg WBM
	13.375" 68# J-55 BTC 1,1	191'		Ψ.
	i I	506'	444 Sacks TOC 0'	25% Excess
		234'	<u>4</u> ⊢	
	Tansill 3,2	234'		
	Capitan Reef 3,7	736'		
9.875")33'		ulsion
	Bell Canyon 5,0	068'		E
		111'		5% Excess 8.5 - 9.4 ppg Diesel Brine Emulsion
	Bone Spring Lime 8,3	336'		jes
	First Bone Spring 9,7	712'	icks	ess 4 ppg L
	Second Bone Spring 10,2	271'	3 Sa 0.	- 9.
12° Build	7.625" 29.7# L-80HC BTC 10,5	520'	1,283 Sacks TOC 0'	8.5 - 9.4 pp
10,000' MD		_4		
thru	5.5" 20# P-110 USS RYS SF 21,1	106'		
10,864' MD	Target Second Bone Spring 10520 TVD // 21106	MD	ဟု	ဖွ
			ac ac	Excess
	6.75"		1,643 Sacks TOC 0'	25% EX

Casing Design and Safety Factor Check

		Casing	Specificati	ons	-							
Segment Hole ID Depth OD Weight Grade Coup												
Surface	17.5	1,191'	13.375	68	J-55	BTC						
Intermediate	9.875	10,520'	7.625	29.7	HCL-80	втс						
Prod Segment A	6.75	10,000'	5.5	20	P-110	BTC						
Prod Segment B	6.75	21,106'	5.5	20	P-110	BTC						

Check Surface Casing									
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
14.375	1,069	915	4,100	3,450					
	Safety Factors								
1.56	13.21	11.30	7.71	0.67					
	Check Intermediate Casing								
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs 1000 lbs psi		psi						
7.625	940	558	6700	9460					
	Safety Factors								
1.13	3.01	2.09	1.30	1.84					
	Check Prod Casing, Segment A								
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
	S	afety Facto	ors						
0.49	0.49 3.46 3.11 1.97		2.10						
	Check Prod Casing, Segment B								
OD Cplg	Body	Joint	Collapse	Burst					
inches	1000 lbs	1000 lbs	psi	psi					
5.777	728	655	12780	14360					
	S	afety Facto	ors						
0.49	70.00	62.98	1.87	2.10					

H₂S Drilling Operation Plan

1. All Company and Contract personnel admitted on location must be trained by a qualified H₂S safety instructor to the following:

- a. Characteristics of H₂S
- **b.** Physical effects and hazards
- c. Principal and operation of H2s detectors, warning system and briefing areas
- d. Evacuation procedure, routes and first aid
- e. Proper use of safety equipment and life support systems
- f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- b. Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

3. H₂S Detection and Alarm Systems:

- a. H₂S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H₂S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- b. An audio alarm will be installed on the derrick floor and in the top doghouse.

4. Protective Equipment for Essential Personnel:

a. **Breathing Apparatus:**

- i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
- ii. Two (SCBA) Units will be stored in safety trailer on location.
- iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.

b. Auxiliary Rescue Equipment:

- i. Stretcher
- ii. 2 OSHA full body harnesses
- iii. 100 ft. 5/8" OSHA approved rope
- iv. 1 20# class ABC fire extinguisher

5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- b. Windsock on the rig floor should be high enough to be visible.

6. Communication:

- a. While working under mask scripting boards will be used for communication where applicable.
- b. Hand signals will be used when script boards are not applicable.

H₂S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. <u>Drill Stem Testing:</u> No Planned DST at this time.

8. Mud program:

a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

9. Metallurgy:

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.
- b. Drilling Contractor supervisor will be required to be familiar with the effect H₂S has on tubular goods and other mechanical equipment provided through contractor.

H₂S Contingency Plan

Emergency Procedures

In the event of a release of H₂S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
- Have received training in the:
 - Detection of H₂S and
 - o Measures for protection against the gas,
 - o Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

Characteristics of H₂S and SO₂

		Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H₂S	1.189 Air=1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO₂	2.21 Air=1	2 ppm	N/A	1000 ppm

Contacting Authorities

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)

H₂S Contingency Plan

Ameredev Operating LLC – Emergency Phone 737-300-4799							
Key Personnel:							
Name	Title	Office	Mobile				
Floyd Hammond	Chief Operating officer	737-300-4724	512-783-6810				
Zachary Boyd	Operations Superintendent	737-300-4725	432-385-6996				
Blake Estrada	Construction Foreman		432-385-5831				

<u>Artesia</u>	
Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283
Carlsbad	
Ambulance	911
State Police	575-885-3137
City Police	575-885-2111
Sheriff's Office	575-887-7551
Fire Department	575-887-3798
Local Emergency Planning Committee	575-887-6544
US Bureau of Land Management	575-887-6544
Santa Fe	
New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
New Mexico Emergency Response Commission (Santa Fe) 24 Hrs	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
<u>National</u>	•
National Emergency Response Center (Washington, D.C.)	800-424-8802
Medical	
Flight for Life - 4000 24th St.; Lubbock, TX	806-743-9911
Aerocare - R3, Box 49F; Lubbock, TX	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, NM	505-842-4433
.'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, NM	505-842-4949

Ameredev Operating, LLC.

NAN/GB NAN/GB #6S Golden Bell 085H

Wellbore #1

Plan: Design #1

Standard Planning Report

18 June, 2019

Ameredev Operating, LLC

Planning Report

TVD Reference:

MD Reference:

System Datum:

North Reference:

Local Co-ordinate Reference:

Survey Calculation Method:

Database:

EDM5000

Company:

Ameredev Operating, LLC.

Project:

NAN/GB

Site: Well: NAN/GB #6S Golden Bell 085H

Wellbore:

Wellbore #1

Design:

Design #1

Project

NAN/GB

Map System:

US State Plane 1983

Geo Datum: Map Zone:

North American Datum 1983

New Mexico Eastern Zone

Site

From:

NAN/GB #6S

Site Position:

Position Uncertainty:

Position Uncertainty

Lat/Long

Slot Radius: 0.0 usft

Easting:

Northing: 393,984.60 usft 860,801.36 usft

13-3/16 "

6.66

Longitude: **Grid Convergence:**

Latitude:

32° 4' 44.202 N

103° 18' 6.857 W

0.55

Well

Golden Bell 085H

Well Position

+N/-S +E/-W

IGRF2015

-0.8 usft -80.0 usft

0.0 usft

Northing: Easting:

Wellhead Elevation:

12/5/2018

860,721.38 usft

393.983.80 usft

Latitude: Longitude:

Ground Level:

Well Golden Bell 085H

KB @ 3038.0usft

KB @ 3038.0usft

Minimum Curvature

Mean Sea Level

Grid

32° 4' 44,202 N

103° 18' 7.787 W 3,011.0 usft

Wellbore

Wellbore #1

Magnetics Model Name

Design #1

Sample Date

Declination (°)

Dip Angle (°)

Field Strength (nT)

47,731.96416756

Design

Audit Notes:

Version:

Phase:

PROTOTYPE

Tle On Depth:

0.0

Vertical Section:

Depth From (TVD) (usft)

0.0

+N/-S (usft) 0.0

+E/-W (usft) 0.0

Direction (°) 179.21

59.95

Plan Survey Too! Program

6/18/2019 Date

Depth From (usft)

Depth To (usft)

Survey (Wellbore) 21,105.5 Design #1 (Wellbore #1) **Tool Name**

Remarks

OWSG MWD - Standard

Ameredev Operating, LLC

Planning Report

Database:

EDM5000

Company:

Ameredev Operating, LLC.

Project:

NAN/GB

Site: Well: NAN/GB #6S Golden Bell 085H

Wellbore: Design: Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference:

MD Reference: North Reference:

Survey Calculation Method:

Well Golden Bell 085H

KB @ 3038.0usft

KB @ 3038.0usft

Grid

Minimum Curvature

Measured Depth (usft)	Inclination	Azimuth	Vertical Depth (usft)	+N/-S	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO	Torget
(usit)	()	(°)	(Jieu)	(usft)	(usit)	(/ 1000511)	(rioqusit)	(/ ioousit)	(°)	Target
0.0	0,00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,300.0	6.00	340.00	2,299.5	14.7	-5.4	2.00	2.00	0.00	340.00	
6,724.8	6.00	340.00	6,700.0	449.4	-163.6	0.00	0.00	0.00	0.00	
7,024.8	0.00	0.00	6,999.5	464.1	-168.9	2.00	-2.00	0.00	180.00	
10,000.3	0.00	0.00	9,975.0	464.1	-168.9	0.00	0.00	0.00	0.00	
10,305.7	36.64	137.57	10,260.0	394.5	-105.3	12.00	12.00	0.00	137.57	
10,333.9	36.64	137.57	10,282.6	382.0	-93.9	0.00	0.00	0.00	0.00	
10,863.7	90.00	179.36	10,520.0	-44.2	28.5	12.00	10.07	7.89	48.08	GB085 FTP2
21,105.5	90.00	179.36	10,520.0	-10,285.4	142.4	0.00	0.00	0.00	0.00	GB085 BHL

Ameredev Operating, LLC

Planning Report

Database: EDM5000

Company: Ameredev Operating, LLC.

NAN/GB Project: Site: NAN/GB #6S Well: Golden Bell 085H Wellbore #1

Wellbore:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Well Golden Bell 085H

KB @ 3038.0usft KB @ 3038.0usft

Grid

Minimum Curvature

ipore: ign:	Design #1								
nned Survey	*** * * *****								
Measured			Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
0.0	0.00	0.00	0,0	0.0	0.0	0.0	0.00	0.00	0.00
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
0.008	0.00	0.00	0.008	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
			·						
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	2.00	340.00	2,100.0	1.6	-0.6	-1.6	2.00	2.00	0.00
2,200.0	4.00	340.00	2,199.8	6.6	-2.4	-6.6	2.00	2.00	0.00
2,300.0	6.00	340.00	2,299.5	14.7	-5.4	-14.8	2.00	2.00	0.00
2,400.0	6.00	340.00	2,398.9	24.6	-8.9	-24.7	0.00	0.00	0.00
2,500.0	6.00	340.00	2,498.4	34.4	-12.5	-34.6	0.00	0.00	0.00
2,600.0	6.00	340.00	2,597.8	44.2	-16.1	-44.4	0.00	0.00	0.00
2,700.0	6.00	340.00	2,697.3	54.0	-19.7	-54.3	0.00	0.00	0.00
2,800.0	6.00	340.00	2,796.7	63.9	-23.2	-64.2	0.00	0.00	0.00
2,900.0	6.00	340.00	2,896.2	73.7	-26.8	-74.0	0.00	0.00	0.00
3,000.0	6.00	340.00	2,995.6	83.5	-30.4	-83.9	0.00	0.00	0.00
3,100.0	6.00	340.00	3,095.1	93.3	-34.0	-93.8	0.00	0.00	0.00
3,200.0	6.00	340.00	3,194.5	103.1	-37.5	-103.7	0.00	0.00	0.00
3,300.0	6.00	340.00	3,294.0	113.0	-41.1	-113.5	0.00	0.00	0.00
3,400.0	6.00	340.00	3,393.4	122.8	-44.7	-123.4	0.00	0.00	0.00
3,500.0	6.00	340.00	3,492.9	132.6	-48.3	-133.3	0.00	0.00	0.00
3,600.0	6.00	340.00	3,592.3	142.4	-51.8	-133.3 -143.1	0.00	0.00	0.00
3,700.0	6.00	340.00	3,691.8	152.3	-55.4	-153.0	0.00	0.00	0.00
3,800.0	6.00	340.00	3,791.2	162.1	-59.0	-162.9	0.00	0.00	0.00
3,900.0	6.00	340.00	3,890.7	171.9	-62.6	-172.8	0.00	0.00	0.00
4,000.0	6.00	340.00	3,990.1	181.7	-66.1	-182.6	0.00	0.00	0.00
4,000.0	6.00 6.00	340.00 340.00	3,990.1 4,089.6	181.7 191.6	-66.1 -69.7	-182.6 -192.5	0.00	0.00	0.00
4,100.0	6.00 6.00	340.00 340.00	4,089.6 4,189.0	191.6 201.4	-69.7 -73.3	-192.5 -202.4	0.00	0.00	0.00
4,300.0	6.00	340.00	4,169.0	211.2	-73.3 -76.9	-202. 4 -212.2	0.00	0.00	0.00
4,400.0	6.00	340.00	4,266.5 4,387.9	211.2	-76. 9 -80.4	-212.2 -222.1	0.00	0.00	0.00
-									
4,500.0	6.00	340.00	4,487.4	230.8	-84.0	-232.0	0.00	0.00	0.00
4,600.0	6.00	340.00	4,586.9	240.7	-87.6	-241.9	0.00	0.00	0.00
4,700.0	6.00	340.00	4,686.3	250.5	-91.2	-251.7	0.00	0.00	0.00
4,800.0	6.00	340.00	4,785.8	260.3	-94.7	-261.6	0.00	0.00	0.00
4,900.0	6.00	340.00	4,885.2	270.1	-98.3	-271.5	0.00	0.00	0.00
5,000.0	6.00	340.00	4,984.7	280.0	-101.9	-281.3	0.00	0.00	0.00
5,100.0	6.00	340.00	5,084.1	289.8	-105.5	-291.2	0.00	0.00	0.00
5,200.0	6.00	340.00	5,183.6	299.6	-109.0	-301.1	0.00	0.00	0.00
5,300.0	6.00	340.00	5,283.0	309.4	-112.6	-311.0	0.00	0.00	0.00

Planning Report

Database:

EDM5000

Company:

Ameredev Operating, LLC.

Project:

NAN/GB

Site: Well: NAN/GB #6S Golden Bell 085H

Wellbore: Design:

Wellbore #1 Design #1

Survey Calculation Method:

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Well Golden Bell 085H

KB @ 3038.0usft

KB @ 3038.0usft

Grid

Minimum Curvature

Planned	Survey

Measured		A - 1:	Vertical		.=	Vertical Section	Dogleg	Build Rate	Turn Rate
Depth (usft)	inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	(°/100usft)	(°/100usft)
5,400.0	6.00	340.00	5,382.5	319.2	-116.2	-320.8	0.00	0.00	0.00
5,500.0	6.00	340.00	5,481.9	329.1	-119.8	-330.7	0.00	0.00	0.00
5,600.0	6.00	340.00	5,581.4	338.9	-123.3	-340.6	0.00	0.00	0.00
5,700.0	6.00	340.00	5,680.8	348.7	-126.9	-350.4	0.00	0.00	0.00
5,800.0	6.00	340.00	5,780.3	358.5	-130.5	-360.3	0.00	0.00	0.00
									0.00
5,900.0	6.00	340.00	5,879.7	368.4	-134.1	-370.2	0.00	0.00	
6,000.0	6.00	340.00	5,979.2	378.2	-137.6	-380.0	0.00	0.00 0.00	0.00 0.00
6,100.0	6.00	340.00	6,078.6	388.0	-141.2	-389.9	0.00		
6,200.0	6.00	340.00	6,178.1	397.8	-144.8	-399.8	0.00	0.00	0.00
6,300.0	6.00	340.00	6,2 7 7.5	407.6	-148.4	-409.7	0.00	0.00	0.00
6,400.0	6.00	340.00	6,377.0	417.5	-151.9	-419.5	0.00	0.00	0.00
6,500.0	6.00	340.00	6,476.4	427.3	-155.5	-429.4	0.00	0.00	0.00
6,600.0	6.00	340.00	6,575.9	437.1	-159.1	-439.3	0.00	0.00	0.00
6,700.0	6.00	340.00	6,675.3	446.9	-162.7	-449.1	0.00	0.00	0.00
6,724.8	6.00	340.00	6,700.0	449.4	-163.6	-451.6	0.00	0.00	0.00
6,800.0	4.50	340.00	6,774.9	455.8	-165.9	-458.1	2.00	-2.00	0.00
							. :		
6,900.0	2.50	340.00	6,874.7	461.6	-168.0	-463.8	2.00	-2.00	0.00
7,000.0	0.50	340.00	6,974.7	464.0	-168.9	-466.3	2.00	-2.00	0.00
7,024.8	0.00	0.00	6,999.5	464.1	-168.9	-466.4	2.00	-2.00	0.00
7,100.0	0.00	0.00	7,074.7	464.1	-168.9	-466.4	0.00	0.00	0.00
7,200.0	0.00	0.00	7,174.7	464.1	-168.9	-466.4	0.00	0.00	0.00
7,300.0	0.00	0.00	7,274.7	464.1	-168.9	-466.4	0.00	0.00	0.00
7,400.0	0.00	0.00	7,374.7	464.1	-168.9	-466.4	0.00	0.00	0.00
7,500.0	0.00	0.00	7,474.7	464.1	-168.9	-466.4	0.00	0.00	0.00
		0.00	7,574.7	464.1	-168.9	-466.4	0.00	0.00	0.00
7,600.0 7,700.0	0.00 0.00	0.00	7,574.7 7,674.7	464.1	-168.9	-466.4 -466.4	0.00	0.00	0.00
7,800.0	0.00	0.00	7,774.7	464.1	-168.9	-4 66.4	0.00	0.00	0.00
7,900.0	0.00	0.00	7,874.7	464.1	-168.9	-466.4	0.00	0.00	0.00
8,000.0	0.00	0.00	7,974.7	464.1	-168.9	-466.4	0.00	0.00	0.00
8,100.0	. 0.00	0.00	8,074.7	464.1	-168.9	-4 66.4	0.00	0.00	0.00
8,200.0	0.00	0.00	8,174.7	464.1	-168.9	-466.4	0.00	0.00	0.00
8,300.0	0.00	0.00	8,274.7	464.1	-168.9	-466.4	0.00	0.00	0.00
8,400.0	0.00	0.00	8,374.7	464.1	-168.9	-466.4	0.00	0.00	0.00
8,500.0	0.00	0.00	8,474.7	464.1	-168.9	-466.4	0.00	0.00	0.00
8,600.0	0.00	0.00	8,574.7	464.1	-168.9	-466.4	0.00	0.00	0.00
8,700.0	0.00	0.00	8,674.7	464.1	-168.9	-466.4	0.00	0.00	0.00
8,800.0	0.00	0.00	8,774.7	464.1	-168.9	-466.4	0.00	0.00	0.00
	0.00	0.00		464.1	-168.9	-466.4	0.00	0.00	0.00
8,900.0			8,874.7						
9,000.0	0.00	0.00	8,974.7	464.1	-168.9	-466.4	0.00	0.00	0.00
9,100.0	0.00	0.00	9,074.7	464.1	-168.9	-466.4	0.00	0.00	0.00
9,200.0	0.00	0.00	9,174.7	464.1	-168.9	-466.4	0.00	0.00	0.00
9,300.0	0.00	0.00	9,274.7	464.1	-168.9	-466.4	0.00	0.00	0.00
9,400.0	0.00	0.00	9,374.7	464.1	-168.9	-466.4	0.00	0.00	0.00
9,500.0	0.00	0.00	9,474.7	464.1	-168.9	-466.4	0.00	0.00	0.00
9,600.0	0.00	0.00	9,574.7	464.1	-168.9	-466.4	0.00	0.00	0.00
9,700.0	0.00	0.00	9,674.7	464.1	-168.9	-466.4	0.00	0.00	0.00
		0.00	9,774.7	464.1	-168.9	-466.4	0.00	0.00	0.00
9,800.0	0.00								
9,900.0	0.00	0.00	9,874.7	464.1	-168.9	-466.4	0.00	0.00	0.00
10,000.0	0.00	0.00	9,974.7	464.1	-168.9	-466.4	0.00	0.00	0.00
10,000.3	0.00	0.00	9,975.0	464.1	-168.9	-466.4	0.00	0.00	0.00
GB085 KOP	(NMNM137469)	•							
10,100.0	11.96	137.57	10,073.9	456.5	-161.9	-458.7	12.00	12.00	0.00
10,200.0	23.96	137.57	10,168.9	433.7	-141.2	-435.7	12.00	12.00	0.00

Planning Report

Database:

EDM5000

Company:

Ameredev Operating, LLC.

Project: Site: NAN/GB NAN/GB #6S

Well: Wellbore Golden Bell 085H Wellbore #1

Wellbore: Design:

Design #1

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Well Golden Bell 085H

KB @ 3038.0usft

KB @ 3038.0usft Grid

Minimum Curvature

Planned Survey

10,300.0 10,305.7 10,333.9 10,400.0 10,500.0 10,600.0	35.96 36.64 36.64	137.57		(usft)	(usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	(°/100usft)
10,333.9 10,400.0 10,500.0			10,255.4	397.0	-107.5	-398.4	12.00	12.00	0.00
10,400.0 10,500.0	36.64	137.57	10,260.0	394.5	-105.3	-395.9	12.00	12.00	0.00
10,500.0		137.57	10,282.6	382.0	-93.9	-383.3	0.00	0.00	0.00
	42.30	146.35	10,333.6	348.9	-68.2	-349.8	12.00	8.55	13.28
10.600.0	51.80	156.41	10,401.8	284.6	-33.7	-285.1	12.00	9.51	10.05
,	61.96	164.06	10,456.4	205.9	-5.8	-206.0	12.00	10.16	7.65
10,699.8	72.45	170.34	10,495.0	116.4	14.4	116.2	12.00	: 10.51	6.30
GB085 FTP									
10,700.0	72.47	170.36	10,495.1	116.1	14.4	-115.9	12.00	10.62	5.86
10,800.0	. 83.16	175.95	10,516.2	19.3	25.9	-18.9	12.00	10.68	5.60
10,863.7	90.00	179.36	10,520.0	-44.2	28.5	44.6	12.00	10.75	5.36
GB085 FTP2							, .	•	
10,900.0	90.00	179.36	10,520.0	-8 0.5	28.9	80.9	0.00	0.00	0.00
11,000.0	90.00	179.36	10,520.0	-180.5	30.0	180.9	0.00	0.00	0.00
11,100.0	90.00	179.36	10,520.0	-280.5	31.2	280.9	0.00	0.00	0.00
11,200.0	90.00	179.36	10,520.0	-380.5	32.3	380.9	0.00	0.00	0.00
11,300.0	90.00	179.36	10,520.0	-480.5	33.4	480.9	0.00	0.00	0.00
11,400.0	90.00	179.36	10,520.0	-580.5	34.5	580.9	0.00	0.00	0.00
11,500.0	90.00	179.36	10,520.0	-680.5	35.6	680.9	0.00	0.00	0.00
11,600.0	90.00	179.36	10,520.0	-780.5	36.7	780.9	0.00	0.00	0.00
11,700.0	90.00	179.36	10,520.0	-880.5	37.8	880.9	0.00	0.00	0.00
11,800.0	90.00	179.36	10,520.0	-980.5	38.9	980.9	0.00	0.00	0.00
11,900.0	90.00	179.36	10,520.0	-1,080.5	40.0	1,080.9	0.00	0.00	0.00
12,000.0	90.00	179.36	10,520.0	-1,180.4	41.2	1,180.9	0.00	0.00	0.00
12,100.0	90.00	179.36	10,520.0	-1,280.4	42.3	1,280.9	0.00	0.00	0.00
12,200.0	90.00	179.36	10,520.0	-1,380.4	43.4	1,380.9	0.00	0.00	0.00
12,300.0	90.00	179.36	10,520.0	-1,480.4	44.5	1,480.9	0.00	0.00	0.00
12,400.0	90.00	179.36	10,520.0	-1,580.4	45.6	1,580.9	0.00	0.00	0.00
12,500.0	90.00	179.36	10,520.0	-1,680.4	46.7	1,680.9	0.00	0.00	0.00
12,600.0	90.00	179.36	10,520.0	-1,780.4	47.8	1,780.9	0.00	0.00	0.00
12,700.0	90.00	179.36	10,520.0	-1,880.4	48.9	1,880.9	0.00	0.00	0.00
12,800.0	90.00	179.36	10,520.0	-1,980.4	50.1	1,980.9	0.00	0.00	0.00
12,900.0	90.00	179.36	10,520.0	-2,080.4	51.2	2,080.9	0.00	0.00	0.00
13,000.0	90.00	179.36	10,520.0	-2,180.4	52.3	2,180.9	0.00	0.00	0.00
13,100.0	90.00	179.36	10,520.0	-2,280.4	53.4	2,280.9	0.00	0.00	0.00
13,200.0	90.00	179.36	10,520.0	-2,380.4	54.5	2,380.9	0.00	0.00	0.00
13,300.0	90.00	179.36	10,520.0	-2,480.4	55.6	2,480.9	0.00	0.00	0.00
13,400.0	90.00	179,36	10,520.0	-2,580.4	56.7	2,580.9	0.00	0.00	0.00
13,500.0	90.00	179.36	10,520.0	-2,680.4	57.8	2,680.9	0.00	0.00	0.00
13,600.0	90.00	179.36	10,520.0	-2,780.3	59.0	2,780.9	0.00	0.00	0.00
13,700.0	90.00	179.36	10,520.0	-2,880.3	60.1	2,880.9	0.00	0.00	0.00
13,800.0	90.00	179.36	10,520.0	-2,980.3	61.2	2,980.9	0.00	0.00	0.00
13,900.0	90.00	179.36	10,520.0	-3,080.3	62.3	3,080.9	0.00	0.00	0.00
14,000.0	90.00	179.36	10,520.0	-3,180.3	63.4	3,180.9	0.00	0.00	0.00
14,100.0	90.00	179.36	10,520.0	-3,280.3	64.5	3,280.9	0.00	0.00	0.00
14,200.0	90.00	179.36	10,520.0	-3,380.3	65.6	3,380.9	0.00	0.00	0.00
14,300.0	90.00	179.36	10,520.0	-3,480.3	66.7	3,480.9	0.00	0.00	0.00
14,400.0	90.00	179.36	10,520.0	-3,580.3	67.9	3,580.9	0.00	0.00	. 0.00
14,500.0	90.00	179.36	10,520.0	-3,680.3	69.0	3,680.9	0.00	0.00	0.00
14,600.0	90.00	179.36	10,520.0	-3,780.3	70.1	3,780.9	0.00	0.00	0.00
14,700.0	90.00	179.36	10,520.0	-3,880.3	71.2	3,880.9	0.00	0.00	0.00
14,800.0	90.00	179.36	10,520.0	-3,980.3	72.3	3,980.9	0.00	0.00	0.00
14,900.0	90.00	179.36	10,520.0	-4,080.3	73.4	4,080.9	0.00	0.00	0.00

Planning Report

Database:

EDM5000

Company:

Ameredev Operating, LLC.

Project: Site: NAN/GB NAN/GB #6S

Well: Wellbore: Design: Golden Bell 085H Wellbore #1

Design #1

Local Co-ordinate Reference:

Survey Calculation Method:

TVD Reference:

MD Reference:

North Reference:

Well Golden Bell 085H

KB @ 3038.0usft KB @ 3038.0usft

Grid

Minimum Curvature

IP	lanned	Survey

Measured Depth (usft)	inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
15,100.0 15,200.0	90.00 90.00	179.36 179.36	10,520.0 10,520.0	-4,280.3 -4,380.2	75.6 76.8	4,280.9 4,380.9	0.00 0.00	0.00 0.00	0.00 0.00
15,300.0	90.00	179.36	10,520.0	-4,480.2	77.9	4,480.9	0.00	0.00	0.00
15,400.0	90.00	179.36	10,520.0	-4,580.2	79.0	4,580.9	0.00	0.00	0.00
15,500.0	90.00	179.36	10,520.0	-4,680.2	80.1	4,680.9	0.00	0.00	0.00
15,600.0	90.00	179.36	10,520.0	-4,780.2	81.2	4,780.9	0.00	0.00	0.00
15,700.0	90.00	179.36	10,520.0	-4,880.2	82.3	4,880.9	0.00	0.00	0.00
15.800.0	90.00	179.36	10,520.0	-4,980.2	83.4	4,980.9	0.00	0.00	0.00
15,869.0	90.00	179.36	10,520.0	-5,049.2	84.2	5,049.9	0.00	0.00	0.00
-		175.50	10,520.0	-3,043.2	04.2	3,043.3	0.00	0.00	0.00
15,900.0	NMNM137472 90.00	179.36	10,520.0	-5,080.2	84.5	5,080.9	0.00	0.00	0.00
16,000.0	90.00	179.36	10,520.0	-5,080.2 -5,180.2	85.7	5,180.9	0.00	0.00	0.00
16,100.0	90.00	179.36	10,520.0	-5,280.2	86.8	5,280.9	0.00	0.00	0.00
·									
16,200.0	90.00	179.36	10,520.0	-5,380.2	87.9	5,380.9	0.00	0.00	0.00
16,300.0	90.00	179.36	10,520.0	-5,480.2	89.0	5,480.9	0.00	0.00	0.00
16,400.0	90.00	179.36	10,520.0	-5,580.2	90.1	5,580.9	0.00	0.00	0.00
16,500.0	90.00	179.36	10,520.0	-5,680.2	91.2	5,680.9	0.00	0.00	0.00
16,600.0	90.00	179.36	10,520.0	-5,780.2	92.3	5,780.9	0.00	0.00	0.00
16,700.0	90.00	179.36	10,520.0	-5,880.2	93.4	5,880.9	0.00	0.00	0.00
16,800.0	90.00	179.36	10,520.0	-5,980.2	94.5	5,980.9	0.00	0.00	0.00
16,900.0	90.00	179.36	10,520.0	-6,080.1	95.7	6,080.9	0.00	0.00	0.00
17,000.0	90.00	179.36	10,520.0	-6,180.1	96.8	6,180.9	0.00	0.00	0.00
17,100.0	90.00	179.36	10,520.0	-6,28 0.1	97.9	6,280.9	0.00	0.00	0.00
17,200.0	90.00	179.36	10,520.0	-6,380.1	99.0	6,380.9	0.00	0.00	0.00
17,200.0	90.00	179.36	10,520.0	-6,480.1	100.1	6,480.9	0.00	0.00	0.00
17,400.0	90.00	179.36	10,520.0	-6,580.1	101.2	6,580.9	0.00	0.00	0.00
17,500.0	90.00	179.36	10,520.0	-6,680.1	102.3	6,680.9	0.00	0.00	0.00
17,600.0	90.00	179.36	10,520.0	-6,780.1	103.4	6,780.9	0.00	0.00	0.00
•									
17,700.0	90.00	179.36	10,520.0	-6,880.1	104.6	6,880.9	0.00	0.00	0.00
17,800.0	90.00	179.36	10,520.0	-6,980.1	105.7	6,980.9	0.00	0.00	0.00
17,900.0	90.00	179.36	10,520.0	-7,080.1 7,480.4	106.8	7,080.9	0.00	0.00	0.00
18,000.0 18,100.0	90.00 90.00	179.36 179.36	10,520.0 10,520.0	-7,180.1 -7,280.1	107.9 109.0	7,180.9 7,280.9	0.00 0.00	0.00 0.00	0.00 0.00
			-						
18,200.0	90.00	179.36	10,520.0	-7,380.1	110.1	7,380.9	0.00	0.00	0.00
18,300.0	90.00	179.36	10,520.0	-7,480.1	111.2	7,480.9	0.00	0.00	0.00
18,400.0	90.00	179.36	10,520.0	-7,580.1	112.3	7,580.9	0.00	0.00	0.00
18,500.0	90.00	179.36	10,520.0	-7,680.0	113.5	7,680.9	0.00	0.00	0.00
18,600.0	90.00	179.36	10,520.0	-7,780.0	114.6	7,780.9	0.00	0.00	0.00
18,700.0	90.00	179.36	10,520.0	-7,880.0	115.7	7,880.9	0.00	0.00	0.00
18,800.0	90.00	179.36	10,520.0	-7,980.0	116.8	7,980.9	0.00	0.00	0.00
18,900.0	90.00	179.36	10,520.0	-8,080.0	117.9	8,080.9	0.00	0.00	0.00
19,000.0	90.00	179.36	10,520.0	-8,180.0	119.0	8,180.9	0.00	0.00	0.00
19,100.0	90.00	179.36	10,520.0	-8,280.0	120.1	8,280.9	0.00	0.00	0.00
19,200.0	90.00	179.36	10,520.0	-8,380.0	121.2	8,380.9	0.00	0.00	0.00
19,300.0	90.00	179.36	10,520.0	-8,480.0	122.4	8,480.9	0.00	0.00	0.00
19,400.0	90.00	179.36	10,520.0	-8,580.0	123.5	8,580.9	0.00	0.00	0.00
19,500.0	90.00	179.36	10,520.0	-8,680.0	124.6	8,680.9	0.00	0.00	0.00
19,600.0	90.00	179.36	10,520.0	-8,780.0	125.7	8,780.9	0.00	0.00	0.00
						•			
19,700.0	90.00	179.36	10,520.0	-8,880.0	126.8	8,880.9	0.00	0.00	0.00
19,800.0	90.00	179.36	10,520.0	-8,980.0	127.9	8,980.9	0.00	0.00	0.00
19,900.0	90.00	179.36	10,520.0	-9,080.0 0.180.0	129.0	9,080.9	0.00	0.00 0.00	0.00 0.00
20,000.0	90.00	179.36	10,520.0	-9,180.0	130.1	9,180.9	0.00		
20,100.0	90.00	179.36	10,520.0	-9,279.9	131.3	9,280.9	0.00	0.00	0.00

Planning Report

Database:

EDM5000

Company:

Ameredev Operating, LLC.

Project:

NAN/GB NAN/GB #6S

Site: Well:

Golden Bell 085H

Wellbore: Design: Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Well Golden Bell 085H

KB @ 3038.0usft KB @ 3038.0usft

Grid

Minimum Curvature

Planned Survey

Measured			Vertical			Vertical	Dogleg	Bulld	Turn
Depth Inc (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)
20,200.0	90.00	179.36	10,520.0	-9,379.9	132.4	9,380.9	0.00	0.00	0.00
20,300.0	90.00	179.36	10,520.0	-9,479.9	133.5	9,480.9	0.00	0.00	0.00
20,400.0	90.00	179.36	10,520.0	-9,579.9	134.6	9,580.9	0.00	0.00	0.00
20,500.0	90.00	179.36	10,520.0	-9,679.9	135.7	9,680.9	0.00	0.00	0.00
20,600.0	90.00	179.36	10,520.0	-9,779.9	136.8	9,780.9	0.00	0.00	0.00
20,700.0	90.00	179.36	10,520.0	-9,879.9	137.9	9,880.9	0.00	0.00	0.00
20,800.0	90.00	179.36	10,520.0	-9,979.9	139.0	9,980.9	0.00	0.00	0.00
20,900.0	90.00	179.36	10,520.0	-10,079.9	140.2	10,080.9	0.00	0.00	0.00
21,000.0	90.00	179.36	10,520.0	-10,179.9	141.3	10,180.9	0.00	0.00	0.00
21,100.0	90.00	179.36	10,520.0	-10,279.9	142.4	10,280.9	0.00	0.00	0.00
21,105.5	90.00	179.36	10,520.0	-10,285.4	142.4	10,286.4	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
GB085 FTP2 - plan hits target ce - Point	0.00 enter	0.00	10,520.0	-44.2	28.5	393,939.60	860,749.91	32° 4' 43.762 N	103° 18' 7.460 W
GB085 BHL - plan misses targe - Point	0.00 et center by 0.3u	0.00 sft at 21105	10,520.0 .5usft MD (1	-10,285.4 0520.0 TVD, -	142.2 10285.4 N, 14	383,698.42 2.4 E)	860,863.54	32° 3′ 2.417 N	103° 18' 7.277 W
GB085 FTP - plan misses targe - Point	0.00 et center by 31.9	0.00 Jusft at 1069	10,520.0 9.8usft MD (130.3 10495.0 TVD,	28.5 116.4 N, 14.4	394,114.11 E)	860,749.91	32° 4' 45.488 N	103° 18' 7.441 W
GB085 LTP - plan misses targe - Point	0.00 t center by 22.7	0.00 usft at 2110	10,520.0 5.5usft MD (-10,308.1 10520.0 TVD,	142.3 -10285.4 N, 1	383,675.69 42.4 E)	860,863.70	32° 3' 2.192 N	103° 18' 7.278 W

Plan Anno	tations				
	Measured	Vertical	Local Coor	dinates	
	Depth	Depth	+N/-S	+E/-W	
	(usft)	(usft)	(usft)	(usft)	Comment
	10,000.3	9,975.0	464.1	-168.9	GB085 KOP (NMNM137469)
	15,869.0	10,520.0	-5,049.2	84.2	GB085 Into NMNM137472

NAN/GB NAN/GB #6S Golden Bell 085H Wellbore #1

Plan: Design #1

Lease Penetration Section Line Foot

18 June, 2019

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site:

NAN/GB NAN/GB #6S Golden Bell 085H

Well: Wellbore: Design:

Wellbore #1 Design #1

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Database:

Well Golden Bell 085H

KB @ 3038.0usft KB @ 3038.0usft

Grid

EDM5000

Minimum Curvature

Project

NAN/GB

Map System: Geo Datum:

US State Plane 1983 North American Datum 1983

Map Zone:

New Mexico Eastern Zone

System Datum:

Mean Sea Level

Site

NAN/GB #6S

Site Position: From:

Lat/Long

Northing: Easting:

393,984.61 usft 860,801.36 usft

Latitude:

Longitude:

32° 4' 44.202 N

Position Uncertainty:

0.0 usft

Slot Radius:

13-3/16*

Grid Convergence:

103° 18' 6.857 W 0.55

Well

Golden Bell 085H

Well Position

+N/-S +E/-W

Design #1

0.0 usft 0.0 usft

IGRF2015

Northing: Easting:

393,983.80 usft 860,721.39 usft

6.66

Latitude: Longitude:

32° 4' 44.202 N 103° 18' 7.787 W

Position Uncertainty

0.0 usft

Welihead Elevation:

12/5/2018

usft

Ground Level:

59.95

3,011.0 usft

Wellbore #1 Wellbore

Model Name Magnetics

Sample Date

Declination (°)

Dip Angle (°)

Field Strength

(nT) 47,731.96416756

Design

Audit Notes:

Version:

Phase:

PROTOTYPE

Tie On Depth:

0.0

Vertical Section:

Depth From (TVD) (usft)

0.0

6/18/2019

+N/-S (usft) 0.0

+E/-W (usft)

0.0

Direction (°)

179.21

Survey Tool Program

Date

From То (usft) (usft)

Survey (Wellbore)

21,105.5 Design #1 (Wellbore #1)

Tool Name

Description

0.0

MWD

OWSG MWD - Standard

Planned Survey

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
0.0	0.00	0.00	0.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787 W
100.0	0.00	0.00	100.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787 W
200.0	0.00	0.00	200.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787 W
300.0	0.00	0.00	300.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787 W
400.0	0.00	0.00	400.0	-230.8	-2,010.0	32° 4′ 44.202 N	103° 18' 7.787 W
500.0	0.00	0.00	500.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787 W
600.0	0.00	0.00	600.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787 W
700.0	0.00	0.00	700.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787 W
800.0	0.00	0.00	800.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787 W
900.0	0.00	0.00	900.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787 W
1,000.0	0.00	0.00	1,000.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787 W
1,100.0	0.00	0.00	1,100.0	-230.8	-2,010.0	32° 4' 44,202 N	103° 18' 7.787 W

Company:

Ameredev Operating, LLC.

Project: Site: Well: NAN/GB NAN/GB #6S Golden Bell 085H

Wellbore: Wellbore #1
Design: Design #1

Local Co-ordinate Reference:

TVD Reference:

North Reference: Survey Calculation Method:

Database:

Well Golden Bell 085H

KB @ 3038.0usft KB @ 3038.0usft

Grid

Minimum Curvature

MD	inc	Azi (azimuth)	TVĎ	+FSL/-FNL	+FWL/-FEL	Latitude	Longitude
(usft)	(°)	(°)	(usft)	(usft)	(usft)		
1,200.0	0.00	0.00	1,200.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787
1,300.0	0.00	0.00	1,300.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787
1,400.0	0.00	0.00	1,400.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787
1,500.0	0.00	0.00	1,500.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787
1,600.0	0.00	0.00	1,600.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.787
1,700.0	0.00	0.00	1,700.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.78
1,800.0	0.00	0.00	1,800.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.78
1,900.0	0.00	0.00	1,900.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.78
2,000.0	0.00	0.00	2,000.0	-230.8	-2,010.0	32° 4' 44.202 N	103° 18' 7.78'
2,100.0	2.00	340.00	2,100.0	-229.2	-2,010.6	32° 4' 44.218 N	103° 18' 7.79
2,200.0	4.00	340.00	2,199.8	-224.2	-2,012.4	32° 4' 44.267 N	103° 18' 7.81
2,300.0	6.00	340.00	2,299.5	-216.1	-2,015.3	32° 4' 44.348 N	103° 18' 7.84
2,400.0	6.00	340.00	2,398.9	-206.2	-2,018.9	32° 4' 44.446 N	103° 18' 7.88
2,500.0	6.00	340.00	2,498.4	-196,4	-2,022.5	32° 4' 44.543 N	103° 18' 7.92
2,600.0	6.00	340.00	2,597.8	-186.6	-2,026.1	32° 4' 44.641 N	103° 18' 7.96
2,700.0	6.00	340.00	2,697.3	-176.8	-2,029.6	32° 4' 44.738 N	103° 18' 8.00
2,800.0	6.00	340.00	2,796.7	-166.9	-2,033.2	32° 4' 44.836 N	103° 18' 8.05
2,900.0	6.00	340.00	2,896.2	-157.1	-2,036.8	32° 4' 44.933 N	103° 18' 8.09
3,000.0	6.00	340.00	2,995.6	-147.3	-2,040.4	32° 4' 45.031 N	103° 18' 8.13
3,100.0	6.00	340.00	3,095.1	-137.5	-2,043.9	32° 4' 45.128 N	103° 18' 8.17
3,200.0	6.00	340.00	3,194.5	-127.7	-2,047.5	32° 4' 45.226 N	103° 18' 8.21
3,300.0 3,400.0	6.00 6.00	340.00 340.00	3,294.0 3,393.4	-117.8 -108.0	-2,051.1 -2,054.7	32° 4' 45.323 N 32° 4' 45.421 N	103° 18' 8.25 103° 18' 8.29
3,500.0	6.00	340.00	3,492.9	-98.2	-2,058.2	32° 4' 45.518 N	103° 18' 8.33
3,600.0	6.00	340.00	3,592.3	-88.4	-2,061.8	32° 4' 45.616 N	103° 18' 8.37
3,700.0	6.00	340.00	3,691.8	-78.5	-2,065.4	32° 4' 45.713 N	103° 18' 8.41
3,800.0	6.00	340.00	3,791.2	-68.7	-2,069.0	32° 4' 45.811 N	103° 18' 8.45
3,900.0	6.00	340.00	3,890.7	-58.9	-2,072.5	32° 4' 45.909 N	103° 18' 8.49
4,000.0	6.00	340.00	3,990.1	-49.1	-2,076.1	32° 4' 46.006 N	103° 18' 8.53
4,100.0	6.00	340.00	4,089.6	-39.2	-2,079.7	32° 4' 46.104 N	103° 18' 8.57
4,200.0	6.00	340.00	4,189.0	-29.4	-2,083.3	32° 4' 46.201 N	103° 18' 8.61
4,300.0	6.00	340.00	4,288.5	-19,6	-2,086.8	32° 4' 46.299 N	103° 18' 8.65
4,400.0	6.00	340.00	4,387.9	-9.8	-2,090.4	32° 4' 46.396 N	103° 18' 8.69
4,500.0	6.00	340.00	4,487.4	0.0	-2,094.0	32° 4' 46.494 N	103° 18' 8.73
4,600.0	6.00	340.00	4,586.9	9.9	-2,097.6	32° 4' 46.591 N	103° 18' 8.77
4,700.0	6.00	340.00	4,686.3	19.7	-2,101.1	32° 4' 46.689 N	103° 18' 8.81
4,800.0	6.00	340.00	4,785.8	29.5	-2,104.7	32° 4' 46.786 N	103° 18' 8.85
4,900.0	6.00	340.00	4,885.2	39.3	-2,108.3	32° 4' 46.884 N	103° 18' 8.89
5,000.0	6.00	340.00	4,984.7	49.2	-2,111.9	32° 4' 46.981 N	103° 18' 8.94
5,000.0	6.00	340.00	5,084.1	59.0	-2,111. 9 -2,115.4	32° 4' 47.079 N	103 18 8.94 103° 18' 8.98
5,200.0	6.00	340.00	5,183.6	68.8	-2,119.0	32° 4' 47.176 N	103 18 8.96 103° 18' 9.02
5,200.0	6.00	340.00	5,183.0	78.6	-2,119.0 -2,122.6	32° 4' 47.274 N	103 18 9.02 103° 18' 9.06
5,400.0	6.00	340.00	5,382.5	78.6 88.4	-2,122.0 -2,126.2	32° 4' 47.371 N	103 18 9.00 103° 18' 9.10
J, -100.0	0.00	340.00	0,002.0	00.4	-2,120.2	JE 7 71.511 N	100 10 0.10

Company: Ameredev Operating, LLC.

Project: NAN/GB
Site: NAN/GB #6S
Well: Golden Bell 085H
Wellibore: Wellbore #1

Design:

Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Database:

Well Golden Bell 085H

KB @ 3038.0usft KB @ 3038.0usft

Grid

Minimum Curvature

ngii. Desigi		···					
nned Survey						,	
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
5,600.0	6.00	340.00	5,581.4	108.1	-2,133.3	32° 4' 47.566 N	103° 18' 9.183
5,700.0	6.00	340.00	5,680.8	117.9	-2,136.9	32° 4' 47.664 N	103° 18' 9.223
5,800.0	6.00	340.00	5,780.3	127.7	-2,140.5	32° 4' 47.762 N	103° 18' 9.264
5,900.0	6.00	340.00	5,879.7	137.6	-2,144.0	32° 4' 47.859 N	103° 18' 9.30
6,000.0	6.00	340.00	5,979.2	147.4	-2,147.6	32° 4' 47.957 N	103° 18' 9.34
6,100.0	6.00	340.00	6,078.6	157.2	-2,151.2	32° 4' 48.054 N	103° 18' 9.38
6,200.0	6.00	340.00	6,178.1	167.0	-2,154.8	32° 4' 48.152 N	103° 18' 9.42
6,300.0	6.00	340.00	6,277.5	176.8	-2,158.3	32° 4' 48.249 N	103° 18' 9.46
6,400.0	6.00	340.00	6,377.0	186.7	-2,161.9	32° 4' 48.347 N	103° 18' 9.50
6,500.0	6.00	340.00	6,476.4	196.5	-2,165.5	32° 4' 48.444 N	103° 18' 9.54
6,600.0	6.00	340.00	6,575.9	206.3	-2,169.1	32° 4' 48.542 N	103° 18' 9.58
6,700.0	6.00	340.00	6,675.3	216.1	-2,172.6	32° 4' 48.639 N	103° 18' 9.62
6,724.8	6.00	340.00	6,700.0	218.6	-2,173.5	32° 4' 48.663 N	103° 18' 9.63
6,800.0	4.50	340.00	6,774.9	225.0	-2,175.9	32° 4' 48.728 N	103° 18' 9.66
6,900.0	2.50	340.00	6,874.7	230.8	-2,178.0	32° 4' 48.785 N	103° 18' 9.68
7,000.0	0.50	340.00	6,974.7	233.2	-2,178.9	32° 4' 48.809 N	103° 18' 9.69
7,024.8	0.00	0.00	6,999.5	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
7,100.0	0.00	0.00	7,074.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
7,200.0	0.00	0.00	7,174.7	233.3	-2,178.9	32° 4′ 48.810 N	103° 18' 9.69
7,300.0	0.00	0.00	7,274.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
7,400.0	0.00	0.00	7,374.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
7,500.0	0.00	0.00	7,474.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
7,600.0	0.00	0.00	7,574.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
7,700.0	0.00	0.00	7,674.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
7,800.0	0.00	0.00	7,774.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
7,900.0	0.00	0.00	7,874.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
0.000,8	0.00	0.00	7,974.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
8,100.0	0.00	0.00	8,074.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
8,200.0	0.00	0.00	8,174.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
8,300.0	0.00	0.00	8,274.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
8,400.0	0.00	0.00	8,374.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
8,500.0	0.00	0.00	8,474.7	233.3	-2,178.9	32° 4′ 48.810 N	103° 18' 9.69
8,600.0	0.00	0.00	8,574.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
8,700.0	0.00	0.00	8,674.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
8,800.0	0.00	0.00	8,774.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
8,900.0	0.00	0.00	8,874.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
9,000.0	0.00	0.00	8,974.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
9,100.0	0.00	0.00	9,074.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
9,200.0	0.00	0.00	9,174.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
9,300.0	0.00	0.00	9,274.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
9,400.0	0.00	0.00	9,374.7	233.3	-2,178.9	32° 4′ 48.810 N	103° 18' 9.69
9,500.0	0.00	0.00	9,474.7	233.3	-2,178.9	32° 4′ 48.810 N	103° 18' 9.69
9,600.0	0.00	0.00	9,574.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
9,700.0	0.00	0.00	9,674.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site: Well: Wellbore:

Design:

NAN/GB NAN/GB #6S Golden Bell 085H Wellbore #1

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method:

Database:

Well Golden Bell 085H

KB @ 3038.0usft KB @ 3038.0usft

Grid

Minimum Curvature

pri. Design			Database.		EDIVIDUO		
ed Survey							
MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitude
9,800.0	0.00	0.00	9,774.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.698
9,900.0	0.00	0.00	9,874.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
10,000.0	0.00	0.00	9,974.7	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
10,000.3	0.00	0.00	9,975.0	233.3	-2,178.9	32° 4' 48.810 N	103° 18' 9.69
GB085 KOP (NMI	NM137469)						
10,100.0	11.96	137.57	10,073.9	225.7	-2,171.9	32° 4′ 48.734 N	103° 18' 9.61
10,200.0	23.96	137.57	10,168.9	202.9	-2,151.1	32° 4' 48.507 N	103° 18' 9.37
10,300.0	35.96	137.57	10,255.4	166.2	-2,117.5	32° 4' 48.140 N	103° 18' 8.99
10,305.7	36.64	137.57	10,260.0	163.7	-2,115.2	32° 4' 48.115 N	103° 18' 8.96
10,333.9	36.64	137.57	10,282.6	151.2	-2,103.9	32° 4' 47.991 N	103° 18' 8.83
10,400.0	42.30	146.35	10,333.6	118.1	-2,078.2	32° 4' 47.660 N	103° 18' 8.54
10,500.0	51.80	156.41	10,401.8	53.8	-2,043.7	32° 4' 47.021 N	103° 18' 8.14
10,500.0	61.96	164.06	10,401.8	-24.9	-2,043.7 -2,015.8	32° 4' 46.240 N	103 18 8.14 103° 18' 7.83
10,600.0	72.45	170.34	10,495.0	-24. 9 -114.4	-2,015.6 -1,995.6	32° 4' 45.352 N	103 18 7.60
	72.43	170.54	10,495.0	-114,4	-1,555.0	32 4 43.332 14	103 10 7.00
GB085 FTP 10,700.0	72,47	170.36	10,495.1	-114.7	-1,995.6	32° 4' 45.350 N	103° 18' 7.60
10,800.0	83.16	175.95	10,516.2	-211.5	-1,984.0	32° 4' 44.390 N	103° 18' 7.48
,			·				
10,863.7	90.00	179.36	10,520.0	-275.0	-1,981.5	32° 4' 43.762 N	103° 18' 7.46
GB085 FTP2							
10,900.0	90.00	179.36	10,520.0	-311.3	-1,981.0	32° 4' 43.402 N	103° 18' 7.40
11,000.0	90.00	179.36	10,520.0	-411.3	-1,979.9	32° 4' 42.413 N	103° 18' 7.4
11,100.0	90.00	179.36	10,520.0	-511.3	-1,978.8	32° 4' 41.423 N	103° 18' 7.4
11,200.0	90.00	179.36	10,520.0	-611.3	-1,977.7	32° 4' 40.434 N	103° 18' 7.4
11,300.0	90.00	179.36	10,520.0	-711.3	-1,976.6	32° 4' 39.444 N	103° 18' 7.4
11,400.0	90.00	179.36	10,520.0	-811.3	-1,975.5	32° 4′ 38.455 N	103° 18' 7.4
11,500.0	90.00	179.36	10,520.0	-911.3	-1,974.4	32° 4' 37.465 N	103° 18' 7.4
11,600.0	90.00	179.36	10,520.0	-1,011.3	-1,973.3	32° 4′ 36.476 N	103° 18' 7.4
11,700.0	90.00	179.36	10,520.0	-1,111.3	-1,972.2	32° 4' 35.486 N	103° 18' 7.4
11,800.0	90.00	179.36	10,520.0	-1,211.3	-1,971.0	32° 4' 34.497 N	103° 18' 7.4
11,900.0	90.00	179.36	10,520.0	-1,311.3	-1,969.9	32° 4' 33.507 N	103° 18' 7.4
12,000.0	90.00	179.36	10,520.0	-1,411.2	-1,968.8	32° 4' 32.518 N	103° 18' 7.4
12,100.0	90.00	179.36	10,520.0	-1,511.2	-1,967.7	32° 4' 31,528 N	103° 18' 7.4
12,200.0	90.00	179.36	10,520.0	-1,611.2	-1,966.6	32° 4' 30.539 N	103° 18' 7.4
							103° 18' 7.4
12,300.0	90.00	179.36	10,520.0	-1,711.2 1,911.2	-1,965.5 -1,964.4	32° 4' 29.549 N	103° 18' 7.4
12,400.0	90.00	179.36 170.36	10,520.0	-1,811.2 -1,911.2	-1,964.4 -1,963.3	32° 4' 28.560 N	
12,500.0	90.00	179.36	10,520.0	-1,911.2 -2,011.2	-1,963.3	32° 4' 27.570 N	103° 18' 7.43 103° 18' 7.43
12,600.0	90.00	179.36 170.36	10,520.0	-2,011.2 2,111.2	-1,962.1 1,961.0	32° 4' 26.581 N	
12,700.0	90.00	179.36	10,520.0	-2,111.2	-1,961.0	32° 4' 25.591 N	103° 18' 7.42
12,800.0	90.00	179.36	10,520.0	-2,211.2	-1,959.9	32° 4' 24.601 N	103° 18' 7.42
12,900.0	90.00	179.36	10,520.0	-2,311.2	-1,958.8	32° 4' 23.612 N	103° 18' 7.42
13,000.0	90.00	179.36	10,520.0	-2,411.2	-1,957.7	32° 4' 22.622 N	103° 18' 7.42
13,100.0	90.00	179.36	10,520.0	-2,511.2	-1,956.6	32° 4' 21.633 N	103° 18' 7.42
13,200.0	90.00	179.36	10,520.0	-2,611.2	-1,955.5	32° 4' 20.643 N	103° 18' 7.41
13,300.0	90.00	179.36	10,520.0	-2,711.2	-1,954.4	32° 4' 19.654 N	103° 18' 7.41
13,400.0	90.00	179.36	10,520.0	-2,811.2	-1,953.2	32° 4' 18.664 N	103° 18' 7.41

Lease Penetration Section Line Footages

Company:

Ameredev Operating, LLC.

Project: Site: Well:

Wellbore:

Design:

NAN/GB NAN/GB #6S Golden Bell 085H

Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method:

Database:

Well Golden Bell 085H

KB @ 3038.0usft KB @ 3038.0usft

Grid

Minimum Curvature

MD (usft)	inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitud
13,500.0	90.00	179.36	10,520.0	-2,911.2	-1,952.1	32° 4' 17.675 N	103° 18' 7
13,600.0	90.00	179.36	10,520.0	-3,011.1	-1,951.0	32° 4' 16.685 N	103° 18' 7
13,700.0	90.00	179.36	10,520.0	-3,111.1	-1,949.9	32° 4' 15.696 N	103° 18' 7
13,800.0	90.00	179.36	10,520.0	-3,211.1	-1,948.8	32° 4' 14.706 N	103° 18' 7
13,900.0	90.00	179.36	10,520.0	-3,311.1	-1,947.7	32° 4' 13.717 N	103° 18' 7
14,000.0	90.00	179.36	10,520.0	-3,411.1	-1,946.6	32° 4' 12.727 N	103° 18' 7
14,100.0	90.00	179.36	10,520.0	-3,511.1	-1,945.5	32° 4' 11.738 N	103° 18' 7
14,200.0	90.00	179.36	10,520.0	-3,611.1	-1,944.3	32° 4′ 10.748 N	103° 18' 7
14,300.0	90.00	179.36	10,520.0	-3,711.1	-1,943.2	32° 4' 9.759 N	103° 18' 7
14,400.0	90.00	179.36	10,520.0	-3,811.1	-1,942.1	32° 4' 8.769 N	103° 18' 7
14,500.0	90.00	179.36	10,520.0	-3,911.1	-1,941.0	32° 4' 7.780 N	103° 18' 7
14,600.0	90.00	179.36	10,520.0	-4,011.1	-1,939.9	32° 4' 6.790 N	103° 18' 7
14,700.0	90.00	179.36	10,520.0	-4,111.1	-1,938.8	32° 4' 5.801 N	103° 18' 7
14,800.0	90.00	179.36	10,520.0	-4,211.1	-1,937.7	32° 4' 4.811 N	103° 18' 7
14,900.0	90.00	179.36	10,520.0	-4,311.1	-1,936.6	32° 4' 3.822 N	103° 18' 7
15,000.0	90.00	179.36	10,520.0	-4,411.1	-1,935.4	32° 4' 2.832 N	103° 18' 7
15,100.0	90.00	179.36	10,520.0	-4,511.1	-1,934.3	32° 4' 1.843 N	103° 18' 7
15,200.0	90.00	179.36	10,520.0	-4,611.1	-1,933.2	32° 4' 0.853 N	103° 18' 7
15,300.0	90.00	179.36	10,520.0	-4,711.0	-1,932.1	32° 3' 59.864 N	103° 18' 7
15,400.0	90.00	179.36	10,520.0	-4,811.0	-1,931.0	32° 3' 58.874 N	103° 18' 7
15,500.0	90.00	179.36	10,520.0	-4,911.0	-1,929.9	32° 3' 57.885 N	103° 18' 7
15,600.0	90.00	179.36	10,520.0	-5,011.0	-1,928.8	32° 3′ 56.895 N	103° 18' 7
15,700.0	90.00	179.36	10,520.0	-5,111.0	-1,927.7	32° 3′ 55.906 N	103° 18' 7
15,800.0	90.00	179.36	10,520.0	-5,211.0	-1,926.5	32° 3' 54.916 N	103° 18' 7
15,869.0	90.00	179.36	10,520.0	-5,280.0	-1,925.8	32° 3' 54.233 N	103° 18' 7
GB085 Into NMN	M137472 90.00	179.36	10 520 0	E 244 O	4.025.4	220 21 52 027 N	4029 401 7
15,900.0 16,000.0	90.00	179.36	10,520.0 10,520.0	-5,311.0 -5,411.0	-1,925.4 -1,924.3	32° 3' 53.927 N 32° 3' 52.937 N	103° 18' 7 103° 18' 7
16,100.0	90.00	179.36	10,520.0	-5,411.0 -5,511.0	-1,923.2	32° 3′ 51.948 N	103 18 7
	90.00		10,520.0				
16,200.0 16,300.0	90.00	179.36 179.36	10,520.0	-5,611.0 5,711.0	-1,922.1 -1,921.0	32° 3' 50.958 N 32° 3' 49.968 N	103° 18' 7 103° 18' 7
16,400.0	90.00	179.36	10,520.0	-5,711.0 -5,811.0	-1,921.0 -1,919.9	32° 3′ 48.979 N	103 18 7
16,500.0	90.00	179.36	10,520.0		-1,918.8 -1,918.8	32° 3' 47.989 N	103 18 7
16,600.0	90.00	179.36	10,520.0	-5,911.0 -6,011.0	-1,916.6 -1,917.7	32° 3' 47.000 N	103 18 7
16,700.0	90.00	179.36	10,520.0	-6,111.0	-1,916.5	32° 3' 46.010 N	103° 18' 7
	90.00						
16,800.0	90.00	179.36	10,520.0 10,520.0	-6,211.0 6.310.0	-1,915.4	32° 3' 45.021 N	103° 18' 7
16,900.0 17,000.0		179.36		-6,310.9 6.410.0	-1,914.3	32° 3' 44.031 N	103° 18' 7
17,000.0	90.00 90.00	179.36 179.36	10,520.0 10,520.0	-6,410.9 -6.510.9	-1,913.2 -1 912 1	32° 3′ 43.042 N 32° 3′ 42.052 N	103° 18' 7 103° 18' 7
				-6,510.9	-1,912.1		
17,200.0	90.00	179.36	10,520.0	-6,610.9	-1,911.0	32° 3' 41.063 N	103° 18' 7
17,300.0	90.00	179.36	10,520.0	-6,710.9	-1,909.9	32° 3' 40.073 N	103° 18' 7
17,400.0	90.00	179.36	10,520.0	-6,810.9	-1,908.8	32° 3' 39.084 N	103° 18' 7
17,500.0 17,600.0	90.00	179.36 179.36	10,520.0 10,520.0	-6,910.9	-1,907.6	32° 3' 38.094 N	103° 18' 7 103° 18' 7

Company: Ameredev Operating, LLC.

Project: Site: Well:

Wellbore:

Design:

NAN/GB NAN/GB #6S Golden Bell 085H

Wellbore #1 Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference: Survey Calculation Method:

Database:

Well Golden Bell 085H

KB @ 3038.0usft KB @ 3038.0usft

Grid

Minimum Curvature

MD (usft)	Inc (°)	Azi (azimuth) (°)	TVD (usft)	+FSL/-FNL (usft)	+FWL/-FEL (usft)	Latitude	Longitud
17,700.0	90.00	179.36	10,520.0	-7,110.9	-1,905.4	32° 3' 36.115 N	103° 18' 7.
17,800.0	90.00	179.36	10,520.0	-7,210.9	-1,904.3	32° 3' 35.126 N	103° 18' 7.
17,900.0	90.00	179.36	10,520.0	-7,310.9	-1,903.2	32° 3' 34.136 N	103° 18' 7.
18,000.0	90.00	179.36	10,520.0	-7,410.9	-1,902.1	32° 3' 33.147 N	103° 18' 7.3
18,100.0	90.00	179.36	10,520.0	-7,510.9	-1,901.0	32° 3' 32.157 N	103° 18' 7.
18,200.0	90.00	179.36	10,520.0	-7,610.9	-1,899.9	32° 3' 31.168 N	103° 18' 7.3
18,300.0	90.00	179.36	10,520.0	-7,710.9	-1,898.7	32° 3' 30.178 N	103° 18' 7.3
18,400.0	90.00	179.36	10,520.0	-7,810.9	-1,897.6	32° 3' 29.189 N	103° 18' 7.3
18,500.0	90.00	179.36	10,520.0	-7,910.8	-1,896.5	32° 3' 28.199 N	103° 18' 7.3
18,600.0	90.00	179.36	10,520.0	-8,010.8	-1,895.4	32° 3' 27.210 N	103° 18' 7.3
18,700.0	90.00	179.36	10,520.0	-8,110.8	-1,894.3	32° 3' 26.220 N	103° 18' 7.3
18,800.0	90.00	179.36	10,520.0	-8,210.8	-1,893.2	32° 3′ 25,231 N	103° 18' 7.3
18,900.0	90.00	179.36	10,520.0	-8,310.8	-1,892.1	32° 3′ 24.241 N	103° 18' 7.3
19,000.0	90.00	179.36	10,520.0	-8,410.8	-1,891.0	32° 3' 23.252 N	103° 18' 7.3
19,100.0	90.00	179.36	10,520.0	-8,510.8	-1,889.8	32° 3′ 22.262 N	103° 18' 7.3
19,200.0	90.00	179.36	10,520.0	-8,610.8	-1,888.7	32° 3′ 21.273 N	103° 18' 7.3
19,300.0	90.00	179.36	10,520.0	-8,710.8	-1,887.6	32° 3' 20.283 N	103° 18' 7.3
19,400.0	90.00	179.36	10,520.0	-8,810.8	-1,886.5	32° 3′ 19.294 N	103° 18' 7.3
19,500.0	90.00	179.36	10,520.0	-8,910.8	-1,885.4	32° 3′ 18.304 N	103° 18' 7.3
19,600.0	90.00	179.36	10,520.0	-9,010.8	-1,884.3	32° 3′ 17.314 N	103° 18' 7.3
19,700.0	90.00	179.36	10,520.0	-9,110.8	-1,883.2	32° 3′ 16.325 N	103° 18' 7.2
19,800.0	90.00	179.36	10,520.0	-9,210.8	-1,882.1	32° 3′ 15.335 N	103° 18' 7.2
19,900.0	90.00	179.36	10,520.0	-9,310.8	-1,880.9	32° 3′ 14.346 N	103° 18' 7.2
20,000.0	90.00	179.36	10,520.0	-9,410.8	-1,879.8	32° 3' 13.356 N	103° 18' 7.2
20,100.0	90.00	179.36	10,520.0	-9,510.7	-1,878.7	32° 3′ 12.367 N	103° 18' 7.2
20,200.0	90.00	179.36	10,520.0	-9,610.7	-1,877.6	32° 3' 11.377 N	103° 18' 7.2
20,300.0	90.00	179.36	10,520.0	-9,710.7	-1,876.5	32° 3' 10.388 N	103° 18' 7.2
20,400.0	90.00	179.36	10,520.0	-9,810.7	-1,875.4	32° 3′ 9.398 N	103° 18' 7.2
20,500.0	90.00	179.36	10,520.0	-9,910.7	-1,874.3	32° 3' 8.409 N	103° 18' 7.2
20,600.0	90.00	179.36	10,520.0	-10,010.7	-1,873.2	32° 3' 7.419 N	103° 18' 7.2
20,700.0	90.00	179.36	10,520.0	-10,110.7	-1,872.0	32° 3' 6.430 N	103° 18' 7.2
20,800.0	90.00	179.36	10,520.0	-10,210.7	-1,870.9	32° 3' 5.440 N	103° 18' 7.2
20,900.0	90.00	179.36	10,520.0	-10,310.7	-1,869.8	32° 3' 4.451 N	103° 18' 7.2
21,000.0	90.00	179.36	10,520.0	-10,410.7	-1,868.7	32° 3' 3.461 N	103° 18' 7.2
21,100.0	90.00	179.36	10,520.0	-10,510.7	-1,867.6	32° 3' 2.472 N	103° 18' 7.2
21,105.5	90.00	179.36	10,520.0	-10,516.2	-1,867.5	32° 3' 2.417 N	103° 18' 7.:

Company: Ameredev Operating, LLC.

Project: NAN/GB
Site: NAN/GB #6S
Well: Golden Bell 085H

Wellbore: Wellbore #1
Design: Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:

North Reference:

Survey Calculation Method: Database:

Well Golden Bell 085H

KB @ 3038.0usft KB @ 3038.0usft

Grid

Minimum Curvature EDM5000

Plan Annotations

Vertical Measured **Local Coordinates** Depth Depth +N/-S +E/-W (usft) (usft) (usft) (usft) Comment 10,000.3 9,975.0 GB085 KOP (NMNM137469) 464.1 -168.9 15,869.0 10,520.0 -5,049.2 84.2 GB085 into NMNM137472

Checked By:	Approved By:	Date:
-------------	--------------	-------

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400032990

Submission Date: 08/31/2018

Operator Name: AMEREDEV OPERATING LLC

Well Name: GOLDEN BELL FED COM 26 36 06

Well Number: 085H

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

I ask detection evetem attachment.

Operator Name: AMEREDEV OPERATING LLC

Well Name: GOLDEN BELL FED COM 26 36 06

Well Number: 085H

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD disturbance (acres):

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Operator Name: AMEREDEV OPERATING LLC
Well Name: GOLDEN BELL FED COM 26 36 06

Well Number: 085H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number:

Injection well name:

Assigned injection well API number?

Injection well API number:

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Operator Name: AMEREDEV OPERATING LLC

Well Name: GOLDEN BELL FED COM 26 36 06

Well Number: 085H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report 02/28/2020

APD ID: 10400032990

Submission Date: 08/31/2018

Operator Name: AMEREDEV OPERATING LLC

Well Number: 085H

Show Final Text

Well Name: GOLDEN BELL FED COM 26 36 06

Well Work Type: Drill

Well Type: OIL WELL

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001478

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: