| Form 3160-3<br>(June 2015)<br>UNITED STATES                                                                                                                                                                                             |                         | HOBBS 0<br>Mar 0 2 202                                           |                   |                                                   | APPRO<br>o. 1004-(<br>anuary 31 | 0137            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------|-------------------|---------------------------------------------------|---------------------------------|-----------------|
| DEPARTMENT OF THE I                                                                                                                                                                                                                     |                         | κ                                                                | U                 | 5. Lease Serial No.<br>NMNM137470                 |                                 |                 |
| BUREAU OF LAND MANA<br>APPLICATION FOR PERMIT TO D                                                                                                                                                                                      |                         |                                                                  | ED                | 6. If Indian, Allotee                             | or Tribe                        | Name            |
|                                                                                                                                                                                                                                         | EENTER                  |                                                                  | <u></u>           | 7. If Unit or CA Ag                               | reement,                        | Name and No.    |
|                                                                                                                                                                                                                                         | ther<br>ingle Zone      | Multiple Zone                                                    |                   | 8. Lease Name and<br>HOLLY FED COM<br>114H        |                                 | )5              |
| 2. Name of Operator<br>AMEREDEV OPERATING LLC (372224)                                                                                                                                                                                  |                         |                                                                  |                   | 9. API Well No.                                   | 5_4                             | 5941            |
| 3a. Address<br>5707 Southwest Parkway, Building 1, Suite 275 Austin TX                                                                                                                                                                  |                         | No. <i>(include area cod</i><br>4700                             | le)               | 10. Field and Pool,                               | or Explo                        |                 |
| 4. Location of Well (Report location clearly and in accordance of At surface LOT C / 230 FNL / 2280 FWL / LAT 32.078                                                                                                                    | with any Sta            | te requirements.*)                                               |                   | 11. Sec., T. R. M. o<br>SEC 5 / T26S / R3         |                                 | •               |
| At proposed prod. zone LOT N / 50 FSL / 2440 FWL / LA                                                                                                                                                                                   |                         |                                                                  | '5                |                                                   |                                 |                 |
| 14. Distance in miles and direction from nearest town or post off 6.5 miles                                                                                                                                                             | ice*                    |                                                                  |                   | 12. County or Paris<br>LEA                        | h                               | 13. State<br>NM |
| 15. Distance from proposed*<br>location to nearest<br>property or lease line, ft.<br>(Also to nearest drig, unit line, if any)                                                                                                          | 16. No of<br>440        | acres in lease                                                   | 17. Spaci:<br>320 | ng Unit dedicated to t                            | his well                        |                 |
| <ul> <li>18. Distance from proposed location*</li> <li>to nearest well, drilling, completed, 815 feet</li> <li>applied for, on this lease, ft.</li> </ul>                                                                               | 19. Propos<br>11702 fee | ed Depth<br>t / 22449 feet                                       |                   | /BIA Bond No. in file<br>/B001478                 |                                 |                 |
| 21. Elevations (Show whether DF, KDB, RT, GL, etc.)                                                                                                                                                                                     | 22. Appro               | ximate date work will                                            | start*            | 23. Estimated durat                               | ion                             |                 |
| 3003 feet                                                                                                                                                                                                                               | 10/01/201               |                                                                  | -                 | 90 days                                           |                                 |                 |
| The following, completed in accordance with the requirements of                                                                                                                                                                         |                         | il and Gas Order No.                                             | I and the F       | Andraulic Fracturing                              | ule ner 4                       | 3 CEP 3162 3-3  |
| (as applicable)                                                                                                                                                                                                                         |                         |                                                                  | , und u.c 1       | ryuaune i racturing i                             | uie per 4                       |                 |
| <ol> <li>Well plat certified by a registered surveyor.</li> <li>A Drilling Plan.</li> <li>A Surface Use Plan (if the location is on National Forest Syster<br/>SUPO must be filed with the appropriate Forest Service Office</li> </ol> |                         | Item 20 above).<br>5. Operator certific<br>6. Such other site sp | cation.           | ns unless covered by a<br>rmation and/or plans as |                                 |                 |
| 25. Signature                                                                                                                                                                                                                           |                         | BLM.<br>(Printed/Typed)                                          |                   |                                                   | Date                            |                 |
| (Electronic Submission)                                                                                                                                                                                                                 | Curt                    | is Johnson2 / Ph: (3                                             | 03)236-22         | 269                                               | 07/22/2                         | 2019            |
| Nexgen Developer Approved by (Signature)                                                                                                                                                                                                | Nam                     | c (Printed/Typed)                                                |                   |                                                   | Date                            |                 |
| (Electronic Submission)                                                                                                                                                                                                                 |                         | y Layton / Ph: (575)                                             | 234-5959          |                                                   | 02/26/2                         | 2020            |
| Title<br>Assistant Field Manager Lands & Minerals                                                                                                                                                                                       | CAR                     | LSBAD                                                            |                   |                                                   |                                 |                 |
| Application approval does not warrant or certify that the applican<br>applicant to conduct operations thereon.<br>Conditions of approval, if any, are attached.                                                                         | nt holds lega           | l or equitable title to the                                      | hose rights       | in the subject lease w                            | hich wou                        | ild entitle the |
| Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, m<br>of the United States any false, fictitious or fraudulent statements of                                                                                              |                         |                                                                  |                   | •                                                 |                                 |                 |
| 5ch Rec 03/02/2020                                                                                                                                                                                                                      | VEN W                   | ITH CONDIT                                                       | IONS              | jurisdiction.<br>                                 | por                             | 0               |
| (Continued on page 2)                                                                                                                                                                                                                   | val Dat                 | e: 02/26/2020                                                    |                   | *(In                                              | structio                        | ons on page 2)  |

ľ

## PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

| OPERATOR'S NAME:             | Ameredev Operating LLC     |
|------------------------------|----------------------------|
| WELL NAME & NO.:             | Holly Fed Com 26 36 05 114 |
| <b>SURFACE HOLE FOOTAGE:</b> | 230 FNL / 2280 FWL         |
| <b>BOTTOM HOLE FOOTAGE</b>   | 50 FSL / 2440 FWL          |
| LOCATION:                    | Sec 5 / T26S / R36E / NMP  |
| COUNTY:                      | Lea, NM                    |



| H2S                  | C Yes                 | 🖸 No           |              |
|----------------------|-----------------------|----------------|--------------|
| Potash               | 📀 None                | C Secretary    | C R-111-P    |
| Cave/Karst Potential | C Low                 | 🗘 Medium       | C High       |
| Cave/Karst Potential | C Critical            |                |              |
| Variance             | C None                | Flex Hose      | C Other      |
| Wellhead             | Conventional          | O Multibowl    | 🖸 Both       |
| Other                | C 4 String Area       | Capitan Reef   | <b>WIPP</b>  |
| Other                | <b>F</b> luid Filled  | Cement Squeeze | F Pilot Hole |
| Special Requirements | <b>Water</b> Disposal | COM            | 🕼 Unit       |

#### A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

#### **B.** CASING

- 1. The **13-3/8** inch surface casing shall be set at approximately \_ feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
  - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
  - b. Wait on cement (WOC) time for a primary cement job will be a minimum of  $\underline{\mathbf{8}}$ hours or 500 pounds compressive strength, whichever is greater. (This is to

Page 1 of 8

include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
  - a. Cement should tie-back at least **50 feet** on top of Capitan Reef top. If cement does not circulate see B.1.a, c-d above.
- 3. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is: Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.
  - a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
  - b. Second stage above DV tool:
    - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
  - In <u>Capitan Reef Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
  - Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
    - Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
    - Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.

Page 2 of 8

If alternate four-string casing design is utilized, freshwater-based mud shall be used across the capitan interval.

4. The minimum required fill of cement behind the 5-1/2 inch production casing is:

• Cement should tie-back at least **50 feet** on top of Capitan Reef top. If cement does not circulate see B.1.a, c-d above.

#### C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
  - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
  - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
  - c. Manufacturer representative shall install the test plug for the initial BOP test.
  - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
  - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

#### **D. SPECIAL REQUIREMENT (S)**

#### **Communitization Agreement**

• The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

Page 3 of 8

- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be</u> on the sign.

## **GENERAL REQUIREMENTS**

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

#### Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
  - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
  - b. When the operator proposes to set surface casing with Spudder Rig
    - Notify the BLM when moving in and removing the Spudder Rig.
    - Notify the BLM when moving in the 2<sup>nd</sup> Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
    - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on

Page 4 of 8

which the draw works are located, this does not include the dog house or stairway area.

3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

#### A. CASING

- Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

Page 5 of 8

- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

#### B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
  - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
  - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
  - c. Manufacturer representative shall install the test plug for the initial BOP test.
  - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
  - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.

Page 6 of 8

- a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

Page 7 of 8

h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

#### C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

#### D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 8 of 8



#### U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

## **Operator Certification**

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Christie Hanna

Signed on: 07/22/2019

**Operator Certification Data Report** 

02/26/2020

Title: Senior Engineering Technician

Street Address: 5707 SOUTHWEST PKWY BLDG 1 STE 275

State: TX

**City: AUSTIN** 

Phone: (737)300-4723

Email address: channa@ameredev.com

**Field Representative** 

Representative Name:

Street Address: 5707 SOUTHWEST PKWY., BLDG. 1 #275

State: TX

City: AUSTIN

Phone: (580)940-5054

Email address: zboyd@ameredev.com

Zip: 78735

Zip: 78735



U.S. Department of the interior BUREAU OF LAND MANAGEMENT Application Data Report

APD ID: 10400043719

**Operator Name: AMEREDEV OPERATING LLC** 

Well Name: HOLLY FED COM 26 36 05

Well Type: OIL WELL

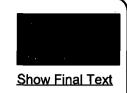
Well Number: 114H Well Work Type: Drill

Tie to previous NOS? N

Federal or Indian agreement:

**User:** Christie Hanna

Lease Acres: 440


Allotted?

Submission Date: 07/22/2019

Is the first lease penetrated for production Federal or Indian? FED

**Reservation:** 

Zip: 78735



Submission Date: 07/22/2019

Title: Senior Engineering Technician

## Section 1 - General

| <b>APD ID:</b> 10400043719 |
|----------------------------|
|----------------------------|

BLM Office: CARLSBAD

Federal/Indian APD: FED

Lease number: NMNM137470

Surface access agreement in place?

Agreement in place? NO

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? NO

Operator letter of designation:

APD Operator: AMEREDEV OPERATING LLC

## **Operator Info**

**Operator Organization Name: AMEREDEV OPERATING LLC** 

Operator Address: 5707 Southwest Parkway, Building 1, Suite 275

**Operator PO Box:** 

Operator City: Austin State: TX

**Operator Phone:** (737)300-4700

**Operator Internet Address:** 

## **Section 2 - Well Information**

Well in Master Development Plan? NO

Well in Master SUPO? NO

Well in Master Drilling Plan? NO

Well Name: HOLLY FED COM 26 36 05

Field/Pool or Exploratory? Field and Pool

Master Development Plan name:

Master SUPO name:

Master Drilling Plan name:

Well Number: 114H

Field Name: JAL

Well API Number:

Pool Name: WOLFCAMP WEST

Is the proposed well in an area containing other mineral resources? LISÉARI E WATED NATURAL GAS COD OIL

**Operator Name: AMEREDEV OPERATING LLC** Well Name: HOLLY FED COM 26 36 05

Well Number: 114H

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, CO2, OIL

|          |                   |               |              |               |        |       |             |                   |          |                       |                    |                |          | ;          |              |           |       |             |   |
|----------|-------------------|---------------|--------------|---------------|--------|-------|-------------|-------------------|----------|-----------------------|--------------------|----------------|----------|------------|--------------|-----------|-------|-------------|---|
| ls th    | e pro             | pose          | d we         | ll in a       | a Heli | um p  | rodu        | ction are         | ea? N    | Use Existing          | g Well             | Pad? I         | 0        | Ne         | w surfa      | ce dis    | turba | nce?        |   |
| Туре     | e of V            | Vell P        | ad: N        | JULT          | IPLE   | WELI  | -           |                   |          | Multiple We           | ll Pad             | Name:          |          | Nu         | ımber: 5     | S         |       |             |   |
| Well     | Clas              | s: HC         | RIZ          | ΟΝΤΑ          | L      |       |             |                   |          | RB/HOL<br>Number of l | .egs: '            | 1              |          |            |              |           |       |             |   |
| Well     | Wor               | k Typ         | e: Dr        | ill           |        |       |             |                   |          |                       |                    |                |          |            | 1            |           |       |             |   |
| Well     | Туре              | e: OIL        | WEI          | LL            |        |       |             |                   |          |                       |                    |                |          |            |              |           |       |             |   |
| Desc     | ribe              | Well          | Туре         | :             |        |       |             |                   |          |                       |                    |                |          |            |              |           |       |             |   |
| Well     | sub-              | Туре          | : INF        | ILL           |        |       |             |                   |          |                       |                    |                |          | :          |              |           |       |             |   |
| Desc     | ribe              | sub-          | ype:         |               |        |       |             |                   | ×        |                       |                    |                |          |            |              |           |       |             |   |
| Dista    | ance              | to to         | <b>wn:</b> 6 | 6.5 Mi        | les    |       |             | Distanc           | e to nea | rest well: 81         | 5 FT               | [              | Distan   | ce te      | o lease l    | ine: 2    | 30 FT |             |   |
| Rese     | ervoi             | r well        | spa          | cing a        | assig  | ned a | cres        | Measur            | ement: 3 | 320 Acres             |                    |                |          |            |              |           |       |             |   |
| Well     | plat:             | F             | IOLL         | Y_FE          | D_CC   | DM_2  | 6 <u>36</u> | _05_114           | HBL      | M_LEASE_N             | /AP_2              | <b>01907</b> 1 | 51551    | 39.        | odf          |           | ÷     |             |   |
|          |                   | F             | IOLL         | Y_FE          | D_CO   | DM_2  | 6 <u>36</u> | _05_114           | HEX      | (H_2AB_201            | 90715 <sup>-</sup> | 155140         | .pdf     |            |              |           |       |             |   |
|          |                   | F             | IOLL         | Y_FE          | D_CC   | DM_2  | 6 <u>36</u> | _05_114           | HVI      | CINITY_MAF            | _2019              | 07151          | 55140.   | pdf        |              |           |       |             |   |
|          |                   | F             | IOLL         | Y_FE          | D_CC   | DM_2  | 6 <u>36</u> | _05_114           | нс_      | 102_SIG_20            | 19072              | 213023         | 86.pdf   |            |              |           |       |             |   |
|          |                   | F             | IOLL         | Y_FE          | D_CC   | DM_2  | 6 <u>36</u> | _05_114           | HW       | ELLSITE_20            | 190722             | 213030         | 3.pdf    |            |              |           |       |             |   |
|          |                   | F             | IOLL         | Y_FE          | D_CC   | DM_2  | 6 <u>36</u> | _05_114           | HGA      | S_CAPTUR              | E_PLA              | N_201          | 90722    | 130        | 342.pdf      |           |       |             |   |
| Well     | worl              | < star        | t Dat        | <b>e:</b> 10/ | /01/20 | )19   |             |                   |          | Duration: 90          | DAYS               | <b>S</b> .     |          |            |              |           |       |             |   |
|          | See               | ctior         | י 3 -        | We            | ll Lo  | ocati | ion         | Table             |          |                       |                    |                |          |            |              |           |       |             |   |
| Surv     | ey T <sub>\</sub> | <b>/pe:</b> F | RECT         | ANG           | ULAF   | 2     |             |                   |          |                       |                    |                |          |            |              |           |       |             |   |
| Desc     | ribe              | Surve         | эу Ту        | vpe:          |        |       |             |                   |          |                       |                    |                |          |            |              |           |       |             |   |
| Datu     | <b>m:</b> N       | AD83          |              |               |        |       |             |                   | ,        | Vertical Date         | um: N/             | AVD88          |          |            |              |           |       |             |   |
| Surv     | ey nı             | umbe          | <b>r:</b> 18 | 329           |        |       |             |                   | I        | Reference D           | atum:              |                |          |            |              |           |       |             |   |
|          | r                 |               |              |               | 1      |       |             |                   | 1        |                       |                    |                | :        |            |              |           |       |             | ſ |
|          |                   |               |              |               |        |       |             | ct                |          |                       |                    |                |          |            | L            |           |       |             |   |
|          |                   | tor           |              | for           |        |       |             | t/Tra             |          |                       |                    |                |          |            | mbei         |           |       |             |   |
| ore      | oot               | Idica         | oot          | ndice         |        | e     | 5           | ot/Lc             | lde      | itude                 | ₹                  |                | lian     | Type       | e Nu         | ation     |       |             |   |
| Wellbore | NS-Foot           | NS Indicator  | EW-Foot      | EW Indicator  | Twsp   | Range | Section     | Aliquot/Lot/Tract | Latitude | Longitude             | County             | State          | Meridian | Lease Type | Lease Number | Elevation | MD    | 2<br>2<br>2 |   |

Will this well produce from this lease?

## Well Name: HOLLY FED COM 26 36 05

### Well Number: 114H

| Wellbore           | NS-Foot  | NS Indicator | EW-Foot  | EW Indicator | Twsp | Range | Section | Aliquot/Lot/Tract | Latitude       | Longitude            | County | State             | Meridian          | Lease Type | Lease Number   | Elevation     | MD        | DVT       | Will this well produce from this lease? |
|--------------------|----------|--------------|----------|--------------|------|-------|---------|-------------------|----------------|----------------------|--------|-------------------|-------------------|------------|----------------|---------------|-----------|-----------|-----------------------------------------|
| SHL<br>Leg<br>#1   | 230      | FNL          | 228<br>0 | FW<br>L      | 26S  | 36E   | 5       | Lot<br>C          | 32.07894<br>62 | -<br>103.2883<br>135 | LEA    | NEW<br>MEXI<br>CO | NEW<br>MEXI<br>CO |            | NMNM<br>137470 | 300<br>3      | 0         | 0         |                                         |
| KOP<br>Leg<br>#1   | 401      | FSL          | 244<br>1 | FW<br>L      | 25S  | 36E   | 32      | Aliquot<br>SESW   | 32.08067       | -<br>103.2877<br>7   | LEA    |                   | NEW<br>MEXI<br>CO | F          | FEE            | -<br>819<br>7 | 112<br>33 | 112<br>00 |                                         |
| PPP<br>Leg<br>#1-1 | 132<br>0 | FSL          | 235<br>9 | FW<br>L      | 26S  | 36E   | 5       | Aliquot<br>SESW   | 32.06869       | -<br>103.2881<br>7   | LEA    |                   | NEW<br>MEXI<br>CO |            | NMNM<br>006727 | -<br>869<br>9 | 158<br>97 | 117<br>02 |                                         |
| PPP<br>Leg<br>#1-2 | 264<br>0 | FSL          | 231<br>8 | FEL          | 25S  | 36E   | 31      | Aliquot<br>NWSE   | 32.08683<br>61 | -<br>103.3031<br>625 | LEA    |                   | NEW<br>MEXI<br>CO |            | NMNM<br>119762 | -<br>942<br>2 | 146<br>72 | 124<br>25 |                                         |
| PPP<br>Leg<br>#1-3 | 132<br>0 | FSL          | 231<br>8 | FEL          | 25S  | 36E   | 31      | Aliquot<br>SWSE   |                | -<br>103.3031<br>615 | LEA    |                   | NEW<br>MEXI<br>CO |            | NMNM<br>137469 | -<br>942<br>2 | 133<br>52 | 124<br>25 |                                         |
| PPP<br>Leg<br>#1-4 | 132<br>0 | FSL          | 231<br>8 | FEL          | 25S  | 36E   | 30      | Aliquot<br>SWSE   | 32.09771<br>69 | -<br>103.3031<br>656 | LEA    |                   | NEW<br>MEXI<br>CO | F          | NMNM<br>137469 | -<br>942<br>2 | 186<br>30 | 124<br>25 |                                         |
| PPP<br>Leg<br>#1-5 | 0        | FNL          | 237<br>3 | FW<br>L      | 26S  | 36E   | 8       | Aliquot<br>NENW   | 32.06506       | -<br>103.2881<br>7   | LEA    |                   | NEW<br>MEXI<br>CO |            | NMNM<br>137473 | -<br>869<br>9 | 172<br>17 | 117<br>02 |                                         |
| PPP<br>Leg<br>#1-6 | 100      |              | 231<br>7 | FW<br>L      | 26S  | 36E   |         |                   |                | -<br>103.2877<br>9   | LEA    |                   | NEW<br>MEXI<br>CO |            | NMNM<br>137470 | -<br>869<br>9 | 120<br>37 | 117<br>02 |                                         |
| PPP<br>Leg<br>#1-7 | 0        | FNL          | 231<br>8 | FEL          | 25S  | 36E   | 30      | Aliquot<br>SWSE   | 32.09408<br>87 | -<br>103.3031<br>645 | LEA    | NEW<br>MEXI<br>CO |                   | F          | NMNM<br>137469 | -<br>942<br>2 | 173<br>10 | 124<br>25 |                                         |
| PPP<br>Leg<br>#1-8 | 0        | FSL          | 231<br>8 | FEL          | 25S  | 36E   | 31      | Aliquot<br>NWNE   | 32.09408<br>87 | -<br>103.3031<br>645 | LEA    |                   | NEW<br>MEXI<br>CO | F          | NMNM<br>137469 | -<br>942<br>2 | 173<br>10 | 124<br>25 |                                         |
| EXIT<br>Leg<br>#1  | 50       | FSL          | 244<br>0 | FW<br>L      | 26S  | 36E   | 8       | Aliquot<br>SESW   | 32.05068       | -<br>103.2877<br>5   | LEA    | NEW<br>MEXI<br>CO | NEW<br>MEXI<br>CO | F          | NMNM<br>137473 | -<br>869<br>9 | 224<br>49 | 117<br>02 |                                         |
| BHL<br>Leg<br>#1   | 50       | FSL          | 244<br>0 | FW<br>L      | 265  | 36E   | 8       | Lot<br>N          | 32.05068       | -<br>103.2877<br>5   | LEA    |                   | NEW<br>MEXI<br>CO | F          | NMNM<br>137473 | -<br>869<br>9 | 224<br>49 | 117<br>02 |                                         |



U.S. Department of the interior BUREAU OF LAND MANAGEMENT



and a start

APD ID: 10400043719

Submission Date: 07/22/2019

**Operator Name: AMEREDEV OPERATING LLC** 

Well Name: HOLLY FED COM 26 36 05

Well Number: 114H

Show Final Text

يتبيح والمتحقق

Well Type: OIL WELL

Well Work Type: Drill

## Section 1 - Geologic Formations

| Formation |                   |           | True Vertical |       | 1 141 - 1 1 |                           | Producing |
|-----------|-------------------|-----------|---------------|-------|-------------|---------------------------|-----------|
| ID        | Formation Name    | Elevation | Depth         | Depth | Lithologies | Mineral Resources         |           |
| 498447    | RUSTLER ANHYDRITE | 3003      | 1172          | 1172  | ANHYDRITE   | NONE                      | N         |
| 498448    | SALADO            | 1366      | 1637          | 1637  | SALT        | NONE                      | N         |
| 498449    | TANSILL           | -410      | 3413          | 3413  | LIMESTONE   | NONE                      | N         |
| 502743    | CAPITAN REEF      | -873      | 3876          | 3876  | LIMESTONE   | USEABLE WATER             | N         |
| 498450    | LAMAR             | -2071     | 5074          | 5074  | LIMESTONE   | NONE                      | N         |
| 498451    | BELL CANYON       | -2203     | 5206          | 5206  | SANDSTONE   | NATURAL GAS, OIL          | N         |
| 498452    | BRUSHY CANYON     | -4102     | 7105          | 7105  | SANDSTONE   | NATURAL GAS, OIL          | N         |
| 498453    | BONE SPRING LIME  | -5151     | 8154          | 8154  | LIMESTONE   | NONE                      | N         |
| 498454    | BONE SPRING 1ST   | -6547     | 9550          | 9550  | SANDSTONE   | NATURAL GAS, OIL          | N .       |
| 498455    | BONE SPRING 2ND   | -7070     | 10073         | 10073 | SANDSTONE   | NATURAL GAS, OIL          | N         |
| 498456    | BONE SPRING 3RD   | -7626     | 10629         | 10629 | LIMESTONE   | NATURAL GAS, NONE,<br>OIL | N         |
| 498457    | BONE SPRING 3RD   | -8223     | 11226         | 11226 | SANDSTONE   | NATURAL GAS, OIL          | N         |
| 498459    | WOLFCAMP          | -8499     | 11502         | 11502 | SHALE       | NATURAL GAS, OIL          | Y         |

## Section 2 - Blowout Prevention

Well Name: HOLLY FED COM 26 36 05

Well Number: 114H

Pressure Rating (PSI): 10M Rating Depth: 15000

**Equipment:** 10M BOPE SYSTEM WILL BE USED AFTER THE SURFACE CASING IS SET. A KELLY COCK WILL BE KEPT IN THE DRILL STRING AT ALL TIMES. A FULL OPENING DRILL PIPE STABBING VALVE WITH PROPER DRILL PIPE CONNECTIONS WILL BE ON THE RIG FLOOR AT ALL TIMES. **Requesting Variance?** YES

Variance request: Co-Flex Choke Line, 5M Annular Preventer

Testing Procedure: See attachment

**Choke Diagram Attachment:** 

10M\_Choke\_Manifold\_REV\_20190722140132.pdf

**BOP Diagram Attachment:** 

5M\_Annular\_Preventer\_Variance\_and\_Well\_Control\_Plan\_20190722140144.pdf

5M\_BOP\_System\_20190722140145.pdf

Pressure\_Control\_Plan\_Single\_Well\_MB4\_3String\_Big\_Hole\_BLM\_20190722140145.pdf

4\_String\_MB\_Ameredev\_Wellhead\_Drawing\_net\_REV\_20190722140158.pdf

Section 3 - Casing

| Casing ID | String Type      | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing<br>length MD | Grade      | Weight | Joint Type     | Collapse SF | Burst SF | Joint SF Type | Joint SF  | Body SF Type | Body SF   |
|-----------|------------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|--------------------------------|------------|--------|----------------|-------------|----------|---------------|-----------|--------------|-----------|
| 1         | SURFACE          | 17.5      | 13.375   | NEW       | API      | N              | 0          | 1297          | 0           | 1297           | 3003        |                | 1297                           | J-55       |        | OTHER -<br>BTC | 7.08        | 0.61     | DRY           | 10.3<br>7 | DRY          | 12.1<br>3 |
|           | INTERMED<br>IATE | 9.87<br>5 | 7.625    | NEW       | API      | N              | 0          | 11502         | 0           | 11502          |             |                | 11502                          | HCL<br>-80 |        | OTHER -<br>BTC | 1.19        | 1.24     | DRY           | 1.91      | DRY          | 2.75      |
| -         | PRODUCTI<br>ON   | 6.75      | 5.5      | NEW       | API      | N              | 0          | 22449         | 0           | 11702          |             |                | 22449                          | P-<br>110  |        | OTHER -<br>BTC | 1.75        | 1.89     | DRY           | 2.8       | DRY          | 3.11      |

#### **Casing Attachments**

Well Name: HOLLY FED COM 26 36 05

Well Number: 114H

#### **Casing Attachments**

Casing ID: 1

String Type: SURFACE

**Inspection Document:** 

Spec Document:

**Tapered String Spec:** 

#### Casing Design Assumptions and Worksheet(s):

13.375\_68\_J55\_SEAH\_20190722140817.pdf

Holly\_Fed\_Com\_26\_36\_05\_114H\_\_\_Wellbore\_Diagram\_and\_CDA\_20190722140827.pdf

Casing ID: 2 String Type: INTERMEDIATE

**Inspection Document:** 

Spec Document:

**Tapered String Spec:** 

Casing Design Assumptions and Worksheet(s):

7.625\_29.70\_P110HC\_LIBERTY\_FJM\_20190722141109.pdf

Holly\_Fed\_Com\_26\_36\_05\_114H\_\_\_Wellbore\_Diagram\_and\_CDA\_20190722141120.pdf

Casing ID: 3 String Type: PRODUCTION

**Inspection Document:** 

**Spec Document:** 

**Tapered String Spec:** 

Casing Design Assumptions and Worksheet(s):

5.50\_20\_USS\_P110\_HC\_BTC\_API\_20190722141348.pdf

 $Holly\_Fed\_Com\_26\_36\_05\_114H\_\_Wellbore\_Diagram\_and\_CDA\_20190722141358.pdf$ 

Well Name: HOLLY FED COM 26 36 05

Well Number: 114H

| Section      | 4 - Ce    | emen                | t      |           |              |       |         |             |         |             |                                                                                           |
|--------------|-----------|---------------------|--------|-----------|--------------|-------|---------|-------------|---------|-------------|-------------------------------------------------------------------------------------------|
| String Type  | Lead/Tail | Stage Tool<br>Depth | Top MD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft       | Excess% | Cement type | Additives                                                                                 |
| SURFACE      | Lead      |                     | 0      | 911       | 615          | 1.76  | 13.5    | 1082.<br>33 | 50      | Class C     | Bentonite, Accelerator,<br>Kolseal, Defoamer,<br>Celloflake                               |
| SURFACE      | Tail      |                     | 911    | 1297      | 200          | 1.34  | 14.8    | 268         | 100     | Class C     | Salt                                                                                      |
| INTERMEDIATE | Lead      | 3413                | 0      | 2173      | 263          | 2.47  | 11.9    | 649.4<br>7  | 25      | Class C     | Salt, Bentonite, Kolseal,<br>Defoamer, Celloflake,<br>Anti-Settling Expansion<br>Additive |
| INTERMEDIATE | Tail      |                     | 2173   | 3413      | 200          | 1.33  | 14.8    | 266         | 25      | Class C     | Retarder                                                                                  |
| INTERMEDIATE | Lead      | 3413                | 0      | 9671      | 1090         | 2.47  | 11.9    | 2692.<br>2  | 25      | Class H     | Bentonite, Salt, Kolseal,<br>Defoamer, Celloflake,<br>Retarder, Anti-Settling             |
| INTERMEDIATE | Tail      |                     | 9671   | 1150<br>2 | 300          | 1.24  | 14.5    | 371.1       | 25      | Class H     | Salt, Bentonite,<br>Retarder, Dispersant,<br>Fluid Loss                                   |
| PRODUCTION   | Lead      |                     | 0      | 2244<br>9 | 1748         | 1.34  | 14.2    | 2341.<br>7  | 25      | Class H     | Salt, Bentonite, Fluid<br>Loss, Dispersant,<br>Retarder, Defoamer                         |

## Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

**Describe what will be on location to control well or mitigate other conditions:** All necessary supplies (e.g. bentonite, cedar bark) for fluid control will be on site.

**Describe the mud monitoring system utilized:** An electronic pit volume totalizer (PVT) will be utilized on the circulating system to monitor pit volume, flow rate, pump pressure, and pump rate.

**Circulating Medium Table** 

#### Well Name: HOLLY FED COM 26 36 05

#### Well Number: 114H

| Top Depth | Bottom Depth | Mud Type                         | Min Weight (İbs/gal) | Max Weight (Ibs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | Н | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics |  |
|-----------|--------------|----------------------------------|----------------------|----------------------|---------------------|-----------------------------|---|----------------|----------------|-----------------|----------------------------|--|
| 1150<br>2 | 1170<br>2    | OIL-BASED<br>MUD                 | 10.5                 | 12.5                 |                     |                             | - |                |                |                 |                            |  |
| 0         | 1297         | WATER-BASED<br>MUD               | 8.4                  | 8.6                  |                     |                             |   |                |                |                 |                            |  |
| 1297      | 1150<br>2    | OTHER : Diesel<br>Brine Emulsion | 8.5                  | 9.4                  |                     |                             |   |                |                |                 |                            |  |

## Section 6 - Test, Logging, Coring

#### List of production tests including testing procedures, equipment and safety measures:

A directional survey, measurement while drilling and a mudlog/geologic lithology log will all be run from surface to TD.

#### List of open and cased hole logs run in the well:

DS,MWD,MUDLOG

#### Coring operation description for the well:

No coring will be done on this well.

## **Section 7 - Pressure**

Anticipated Bottom Hole Pressure: 7606

Anticipated Surface Pressure: 4872.5

Anticipated Bottom Hole Temperature(F): 165

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

**Describe:** 

**Contingency Plans geoharzards description:** 

**Contingency Plans geohazards attachment:** 

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S\_Plan\_20190722143339.pdf

Well Name: HOLLY FED COM 26 36 05

Well Number: 114H

#### Section 8 - Other Information

#### Proposed horizontal/directional/multi-lateral plan submission:

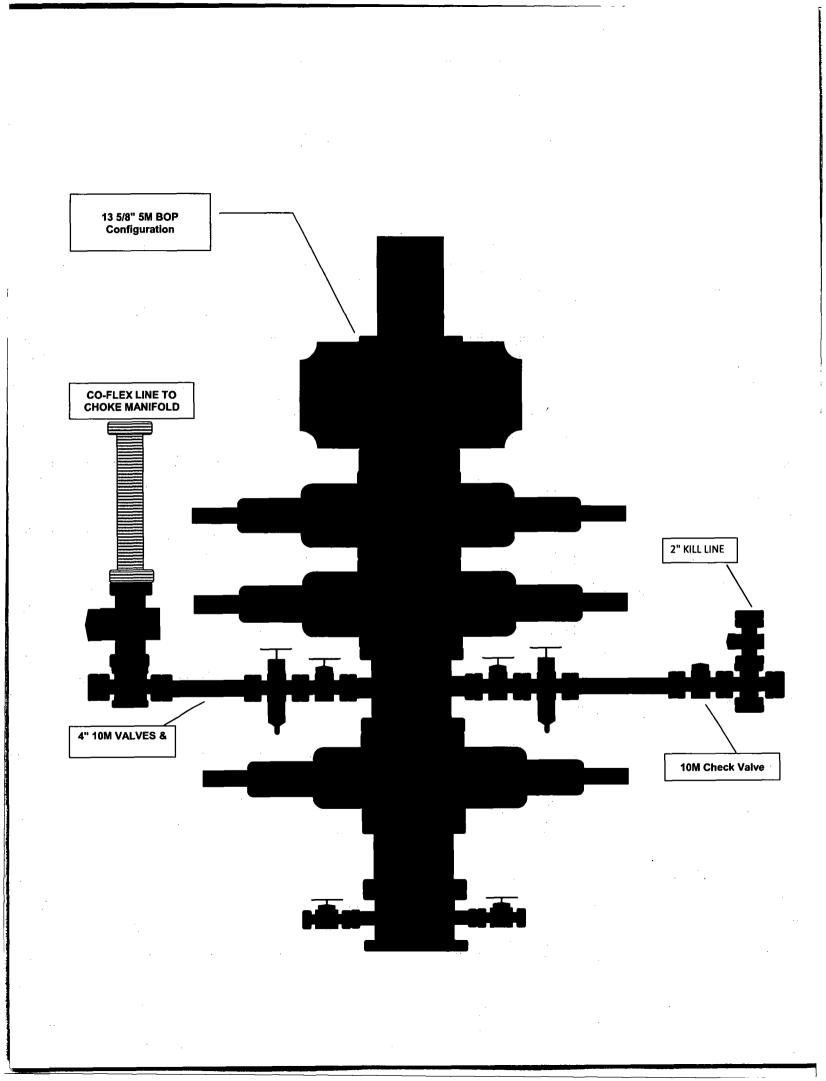
Hol114\_DR\_20190722143357.pdf

Hol114\_LLR\_20190722143357.pdf

5M\_Annular\_Preventer\_Variance\_and\_Well\_Control\_Plan\_20190722143412.pdf

Pressure\_Control\_Plan\_Single\_Well\_MB4\_3String\_Big\_Hole\_BLM\_20190722143412.pdf

#### Other proposed operations facets description:


4-STRING CONTINGENCY PLAN AND SKID PROCEDURE ATTACHED

#### Other proposed operations facets attachment:

CAPITAN\_PROTECTION\_CONTINGENCY\_PLAN\_WC\_PACKET\_20190606\_20190722143429.pdf Rig\_Skid\_Procedure\_20190722143438.pdf

#### **Other Variance attachment:**

R616\_\_\_CoC\_for\_hoses\_12\_18\_17\_20190722143502.pdf Requested\_Exceptions\_\_\_3\_String\_Revised\_01312019\_20190722143503.pdf





## Wellbore Schematic

| Well:      | Holly Fed Com 26-36-05 114H             | Co. Well ID: | xxxxxx                 |
|------------|-----------------------------------------|--------------|------------------------|
| SHL:       | Sec. 05 26S-36E 230' FNL & 2280' FWL    | AFE No.:     | XXXX-XXX               |
| BHL:       | Sec. 08 26S-36E 50' FSL & 2440' FWL     | API No.:     | XXXXXXXXXXX            |
|            | Lea, NM                                 | GL:          | 3,003'                 |
| Wellhead:  | A - 13-5/8" 10M x 13-5/8" SOW           | Field:       | Delaware               |
|            | B - 13-5/8" 10M x 13-5/8" 10M           | Objective:   | Wolfcamp A             |
|            | C - 13-5/8" 10M x 13-5/8" 10M           | TVD:         | 11,702'                |
|            | Tubing Spool - 5-1/8" 15M x 13-3/8" 10M | MD:          | 22,449'                |
| Xmas Tree: | 2-9/16" 10M                             | Rig:         | TBD <b>KB</b> : 27'    |
| Tubing:    | 2-7/8" L-80 6.5# 8rd EUE                | E-Mail:      | Wellsite2@ameredev.com |

| Hole Size  | Formation Tops                                    | Logs Cement                                                 | Mud Weight                          |
|------------|---------------------------------------------------|-------------------------------------------------------------|-------------------------------------|
| 17.5"      | Rustler 1,1                                       | 5 Sai<br>DC 0'                                              | 8.4-8.6 ppg<br>WBM                  |
|            | 13.375" 68# J-55 BTC 1,2                          |                                                             |                                     |
|            | Salado 1,6                                        | % C 33                                                      | XCG99                               |
|            | DV Tool         3,4           Tansill         3,4 |                                                             |                                     |
|            | 1 drisiii                                         |                                                             |                                     |
|            | Capitan Reef 3,8                                  | 76'                                                         | lsio                                |
|            | Lamar 5,0                                         | 74'                                                         | E Emu                               |
|            | Bell Canyon 5,2                                   | 06'                                                         | Brin                                |
| 9.875"     | Brushy Canyon 7,1                                 | 05'                                                         | 8.5 - 9.4 ppg Diesel Brine Emulsion |
|            | Bone Spring Lime 8,1                              | 54'                                                         | bdg                                 |
|            | First Bone Spring 9,5                             | 50'                                                         | - 9.4 p                             |
|            | Second Bone Spring 10,0                           | 73'                                                         | 8.5                                 |
|            | Third Bone Spring Upper 10,6                      | 29' \$29' \$29' \$29' \$29' \$29' \$29' \$29' \$            |                                     |
|            | Third Bone Spring 11,2                            | 25% Excess                                                  |                                     |
|            | 7.625" 29.7# L-80HC BTC 11,5                      | 25% EX TOC 0'                                               |                                     |
| 6.75"      | Wolfcamp A 11,5                                   |                                                             |                                     |
| 12° Build  |                                                   |                                                             | 10.5 - 12.5 ppg OBM                 |
| @          |                                                   |                                                             | D DO                                |
| 11,233' MD |                                                   | _4                                                          | 2 pp                                |
| thru       | 5.5" 20# P-110 USS RYS SF 22,4                    | 49' \$326ks \$500 \$200 \$200 \$200 \$200 \$200 \$200 \$200 | 12.4                                |
| 12,037' MD | Target Wolfcamp A 11702 TVD // 22449 MD           | X a                                                         | <u>ب</u>                            |
|            |                                                   | 1,748 Sacks<br>TOC 0'<br>25% Excess                         | 10                                  |
|            |                                                   | 52 <u> </u>                                                 |                                     |

| Casing Specifications |         |         |        |        |          |          |  |  |
|-----------------------|---------|---------|--------|--------|----------|----------|--|--|
| Segment               | Hole ID | Depth   | OD     | Weight | Grade    | Coupling |  |  |
| Surface               | 17.5    | 1,297'  | 13.375 | 68     | J-55     | BTC      |  |  |
| Intermediate          | 9.875   | 11,502' | 7.625  | 40     | HCL-80   | BTC      |  |  |
| Prod Segment A        | 6.75    | 11,233' | 5.5    | 20     | CYHP-110 | BTC      |  |  |
| Prod Segment B        | 6.75    | 22,449' | 5.5    | 20     | CYHP-110 | BTC      |  |  |

# Casing Design and Safety Factor Check

| Check Surface Casing         |           |             |           |       |  |  |  |  |
|------------------------------|-----------|-------------|-----------|-------|--|--|--|--|
| OD Cplg                      | Body      | Joint       | Collapse  | Burst |  |  |  |  |
| inches                       | 1000 lbs  | 1000 lbs    | psi       | psi   |  |  |  |  |
| 14.375                       | 1,069     | 915         | 4,100     | 3,450 |  |  |  |  |
|                              | S         | afety Facto | ors       |       |  |  |  |  |
| 1.56                         | 12.13     | 10.37       | 7.08      | 0.61  |  |  |  |  |
|                              | Check I   | ntermedia   | te Casing |       |  |  |  |  |
| OD Cplg                      | Body      | Joint       | Collapse  | Burst |  |  |  |  |
| inches                       | 1000 lbs  | 1000 lbs    | psi       | psi   |  |  |  |  |
| 7.625                        | 940       | 558         | 6700      | 9460  |  |  |  |  |
| Safety Factors               |           |             |           |       |  |  |  |  |
| 1.13                         | 2.75      | 1.91        | 1.19      | 1.24  |  |  |  |  |
| Check Prod Casing, Segment A |           |             |           |       |  |  |  |  |
| OD Cplg                      | Body      | Joint       | Collapse  | Burst |  |  |  |  |
| inches                       | 1000 lbs  | 1000 lbs    | psi       | psi   |  |  |  |  |
| 5.777                        | 728       | 655         | 12780     | 14360 |  |  |  |  |
|                              | S         | afety Facto | ors       |       |  |  |  |  |
| 0.49                         | 3.11      | 2.80        | 1.75      | 1.89  |  |  |  |  |
|                              | Check Pro | od Casing,  | Segment B |       |  |  |  |  |
| OD Cplg                      | Body      | Joint       | Collapse  | Burst |  |  |  |  |
| inches                       | 1000 lbs  | 1000 lbs    | psi       | psi   |  |  |  |  |
| 5.777                        | 728       | 655         | 12780     | 14360 |  |  |  |  |
|                              | S         | afety Facto | ors       |       |  |  |  |  |
| 0.49                         | 77.61     | 69.83       | 1.68      | 1.89  |  |  |  |  |



## H<sub>2</sub>S Drilling Operation Plan

- 1. <u>All Company and Contract personnel admitted on location must be trained by a qualified H<sub>2</sub>S</u> safety instructor to the following:
  - a. Characteristics of H<sub>2</sub>S
  - **b.** Physical effects and hazards
  - c. Principal and operation of H<sub>2</sub>s detectors, warning system and briefing areas
  - d. Evacuation procedure, routes and first aid
  - e. Proper use of safety equipment and life support systems
  - f. Essential personnel meeting Medical Evaluation criteria will receive additional training on the proper use of 30 minute pressure demand air packs.

#### 2. Briefing Area:

- a. Two perpendicular areas will be designated by signs and readily accessible.
- **b.** Upon location entry there will be a designated area to establish all safety compliance criteria (1.) has been met.

#### 3. H<sub>2</sub>S Detection and Alarm Systems:

- a. H<sub>2</sub>S sensors/detectors shall be located on the drilling rig floor, in the base of the sub structure/cellar area, and on the mud pits in the shale shaker area. Additional H<sub>2</sub>S detectors may be placed as deemed necessary. All detectors will be set to initiate visual alarm at 10 ppm and visual with audible at 14 ppm and all equipment will be calibrated every 30 days or as needed.
- **b.** An audio alarm will be installed on the derrick floor and in the top doghouse.

#### 4. <u>Protective Equipment for Essential Personnel:</u>

#### a. Breathing Apparatus:

- i. Rescue Packs (SCBA) 1 Unit shall be placed at each briefing area.
- ii. Two (SCBA) Units will be stored in safety trailer on location.
- iii. Work/Escape packs 1 Unit will be available on rig floor in doghouse for emergency evacuation for driller.
- b. <u>Auxiliary Rescue Equipment:</u>
  - i. Stretcher
  - ii. 2 OSHA full body harnesses
  - iii. 100 ft. 5/8" OSHA approved rope
  - iv. 1 20# class ABC fire extinguisher

#### 5. Windsock and/or Wind Streamers:

- a. Windsock at mud pit area should be high enough to be visible.
- **b.** Windsock on the rig floor should be high enough to be visible.

#### 6. <u>Communication:</u>

- a. While working under mask scripting boards will be used for communication where applicable.
- b. Hand signals will be used when script boards are not applicable.



## H<sub>2</sub>S Drilling Operation Plan

- c. Two way radios will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at Drilling Foreman's Office.
- 7. <u>Drill Stem Testing:</u> No Planned DST at this time.
- 8. Mud program:
  - a. If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary.

#### 9. Metallurgy:

- a. All drill strings, casing, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H<sub>2</sub>S service.
- **b.** Drilling Contractor supervisor will be required to be familiar with the effect H<sub>2</sub>S has on tubular goods and other mechanical equipment provided through contractor.



## H<sub>2</sub>S Contingency Plan

#### **Emergency Procedures**

In the event of a release of H<sub>2</sub>S, the first responder(s) must:

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H<sub>2</sub>S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response.
- Take precautions to avoid personal injury during this operation.
- Contact Operator and/or local officials the aid in operation. See list of phone numbers attached.
- Have received training in the:
  - Detection of H<sub>2</sub>S and
  - o Measures for protection against the gas,
  - o Equipment used for protection and emergency response.

#### **Ignition of Gas Source**

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO<sub>2</sub>). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas.

#### Characteristics of H<sub>2</sub>S and SO<sub>2</sub>

| Common Name      | Chemical<br>Formula | Specific<br>Gravity | Threshold<br>Limit | Hazardous<br>Limit | Lethal<br>Concentration |
|------------------|---------------------|---------------------|--------------------|--------------------|-------------------------|
| Hydrogen Sulfide | H₂S                 | 1.189 Air=1         | 10 ppm             | 100 ppm/hr         | 600 ppm                 |
| Sulfur Dioxide   | SO <sub>2</sub>     | 2.21 Air=1          | 2 ppm              | N/A                | 1000 ppm                |

#### **Contacting Authorities**

Ameredev Operating LLC personnel must liaise with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including direction to site. The following call list of essential and potential responders has been prepared for use during a release. Ameredev Operating LLC's response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER)



# H<sub>2</sub>S Contingency Plan

| Ameredev Operating LLC – Emergency Phone 737-300-4799 |                           |              |              |  |  |  |  |  |
|-------------------------------------------------------|---------------------------|--------------|--------------|--|--|--|--|--|
| Key Personnel:                                        |                           |              |              |  |  |  |  |  |
| Name                                                  | Title                     | Office       | Mobile       |  |  |  |  |  |
| Floyd Hammond                                         | Chief Operating officer   | 737-300-4724 | 512-783-6810 |  |  |  |  |  |
| Zachary Boyd                                          | Operations Superintendent | 737-300-4725 | 432-385-6996 |  |  |  |  |  |
| Blake Estrada                                         | Construction Foreman      |              | 432-385-5831 |  |  |  |  |  |

| Artesia                                                        |                  |
|----------------------------------------------------------------|------------------|
| Ambulance                                                      | 911              |
| State Police                                                   | 575-746-2703     |
| City Police                                                    | 575-746-2703     |
| Sheriff's Office                                               | 575-746-9888     |
| Fire Department                                                | 575-746-2701     |
| Local Emergency Planning Committee                             | 575-746-2122     |
| New Mexico Oil Conservation Division                           | 575-748-1283     |
| Carlsbad                                                       |                  |
| Ambulance                                                      | 911              |
| State Police                                                   | 575-885-3137     |
| City Police                                                    | 575-885-2111     |
| Sheriff's Office                                               | 575-887-7551     |
| Fire Department                                                | 575-887-3798     |
| Local Emergency Planning Committee                             | 575-887-6544     |
| US Bureau of Land Management                                   | 575-887-6544     |
| Santa Fe                                                       |                  |
| New Mexico Emergency Response Commission (Santa Fe)            | 505-476-9600     |
| New Mexico Emergency Response Commission (Santa Fe) 24 H       | Irs 505-827-9126 |
| New Mexico State Emergency Operations Center                   | 505-476-9635     |
| National                                                       |                  |
| National Emergency Response Center (Washington, D.C.)          | 800-424-8802     |
| Medical                                                        |                  |
| Flight for Life - 4000 24th St.; Lubbock, TX                   | 806-743-9911     |
| Aerocare - R3, Box 49F; Lubbock, TX                            | 806-747-8923     |
| Med Flight Air Amb - 2301 Yale Blvd S.E., #D3; Albuquerque, N  | M 505-842-4433   |
| .'SB Air Med Service - 2505 Clark Carr Loop S.E.; Albuquerque, | NM 505-842-4949  |



RB/HOL RB/HOL #5S Holly 114H

Wellbore #1

Plan: Design #1

# **Standard Planning Report**

21 February, 2019



Planning Report

| Database:                                    | EDM5000           |             |                                       | Local Co-ord                          | Inate Reference:                      | Well Holly                             | 114H                                  |                                       |
|----------------------------------------------|-------------------|-------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|
| Company:                                     | Ameredev Opera    | ating, LLC. |                                       | TVD Reference                         | e:                                    | KB @ 303                               | 0.0usft                               |                                       |
| Project:                                     | RB/HOL            |             |                                       | MD Reference                          | Ð:                                    | KB @ 303                               | 0.0usft                               |                                       |
| Site:                                        | RB/HOL #5S        |             |                                       | North Referen                         | nce:                                  | Grid                                   |                                       |                                       |
| Well:                                        | Holly 114H        |             |                                       | Survey Calcu                          | lation Method:                        | Minimum C                              | Curvature                             |                                       |
| Wellbore:                                    | Wellbore #1       |             |                                       |                                       |                                       | 1                                      |                                       |                                       |
| Design:                                      | Design #1         |             |                                       | ,<br>                                 |                                       | ;<br>                                  |                                       |                                       |
| Project                                      | RB/HOL            |             |                                       |                                       | · · · · · · · · · · · · · · · · · · · | ······································ |                                       |                                       |
| Map System:                                  | US State Plane 19 |             |                                       | System Datum                          | :                                     | Mean Sea Le                            | ivel                                  |                                       |
| Geo Datum:                                   | North American Da |             |                                       |                                       |                                       |                                        |                                       |                                       |
| Map Zone:                                    | New Mexico Easter | n Zone      |                                       |                                       |                                       |                                        |                                       |                                       |
| Site                                         | RB/HOL #5S        |             | · · · · · · · · · · · · · · · · · · · |                                       | · · · · · · · · · · · · · · · · · · · |                                        |                                       |                                       |
| Site Position:                               |                   |             | Northing:                             | -                                     | 5.36 usft Latitud                     |                                        |                                       | 32° 4' 44.200                         |
| From:                                        | Lat/Long          |             | Easting:                              |                                       | 1.18 usft Longit                      |                                        |                                       | 103° 17' 18.161                       |
| Position Uncertainty:                        |                   | 0.0 usft    | Slot Radius:                          | 1                                     | 3-3/16 " Grid C                       | onvergence:                            |                                       | 0.5                                   |
| Well                                         | Holly 114H        |             |                                       | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                        | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |
| Well Position                                | +N/-S             | 0.2 usft    | Northing:                             | :                                     | 394,025.56 usft                       | Latitude:                              |                                       | 32° 4' 44.20                          |
|                                              | +E/-W             | 20.0 usft   | Easting:                              | 1                                     | 865,011.18 usft                       | Longitude:                             |                                       | 103° 17' 17.929                       |
| Position Uncertainty                         |                   | 0.0 usft    | Wellhead Ele                          | vation:                               |                                       | Ground Level                           | :                                     | 3,003.0 ເ                             |
| Wellbore                                     | Wellbore #1       |             |                                       |                                       |                                       |                                        | · · · · · · · · · · · ·               |                                       |
| Magnetics                                    | Model Name        |             | Sample Date                           | Declination                           | 3                                     | Dip Angle                              |                                       | Field Strength                        |
|                                              |                   |             |                                       | (°)                                   |                                       | (°)                                    |                                       | (nT)                                  |
|                                              | IGRF2             | 015         | 2/19/2019                             |                                       | 6.63                                  | 59.                                    | 95                                    | 47,712.02244477                       |
| Design                                       | Design #1         |             |                                       | · · ·                                 |                                       |                                        |                                       |                                       |
| Audit Notes:                                 |                   |             |                                       |                                       | <u> </u>                              |                                        |                                       |                                       |
| Version:                                     |                   |             | Phase:                                | PROTOTYPE                             | Tie On Dep                            | oth:                                   | 0.0                                   |                                       |
| Vertical Section:                            |                   |             | rom (TVD)<br>isft)                    | +N/-S<br>(usft)                       | +E/-W<br>(usft)                       |                                        | Direction<br>(°)                      |                                       |
|                                              |                   | •           | ).0                                   | 0.0                                   | 0.0                                   |                                        | 179.16                                |                                       |
|                                              | ogram D           | ate 2/21/2  | 2019                                  | · · · · · · · · · · · · · · · · · · · |                                       |                                        |                                       |                                       |
| Plan Survey Tool Pro                         | Depth To          |             | 018)                                  | Tool Name                             | Rem                                   | arks                                   |                                       |                                       |
| Plan Survey Tool Pro<br>Depth From<br>(usft) | (usft) Su         | vey (Wellb  | 5107                                  |                                       |                                       |                                        |                                       |                                       |
| Depth From                                   |                   | sign #1 (We |                                       | MWD                                   |                                       |                                        |                                       |                                       |



Planning Report

| Database: | EDM5000                  | Local Co-ordinate Reference: | Well Holly 114H   |
|-----------|--------------------------|------------------------------|-------------------|
| Company:  | Ameredev Operating, LLC. | TVD Reference:               | KB @ 3030.0usft   |
| Project:  | RB/HOL                   | MD Reference:                | KB @ 3030.0usft   |
| Site:     | RB/HOL #5S               | North Reference:             | Grid              |
| Well:     | Holly 114H               | Survey Calculation Method:   | Minimum Curvature |
| Wellbore: | Wellbore #1              |                              |                   |
| Design:   | Design #1                |                              |                   |

| leasured        |                    |                | Vertical        |                 |                 | Dogleg              | Build               | Turn                |            |            |
|-----------------|--------------------|----------------|-----------------|-----------------|-----------------|---------------------|---------------------|---------------------|------------|------------|
| Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°) | Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Rate<br>(°/100usft) | Rate<br>(°/100usft) | Rate<br>(°/100usft) | TFO<br>(°) | Target     |
| 0.0             | 0.00               | 0.00           | 0.0             | 0.0             | 0.0             | 0.00                | 0.00                | 0.00                | 0.00       |            |
| 2,000.0         | 0.00               | 0.00           | 2,000.0         | 0.0             | 0.0             | 0.00                | 0.00                | 0.00                | 0.00       |            |
| 2,300.0         | 6.00               | 15.00          | 2,299.5         | 15.2            | 4.1             | 2.00                | 2.00                | 0.00                | 15.00      |            |
| 6,724.8         | 6.00               | 15.00          | 6,700.0         | 461.9           | 123.8           | 0.00                | 0.00                | 0.00                | 0.00       |            |
| 7,024.8         | 0.00               | 0.00           | 6,999.5         | 477.1           | 127.8           | 2.00                | -2.00               | 0.00                | 180.00     |            |
| 8,525.3         | 0.00               | 0.00           | 8,500.0         | 477.1           | 127.8           | 0.00                | 0.00                | 0.00                | 0.00       |            |
| 8,825.3         | 6.00               | 12.00          | 8,799.5         | 492.4           | 131.1           | 2.00                | 2.00                | 0.00                | 12.00      |            |
| 10,032.5        | 6.00               | 12.00          | 10,000.0        | 615.9           | 157.3           | 0.00                | 0.00                | 0.00                | 0.00       |            |
| 10,332.5        | 0.00               | 0.00           | 10,299.5        | 631.2           | 160.6           | 2.00                | -2.00               | 0.00                | 180.00     |            |
| 11,233.0        | 0.00               | 0.00           | 11,200.0        | 631.2           | 160.6           | 0.00                | 0.00                | 0.00                | 0.00       |            |
| 11,611.9        | 44.94              | 204.81         | 11,541.2        | 503.1           | 101.4           | 11.86               | 11.86               | 0.00                | 204.81     |            |
| 12,036.6        | 90.00              | 179.38         | 11,702.0        | 130.3           | 36.5            | 11.86               | 10.61               | -5.99               | -33.89     | lol114 FTP |
| 22,449.0        | 90.00              | 179.38         | 11,702.0        | -10,281,5       | 150,1           | 0.00                | 0.00                | 0.00                | 0.00       | Iol114 BHL |



Planning Report

| Database: | EDM5000                  | Local Co-ordinate Reference: | Well Holly 114H   |
|-----------|--------------------------|------------------------------|-------------------|
| Company:  | Ameredev Operating, LLC. | TVD Reference:               | KB @ 3030.0usft   |
| Project:  | RB/HOL                   | MD Reference:                | KB @ 3030.0usft   |
| Site:     | RB/HOL #5S               | North Reference:             | Grid              |
| Well:     | Holly 114H               | Survey Calculation Method:   | Minimum Curvature |
| Wellbore: | Wellbore #1              |                              |                   |
| Design:   | Design #1                |                              |                   |

Planned Survey

|   | Measured<br>Depth | Inclination | Azimuth | Vertical<br>Depth | +N/-S  | +E/-W        | Vertical<br>Section | Dogleg<br>Rate | Build<br>Rate | Turn<br>Rate |
|---|-------------------|-------------|---------|-------------------|--------|--------------|---------------------|----------------|---------------|--------------|
|   | (usft)            | (°)         | (°)     | (usft)            | (usft) | (usft)       | (usft)              | (°/100usft)    | (°/100usft)   | (°/100usft)  |
|   | 0.0               | 0.00        | 0.00    | 0.0               | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 100.0             | 0.00        | 0.00    | 100.0             | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 200.0             | 0.00        | 0.00    | 200.0             | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 300.0             | 0.00        | 0.00    | 300.0             | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 400.0             | 0.00        | 0.00    | 400.0             | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 500.0             | 0.00        | 0.00    | 500.0             | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          |              |
|   |                   |             |         |                   |        |              |                     |                |               | 0.00         |
|   | 600.0             | 0.00        | 0.00    | 600.0             | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 700.0             | 0.00        | 0.00    | 700.0             | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 800.0             | 0.00        | 0.00    | 800.0             | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 900.0             | 0.00        | 0.00    | 900.0             | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 1,000.0           | 0.00        | 0.00    | 1,000.0           | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 1,100.0           | 0.00        | 0.00    | 1,100.0           | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 1,200.0           | 0.00        | 0.00    | 1,200.0           | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 1,300.0           | 0.00        | 0.00    | 1,300.0           | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 1,400.0           | 0.00        | 0.00    | 1,400.0           | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 1,500.0           |             | 0.00    |                   |        |              |                     |                |               |              |
|   | •                 | 0.00        |         | 1,500.0           | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 1,600.0           | 0.00        | 0.00    | 1,600.0           | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 1,700.0           | 0.00        | 0.00    | 1,700.0           | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 1,800.0           | 0.00        | 0.00    | 1,800.0           | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 1,900.0           | 0.00        | 0.00    | 1,900.0           | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 2,000.0           | 0.00        | 0.00    | 2,000.0           | 0.0    | 0.0          | 0.0                 | 0.00           | 0.00          | 0.00         |
|   | 2,100.0           | 2.00        | 15.00   | 2,100.0           | 1.7    | 0.5          | -1.7                | 2.00           | 2.00          | 0.00         |
| 1 | 2,200.0           | 4.00        | 15.00   | 2,199.8           | 6.7    | 1.8          | -6.7                | 2.00           | 2.00          | 0.00         |
|   | 2,300.0           | 6.00        | 15.00   | 2,299.5           | 15.2   | 4.1          | -15.1               | 2.00           | 2.00          | 0.00         |
|   | 2,400.0           | 6.00        | 15.00   | 2,398.9           | 25.3   | 6.8          | -25.2               | 0.00           | 0.00          | 0.00         |
|   |                   |             |         |                   |        |              |                     |                |               |              |
|   | 2,500.0           | 6.00        | 15.00   | 2,498.4           | 35.4   | 9.5          | -35.2               | 0.00           | 0.00          | 0.00         |
|   | 2,600.0           | 6.00        | 15.00   | 2,597.8           | 45.4   | 12.2         | -45.3               | 0.00           | 0.00          | 0.00         |
| } | 2,700.0           | 6.00        | 15.00   | 2,697.3           | 55.5   | 14.9         | -55.3               | 0.00           | 0.00          | 0.00         |
|   | 2,800.0           | 6.00        | 15.00   | 2,796.7           | 65.6   | 17.6         | -65.4               | 0.00           | 0.00          | 0.00         |
|   | 2,900.0           | 6.00        | 15.00   | 2,896.2           | 75.7   | 20.3         | -75.4               | 0.00           | 0.00          | 0.00         |
| 1 | 3,000.0           | 6.00        | 15.00   | 2,995.6           | 85.8   | 23.0         | -85.5               | 0.00           | 0.00          | 0.00         |
|   | 3,100.0           | 6.00        | 15.00   | 3,095.1           | 95.9   | 25.7         | -95.5               | 0.00           | 0.00          | 0.00         |
|   | 3,200.0           | 6.00        | 15.00   | 3,194.5           | 106.0  | 28.4         | -105.6              | 0.00           | 0.00          | 0.00         |
| } | 3,300.0           | 6.00        | 15.00   | 3,294.0           | 116.1  | 31.1         | -115.7              | 0.00           | 0.00          | 0.00         |
|   | 3,400.0           | 6.00        | 15.00   | 3,393.4           | 126.2  | 33.8         | -125.7              | 0.00           | 0.00          | 0.00         |
|   | 3,500.0           | 6.00        | 15.00   | 3,492.9           | 136.3  | 36.5         | -135.8              | 0.00           | 0.00          | 0.00         |
|   | 3,600.0           | 6.00        | 15.00   | 3,592.3           | 146.4  | 39.2         | -145.8              | 0.00           | 0.00          | 0.00         |
|   | 3,700.0           | 6.00        | 15.00   | 3,691.8           | 156.5  | 41.9         | -155.9              | 0.00           | 0.00          | 0.00         |
|   | 3,800.0           | 6.00        | 15.00   | 3,791.2           | 166.6  | 44.6         | -165.9              | 0.00           | 0.00          | 0.00         |
|   | 3,900.0           | 6.00        | 15.00   | 3,890.7           | 176.7  | 47.3         | -176.0              | 0.00           | 0.00          | 0.00         |
|   | 4,000.0           | 6.00        | 15.00   | 3,990.1           | 186.8  | 50.1         | -186.1              | 0.00           | 0.00          | 0.00         |
|   | 4,100.0           | 6.00        | 15.00   | 4,089.6           | 196.9  | 52.8         | -196.1              | 0.00           | 0.00          | 0.00         |
|   | 4,200.0           | 6.00        | 15.00   | 4,189.0           | 207.0  | 55.5         | -206.2              | 0.00           | 0.00          | 0.00         |
|   |                   |             |         |                   |        |              |                     |                |               |              |
| 1 | 4,300.0           | 6.00        | 15.00   | 4,288.5           | 217.1  | 58.2         | -216.2              | 0.00           | 0.00          | 0.00         |
|   | 4,400.0           | 6.00        | 15.00   | 4,387.9           | 227.2  | 60.9         | -226.3              | 0.00           | 0.00          | 0.00         |
|   | 4,500.0           | 6.00        | 15.00   | 4,487.4           | 237.3  | 63.6         | -236.3              | 0.00           | 0.00          | 0.00         |
|   | 4,600.0           | 6.00        | 15.00   | 4,586.9           | 247.4  | 66.3         | -246.4              | 0.00           | 0.00          | 0.00         |
|   | 4,700.0           | 6.00        | 15.00   | 4,686.3           | 257.5  | 69.0         | -256.4              | 0.00           | 0.00          | 0.00         |
|   | 4,800.0           | 6.00        | 15.00   | 4,785.8           | 267.6  | 71.7         | -266.5              | 0.00           | 0.00          | 0.00         |
|   | 4,900.0           | 6.00        | 15.00   | 4,885.2           | 277.7  | 74.4         | -276.6              | 0.00           | 0.00          | 0.00         |
|   | 5,000.0           | 6.00        | 15.00   | 4,984.7           | 287.8  | 77.1         | -286.6              | 0.00           | 0.00          | 0.00         |
|   | 5,100.0           | 6.00        | 15.00   | 5,084.1           | 297.9  | 79.8         | -296.7              | 0.00           | 0.00          | 0.00         |
|   | 5,200.0           | 6.00        | 15.00   | 5,183.6           | 308.0  | 82.5         | -306.7              | 0.00           | 0.00          | 0.00         |
|   | 5,300.0           |             |         |                   |        | 82.5<br>85.2 | -306.7<br>-316.8    |                | 0.00          |              |
| L | 0,000.0           | 6.00        | 15.00   | 5,283.0           | 318.1  | <b>6</b> 3.2 | -310.6              | 0.00           | 0.00          | 0.00         |

COMPASS 5000.15 Build 90



Planning Report

| Database: | EDM5000                  | Local Co-ordinate Reference: | Well Holly 114H   |
|-----------|--------------------------|------------------------------|-------------------|
| Company:  | Ameredev Operating, LLC. | TVD Reference:               | KB @ 3030.0usft   |
| Project:  | RB/HOL                   | MD Reference:                | KB @ 3030.0usft   |
| Site:     | RB/HOL #5S               | North Reference:             | Grid              |
| Well:     | Holly 114H               | Survey Calculation Method:   | Minimum Curvature |
| Wellbore: | Wellbore #1              |                              |                   |
| Design:   | Design #1                |                              |                   |

Planned Survey

| 5.400.0         6.00         15.00         5.382.5         328.2         87.9         328.8         0.00         0.00         0.00           5.500.0         6.00         15.00         5.481.4         338.3         90.6         336.5         0.00         0.00         0.00           5.700.0         6.00         15.00         5.681.4         348.3         346.9         0.00         0.00         0.00           5.700.0         6.00         15.00         5.787.3         378.6         10.15         377.1         0.00         0.00         0.00           6.00.0         15.00         5.772.3         378.6         10.15         377.7         0.00         0.00         0.00           6.00.0         15.00         6.775.6         398.7         10.69         407.3         0.00         0.00         0.00           6.00.0         15.00         6.775.4         398.2         117.7         437.5         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         <                                                                                                                                                    | Measured<br>Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Vertical<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|----------------|-----------------------------|-----------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5,400.0                     |                    |                | 5,382.5                     |                 |                 | -326.8                        | 0,00                          | 0.00                         | 0.00                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 500 0                     | 6.00               | 15.00          | 5 481 9                     | 338.3           | 90.6            | -336.9                        | 0.00                          | 0.00                         | 0.00                        |
| 5,700.0         6.00         15.00         5,808.8         358.4         96.0         -357.0         0.00         0.00         0.00           5,800.0         6.00         15.00         5,773.7         378.6         101.5         -377.1         0.00         0.00         0.00         0.00           6,000.0         6.00         15.00         6,778.6         398.8         106.9         -397.2         0.00         0.00         0.00           6,000.0         6.00         15.00         6,778.6         398.8         106.9         -397.2         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                     |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 5.800.0         6.00         15.00         5.780.3         388.5         98.8         -367.1         0.00         0.00         0.00           6.000.0         6.00         15.00         5.975.2         388.7         104.2         -387.2         0.00         0.00         0.00           6.000.0         6.00         15.00         6.975.2         388.7         104.2         -387.2         0.00         0.00         0.00           6.000.0         6.00         15.00         6.775.1         419.0         112.3         -417.3         0.00         0.00         0.00           6.000.0         6.00         15.00         6.575.9         449.3         112.3         -417.3         0.00         0.00         0.00           6.000         6.00         15.00         6.575.9         449.3         120.4         -417.5         0.00         0.00         0.00           6.000         15.00         6.575.9         449.3         120.4         -447.5         0.00         0.00         0.00           6.000         15.00         6.574.7         477.4         127.1         -475.2         2.00         0.00           6.000         15.00         6.574.7         477.1         12                                                                                                                                                               |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 5,000.0         6.00         15.00         5,878.7         378.6         101.5         -377.1         0.00         0.00         0.00           6,000.0         6.00         15.00         6,078.6         398.8         105.6         -397.2         0.00         0.00         0.00           6,200.0         6.00         15.00         6,775.4         419.0         112.3         -417.3         0.00         0.00         0.00           6,400.0         6.00         15.00         6,475.4         439.2         117.7         -437.5         0.00         0.00         0.00           6,400.0         6.00         15.00         6,475.4         439.2         117.7         -437.5         0.00         0.00         0.00           6,400.0         4.50         15.00         6,474.3         449.3         122.4         -447.5         0.00         0.00         0.00           6,400.0         4.50         15.00         6,474.7         474.4         122.6         -466.7         2.00         2.00         0.00           7,000.0         0.00         4,599.5         477.1         127.8         -475.2         0.00         0.00         7,02.4         0.00         0.00         0.00         <                                                                                                                                                   |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| $ \left  \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 000 0                     | 6.00               | 15.00          | 5 979 2                     | 388 7           | 104.2           | -387.2                        | 0.00                          | 0.00                         | 0.00                        |
| $ \left  \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| $ \left[ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| $ \left  \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 6,500.0         6.00         15.00         6,476.4         439.2         117.7         437.5         0.00         0.00         0.00           6,700.0         6.00         15.00         6,575.3         499.4         123.1         447.5         0.00         0.00         0.00           6,700.0         15.00         6,774.4         60.0         15.00         6,774.4         466.7         2.00         -2.00         0.00           6,900.0         2.50         15.00         6,774.7         477.0         127.8         475.1         2.00         -2.00         0.00           7,000.0         0.50         15.00         6,874.7         474.4         127.1         475.2         2.00         -2.00         0.00           7,001.0         0.00         0.00         7,77.7         127.8         475.2         2.00         0.00         0.00           7,200.0         0.00         0.00         7,74.7         477.1         127.8         475.2         0.00         0.00         0.00           7,400.0         0.00         0.00         7,74.7         477.1         127.8         475.2         0.00         0.00         0.00           7,600.0         0.00         0.00 <td></td>                                                               |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 6600.0         6.00         15.00         6.575.9         449.3         120.4         -447.5         0.00         0.00         0.00           6.700.0         6.00         15.00         6.575.3         459.4         123.8         -460.1         0.00         0.00         0.00           6.800.0         4.50         15.00         6.774.9         466.6         125.6         -466.7         2.00         -2.00         0.00           7.000.0         0.50         15.00         6.874.7         474.4         127.1         -475.2         2.00         -2.00         0.00           7.000.0         0.50         15.00         6.874.7         474.4         127.1         -475.2         2.00         -2.00         0.00           7.000.0         0.00         0.00         7.074.7         477.1         127.8         -475.2         0.00         0.00         0.00           7.200.0         0.00         0.00         7.747.4         477.1         127.8         -475.2         0.00         0.00         0.00           7.600.0         0.00         0.00         7.747.7         477.1         127.8         -475.2         0.00         0.00         0.00         7.674.7         477.1                                                                                                                                                           | 6 500 0                     | 6.00               | 15.00          |                             | 439.2           | 117.7           | -437.5                        | 0.00                          | 0.00                         | 0.00                        |
| 6,700.0         6.00         15.00         6,75.3         459.4         123.1         -477.6         0.00         0.00         0.00           6,800.0         4.50         15.00         6,774.9         466.6         125.6         -466.7         2.00         -2.00         0.00           7,000.0         0.50         15.00         6,874.7         477.1         127.8         -475.1         2.00         -2.00         0.00           7,024.8         0.00         0.00         7,074.7         477.1         127.8         -475.2         2.00         -2.00         0.00           7,100.0         0.00         0.00         7,174.7         477.1         127.8         -475.2         0.00         0.00         0.00           7,400.0         0.00         0.00         7,474.7         477.1         127.8         -475.2         0.00         0.00         0.00           7,600.0         0.00         0.00         7,474.7         477.1         127.8         -475.2         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                              | -                           |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 6,724.8         6.00         15.00         6,700.0         461.9         123.8         460.1         0.00         0.00         0.00           6,800.0         2.50         15.00         6,774.9         468.6         125.6         466.7         2.00         -2.00         0.00           7,000.0         0.50         15.00         6,874.7         477.4         127.8         475.1         2.00         -2.00         0.00           7,000.0         0.00         0.00         7,77.1         127.8         475.2         2.00         0.00         0.00           7,100.0         0.00         0.00         7,77.1         127.8         475.2         0.00         0.00         0.00           7,300.0         0.00         0.00         7,274.7         477.1         127.8         475.2         0.00         0.00         0.00           7,400.0         0.00         0.00         7,674.7         477.1         127.8         475.2         0.00         0.00         0.00         7,674.7           7,800.0         0.00         0.00         7,674.7         477.1         127.8         475.2         0.00         0.00         0.00         7,00.0         0.00         0.00         0.00 <td></td>                                                       |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 6,800.0         4.50         15.00         6,774.9         468.6         125.6         466.7         2.00         -2.00         0.00           6,900.0         2.50         15.00         6,674.7         474.4         127.1         472.5         2.00         -2.00         0.00           7,024.8         0.00         0.00         6,999.5         477.1         127.8         475.2         2.00         2.00         0.00           7,00.0         0.00         0.00         7,074.7         477.1         127.8         475.2         0.00         0.00         0.00           7,300.0         0.00         0.00         7,374.7         477.1         127.8         475.2         0.00         0.00         0.00           7,400.0         0.00         0.00         7,374.7         477.1         127.8         475.2         0.00         0.00         0.00           7,600.0         0.00         0.00         7,674.7         477.1         127.8         475.2         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                            |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 7,000.0         0.50         15.00         6,674.7         477.0         127.8         475.1         2.00         -2.00         0.00           7,024.8         0.00         0.00         7,074.7         477.1         127.8         475.2         0.00         0.00         0.00           7,200.0         0.00         0.00         7,074.7         477.1         127.8         475.2         0.00         0.00         0.00           7,200.0         0.00         0.00         7,374.7         477.1         127.8         475.2         0.00         0.00         0.00           7,400.0         0.00         0.00         7,374.7         477.1         127.8         475.2         0.00         0.00         0.00           7,600.0         0.00         0.00         7,674.7         477.1         127.8         475.2         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.                                                                                                                                                |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 7,000.0         0.50         15.00         6,674.7         477.0         127.8         475.1         2.00         -2.00         0.00           7,024.8         0.00         0.00         7,074.7         477.1         127.8         475.2         0.00         0.00         0.00           7,200.0         0.00         0.00         7,074.7         477.1         127.8         475.2         0.00         0.00         0.00           7,200.0         0.00         0.00         7,374.7         477.1         127.8         475.2         0.00         0.00         0.00           7,400.0         0.00         0.00         7,374.7         477.1         127.8         475.2         0.00         0.00         0.00           7,600.0         0.00         0.00         7,674.7         477.1         127.8         475.2         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.                                                                                                                                                | 6 900 0                     | 2 50               | 15 00          | 6.874 7                     | 474 4           | 127 1           | -472 5                        | 2 00                          | -2 00                        | 0.00                        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| $\left \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 7,400.0         0.00         7,374.7         477.1         127.8         475.2         0.00         0.00         0.00           7,500.0         0.00         0.00         7,474.7         477.1         127.8         475.2         0.00         0.00         0.00           7,600.0         0.00         0.00         7,574.7         477.1         127.8         475.2         0.00         0.00         0.00           7,800.0         0.00         0.00         7,74.7         477.1         127.8         475.2         0.00         0.00         0.00           7,900.0         0.00         0.00         7,74.7         477.1         127.8         475.2         0.00         0.00         0.00           8,000.0         0.00         0.00         7,74.7         477.1         127.8         475.2         0.00         0.00         0.00           8,000.0         0.00         0.00         8,74.7         477.1         127.8         475.2         0.00         0.00         0.00           8,300.0         0.00         0.00         8,374.7         477.1         127.8         475.2         0.00         0.00         0.00           8,300.0         0.00         0.00                                                                                                                                                                             |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 7,400.0         0.00         7,374.7         477.1         127.8         475.2         0.00         0.00         0.00           7,500.0         0.00         0.00         7,474.7         477.1         127.8         475.2         0.00         0.00         0.00           7,600.0         0.00         0.00         7,574.7         477.1         127.8         475.2         0.00         0.00         0.00           7,800.0         0.00         0.00         7,74.7         477.1         127.8         475.2         0.00         0.00         0.00           7,900.0         0.00         0.00         7,74.7         477.1         127.8         475.2         0.00         0.00         0.00           8,000.0         0.00         0.00         7,74.7         477.1         127.8         475.2         0.00         0.00         0.00           8,000.0         0.00         0.00         8,74.7         477.1         127.8         475.2         0.00         0.00         0.00           8,300.0         0.00         0.00         8,374.7         477.1         127.8         475.2         0.00         0.00         0.00           8,300.0         0.00         0.00                                                                                                                                                                             | 7.300.0                     | 0.00               | 0.00           | 7.274.7                     | 477.1           | 127.8           | -475.2                        | 0.00                          | 0.00                         | 0.00                        |
| $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                           |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 7,600.0         0.00         7,574.7         477.1         127.8         475.2         0.00         0.00         0.00           7,700.0         0.00         0.00         7,674.7         477.1         127.8         475.2         0.00         0.00         0.00           7,800.0         0.00         0.00         7,674.7         477.1         127.8         475.2         0.00         0.00         0.00           7,800.0         0.00         0.00         7,874.7         477.1         127.8         475.2         0.00         0.00         0.00           8,000.0         0.00         0.00         8,074.7         477.1         127.8         475.2         0.00         0.00         0.00           8,300.0         0.00         0.00         8,274.7         477.1         127.8         475.2         0.00         0.00         0.00           8,300.0         0.00         0.00         8,374.7         477.1         127.8         475.2         0.00         0.00         0.00           8,500.0         0.00         0.00         8,374.7         477.1         127.8         475.2         0.00         0.00         0.00           8,525.3         0.00         0.00                                                                                                                                                                         |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| $\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                         |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 7,900.0         0.00         7,874.7         477.1         127.8         475.2         0.00         0.00         0.00           8,000.0         0.00         0.00         7,974.7         477.1         127.8         475.2         0.00         0.00         0.00           8,100.0         0.00         0.00         8,074.7         477.1         127.8         475.2         0.00         0.00         0.00           8,200.0         0.00         0.00         8,074.7         477.1         127.8         475.2         0.00         0.00         0.00           8,300.0         0.00         0.00         8,274.7         477.1         127.8         475.2         0.00         0.00         0.00           8,400.0         0.00         0.00         8,374.7         477.1         127.8         475.2         0.00         0.00         0.00           8,500.0         0.00         8,501.0         477.1         127.8         475.2         0.00         0.00         0.00           8,600.0         1.49         12.00         8,574.7         478.0         128.0         476.1         2.00         2.00         0.00           8,600.0         5.49         12.00         8,674.5                                                                                                                                                                    |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 7,900.0         0.00         7,874.7         477.1         127.8         475.2         0.00         0.00         0.00           8,000.0         0.00         0.00         7,974.7         477.1         127.8         475.2         0.00         0.00         0.00           8,100.0         0.00         0.00         8,074.7         477.1         127.8         475.2         0.00         0.00         0.00           8,200.0         0.00         0.00         8,074.7         477.1         127.8         475.2         0.00         0.00         0.00           8,300.0         0.00         0.00         8,274.7         477.1         127.8         475.2         0.00         0.00         0.00           8,400.0         0.00         0.00         8,374.7         477.1         127.8         475.2         0.00         0.00         0.00           8,500.0         0.00         8,501.0         477.1         127.8         475.2         0.00         0.00         0.00           8,600.0         1.49         12.00         8,574.7         478.0         128.0         476.1         2.00         2.00         0.00           8,600.0         5.49         12.00         8,674.5                                                                                                                                                                    | 7 800 0                     | 0.00               | 0.00           | 7 774 7                     | 477 1           | 127.8           | -475.2                        | 0.00                          | 0.00                         | 0.00                        |
| 8,000.0         0.00         0.00         7,974,7         477.1         127.8         -475.2         0.00         0.00         0.00           8,100.0         0.00         0.00         8,074.7         477.1         127.8         -475.2         0.00         0.00         0.00           8,200.0         0.00         0.00         8,074.7         477.1         127.8         -475.2         0.00         0.00         0.00           8,300.0         0.00         8,374.7         477.1         127.8         -475.2         0.00         0.00         0.00           8,400.0         0.00         0.00         8,374.7         477.1         127.8         -475.2         0.00         0.00         0.00           8,500.0         0.00         0.00         8,374.7         477.1         127.8         -475.2         0.00         0.00         0.00           8,500.0         1.49         12.00         8,574.7         478.0         128.0         -476.1         2.00         2.00         0.00           8,600.0         3.49         12.00         8,574.7         478.0         128.0         -480.1         2.00         2.00         0.00           8,600.0         5.499.1         1                                                                                                                                                               |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 8,100.0         0.00         8,074.7         477.1         127.8         475.2         0.00         0.00         0.00           8,200.0         0.00         0.00         8,174.7         477.1         127.8         475.2         0.00         0.00         0.00         0.00           8,000.0         0.00         0.00         8,274.7         477.1         127.8         475.2         0.00         0.00         0.00           8,000.0         0.00         0.00         8,374.7         477.1         127.8         475.2         0.00         0.00         0.00           8,500.0         0.00         0.00         8,500.0         477.1         127.8         475.2         0.00         0.00         0.00           8,600.0         1.49         12.00         8,574.7         478.0         128.0         476.1         2.00         0.00         0.00           8,600.0         5.49         12.00         8,774.2         489.9         130.6         488.0         2.00         2.00         0.00           8,900.0         6.00         12.00         8,873.7         500.1         132.7         488.1         0.00         0.00         0.00           9,000.0         6.00                                                                                                                                                                      |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 8,200.0         0.00         8,174.7         477.1         127.8         -475.2         0.00         0.00         0.00           8,300.0         0.00         0.00         8,274.7         477.1         127.8         -475.2         0.00         0.00         0.00           8,400.0         0.00         0.00         8,374.7         477.1         127.8         -475.2         0.00         0.00         0.00           8,500.0         0.00         0.00         8,474.7         477.1         127.8         -475.2         0.00         0.00         0.00           8,525.3         0.00         0.00         8,574.7         477.6         128.0         -476.1         2.00         0.00         0.00           8,700.0         3.49         12.00         8,674.6         482.3         128.9         -480.3         2.00         2.00         0.00           8,800.0         5.44         12.00         8,774.2         489.9         130.6         -488.0         2.00         2.00         0.00           8,800.0         6.00         12.00         8,774.2         499.9         130.6         -488.3         2.00         2.00         0.00           9,000.0         6.00         12.                                                                                                                                                               |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8,300.0                     | 0.00               | 0.00           | 8.274.7                     | 477.1           | 127.8           | -475.2                        | 0.00                          | 0.00                         | 0.00                        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 8,525.3         0.00         1.49         12.00         8,500.0         477.1         127.8         475.2         0.00         0.00         0.00           8,600.0         1.49         12.00         8,574.7         478.0         128.0         476.1         2.00         2.00         0.00           8,700.0         3.49         12.00         8,674.6         482.3         128.9         -480.3         2.00         2.00         0.00           8,800.0         5.49         12.00         8,774.2         489.9         130.6         -488.0         2.00         2.00         0.00           8,825.3         6.00         12.00         8,773.7         500.1         132.7         -498.1         0.00         0.00         0.00           9,000.0         6.00         12.00         8,973.2         510.3         134.9         -508.3         0.00         0.00         0.00           9,100.0         6.00         12.00         9,072.6         520.5         137.1         -518.5         0.00         0.00         0.00           9,200.0         6.00         12.00         9,271.5         541.0         141.4         -538.8         0.00         0.00         0.00           9,4                                                                                                                                                               | -                           |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 8,600.0         1.49         12.00         8,574.7         478.0         128.0         -476.1         2.00         2.00         0.00           8,700.0         3.49         12.00         8,674.6         482.3         128.9         -480.3         2.00         2.00         0.00           8,800.0         5.49         12.00         8,774.2         489.9         130.6         -488.0         2.00         2.00         0.00           8,825.3         6.00         12.00         8,799.5         492.4         131.1         -490.5         2.00         2.00         0.00           8,900.0         6.00         12.00         8,73.7         500.1         132.7         -498.1         0.00         0.00         0.00           9,000.0         6.00         12.00         8,973.2         510.3         134.9         -508.3         0.00         0.00         0.00           9,000.0         6.00         12.00         9,712.1         530.7         139.2         -528.6         0.00         0.00         0.00           9,200.0         6.00         12.00         9,371.0         551.2         143.6         -549.0         0.00         0.00         0.00         0.00           9,                                                                                                                                                               |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 8,800.0         5,49         12.00         8,774.2         489.9         130.6         -488.0         2.00         2.00         0.00           8,825.3         6.00         12.00         8,799.5         492.4         131.1         -490.5         2.00         2.00         0.00           8,900.0         6.00         12.00         8,873.7         500.1         132.7         -498.1         0.00         0.00         0.00           9,000.0         6.00         12.00         8,973.2         510.3         134.9         -508.3         0.00         0.00         0.00           9,100.0         6.00         12.00         9,072.6         520.5         137.1         -518.5         0.00         0.00         0.00           9,200.0         6.00         12.00         9,172.1         530.7         139.2         -528.6         0.00         0.00         0.00           9,300.0         6.00         12.00         9,371.0         551.2         143.6         -549.0         0.00         0.00         0.00           9,600.0         6.00         12.00         9,569.9         571.6         147.9         -569.4         0.00         0.00         0.00         0.00         0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                    |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 8,800.0         5,49         12.00         8,774.2         489.9         130.6         -488.0         2.00         2.00         0.00           8,825.3         6.00         12.00         8,799.5         492.4         131.1         -490.5         2.00         2.00         0.00           8,900.0         6.00         12.00         8,873.7         500.1         132.7         -498.1         0.00         0.00         0.00           9,000.0         6.00         12.00         8,973.2         510.3         134.9         -508.3         0.00         0.00         0.00           9,100.0         6.00         12.00         9,072.6         520.5         137.1         -518.5         0.00         0.00         0.00           9,200.0         6.00         12.00         9,172.1         530.7         139.2         -528.6         0.00         0.00         0.00           9,300.0         6.00         12.00         9,371.0         551.2         143.6         -549.0         0.00         0.00         0.00           9,600.0         6.00         12.00         9,569.9         571.6         147.9         -569.4         0.00         0.00         0.00         0.00         0.00 <t< td=""><td>8,700.0</td><td>3.49</td><td>12.00</td><td>8.674.6</td><td>482.3</td><td>128.9</td><td>-480.3</td><td>2.00</td><td>2.00</td><td>0.00</td></t<> | 8,700.0                     | 3.49               | 12.00          | 8.674.6                     | 482.3           | 128.9           | -480.3                        | 2.00                          | 2.00                         | 0.00                        |
| 8,825.3         6.00         12.00         8,799.5         492.4         131.1         -490.5         2.00         2.00         0.00           8,900.0         6.00         12.00         8,873.7         500.1         132.7         -498.1         0.00         0.00         0.00           9,000.0         6.00         12.00         8,973.2         510.3         134.9         -508.3         0.00         0.00         0.00           9,100.0         6.00         12.00         9,072.6         520.5         137.1         -518.5         0.00         0.00         0.00           9,200.0         6.00         12.00         9,172.1         530.7         139.2         -528.6         0.00         0.00         0.00           9,300.0         6.00         12.00         9,271.5         541.0         141.4         -538.8         0.00         0.00         0.00           9,400.0         6.00         12.00         9,371.0         551.2         143.6         -549.0         0.00         0.00         0.00           9,600.0         6.00         12.00         9,569.9         571.6         147.9         -569.4         0.00         0.00         0.00           9,600.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                            |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 9,000.0         6.00         12.00         8,973.2         510.3         134.9         -508.3         0.00         0.00         0.00           9,100.0         6.00         12.00         9,072.6         520.5         137.1         -518.5         0.00         0.00         0.00           9,200.0         6.00         12.00         9,172.1         530.7         139.2         -528.6         0.00         0.00         0.00           9,300.0         6.00         12.00         9,271.5         541.0         141.4         -538.8         0.00         0.00         0.00           9,400.0         6.00         12.00         9,371.0         551.2         143.6         -549.0         0.00         0.00         0.00           9,500.0         6.00         12.00         9,470.4         561.4         145.8         -559.2         0.00         0.00         0.00           9,600.0         6.00         12.00         9,569.9         571.6         147.9         -569.4         0.00         0.00         0.00           9,600.0         6.00         12.00         9,669.3         581.9         150.1         -579.6         0.00         0.00         0.00         0.00           9                                                                                                                                                               | -                           |                    |                | 8,873.7                     |                 |                 |                               |                               |                              |                             |
| 9,200.0         6.00         12.00         9,172.1         530.7         139.2         -528.6         0.00         0.00         0.00           9,300.0         6.00         12.00         9,271.5         541.0         141.4         -538.8         0.00         0.00         0.00           9,400.0         6.00         12.00         9,371.0         551.2         143.6         -549.0         0.00         0.00         0.00           9,500.0         6.00         12.00         9,470.4         561.4         145.8         -559.2         0.00         0.00         0.00           9,600.0         6.00         12.00         9,569.9         571.6         147.9         -569.4         0.00         0.00         0.00           9,600.0         6.00         12.00         9,669.3         581.9         150.1         -579.6         0.00         0.00         0.00           9,800.0         6.00         12.00         9,768.8         592.1         152.3         -589.8         0.00         0.00         0.00           9,900.0         6.00         12.00         9,868.2         602.3         154.4         -600.0         0.00         0.00         0.00         10.00         10.00                                                                                                                                                            | -                           |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 9,200.0         6.00         12.00         9,172.1         530.7         139.2         -528.6         0.00         0.00         0.00           9,300.0         6.00         12.00         9,271.5         541.0         141.4         -538.8         0.00         0.00         0.00           9,400.0         6.00         12.00         9,371.0         551.2         143.6         -549.0         0.00         0.00         0.00           9,500.0         6.00         12.00         9,470.4         561.4         145.8         -559.2         0.00         0.00         0.00           9,600.0         6.00         12.00         9,569.9         571.6         147.9         -569.4         0.00         0.00         0.00           9,600.0         6.00         12.00         9,669.3         581.9         150.1         -579.6         0.00         0.00         0.00           9,800.0         6.00         12.00         9,768.8         592.1         152.3         -589.8         0.00         0.00         0.00           9,900.0         6.00         12.00         9,868.2         602.3         154.4         -600.0         0.00         0.00         0.00         10.00         10.00                                                                                                                                                            | 9,100 0                     | 6.00               | 12.00          | 9,072.6                     | 520.5           | 137.1           | -518.5                        | 0.00                          | 0.00                         | 0.00                        |
| 9,300.0         6.00         12.00         9,271.5         541.0         141.4         -538.8         0.00         0.00         0.00           9,400.0         6.00         12.00         9,371.0         551.2         143.6         -549.0         0.00         0.00         0.00           9,500.0         6.00         12.00         9,470.4         561.4         145.8         -559.2         0.00         0.00         0.00           9,600.0         6.00         12.00         9,569.9         571.6         147.9         -569.4         0.00         0.00         0.00           9,700.0         6.00         12.00         9,669.3         581.9         150.1         -579.6         0.00         0.00         0.00           9,800.0         6.00         12.00         9,768.8         592.1         152.3         -589.8         0.00         0.00         0.00           9,800.0         6.00         12.00         9,868.2         602.3         154.4         -600.0         0.00         0.00         0.00           10,000.0         6.00         12.00         9,967.7         612.5         156.6         -610.2         0.00         0.00         0.00           10,032.5                                                                                                                                                                    |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 9,400.0         6.00         12.00         9,371.0         551.2         143.6         -549.0         0.00         0.00         0.00           9,500.0         6.00         12.00         9,470.4         561.4         145.8         -559.2         0.00         0.00         0.00           9,600.0         6.00         12.00         9,569.9         571.6         147.9         -569.4         0.00         0.00         0.00           9,700.0         6.00         12.00         9,669.3         581.9         150.1         -579.6         0.00         0.00         0.00           9,800.0         6.00         12.00         9,768.8         592.1         152.3         -589.8         0.00         0.00         0.00           9,900.0         6.00         12.00         9,868.2         602.3         154.4         -600.0         0.00         0.00         0.00           10,000.0         6.00         12.00         9,967.7         612.5         156.6         -610.2         0.00         0.00         0.00           10,032.5         6.00         12.00         10,000.0         615.9         157.3         -613.5         0.00         0.00         0.00           10,100.0                                                                                                                                                                  |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 9,500.0         6.00         12.00         9,470.4         561.4         145.8         -559.2         0.00         0.00         0.00           9,600.0         6.00         12.00         9,569.9         571.6         147.9         -569.4         0.00         0.00         0.00           9,700.0         6.00         12.00         9,669.3         581.9         150.1         -579.6         0.00         0.00         0.00           9,800.0         6.00         12.00         9,768.8         592.1         152.3         -589.8         0.00         0.00         0.00           9,900.0         6.00         12.00         9,868.2         602.3         154.4         -600.0         0.00         0.00         0.00           10,000.0         6.00         12.00         9,967.7         612.5         156.6         -610.2         0.00         0.00         0.00           10,032.5         6.00         12.00         10,000.0         615.9         157.3         -613.5         0.00         0.00         0.00           10,100.0         4.65         12.00         10,067.2         622.0         158.6         -619.6         2.00         -2.00         0.00                                                                                                                                                                                  | -                           |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 9,600.0         6.00         12.00         9,569.9         571.6         147.9         -569.4         0.00         0.00         0.00           9,700.0         6.00         12.00         9,669.3         581.9         150.1         -579.6         0.00         0.00         0.00           9,800.0         6.00         12.00         9,768.8         592.1         152.3         -589.8         0.00         0.00         0.00           9,900.0         6.00         12.00         9,868.2         602.3         154.4         -600.0         0.00         0.00         0.00           9,900.0         6.00         12.00         9,868.2         602.3         154.4         -600.0         0.00         0.00         0.00           10,000.0         6.00         12.00         9,967.7         612.5         156.6         -610.2         0.00         0.00         0.00           10,032.5         6.00         12.00         10,000.0         615.9         157.3         -613.5         0.00         0.00         0.00           10,100.0         4.65         12.00         10,067.2         622.0         158.6         -619.6         2.00         -2.00         0.00                                                                                                                                                                                  |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 9,700.0         6.00         12.00         9,669.3         581.9         150.1         -579.6         0.00         0.00         0.00           9,800.0         6.00         12.00         9,768.8         592.1         152.3         -589.8         0.00         0.00         0.00           9,900.0         6.00         12.00         9,868.2         602.3         154.4         -600.0         0.00         0.00         0.00           10,000.0         6.00         12.00         9,967.7         612.5         156.6         -610.2         0.00         0.00         0.00           10,032.5         6.00         12.00         10,000.0         615.9         157.3         -613.5         0.00         0.00         0.00           10,100.0         4.65         12.00         10,067.2         622.0         158.6         -619.6         2.00         -2.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 600 0                     |                    |                | 9,569.9                     |                 | 147.9           | -569.4                        | 0.00                          | 0.00                         | 0.00                        |
| 9,800.0         6.00         12.00         9,768.8         592.1         152.3         -589.8         0.00         0.00         0.00           9,900.0         6.00         12.00         9,868.2         602.3         154.4         -600.0         0.00         0.00         0.00           10,000.0         6.00         12.00         9,967.7         612.5         156.6         -610.2         0.00         0.00         0.00           10,032.5         6.00         12.00         10,000.0         615.9         157.3         -613.5         0.00         0.00         0.00           10,100.0         4.65         12.00         10,067.2         622.0         158.6         -619.6         2.00         -2.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 9,900.0         6.00         12.00         9,868.2         602.3         154.4         -600.0         0.00         0.00         0.00           10,000.0         6.00         12.00         9,967.7         612.5         156.6         -610.2         0.00         0.00         0.00           10,032.5         6.00         12.00         10,000.0         615.9         157.3         -613.5         0.00         0.00         0.00           10,100.0         4.65         12.00         10,067.2         622.0         158.6         -619.6         2.00         -2.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 10,000.0         6.00         12.00         9,967.7         612.5         156.6         -610.2         0.00         0.00         0.00           10,032.5         6.00         12.00         10,000.0         615.9         157.3         -613.5         0.00         0.00         0.00           10,100.0         4.65         12.00         10,067.2         622.0         158.6         -619.6         2.00         -2.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 10,032.5         6.00         12.00         10,000.0         615.9         157.3         -613.5         0.00         0.00         0.00           10,100.0         4.65         12.00         10,067.2         622.0         158.6         -619.6         2.00         -2.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 10,100.0 4.65 12.00 10,067.2 622.0 158.6 -619.6 2.00 -2.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                    |                |                             |                 |                 |                               |                               |                              |                             |
| 10,200.0 2.65 12.00 10,167.0 628.2 160.0 -625.8 2.00 -2.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                    |                |                             | 628.2           |                 | -625.8                        | 2.00                          | -2.00                        |                             |

COMPASS 5000.15 Build 90



Planning Report

| Databases<br>Company:<br>Project:<br>Sta:<br>Wells<br>Wellbore: | EDM5000<br>Ameredev Operating, LLC.<br>RB/HOL<br>RB/HOL #5S<br>Holly 114H<br>Wellbore #1 | Locel Co-ordineto Reference:<br>TVD Reference:<br>MD Reference:<br>North Reference:<br>Survey Celculation Method: | Well Holly 114H<br>KB @ 3030.0usft<br>KB @ 3030.0usft<br>Grid<br>Minimum Curvature |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Design:                                                         | Design #1                                                                                |                                                                                                                   |                                                                                    |

Flanned Survey

| Meesured<br>Depih<br>(usii) | inclination<br>(9) | Azimuth<br>(P)   | Verileel<br>Depili<br>(jusij)           | 47.14-S<br>(1936) | CEAN)        | Varileal<br>Section<br>(Usii) | Dogleg<br>Rete<br>(MOOUSA) | Build<br>Reto<br>(%100usti)) | Turn<br>Reto<br>(MOOUSLI) |
|-----------------------------|--------------------|------------------|-----------------------------------------|-------------------|--------------|-------------------------------|----------------------------|------------------------------|---------------------------|
|                             |                    |                  |                                         |                   |              |                               |                            |                              |                           |
| 10,300.0                    | 0.65               | 12.00            | 10,267.0                                | 631.0             | 160.6        | -628.6                        | 2.00                       | -2.00                        | 0.00                      |
| 10,332.5                    | 0.00               | 0.00             | 10,299.5                                | 631.2             | 160.6        | -628.8                        | 2.00                       | -2.00                        | 0.00                      |
| 10,400.0                    | 0.00               | 0.00             | 10,367.0                                | 631.2             | 160.6        | -628.8                        | 0.00                       | 0.00                         | 0.00                      |
| 10,500.0                    | 0.00               | 0.00             | 10,467.0                                | 631.2             | 160.6        | -628.8                        | 0.00                       | 0.00                         | 0.00                      |
| 10,600.0                    | 0.00               | 0.00             | 10,567.0                                | 631.2             | 160.6        | -628.8                        | 0.00                       | 0.00                         | 0.00                      |
| 10,700.0                    | 0.00               | 0.00             | 10,667.0                                | 631.2             | 160.6        | -628.8                        | 0.00                       | 0.00                         | 0.00                      |
| 10,800.0                    | 0.00               | 0.00             | 10,767.0                                | 631.2             | 160.6        | -628.8                        | 0.00                       | 0.00                         | 0.00                      |
| 10,900.0                    | 0.00               | 0.00             | 10,867.0                                | 631.2             | 160.6        | -628.8                        | 0.00                       | 0.00                         | 0.00                      |
| 11,000.0                    | 0.00               | 0.00             | 10,867.0                                | 631.2             | 160.6        | -628.8                        | 0.00                       | 0.00                         | 0.00                      |
| 11,100.0                    | 0.00               | 0.00             | 11,067.0                                | 631.2             | 160.6        | -628.8                        | 0.00                       | 0.00                         | 0.00                      |
| 11,200.0                    | 0.00               | 0.00             | 11,167.0                                | 631.2             | 160.6        | -628.8                        | 0.00                       | 0.00                         | 0.00                      |
| 11,233.0                    | 0.00               | 0.00             | 11,200.0                                | 631.2             | 160.6        | -628.8                        | 0.00                       | 0.00                         | 0.00                      |
| Hol114 KOP                  |                    | 0.00             | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 00111             | 10010        |                               | 0.00                       | 0.00                         |                           |
| 11,300.0                    | 7.94               | 204.81           | 11,266.7                                | 627.0             | 158.6        | -624.6                        | 11.86                      | 11.86                        | 0.00                      |
| 11,400.0                    | 19.80              | 204.81           | 11,363.7                                | 605.3             | 148.6        | -603.0                        | 11.86                      | 11.86                        | 0.00                      |
| 11,500.0                    | 31.66              | 204.81           | 11,453.6                                | 565.9             | 130.4        | -564.0                        | 11.86                      | 11.86                        | 0.00                      |
| 11,600.0                    | 43.52              | 204.81           | 11,532.7                                | 510.7             | 104.9        | -509.1                        | 11.86                      | 11.86                        | 0.00                      |
| 11,611.9                    | 44.94              | 204.81           | 11,541.2                                | 503.1             | 101.4        | -501.6                        | 11.86                      | 11.86                        | 0.00                      |
| 11,700.0                    | 53.85              | 197.62           | 11,598.5                                | 440.8             | 77.5         | -439.6                        | 11.86                      | 10.12                        | -8.17                     |
| 11,800.0                    | 64.38              | 191.23           | 11,649.8                                | 357.8             | 56.4         | -356.9                        | 11.86                      | 10.53                        | -6.38                     |
| 11,900.0                    | 75.14              | 185.90           | 11,684.4                                | 265.2             | 42.6         | -264.5                        | 11.86                      | 10.76                        | -5.33                     |
| 12,000.0                    | 86.01              | 181.09           | 11,700.7                                | 166.9             | 36.7         | -166.3                        | 11.86                      | 10.87                        | -4.82                     |
| 12,036.6                    | 90.00              | 179.38           | 11,702.0                                | 130.3             | 36.5         | -129.8                        | 11.86                      | 10.90                        | -4.68                     |
| Hol114 FTP                  |                    |                  |                                         |                   |              |                               |                            |                              |                           |
| 12,100.0                    | 90.00              | 179.38           | 11,702.0                                | 66.9              | 37.2         | -66.4                         | 0.00                       | 0.00                         | 0.00                      |
| 12,200.0                    | 90.00              | 179.38           | 11,702.0                                | -33,1             | 38,3         | 33.6                          | 0.00                       | 0.00                         | 0.00                      |
| 12,300.0                    | 90.00              | 179.38           | 11,702.0                                | -133.1            | 39.4         | 133.6                         | 0.00                       | 0.00                         | 0.00                      |
| 12,400.0                    | 90.00              | 179.38           | 11,702.0                                | -233.1            | 40.5         | 233.6                         | 0.00                       | 0.00                         | 0.00                      |
| 12,500.0                    | 90.00              | 179.38           | 11,702.0                                | -333.1            | 41.6         | 333.6                         | 0.00                       | 0.00                         | 0.00                      |
| 12,600.0                    | 90.00              | 179.38           | 11,702.0                                | -433.1            | 42.7         | 433.6                         | 0.00                       | 0.00                         | 0.00                      |
| 12,700.0                    | 90.00              | 179.38           | 11,702.0                                | -533.0            | 43.8         | 533.6                         | 0.00                       | 0.00                         | 0.00                      |
| 12,800.0                    | 90.00              | 179.38           | 11,702.0                                | -633.0            | 44.9<br>46.0 | 633.6<br>722.6                | 0.00                       | 0.00                         | 0.00                      |
| 12,900.0                    | 90.00              | 179.38           | 11,702.0                                | -733.0            | 46.0         | 733.6                         | 0.00                       | 0.00<br>0.00                 | 0.00                      |
| 13,000.0<br>13,100.0        | 90.00<br>90.00     | 179.38<br>179.38 | 11,702.0<br>11,702.0                    | -833.0<br>-933.0  | 47.0<br>48.1 | 833.6<br>933.6                | 0.00<br>0.00               | 0.00                         | 0.00<br>0.00              |
| 13,100.0                    | 90.00<br>90.00     | 179.38           | 11,702.0                                | -933.0            | 48.1         | 933.6<br>1,033.6              | 0.00                       | 0.00                         | 0.00                      |
| 13,300.0                    | 90.00              | 179.38           | 11,702.0                                | -1,033.0          | 49.2<br>50.3 | 1,133.6                       | 0.00                       | 0.00                         | 0.00                      |
| 13,400.0                    | 90.00              | 179.38           | 11,702.0                                | -1,233.0          | 51.4         | 1,233.6                       | 0.00                       | 0.00                         | 0.00                      |
| 13,500.0                    | 90.00              | 179.38           | 11,702.0                                | -1,333.0          | 52.5         | 1,333.6                       | 0.00                       | 0.00                         | 0.00                      |
| 13,600.0                    | 90.00              | 179.38           | 11,702.0                                | -1,433.0          | 53.6         | 1,433.6                       | 0.00                       | 0.00                         | 0.00                      |
| 13,700.0                    | 90.00              | 179.38           | 11,702.0                                | -1,533.0          | 54.7         | 1,533.6                       | 0.00                       | 0.00                         | 0.00                      |
| 13,800.0                    | 90.00              | 179.38           | 11,702.0                                | -1,633.0          | 55.8         | 1,633.6                       | 0.00                       | 0.00                         | 0.00                      |
| 13,900.0                    | 90.00              | 179.38           | 11,702.0                                | -1,733.0          | 56.9         | 1,733.6                       | 0.00                       | 0.00                         | 0.00                      |
| 14,000.0                    | 90.00              | 179.38           | 11,702.0                                | -1,833.0          | 58.0         | 1,833.6                       | 0.00                       | 0.00                         | 0.00                      |
| 14,100.0                    | 90.00              | 179.38           | 11,702.0                                | -1,933.0          | 59.0         | 1,933.6                       | 0.00                       | 0.00                         | 0.00                      |
| 14,200.0                    | 90.00              | 179.38           | 11,702.0                                | -2,033.0          | 60.1         | 2,033.6                       | 0.00                       | 0.00                         | 0.00                      |
| 14,300.0                    | 90.00              | 179.38           | 11,702.0                                | -2,132.9          | 61.2         | 2,133.6                       | 0.00                       | 0.00                         | 0.00                      |
| 14,400.0                    | 90.00              | 179.38           | 11,702.0                                | -2,232.9          | 62.3         | 2,233.6                       | 0.00                       | 0.00                         | 0.00                      |
| 14,500.0                    | 90.00              | 179.38           | 11,702.0                                | -2,332.9          | 63.4         | 2,333.6                       | 0.00                       | 0.00                         | 0.00                      |
| 14,600.0                    | 90.00              | 179.38           | 11,702.0                                | -2,432.9          | 64.5         | 2,433.6                       | 0.00                       | 0.00                         | 0.00                      |
| 14,700.0                    | 90.00              | 179.38           | 11,702.0                                | -2,532.9          | 65.6         | 2,533.6                       | 0.00                       | 0.00                         | 0.00                      |
| 14,800.0                    | 90.00              | 179.38           | 11,702.0                                | -2,632.9          | 66.7         | 2,633.6                       | 0.00                       | 0.00                         | 0.00                      |
| 14,900.0                    | 90.00              | 179.38           | 11,702.0                                | -2,732.9          | 67.8         | 2,733.6                       | 0.00                       | 0.00                         | 0.00                      |
| 15,000.0                    | 90.00              | 179.38           | 11,702.0                                | -2,832.9          | 68.9         | 2,833.6                       | 0.00                       | 0.00                         | 0.00                      |



Planning Report

| Database: | EDM5000                  | Local Co-ordinate Reference: | Well Holly 114H   |
|-----------|--------------------------|------------------------------|-------------------|
| Company:  | Ameredev Operating, LLC. | TVD Reference:               | KB @ 3030.0usft   |
| Project:  | RB/HOL                   | MD Reference:                | KB @ 3030.0usft   |
| Site:     | RB/HOL #5S               | North Reference:             | Grid              |
| Well:     | Holly 114H               | Survey Calculation Method:   | Minimum Curvature |
| Wellbore: | Wellbore #1              |                              |                   |
| Design:   | Design #1                |                              |                   |

Planned Survey

| Measured<br>Depth | Inclination | Azimuth | Vertical<br>Depth | +N/-S    | +E/-W  | Vertical<br>Section | Dogleg<br>Rate | Build<br>Rate | Turn<br>Rate |
|-------------------|-------------|---------|-------------------|----------|--------|---------------------|----------------|---------------|--------------|
| (usft)            | (°)         | (°)     | (usft)            | (usft)   | (usft) | (usft)              | (°/100usft)    | (°/100usft)   | (°/100usft)  |
| 15,100.0          | 90.00       | 179.38  | 11,702.0          | -2,932.9 | 70.0   | 2,933.6             | 0.00           | 0.00          | 0.00         |
| 15,200.0          | 90.00       | 179.38  | 11,702.0          | -3,032.9 | 71.0   | 3,033.6             | 0.00           | 0.00          | 0.00         |
| 15,300.0          | 90.00       | 179.38  | 11,702.0          | -3,132.9 | 72.1   | 3,133.6             | 0.00           | 0.00          | 0.00         |
| 15,400.0          | 90.00       | 179.38  | 11,702.0          | -3,232.9 | 73.2   | 3,233.6             | 0.00           | 0.00          | 0.00         |
| 15,500.0          | 90.00       | 179.38  | 11,702.0          | -3,332.9 | 74.3   | 3,333.6             | 0.00           | 0.00          | 0.00         |
| 15,600.0          | 90.00       | 179.38  | 11,702.0          | -3,432.9 | 75.4   | 3,433.6             | 0.00           | 0.00          | 0.00         |
| 15,700.0          | 90.00       | 179.38  | 11,702.0          | -3,532.9 | 76.5   | 3,533.6             | 0.00           | 0.00          | 0.00         |
| 15,800.0          | 90.00       | 179.38  | 11,702.0          | -3,632.9 | 77.6   | 3,633.6             | 0.00           | 0.00          | 0.00         |
| 15,897.0          | 90.00       | 179.38  | 11,702.0          | -3,729.9 | 78.6   | 3,730.6             | 0.00           | 0.00          | 0.00         |
| Hoi114 into       | NMNM006727  |         |                   |          |        |                     |                |               |              |
| 15,900.0          | 90.00       | 179.38  | 11,702.0          | -3,732.9 | 78.7   | 3,733.6             | 0.00           | 0.00          | 0.00         |
| 16,000.0          | 90.00       | 179.38  | 11,702.0          | -3,832.8 | 79.8   | 3,833.6             | 0.00           | 0.00          | 0.00         |
| 16,100.0          | 90.00       | 179.38  | 11,702.0          | -3,932.8 | 80.9   | 3,933.6             | 0.00           | 0.00          | 0.00         |
| 16,200.0          | 90.00       | 179.38  | 11,702.0          | -4,032.8 | 82.0   | 4,033.6             | 0.00           | 0.00          | 0.00         |
| 16,300.0          | 90.00       | 179.38  | 11,702.0          | -4,132.8 | 83.0   | 4,133.6             | 0.00           | 0.00          | 0.00         |
| 16,400.0          | 90.00       | 179.38  | 11,702.0          | -4,232.8 | 84.1   | 4,233.6             | 0.00           | 0.00          | 0.00         |
| 16,500.0          | 90.00       | 179.38  | 11,702.0          | -4,332.8 | 85.2   | 4,333.6             | 0.00           | 0.00          | 0.00         |
| 16,600.0          | 90.00       | 179.38  | 11,702.0          | -4,432.8 | 86.3   | 4,433.6             | 0.00           | 0.00          | 0.00         |
| 16,700.0          | 90.00       | 179.38  | 11,702.0          | -4,532.8 | 87.4   | 4,533.6             | 0.00           | 0.00          | 0.00         |
| 16,800.0          | 90.00       | 179.38  | 11,702.0          | -4,632.8 | 88.5   | 4,633.6             | 0.00           | 0.00          | 0.00         |
| 16,900.0          | 90.00       | 179.38  | 11,702.0          | -4,732.8 | 89.6   | 4,733.6             | 0.00           | 0.00          | 0.00         |
| 17,000.0          | 90.00       | 179.38  | 11,702.0          | -4,832.8 | 90.7   | 4,833.6             | 0.00           | 0.00          | 0.00         |
| 17,100.0          | 90.00       | 179.38  | 11,702.0          | -4,932.8 | 91.8   | 4,933.6             | 0.00           | 0.00          | 0.00         |
| 17,200.0          | 90.00       | 179.38  | 11,702.0          | -5,032.8 | 92.9   | 5,033.6             | 0.00           | 0.00          | 0.00         |
| 17,217.0          | 90.00       | 179.38  | 11,702.0          | -5,049.8 | 93.0   | 5,050.6             | 0.00           | 0.00          | 0.00         |
|                   | NMNM137473  |         |                   |          |        | _,                  |                |               |              |
| 17,300.0          | 90.00       | 179.38  | 11,702.0          | -5,132.8 | 93.9   | 5,133.6             | 0.00           | 0.00          | 0.00         |
| 17,400.0          | 90.00       | 179.38  | 11,702.0          | -5,232.8 | 95.0   | 5,233.6             | 0.00           | 0.00          | 0.00         |
| 17,500.0          | 90.00       | 179.38  | 11,702.0          | -5,332.8 | 96.1   | 5,333.6             | 0.00           | 0.00          | 0.00         |
| 17,600.0          | 90.00       | 179.38  | 11,702.0          | -5,432.8 | 97.2   | 5,433.6             | 0.00           | 0.00          | 0.00         |
| 17,700.0          | 90.00       | 179.38  | 11,702.0          | -5,532.7 | 98.3   | 5,533.6             | 0.00           | 0.00          | 0.00         |
| 17,800.0          | 90.00       | 179.38  | 11,702.0          | -5,632.7 | 99.4   | 5,633.6             | 0.00           | 0.00          | 0.00         |
| 17,900.0          | 90.00       | 179.38  | 11,702.0          | -5,732.7 | 100.5  | 5,733.6             | 0.00           | 0.00          | 0.00         |
| 18,000.0          | 90.00       | 179.38  | 11,702.0          | -5,832.7 | 101.6  | 5,833.6             | 0.00           | 0.00          | 0.00         |
| 18,100.0          | 90.00       | 179.38  | 11,702.0          | -5,932.7 | 102.7  | 5,933.6             | 0.00           | 0.00          | 0.00         |
| 18,200.0          | 90.00       | 179.38  | 11,702.0          | -6,032.7 | 103.8  | 6,033.6             | 0.00           | 0.00          | 0.00         |
| 18,300.0          | 90.00       | 179.38  | 11,702.0          | -6,132.7 | 104.9  | 6,133.6             | 0.00           | 0.00          | 0.00         |
| 18,400.0          | 90.00       | 179.38  | 11,702.0          | -6,232.7 | 105.9  | 6,233.6             | 0.00           | 0.00          | 0.00         |
| 18,500.0          | 90.00       | 179.38  | 11,702.0          | -6,332.7 | 107.0  | 6,333.6             | 0.00           | 0.00          | 0.00         |
| 18,600.0          | 90.00       | 179.38  | 11,702.0          | -6,432.7 | 108.1  | 6,433.6             | 0.00           | 0.00          | 0.00         |
| 18,700.0          | 90.00       | 179.38  | 11,702.0          | -6,532.7 | 109.2  | 6,533.6             | 0.00           | 0.00          | 0.00         |
| 18,800.0          | 90.00       | 179.38  | 11,702.0          | -6,632.7 | 110.3  | 6,633.6             | 0.00           | 0.00          | 0.00         |
| 18,900.0          | 90.00       | 179.38  | 11,702.0          | -6,732.7 | 111.4  | 6,733.6             | 0.00           | 0.00          | 0.00         |
| 19,000.0          | 90.00       | 179.38  | 11,702.0          | -6,832.7 | 112.5  | 6,833.6             | 0.00           | 0.00          | 0.00         |
| 19,100.0          | 90.00       | 179.38  | 11,702.0          | -6,932.7 | 113.6  | 6,933.6             | 0.00           | 0.00          | 0.00         |
| 19,200.0          | 90.00       | 179.38  | 11,702.0          | -7,032.7 | 114.7  | 7,033.6             | 0.00           | 0.00          | 0.00         |
| 19,300.0          | 90.00       | 179.38  | 11,702.0          | -7,132.7 | 115.8  | 7,133.6             | 0.00           | 0.00          | 0.00         |
| 19,400.0          | 90.00       | 179.38  | 11,702.0          | -7,232.6 | 116.9  | 7,233.6             | 0.00           | 0.00          | 0.00         |
| 19,500.0          | 90.00       | 179.38  | 11,702.0          | -7,332.6 | 117.9  | 7,333.6             | 0.00           | 0.00          | 0.00         |
| 19,600.0          | 90.00       | 179.38  | 11,702.0          | -7,432.6 | 119.0  | 7,433.6             | 0.00           | 0.00          | 0.00         |
| 19,700.0          | 90.00       | 179.38  | 11,702.0          | -7,532.6 | 120.1  | 7,533.6             | 0.00           | 0.00          | 0.00         |
| 19,800.0          | 90.00       | 179.38  | 11,702.0          | -7,632.6 | 121.2  | 7,633.6             | 0.00           | 0.00          | 0.00         |
|                   |             |         |                   |          |        |                     |                |               |              |

COMPASS 5000.15 Build 90



Planning Report

| Database: | EDM5000                  | Local Co-ordinate Reference: | Well Holly 114H   |
|-----------|--------------------------|------------------------------|-------------------|
| Company:  | Ameredev Operating, LLC. | TVD Reference:               | KB @ 3030.0usft   |
| Project:  | RB/HOL                   | MD Reference:                | KB @ 3030.0usft   |
| Site:     | RB/HOL #5S               | North Reference:             | Grid              |
| Well:     | Holly 114H               | Survey Calculation Method:   | Minimum Curvature |
| Wellbore: | Wellbore #1              |                              |                   |
| Design:   | Design #1                |                              |                   |

Planned Survey

| Measured<br>Depth<br>(usft) | Inclination<br>(°) | Azimuth<br>(°) | Vertical<br>Depth<br>(usft) | +N/-S<br>(usft)  | +E/-W<br>(usft) | Verticai<br>Section<br>(usft) | Dogleg<br>Rate<br>(°/100usft) | Build<br>Rate<br>(°/100usft) | Turn<br>Rate<br>(°/100usft) |
|-----------------------------|--------------------|----------------|-----------------------------|------------------|-----------------|-------------------------------|-------------------------------|------------------------------|-----------------------------|
| 20,000.0                    | 90.00              | 179.38         | 11,702.0                    | -7,832.6         | 123.4           | 7,833.6                       | 0.00                          | 0.00                         | 0.00                        |
| 20,100.0                    | 90.00              | 179.38         | 11,702.0                    | -7,932.6         | 124.5           | 7,933.6                       | 0.00                          | 0.00                         | 0.00                        |
| 20,200.0                    | 90.00              | 179.38         | 11,702.0                    | -8,032.6         | 125.6           | 8,033.6                       | 0.00                          | 0.00                         | 0.00                        |
| 20,300.0                    | 90,00              | 179.38         | 11,702.0                    | -8,132.6         | 126.7           | 8,133.6                       | 0.00                          | 0.00                         | 0.00                        |
| 20,400.0                    | 90.00              | 179.38         | 11,702.0                    | -8,232.6         | 127.8           | 8,233.6                       | 0.00                          | 0.00                         | 0.00                        |
| 20,500.0                    | 90.00              | 179.38         | 11,702.0                    | -8,332.6         | 128.9           | 8,333.6                       | 0.00                          | 0.00                         | 0.00                        |
| 20,600.0                    | 90.00              | 179.38         | 11,702.0                    | -8,432.6         | 129.9           | 8,433.6                       | 0.00                          | 0.00                         | 0.00                        |
| 20,700.0                    | 90.00              | 179.38         | 11,702.0                    | -8,532.6         | 131.0           | 8,533.6                       | 0.00                          | 0.00                         | 0.00                        |
| 20,800.0                    | 90.00              | 179.38         | 11,702.0                    | -8,632.6         | 132.1           | 8,633.6                       | 0.00                          | 0.00                         | 0.00                        |
| 20,900.0                    | 90.00              | 179.38         | 11,702.0                    | -8,732.6         | 133.2           | 8,733.6                       | 0.00                          | 0.00                         | 0.00                        |
| 21,000.0                    | 90.00              | 179.38         | 11,702.0                    | -8,832.6         | 134.3           | 8,833.6                       | 0.00                          | 0.00                         | 0.00                        |
| 21,100.0                    | 90.00              | 179.38         | 11,702.0                    | -8,932.5         | 135.4           | 8,933.6                       | 0.00                          | 0.00                         | 0.00                        |
| 21,200.0                    | 90.00              | 179.38         | 11,702.0                    | -9,032.5         | 136.5           | 9,033.6                       | 0.00                          | 0.00                         | 0.00                        |
| 21,300.0                    | 90.00              | 179.38         | 11,702.0                    | -9,132.5         | 137.6           | 9,133.6                       | 0.00                          | 0.00                         | 0.00                        |
| 21,400.0                    | 90.00              | 179.38         | 11,702.0                    | -9,232.5         | 138.7           | 9,233.6                       | 0.00                          | 0.00                         | 0.00                        |
| 21,500.0                    | 90.00              | 179.38         | 11,702.0                    | <b>-9</b> ,332.5 | 139.8           | 9,333.6                       | 0.00                          | 0.00                         | 0.00                        |
| 21,600.0                    | 90.00              | 179.38         | 11,702.0                    | -9,432.5         | 140.9           | 9,433.6                       | 0.00                          | 0.00                         | 0.00                        |
| 21,700.0                    | 90.00              | 179.38         | 11,702.0                    | -9,532.5         | 141.9           | 9,533.6                       | 0.00                          | 0.00                         | 0.00                        |
| 21,800.0                    | 90.00              | 179.38         | 11,702.0                    | -9,632.5         | 143.0           | 9,633.6                       | 0.00                          | 0.00                         | 0.00                        |
| 21,900.0                    | 90.00              | 179.38         | 11,702.0                    | -9,732.5         | 144.1           | 9,733.6                       | 0.00                          | 0.00                         | 0.00                        |
| 22,000.0                    | 90.00              | 179.38         | 11,702.0                    | -9,832.5         | 145.2           | 9,833.6                       | 0.00                          | 0.00                         | 0.00                        |
| 22,100.0                    | 90.00              | 179.38         | 11,702.0                    | -9,932.5         | 146.3           | 9,933.6                       | 0.00                          | 0.00                         | 0.00                        |
| 22,200.0                    | 90.00              | 179.38         | 11,702.0                    | -10,032.5        | 147.4           | 10,033.6                      | 0.00                          | 0.00                         | 0.00                        |
| 22,300.0                    | 90.00              | 179.38         | 11,702.0                    | -10,132.5        | 148.5           | 10,133.6                      | 0.00                          | 0.00                         | 0.00                        |
| 22,399.1                    | 90.00              | 179.38         | 11,702.0                    | -10,231.5        | 149.6           | 10,232.6                      | 0.00                          | 0.00                         | 0.00                        |
| Hol114 LTP                  |                    |                |                             |                  |                 |                               |                               |                              |                             |
| 22,400.0                    | 90.00              | 179.38         | 11,702.0                    | -10,232.5        | 149.6           | 10,233.6                      | 0.00                          | 0.00                         | 0.00                        |
| 22,449.0                    | 90.00              | 179.38         | 11,702.0                    | -10,281.5        | 150.1           | 10,282.6                      | 0.00                          | 0.00                         | 0.00                        |

**Design Targets** 

| Target Name<br>- hit/miss target<br>- Shape       | Dip Angle<br>(°) | Dip Dir.<br>(°) | TVD<br>(usft) | +N/-S<br>(usft) | +E/-W<br>(usft) | Northing<br>(usft) | Easting<br>(usft) | Latitude        | Longitude         |
|---------------------------------------------------|------------------|-----------------|---------------|-----------------|-----------------|--------------------|-------------------|-----------------|-------------------|
| Hol114 KOP<br>- plan hits target cente<br>- Point | 0.00<br>er       | 0.00            | 11,200.0      | 631.2           | 160.6           | 394,656.77         | 865,171.77        | 32° 4' 50.436 N | 103° 17' 15.991 W |
| Hol114 BHL<br>- plan hits target cente<br>- Point | 0.00<br>er       | 0.00            | 11,702.0      | -10,281.5       | 150.1           | 383,744.05         | 865,161.29        | 32° 3' 2.460 N  | 103° 17' 17.341 W |
| Hol114 FTP<br>- plan hits target cente<br>- Point | 0.00<br>er       | 0.00            | 11,702.0      | 130.3           | 36.5            | 394,155.91         | 865,047.72        | 32° 4' 45.493 N | 103° 17' 17.489 W |
| Hol114 LTP<br>- plan hits target cente<br>- Point | 0.00<br>er       | 0.01            | 11,702.0      | -10,231.5       | 149.6           | 383,794.03         | 865,160.74        | 32° 3' 2.955 N  | 103° 17' 17.342 W |

2/21/2019 3:28:11PM

1



## **Ameredev Operating, LLC**

Planning Report

| Database:<br>Company:<br>Project:<br>Site:<br>Well:<br>Well:<br>Wellbore:<br>Design:<br>Plan Annotatio: | ny: Ameredev Operating, LLC.<br>: RB/HOL<br>RB/HOL #5S<br>Holly 114H<br>re: Wellbore #1<br>: Design #1 |                             | TVD Ref<br>MD Refe<br>North Re | rence:                     | Well Holly 114H<br>KB @ 3030.0usft<br>KB @ 3030.0usft<br>Grid<br>Minimum Curvature |  |  |  |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|----------------------------|------------------------------------------------------------------------------------|--|--|--|
|                                                                                                         | Measured<br>Depth<br>(usft)                                                                            | Vertical<br>Depth<br>(usft) | Local Coon<br>+N/-S<br>(usft)  | dinates<br>+E/-W<br>(usft) | Comment                                                                            |  |  |  |
|                                                                                                         | 15,897.0<br>17,217.0                                                                                   | 11,702.0<br>11,702.0        | -3,729.9<br>-5,049.8           | 78.6<br>93.0               | Hol114 into NMNM006<br>Hol114 into NMNM137                                         |  |  |  |



RB/HOL RB/HOL #5S Holly 114H Wellbore #1

Plan: Design #1

# **Lease Penetration Section Line Foot**

21 February, 2019



Lease Penetration Section Line Footages

| Project:<br>Site:<br>Well:<br>Wellbore:                                                                                                                                                                                                           | Ameredev Operat<br>RB/HOL<br>RB/HOL #5S<br>Holly 114H<br>Wellbore #1<br>Design #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ing, LLC.                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TVD Refe<br>MD Refe<br>North Re                                                                                                   | rence;<br>ference:<br>calculation Metho                                                                                         |                                                                                            | Well Holly 114F<br>KB @ 3030.0us<br>KB @ 3030.0us<br>Grid<br>Minimum Curva<br>EDM5000                                                                                                         | sft<br>sft                                                                                                                                                                                                                                                |                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project                                                                                                                                                                                                                                           | RB/HOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |                                                                                                                                 |                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                        |
| Map System:<br>Geo Datum:<br>Map Zone:                                                                                                                                                                                                            | US State Plan<br>North America<br>New Mexico E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n Datum 1                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | System                                                                                                                            | n Datum:                                                                                                                        |                                                                                            | Mean Sea Lev                                                                                                                                                                                  | vel                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        |
| Site                                                                                                                                                                                                                                              | RB/HOL #5S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ;                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |                                                                                                                                 |                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                        |
| Site Position:<br>From:<br>Position Uncertair                                                                                                                                                                                                     | Lat/Long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0 usl                                                                                                                                              | Northing:<br>Easting:<br>ft Slot Radius:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   | 394,025.37 <sub>Usft</sub><br>864,991.18 usft<br>13-3/16 *                                                                      | Latitud<br>Longitu<br>Grid Co                                                              |                                                                                                                                                                                               |                                                                                                                                                                                                                                                           | 32° 4' 44.206 N<br>103° 17' 18.161 W<br>0.56 °                                                                                                                                                         |
| Well                                                                                                                                                                                                                                              | Holly 114H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |                                                                                                                                 |                                                                                            | ·····                                                                                                                                                                                         | <u></u>                                                                                                                                                                                                                                                   |                                                                                                                                                                                                        |
| Well Position                                                                                                                                                                                                                                     | +N/-S<br>+E/-W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      | ) usft Northing<br>) usft Easting:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   | 394,025.5<br>865,011.1                                                                                                          |                                                                                            | Latitude:<br>Longitude:                                                                                                                                                                       |                                                                                                                                                                                                                                                           | 32° 4' 44.206 N<br>103° 17' 17.929 W                                                                                                                                                                   |
| Position Uncertair                                                                                                                                                                                                                                | nty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                  | ) usft Wellhead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d Elevation:                                                                                                                      |                                                                                                                                 | usft                                                                                       | Ground Level:                                                                                                                                                                                 |                                                                                                                                                                                                                                                           | 3,003.0 usft                                                                                                                                                                                           |
| Wellbore                                                                                                                                                                                                                                          | Weilbore #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |                                                                                                                                 |                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                        |
| Magnetics                                                                                                                                                                                                                                         | Model N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ame                                                                                                                                                  | Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dec                                                                                                                               | clination<br>(°)                                                                                                                |                                                                                            | Dip Angle<br>(°)                                                                                                                                                                              | Field Str<br>(nT                                                                                                                                                                                                                                          | -                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |                                                                                                                                 |                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                   | IG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RF2015                                                                                                                                               | 2/19/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2019                                                                                                                              | 6.63                                                                                                                            |                                                                                            | 59.9                                                                                                                                                                                          | 5 47,71                                                                                                                                                                                                                                                   | 2.02244477                                                                                                                                                                                             |
| Design                                                                                                                                                                                                                                            | IG<br>Design #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GRF2015                                                                                                                                              | 2/19/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2019                                                                                                                              |                                                                                                                                 |                                                                                            | 59.9                                                                                                                                                                                          | 5 47,712                                                                                                                                                                                                                                                  | 2.02244477                                                                                                                                                                                             |
| Design<br>Audit Notes:                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RF2015                                                                                                                                               | 2/19/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2019                                                                                                                              |                                                                                                                                 |                                                                                            | 59.9                                                                                                                                                                                          | 5 47,712                                                                                                                                                                                                                                                  | 2.02244477                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BRF2015                                                                                                                                              | 2/19/2<br>Phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PROTOTYF                                                                                                                          | 6.63                                                                                                                            | e On Dep                                                                                   |                                                                                                                                                                                               | 5 47,712<br>0.0                                                                                                                                                                                                                                           | 2.02244477                                                                                                                                                                                             |
| Audit Notes:                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   | 6.63<br>PE TI<br>S +                                                                                                            | e On Dep<br>E/-W<br>usft)                                                                  |                                                                                                                                                                                               |                                                                                                                                                                                                                                                           | 2.02244477                                                                                                                                                                                             |
| Audit Notes:<br>Version:                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      | Phase:<br>spth From (TVD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PROTOTYF<br>+N/4                                                                                                                  | 6.63<br>PE TI<br>S +<br>((                                                                                                      | E/-W                                                                                       |                                                                                                                                                                                               | 0.0<br>Direction                                                                                                                                                                                                                                          | 2.02244477                                                                                                                                                                                             |
| Audit Notes:<br>Version:                                                                                                                                                                                                                          | Design #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | De                                                                                                                                                   | Phase:<br>epth From (TVD)<br>(usft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PROTOTYF<br>+N/-<br>(usfi                                                                                                         | 6.63<br>PE TI<br>S +<br>((                                                                                                      | E/-W<br>Jsft)                                                                              |                                                                                                                                                                                               | 0.0<br>Direction<br>(°)                                                                                                                                                                                                                                   | 2.02244477                                                                                                                                                                                             |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From                                                                                                                                                                        | Design #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | De<br>Date                                                                                                                                           | Phase:<br>epth From (TVD)<br>(usft)<br>0.0<br>2/21/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PROTOTYF<br>+N/-<br>(usfi                                                                                                         | 6.63<br>PE TI<br>S +<br>() ((                                                                                                   | E/-W<br>Jsft)                                                                              | oth:                                                                                                                                                                                          | 0.0<br>Direction<br>(°)                                                                                                                                                                                                                                   | 2.02244477                                                                                                                                                                                             |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From<br>(usft)                                                                                                                                                              | Design #1<br>Tam<br>To<br>(usft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | De<br>Date<br>Survey (\                                                                                                                              | Phase:<br>epth From (TVD)<br>(usft)<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PROTOTYF<br>+N/-<br>(usfi                                                                                                         | 6.63<br>PE TI<br>S +<br>((                                                                                                      | E/-W<br>Jsft)                                                                              |                                                                                                                                                                                               | 0.0<br>Direction<br>(°)<br>179.16                                                                                                                                                                                                                         | 2.02244477                                                                                                                                                                                             |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From<br>(usft)                                                                                                                                                              | Design #1<br>Tam<br>To<br>(usft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | De<br>Date<br>Survey (\                                                                                                                              | Phase:<br>epth From (TVD)<br>(usft)<br>0.0<br>2/21/2019<br>Wellbore)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PROTOTYF<br>+N/-<br>(usfi                                                                                                         | 6.63<br>PE TI<br>S + <br>;) (4<br>Tool Name                                                                                     | E/-W<br>Jsft)                                                                              | oth:<br>Description                                                                                                                                                                           | 0.0<br>Direction<br>(°)<br>179.16                                                                                                                                                                                                                         | 2.02244477                                                                                                                                                                                             |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From<br>(usft)<br>0                                                                                                                                                         | Design #1<br>am<br>To<br>(usft)<br>.0 22,448.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | De<br>Date<br>Survey (\<br>Design #                                                                                                                  | Phase:<br>epth From (TVD)<br>(usft)<br>0.0<br>2/21/2019<br>Wellbore)<br>1 (Wellbore #1)<br>Azi (azimuth)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROTOTYF<br>+N/-<br>(usfi<br>0.0                                                                                                  | 6.63<br>PE TI<br>S + <br>;) (4<br>Tool Name                                                                                     | E/-W<br>isft)<br>0.0                                                                       | oth:<br>Description                                                                                                                                                                           | 0.0<br>Direction<br>(°)<br>179.16                                                                                                                                                                                                                         | Longitude                                                                                                                                                                                              |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From<br>(usft)<br>0<br>Planned Survey<br>MD<br>(usft)                                                                                                                       | Design #1<br>Tam<br>To<br>(usft)<br>.0 22,448.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | De<br>Date<br>Survey (\<br>Design #                                                                                                                  | Phase:<br>epth From (TVD)<br>(usft)<br>0.0<br>2/21/2019<br>Wellbore)<br>1 (Wellbore #1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PROTOTYF<br>+N/-<br>(usfi<br>0.0                                                                                                  | 6.63<br>PE TI<br>S + <br>}) ((<br>Tool Name<br>MWD<br>+FSL/-FNL                                                                 | E/-W<br>Isft)<br>0.0                                                                       | Description<br>OWSG MWD                                                                                                                                                                       | 0.0<br>Direction<br>(°)<br>179.16<br>- Standard                                                                                                                                                                                                           |                                                                                                                                                                                                        |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From<br>(usft)<br>0<br>Planned Survey<br>MD<br>(usft)                                                                                                                       | Design #1<br>To<br>(usft)<br>.0 22,448.1<br>Inc<br>(°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | De<br>Date<br>Survey (V<br>Design #                                                                                                                  | Phase:<br>epth From (TVD)<br>(usft)<br>0.0<br>2/21/2019<br>Wellbore)<br>1 (Wellbore #1)<br>Azi (azimuth)<br>(°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PROTOTYF<br>+N/-<br>(usfi<br>0.0<br>0.0<br>TVD<br>(usft)                                                                          | 6.63<br>PE Ti<br>S + <br>;) (1<br>Tool Name<br>MWD<br>+FSL/-FNL<br>(usft)                                                       | E/-W<br>Isft)<br>0.0                                                                       | oth:<br>Description<br>OWSG MWD<br>+FWL/-FEL<br>(usft)                                                                                                                                        | 0.0<br>Direction<br>(°)<br>179.16<br>- Standard<br>Latitude                                                                                                                                                                                               | Longitude                                                                                                                                                                                              |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From<br>(usft)<br>0<br>Planned Survey<br>MD<br>(usft)                                                                                                                       | Design #1<br>To<br>(usft)<br>.0 22,448.1<br>Inc<br>(°)<br>).0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | De<br>Date<br>Survey (\<br>Design #'<br>A<br>0.00                                                                                                    | Phase:<br>epth From (TVD)<br>(usft)<br>0.0<br>2/21/2019<br>Wellbore)<br>1 (Wellbore #1)<br>Azi (azimuth)<br>(°)<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PROTOTYF<br>+N/-<br>(usft<br>0.0<br>.0<br>.0<br>.0<br>.0<br>100.0<br>200.0                                                        | 6.63<br>PE TI<br>S +<br>(u<br>Tool Name<br>MWD<br>+FSL/-FNL<br>(usft)<br>-22<br>-22<br>-22                                      | E/-W<br>isft)<br>0.0<br>9.8<br>9.8<br>9.8<br>9.8                                           | bth:<br>Description<br>OWSG MWD<br>*FWL/-FEL<br>(usft)<br>2,280.0                                                                                                                             | 0.0<br>Direction<br>(°)<br>179.16<br>- Standard<br>Latitude<br>32° 4' 44.206 N                                                                                                                                                                            | Longitude<br>103° 17' 17.929 W                                                                                                                                                                         |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From<br>(usft)<br>0<br>Planned Survey<br>MD<br>(usft)<br>0<br>200<br>300                                                                                                    | Design #1<br>To<br>(usft)<br>.0 22,448.1<br>Inc<br>(°)<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date<br>Date<br>Survey (<br>Design #<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                         | Phase:<br>epth From (TVD)<br>(usft)<br>0.0<br>2/21/2019<br>Wellbore)<br>1 (Wellbore #1)<br>4zi (azimuth)<br>(°)<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PROTOTYF<br>+N/-<br>(usft)<br>0.0<br>TVD<br>(usft)<br>0.0<br>100.0<br>200.0<br>300.0                                              | 6.63<br>PE TI<br>S + (<br>) ((<br>Tool Name<br>MWD<br>+FSL/-FNL<br>(usft)<br>-22<br>-22<br>-22<br>-22                           | 9.8<br>9.8<br>9.8<br>9.8<br>9.8                                                            | Description<br>OWSG MWD<br>•FWL/-FEL<br>(usft)<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0                                                                                                    | 0.0<br>Direction<br>(°)<br>179.16<br>- Standard<br>Latitude<br>32° 4' 44.206 N<br>32° 4' 44.206 N<br>32° 4' 44.206 N<br>32° 4' 44.206 N                                                                                                                   | Longitude<br>103° 17' 17.929 W<br>103° 17' 17.929 W<br>103° 17' 17.929 W<br>103° 17' 17.929 W                                                                                                          |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From<br>(usft)<br>0<br>Planned Survey<br>MD<br>(usft)<br>C<br>100<br>200                                                                                                    | Design #1<br>To<br>(usft)<br>.0 22,448.1<br>Inc<br>(°)<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date :<br>Survey (\<br>Design #'<br>A<br>0.00<br>0.00<br>0.00                                                                                        | Phase:<br>epth From (TVD)<br>(usft)<br>0.0<br>2/21/2019<br>Wellbore)<br>1 (Wellbore #1)<br>Azi (azimuth)<br>(°)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PROTOTYF<br>+N/-<br>(usft)<br>0.0<br>TVD<br>(usft)<br>0.0<br>100.0<br>200.0<br>300.0<br>400.0                                     | 6.63<br>PE TI<br>S + <br>(4<br>Tool Name<br>MWD<br>+FSL/-FNL<br>(usft)<br>-22<br>-22<br>-22<br>-22<br>-22<br>-22<br>-22         | E/-W<br>isft)<br>0.0<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8                      | Description<br>OWSG MWD<br>+FWL/-FEL<br>(usft)<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0                                                                                         | 0.0<br>Direction<br>(°)<br>179.16<br>- Standard<br>Latitude<br>32° 4' 44.206 N<br>32° 4' 44.206 N<br>32° 4' 44.206 N<br>32° 4' 44.206 N                                                                                                                   | Longitude<br>103° 17' 17.929 W<br>103° 17' 17.929 W<br>103° 17' 17.929 W                                                                                                                               |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From<br>(usft)<br>0<br>Planned Survey<br>MD<br>(usft)<br>C<br>100<br>200<br>300<br>400<br>500                                                                               | Design #1<br>Design #1<br>To<br>(usft)<br>.0 22,448.1<br>Inc<br>(°)<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date 5<br>Survey (\<br>Design #'<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.                                                       | Phase:<br>pth From (TVD)<br>(usft)<br>0.0<br>2/21/2019<br>Wellbore)<br>1 (Wellbore #1)<br>Azi (azimuth)<br>(°)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROTOTYF<br>+N/-4<br>(usft)<br>0.0<br>(usft)<br>0.0<br>100.0<br>200.0<br>300.0<br>400.0<br>500.0                                  | 6.63<br>PE TI<br>S + <br>) (4<br>Tool Name<br>MWD<br>+FSL/-FNL<br>(usft)<br>-22<br>-22<br>-22<br>-22<br>-22<br>-22<br>-22<br>-2 | E/-W<br>isft)<br>0.0<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8        | Description<br>OWSG MWD<br>*FWL/-FEL<br>(usft)<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0                                                        | 0.0<br>Direction<br>(°)<br>179.16<br>- Standard<br>Latitude<br>32° 4' 44.206 N<br>32° 4' 44.206 N                                                                             | Longitude<br>103° 17' 17.929 W<br>103° 17' 17.929 W<br>103° 17' 17.929 W<br>103° 17' 17.929 W                                                                                                          |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From<br>(usft)<br>0<br>Planned Survey<br>MD<br>(usft)<br>0<br>200<br>300<br>400                                                                                             | Design #1<br>Design #1<br>To<br>(usft)<br>.0 22,448.1<br>Inc<br>(°)<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date<br>Date<br>Survey (\<br>Design #'<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                               | Phase:<br>pth From (TVD)<br>(usft)<br>0.0<br>2/21/2019<br>Wellbore)<br>1 (Wellbore #1)<br>Azi (azimuth)<br>(°)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROTOTYF<br>+N/-(usft)<br>0.0<br>(usft)<br>0.0<br>100.0<br>200.0<br>300.0<br>400.0<br>500.0<br>600.0                              | 6.63<br>PE TI<br>S + <br>) (4<br>Tool Name<br>MWD<br>+FSL/-FNL<br>(usft)<br>-22<br>-22<br>-22<br>-22<br>-22<br>-22<br>-22<br>-2 | E/-W<br>isft)<br>0.0<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8 | Description<br>OWSG MWD<br>+FWL/-FEL<br>(usft)<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0                                                                                         | 0.0<br>Direction<br>(°)<br>179.16<br>- Standard<br>Latitude<br>32° 4' 44.206 N<br>32° 4' 44.206 N                                                          | Longitude<br>103° 17' 17.929 W<br>103° 17' 17.929 W<br>103° 17' 17.929 W<br>103° 17' 17.929 W<br>103° 17' 17.929 W                                                                                     |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From<br>(usft)<br>0<br>Planned Survey<br>MD<br>(usft)<br>C<br>100<br>200<br>300<br>400<br>500                                                                               | Design #1<br>Design #1<br>To<br>(usft)<br>0 22,448.1<br>Inc<br>(°)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date 5<br>Survey (\<br>Design #'<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.                                                       | Phase:<br>pth From (TVD)<br>(usft)<br>0.0<br>2/21/2019<br>Wellbore)<br>1 (Wellbore #1)<br>Azi (azimuth)<br>(°)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROTOTYF<br>+N/-4<br>(usft)<br>0.0<br>(usft)<br>0.0<br>100.0<br>200.0<br>300.0<br>400.0<br>500.0                                  | 6.63<br>PE TI<br>S + <br>) (4<br>Tool Name<br>MWD<br>+FSL/-FNL<br>(usft)<br>-22<br>-22<br>-22<br>-22<br>-22<br>-22<br>-22<br>-2 | E/-W<br>isft)<br>0.0<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8 | Description<br>OWSG MWD<br>*FWL/-FEL<br>(usft)<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0                                                        | 0.0<br>Direction<br>(°)<br>179.16<br>- Standard<br>Latitude<br>32° 4' 44.206 N<br>32° 4' 44.206 N                                                                             | Longitude<br>103° 17' 17.929 W<br>103° 17' 17.929 W                                                                |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From<br>(usft)<br>0<br>Planned Survey<br>MD<br>(usft)<br>0<br>Planned Survey<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Design #1<br>Design #1<br>am<br>To<br>(usft)<br>.0 22,448.1<br>Inc<br>(°)<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date 5<br>Survey (<br>Design #<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.                                                         | Phase:<br>pth From (TVD)<br>(usft)<br>0.0<br>2/21/2019<br>Wellbore)<br>1 (Wellbore #1)<br>Azi (azimuth)<br>(°)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROTOTYF<br>+N/-(usft)<br>0.0<br>(usft)<br>0.0<br>100.0<br>200.0<br>300.0<br>400.0<br>500.0<br>600.0                              | 6.63<br>PE TI<br>S + <br>) (4<br>Tool Name<br>MWD<br>+FSL/-FNL<br>(usft)<br>-22<br>-22<br>-22<br>-22<br>-22<br>-22<br>-22<br>-2 | 9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8                         | Description<br>OWSG MWD<br>•FWL/-FEL<br>(usft)<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0                                  | 0.0<br>Direction<br>(°)<br>179.16<br>- Standard<br>Latitude<br>32° 4' 44.206 N<br>32° 4' 44.206 N                                                          | Longitude<br>103° 17' 17.929 W<br>103° 17' 17.929 W                                           |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From<br>(usft)<br>0<br>Planned Survey<br>MD<br>(usft)<br>0<br>Planned Survey<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Design #1<br>Design #1<br>am<br>To<br>(usft)<br>.0 22,448.1<br>Inc<br>(°)<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0<br>.0.0 | Date<br>Date<br>Survey (<br>Design #<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | Phase:<br>epth From (TVD)<br>(usft)<br>0.0<br>2/21/2019<br>Wellbore)<br>1 (Wellbore #1)<br>Azi (azimuth)<br>(°)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | PROTOTYF<br>+N/-<br>(usft)<br>0.0<br>(usft)<br>0.0<br>100.0<br>200.0<br>300.0<br>400.0<br>500.0<br>600.0<br>700.0                 | 6.63<br>PE TI<br>S + (i)<br>Tool Name<br>MWD<br>+FSL/-FNL<br>(usft)<br>-22<br>-22<br>-22<br>-22<br>-22<br>-22<br>-22<br>-2      | 9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8                         | Description<br>OWSG MWD<br>•FWL/-FEL<br>(usft)<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0            | 0.0<br>Direction<br>(°)<br>179.16<br>- Standard<br>Latitude<br>32° 4' 44.206 N<br>32° 4' 44.206 N                                       | Longitude<br>103° 17' 17.929 W<br>103° 17' 17.929 W                      |
| Audit Notes:<br>Version:<br>Vertical Section:<br>Survey Tool Progr<br>From<br>(usft)<br>0<br>Planned Survey<br>MD<br>(usft)<br>0<br>Planned Survey<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Design #1<br>Design #1<br>To<br>(usft)<br>.0 22,448.1<br>Inc<br>(°)<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date<br>Date<br>Survey (<br>Design #<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.                                                   | Phase:<br>epth From (TVD)<br>(usft)<br>0.0<br>2/21/2019<br>Wellbore)<br>1 (Wellbore #1)<br>Azi (azimuth)<br>(°)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | PROTOTYF<br>+N/-<br>(usft)<br>0.0<br>TVD<br>(usft)<br>0.0<br>100.0<br>200.0<br>300.0<br>400.0<br>500.0<br>600.0<br>700.0<br>800.0 | 6.63 PE TI S + I S (1) Tool Name MWD +FSL/-FNL (usft) -22 -22 -22 -22 -22 -22 -22 -22 -22 -2                                    | E/-W<br>isft)<br>0.0<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8<br>9.8 | Description<br>OWSG MWD<br>*FWL/-FEL<br>(usft)<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0 | 0.0<br>Direction<br>(°)<br>179.16<br>- Standard<br>Latitude<br>32° 4' 44.206 N<br>32° 4' 44.206 N | Longitude<br>103° 17' 17.929 W<br>103° 17' 17.929 W |



#### Lease Penetration Section Line Footages

| Company:  | Ameredev Operating, LLC. | Local Co-ordinate Reference: | Well Holly 114H   |
|-----------|--------------------------|------------------------------|-------------------|
| Project:  | RB/HOL                   | TVD Reference:               | KB @ 3030.0usft   |
| Site:     | RB/HOL #5S               | MD Reference:                | KB @ 3030.0usft   |
| Well:     | Holly 114H               | North Reference:             | Grid              |
| Wellbore: | Wellbore #1              | Survey Calculation Method:   | Minimum Curvature |
| Design:   | Design #1                | Database:                    | EDM5000           |

#### Planned Survey

|   | 1,200.0<br>1,300.0<br>1,400.0<br>1,500.0<br>1,600.0<br>1,700.0<br>1,800.0<br>1,900.0<br>2,000.0<br>2,100.0<br>2,200.0<br>2,300.0<br>2,400.0 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 | 1,200.0<br>1,300.0<br>1,400.0<br>1,500.0<br>1,600.0<br>1,600.0<br>1,700.0<br>1,800.0<br>1,900.0<br>2,000.0<br>2,100.0 | -229.8<br>-229.8<br>-229.8<br>-229.8<br>-229.8<br>-229.8<br>-229.8<br>-229.8<br>-229.8<br>-229.8<br>-229.8 | 2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0 | 32° 4' 44.206 N<br>32° 4' 44.206 N | 103° 17' 17.929 W<br>103° 17' 17.929 W |
|---|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 1,400.0<br>1,500.0<br>1,600.0<br>1,700.0<br>1,800.0<br>1,900.0<br>2,000.0<br>2,100.0<br>2,200.0<br>2,300.0                                  | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>2.00<br>4.00<br>6.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>15.00       | 1,400.0<br>1,500.0<br>1,600.0<br>1,700.0<br>1,800.0<br>1,900.0<br>2,000.0                                             | -229.8<br>-229.8<br>-229.8<br>-229.8<br>-229.8<br>-229.8                                                   | 2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0                       | 32° 4' 44.206 N<br>32° 4' 44.206 N<br>32° 4' 44.206 N<br>32° 4' 44.206 N<br>32° 4' 44.206 N                                                          | 103° 17' 17.929 W<br>103° 17' 17.929 W<br>103° 17' 17.929 W<br>103° 17' 17.929 W<br>103° 17' 17.929 W                                                                |
|   | 1,500.0<br>1,600.0<br>1,700.0<br>1,800.0<br>1,900.0<br>2,000.0<br>2,100.0<br>2,200.0<br>2,300.0                                             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>2.00<br>4.00<br>6.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>15.00               | 1,500.0<br>1,600.0<br>1,700.0<br>1,800.0<br>1,900.0<br>2,000.0                                                        | -229.8<br>-229.8<br>-229.8<br>-229.8<br>-229.8                                                             | 2,280.0<br>2,280.0<br>2,280.0<br>2,280.0<br>2,280.0                                  | 32° 4' 44.206 N<br>32° 4' 44.206 N<br>32° 4' 44.206 N<br>32° 4' 44.206 N                                                                             | 103° 17' 17.929 W<br>103° 17' 17.929 W<br>103° 17' 17.929 W<br>103° 17' 17.929 W                                                                                     |
|   | 1,600.0<br>1,700.0<br>1,800.0<br>1,900.0<br>2,000.0<br>2,100.0<br>2,200.0<br>2,300.0                                                        | 0.00<br>0.00<br>0.00<br>0.00<br>2.00<br>4.00<br>6.00                 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>15.00               | 1,600.0<br>1,700.0<br>1,800.0<br>1,900.0<br>2,000.0                                                                   | -229.8<br>-229.8<br>-229.8<br>-229.8                                                                       | 2,280.0<br>2,280.0<br>2,280.0<br>2,280.0                                             | 32° 4' 44.206 N<br>32° 4' 44.206 N<br>32° 4' 44.206 N                                                                                                | 103° 17' 17.929 W<br>103° 17' 17.929 W<br>103° 17' 17.929 W                                                                                                          |
|   | 1,700.0<br>1,800.0<br>1,900.0<br>2,000.0<br>2,100.0<br>2,200.0<br>2,300.0                                                                   | 0.00<br>0.00<br>0.00<br>2.00<br>4.00<br>6.00                         | 0.00<br>0.00<br>0.00<br>0.00<br>15.00                       | 1,700.0<br>1,800.0<br>1,900.0<br>2,000.0                                                                              | -229.8<br>-229.8<br>-229.8                                                                                 | 2,280.0<br>2,280.0<br>2,280.0                                                        | 32° 4' 44.206 N<br>32° 4' 44.206 N                                                                                                                   | 103° 17' 17.929 W<br>103° 17' 17.929 W                                                                                                                               |
|   | 1,800.0<br>1,900.0<br>2,000.0<br>2,100.0<br>2,200.0<br>2,300.0                                                                              | 0.00<br>0.00<br>2.00<br>4.00<br>6.00                                 | 0.00<br>0.00<br>0.00<br>15.00                               | 1,800.0<br>1,900.0<br>2,000.0                                                                                         | -229.8<br>-229.8                                                                                           | 2,280.0<br>2,280.0                                                                   | 32° 4' 44.206 N                                                                                                                                      | 103° 17' 17.929 W                                                                                                                                                    |
|   | 1,900.0<br>2,000.0<br>2,100.0<br>2,200.0<br>2,300.0                                                                                         | 0.00<br>0.00<br>2.00<br>4.00<br>6.00                                 | 0.00<br>0.00<br>15.00                                       | 1,900.0<br>2,000.0                                                                                                    | -229.8                                                                                                     | 2,280.0                                                                              |                                                                                                                                                      |                                                                                                                                                                      |
|   | 2,000.0<br>2,100.0<br>2,200.0<br>2,300.0                                                                                                    | 0.00<br>2.00<br>4.00<br>6.00                                         | 0.00<br>15.00                                               | 2,000.0                                                                                                               |                                                                                                            |                                                                                      | 32° 4' 44.206 N                                                                                                                                      | 103° 17' 17.929 W                                                                                                                                                    |
|   | 2,100.0<br>2,200.0<br>2,300.0                                                                                                               | 2.00<br>4.00<br>6.00                                                 | 15.00                                                       |                                                                                                                       | -229.8                                                                                                     |                                                                                      |                                                                                                                                                      |                                                                                                                                                                      |
|   | 2,200.0<br>2,300.0                                                                                                                          | 4.00<br>6.00                                                         |                                                             | 2,100.0                                                                                                               |                                                                                                            | 2,280.0                                                                              | 32° 4' 44.206 N                                                                                                                                      | 103° 17' 17.929 W                                                                                                                                                    |
|   | 2,300.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       |                                                                                                                       | -228.1                                                                                                     | 2,280.5                                                                              | 32° 4' 44.223 N                                                                                                                                      | 103° 17' 17.923 W                                                                                                                                                    |
|   |                                                                                                                                             |                                                                      |                                                             | 2,199.8                                                                                                               | -223.1                                                                                                     | 2,281.8                                                                              | 32° 4' 44.273 N                                                                                                                                      | 103° 17' 17.907 W                                                                                                                                                    |
| 1 | 2,400.0                                                                                                                                     |                                                                      | 15.00                                                       | 2,299.5                                                                                                               | -214.6                                                                                                     | 2,284.1                                                                              | 32° 4' 44.356 N                                                                                                                                      | 103° 17' 17.880 W                                                                                                                                                    |
|   |                                                                                                                                             | 6.00                                                                 | 15.00                                                       | 2,398.9                                                                                                               | -204.5                                                                                                     | 2,286.8                                                                              | 32° 4' 44.456 N                                                                                                                                      | 103° 17' 17.847 W                                                                                                                                                    |
|   | 2,500.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 2,498.4                                                                                                               | -194.4                                                                                                     | 2,289.5                                                                              | 32° 4' 44.555 N                                                                                                                                      | 103° 17' 17.815 W                                                                                                                                                    |
|   | 2,600.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 2,597.8                                                                                                               | -184.4                                                                                                     | 2,292.2                                                                              | 32° 4' 44.655 N                                                                                                                                      | 103° 17' 17.782 W                                                                                                                                                    |
|   | 2,700.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 2,697.3                                                                                                               | -174.3                                                                                                     | 2,294.9                                                                              | 32° 4' 44.755 N                                                                                                                                      | 103° 17' 17.749 W                                                                                                                                                    |
|   | 2,800.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 2,796.7                                                                                                               | -164.2                                                                                                     | 2,297.6                                                                              | 32° 4' 44.854 N                                                                                                                                      | 103° 17' 17.717 W                                                                                                                                                    |
|   | 2,900.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 2,896.2                                                                                                               | -154.1                                                                                                     | 2,300.3                                                                              | 32° 4' 44.954 N                                                                                                                                      | 103° 17' 17.684 W                                                                                                                                                    |
|   | 3,000.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 2,995.6                                                                                                               | -144.0                                                                                                     | 2,303.0                                                                              | 32° 4' 45.053 N                                                                                                                                      | 103° 17' 17.652 W                                                                                                                                                    |
|   | 3,100.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 3,095.1                                                                                                               | -133.9                                                                                                     | 2,305.7                                                                              | 32° 4' 45.153 N                                                                                                                                      | 103° 17' 17.619 W                                                                                                                                                    |
|   | 3,200.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 3,194.5                                                                                                               | -123.8                                                                                                     | 2,308.4                                                                              | 32° 4' 45.253 N                                                                                                                                      | 103° 17' 17.587 W                                                                                                                                                    |
|   | 3,300.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 3,294.0                                                                                                               | -113.7                                                                                                     | 2,311.1                                                                              | 32° 4' 45.352 N                                                                                                                                      | 103° 17' 17.554 W                                                                                                                                                    |
|   | 3,400.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 3,393.4                                                                                                               | -103.6                                                                                                     | 2,313.8                                                                              | 32° 4' 45.452 N                                                                                                                                      | 103° 17' 17.521 W                                                                                                                                                    |
|   | 3,500.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 3,492.9                                                                                                               | -93.5                                                                                                      | 2,316.5                                                                              | 32° 4' 45.552 N                                                                                                                                      | 103° 17' 17.489 W                                                                                                                                                    |
|   | 3,600.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 3,592.3                                                                                                               | -83.4                                                                                                      | 2,319.2                                                                              | 32° 4' 45.651 N                                                                                                                                      | 103° 17' 17.456 W                                                                                                                                                    |
|   | 3,700.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 3,691.8                                                                                                               | -73.3                                                                                                      | 2,321.9                                                                              | 32° 4' 45.751 N                                                                                                                                      | 103° 17' 17.424 W                                                                                                                                                    |
|   | 3,800.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 3,791.2                                                                                                               | -63.2                                                                                                      | 2,324.6                                                                              | 32° 4' 45.851 N                                                                                                                                      | 103° 17' 17.391 W                                                                                                                                                    |
|   | 3,900.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 3,890.7                                                                                                               | -53.1                                                                                                      | 2,327.3                                                                              | 32° 4' 45.950 N                                                                                                                                      | 103° 17' 17.359 W                                                                                                                                                    |
|   | 4,000.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 3,990.1                                                                                                               | -43.0                                                                                                      | 2,330.1                                                                              | 32° 4' 46.050 N                                                                                                                                      | 103° 17' 17.326 W                                                                                                                                                    |
|   | 4,100.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 4,089.6                                                                                                               | -32.9                                                                                                      | 2,332.8                                                                              | 32° 4' 46.150 N                                                                                                                                      | 103° 17' 17.293 W                                                                                                                                                    |
|   | 4,200.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 4,189.0                                                                                                               | -22.8                                                                                                      | 2,335.5                                                                              | 32° 4' 46.249 N                                                                                                                                      | 103° 17' 17.261 W                                                                                                                                                    |
|   | 4,300.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 4,288.5                                                                                                               | -12.7                                                                                                      | 2,338.2                                                                              | 32° 4' 46.349 N                                                                                                                                      | 103° 17' 17.228 W                                                                                                                                                    |
|   | 4,400.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 4,387.9                                                                                                               | -2.6                                                                                                       | 2,340.9                                                                              | 32° 4' 46.448 N                                                                                                                                      | 103° 17' 17.196 W                                                                                                                                                    |
|   | 4,500.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 4,487.4                                                                                                               | 7.5                                                                                                        | 2,343.6                                                                              | 32° 4' 46.548 N                                                                                                                                      | 103° 17' 17.163 W                                                                                                                                                    |
|   | 4,600.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 4,586.9                                                                                                               | 17.6                                                                                                       | 2,346.3                                                                              | 32° 4' 46.648 N                                                                                                                                      | 103° 17' 17.131 W                                                                                                                                                    |
|   | 4,700.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 4,686.3                                                                                                               | 27.7                                                                                                       | 2,349.0                                                                              | 32° 4' 46.747 N                                                                                                                                      | 103° 17' 17.098 W                                                                                                                                                    |
|   | 4,800.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 4,785.8                                                                                                               | 37.8                                                                                                       | 2,351.7                                                                              | 32° 4' 46.847 N                                                                                                                                      | 103° 17' 17.065 W                                                                                                                                                    |
|   | 4,900.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 4,885.2                                                                                                               | 47.9                                                                                                       | 2,354.4                                                                              | 32° 4' 46.947 N                                                                                                                                      | 103° 17' 17.033 W                                                                                                                                                    |
|   | 5,000.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 4,984.7                                                                                                               | 58.0                                                                                                       | 2,357.1                                                                              | 32° 4' 47.046 N                                                                                                                                      | 103° 17' 17.000 W                                                                                                                                                    |
|   | 5,100.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 5,084.1                                                                                                               | 68.1                                                                                                       | 2,359.8                                                                              | 32° 4' 47.146 N                                                                                                                                      | 103° 17' 16.968 W                                                                                                                                                    |
|   | 5,200.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 5,183.6                                                                                                               | 78.2                                                                                                       | 2,362.5                                                                              | 32° 4' 47.246 N                                                                                                                                      | 103° 17' 16.935 W                                                                                                                                                    |
|   | 5,300.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 5,283.0                                                                                                               | 88.3                                                                                                       | 2,365.2                                                                              | 32° 4' 47.345 N                                                                                                                                      | 103° 17' 16.902 W                                                                                                                                                    |
|   | 5,400.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 5,382.5                                                                                                               | 98.4                                                                                                       | 2,367.9                                                                              | 32° 4' 47.445 N                                                                                                                                      | 103° 17' 16.870 W                                                                                                                                                    |
|   | 5,500.0                                                                                                                                     | 6.00                                                                 | 15.00                                                       | 5,481.9                                                                                                               | 108.5                                                                                                      | 2,370.6                                                                              | 32° 4' 47.545 N                                                                                                                                      | 103° 17' 16.837 W                                                                                                                                                    |

COMPASS 5000.15 Build 90

1



Lease Penetration Section Line Footages

| Company:  | Ameredev Operating, LLC. | Local Co-ordinate Reference: | Well Holly 114H   |
|-----------|--------------------------|------------------------------|-------------------|
| Project:  | RB/HOL                   | TVD Reference:               | KB @ 3030.0usft   |
| Site:     | RB/HOL #5S               | MD Reference:                | KB @ 3030.0usft   |
| Well:     | Holly 114H               | North Reference:             | Grid              |
| Wellbore: | Wellbore #1              | Survey Calculation Method:   | Minimum Curvature |
| Design:   | Design #1                | Database:                    | EDM5000           |

#### Planned Survey

| MD<br>(usft) | lnc<br>(°) | Azi (azimuth)<br>(°) | TVD<br>(usft) | +FSL/-FNL<br>(usft) | +FWL/-FEL<br>(usft) | Latitude        | Longitude         |
|--------------|------------|----------------------|---------------|---------------------|---------------------|-----------------|-------------------|
| 5,600.0      | 6.00       | 15.00                | 5,581.4       | 118.5               | 2,373.3             | 32° 4' 47.644 N | 103° 17' 16.805 W |
| 5,700.0      | 6.00       | 15.00                | 5,680.8       | 128.6               | 2,376.0             | 32° 4' 47.744 N | 103° 17' 16.772 W |
| 5,800.0      | 6.00       | 15.00                | 5,780.3       | 138.7               | 2,378.8             | 32° 4' 47.844 N | 103° 17' 16.740 W |
| 5,900.0      | 6.00       | 15.00                | 5,879.7       | 148.8               | 2,381.5             | 32° 4' 47.943 N | 103° 17' 16.707 W |
| 6,000.0      | 6.00       | 15.00                | 5,979.2       | 158.9               | 2,384.2             | 32° 4' 48.043 N | 103° 17' 16.674 W |
| 6,100.0      | 6.00       | 15.00                | 6,078.6       | 169.0               | 2,386.9             | 32° 4' 48.142 N | 103° 17' 16.642 W |
| 6,200.0      | 6.00       | 15.00                | 6,178.1       | 179.1               | 2,389.6             | 32° 4' 48.242 N | 103° 17' 16.609 W |
| 6,300.0      | 6.00       | 15.00                | 6,277.5       | 189.2               | 2,392.3             | 32° 4' 48.342 N | 103° 17' 16.577 W |
| 6,400.0      | 6.00       | 15.00                | 6,377.0       | 199.3               | 2,395.0             | 32° 4' 48.441 N | 103° 17' 16.544 W |
| 6,500.0      | 6.00       | 15.00                | 6,476.4       | 209.4               | 2,397.7             | 32° 4' 48.541 N | 103° 17' 16.512 W |
| 6,600.0      | 6.00       | 15.00                | 6,575.9       | 219.5               | 2,400.4             | 32° 4' 48.641 N | 103° 17' 16.479 W |
| 6,700.0      | 6.00       | 15.00                | 6,675.3       | 229.6               | 2,403.1             | 32° 4' 48.740 N | 103° 17' 16.446 W |
| 6,724.8      | 6.00       | 15.00                | 6,700.0       | 232.1               | 2,403.8             | 32° 4' 48.765 N | 103° 17' 16.438 W |
| 6,800.0      | 4.50       | 15.00                | 6,774.9       | 238.8               | 2,405.6             | 32° 4' 48.831 N | 103° 17' 16.417 W |
| 6,900.0      | 2.50       | 15.00                | 6,874.7       | 244.6               | 2,407.1             | 32° 4' 48.889 N | 103° 17' 16.398 W |
| 7,000.0      | 0.50       | 15.00                | 6,974.7       | 247.2               | 2,407.8             | 32° 4' 48.914 N | 103° 17' 16.390 W |
| 7,024.8      | 0.00       | 0.00                 | 6,999.5       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 7,100.0      | 0.00       | 0.00                 | 7,074.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 7,200.0      | 0.00       | 0.00                 | 7,174.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 7,300.0      | 0.00       | 0.00                 | 7,274.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 7,400.0      | 0.00       | 0.00                 | 7,374.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 7,500.0      | 0.00       | 0.00                 | 7,474.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 7,600.0      | 0.00       | 0.00                 | 7,574.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 7,700.0      | 0.00       | 0.00                 | 7,674.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 7,800.0      | 0.00       | 0.00                 | 7,774.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 7,900.0      | 0.00       | 0.00                 | 7,874.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 8,000.0      | 0.00       | 0.00                 | 7,974.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 8,100.0      | 0.00       | 0.00                 | 8,074.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 8,200.0      | 0.00       | 0.00                 | 8,174.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 8,300.0      | 0.00       | 0.00                 | 8,274.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 8,400.0      | 0.00       | 0.00                 | 8,374.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 8,500.0      | 0.00       | 0.00                 | 8,474.7       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 8,525.3      | 0.00       | 0.00                 | 8,500.0       | 247.3               | 2,407.8             | 32° 4' 48.915 N | 103° 17' 16.389 W |
| 8,600.0      | 1.49       | 12.00                | 8,574.7       | 248.2               | 2,408.0             | 32° 4' 48.924 N | 103° 17' 16.387 W |
| 8,700.0      | 3.49       | 12.00                | 8,674.6       | 252.5               | 2,408.9             | 32° 4' 48.966 N | 103° 17' 16.376 W |
| 8,800.0      | 5.49       | 12.00                | 8,774.2       | 260.1               | 2,410.6             | 32° 4' 49.042 N | 103° 17' 16.356 W |
| 8,825.3      | 6.00       | 12.00                | 8,799.5       | 262.6               | 2,411.1             | 32° 4' 49.066 N | 103° 17' 16.350 W |
| 8,900.0      | 6.00       | 12.00                | 8,873.7       | 270.3               | 2,412.7             | 32° 4' 49.142 N | 103° 17' 16.330 W |
| 9,000.0      | 6.00       | 12.00                | 8,973.2       | 280.5               | 2,414.9             | 32° 4' 49.243 N | 103° 17' 16.304 W |
| 9,100.0      | 6.00       | 12.00                | 9,072.6       | 290.7               | 2,417.1             | 32° 4' 49.343 N | 103° 17' 16.277 W |
| 9,200.0      | 6.00       | 12.00                | 9,172.1       | 300.9               | 2,419.2             | 32° 4' 49.444 N | 103° 17' 16.251 W |
| 9,300.0      | 6.00       | 12.00                | 9,271.5       | 311.2               | 2,421.4             | 32° 4' 49.545 N | 103° 17' 16.224 W |
| 9,400.0      | 6.00       | 12.00                | 9,371.0       | 321.4               | 2,423.6             | 32° 4' 49.646 N | 103° 17' 16.198 W |
| 9,500.0      | 6.00       | 12.00                | 9,470.4       | 331.6               | 2,425.8             | 32° 4' 49.747 N | 103° 17' 16.172 W |



Lease Penetration Section Line Footages

| Ameredev Operating, LLC. | Local Co-ordinate Reference:            | Well Holly 114H                                                                                                                                     |
|--------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| RB/HOL                   | TVD Reference:                          | KB @ 3030.0usft                                                                                                                                     |
| RB/HOL #5S               | MD Reference:                           | KB @ 3030.0usft                                                                                                                                     |
| Holly 114H               | North Reference:                        | Grid                                                                                                                                                |
| Wellbore #1              | Survey Calculation Method:              | Minimum Curvature                                                                                                                                   |
| Design #1                | Database:                               | EDM5000                                                                                                                                             |
|                          | RB/HOL #5S<br>Holly 114H<br>Wellbore #1 | RB/HOL     TVD Reference:       RB/HOL #5S     MD Reference:       Holly 114H     North Reference:       Wellbore #1     Survey Calculation Method: |

Planned Survey

|   | MD<br>(usft) | Inc<br>(°) | Azi (azimuth)<br>(°) | TVD<br>(usft) | +FSL/-FNL<br>(usft) | +FWL/-FEL<br>(usft) | Latitude                           | Longitude         |
|---|--------------|------------|----------------------|---------------|---------------------|---------------------|------------------------------------|-------------------|
|   | 9,600.0      | 6.00       | 12.00                | 9,569.9       | 341.8               | 2,427.9             | 32° 4' 49.848 N                    | 103° 17' 16.145 W |
|   | 9,700.0      | 6.00       | 12.00                | 9,669.3       | 352.1               | 2,430.1             | 32° 4' 49.949 N                    | 103° 17' 16.119 W |
| 1 | 9,800.0      | 6.00       | 12.00                | 9,768.8       | 362.3               | 2,432.3             | 32° 4' 50.050 N                    | 103° 17' 16.092 W |
|   | 9,900.0      | 6.00       | 12.00                | 9,868.2       | 372.5               | 2,434.4             | 32° 4' 50.151 N                    | 103° 17' 16.066 W |
|   | 10,000.0     | 6.00       | 12.00                | 9,967.7       | 382.7               | 2,436.6             | 32° 4' 50.252 N                    | 103° 17' 16.040 W |
|   | 10,032.5     | 6.00       | 12.00                | 10,000.0      | 386.1               | 2,437.3             | 32° 4' 50.285 N                    | 103° 17' 16.031 W |
|   | 10,100.0     | 4.65       | 12.00                | 10,067.2      | 392.2               | 2,438.6             | 32° 4' 50.345 N                    | 103° 17' 16.015 W |
|   | 10,200.0     | 2.65       | 12.00                | 10,167.0      | 398.4               | 2,440.0             | 32° 4' 50.407 N                    | 103° 17' 15.999 W |
|   | 10,300.0     | 0.65       | 12.00                | 10,267.0      | 401.2               | 2,440.6             | 32° 4' 50.435 N                    | 103° 17' 15.992 W |
|   | 10,332.5     | 0.00       | 0.00                 | 10,299.5      | 401.4               | 2,440.6             | 32° 4' 50.436 N                    | 103° 17' 15.991 W |
|   | 10,400.0     | 0.00       | 0.00                 | 10,367.0      | 401.4               | 2,440.6             | 32° 4' 50.436 N                    | 103° 17' 15.991 W |
|   | 10,500.0     | 0.00       | 0.00                 | 10,467.0      | 401.4               | 2,440.6             | 32° 4' 50.436 N                    | 103° 17' 15.991 W |
|   | 10,600.0     | 0.00       | 0.00                 | 10,567.0      | 401.4               | 2,440.6             | 32° 4' 50.436 N                    | 103° 17' 15.991 W |
|   | 10,700.0     | 0.00       | 0.00                 | 10,667.0      | 401.4               | 2,440.6             | 32° 4' 50.436 N                    | 103° 17' 15.991 W |
|   | 10,800.0     | 0.00       | 0.00                 | 10,767.0      | 401.4               | 2,440.6             | 32° 4' 50.436 N                    | 103° 17' 15.991 W |
|   | 10,900.0     | 0.00       | 0.00                 | 10,867.0      | 401.4               | 2,440.6             | 32° 4' 50.436 N                    | 103° 17' 15.991 W |
|   | 11,000.0     | 0.00       | 0.00                 | 10,967.0      | 401.4               | 2,440.6             | 32° 4' 50.436 N                    | 103° 17' 15.991 W |
|   | 11,100.0     | 0.00       | 0.00                 | 11,067.0      | 401.4               | 2,440.6             | 32° 4' 50.436 N                    | 103° 17' 15.991 W |
|   | 11,200.0     | 0.00       | 0.00                 | 11,167.0      | 401.4               | 2,440.6             | 32° 4' 50.436 N                    | 103° 17' 15.991 W |
|   | 11,233.0     | 0.00       | 0.00                 | 11,200.0      | 401.4               | 2,440.6             | 32° 4' 50.436 N                    | 103° 17' 15.991 W |
|   | Hol114 KOP   |            |                      |               |                     |                     |                                    |                   |
|   | 11,300.0     | 7.94       | 204.81               | 11,266.7      | 397.2               | 2,438.6             | 32° 4' 50.395 N                    | 103° 17' 16.014 W |
|   | 11,400.0     | 19.80      | 204.81               | 11,363.7      | 375.5               | 2,428.6             | 32° 4' 50.181 N                    | 103° 17' 16.134 W |
|   | 11,500.0     | 31.66      | 204.81               | 11,453.6      | 336.1               | 2,410.4             | 32° 4' 49.794 N                    | 103° 17' 16.349 W |
|   | 11,600.0     | 43.52      | 204.81               | 11,532.7      | 280.9               | 2,384.9             | 32° 4' 49.249 N                    | 103° 17' 16.652 W |
|   | 11,611.9     | 44.94      | 204.81               | 11,541.2      | 273.3               | 2,381.4             | 32° 4' 49.175 N                    | 103° 17' 16.694 W |
|   | 11,700.0     | 53.85      | 197.62               | 11,598.5      | 211.0               | 2,357.5             | 32° 4' 48.561 N                    | 103° 17' 16.978 W |
|   | 11,800.0     | 64.38      | 191.23               | 11,649.8      | 128.0               | 2,336.4             | 32° 4' 47.741 N                    | 103° 17' 17.233 W |
|   | 11,900.0     | 75.14      | 185.90               | 11,684.4      | 35.4                | 2,322.6             | 32° 4' 46.826 N                    | 103° 17' 17.404 W |
|   | 12,000.0     | 86.01      | 181.09               | 11,700.7      | -62.9               | 2,316.7             | 32° 4' 45.854 N                    | 103° 17' 17.484 W |
|   | 12,036.6     | 90.00      | 179.38               | 11,702.0      | -99.5               | 2,316.5             | 32° 4' 45.493 N                    | 103° 17' 17.489 W |
|   | Hol114 FTP   |            |                      |               |                     |                     |                                    |                   |
|   | 12,100.0     | 90.00      | 179.38               | 11,702.0      | -162.9              | 2,317.2             | 32° 4' 44.865 N                    | 103° 17' 17.489 W |
|   | 12,200.0     | 90.00      | 179.38               | 11,702.0      | -262.9              | 2,318.3             | 32° 4' 43.875 N                    | 103° 17' 17.487 W |
|   | 12,300.0     | 90.00      | 179.38               | 11,702.0      | -362.9              | 2,319.4             | 32° 4' 42.886 N                    | 103° 17' 17.486 W |
|   | 12,400.0     | 90.00      | 179.38               | 11,702.0      | -462.9              | 2,320.5             | 32° 4' 41.896 N                    | 103° 17' 17.484 W |
|   | 12,500.0     | 90.00      | 179.38               | 11,702.0      | -562.9              | 2,321.6             | 32° 4' 40.907 N                    | 103° 17' 17.483 W |
|   | 12,600.0     | 90.00      | 179.38               | 11,702.0      | -662.9              | 2,322.7             | 32° 4' 39.917 N                    | 103° 17' 17.481 W |
|   | 12,700.0     | 90.00      | 179.38               | 11,702.0      | -762.8              | 2,323.8             | 32° 4' 38.928 N                    | 103° 17' 17.480 W |
|   | 12,800.0     | 90.00      | 179.38               | 11,702.0      | -862.8              | 2,324.9             | 32° 4' 37.938 N                    | 103° 17' 17.479 W |
| Î | 12,900.0     | 90.00      | 179.38               | 11,702.0      | -962.8              | 2,326.0             | 32° 4' 36.949 N                    | 103° 17' 17.477 W |
|   | 13,000.0     | 90.00      | 179.38               | 11,702.0      | -1,062.8            | 2,327.0             | 32° 4' 35.959 N                    | 103° 17' 17.476 W |
|   | 13,100.0     | 90.00      | 179.38               | 11,702.0      | -1,162.8            | 2,328.1             | 32° 4' 34.970 N                    | 103° 17' 17.474 W |
|   | 13,200.0     | 90.00      | 179.38               | 11,702.0      | -1,162.8            | 2,328.1<br>2,329.2  | 32° 4' 34.970 N<br>32° 4' 33.980 N | 103° 17' 17.474 W |
|   | 13,200.0     | 90.00      | 179.38               | 11,702.0      | -1,262.8            | 2,329.2             | 32° 4' 32.991 N                    | 103° 17' 17.473 W |
|   | 10,000.0     | 30.00      |                      |               | -1,502.0            | Z1000.0             | 02 7 02,331 N                      |                   |



Lease Penetration Section Line Footages

| Company:  | Ameredev Operating, LLC. | Local Co-ordinate Reference: | Well Holly 114H   |
|-----------|--------------------------|------------------------------|-------------------|
| Project:  | RB/HOL                   | TVD Reference:               | KB @ 3030.0usft   |
| Site:     | RB/HOL #5S               | MD Reference:                | KB @ 3030.0usft   |
| Well:     | Holly 114H               | North Reference:             | Grid              |
| Wellbore: | Wellbore #1              | Survey Calculation Method:   | Minimum Curvature |
| Design:   | Design #1                | Database:                    | EDM5000           |

Planned Survey

L.

| MD<br>(usft)                 | inc<br>(°)              | Azi (azimuth)<br>(°) | TVD<br>(usft) | +FSL/-FNL<br>(usft) | +FWL/-FEL<br>(usft) | Latitude        | Longitude         |
|------------------------------|-------------------------|----------------------|---------------|---------------------|---------------------|-----------------|-------------------|
| 13,400.0                     | 90.00                   | 179.38               | 11,702.0      | -1,462.8            | 2,331.4             | 32° 4' 32.001 N | 103° 17' 17.470 W |
| 13,500.0                     | 90.00                   | 179.38               | 11,702.0      | -1,562.8            | 2,332.5             | 32° 4' 31.012 N | 103° 17' 17.469 W |
| 13,600.0                     | 90.00                   | 179.38               | 11,702.0      | -1,662.8            | 2,333.6             | 32° 4' 30.022 N | 103° 17' 17.467 W |
| 13,700.0                     | 90.00                   | 179.38               | 11,702.0      | -1,762.8            | 2,334.7             | 32° 4' 29.033 N | 103° 17' 17.466 W |
| 13,800.0                     | 90.00                   | 179.38               | 11,702.0      | -1,862.8            | 2,335.8             | 32° 4' 28.043 N | 103° 17' 17.464 W |
| 13,900.0                     | 90.00                   | 179.38               | 11,702.0      | -1,962.8            | 2,336.9             | 32° 4' 27.054 N | 103° 17' 17.463 W |
| 14,000.0                     | 90.00                   | 179.38               | 11,702.0      | -2,062.8            | 2,338.0             | 32° 4' 26.064 N | 103° 17' 17.462 W |
| 14,100.0                     | 90.00                   | 179.38               | 11,702.0      | -2,162.8            | 2,339.0             | 32° 4' 25.075 N | 103° 17' 17.460 W |
| 14,200.0                     | 90.00                   | 179.38               | 11,702.0      | -2,262.8            | 2,340.1             | 32° 4' 24.085 N | 103° 17' 17.459 W |
| 14,300.0                     | 90.00                   | 179.38               | 11,702.0      | -2,362.7            | 2,341.2             | 32° 4' 23.096 N | 103° 17' 17.457 W |
| 14,400.0                     | 90.00                   | 179.38               | 11,702.0      | -2,462.7            | 2,342.3             | 32° 4' 22.106 N | 103° 17' 17.456 W |
| 14,500.0                     | 90.00                   | 179.38               | 11,702.0      | -2,562.7            | 2,343.4             | 32° 4' 21.117 N | 103° 17' 17.454 W |
| 14,600.0                     | 90.00                   | 179.38               | 11,702.0      | -2,662.7            | 2,344.5             | 32° 4' 20.127 N | 103° 17' 17.453 W |
| 14,700.0                     | 90.00                   | 179.38               | 11,702.0      | -2,762.7            | 2,345.6             | 32° 4' 19.138 N | 103° 17' 17.452 W |
| 14,800.0                     | 90.00                   | 179.38               | 11,702.0      | -2,862.7            | 2,346.7             | 32° 4' 18.148 N | 103° 17' 17.450 W |
| 14,900.0                     | 90.00                   | 179.38               | 11,702.0      | -2,962.7            | 2,347.8             | 32° 4' 17.159 N | 103° 17' 17.449 W |
| 15,000.0                     | 90.00                   | 179.38               | 11,702.0      | -3,062.7            | 2,348.9             | 32° 4' 16.169 N | 103° 17' 17.447 W |
| 15,100.0                     | 90.00                   | 179.38               | 11,702.0      | -3,162.7            | 2,350.0             | 32° 4' 15.180 N | 103° 17' 17.446 W |
| 15,200.0                     | 90.00                   | 179.38               | 11,702.0      | -3,262.7            | 2,351.0             | 32° 4' 14.190 N | 103° 17' 17.445 W |
| 15,300.0                     | 90.00                   | 179.38               | 11,702.0      | -3,362.7            | 2,352.1             | 32° 4' 13.201 N | 103° 17' 17.443 W |
| 15,400.0                     | 90.00                   | 179.38               | 11,702.0      | -3,462.7            | 2,353.2             | 32° 4' 12.211 N | 103° 17' 17.442 W |
| 15,500.0                     | 90.00                   | 179.38               | 11,702.0      | -3,562.7            | 2,354.3             | 32° 4' 11.222 N | 103° 17' 17.440 W |
| 15,600.0                     | 90.00                   | 179.38               | 11,702.0      | -3,662.7            | 2,355.4             | 32° 4' 10.232 N | 103° 17' 17.439 W |
| 15,700.0                     | 90.00                   | 179.38               | 11,702.0      | -3,762.7            | 2,356.5             | 32° 4' 9.243 N  | 103° 17' 17.437 W |
| 15,800.0                     | 90.00                   | 179.38               | 11,702.0      | -3,862.7            | 2,357.6             | 32° 4' 8.253 N  | 103° 17' 17.436 W |
| 15,897.0                     | 90.00                   | 179.38               | 11,702.0      | -3,959.7            | 2,358.6             | 32° 4' 7.293 N  | 103° 17' 17.435 W |
| Hol114 into NMNN             | 1006727                 |                      |               |                     |                     |                 |                   |
| 15,900.0                     | 90.00                   | 179.38               | 11,702.0      | -3,962.7            | 2,358.7             | 32° 4' 7.264 N  | 103° 17' 17.435 W |
| 16,000.0                     | . 90.00                 | 179.38               | 11,702.0      | -4,062.6            | 2,359.8             | 32° 4' 6.274 N  | 103° 17' 17.433 W |
| 16,100.0                     | 90.00                   | 179.38               | 11,702.0      | -4,162.6            | 2,360.9             | 32° 4' 5.285 N  | 103° 17' 17.432 W |
| 16,200.0                     | 90.00                   | 179.38               | 11,702.0      | -4,262.6            | 2,362.0             | 32° 4' 4.295 N  | 103° 17' 17.430 W |
| 16,300.0                     | 90.00                   | 179.38               | 11,702.0      | -4,362.6            | 2,363.0             | 32° 4' 3.306 N  | 103° 17' 17.429 W |
| 16,400.0                     | 90.00                   | 179.38               | 11,702.0      | -4,462.6            | 2,364.1             | 32° 4' 2.316 N  | 103° 17' 17.427 W |
| 16,500.0                     | 90.00                   | 179.38               | 11,702.0      | -4,562.6            | 2,365.2             | 32° 4' 1.326 N  | 103° 17' 17.426 W |
| 16,600.0                     | 90.00                   | 179.38               | 11,702.0      | -4,662.6            | 2,366.3             | 32° 4' 0.337 N  | 103° 17' 17.425 W |
| 16,700.0                     | 90.00                   | 179.38               | 11,702.0      | -4,762.6            | 2,367.4             | 32° 3' 59.347 N | 103° 17' 17.423 W |
| 16,800.0                     | 90.00                   | 179.38               | 11,702.0      | -4,862.6            | 2,368.5             | 32° 3' 58.358 N | 103° 17' 17.422 W |
| 16,900.0                     | 90.00                   | 179.38               | 11,702.0      | -4,962.6            | 2,369.6             | 32° 3' 57.368 N | 103° 17' 17.420 W |
| 17,000.0                     | 90.00                   | 179.38               | 11,702.0      | -5,062.6            | 2,370.7             | 32° 3' 56.379 N | 103° 17' 17.419 W |
| 17,100.0                     | 90.00                   | 179.38               | 11,702.0      | -5,162.6            | 2,371.8             | 32° 3' 55.389 N | 103° 17' 17.418 W |
| 17,200.0                     | 90.00                   | 179.38               | 11,702.0      | -5,262.6            | 2,372.9             | 32° 3' 54.400 N | 103° 17' 17.416 W |
| 17,217.0                     | 90.00                   | 179.38               | 11,702.0      | -5,279.6            | 2,373.0             | 32° 3' 54.232 N | 103° 17' 17.416 W |
| Hol114 into NMNN<br>17,300.0 | <b>1137473</b><br>90.00 | 179.38               | 11,702.0      | -5,362.6            | 2,373.9             | 32° 3' 53.410 N | 103° 17' 17.415 W |

2/21/2019 3:28:23PM



Lease Penetration Section Line Footages

| Company:  | Ameredev Operating, LLC. | Local Co-ordinate Reference: | Well Holly 114H   |  |
|-----------|--------------------------|------------------------------|-------------------|--|
| Project:  | RB/HOL                   | TVD Reference:               | KB @ 3030.0usft   |  |
| Site:     | RB/HOL #5S               | MD Reference:                | KB @ 3030.0usft   |  |
| Well:     | Holly 114H               | North Reference:             | Grid              |  |
| Wellbore: | Wellbore #1              | Survey Calculation Method:   | Minimum Curvature |  |
| Design:   | Design #1                | Database:                    | EDM5000           |  |

Planned Survey

| MD<br>(usft) | inc<br>(°)        | Azi (azimuth)<br>(°) | TVD<br>(usft) | +FSL/-FNL<br>(usft) | +FWL/-FEL<br>(usft) | Latitude        | Longitude         |
|--------------|-------------------|----------------------|---------------|---------------------|---------------------|-----------------|-------------------|
| 17,400.0     | 90.00             | 179.38               | 11,702.0      | -5,462.6            | 2,375.0             | 32° 3' 52.421 N | 103° 17' 17.413 W |
| 17,500.0     | 90.00             | 179.38               | 11,702.0      | -5,562.6            | 2,376.1             | 32° 3' 51.431 N | 103° 17' 17.412 W |
| 17,600.0     | 90.00             | 179.38               | 11,702.0      | -5,662.6            | 2,377.2             | 32° 3' 50.442 N | 103° 17' 17.410 W |
| 17,700.0     | 90.00             | 179.38               | 11,702.0      | -5,762.5            | 2,378.3             | 32° 3' 49.452 N | 103° 17' 17.409 W |
| 17,800.0     | 90.00             | 179.38               | 11,702.0      | -5,862.5            | 2,379.4             | 32° 3' 48.463 N | 103° 17' 17.408 W |
| 17,900.0     | 90.00             | 179.38               | 11,702.0      | -5,962.5            | 2,380.5             | 32° 3' 47.473 N | 103° 17' 17.406 W |
| 18,000.0     | 90.00             | 179.38               | 11,702.0      | -6,062.5            | 2,381.6             | 32° 3' 46.484 N | 103° 17' 17.405 W |
| 18,100.0     | <del>9</del> 0.00 | 179.38               | 11,702.0      | -6,162.5            | 2,382.7             | 32° 3' 45.494 N | 103° 17' 17.403 W |
| 18,200.0     | 90.00             | 179.38               | 11,702.0      | -6,262.5            | 2,383.8             | 32° 3' 44.505 N | 103° 17' 17.402 W |
| 18,300.0     | 90.00             | 179.38               | 11,702.0      | -6,362.5            | 2,384.9             | 32° 3' 43.515 N | 103° 17' 17.400 W |
| 18,400.0     | 90.00             | 179.38               | 11,702.0      | -6,462.5            | 2,385.9             | 32° 3' 42.526 N | 103° 17' 17.399 W |
| 18,500.0     | <del>9</del> 0.00 | 179.38               | 11,702.0      | -6,562.5            | 2,387.0             | 32° 3' 41.536 N | 103° 17' 17.398 W |
| 18,600.0     | 90.00             | 179.38               | 11,702.0      | -6,662.5            | 2,388.1             | 32° 3' 40.547 N | 103° 17' 17.396 W |
| 18,700.0     | <del>9</del> 0.00 | 179.38               | 11,702.0      | -6,762.5            | 2,389.2             | 32° 3' 39.557 N | 103° 17' 17.395 W |
| 18,800.0     | 90.00             | 179.38               | 11,702.0      | -6,862.5            | 2,390.3             | 32° 3' 38.568 N | 103° 17' 17.393 W |
| 18,900.0     | 90.00             | 179.38               | 11,702.0      | -6,962.5            | 2,391.4             | 32° 3' 37.578 N | 103° 17' 17.392 W |
| 19,000.0     | 90.00             | 179.38               | 11,702.0      | -7,062.5            | 2,392.5             | 32° 3' 36.589 N | 103° 17' 17.391 W |
| 19,100.0     | 90.00             | 179.38               | 11,702.0      | -7,162.5            | 2,393.6             | 32° 3' 35.599 N | 103° 17' 17.389 W |
| 19,200.0     | 90.00             | 179.38               | 11,702.0      | -7,262.5            | 2,394.7             | 32° 3' 34.610 N | 103° 17' 17.388 W |
| 19,300.0     | 90.00             | 179.38               | 11,702.0      | -7,362.5            | 2,395.8             | 32° 3' 33.620 N | 103° 17' 17.386 W |
| 19,400.0     | 90.00             | 179.38               | 11,702.0      | -7,462.4            | 2,396.9             | 32° 3' 32.631 N | 103° 17' 17.385 W |
| 19,500.0     | 90.00             | 179.38               | 11,702.0      | -7,562.4            | 2,397.9             | 32° 3' 31.641 N | 103° 17' 17.383 W |
| 19,600.0     | 90.00             | 179.38               | 11,702.0      | -7,662.4            | 2,399.0             | 32° 3' 30.652 N | 103° 17' 17.382 W |
| 19,700.0     | 90.00             | 179.38               | 11,702.0      | -7,762.4            | 2,400.1             | 32° 3' 29.662 N | 103° 17' 17.381 W |
| 19,800.0     | 90.00             | 179.38               | 11,702.0      | -7,862.4            | 2,401.2             | 32° 3' 28.673 N | 103° 17' 17.379 W |
| 19,900.0     | 90.00             | 179.38               | 11,702.0      | -7,962.4            | 2,402.3             | 32° 3' 27.683 N | 103° 17' 17.378 W |
| 20,000.0     | 90.00             | 179.38               | 11,702.0      | -8,062.4            | 2,403.4             | 32° 3' 26.694 N | 103° 17' 17.376 W |
| 20,100.0     | 90.00             | 179.38               | 11,702.0      | -8,162.4            | 2,404.5             | 32° 3' 25.704 N | 103° 17' 17.375 W |
| 20,200.0     | 90.00             | 179.38               | 11,702.0      | -8,262.4            | 2,405.6             | 32° 3' 24.715 N | 103° 17' 17.373 W |
| 20,300.0     | 90.00             | 179.38               | 11,702.0      | -8,362.4            | 2,406.7             | 32° 3' 23.725 N | 103° 17' 17.372 W |
| 20,400.0     | 90.00             | 179.38               | 11,702.0      | -8,462.4            | 2,407.8             | 32° 3' 22.736 N | 103° 17' 17.371 W |
| 20,500.0     | 90.00             | 179.38               | 11,702.0      | -8,562.4            | 2,408.9             | 32° 3' 21,746 N | 103° 17' 17,369 W |
| 20,600.0     | 90.00             | 179.38               | 11,702.0      | -8,662.4            | 2,409.9             | 32° 3' 20.756 N | 103° 17' 17.368 W |
| 20,700.0     | 90.00             | 179.38               | 11,702.0      | -8,762.4            | 2,411.0             | 32° 3' 19.767 N | 103° 17' 17.366 W |
| 20,800.0     | 90.00             | 179.38               | 11,702.0      | -8,862.4            | 2,412.1             | 32° 3' 18.777 N | 103° 17' 17.365 W |
| 20,900.0     | 90.00             | 179.38               | 11,702.0      | -8,962.4            | 2,413.2             | 32° 3' 17.788 N | 103° 17' 17.364 W |
| 21,000.0     | <del>9</del> 0.00 | 179.38               | 11,702.0      | -9,062.4            | 2,414.3             | 32° 3' 16.798 N | 103° 17' 17.362 W |
| 21,100.0     | 90.00             | 179.38               | 11,702.0      | -9,162.3            | 2,415.4             | 32° 3' 15.809 N | 103° 17' 17.361 W |
| 21,200.0     | 90.00             | 179.38               | 11,702.0      | -9,262.3            | 2,416.5             | 32° 3' 14.819 N | 103° 17' 17.359 W |
| 21,300.0     | 90.00             | 179.38               | 11,702.0      | -9,362.3            | 2,417.6             | 32° 3' 13.830 N | 103° 17' 17.358 W |
| 21,400.0     | 90.00             | 179.38               | 11,702.0      | -9,462.3            | 2,418.7             | 32° 3' 12.840 N | 103° 17' 17.356 W |
| 21,500.0     | 90.00             | 179.38               | 11,702.0      | -9,562.3            | 2,419.8             | 32° 3' 11.851 N | 103° 17' 17.355 W |
| 21,600.0     | 90.00             | 179.38               | 11,702.0      | -9,662.3            | 2,420.9             | 32° 3' 10.861 N | 103° 17' 17.354 W |
| 21,700.0     | 90.00             | 179.38               | 11,702.0      | -9,762.3            | 2,421.9             | 32° 3' 9.872 N  | 103° 17' 17.352 W |
| 21,800.0     | 90.00             | 179.38               | 11,702.0      | -9,862.3            | 2,423.0             | 32° 3' 8.882 N  | 103° 17' 17.351 W |

2/21/2019 3:28:23PM



Lease Penetration Section Line Footages

| Company:  | Ameredev Operating, LLC. | Local Co-ordinate Reference: | Weli Holiy 114H   |
|-----------|--------------------------|------------------------------|-------------------|
| Project:  | RB/HOL                   | TVD Reference:               | KB @ 3030.0usft   |
| Site:     | RB/HOL #5S               | MD Reference:                | KB @ 3030.0usft   |
| Weil:     | Holly 114H               | North Reference:             | Grid              |
| Wellbore: | Wellbore #1              | Survey Calculation Method:   | Minimum Curvature |
| Design:   | Design #1                | Database:                    | EDM5000           |

Planned Survey

| MD<br>(usft)           | Inc<br>(°) | Azi (azimuth)<br>(°) | TVD<br>(usft) | +FSL/-FNL<br>(usft) | +FWL/-FEL<br>(usft) | Latitude       | Longitude         |
|------------------------|------------|----------------------|---------------|---------------------|---------------------|----------------|-------------------|
| 21,900.0               | 90.00      | 179.38               | 11,702.0      | -9,962.3            | 2,424.1             | 32° 3' 7.893 N | 103° 17' 17.349 W |
| 22,000.0               | 90.00      | 179.38               | 11,702.0      | -10,062.3           | 2,425.2             | 32° 3' 6.903 N | 103° 17' 17.348 W |
| 22,100.0               | 90.00      | 179.38               | 11,702.0      | -10,162.3           | 2,426.3             | 32° 3' 5.914 N | 103° 17' 17.346 W |
| 22,200.0               | 90.00      | 179.38               | 11,702.0      | -10,262.3           | 2,427.4             | 32° 3' 4.924 N | 103° 17' 17.345 W |
| 22,300.0               | 90.00      | 179.38               | 11,702.0      | -10,362.3           | 2,428.5             | 32° 3' 3.935 N | 103° 17' 17.344 W |
| 22,399.1               | 90.00      | 179.38               | 11,702.0      | -10,461.3           | 2,429.6             | 32° 3' 2.955 N | 103° 17' 17.342 W |
| Hol114 LTP<br>22,400.0 | 90.00      | 179.38               | 11,702.0      | -10,462.3           | 2,429.6             | 32° 3' 2.945 N | 103° 17' 17.342 W |
| 22,449.0               | 90.00      | 179.38               | 11,702.0      | -10,511.3           | 2,430.1             | 32° 3' 2.460 N | 103° 17' 17.341 W |
| Hol114 BHL             |            |                      |               |                     |                     |                |                   |

| Mea | Measured       | Vertical        | Local Coordinates |                 |                        |
|-----|----------------|-----------------|-------------------|-----------------|------------------------|
|     | lepth<br>usft) | Depth<br>(usft) | +N/-S<br>(usft)   | +E/-W<br>(usft) | Comment                |
| 1   | 15,897.0       | 11,702.0        | -3,729.9          | 78.6            | Hol114 into NMNM006727 |
| -   | 17,217.0       | 11,702.0        | -5.049.8          | 93.0            | Hol114 into NMNM137473 |

Checked By: \_\_\_\_\_ Date: \_\_\_\_\_



U.S. Department of the Interior BUREAU OF LAND MANAGEMENT



1.1

**APD ID:** 10400043719

**Operator Name: AMEREDEV OPERATING LLC** 

Well Name: HOLLY FED COM 26 36 05

Well Type: OIL WELL

Submission Date: 07/22/2019

Well Number: 114H Well Work Type: Drill

**Section 1 - General** 

Would you like to address long-term produced water disposal? NO

## Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

**PWD surface owner:** 

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

**Pit liner description:** 

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

I ask detection evetem attachment.

**PWD** disturbance (acres):

**Operator Name:** AMEREDEV OPERATING LLC **Well Name:** HOLLY FED COM 26 36 05

Well Number: 114H

Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment;

#### Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

**Produced Water Disposal (PWD) Location:** 

**PWD disturbance (acres):** 

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

**Precipitated solids disposal:** 

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

**Unlined pit Monitor attachment:** 

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

**TDS lab results:** 

Geologic and hydrologic evidence:

State authorization:

**Unlined Produced Water Pit Estimated percolation:** 

Unlined pit: do you have a reclamation bond for the pit?

## **Operator Name: AMEREDEV OPERATING LLC**

Well Name: HOLLY FED COM 26 36 05

Well Number: 114H

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

## Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

**PWD surface owner:** 

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

**Underground Injection Control (UIC) Permit?** 

**UIC Permit attachment:** 

#### Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

**PWD surface owner:** 

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

## **Section 6 - Other**

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

**PWD** surface owner:

#### PWD disturbance (acres):

Injection well name:

#### Injection well API number:

PWD disturbance (acres):

**PWD disturbance (acres):** 

**Operator Name: AMEREDEV OPERATING LLC** 

Well Name: HOLLY FED COM 26 36 05

Well Number: 114H

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

# AFMSS

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT** 

#### Submission Date: 07/22/2019

**Operator Name: AMEREDEV OPERATING LLC** Well Name: HOLLY FED COM 26 36 05

Well Number: 114H Well Work Type: Drill

02/26/2020

Bond Info Data Report

Sector Sector

Show Final Text

## **Bond Information**

Well Type: OIL WELL

APD ID: 10400043719

Federal/Indian APD: FED

BLM Bond number: NMB001478

**BIA Bond number:** 

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

**BLM reclamation bond number:** 

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

**Reclamation bond number:** 

**Reclamation bond amount:** 

**Reclamation bond rider amount:** 

Additional reclamation bond information attachment: