		BBS OC	,D			•
Form 3160-3 (June 2015)		UNR 1 0 LOL	-	OMB	APPROVED No. 1004-0137 January 31, 2018	
UNITED STATES DEPARTMENT OF THE I BUREAU OF LAND MAN APPLICATION FOR PERMIT TO D	NTERIOR	RECEIV	ED	5. Lease Script No NMNM127449	•	_
APPLICATION FOR PERMIT TO D	RILL OR	REENTER		6. If Indian. Allote	e or Tribe Name	-
Ia. Type of work: 🗹 DRILL 🛛 🗌 R	EENTER			7. If Unit or CA A	greeneni, Nome and No.	
Ib. Type of Well: 🔽 Oil Well 🔲 Gas Well 🔲 O	ther			8. Lease Name and		
Ie. Type of Completion: 🔲 Hydraulic Fracturing 🛛 🖌 Si	ingle Zone [Multiple Zone		BLACK MARLIN 2H	\sim \sim	
2. Name of Operator IMPETRO OPERATING LLC (37328)		· · · · · · · · · · · · · · · · · · ·		9. API-Well No.	46977	-
3a. Address 201 Main Street, Ste 700 Fort Worth TX 76102	3b. Phone N (817)585-9	lo. (include area cod D10	de)	In Field and Puol		7781 P
4. Location of Well (Report Incation clearly and in accordance)	nith any Sime	requirements. %	<u> </u>	11. See . T. R. M.	or Bik. and Survey or Are	-
At surface NENE / 120 FNL / 1290 FEL / LAT 32.1373 At proposed prod. zone SESE / 100 FSL / 330 FEL / LAT			57471	SEC 18/(T258/)	R36E / NMP	
14. Distance in miles and direction from nearest town or post offi 8.95 miles				12. County or Pari LEA	sh 13. State NM	
15. Distance from proposed ^o location to nearest property or lease line, fl.	16. No of ac 320	rcs in lease	17. Spuci	ng Unit dedicated to		_
(Also to nearest drig, unit line, if any) 18. Distance from proposed location*	19. Progose	I Denth	20 BLM	/BIA Bond No. in fil	<u> </u>	_
to nearest well, drilling, completed, 937 feet applied for, on this lease, ft.		22626 feet	1/	AB001593	-	
21. Elevations (Show whether DF. KDB. RT. GL. etc.) 3188 feet	22. Approxi 06/01/2019	mate date Work will	slart¢	23. Estimated dura 180 days	lion	_
	24. Atted	hments				_
the following, completed in accordance with the requirements of as applicable)	liQ studenO1	and Gas Onter No.	1, and the I	lydraulic Fracturing	rute per 43 CFR 3162.3-3	3
I. Well plut carified by a registered surveyor. 2. A Drilling Plan. 3. A Surface Use Plan (if the location is an National Forest System		Item 20 above). 5. Operator certific	cation.	-	an existing bond on file (se	
SUPO musi be filed with the appropriate Forest Service Office	·P	BLM.	pecinic into	mason anovor plans i	is may be requested by the	
25. Signature (Electronic Submission)		(Printed/Typed) Irummell / Ph: (21)	0)999-540	0	Dalc 04/15/2019	_
Title ((()))		<u></u>			· · · · · · · · · · · · · · · · · · ·	_
Npproved by <i>(Signature)</i> (Electronic Submission)		(Princed) Typed) Layton / Ph: (575)	234-5959		Date 12/13/2019	_
Tille Assistant Field Manager Lands & Minerals	Office CARL	SBAD				
Application approval does not wurdent or certify that the applican pplicant to conduct operations thereon. Conditions of approval if any are attached.	u bolds legal e	or equitable title to t	hose rights	in the subject lease v	which would entitle the	_
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, m of the United States any false, fictitious or fraudulent statements of	uake it a crime or representati	for any person kno ons as to any matter	wingly and within its	· · · · ·		y
REQUESTED GCP 0340/201 REC GCA 3/11/2020	•0			KE/IL	Love	-

APPROVED WITH APPProval Date: 12/13/2019

12-(Continued on page 2)

°(Instructions on page 2)

PECOS DISTRICT DRILLING OPERATIONS CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Impetro Operating LLC
LEASE NO.:	NMNM127449
WELL NAME & NO.:	Black Marlin Federal Com 2H
SURFACE HOLE FOOTAGE:	120' FNL & 1290' FEL
BOTTOM HOLE FOOTAGE	100' FSL & 330' FEL
LOCATION:	Section 18, T 25S, R 36E, NMPM
COUNTY:	Lea County, New Mexico

H2S	r Yes	@ No	
Potash	None	✓ Secretary	C R-111-P
Cave/Karst Potential	• Low	C Medium	f High
Variance	∩ None	• Flex Hose	Other
Wellhead	Conventional	C Multibowl	C Both
Other	☐4 String Area	Capitan Reef	WIPP
Other	Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	✓ Water Disposal	COM	└ Unit

A. HYDROGEN SULFIDE

1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8" surface casing shall be set at approximately 1350' (a minimum of 25' into the Rustler Anhydrite and above the salt) and cemented to surface.
 - a. If cement does not circulate to surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of 6 hours after pumping cement, ideally between 8-10 hours after.
 - b. WOC time for a primary cement job will be a minimum of <u>8 hours</u> or <u>500 psi</u> compressive strength, whichever is greater. This is to include the lead cement.
 - c. If cement falls back, remedial cementing will be done prior to drilling out the shoe.
 - d. WOC time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 psi compressive strength, whichever is greater.

Page 1 of 6

- 2. The 10-3/4" intermediate casing shall be set at approximately 5300' and cemented to surface.
 - a. If cement does not circulate to surface, see B.1.a, c & d.
 - b. This casing must be kept at least 1/3 full at all times in order to meet BLM collapse requirements.
- 3. The 7-5/8" intermediate casing shall be cemented with at least 200' tie-back into the previous casing. Operator shall provide method of verification.
 - a. If cement does not circulate to surface, see B.1.a, c & d.
 - b. This casing must be kept at least 1/3 full at all times in order to meet BLM collapse requirements.
- 4. The 5-1/2" production casing shall be cemented with at least 500' tie-back into the previous casing. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
- Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the first intermediate casing shoe shall be 10,000 (10M) psi. Variance approved to use a 5M annular. The annular must be tested to full working pressure (5000 psi).

D. SPECIAL REQUIREMENTS

- Submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
 - a. The well sign on location shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also</u> be on the sign.

DR 12/05/2019

Page 2 of 6

GENERAL REQUIREMENTS

- 1. The BLM is to be notified in advance for a representative to witness:
 - a. Spudding the well (minimum of 24 hours)
 - b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
 - c. BOP/BOPE tests (minimum of 4 hours)

Eddy County: Call the Carlsbad Field Office, (575) 361-2822

Lea County: Call the Hobbs Field Station, (575) 393-3612

- 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig:
 - i. Notify the BLM when moving in and removing the Spudder Rig.
 - ii. Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - iii. BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be available upon request. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.
- A. CASING
- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the

Page 3 of 6

following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least $\underline{24}$ <u>hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.

- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well-specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On the portion of well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:

Page 4 of 6

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in Onshore Order 2 III.A.2.i must be followed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the BOP/BOPE tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test which can be initiated immediately after bumping the plug (only applies to singlestage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be made available upon request.
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
 - f. BOP/BOPE must be tested within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth

Page 5 of 6

exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

1. Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

- 1. All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.
- 2. Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 6 of 6

Form 3160-8 (February 1987) (Submit in triplicate to appropriate BLM District Office)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

DESIGNATION OF OPERATOR

The undersigned is, on the records of the Bureau of Land Management, holder of lease

STATE OFFICE: Carlsbad SERIAL NO .: WAY OLALY

and hereby designates

NAME: Impete Openting, LLC ADDRESS: 300 E. Sontom Blad. Ster 1220, Son Antinio, TX 78258

as his operator and local agent, with full authority to act in his behalf in complying with the terms of the lease and regulations applicable thereto and on whom the authorized officer may serve written or oral instructions in securing compliance with the Operating Regulations (43 CFR 3160) with respect to (describe acreage to which this designation is applicable):

It is understood that this designation of operator does not relieve the lessee of responsibility for compliance with the terms of the lease and the Operating Regulations. It is also understood that this designation of operator does not constitute an assignment of any interest in the lease.

In case of default on the part of the designated operator, the lessee will make full and prompt compliance with all regulations, lease terms, stipulations, or orders of the Secretary of the Interior or his representative.

The lessee agrees promptly to notify the authorized officer of any change in the designated operator.

40

(Signature of lessee)

1/28 /20

1800 Borng Onice, Suite 560 Houston, TX 77057

This form does not constitute an information collection as defined by 44 U.S.C. 3502 and therefore does not require OMB approval.

	SURFACE	13-3/8"					
	WEIGHT:		54.5 #/ft	COLLAPSE RATING:	1,130	PSI	
	GRADE:		J-55	BURST RATING:	2,730	PSI	
	CONNECTION:		BTC	JOINT STRENGTH:	909,000	LBS	
	SHOE MD		1,300 ' MD	MW @ SURFACE TD	9.3	ppg	
	SHOE TVD		1,300 ' TVD	FG @ SURFACE SHOE:		PPG EMW	1
	BACK-UP GRADIENT		8.5 PPG EMW		0.1000		
	TVD NEXT HOLE SECT	ION	5100 'TVD	MWT FOR NEXT HOLE SECT	10.0000		
	MASP CONSIDERATION			OPEN HOLE MAX PORE PSI	8.5000		
	LESS THAN 10,000	<u>30 30 30 30 30 30 30 30 30 30 30 30 30 3</u>	0.10	MUD % FOR MASP CALC	0.3000		
	BETWEEN 10,000' - 12,00		0.15	GAS CUT MUD EQ DENSITY		/0 PSI/FT	
	MORE THAN 12,000'	50	0.15	GAS COT MOD EQ DENSIT	0.220	F31/F1	
	COLLAPSE SAFTEY F	ACTOR		,	=	2.3	
	COLLAI SE SAFTET 17	ACTOR				2.3	·
NSION	SAFETY FACTOR = CASING						
	SAFETY FACTOR = CASING	JOINT STRENGT	H / (CASING WEIG	HT * MD @TD)			
	SAFETY FACTOR = CASINO		H / (CASING WEIG	HT * MD @TD)		- 40	
ENSION	BURST SAFTEY FACTO	OR			=	4.0	<u></u> .
JRST S	BURST SAFTEY FACTO AFETY FACTOR = CASING E AFETY FACTOR = CASING E	OR BURST RATING / BURST / (((FRAC)	MAXIMUM ANTICIP GRAD +0.5) * 0.052 *	ATED SURFACE PRESSURE TVD @ SHOE) - (GAS GRADIENT* TVD @			PSI
INSION	BURST SAFTEY FACTO AFETY FACTOR = CASING E AFETY FACTOR = CASING E MAXIMUM ANTICIPATE	OR BURST RATING / BURST / (((FRAC) D SURFACE PRE	MAXIMUM ANTICIP GRAD +0.5) * 0.052 * SSURE (LESSER OF	ATED SURFACE PRESSURE TVD @ SHOE) - (GAS GRADIENT® TVD @ SHOE FRAC, OR GAS CUT MUD)		4.0	PSI
JRST SJ JRST SJ JRST SJ	BURST SAFTEY FACTO AFETY FACTOR = CASING E AFETY FACTOR = CASING E MAXIMUM ANTICIPATE IUM ANTICIPATED SURFA	OR BURST RATING / BURST / (((FRAC) D SURFACE PRE ACE PRESSURE	MAXIMUM ANTICIP GRAD +0.5) * 0.052 * SSURE (LESSER OF (SHOE FRACTUR	ATED SURFACE PRESSURE TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE FRAC, OR GAS CUT MUD) RE WITH GAS TO SURFACE)			_PSI PSI
JRST SJ JRST SJ JRST SJ AXIM ASP =	BURST SAFTEY FACTOR AFETY FACTOR = CASING E AFETY FACTOR = CASING E MAXIMUM ANTICIPATE IUM ANTICIPATED SURFA ((FRAC GRAD +0.5) * 0.052 * T	OR BURST RATING / BURST / (((FRAC (D SURFACE PRE ACE PRESSURE VD @ SHOE) - (G	MAXIMUM ANTICIP GRAD +0.5) * 0.052 * SSURE (LESSER OF (SHOE FRACTUR AS GRAD * TVD @ S	ATED SURFACE PRESSURE TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE FRAC, OR GAS CUT MUD) RE WITH GAS TO SURFACE) HOE)	9 SHOE))	681 681	PSI
TRST S TRST S TRST S AXIM ASP = ASP =	BURST SAFTEY FACTOR AFETY FACTOR = CASING E AFETY FACTOR = CASING E MAXIMUM ANTICIPATE IUM ANTICIPATED SURFA ((FRAC GRAD +0.5) * 0.052 * T	OR BURST RATING / BURST / (((FRAC (D SURFACE PRE ACE PRESSURE VD @ SHOE) - (G ESSURE (GAS (MAXIMUM ANTICIP GRAD +0.5) * 0.052 * SSURE (LESSER OF (SHOE FRACTUR AS GRAD * TVD @ S CUT MUD TO BAL	ATED SURFACE PRESSURE TVD @ SHOE) - (GAS GRADENT* TVD @ SHOE FRAC, OR GAS CUT MUD) RE WITH GAS TO SURFACE) HOE) ANCE MAX OPEN HOLE PORE PSI)	9 SHOE))	681	
JRST SJ JRST SJ JRST SJ AXIM ASP = ASP =	BURST SAFTEY FACTOR AFETY FACTOR = CASING E AFETY FACTOR = CASING E MAXIMUM ANTICIPATE IUM ANTICIPATED SURFA ((FRAC GRAD +0.5) * 0.052 * T MAXIMUM SURFACE PR	OR BURST RATING / BURST / (((FRAC (D SURFACE PRE ACE PRESSURE VD @ SHOE) - (G ESSURE (GAS (TD TVD * EQUI	MAXIMUM ANTICIP GRAD +0.5) * 0.052 * SSURE (LESSER OF (SHOE FRACTUR AS GRAD * TVD @ S CUT MUD TO BAL	ATED SURFACE PRESSURE TVD @ SHOE) - (GAS GRADENT* TVD @ SHOE FRAC, OR GAS CUT MUD) RE WITH GAS TO SURFACE) HOE) ANCE MAX OPEN HOLE PORE PSI)	9 SHOE))	681 681	PSI
ASP = ASP =	BURST SAFTEY FACTOR AFETY FACTOR = CASING E AFETY FACTOR = CASING E MAXIMUM ANTICIPATE IUM ANTICIPATED SURFA ((FRAC GRAD +0.5) * 0.052 * T MAXIMUM SURFACE PR (TD PP * 0.052* TD TVD) - (OR BURST RATING / BURST / (((FRAC (D SURFACE PRE ACE PRESSURE VD @ SHOE) - (G ESSURE (GAS (TD TVD * EQUI ESSURE	MAXIMUM ANTICIP GRAD +0.5) * 0.052 * SSURE (LESSER OF (SHOE FRACTUR AS GRAD * TVD @ S CUT MUD TO BAL V GAS MUD PSI/FT	ATED SURFACE PRESSURE TVD @ SHOE) - (GAS GRADENT* TVD @ SHOE FRAC, OR GAS CUT MUD) RE WITH GAS TO SURFACE) HOE) ANCE MAX OPEN HOLE PORE PSI)	€ SHOE))	681 681 1102	PSI PSI
ASP = ASP =	BURST SAFTEY FACTOR AFETY FACTOR = CASING E AFETY FACTOR = CASING E MAXIMUM ANTICIPATE IUM ANTICIPATED SURFA ((FRAC GRAD +0.5) * 0.052 * T MAXIMUM SURFACE PR (TD PP * 0.052* TD TVD) - (WELL HEAD TEST PR EAD TEST PRESSURE = 50% O	OR BURST RATING / BURST / (((FRAC (D SURFACE PRE ACE PRESSURE VD @ SHOE) - (G ESSURE (GAS (TD TVD * EQUI ESSURE F CASING COLLA	MAXIMUM ANTICIP GRAD +0.5) * 0.052 * SSURE (LESSER OF (SHOE FRACTUR AS GRAD * TVD @ S CUT MUD TO BAL V GAS MUD PSI/FT PSE RATING	ATED SURFACE PRESSURE TVD @ SHOE) - (GAS GRADENT* TVD @ SHOE FRAC, OR GAS CUT MUD) RE WITH GAS TO SURFACE) HOE) ANCE MAX OPEN HOLE PORE PSI)	€ SHOE))	681 681 1102	PSI PSI
NSION RST S RST S AXIM ASP = ASP = ELL HE	BURST SAFTEY FACTOR AFETY FACTOR = CASING E AFETY FACTOR = CASING E MAXIMUM ANTICIPATE IUM ANTICIPATED SURFA ((FRAC GRAD +0.5) * 0.052 * T MAXIMUM SURFACE PR (TD PP * 0.052* TD TVD) - (WELL HEAD TEST PR EAD TEST PRESSURE = 50% O	OR BURST RATING / BURST / (((FRAC (D SURFACE PRE ACE PRESSURE VD @ SHOE) - (G ESSURE (GAS (TD TVD * EQUI ESSURE F CASING COLLA RE (70% OF CA	MAXIMUM ANTICIP GRAD +0.5) * 0.052 * SSURE (LESSER OF (SHOE FRACTUR AS GRAD * TVD @ S CUT MUD TO BAL V GAS MUD PSI/FT PSE RATING	ATED SURFACE PRESSURE TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE FRAC, OR GAS CUT MUD) RE WITH GAS TO SURFACE) HOE) ANCE MAX OPEN HOLE PORE PSI) ") MASP + 500 PSI - LESSER OF)	€ SHOE))	681 681 1102 565	PSI PSI PSI
ASP = ASP = ELL HE	BURST SAFTEY FACTOR AFETY FACTOR = CASING E AFETY FACTOR = CASING E MAXIMUM ANTICIPATE IUM ANTICIPATED SURFA ((FRAC GRAD +0.5) * 0.052 * T MAXIMUM SURFACE PR (TD PP * 0.052* TD TVD) - (WELL HEAD TEST PRI EAD TEST PRESSURE = 50% O CASING TEST PRESSU	OR BURST RATING / BURST / (((FRAC (D SURFACE PRE ACE PRESSURE VD @ SHOE) - (G ESSURE (GAS (TD TVD * EQUI ESSURE F CASING COLLA RE (70% OF CA	MAXIMUM ANTICIP GRAD +0.5) * 0.052 * SSURE (LESSER OF (SHOE FRACTUR AS GRAD * TVD @ S CUT MUD TO BAL V GAS MUD PSI/FT PSE RATING	ATED SURFACE PRESSURE TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE FRAC, OR GAS CUT MUD) RE WITH GAS TO SURFACE) HOE) ANCE MAX OPEN HOLE PORE PSI) ") MASP + 500 PSI - LESSER OF)	ĝ SHOE)) 	681 681 1102 565 1857	PSI PSI PSI
JRST SJ JRST SJ AXIM ASP = ASP = ELL HE	BURST SAFTEY FACTOR AFETY FACTOR = CASING E AFETY FACTOR = CASING E MAXIMUM ANTICIPATE IUM ANTICIPATED SURFA ((FRAC GRAD +0.5) * 0.052 * T MAXIMUM SURFACE PR (TD PP * 0.052* TD TVD) - (WELL HEAD TEST PRESSURE = 50% O CASING TEST PRESSURE = 50% O CASING BURST = (0.7* BUR	OR BURST RATING / BURST / (((FRAC (D SURFACE PRE ACE PRESSURE VD @ SHOE) - (G ESSURE (GAS (TD TVD * EQUI ESSURE F CASING COLLA RE (70% OF CA IST RATING) - ((MAXIMUM ANTICIP GRAD +0.5) * 0.052 * SSURE (LESSER OF (SHOE FRACTUR AS GRAD * TVD @ S CUT MUD TO BAL V GAS MUD PSI/FT PSE RATING	ATED SURFACE PRESSURE TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE FRAC, OR GAS CUT MUD) RE WITH GAS TO SURFACE) HOE) ANCE MAX OPEN HOLE PORE PSI) ") MASP + 500 PSI - LESSER OF)	9 SHOE)) = = 1857	681 681 1102 565 1857	PSI PSI PSI PSI TEST M
ASP = ASP = ELL HE	BURST SAFTEY FACTOR AFETY FACTOR = CASING E AFETY FACTOR = CASING E MAXIMUM ANTICIPATE UM ANTICIPATED SURFA ((FRAC GRAD +0.5) * 0.052 * T MAXIMUM SURFACE PR (TD PP * 0.052 * TD TVD) - (WELL HEAD TEST PRI EAD TEST PRESSURE = 50% O CASING TEST PRESSU CASING BURST = (0.7* BUR 500 PSI CASING SLIP WEIGHT	OR BURST RATING / BURST / (((FRAC (D SURFACE PRE ACE PRESSURE VD @ SHOE) - (G ESSURE (GAS (TD TVD * EQUI ESSURE F CASING COLLA RE (70% OF CA CST RATING) - ((MAXIMUM ANTICIP GRAD +0.5) * 0.052 * SSURE (LESSER OF (SHOE FRACTUR AS GRAD * TVD @ S CUT MUD TO BAL V GAS MUD PSI/FT PSE RATING	ATED SURFACE PRESSURE TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE FRAC, OR GAS CUT MUD) RE WITH GAS TO SURFACE) HOE) ANCE MAX OPEN HOLE PORE PSI)) () MASP + 500 PSI - LESSER OF) CUP) * .052*SHOE TVD))	9 SHOE)) = 1857 1181	681 681 1102 565 1857 9.3	PSI PSI PSI PSI TEST M
URST SJ URST SJ URST SJ URST SJ URST SJ IASP = IASP = IASP = IASP = IASP = IASP = IASP = IASP = IASP = IASP = IASP = IASP	BURST SAFTEY FACTOR AFETY FACTOR = CASING E AFETY FACTOR = CASING E MAXIMUM ANTICIPATE UM ANTICIPATED SURFA ((FRAC GRAD +0.5) * 0.052 * T MAXIMUM SURFACE PR (TD PP * 0.052* TD TVD) - (WELL HEAD TEST PRESSURE EAD TEST PRESSURE = 50% O CASING TEST PRESSURE = 50% O CASING BURST = (0.7* BUR 500 PSI CASING SLIP WEIGHT WEIGHT IN AIR = CASING WT	OR BURST RATING / BURST / (((FRAC (D SURFACE PRE ACE PRESSURE VD @ SHOE) - (G ESSURE (GAS (TD TVD * EQUI ESSURE F CASING COLLA RE (70% OF CA ST RATING) - ((MAXIMUM ANTICIP GRAD +0.5) * 0.052 * SSURE (LESSER OF (SHOE FRACTUR AS GRAD * TVD @ S CUT MUD TO BAL V GAS MUD PSI/FT PSE RATING SING BURST OR (TEST MWT - BAC)	ATED SURFACE PRESSURE TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE FRAC, OR GAS CUT MUD) RE WITH GAS TO SURFACE) HOE) ANCE MAX OPEN HOLE PORE PSI)) MASP + 500 PSI - LESSER OF) CUP) * .052*SHOE TVD)) 70,850 LBS	9 SHOE)) = 1857 1181	681 681 1102 565 1857 9.3	PSI PSI PSI
URST SJ JRST SJ JRST SJ ASP = ASP = ELL HE B% OF 0 ASP +	BURST SAFTEY FACTOR AFETY FACTOR = CASING E AFETY FACTOR = CASING E MAXIMUM ANTICIPATE UM ANTICIPATED SURFA ((FRAC GRAD +0.5) * 0.052 * T MAXIMUM SURFACE PR (TD PP * 0.052 * TD TVD) - (WELL HEAD TEST PRI EAD TEST PRESSURE = 50% O CASING TEST PRESSU CASING BURST = (0.7* BUR 500 PSI CASING SLIP WEIGHT	OR BURST RATING / BURST / (((FRAC (D SURFACE PRE ACE PRESSURE VD @ SHOE) - (G ESSURE (GAS (TD TVD * EQUI ESSURE F CASING COLLA RE (70% OF CA (ST RATING) - ((MAXIMUM ANTICIP GRAD +0.5) * 0.052 * SSURE (LESSER OF (SHOE FRACTUR AS GRAD * TVD @ S CUT MUD TO BAL V GAS MUD PSI/FT PSE RATING SING BURST OR (TEST MWT - BACK	ATED SURFACE PRESSURE TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE FRAC, OR GAS CUT MUD) RE WITH GAS TO SURFACE) HOE) ANCE MAX OPEN HOLE PORE PSI)) () MASP + 500 PSI - LESSER OF) CUP) * .052*SHOE TVD))	9 SHOE)) = 1857 1181	681 681 1102 565 1857 9.3	PSI PSI PSI PSI TEST M

WEIGHT	54.5 #/ft	COLLAPSE RATING	1.130 PSI
GRADE:	J-55	BURST RATING:	2,730 PSI
CONNECTION:	BTC	JOINT STRENGTH:	909,000 LBS
SHOE MD	2,050 ' MD	MW @ SURFACE TD	9.3 ppg
SHOE TVD	2,050 ' TVD	FG @ SURFACE SHOE:	11.5 PPG EMW
BACK-UP GRADIENT	8.5 PPG EMW	GAS GRADIENT:	0.1000 psi/ft
TVD NEXT HOLE SECTION	5300 'TVD	MWT FOR NEXT HOLE SECT	10.0000 ppg
MASP CONSIDERATION	MUD% GAS DENS	OPEN HOLE MAX PORE PSI	8.5000 ppg
LESS THAN 10,000"	30 0.10	MUD % FOR MASP CALC	0.3000 %
BETWEEN 10,000' - 12,000'	40 0.15	GAS CUT MUD EQ DENSITY	0.226 PSI/FT
MORE THAN 12,000	50 0.15	-	

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (HYDROSTATIC PRESS @ SHOE - GAS BACKUP) COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD • 0.052 * TVD - GAS GRAD • TVD @ TD)

TENSION SAFTEY FACTOR 8.1 Ξ TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) **BURST SAFTEY FACTOR** 2.5 È BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE BURST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE)) MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD) 1,074 PSI MAXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) PSI 1,074 MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) MASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE PORE PSI) 1145 PSI MASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT)

WELL HEAD TEST PRESSURE

WELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING

CASING TEST PRESSURE (70% OF CASING BURST O	R MASP + 500 PSI - LESSER OF)			1826	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BA	CKUP) * .052*SHOE TVD))	1826		9.3	TEST MW
MASP + 500 PSI		1574	_		_
CASING SLIP WEIGHT	· · · · · · · · · · · · · · · · · · ·		=	96,000	Pounds
STRING WEIGHT IN AIR = CASING WT * MD @ TD =	111,725 LBS				
BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) =	0.8580				
BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR =	95,862 LBS				

9/4/2019 Casing Design - Black Martin Fed Com 2H v4 9-4-2019

Ξ

1.4

565

PSI

Wolfcamp Casing Design TAPERED STRING (0'-4,100')

WEIGHT:	45.5 #/ft	COLLAPSE RATING:	2,090 PSI
GRADE:	J-55	BURST RATING:	3,580 PSI
CONNECTION:	BTC	JOINT STRENGTH:	796,000 LBS
SHOE MD	4,100 ' MD	MW @ INTERMEDIATE TD	10.5 ppg
SHOE TVD	4,100 ' TVD	FG @ INTERMEDIATE SHOE:	11.5 PPG EMW
BACK-UP GRADIENT	8.9 PPG EMW	GAS GRADIENT:	0.1000 psi/ft
TVD NEXT HOLE SECTION	12212 'TVD	MWT FOR NEXT HOLE SECT	9.7000 ppg
MASP CONSIDERATION MUI	D%GAS DENS	OPEN HOLE MAX PORE PSI	9.5000 ppg
LESS THAN 10,000' 30	0.10	MUD % FOR MASP CALC	0.3000 %
BETWEEN 10,000' - 12,000' 40	0.15	GAS CUT MUD EQ DENSITY	0.22132 PSI/FT
MORE THAN 12,000' 50	0.15	-	

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (HYDROSTATIC PRESS @ SHOE - GAS BACKUP) COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - GAS GRAD * TVD @ TD)

TENSION SAFTEY FACTOR 4.3 TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) BURST SAFTEY FACTOR 1.7 BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE BURST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE)) MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD) 2,148 PSI MAXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) 2,148 PSI MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) MASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE PORE PSI) 3,330 PSI MASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT) WELL HEAD TEST PRESSURE PSI 1,045 = WELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING CASING TEST PRESSURE (70% OF CASING BURST OR MASP + 500 PSI - LESSER OF) 2648 PSI 70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BACKUP) * .052*SHOE TVD)) 2165 10.5 TEST MWT

MASP + 500 PSI				
CASING SLIP WEIGHT	· · · · · ·		= 157,000	LBS
STRING WEIGHT IN AIR = CASING WT * MD @ TD = BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) =	186,550 LBS 0.8397			
BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR =	156,645 LBS			

1.1

_

TAPERED STRING (4,100'-5,300')

WEIGHT:	45.5 #/ft	COLLAPSE RATING:	3,130 PSI
GRADE:	HCK-55	BURST RATING:	3,580 PSI
CONNECTION:	BTC	JOINT STRENGTH:	1,037,000 LBS
SHOE MD	5,300 ' MD	MW @ INTERMEDIATE TD	10.5 ppg
SHOE TVD	5,300 ' TVD	FG @ INTERMEDIATE SHOE:	11.5 PPG EMW
BACK-UP GRADIENT	8.9 PPG EMW	GAS GRADIENT:	0.1000 psi/ft
TVD NEXT HOLE SECTION	12212 'TVD	MWT FOR NEXT HOLE SECT	9.7000 ppg
MASP CONSIDERATION N	<u>IUD%</u> GAS DENS	OPEN HOLE MAX PORE PSI	9.5000 ppg
LESS THAN 10,000	30 0.10	MUD % FOR MASP CALC	0.3000 %
BETWEEN 10,000' - 12,000'	40 0.15	GAS CUT MUD EQ DENSITY	0.22132 PSI/FT
MORE THAN 12,000	50 0.15		

COLLAPSE SAFTEY FACTOR

TENSION SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (HYDROSTATIC PRESS @ SHOE - GAS BACKUP) COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - GAS GRAD * TVD @ TD)

TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT • MD @TD)

BURST SAFTEY FACTOR

BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE BURST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE))

MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD)		2,777	PSI
MAXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE)		2,777	PSI
MASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE PORE PSI) MASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT)		3,330	PSI
WELL HEAD TEST PRESSURE	=	1,565	PSI

WELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING

CASING TEST PRESSURE (70% OF CASING BURS	ST OR MASP + 500 PSI - LESSER OF)	• • •		3277	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT MASP + 500 PSI	- BACKUP) * .052*SHOE TVD))	2065 3277	L	10.5	TEST MWT
		3277			
CASING SLIP WEIGHT			=	202,000	LBS
STRING WEIGHT IN AIR = CASING WT • MD @ TD =	241,150 LBS				

0.8397

202,492 LBS

STRING WEIGHT IN AIR = CASING WT • MD @ TD = BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) = BOUYED WEIGHT = STRING WEIGHT • BOUYANCY FACTOR =

9/4/2019 Casing Design - Black Marlin Fed Com 2H v4 9-4-2019

1.3

4.3

1.3

=

=

=

TAPERED STRING (0'-11,800')

WEIGHT:	29.7 #/ft	COLLAPSE RATING:	4,790 PSI
GRADE:	N-80	BURST RATING:	6,890 PSI
CONNECTION:	LTC	JOINT STRENGTH:	575,000 LBS
SHOE MD	11,800 ' MD	MW @ INTERMEDIATE TD	9.7 ppg
SHOE TVD	11,800 ' TVD	FG @ INTERMEDIATE SHOE	17.3 PPG EMW
BACK-UP GRADIENT	9.5 PPG EMW	GAS GRADIENT:	0.1500 psi/ft
TVD NEXT HOLE SECTION	12350 'TVD	MWT FOR NEXT HOLE SECT	13.0000 ppg
MASP CONSIDERATION	MUD%GAS DENS	OPEN HOLE MAX PORE PSI	13.0000 ppg
LESS THAN 10,000'	30 0.10	MUD % FOR MASP CALC	0.4000 %
BETWEEN 10,000 - 12,000	40 0.15	GAS CUT MUD EQ DENSITY	0.3604 PSI/FT
MORE THAN 12,000	50 0.15	•	

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (HYDROSTATIC PRESS @ SHOE - GAS BACKUP) COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - GAS GRAD * TVD @ TD)

TENSION SAFTEY FACTOR 1.6 = TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) BURST SAFTEY FACTOR 1.8 = BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE BURST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE)) MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD) 3,898 PSI MAXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) PSI 9,152 MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) MASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE PORE PSI) 3,898 PSI MASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT) WELL HEAD TEST PRESSURE 2,395 PSI =

WELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING

CASING TEST PRESSURE (70% OF CASING BURST OF	R MASP + 500 PSI - LESSER OF)		4398	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BA	CKUP) * .052*SHOE TVD))	4700	9.7	TEST MW
MASP + 500 PSI		4398		
CASING SLIP WEIGHT	· · · · · · · · · · · · · · · · · · ·		= 299,000	LBS
STRING WEIGHT IN AIR = CASING WT • MD @ TD =	350,460 LBS			
BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) =	0.8519			
BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR =	298,560 LBS			

BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR =

=

Wolfcamp Casing Design TAPERED STRING (11,800'-12212' TVD/12300' MD)

	SECOND INTERMEDIATE 7	-3/0		
	WEIGHT:	29.7 #/ft	COLLAPSE RATING:	5,340 PSI
	GRADE:	P-110	BURST RATING:	9,470 PSI
	CONNECTION:	LTC	JOINT STRENGTH:	769,000 LBS
	SHOE MD	' MD	MW @ INTERMEDIATE TD	9.7 ppg
	SHOE TVD	' TVD	FG @ INTERMEDIATE SHOE:	17.3 PPG EMW
	BACK-UP GRADIENT	9.5 PPG EMW	GAS GRADIENT:	0.1500 psi/ft
	TVD NEXT HOLE SECTION	12350 'TVD	MWT FOR NEXT HOLE SECT	13.0000 ppg
		MUD% GAS DENS	OPEN HOLE MAX PORE PSI	13.0000 ppg
	LESS THAN 10,000'	30 0.10	MUD % FOR MASP CALC	0.5000 %
	BETWEEN 10,000' - 12,000'	40 0.15	GAS CUT MUD EQ DENSITY	0.413 PSI/FT
	MORE THAN 12,000'	50 0.15		
	COLLAPSE SAFTEY FACTOR			= 1.2
OLLAPSI	E SAFETY FACTOR = COLLAPSE RA	TING / (HYDROSTATIC PRESS)	a SHOE - GAS BACKUP)	
OLLAPSI	E SAFETY FACTOR = COLLAPSE RA	TING / (MW@TD • 0.052 • TVD	- GAS GRAD * TVD @ TD)	
	TENSION SAFTEY FACTOR	· · · · · · · · · · · · · · · · · · ·		= 2.1
	SAFETY FACTOR = CASING JOINT S SAFETY FACTOR = CASING JOINT S			
				= 1.0
	SAFETY FACTOR = CASING JOINT S	TRENGTH / (CASING WEIGHT		= 1.0
ENSION	SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR JFETY FACTOR = CASING BURST R/	TRENGTH / (CASING WEIGHT	• MD @TD)	
ENSION	SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR JFETY FACTOR = CASING BURST R/	TRENGTH / (CASING WEIGHT	• MD @TD)	
ENSION	SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR JFETY FACTOR = CASING BURST R/	TRENGTH / (CASING WEIGHT ATING / MAXIMUM ANTICIPATE (((FRAC GRAD +0.5) * 0.052 * TVE	• MD @TD) D SURFACE PRESSURE • @ SHOE) - (GAS GRADIENT* TVD @ SH	
URST SA	SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR FETY FACTOR = CASING BURST R/ FETY FACTOR = CASING BURST / MAXIMUM ANTICIPATED SURFA	STRENGTH / (CASING WEIGHT ATING / MAXIMUM ANTICIPATE (((FRAC GRAD +0.5) * 0.052 * TVE ACE PRESSURE (LESSER OF SHO	• MD @TD) D SURFACE PRESSURE • @ SHOE) - (GAS GRADIENT* TVD @ SH DE FRAC, OR GAS CUT MUD)	OE)) 3,248 PSI
URST SA BURST SA BURST SA MAXIMI	SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR FETY FACTOR = CASING BURST R/ FETY FACTOR = CASING BURST /	TRENGTH / (CASING WEIGHT ATING / MAXIMUM ANTICIPATE (((FRAC GRAD +0.5) * 0.052 * TVE ACE PRESSURE (LESSER OF SHO ESSURE (SHOE FRACTURE V	• MD @TD) D SURFACE PRESSURE 9 @ SHOE) - (GAS GRADIENT* TVD @ SH DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE)	OE))
ENSION BURST SA BURST SA MAXIMU MASP = (SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR FETY FACTOR = CASING BURST R/ JETY FACTOR = CASING BURST / MAXIMUM ANTICIPATED SURFA JM ANTICIPATED SURFACE PRI (FRAC GRAD +0.5) * 0.052 * TVD @ SH	TRENGTH / (CASING WEIGHT ATING / MAXIMUM ANTICIPATE (((FRAC GRAD +0.5) * 0.052 * TVE ACE PRESSURE (LESSER OF SHO ESSURE (SHOE FRACTURE N IOE) - (GAS GRAD * TVD @ SHO	• MD @TD) D SURFACE PRESSURE 9 @ SHOE) - (GAS GRADIENT• TVD @ SH DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) 5)	OE)) 3,248 PSI 9,472 PSI
ENSION BURST SA BURST SA MAXIMU MASP = (MASP = 1	SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR FETY FACTOR = CASING BURST R/ FETY FACTOR = CASING BURST / MAXIMUM ANTICIPATED SURFACE PRI JM ANTICIPATED SURFACE PRI	TRENGTH / (CASING WEIGHT ATING / MAXIMUM ANTICIPATE (((FRAC GRAD +0.5) * 0.052 * TVE ACE PRESSURE (LESSER OF SHO ESSURE (SHOE FRACTURE N (OE) - (GAS GRAD * TVD @ SHO E (GAS CUT MUD TO BALANG	• MD @TD) D SURFACE PRESSURE 9 @ SHOE) - (GAS GRADIENT• TVD @ SH DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) 5)	OE)) 3,248 PSI
TENSION BURST SA BURST SA MAXIMU MASP = (MASP = 1	SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR FETY FACTOR = CASING BURST R/ FETY FACTOR = CASING BURST / MAXIMUM ANTICIPATED SURFACE PRI (FRAC GRAD +0.5) * 0.052 * TVD @ SH MAXIMUM SURFACE PRESSURE TD PP * 0.052* TD TVD) - (TD TVD	TRENGTH / (CASING WEIGHT ATING / MAXIMUM ANTICIPATE (((FRAC GRAD +0.5) * 0.052 * TVE CE PRESSURE (LESSER OF SHO ESSURE (SHOE FRACTURE N OE) - (GAS GRAD * TVD @ SHO C (GAS CUT MUD TO BALANG * EQUIV GAS MUD PSI/FT)	• MD @TD) D SURFACE PRESSURE 9 @ SHOE) - (GAS GRADIENT• TVD @ SH DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) 5)	OE)) 3,248 PSI 9,472 PSI 3,248 PSI
BURST SA BURST SA MAXIMU MASP = (MASP = (SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR FETY FACTOR = CASING BURST R/ FETY FACTOR = CASING BURST / MAXIMUM ANTICIPATED SURFACE PRI (FRAC GRAD +0.5) * 0.052 * TVD @ SH MAXIMUM SURFACE PRESSURE TD PP * 0.052* TD TVD) - (TD TVD WELL HEAD TEST PRESSURE	TRENGTH / (CASING WEIGHT ATING / MAXIMUM ANTICIPATE (((FRAC GRAD +0.5) * 0.052 * TVE ACE PRESSURE (LESSER OF SHO ESSURE (SHOE FRACTURE N (OE) - (GAS GRAD * TVD @ SHO E (GAS CUT MUD TO BALANG * EQUIV GAS MUD PSI/FT)	• MD @TD) D SURFACE PRESSURE 9 @ SHOE) - (GAS GRADIENT• TVD @ SH DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) 5)	OE)) 3,248 PSI 9,472 PSI
BURST SA BURST SA MAXIMU MASP = (MASP = (SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR FETY FACTOR = CASING BURST R/ FETY FACTOR = CASING BURST / MAXIMUM ANTICIPATED SURFACE PRI (FRAC GRAD +0.5) * 0.052 * TVD @ SH MAXIMUM SURFACE PRESSURE TD PP * 0.052* TD TVD) - (TD TVD	TRENGTH / (CASING WEIGHT ATING / MAXIMUM ANTICIPATE (((FRAC GRAD +0.5) * 0.052 * TVE ACE PRESSURE (LESSER OF SHO ESSURE (SHOE FRACTURE N (OE) - (GAS GRAD * TVD @ SHO E (GAS CUT MUD TO BALANG * EQUIV GAS MUD PSI/FT)	• MD @TD) D SURFACE PRESSURE 9 @ SHOE) - (GAS GRADIENT• TVD @ SH DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) 5)	OE)) 3,248 PSI 9,472 PSI 3,248 PSI
ENSION BURST SA BURST SA MAXIMU MASP = (MASP = (VELL HEA	SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR JFETY FACTOR = CASING BURST R/ JFETY FACTOR = CASING BURST / MAXIMUM ANTICIPATED SURFA JM ANTICIPATED SURFACE PRI (FRAC GRAD +0.5) * 0.052 * TVD @ SH MAXIMUM SURFACE PRESSURE TD PP * 0.052* TD TVD) - (TD TVD WELL HEAD TEST PRESSURE AD TEST PRESSURE = 50% OF CASING CASING TEST PRESSURE (709	STRENGTH / (CASING WEIGHT ATING / MAXIMUM ANTICIPATE (((FRAC GRAD +0.5) * 0.052 * TVE ACE PRESSURE (LESSER OF SHO ESSURE (SHOE FRACTURE N IOE) - (GAS GRAD * TVD @ SHO E (GAS CUT MUD TO BALANG * EQUIV GAS MUD PSI/FT) E G COLLAPSE RATING 6 OF CASING BURST OR MA	MD @TD) D SURFACE PRESSURE @ SHOE) - (GAS GRADIENT* TVD @ SH DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) E) CE MAX OPEN HOLE PORE PSI) SP + 500 PSI - LESSER OF)	OE)) 3,248 PSI 9,472 PSI 3,248 PSI
ENSION BURST SA BURST SA MAXIMU MASP = (MASP = (VELL HEA	SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR SFETY FACTOR = CASING BURST R/ FETY FACTOR = CASING BURST / MAXIMUM ANTICIPATED SURFA JM ANTICIPATED SURFACE PRI (FRAC GRAD +0.5) * 0.052 * TVD @ SH MAXIMUM SURFACE PRESSURE TD PP * 0.052* TD TVD) - (TD TVD WELL HEAD TEST PRESSURE AD TEST PRESSURE = 50% OF CASING CASING TEST PRESSURE (70% CASING BURST = (0.7* BURST RAT	STRENGTH / (CASING WEIGHT ATING / MAXIMUM ANTICIPATE (((FRAC GRAD +0.5) * 0.052 * TVE ACE PRESSURE (LESSER OF SHO ESSURE (SHOE FRACTURE N IOE) - (GAS GRAD * TVD @ SHO E (GAS CUT MUD TO BALANG * EQUIV GAS MUD PSI/FT) E G COLLAPSE RATING 6 OF CASING BURST OR MA	MD @TD) D SURFACE PRESSURE @ SHOE) - (GAS GRADIENT* TVD @ SH DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) E) CE MAX OPEN HOLE PORE PSI) SP + 500 PSI - LESSER OF)	OE)) 3,248 PSI 9,472 PSI 3,248 PSI = 2,670 PSI
URST SA URST SA URST SA AAXIMU (ASP = ((ASP =) (ASP = (VELL HE) 0% OF C	SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR SFETY FACTOR = CASING BURST R/ FETY FACTOR = CASING BURST / MAXIMUM ANTICIPATED SURFA JM ANTICIPATED SURFACE PRI (FRAC GRAD +0.5) * 0.052 * TVD @ SH MAXIMUM SURFACE PRESSURE TD PP * 0.052* TD TVD) - (TD TVD WELL HEAD TEST PRESSURE AD TEST PRESSURE = 50% OF CASING CASING TEST PRESSURE (70% CASING BURST = (0.7* BURST RAT	STRENGTH / (CASING WEIGHT ATING / MAXIMUM ANTICIPATE (((FRAC GRAD +0.5) * 0.052 * TVE ACE PRESSURE (LESSER OF SHO ESSURE (SHOE FRACTURE N IOE) - (GAS GRAD * TVD @ SHO E (GAS CUT MUD TO BALANG * EQUIV GAS MUD PSI/FT) E G COLLAPSE RATING 6 OF CASING BURST OR MA	MD @TD) D SURFACE PRESSURE @ SHOE) - (GAS GRADIENT* TVD @ SH DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) E) CE MAX OPEN HOLE PORE PSI) SP + 500 PSI - LESSER OF)	OE)) 3,248 PSI 9,472 PSI 3,248 PSI = 2,670 PSI 3748 PSI 6502 9.7 FEST M
URST SA URST SA URST SA AAXIMU IASP = (IASP = (VELL HEA WELL HEA O% OF C IASP + 5	SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR FETY FACTOR = CASING BURST R/ FETY FACTOR = CASING BURST R/ FETY FACTOR = CASING BURST / MAXIMUM ANTICIPATED SURFACE PRI (FRAC GRAD +0.5) * 0.052 * TVD @ SH MAXIMUM SURFACE PRESSURE TD PP * 0.052 * TD TVD) - (TD TVD WELL HEAD TEST PRESSURE AD TEST PRESSURE = 50% OF CASING CASING TEST PRESSURE (70% CASING BURST = (0.7* BURST RAT 500 PSI CASING SLIP WEIGHT	ATING / MAXIMUM ANTICIPATE (((FRAC GRAD +0.5) * 0.052 * TVE (((FRAC GRAD +0.5) * 0.052 * TVE ACE PRESSURE (LESSER OF SHO ESSURE (SHOE FRACTURE N (OE) - (GAS GRAD * TVD @ SHO C (GAS CUT MUD TO BALANG * EQUIV GAS MUD PSI/FT) G COLLAPSE RATING 6 OF CASING BURST OR MA TNG) - ((TEST MWT - BACKUP	MD @TD) D SURFACE PRESSURE @ SHOE) - (GAS GRADIENT* TVD @ SH DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) 5) CE MAX OPEN HOLE PORE PSI) SP + 500 PSI - LESSER OF)) * .052*SHOE TVD))	OE)) 3,248 PSI 9,472 PSI 3,248 PSI = 2,670 PSI 5502 9.7 TEST M 3748
URST SA URST SA URST SA AAXIMU IASP = (IASP = (VELL HE/ 0% OF C IASP + 5 TRING W	SAFETY FACTOR = CASING JOINT S BURST SAFTEY FACTOR AFETY FACTOR = CASING BURST R/ JETY FACTOR = CASING BURST / MAXIMUM ANTICIPATED SURFACE PRI JM ANTICIPATED SURFACE PRI (FRAC GRAD +0.5) * 0.052 * TVD @ SH MAXIMUM SURFACE PRESSURE TD PP * 0.052* TD TVD) - (TD TVD WELL HEAD TEST PRESSURE AD TEST PRESSURE = 50% OF CASING CASING TEST PRESSURE (70% CASING BURST = (0.7* BURST RAT 500 PSI	TRENGTH / (CASING WEIGHT ATING / MAXIMUM ANTICIPATE (((FRAC GRAD +0.5) * 0.052 * TVE ACE PRESSURE (LESSER OF SHO ESSURE (SHOE FRACTURE N OE) - (GAS GRAD * TVD @ SHO E (GAS CUT MUD TO BALAN * EQUIV GAS MUD PSI/FT) G COLLAPSE RATING 6 OF CASING BURST OR MA TNG) - ((TEST MWT - BACKUP TD =	MD @TD) D SURFACE PRESSURE @ SHOE) - (GAS GRADIENT* TVD @ SH DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) E) CE MAX OPEN HOLE PORE PSI) SP + 500 PSI - LESSER OF)	OE)) 3,248 PSI 9,472 PSI 3,248 PSI = 2,670 PSI 5502 9.7 TEST M 3748

Wolfcamp Casing Design TAPERED STRING (0'-11,800')

***STILL INSIDE SECOND INTERMEDIATE CASING @ RUNNING DEPTH**

WEIGHT:	23.0 #/ft	COLLAPSE RATING:	15,990 PSI
GRADE:	P-110	BURST RATING:	14,530 PSI
CONNECTION:	ULTRA QX	JOINT STRENGTH:	729,000 LBS
CSG TOP MD	0 ' MD		
CSG TOP TVD	0 'TVD	RESERVOIR PORE PRESSURE	12.3 PPG
SHOE MD	11,800 'MD	MW @ TD	13.0 PPG EMW
SHOE TVD	11,800 'TVD	FG @ TD	17.3 PPG EMW
BACK-UP GRADIENT	9.7 PPG EMW	GAS GRADIENT:	0.1500 psi/ft
PREVIOUS SHOE MD	12300	ABANDONMENT RESERVOIR PSI	1770.0000 PSI
PREVIOUS SHOE TVD	12212	COMPLETION FLUID DENSITY	8.3300 PPG
PREVIOUS SHOE FRAC	17.3		

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = ABANDONMENT RESERVOIR PRESSURE WITH MWT ON BACKSIDE COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - RESERVOIR ABANDON PSI)

 TENSION SAFTEY FACTOR
 =

 TENSION SAFETY FACTOR
 = CASING JOINT STRENGTH / CASING WEIGHT IN AIR

 TENSION SAFETY FACTOR
 = CASING JOINT STRENGTH / (CASING WEIGHT • MD @TD)

BURST SAFTEY FACTOR

BURST SAFETY FACTOR = BURST RATING / (MASP + (CMP FLUID PPG - BACKUP PPG) * 0.052 * TD TVD)

MAXIMUM ANTICIPATED SURFACE PRESSURE	· · · · · · · · · · · · · · · · · · ·			5,777	PŚI
MAXIMUM ANTICIPATED SURFACE PRESSURE (PERFORATED MASP = (TVD*.052*PORE PSI) - (GAS GRADIENT *TVD)	RESERVIOR WITH GAS TO SURFACE)			5,777	PSI
CASING TEST PRESSURE (70% OF CASING BURST, O	R MASP + 500 PSI, PREV LOT + 500)			6277	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BAC	(KŪP) * .052*SHOE TVD))	8146		13.0	TEST MWT
MASP + 500 PSI		6277	_		
PREVIOUS SHOE LOT + 500 PSI TO INSURE LAP ISOLATION		3231			
CASING SLIP WEIGHT			=	218,000	LBS
STRING WEIGHT IN AIR = CASING WT • MD @ TD =	271,400 LBS				
BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) =	0.8024				
BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR =	217,771 LBS				

9/4/2019 Casing Design - Black Martin Fed Com 2H v4 9-4-2019

2.6

2.7

2.9

=

=

Wolfcamp Casing Design TAPERED STRING (11800'-12350' TVD/22620' MD)

PRODUCTION CASING 5	5-1/2"		
WEIGHT:	23.0 #/ft	COLLAPSE RATING:	14,540 PSI
GRADE:	P-110	BURST RATING:	14,530 PSI
CONNECTION:	ULTRA FJ	JOINT STRENGTH:	724,000 LBS
CSG TOP MD	11800 ' MD		
CSG TOP TVD	11800 ' TVD	RESERVOIR PORE PRESSURE	12.3 PPG
SHOE MD	' MD	MW @ TD	13.0 PPG EMW
SHOE TVD	' TVD	FG @ TD	17.3 PPG EMW
BACK-UP GRADIENT	9.7 PPG EMW	GAS GRADIENT:	0.1500 psi/ft
PREVIOUS SHOE MD	12300	ABANDONMENT RESERVOIR PSI	1852.5000 PSI
PREVIOUS SHOE TVD	12212	COMPLETION FLUID DENSITY	8.3300 PPG
PREVIOUS SHOE FRAC	17.3		

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = ABANDONMENT RESERVOIR PRESSURE WITH MWT ON BACKSIDE COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - RESERVOIR ABANDON PSI)

TENSION SAFTEY FACTOR

TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT • MD @TD)

BURST SAFTEY FACTOR

BURST SAFETY FACTOR = BURST RATING / (MASP + (CMP FLUID PPG - BACKUP PPG) * 0.052 * TD TVD)

MAXIMUM ANTICIPATED SURFACE PRESSURE				6,047	PSI
MAXIMUM ANTICIPATED SURFACE PRESSURE (PERFORATED MASP = (TVD*.052*PORE PSI) - (GAS GRADIENT *TVD)	RESERVIOR WITH GAS TO SURFACE)			6,047	PSI
CASING TEST PRESSURE (70% OF CASING BURST, O	R MASP + 500 PSI, PREV LOT + 500)			6547	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BAC	KUP) * .052*SHOE TVD))	8052		13.0	TEST MWT
MASP + 500 PSI		6547	_		
PREVIOUS SHOE LOT + 500 PSI TO INSURE LAP ISOLATION		3231			
CASING SLIP WEIGHT			. =	200,000	LBS
STRING WEIGHT IN AIR = CASING WT * MD @ TD =	248,860 LBS				
BOUYANCY FACTOR = (PPG STEEL · MW) / PPG STEEL) =	0.8024				
BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR =	199,685 LBS				

÷

=

=

2.2

2.9

2,8

	vv oncum	ip Casing Design			
SURFACE	13-3/8"				
WEIGHT:	54.5 #/ft	COLLAPSE RATING:	1,130	PSI	
GRADE:	J-55	BURST RATING:	2,730		
CONNECTION:	BTC	JOINT STRENGTH:	909,000	LBS	
SHOE MD	2,050 ' MD	MW @ SURFACE TD	9.3	DDg	
SHOE TVD	2,050 ' TVD	FG @ SURFACE SHOE:		PPG EMW	
BACK-UP GRADIENT	8.5 PPG EMW	GAS GRADIENT:	0.1000	psi/ft	
TVD NEXT HOLE SECTIO	N 5300 'TVD	MWT FOR NEXT HOLE SECT	10.0000	nng	
MASP CONSIDERATION	MUD% GAS DENS	OPEN HOLE MAX PORE PSI	8.5000		
LESS THAN 10,000'	30 0.10	MUD % FOR MASP CALC	0.3000		
BETWEEN 10,000' - 12,000'	40 0.15	GAS CUT MUD EQ DENSITY	0.226	PSI/FT	
MORE THAN 12,000'	50 0.15	-			
COLLAPSE SAFTEY FAC	TOR		=	1.4	
COLLAISESAFIET FAC				1.7	
COLLAPSE SAFETY FACTOR = COLLAP COLLAPSE SAFETY FACTOR = COLLAP					
TENSION SAFTEY FACT	OR		=	8.1	
TENSION SAFETY FACTOR = CASING J	OINT STRENGTH / CASING WEIGH				
$\frac{1}{10000000000000000000000000000000000$					
BURST SAFTEY FACTOR	8	,		2.5	
BURST SAFETY FACTOR = CASING BUI BURST SAFETY FACTOR = CASING BUI		NTED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ S	SHOE))		
MAXIMUM ANTICIPATED	SURFACE PRESSURE (LESSER OF	SHOE FRAC, OR GAS CUT MUD)	· · · · · · ·	1,074	PSI
MAXIMUM ANTICIPATED SURFAC MASP = ((FRAC GRAD +0.5) * 0.052 * TVI				1,074	PSI
MASP = MAXIMUM SURFACE PRES MASP = (TD PP * 0.052* TD TVD) - (TI				1145	PSI
WELL HEAD TEST PRES	SURE			565	PSI
WELL HEAD TEST PRESSURE = 50% OF (CASING COLLAPSE RATING				
CASING TEST PRESSUR	E (70% OF CASING BURST OR M	1ASP + 500 PSI - LESSER OF)		1826	PSI
70% OF CASING BURST = (0.7* BURS MASP + 500 PSI			1826 1574	9.3	TEST MW1
CASING SLIP WEIGHT	· · · · · · · · · · · · · · · · · · ·	·····	=	96,000	Pounds
STRING WEIGHT IN AIR = CASING WT * BOUYANCY FACTOR = (PPG STEEL - MV BOUYED WEIGHT = STRING WEIGHT * E	V) / PPG STEEL) =	111,725 LBS 0.8580 95,862 LBS			

9/4/2019 Casing Design - Black Martin Fed Com 2H v4 9-4-2019

TAPERED STRING (0'-4,100')

WEIGHT:	45.5 #/ft	COLLAPSE RATING:	2,090 PSI
GRADE:	J-55	BURST RATING:	3,580 PSI
CONNECTION:	BTC	JOINT STRENGTH:	796,000 LBS
SHOE MD	4,100 ' MD	MW @ INTERMEDIATE TD	10.5 ppg
SHOE TVD	4,100 ' TVD	FG @ INTERMEDIATE SHOE:	11.5 PPG EMW
BACK-UP GRADIENT	8.9 PPG EMW	GAS GRADIENT:	0.1000 psi/ft
TVD NEXT HOLE SECTION	12212 'TVD	MWT FOR NEXT HOLE SECT	9.7000 ppg
MASP CONSIDERATION MUL	D%GAS DENS	OPEN HOLE MAX PORE PSI	9.5000 ppg
LESS THAN 10,000' 30	0.10	MUD % FOR MASP CALC	0.3000 %
BETWEEN 10,000' - 12,000' 40	0.15	GAS CUT MUD EQ DENSITY	0.22132 PSI/FT
MORE THAN 12,000' 50	0.15		

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (HYDROSTATIC PRESS @ SHOE - GAS BACKUP) COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - GAS GRAD * TVD @ TD)

 TENSION SAFTEY FACTOR
 = 4.3

 TENSION SAFETY FACTOR
 = CASING JOINT STRENGTH / CASING WEIGHT IN AIR

 TENSION SAFETY FACTOR
 = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD)

 BURST SAFTEY FACTOR
 = 1.7

 BURST SAFETY FACTOR
 = 1.7

BURST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADENT* TVD @ SHOE))

MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD)		2,148	PSI
MAXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE)		2,148	PSI
MASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE PORE PSI) MASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT)		3,330	PSI
WELL HEAD TEST PRESSURE	=	1,045	PSI

WELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING

CASING TEST PRESSURE (70% OF CASING BURST O	R MASP + 500 PSI - LESSER OF)		2648	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BA	CKUP) * .052*SHOE TVD))	2165	10.5	TEST MWT
MASP + 500 PSI		2648		
CASING SLIP WEIGHT			= 157,000	LBS
STRING WEIGHT IN AIR = CASING WT * MD @ TD =	186,550 LBS			
BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) =	0.8397			
BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR =	156,645 LBS			

=

Wolfcamp Casing Design TAPERED STRING (4,100'-5,300')

FIRST INTERMEDIATE	10-3/4"				
WEIGHT:	45.5 #/ft	COLLAPSE RATING	3,130	PSI	
GRADE:	HCK-55	BURST RATING:	3,580		
CONNECTION:	BTC	JOINT STRENGTH:	1,037,000	LBS	
SHOE MD	5,300 ' MD	MW @ INTERMEDIATE TD	10.5	ppg	
SHOE TVD	5,300 ' TVD	FG @ INTERMEDIATE SHOE:	11.5	PPG EMW	
BACK-UP GRADIENT	8.9 PPG EMW	GAS GRADIENT:	0.1000	psi/ft	
TVD NEXT HOLE SECTION	12212 'TVD	MWT FOR NEXT HOLE SECT	9.7000	ppg	
MASP CONSIDERATION	MUD% GAS DENS	OPEN HOLE MAX PORE PSI	9.5000	ppg	
LESS THAN 10,000'	30 0.10	MUD % FOR MASP CALC	0.3000	%	
BETWEEN 10,000' - 12,000'	40 0.15	GAS CUT MUD EQ DENSITY	0.22132	PSI/FT	
MORE THAN 12,000	50 0.15				
COLLAPSE SAFTEY FAC	ΓOR		=	1.3	
LLAPSE SAFETY FACTOR = COLLAPS LLAPSE SAFETY FACTOR = COLLAPS					
TENSION SAFTEY FACTO		·	=	4.3	
ENSION SAFETY FACTOR = CASING JC ENSION SAFETY FACTOR = CASING JC BURST SAFTEY FACTOR	INT STRENGTH / (CASING WEIGH			1.3	
NSION SAFETY FACTOR = CASING JO BURST SAFTEY FACTOR IRST SAFETY FACTOR = CASING BUR IRST SAFETY FACTOR = CASING BUR	DINT STRENGTH / (CASING WEIGH ST RATING / MAXIMUM ANTICIPA ST / (((FRAC GRAD +0.5) * 0.052 * TY	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @			
NSION SAFETY FACTOR = CASING JO BURST SAFTEY FACTOR IRST SAFETY FACTOR = CASING BUR IRST SAFETY FACTOR = CASING BUR	NNT STRENGTH / (CASING WEIGH	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @		2,777	PSI
NSION SAFETY FACTOR = CASING JO BURST SAFTEY FACTOR IRST SAFETY FACTOR = CASING BUR IRST SAFETY FACTOR = CASING BUR MAXIMUM ANTICIPATED S AXIMUM ANTICIPATED SURFACI	DINT STRENGTH / (CASING WEIGH ST RATING / MAXIMUM ANTICIPA ST / (((FRAC GRAD +0.5) * 0.052 * T URFACE PRESSURE (LESSER OF S E PRESSURE (SHOE FRACTURI	T • MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT• TVD @ HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE)			PSI
NSION SAFETY FACTOR = CASING JO BURST SAFTEY FACTOR JRST SAFETY FACTOR = CASING BUR JRST SAFETY FACTOR = CASING BUR MAXIMUM ANTICIPATED SURFACI ASP = ((FRAC GRAD +0.5) * 0.052 * TVD	DINT STRENGTH / (CASING WEIGH ST RATING / MAXIMUM ANTICIPA ST / (((FRAC GRAD +0.5) * 0.052 * T URFACE PRESSURE (LESSER OF S E PRESSURE (SHOE FRACTURI @ SHOE) - (GAS GRAD * TVD @ SH SURE (GAS CUT MUD TO BALA	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) OE) NCE MAX OPEN HOLE PORE PSI)		2,777	
NSION SAFETY FACTOR = CASING JO BURST SAFTEY FACTOR JRST SAFETY FACTOR = CASING BUR JRST SAFETY FACTOR = CASING BUR MAXIMUM ANTICIPATED SURFACE AXIMUM ANTICIPATED SURFACE ASP = ((FRAC GRAD +0.5) * 0.052 * TVD ASP = MAXIMUM SURFACE PRESI	DINT STRENGTH / (CASING WEIGH ST RATING / MAXIMUM ANTICIPA ST / (((FRAC GRAD +0.5) * 0.052 * T) URFACE PRESSURE (LESSER OF S E PRESSURE (SHOE FRACTURI @ SHOE) - (GAS GRAD * TVD @ SH SURE (GAS CUT MUD TO BALA TVD * EQUIV GAS MUD PSI/FT)	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) OE) NCE MAX OPEN HOLE PORE PSI)		2 ,777 2,777 3,330	PSI
NSION SAFETY FACTOR = CASING JO BURST SAFTEY FACTOR IRST SAFETY FACTOR = CASING BUR IRST SAFETY FACTOR = CASING BUR MAXIMUM ANTICIPATED SURFACE ASIMUM ANTICIPATED SURFACE ASP = ((FRAC GRAD +0.5) * 0.052 * TVD ASP = MAXIMUM SURFACE PRESS ASP = (TD PP * 0.052 * TD TVD) - (TD WELL HEAD TEST PRESS	DINT STRENGTH / (CASING WEIGH ST RATING / MAXIMUM ANTICIPA' ST / (((FRAC GRAD +0.5) * 0.052 * T URFACE PRESSURE (LESSER OF S E PRESSURE (SHOE FRACTURI @ SHOE) - (GAS GRAD * TVD @ SH SURE (GAS CUT MUD TO BALA TVD * EQUIV GAS MUD PSI/FT) SURE	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) OE) NCE MAX OPEN HOLE PORE PSI)	SHOE))	2,777 2,777 3,330	PSI PSI
NSION SAFETY FACTOR = CASING JO BURST SAFTEY FACTOR JRST SAFETY FACTOR = CASING BUR MAXIMUM ANTICIPATED SURFACT ASP = ((FRAC GRAD +0.5) * 0.052 * TVD ASP = ((FRAC GRAD +0.5) * 0.052 * TVD ASP = ((TD PP * 0.052* TD TVD) - (TD WELL HEAD TEST PRESSURE = 50% OF C CASING TEST PRESSURE	DINT STRENGTH / (CASING WEIGH ST RATING / MAXIMUM ANTICIPA ST / (((FRAC GRAD +0.5) * 0.052 * TY URFACE PRESSURE (LESSER OF S E PRESSURE (SHOE FRACTURI @ SHOE) - (GAS GRAD * TVD @ SH SURE (GAS CUT MUD TO BALA TVD * EQUIV GAS MUD PSI/FT) SURE ASING COLLAPSE RATING . (70% OF CASING BURST OR M	T * MD @TD) FED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) OE) NCE MAX OPEN HOLE PORE PSI) ASP + 500 PSI - LESSER OF)	SHOE))	2,777 2,777 3,330	PSI PSI PSI
NSION SAFETY FACTOR = CASING JO BURST SAFTEY FACTOR IRST SAFETY FACTOR = CASING BUR RST SAFETY FACTOR = CASING BUR MAXIMUM ANTICIPATED SURFACE AXIMUM ANTICIPATED SURFACE ASP = ((FRAC GRAD +0.5) * 0.052 * TVD ASP = MAXIMUM SURFACE PRESS ASP = (TD PP * 0.052* TD TVD) - (TD WELL HEAD TEST PRESSURE = 50% OF C	DINT STRENGTH / (CASING WEIGH ST RATING / MAXIMUM ANTICIPA ST / (((FRAC GRAD +0.5) * 0.052 * TY URFACE PRESSURE (LESSER OF S E PRESSURE (SHOE FRACTURI @ SHOE) - (GAS GRAD * TVD @ SH SURE (GAS CUT MUD TO BALA TVD * EQUIV GAS MUD PSI/FT) SURE ASING COLLAPSE RATING . (70% OF CASING BURST OR M	T * MD @TD) FED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) OE) NCE MAX OPEN HOLE PORE PSI) ASP + 500 PSI - LESSER OF)	SHOE))	2,777 2,777 3,330 1,565	PSI PSI PSI
NSION SAFETY FACTOR = CASING JO BURST SAFTEY FACTOR RST SAFETY FACTOR = CASING BUR RST SAFETY FACTOR = CASING BUR MAXIMUM ANTICIPATED SURFACE AXIMUM ANTICIPATED SURFACE ASP = ((FRAC GRAD +0.5) * 0.052 * TVD ASP = ((FRAC GRAD +0.5) * 0.052 * TVD ASP = ((FRAC GRAD +0.5) * 0.052 * TVD ASP = (TD PP * 0.052* TD TVD) - (TD WELL HEAD TEST PRESSURE ELL HEAD TEST PRESSURE = 50% OF C CASING TEST PRESSURE % OF CASING BURST = (0.7* BURST	DINT STRENGTH / (CASING WEIGH ST RATING / MAXIMUM ANTICIPA ST / (((FRAC GRAD +0.5) * 0.052 * TY URFACE PRESSURE (LESSER OF S E PRESSURE (SHOE FRACTURI @ SHOE) - (GAS GRAD * TVD @ SH SURE (GAS CUT MUD TO BALA TVD * EQUIV GAS MUD PSI/FT) SURE ASING COLLAPSE RATING . (70% OF CASING BURST OR M	T * MD @TD) FED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) OE) NCE MAX OPEN HOLE PORE PSI) ASP + 500 PSI - LESSER OF)	SHOE)) = 	2,777 2,777 3,330 - 1,565 - 3277 10.5	PSI PSI PSI
NSION SAFETY FACTOR = CASING JO BURST SAFTEY FACTOR RST SAFETY FACTOR = CASING BUR RST SAFETY FACTOR = CASING BUR MAXIMUM ANTICIPATED SURFACE SP = ((FRAC GRAD +0.5) * 0.052 * TVD ASP = MAXIMUM SURFACE PRESS ASP = (TD PP * 0.052* TD TVD) - (TD WELL HEAD TEST PRESSURE = 50% OF C CASING TEST PRESSURE = 50% OF C CASING BURST = (0.7* BURST ASP + 500 PSI	ST RATING / MAXIMUM ANTICIPA' ST RATING / MAXIMUM ANTICIPA' ST / (((FRAC GRAD +0.5) * 0.052 * T' URFACE PRESSURE (LESSER OF S E PRESSURE (SHOE FRACTURI @ SHOE) - (GAS GRAD * TVD @ SH SURE (GAS CUT MUD TO BALA TVD * EQUIV GAS MUD PSI/FT) SURE ASING COLLAPSE RATING (70% OF CASING BURST OR M RATING) - ((TEST MWT - BACKI	T * MD @TD) FED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) OE) NCE MAX OPEN HOLE PORE PSI) ASP + 500 PSI - LESSER OF)	SHOE)) = 2065 3277	2,777 2,777 3,330 - 1,565 - 3277 10.5	PSI PSI PSI PSI TEST M
ASION SAFETY FACTOR = CASING JO BURST SAFTEY FACTOR RST SAFETY FACTOR = CASING BUR RST SAFETY FACTOR = CASING BUR MAXIMUM ANTICIPATED SURFACE SP = ((FRAC GRAD +0.5) * 0.052 * TVD SP = MAXIMUM SURFACE PRESS SP = (TD PP * 0.052 * TD TVD) - (TD WELL HEAD TEST PRESSURE = 50% OF CO CASING TEST PRESSURE = 50% OF CO CASING TEST PRESSURE 6 OF CASING BURST = (0.7* BURST SP + 500 PSI CASING SLIP WEIGHT	ST RATING / MAXIMUM ANTICIPA ST RATING / MAXIMUM ANTICIPA ST / (((FRAC GRAD +0.5) * 0.052 * T URFACE PRESSURE (LESSER OF S E PRESSURE (SHOE FRACTURI @ SHOE) - (GAS GRAD * TVD @ SH SURE (GAS CUT MUD TO BALA TVD * EQUIV GAS MUD PSI/FT) SURE ASING COLLAPSE RATING (70% OF CASING BURST OR M RATING) - ((TEST MWT - BACKI	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) OE) NCE MAX OPEN HOLE PORE PSI) ASP + 500 PSI - LESSER OF) JP) * .052*SHOE TVD))	SHOE)) = 2065 3277	2,777 2,777 3,330 - 1,565 - 3277 10.5	PSI PSI PSI PSI TEST M

9/4/2019 Casing Design - Black Marlin Fed Com 2H v4 9-4-2019

Wolfcamp Casing Design TAPERED STRING (0'-11,800')

		7-5/8"					
	SECOND INTERMEDIATE						
	WEIGHT:		29.7 #/ft	COLLAPSE RATING:	4,790		
	GRADE:		N-80	BURST RATING:	6,890		
	CONNECTION:		LTC	JOINT STRENGTH:	575,000	LBS	
:	SHOE MD		11,800 ' MD	MW @ INTERMEDIATE TD	9.7	ppg	
5	SHOE TVD		11,800 ' TVD	FG @ INTERMEDIATE SHOE:	17.3	PPG EMW	/
1	BACK-UP GRADIENT		9.5 PPG EMW	GAS GRADIENT:	0.1500	psi/ft	
	TVD NEXT HOLE SECTION		12350 'TVD	MWT FOR NEXT HOLE SECT	13.0000	nng	
	MASP CONSIDERATION	MUD%GAS		OPEN HOLE MAX PORE PSI	13.0000		
	LESS THAN 10,000	30	0.10	MUD % FOR MASP CALC	0.4000		
	BETWEEN 10,000' - 12,000'	40	0.15	GAS CUT MUD EQ DENSITY		PSI/FT	
	MORE THAN 12,000	50	0.15		0.3004	13011	
		-					
	COLLAPSE SAFTEY FACTO	R				1.1	
	AFETY FACTOR = COLLAPSE F AFETY FACTOR = COLLAPSE F						
	TENSION SAFTEY FACTOR					1.6	
	· · · · ·						
	FETY FACTOR = CASING JOINT FETY FACTOR = CASING JOINT						
ENSION SAF						- 1.8	
INSION SAF	FETY FACTOR = CASING JOINT BURST SAFTEY FACTOR TY FACTOR = CASING BURST	T STRENGTH	/ (CASING WEIGH	T * MD @TD)		- 1.8	
URST SAFE	FETY FACTOR = CASING JOINT BURST SAFTEY FACTOR TY FACTOR = CASING BURST TY FACTOR = CASING BURST	RATING / M / (((FRAC GI	/ (CASING WEIGH	T * MD @TD) TED SURFACE PRESSURE		: 1.8 3,898	PSI
JRST SAFE JRST SAFE JRST SAFE	FETY FACTOR = CASING JOINT BURST SAFTEY FACTOR TY FACTOR = CASING BURST TY FACTOR = CASING BURST	T STRENGTH RATING / M / (((FRAC GF FACE PRESS RESSURE (/ (CASING WEIGH AXIMUM ANTICIPA RAD +0.5) * 0.052 * T SURE (LESSER OF S (SHOE FRACTUR)	T • MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT• TVD @ SHOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE)			PSI PSI
NSION SAF IRST SAFE IRST SAFE I AXIMUM ASP = ((FR ASP = MA	FETY FACTOR = CASING JOINT BURST SAFTEY FACTOR TY FACTOR = CASING BURST TY FACTOR = CASING BURST MAXIMUM ANTICIPATED SUR ANTICIPATED SURFACE PI LAC GRAD +0.5) * 0.052 * TVD @ S	T STRENGTH RATING / M / (((FRAC GI FACE PRESS RESSURE (SHOE) - (GA RE (GAS CU	/ (CASING WEIGH AXIMUM ANTICIPA RAD +0.5) * 0.052 * T SURE (LESSER OF S SHOE FRACTUR S GRAD * TVD @ SH JT MUD TO BALA	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADENT* TVD @. HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) OE) NCE MAX OPEN HOLE PORE PSI)		3,898	
IRST SAFE IRST SAFE IRST SAFE AXIMUM ASP = ((FR ASP = MA ASP = (TD	FETY FACTOR = CASING JOINT BURST SAFTEY FACTOR TY FACTOR = CASING BURST TY FACTOR = CASING BURST MAXIMUM ANTICIPATED SUR ANTICIPATED SURFACE PI LAC GRAD +0.5) * 0.052 * TVD @ S AXIMUM SURFACE PRESSU	T STRENGTH RATING / M / (((FRAC GI FACE PRESE RESSURE (SHOE) - (GA RE (GAS CU VD * EQUIV	/ (CASING WEIGH AXIMUM ANTICIPA RAD +0.5) * 0.052 * T SURE (LESSER OF S SHOE FRACTUR S GRAD * TVD @ SH JT MUD TO BALA	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADENT* TVD @. HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) OE) NCE MAX OPEN HOLE PORE PSI)		3,898 9,152	PSI
IRST SAFE IRST SAFE AXIMUM ASP = ((FR ASP = MA ASP = (TD	FETY FACTOR = CASING JOINT BURST SAFTEY FACTOR TY FACTOR = CASING BURST TY FACTOR = CASING BURST MAXIMUM ANTICIPATED SURFACE PI LAC GRAD +0.5) * 0.052 * TVD @ S XIMUM SURFACE PRESSUL D PP * 0.052* TD TVD) - (TD TV	T STRENGTH RATING / M / (((FRAC GI FACE PRESS RESSURE (SHOE) - (GA RE (GAS CU VD * EQUIV RE	/ (CASING WEIGH AXIMUM ANTICIPA RAD +0.5) * 0.052 * T SURE (LESSER OF S (SHOE FRACTUR) S GRAD * TVD @ SH JT MUD TO BALA GAS MUD PSI/FT)	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADENT* TVD @. HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) OE) NCE MAX OPEN HOLE PORE PSI)		3,898 9,152 3,898	PSI PSI
NSION SAF	FETY FACTOR = CASING JOINT BURST SAFTEY FACTOR TY FACTOR = CASING BURST TY FACTOR = CASING BURST MAXIMUM ANTICIPATED SUR ANTICIPATED SURFACE PR CAC GRAD +0.5) * 0.052 * TVD @ S XIMUM SURFACE PRESSUR O PP * 0.052* TD TVD) - (TD TV WELL HEAD TEST PRESSUR TEST PRESSURE = 50% OF CASI	T STRENGTH RATING / M / (((FRAC GF FACE PRESS RESSURE (SHOE) - (GA RE (GAS CU VD * EQUIV RE ING COLLAPS	/ (CASING WEIGH AXIMUM ANTICIPA RAD +0.5) * 0.052 * T SURE (LESSER OF S SHOE FRACTUR S GRAD * TVD @ SH JT MUD TO BALA GAS MUD PSI/FT) SE RATING	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ SHOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) (OE) NCE MAX OPEN HOLE PORE PSI)		3,898 9,152 3,898 2,395	PSI PSI PSI
JRST SAFE JRST SAFE AXIMUM ASP = ((FR ASP = MA ASP = (TD ELL HEAD	FETY FACTOR = CASING JOINT BURST SAFTEY FACTOR TY FACTOR = CASING BURST TY FACTOR = CASING BURST MAXIMUM ANTICIPATED SUR ANTICIPATED SURFACE PI EAC GRAD +0.5) * 0.052 * TVD @ 1 AXIMUM SURFACE PRESSUI O PP * 0.052* TD TVD) - (TD TV WELL HEAD TEST PRESSURE TEST PRESSURE = 50% OF CASI CASING TEST PRESSURE (76 SING BURST = (0.7* BURST RA	T STRENGTH RATING / M / (((FRAC GF FACE PRESS RESSURE (SHOE) - (GA RE (GAS CU VD * EQUIV RE ING COLLAP: 0% OF CAS	/ (CASING WEIGH AXIMUM ANTICIPA RAD +0.5) * 0.052 * T SURE (LESSER OF S SHOE FRACTUR S GRAD * TVD @ SH JT MUD TO BALA GAS MUD PSI/FT) SE RATING ING BURST OR M	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) (OE) NCE MAX OPEN HOLE PORE PSI) (ASP + 500 PSI - LESSER OF)		3,898 9,152 3,898	PSI PSI
IRST SAFE IRST SAFE AXIMUM ASP = ((FR ASP = MA ASP = (TD ELL HEAD W OF CAS ASP + 500	FETY FACTOR = CASING JOINT BURST SAFTEY FACTOR TY FACTOR = CASING BURST TY FACTOR = CASING BURST MAXIMUM ANTICIPATED SUR ANTICIPATED SURFACE PI EAC GRAD +0.5) * 0.052 * TVD @ 1 AXIMUM SURFACE PRESSUI O PP * 0.052* TD TVD) - (TD TV WELL HEAD TEST PRESSURE TEST PRESSURE = 50% OF CASI CASING TEST PRESSURE (76 SING BURST = (0.7* BURST RA	T STRENGTH RATING / M / (((FRAC GF FACE PRESS RESSURE (SHOE) - (GA RE (GAS CU VD * EQUIV RE ING COLLAP: 0% OF CAS	/ (CASING WEIGH AXIMUM ANTICIPA RAD +0.5) * 0.052 * T SURE (LESSER OF S SHOE FRACTUR S GRAD * TVD @ SH JT MUD TO BALA GAS MUD PSI/FT) SE RATING ING BURST OR M	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) (OE) NCE MAX OPEN HOLE PORE PSI) (ASP + 500 PSI - LESSER OF)	SHOE)) 	3,898 9,152 3,898 2,395 4398 9,7	PSI PSI PSI TEST M
JRST SAFE JRST SAFE JRST SAFE AXIMUM ASP = ((FR ASP = MA ASP = (TD C ASP = (TD C C C C C C C C C C C C C C C C C C C	FETY FACTOR = CASING JOINT BURST SAFTEY FACTOR TY FACTOR = CASING BURST TY FACTOR = CASING BURST MAXIMUM ANTICIPATED SUR ANTICIPATED SURFACE PI FAC GRAD +0.5) * 0.052 * TVD @ 1 AXIMUM SURFACE PRESSUR PP * 0.052* TD TVD) - (TD TV WELL HEAD TEST PRESSUR TEST PRESSURE = 50% OF CASI CASING TEST PRESSURE (70 SING BURST = (0.7* BURST RA PSI CASING SLIP WEIGHT	T STRENGTH RATING / M / (((FRAC GI FACE PRESS RESSURE (SHOE) - (GA RE (GAS CU VD * EQUIV RE ING COLLAP: 0% OF CAS ATING) - ((T	/ (CASING WEIGH AXIMUM ANTICIPA RAD +0.5) * 0.052 * T SURE (LESSER OF S SHOE FRACTUR S GRAD * TVD @ SH JT MUD TO BALA GAS MUD PSI/FT) SE RATING ING BURST OR M	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ SHOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) OE) NCE MAX OPEN HOLE PORE PSI) (ASP + 500 PSI - LESSER OF) UP) * .052*SHOE TVD))	SHOE)) = 4700 4398	3,898 9,152 3,898 2,395 4398 9,7	PSI PSI PSI TEST M
JRST SAFE JRST SAFE JRST SAFE AXIMUM ASP = ((FR ASP = MA ASP = (TD CASP = (TD) CASP	FETY FACTOR = CASING JOINT BURST SAFTEY FACTOR TY FACTOR = CASING BURST TY FACTOR = CASING BURST MAXIMUM ANTICIPATED SUR ANTICIPATED SURFACE PI FAC GRAD +0.5) * 0.052 * TVD @ S AXIMUM SURFACE PRESSUR AXIMUM SURFACE PRESSUR DPP * 0.052* TD TVD) - (TD TV WELL HEAD TEST PRESSUR TEST PRESSURE = 50% OF CASI CASING TEST PRESSURE (70 SING BURST = (0.7* BURST RAPSI CASING SLIP WEIGHT GHT IN AIR = CASING WT * MD	T STRENGTH RATING / M / (((FRAC GI FACE PRESS RESSURE (SHOE) - (GA RE (GAS CU /D * EQUIV RE ING COLLAP! 0% OF CAS ATING) - ((T 	/ (CASING WEIGH AXIMUM ANTICIPA RAD +0.5) * 0.052 * T SURE (LESSER OF S (SHOE FRACTUR) S GRAD * TVD @ SH JT MUD TO BALA GAS MUD PSI/FT) SE RATING ING BURST OR M EST MWT - BACK	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ HOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) OE) NCE MAX OPEN HOLE PORE PSI) (ASP + 500 PSI - LESSER OF) UP) * .052*SHOE TVD)) 350,460 LBS	SHOE)) = 4700 4398	3,898 9,152 3,898 2,395 4398 9,7	PSI PSI PSI TEST M
NSION SAF	FETY FACTOR = CASING JOINT BURST SAFTEY FACTOR = CASING BURST TY FACTOR = CASING BURST TY FACTOR = CASING BURST MAXIMUM ANTICIPATED SURFACE PI AC GRAD +0.5) * 0.052 * TVD @ S XIMUM SURFACE PRESSUR PP * 0.052* TD TVD) - (TD TV) WELL HEAD TEST PRESSURE TEST PRESSURE = 50% OF CASI CASING TEST PRESSURE (70) SING BURST = (0.7* BURST RAPSI CASING SLIP WEIGHT	T STRENGTH RATING / M / (((FRAC GI FACE PRESS RESSURE (SHOE) - (GA RE (GAS CU /D * EQUIV RE ING COLLAP: 0% OF CAS ATTING) - ((T @ TD = PPG STEEL) =	/ (CASING WEIGH AXIMUM ANTICIPA RAD +0.5) * 0.052 * T SURE (LESSER OF S (SHOE FRACTUR) S GRAD * TVD @ SH JT MUD TO BALA GAS MUD PSI/FT) SE RATING ING BURST OR M EST MWT - BACK	T * MD @TD) TED SURFACE PRESSURE VD @ SHOE) - (GAS GRADIENT* TVD @ SHOE FRAC, OR GAS CUT MUD) E WITH GAS TO SURFACE) OE) NCE MAX OPEN HOLE PORE PSI) (ASP + 500 PSI - LESSER OF) UP) * .052*SHOE TVD))	SHOE)) = 4700 4398	3,898 9,152 3,898 2,395 4398 9,7	PSI PSI PSI TEST M

Wolfcamp Casing Design TAPERED STRING (11,800'-12212' TVD/12300' MD)

TAPERED STRING (11,800'-12212' TVD/12300' N	MD)		
SECOND INTERMEDIATE 7-5/8"			_
WEIGHT: 29.7 #/ft COLLAPSE RATING:		,340 PSI	_
GRADE: P-110 BURST RATING: CONNECTION: LTC JOINT STRENGTH:		,470 PSI ,000 LBS	
SHOE MD 'MD MW@INTERMEDIATE		9.7 ppg	
SHOE TVD FG @ INTERMEDIATE :		17.3 PPG EMW	
BACK-UP GRADIENT 9.5 PPG EMW GAS GRADIENT:	0.1	500 psi/ft	
TVD NEXT HOLE SECTION 12350 'TVD MWT FOR NEXT HOLE	SECT 13.0	000 ppg	
MASP CONSIDERATION MUD% GAS DENS OPEN HOLE MAX PORT	E PSI 13.0	000 ppg	
LESS THAN 10,000' 30 0.10 MUD % FOR MASP CAI	LC 0.5	5000 %	
BETWEEN 10,000' - 12,000' 40 0.15 GAS CUT MUD EQ DEN	NSITY 0.	.413 PSI/FT	
MORE THAN 12,000' 50 0.15			
COLLAPSE SAFTEY FACTOR		= 1,2	
LLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - GAS GRAD * TVD @ TD)			
TENSION SAFTEY FACTOR		= 2.1	
NSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR			
NSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR		= 1.0	
NSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR NSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD@TD) BURST SAFTEY FACTOR RST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE	[* TVD @ SHOE))	= 1.0	
NSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR NSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD@TD) BURST SAFTEY FACTOR RST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE	0 //	= 1.0	PSI
NSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR NSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD AXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE)))		PSI PSI
NSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR NSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD@TD) BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD AXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) ISP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) ASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE POF)	3,248	
NSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR NSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) BURST SAFTEY FACTOR IRST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE IRST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT)	3,248 9,472	PSI
NSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR NSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD AXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) ASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) ASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE POR ASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT) WELL HEAD TEST PRESSURE)	3,248 9,472 3,248	PSI PSI
NSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR NSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD AXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) ASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) ASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE POH ASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT) WELL HEAD TEST PRESSURE SLL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING CASING TEST PRESSURE (70% OF CASING BURST OR MASP + 500 PSI - LESSER OF) RE PSI)	3,248 9,472 3,248 = 2,670 3748	PSI PSI PSI PSI
NSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR NSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD AXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) SP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) ASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE POR ASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE POR ASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT) WELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING CASING TEST PRESSURE (70% OF CASING BURST OR MASP + 500 PSI - LESSER OF % OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BACKUP) * .052*SHOE TVD))	RE PSI)	3,248 9,472 3,248 = 2,670	PSI PSI PSI
NSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR NSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD AXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) ISP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) ASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE POR ASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE POR ASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT) WELL HEAD TEST PRESSURE ELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING	() RE PSI) () (6502	3,248 9,472 3,248 = 2,670 3748	PSI PSI PSI
NSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR NSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD AXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) SP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) ASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE POF ASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT) WELL HEAD TEST PRESSURE SLL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING CASING TEST PRESSURE (70% OF CASING BURST OR MASP + 500 PSI - LESSER OF % OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BACKUP) * .052*SHOE TVD)) ASP + 500 PSI	() RE PSI) () (6502	3,248 9,472 3,248 = 2,670 3748 9.7	PSI PSI PSI PSI TEST M
ISION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR ISION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE RST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD XIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) SP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) SP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) SP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT) WELL HEAD TEST PRESSURE (70% OF CASING BURST OR MASP + 500 PSI - LESSER OF & OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BACKUP) * .052*SHOE TVD)) SP + 500 PSI CASING SLIP WEIGHT	() RE PSI) () (6502	3,248 9,472 3,248 = 2,670 3748 9.7	PSI PSI PSI PSI TEST M

Wolfcamp Casing Design TAPERED STRING (0'-11,800')

***STILL INSIDE SECOND INTERMEDIATE CASING @ RUNNING DEPTH**

PRODUCTION CASING 5	-1/2"		
WEIGHT:	23.0 #/ft	COLLAPSE RATING:	15,990 PSI
GRADE:	P-110	BURST RATING:	14,530 PSI
CONNECTION:	ULTRA QX	JOINT STRENGTH:	729,000 LBS
CSG TOP MD	0 ' MD		
CSG TOP TVD	0 ' TVD	RESERVOIR PORE PRESSURE	12.3 PPG
SHOE MD	11,800 ' MD	MW @ TD	13.0 PPG EMW
SHOE TVD	11,800 'TVD	FG @ TD	17.3 PPG EMW
BACK-UP GRADIENT	9.7 PPG EMW	GAS GRADIENT:	0.1500 psi/ft
PREVIOUS SHOE MD	12300	ABANDONMENT RESERVOIR PSI	1770.0000 PSI
PREVIOUS SHOE TVD	12212	COMPLETION FLUID DENSITY	8.3300 PPG
PREVIOUS SHOE FRAC	17.3		

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = ABANDONMENT RESERVOIR PRESSURE WITH MWT ON BACKSIDE COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - RESERVOIR ABANDON PSI)

TENSION SAFTEY FACTOR

TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD)

BURST SAFTEY FACTOR

BURST SAFETY FACTOR = BURST RATING / (MASP + (CMP FLUID PPG - BACKUP PPG) * 0.052 * TD TVD)

MAXIMUM ANTICIPATED SURFACE PRESSURE 5,777 PSI MAXIMUM ANTICIPATED SURFACE PRESSURE (PERFORATED RESERVIOR WITH GAS TO SURFACE) PSI 5,777 MASP = (TVD*.052*PORE PSI) - (GAS GRADIENT *TVD) CASING TEST PRESSURE (70% OF CASING BURST, OR MASP + 500 PSI, PREV LOT + 500) 6277 PSI 70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BACKUP) * .052*SHOE TVD)) 8146 TEST MWT 13.0 MASP + 500 PSI 6277 PREVIOUS SHOE LOT + 500 PSI TO INSURE LAP ISOLATION 3231 CASING SLIP WEIGHT = 218,000 LBS 271,400 LBS STRING WEIGHT IN AIR = CASING WT * MD @ TD = BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) = 0.8024 BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR = 217,771 LBS

2.6

2.7

2.9

=

-

Wolfcamp Casing Design TAPERED STRING (11800'-12350' TVD/22620' MD)

WEIGHT	23.0 #/ft	COLLAPSE RATING:	14,540 PSI
GRADE:	P-110	BURST RATING:	14,530 PSI
CONNECTION:	ULTRA FJ	JOINT STRENGTH:	724,000 LBS
CSG TOP MD	11800 ' MD		
CSG TOP TVD	11800 ' TVD	RESERVOIR PORE PRESSURE	12.3 PPG
SHOE MD	' MD	MW @ TD	13.0 PPG ÉMW
SHOE TVD	' TVD	FG @ TD	17.3 PPG EMW
BACK-UP GRADIENT	9.7 PPG EMW	GAS GRADIENT:	0.1500 psi/ft
PREVIOUS SHOE MD	12300	ABANDONMENT RESERVOIR PSI	1852.5000 PSI
PREVIOUS SHOE TVD	12212	COMPLETION FLUID DENSITY	8.3300 PPG
PREVIOUS SHOE FRAC	17.3		

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = ABANDONMENT RESERVOIR PRESSURE WITH MWT ON BACKSIDE COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - RESERVOIR ABANDON PSI)

TENSION SAFTEY FACTOR

TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT • MD @TD)

BURST SAFTEY FACTOR

BURST SAFETY FACTOR = BURST RATING / (MASP + (CMP FLUID PPG - BACKUP PPG) * 0.052 * TD TVD)

MAXIMUM ANTICIPATED SURFACE PRESSURE 6,047 PSI MAXIMUM ANTICIPATED SURFACE PRESSURE (PERFORATED RESERVIOR WITH GAS TO SURFACE) 6,047 PSI MASP = (TVD*.052*PORE PSI) - (GAS GRADIENT *TVD) CASING TEST PRESSURE (70% OF CASING BURST, OR MASP + 500 PSI, PREV LOT + 500) 6547 PSI 70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BACKUP) * .052*SHOE TVD)) 8052 TEST MW 13.0 MASP + 500 PSI 6547 PREVIOUS SHOE LOT + 500 PSI TO INSURE LAP ISOLATION 3231 **CASING SLIP WEIGHT** H 200,000 LBS 248,860 LBS STRING WEIGHT IN AIR = CASING WT * MD @ TD = BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) = 0.8024 BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR = 199,685 LBS

9/4/2019 Casing Design - Black Marlin Fed Com 2H v4 9-4-2019

-

=

-

2.2

2.9

SURFACE	13-3/8"			
WEIGHT:	5	4.5 #/ft	COLLAPSE RATING:	1,130 PSI
GRADE:	J	-55	BURST RATING:	2,730 PSI
CONNECTION:	B	ТС	JOINT STRENGTH:	909,000 LBS
SHOE MD	2,0	050 ' MD	MW @ SURFACE TD	9.3 ppg
SHOE TVD	2,6)50 ' TVD	FG @ SURFACE SHOE:	11.5 PPG EMW
BACK-UP GRADIENT		8.5 PPG EMW	GAS GRADIENT:	0.1000 psi/ft
TVD NEXT HOLE SECTION	۲ 53	300 ' TVD	MWT FOR NEXT HOLE SECT	10.0000 ppg
MASP CONSIDERATION	MUD% GAS DE	<u>NS</u>	OPEN HOLE MAX PORE PSI	8.5000 ppg
LESS THAN 10,000	30 0	.10	MUD % FOR MASP CALC	0.3000 %
BETWEEN 10,000' - 12,000'	40 0	.15	GAS CUT MUD EQ DENSITY	0.226 PSI/FT
MORE THAN 12,000	50 0	.15		

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (HYDROSTATIC PRESS @ SHOE - GAS BACKUP) COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - GAS GRAD * TVD @ TD)

TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD)

BURST SAFTEY FACTOR

TENSION SAFTEY FACTOR

BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE BURST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE))

MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD)		1,074	PSI
MAXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE)		1,074	PSI
MASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE PORE PSI) MASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT)		1145	PSI
WELL HEAD TEST PRESSURE	=	565	PSI

WELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING

CASING TEST PRESSURE (70% OF CASING BURST O	R MASP + 500 PSI - LESSER OF)			1826	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BA	CKUP) * .052*SHOE TVD))	1826	ŀ	9.3	TEST MW1
MASP + 500 PSI		1574	_		
CASING SLIP WEIGHT			. =	96,000 .	Pounds
STRING WEIGHT IN AIR = CASING WT • MD @ TD =	111,725 LBS				
BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) =	0.8580				

1.4

8.1

2.5

=

=

TAPERED STRING (0'-4,100')

WEIGHT:	45.5 #/	ft COLLAPSE RATING:	2,090 PSI
GRADE:	J-55	BURST RATING:	3,580 PSI
CONNECTION:	BTC	JOINT STRENGTH:	796,000 LBS
SHOE MD	4,100 ' N	MD MW @ INTERMEDIATE TD	10.5 ppg
SHOE TVD	4,100 ' 1	TVD FG @ INTERMEDIATE SHOE:	11.5 PPG EMW
BACK-UP GRADIENT	8.9 PI	PG EMW GAS GRADIENT:	0.1000 psi/ft
TVD NEXT HOLE SECTION	12212 ''	TVD MWT FOR NEXT HOLE SECT	9.7000 ppg
MASP CONSIDERATION	MUD%GAS DENS	OPEN HOLE MAX PORE PSI	9.5000 ppg
LESS THAN 10,000'	30 0.10	MUD % FOR MASP CALC	0.3000 %
BETWEEN 10,000' - 12,000'	40 0.15	GAS CUT MUD EQ DENSITY	0.22132 PSI/FT
MORE THAN 12,000'	50 0.15	-	

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (HYDROSTATIC PRESS @ SHOE - GAS BACKUP) COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - GAS GRAD * TVD @ TD)

TENSION SAFTEY FACTOR 4.3 = TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) BURST SAFTEY FACTOR 1.7 BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE BURST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE)) MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD) 2,148 PSI MAXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) 2,148 PSI MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) MASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE PORE PSI) 3.330 PSI MASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT) WELL HEAD TEST PRESSURE 1,045 PS1 _ WELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING CASING TEST PRESSURE (70% OF CASING BURST OR MASP + 500 PSI - LESSER OF) 2648 PSI 70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BACKUP) * .052*SHOE TVD)) 2165 TEST MW 10.5 MASP + 500 PSI 2648 CASING SLIP WEIGHT = 157,000 LBS 186,550 LBS

STRING WEIGHT IN AIR = CASING WT * MD @ TD =186,550 LBSBOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) =0.8397BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR =156,645 LBS

9/4/2019 Casing Design - Black Marlin Fed Com 2H v4 9-4-2019

=

Wolfcamp Casing Design TAPERED STRING (4,100'-5,300')

WEIGHT:		45.5 #/ft	COLLAPSE RATING:	3,130 PSI
GRADE:	н	CK-55	BURST RATING:	3,580 PSI
CONNECTION:		BTC	JOINT STRENGTH:	1,037,000 LBS
SHOE MD		5,300 ' MD	MW @ INTERMEDIATE TD	10.5 ppg
SHOE TVD		5,300 ' TVD	FG @ INTERMEDIATE SHOE:	11.5 PPG EMW
BACK-UP GRADIENT		8.9 PPG EMW	GAS GRADIENT:	0.1000 psi/ft
TVD NEXT HOLE SECTION	1	12212 'TVD	MWT FOR NEXT HOLE SECT	9.7000 ppg
MASP CONSIDERATION	MUD% GAS	DENS	OPEN HOLE MAX PORE PSI	9.5000 ppg
LESS THAN 10,000'	30	0.10	MUD % FOR MASP CALC	0.3000 %
BETWEEN 10,000' - 12,000'	40	0.15	GAS CUT MUD EQ DENSITY	0.22132 PSI/FT
MORE THAN 12,000'	50	0.15		

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (HYDROSTATIC PRESS @ SHOE - GAS BACKUP) COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - GAS GRAD * TVD @ TD)

TENSION SAFTEY FACTOR 4,3 = TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) BURST SAFTEY FACTOR - 1.3 Ħ BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE BURST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE)) MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD) 2,777 PSI MAXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) PSI 2,777 MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) MASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE PORE PSI) 3,330 PSI MASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT)

WELL HEAD TEST PRESSURE

WELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING

CASING TEST PRESSURE (70% OF CASING BURST O	R MASP + 500 PSI - LESSER OF)		3277	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BA	2065	10.5	TEST MWT	
MASP + 500 PSI		3277		
CASING SLIP WEIGHT	· · · · · · · · · · · · · · · · · · ·		= 202,000	LBS
STRING WEIGHT IN AIR = CASING WT * MD @ TD =	241,150 LBS			
BOUYANCY FACTOR = (PPG STEEL • MW) / PPG STEEL) =	0.8397			
BOUYED WEIGHT = STRING WEIGHT • BOUYANCY FACTOR =	202,492 LBS			

9/4/2019 Casing Design - Black Marlin Fed Com 2H v4 9-4-2019

1,565

=

PSI

Wolfcamp Casing Design TAPERED STRING (0'-11,800')

WEIGHT		29.7 #/ft	COLLAPSE RATING:	4,790 PSI
GRADE:		N-80	BURST RATING:	6,890 PSI
CONNECTION:		LTC	JOINT STRENGTH:	575,000 LBS
SHOE MD		11,800 ' MD	MW @ INTERMEDIATE TD	9.7 ppg
SHOE TVD		11,800 ' TVD	FG @ INTERMEDIATE SHOE:	17.3 PPG EMW
BACK-UP GRADIENT		9.5 PPG EMW	GAS GRADIENT:	0.1500 psi/ft
TVD NEXT HOLE SECTION		12350 'TVD	MWT FOR NEXT HOLE SECT	13.0000 ppg
MASP CONSIDERATION	MUD%G	AS DENS	OPEN HOLE MAX PORE PSI	13.0000 ppg
LESS THAN 10,000'	30	0.10	MUD % FOR MASP CALC	0.4000 %
BETWEEN 10,000 - 12,000	40	0.15	GAS CUT MUD EQ DENSITY	0.3604 PSI/FT
MORE THAN 12,000	50	0.15	-	

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (HYDROSTATIC PRESS @ SHOE - GAS BACKUP) COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - GAS GRAD * TVD @ TD)

TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD)

BURST SAFTEY FACTOR

TENSION SAFTEY FACTOR

BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE BURST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE))

MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD)		3,898	PSI
MAXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE)		9,152	PSI
MASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE PORE PSI) MASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT)		3,898	PSI
WELL HEAD TEST PRESSURE	=	2,395	PSI

WELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING

CASING TEST PRESSURE (70% OF CASING BURST OF	R MASP + 500 PSI - LESSER OF)			4398	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BACKUP) * .052*SHOE TVD))		4700	L	9.7	TEST MWT
MASP + 500 PSI		4398			
CASING SLIP WEIGHT			=	299,000	LBS
STRING WEIGHT IN AIR = CASING WT • MD @ TD =	350,460 LBS				
BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) =	0.8519				
BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR =	298,560 LBS				

Ξ

ij

Ξ

1.1

1.6

Wolfcamp Casing Design TAPERED STRING (11,800'-12212' TVD/12300' MD)

		E 7-5/8"					
	SECOND INTERMEDIAT		29.7 #/ft	COLLAPSE RATING	5,340	PSI	-
	GRADE:		P-110	BURST RATING:	9,470	PSI	
	CONNECTION:		LTC	JOINT STRENGTH:	769,000	LBS	
	SHOE MD		' MD	MW @ INTERMEDIATE TD		ppg	
	SHOE TVD BACK-UP GRADIENT		' TVD 9.5 PPG EMW	FG @ INTERMEDIATE SHOE: GAS GRADIENT:	17.3 0.1500	PPG EMW	,
	BACK-OF GRADIENT		J.J FFO EMIW	GAS GRADIENT.	0.1300	psi/it	
	TVD NEXT HOLE SECTION		2350 'TVD	MWT FOR NEXT HOLE SECT	13.0000		
	MASP CONSIDERATION LESS THAN 10,000'	<u>MUD% GAS E</u> 30	0.10	OPEN HOLE MAX PORE PSI MUD % FOR MASP CALC	13.0000 0.5000		
	BETWEEN 10,000' - 12,000'	40	0.15	GAS CUT MUD EQ DENSITY		% PSI/FT	
	MORE THAN 12,000'	50	0.15		0.415	10011	
	COLLAPSE SAFTEY FACTO	DR	· <u> </u>		=	1.2	
	E SAFETY FACTOR = COLLAPSE E SAFETY FACTOR = COLLAPSE						
	TENSION SAFTEY FACTOR					2.1	
	TENSION SAFTET FACTOR				-	2.1	
		•					
	SAFETY FACTOR = CASING JOIN SAFETY FACTOR = CASING JOIN						
						1.0	
URST SA	SAFETY FACTOR = CASING JOIN BURST SAFTEY FACTOR FETY FACTOR = CASING BURST FETY FACTOR = CASING BURST	T STRENGTH / RATING / MAX	(CASING WEIGHT IMUM ANTICIPAT D +0.5) * 0.052 * TV	• MD @TD) ED SURFACE PRESSURE D @ SHOE) - (GAS GRADIENT• TVD @ S			
URST SA	SAFETY FACTOR = CASING JOIN BURST SAFTEY FACTOR FETY FACTOR = CASING BURST	T STRENGTH / RATING / MAX	(CASING WEIGHT IMUM ANTICIPAT D +0.5) * 0.052 * TV	• MD @TD) ED SURFACE PRESSURE D @ SHOE) - (GAS GRADIENT• TVD @ S		1.0 3,248	PSI
URST SA URST SA URST SA	SAFETY FACTOR = CASING JOIN BURST SAFTEY FACTOR FETY FACTOR = CASING BURST FETY FACTOR = CASING BURST	T STRENGTH / RATING / MAX (((FRAC GRAI RFACE PRESSUR PRESSURE (SH	(CASING WEIGHT TIMUM ANTICIPAT D +0.5) * 0.052 * TV RE (LESSER OF SH IOE FRACTURE	• MD @TD) ED SURFACE PRESSURE D @ SHOE) - (GAS GRADIENT* TVD @ S OE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE)			PSI PSI
URST SA URST SA URST SA IAXIMU IASP = ((IASP = N	SAFETY FACTOR = CASING JOIN BURST SAFTEY FACTOR FETY FACTOR = CASING BURST FETY FACTOR = CASING BURST MAXIMUM ANTICIPATED SUF JM ANTICIPATED SURFACE F (FRAC GRAD +0.5) * 0.052 * TVD @	T STRENGTH / RATING / MAX (((FRAC GRAI RFACE PRESSUR PRESSURE (SH SHOE) - (GAS G RE (GAS CUT 1	(CASING WEIGHT TIMUM ANTICIPAT D+0.5) * 0.052 * TV RE (LESSER OF SH IOE FRACTURE IRAD * TVD @ SHO MUD TO BALAN	• MD @TD) ED SURFACE PRESSURE D @ SHOE) - (GAS GRADIENT* TVD @ S OE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE)		3,248	
URST SA URST SA URST SA IASP = ((IASP = 1)	SAFETY FACTOR = CASING JOIN BURST SAFTEY FACTOR FETY FACTOR = CASING BURST FETY FACTOR = CASING BURST MAXIMUM ANTICIPATED SUF JM ANTICIPATED SURFACE F (FRAC GRAD +0.5) * 0.052 * TVD @ MAXIMUM SURFACE PRESSU	T STRENGTH / RATING / MAX / (((FRAC GRAD REACE PRESSURE (SH SHOE) - (GAS G RE (GAS CUT VD * EQUIV GA	(CASING WEIGHT TIMUM ANTICIPAT D+0.5) * 0.052 * TV RE (LESSER OF SH IOE FRACTURE IRAD * TVD @ SHO MUD TO BALAN	• MD @TD) ED SURFACE PRESSURE D @ SHOE) - (GAS GRADIENT• TVD @ S OE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) DE)		3,248 9,472	PSI
URST SA URST SA URST SA IAXIMU IASP = (I IASP = (I	SAFETY FACTOR = CASING JOIN BURST SAFTEY FACTOR FETY FACTOR = CASING BURST FETY FACTOR = CASING BURST MAXIMUM ANTICIPATED SURFACE F (FRAC GRAD +0.5) * 0.052 * TVD @ MAXIMUM SURFACE PRESSU TD PP * 0.052 * TD TVD) - (TD T	T STRENGTH / RATING / MAX / (((FRAC GRAI RESSURE (SH SHOE) - (GAS G RE (GAS CUT) VD • EQUIV GA RE	(CASING WEIGHT IMUM ANTICIPAT D+0.5) * 0.052 * TV RE (LESSER OF SH IOE FRACTURE IRAD * TVD @ SHO MUD TO BALAN AS MUD PSI/FT)	• MD @TD) ED SURFACE PRESSURE D @ SHOE) - (GAS GRADIENT• TVD @ S OE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) DE)	(HOE))	3,248 9,472 3,248	PSI PSI
URST SA URST SA URST SA IAXIMU IASP = (I IASP = (I IASP = (I IASP = (I	SAFETY FACTOR = CASING JOIN BURST SAFTEY FACTOR FETY FACTOR = CASING BURST FETY FACTOR = CASING BURST MAXIMUM ANTICIPATED SUF UM ANTICIPATED SURFACE P (FRAC GRAD +0.5) * 0.052 * TVD @ MAXIMUM SURFACE PRESSU TD PP * 0.052* TD TVD) - (TD T WELL HEAD TEST PRESSURE AD TEST PRESSURE = 50% OF CAS CASING TEST PRESSURE (7)	T STRENGTH / RATING / MAX (((FRAC GRAI FACE PRESSUR PRESSURE (SH SHOE) - (GAS G RE (GAS CUT VD • EQUIV GA RE SING COLLAPSE I	(CASING WEIGHT TIMUM ANTICIPAT D +0.5) * 0.052 * TV RE (LESSER OF SH IOE FRACTURE RAD * TVD @ SHO MUD TO BALAN AS MUD PSI/FT) RATING G BURST OR MA	• MD @TD) ED SURFACE PRESSURE D @ SHOE) - (GAS GRADIENT* TVD @ S OE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) DE) ICE MAX OPEN HOLE PORE PSI)	(HOE))	3,248 9,472 3,248	PSI PSI
URST SA URST SA URST SA MAXIMU (ASP = (MASP = (MASP = (VELL HEA	SAFETY FACTOR = CASING JOIN BURST SAFTEY FACTOR FETY FACTOR = CASING BURST FETY FACTOR = CASING BURST MAXIMUM ANTICIPATED SUF UM ANTICIPATED SURFACE P (FRAC GRAD +0.5) * 0.052 * TVD @ MAXIMUM SURFACE PRESSU TD PP * 0.052* TD TVD) - (TD T WELL HEAD TEST PRESSURE AD TEST PRESSURE = 50% OF CAS CASING TEST PRESSURE (CASING BURST = (0.7* BURST R	T STRENGTH / RATING / MAX (((FRAC GRAI FACE PRESSUR PRESSURE (SH SHOE) - (GAS G RE (GAS CUT VD • EQUIV GA RE SING COLLAPSE I	(CASING WEIGHT TIMUM ANTICIPAT D +0.5) * 0.052 * TV RE (LESSER OF SH IOE FRACTURE RAD * TVD @ SHO MUD TO BALAN AS MUD PSI/FT) RATING G BURST OR MA	• MD @TD) ED SURFACE PRESSURE D @ SHOE) - (GAS GRADIENT* TVD @ S OE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) DE) ICE MAX OPEN HOLE PORE PSI)	(HOE))	3,248 9,472 3,248 2,670	PSI PSI PSI
URST SA URST SA URST SA AXIMU (ASP = (AASP = (VELL HEA 0% OF C	SAFETY FACTOR = CASING JOIN BURST SAFTEY FACTOR FETY FACTOR = CASING BURST FETY FACTOR = CASING BURST MAXIMUM ANTICIPATED SUF UM ANTICIPATED SURFACE P (FRAC GRAD +0.5) * 0.052 * TVD @ MAXIMUM SURFACE PRESSU TD PP * 0.052* TD TVD) - (TD T WELL HEAD TEST PRESSURE AD TEST PRESSURE = 50% OF CAS CASING TEST PRESSURE (CASING BURST = (0.7* BURST R	T STRENGTH / RATING / MAX (((FRAC GRAI FACE PRESSUR PRESSURE (SH SHOE) - (GAS G RE (GAS CUT VD • EQUIV GA RE SING COLLAPSE I	(CASING WEIGHT TIMUM ANTICIPAT D +0.5) * 0.052 * TV RE (LESSER OF SH IOE FRACTURE RAD * TVD @ SHO MUD TO BALAN AS MUD PSI/FT) RATING G BURST OR MA	• MD @TD) ED SURFACE PRESSURE D @ SHOE) - (GAS GRADIENT* TVD @ S OE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) DE) ICE MAX OPEN HOLE PORE PSI)	±HOE)) 	3,248 9,472 3,248 2,670 3748 9.7	PSI PSI PSI TEST M
URST SA URST SA URST SA URST SA (AXIMU (ASP = (AASP = (VELL HEA 0% OF C (ASP + 5	SAFETY FACTOR = CASING JOIN BURST SAFTEY FACTOR FETY FACTOR = CASING BURST FETY FACTOR = CASING BURST MAXIMUM ANTICIPATED SUF UM ANTICIPATED SUFFACE F (FRAC GRAD +0.5) * 0.052 * TVD @ MAXIMUM SUFFACE PRESSU TD PP * 0.052 * TD TVD) - (TD T WELL HEAD TEST PRESSUR AD TEST PRESSURE = 50% OF CAS CASING TEST PRESSURE (7 CASING BURST = (0.7* BURST R 500 PSI CASING SLIP WEIGHT	T STRENGTH / RATING / MAX / (((FRAC GRAI RESSURE (SH SHOE) - (GAS G RE (GAS CUT) VD • EQUIV GA RE SING COLLAPSE I 70% OF CASIN ATING) - ((TES)	(CASING WEIGHT TIMUM ANTICIPAT D +0.5) * 0.052 * TV RE (LESSER OF SH IOE FRACTURE RAD * TVD @ SHO MUD TO BALAN AS MUD PSI/FT) RATING G BURST OR MA	• MD @TD) ED SURFACE PRESSURE D @ SHOE) - (GAS GRADIENT• TVD @ S OE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) DE) ICE MAX OPEN HOLE PORE PSI) ICE MAX OPEN HOLE PORE PSI) P) • .052*SHOE TVD))	±00E)) ===================================	3,248 9,472 3,248 2,670 3748 9.7	PSI PSI PSI PSI TEST M
URST SA URST SA URST SA IAXIMU IASP = (I IASP = (IASP =	SAFETY FACTOR = CASING JOIN BURST SAFTEY FACTOR FETY FACTOR = CASING BURST FETY FACTOR = CASING BURST MAXIMUM ANTICIPATED SUF JM ANTICIPATED SURFACE F (FRAC GRAD +0.5) * 0.052 * TVD @ MAXIMUM SURFACE PRESSU TD PP * 0.052 * TD TVD) - (TD T WELL HEAD TEST PRESSURE AD TEST PRESSURE = 50% OF CAS CASING TEST PRESSURE (CASING BURST = (0.7* BURST R 500 PSI	T STRENGTH / RATING / MAX / (((FRAC GRAI REACE PRESSURE (SH SHOE) - (GAS G RE (GAS CUT) VD • EQUIV GA RE SING COLLAPSE I 20% OF CASIN ATING) - ((TES)	(CASING WEIGHT TIMUM ANTICIPAT D +0.5) * 0.052 * TV RE (LESSER OF SH IOE FRACTURE RAD * TVD @ SHO MUD TO BALAN AS MUD PSI/FT) RATING G BURST OR MA	• MD @TD) ED SURFACE PRESSURE D @ SHOE) - (GAS GRADIENT* TVD @ S OE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) DE) ICE MAX OPEN HOLE PORE PSI)	±00E)) ===================================	3,248 9,472 3,248 2,670 3748 9.7	PSI PSI PSI PSI TEST M

Wolfcamp Casing Design TAPERED STRING (0'-11,800')

*STILL INSIDE SECOND INTERMEDIATE CASING @ RUNNING DEPTH

-1/2"		
23.0 #/ft	COLLAPSE RATING	15,990 PSI
P-110	BURST RATING:	14,530 PSI
ULTRA QX	JOINT STRENGTH:	729,000 LBS
0 ' MD		
0 ' TVD	RESERVOIR PORE PRESSURE	12.3 PPG
11,800 'MD	MW @ TD	13.0 PPG EMW
11,800 'TVD	FG @ TD	17.3 PPG EMW
9.7 PPG EMW	GAS GRADIENT:	0.1500 psi/ft
12300	ABANDONMENT RESERVOIR PSI	1770.0000 PSI
12212	COMPLETION FLUID DENSITY	8.3300 PPG
17.3		
	23.0 #/R P-110 ULTRA QX 0 ' MD 0 ' TVD 11,800 ' MD 11,800 ' TVD 9.7 PPG EMW 12300 12212	23.0 #/ft COLLAPSE RATING: P-110 BURST RATING: ULTRA QX JOINT STRENGTH: 0 ' MD 0 ' TVD 0 ' TVD RESERVOIR PORE PRESSURE 11,800 ' MD MW @ TD 11,800 ' TVD FG @ TD 9.7 PPG EMW GAS GRADIENT: 12300 ABANDONMENT RESERVOIR PSI 12212 COMPLETION FLUID DENSITY

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = ABANDONMENT RESERVOIR PRESSURE WITH MWT ON BACKSIDE COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - RESERVOIR ABANDON PSI)

 TENSION SAFTEY FACTOR
 = 2.7

 TENSION SAFETY FACTOR
 = CASING JOINT STRENGTH / CASING WEIGHT IN AIR

 TENSION SAFETY FACTOR
 = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD)

 BURST SAFTEY FACTOR
 = 2.9

BURST SAFETY FACTOR = BURST RATING / (MASP + (CMP FLUID PPG - BACKUP PPG) * 0.052 * TD TVD)

MAXIMUM ANTICIPATED SURFACE PRESSURE	· · · · · · · · · · · · · · · · · · ·			5,777	PSI
MAXIMUM ANTICIPATED SURFACE PRESSURE (PERFORATED MASP = (TVD*.052*PORE PSI) - (GAS GRADIENT *TVD)	RESERVIOR WITH GAS TO SURFACE)			5,777	PSI
CASING TEST PRESSURE (70% OF CASING BURST, OF	R MASP + 500 PSI, PREV LOT + 500)			6277	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BAC	KUP) * .052*SHOE TVD))	8146		13.0	TEST MWT
MASP + 500 PSI		6277	_		
PREVIOUS SHOE LOT + 500 PSI TO INSURE LAP ISOLATION		3231			
CASING SLIP WEIGHT			=	218,000	LBS
STRING WEIGHT IN AIR = CASING WT • MD @ TD =	271,400 LBS				
BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) =	0.8024				
BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR =	217,771 LBS				

=

Wolfcamp Casing Design TAPERED STRING (11800'-12350' TVD/22620' MD)

WEIGHT:	23.0 #/ft	COLLAPSE RATING:	14,540 PSI
GRADE:	P-110	BURST RATING:	14,530 PSI
CONNECTION:	ULTRA FJ	JOINT STRENGTH:	724,000 LBS
CSG TOP MD	11800 ' MD		
CSG TOP TVD	11800 ' TVD	RESERVOIR PORE PRESSURE	12.3 PPG
SHOE MD	' MD	MW @ TD	13.0 PPG EMW
SHOE TVD	' TVD	FG @ TD	17.3 PPG EMW
BACK-UP GRADIENT	9.7 PPG EMW	GAS GRADIENT:	0.1500 psi/ft
PREVIOUS SHOE MD	12300	ABANDONMENT RESERVOIR PSI	1852.5000 PSI
PREVIOUS SHOE TVD	12212	COMPLETION FLUID DENSITY	8.3300 PPG
PREVIOUS SHOE FRAC	17.3		

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = ABANDONMENT RESERVOIR PRESSURE WITH MWT ON BACKSIDE COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - RESERVOIR ABANDON PSI)

TENSION SAFTEY FACTOR

TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT • MD @TD)

BURST SAFTEY FACTOR

BURST SAFETY FACTOR = BURST RATING / (MASP + (CMP FLUID PPG - BACKUP PPG) * 0.052 * TD TVD)

MAXIMUM ANTICIPATED SURFACE PRESSURE				6,047	PSI
MAXIMUM ANTICIPATED SURFACE PRESSURE (PERFORATED) MASP = (TVD*.052*PORE PSI) - (GAS GRADIENT *TVD)	RESERVIOR WITH GAS TO SURFACE)			6,047	PSI
CASING TEST PRESSURE (70% OF CASING BURST, OR	MASP + 500 PSI, PREV LOT + 500)			6547	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BACK	(UP) * .052*SHOE TVD))	8052		13.0	TEST MWT
MASP + 500 PSI		6547			
PREVIOUS SHOE LOT + 500 PSI TO INSURE LAP ISOLATION		3231			
CASING SLIP WEIGHT			=	200,000	ĹBS
STRING WEIGHT IN AIR = CASING WT • MD @ TD =	248,860 LBS				
BOUYANCY FACTOR = (PPG STEEL • MW) / PPG STEEL) =	0.8024				
BOUYED WEIGHT = STRING WEIGHT • BOUYANCY FACTOR =	199,685 LBS				

9/4/2019 Casing Design - Black Martin Fed Com 2H v4 9-4-2019

2.2

2.9

2,8

=

=

=

SURFACE	13-3/8"			
WEIGHT:	54	.5 #/ft	COLLAPSE RATING	1,130 PSI
GRADE:	J-:	55	BURST RATING:	2,730 PSI
CONNECTION:	ВТ	C	JOINT STRENGTH:	909,000 LBS
SHOE MD	2,0	50 ' MD	MW @ SURFACE TD	9.3 ppg
SHOE TVD	2,0	50 ' TVD	FG @ SURFACE SHOE:	11.5 PPG EMW
BACK-UP GRADIENT	8	.5 PPG EMW	GAS GRADIENT:	0.1000 psi/ft
TVD NEXT HOLE SECTION	J 53	00 ' TVD	MWT FOR NEXT HOLE SECT	10.0000 ppg
MASP CONSIDERATION	MUD% GAS DEN	<u>IS</u>	OPEN HOLE MAX PORE PSI	8.5000 ppg
LESS THAN 10,000	30 0.	10	MUD % FOR MASP CALC	0.3000 %
BETWEEN 10,000' - 12,000'	40 0.	15	GAS CUT MUD EQ DENSITY	0.226 PSI/FT
MORE THAN 12,000	50 0.	15		

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (HYDROSTATIC PRESS @ SHOE - GAS BACKUP) COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - GAS GRAD * TVD @ TD)

TENSION SAFTEY FACTOR ÷ 8,1 TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) BURST SAFTEY FACTOR 2.5 μ BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE BURST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE)) MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD) 1,074 PSI MAXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) PSI 1,074 MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) MASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE PORE PSI) 1145 PSI MASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT) WELL HEAD TEST PRESSURE 565 PSI WELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING

CASING TEST PRESSURE (70% OF CASING BURST O	R MASP + 500 PSI - LESSER OF)	 		1826	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BA	CKUP) * .052*SHOE TVD))	1826	L	9.3	TEST MWT
MASP + 500 PSI		1574	_		
CASING SLIP WEIGHT	·····	 	. =	96,000	Pounds
STRING WEIGHT IN AIR = CASING WT \bullet MD @ TD =	111,725 LBS				
BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) =	0.8580				
BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR =	95,862 LBS				

1.4

=

Wolfcamp Casing Design TAPERED STRING (0'-4,100')

WEIGHT:	45.5 #/ft	COLLAPSE RATING:	2,090 PSI
GRADE:	J-55	BURST RATING:	3,580 PSI
CONNECTION:	BTC	JOINT STRENGTH:	796,000 LBS
SHOE MD	4,100 ' MD	MW @ INTERMEDIATE TD	10.5 ppg
SHOE TVD	4,100 ' TVD	FG @ INTERMEDIATE SHOE:	11.5 PPG EMW
BACK-UP GRADIENT	8.9 PPG EMW	GAS GRADIENT:	0.1000 psi/ft
TVD NEXT HOLE SECTION	12212 'TVD	MWT FOR NEXT HOLE SECT	9.7000 ppg
MASP CONSIDERATION M	UD%GAS DENS	OPEN HOLE MAX PORE PSI	9.5000 ppg
LESS THAN 10,000'	30 0.10	MUD % FOR MASP CALC	0.3000 %
BETWEEN 10,000' - 12,000'	40 0.15	GAS CUT MUD EQ DENSITY	0.22132 PSI/FT
MORE THAN 12,000'	50 0.15		

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (HYDROSTATIC PRESS @ SHOE - GAS BACKUP) COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - GAS GRAD * TVD @ TD)

TENSION SAFTEY FACTOR 4.3 11 TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) BURST SAFTEY FACTOR 1.7 . BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE BURST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE)) MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD) 2,148 PSI MAXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) 2.148 PSI MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) MASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE PORE PSI) 3.330 PSI MASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT) WELL HEAD TEST PRESSURE 1,045 PSI WELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING CASING TEST PRESSURE (70% OF CASING BURST OR MASP + 500 PSI - LESSER OF) 2648 PSI 70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BACKUP) * .052*SHOE TVD)) 2165 TEST MW 10.5 MASP + 500 PSI 2648 CASING SLIP WEIGHT = 157,000 LBS STRING WEIGHT IN AIR = CASING WT * MD @ TD = 186,550 LBS BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) = 0.8397 BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR = 156,645 LBS

=

Wolfcamp Casing Design TAPERED STRING (4,100'-5,300')

WEIGHT:	45.5 #	#/ft	COLLAPSE RATING	3,130 PSI
GRADE:	HCK-55		BURST RATING:	3,580 PSI
CONNECTION:	BTC		JOINT STRENGTH:	1,037,000 LBS
SHOE MD	5,300 '	MD	MW @ INTERMEDIATE TD	10.5 ppg
SHOE TVD	5,300 '	TVD	FG @ INTERMEDIATE SHOE:	11.5 PPG EMW
BACK-UP GRADIENT	8.9 1	PPG EMW	GAS GRADIENT:	0.1000 psi/ft
TVD NEXT HOLE SECTION	12212	' TVD	MWT FOR NEXT HOLE SECT	9.7000 ppg
MASP CONSIDERATION M	UD% GAS DENS		OPEN HOLE MAX PORE PSI	9.5000 ppg
LESS THAN 10,000'	30 0.10		MUD % FOR MASP CALC	0.3000 %
BETWEEN 10,000' - 12,000'	40 0.15		GAS CUT MUD EQ DENSITY	0.22132 PSI/FT
MORE THAN 12,000	50 0.15			

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (HYDROSTATIC PRESS @ SHOE - GAS BACKUP) COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - GAS GRAD * TVD @ TD)

TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD)

BURST SAFTEY FACTOR

TENSION SAFTEY FACTOR

BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE BURST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE))

MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD)		2,777	PSI	
MAXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE)		2,777	PSI	
MASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE PORE PSI) MASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT)		3,330	PSI	
WELL HEAD TEST PRESSURE	=	1,565	PSI	

WELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING

CASING TEST PRESSURE (70% OF CASING BURST	OR MASP + 500 PSI - LESSER OF)			3277	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT -	BACKUP) * .052*SHOE TVD))	2065		10.5	TEST MW
MASP + 500 PSI		3277	-		
CASING SLIP WEIGHT			=	202,000	LBS
STRING WEIGHT IN AIR = CASING WT • MD @ TD =	241,150 LBS				
BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) =	0.8397				

1

BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR = 202,492 LBS = 1.3

4.3

1.3

=

N .

Wolfcamp Casing Design TAPERED STRING (0'-11.800')

WEIGHT:		29.7 #/ft	COLLAPSE RATING:	4,790 PSI
GRADE:		N-80	BURST RATING:	6,890 PSI
CONNECTION:		LTC	JOINT STRENGTH:	575,000 LBS
SHOE MD		11,800 ' MD	MW @ INTERMEDIATE TD	9.7 ppg
SHOE TVD		11,800 ' TVD	FG @ INTERMEDIATE SHOE:	17.3 PPG EMW
BACK-UP GRADIENT		9.5 PPG EMW	GAS GRADIENT:	0.1500 psi/ft
TVD NEXT HOLE SECTION		12350 'TVD	MWT FOR NEXT HOLE SECT	13.0000 ppg
MASP CONSIDERATION	MUD%G	AS DENS	OPEN HOLE MAX PORE PSI	13.0000 ppg
LESS THAN 10,000'	30	0.10	MUD % FOR MASP CALC	0.4000 %
BETWEEN 10,000' - 12,000'	40	0.15	GAS CUT MUD EQ DENSITY	0.3604 PSI/FT
MORE THAN 12,000	50	0.15		

COLLAPSE SAFTEY FACTOR

CASING SLIP WEIGHT

COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (HYDROSTATIC PRESS @ SHOE - GAS BACKUP) COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - GAS GRAD * TVD @ TD)

TENSION SAFTEY FACTOR 1.6 = TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) **BURST SAFTEY FACTOR** 1.8 = BURST SAFETY FACTOR = CASING BURST RATING / MAXIMUM ANTICIPATED SURFACE PRESSURE BURST SAFETY FACTOR = CASING BURST / (((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRADIENT* TVD @ SHOE)) MAXIMUM ANTICIPATED SURFACE PRESSURE (LESSER OF SHOE FRAC, OR GAS CUT MUD) 3,898 PSI MAXIMUM ANTICIPATED SURFACE PRESSURE (SHOE FRACTURE WITH GAS TO SURFACE) PSI 9,152 MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ SHOE) - (GAS GRAD * TVD @ SHOE) MASP = MAXIMUM SURFACE PRESSURE (GAS CUT MUD TO BALANCE MAX OPEN HOLE PORE PSI) 3,898 PSI MASP = (TD PP * 0.052* TD TVD) - (TD TVD * EQUIV GAS MUD PSI/FT) WELL HEAD TEST PRESSURE PSI 2,395 = WELL HEAD TEST PRESSURE = 50% OF CASING COLLAPSE RATING CASING TEST PRESSURE (70% OF CASING BURST OR MASP + 500 PSI - LESSER OF) 4398 PSI 70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BACKUP) * .052*SHOE TVD)) 4700 9.7 TEST MW MASP + 500 PSI 4398

STRING WEIGHT IN AIR = CASING WT * MD @ TD = 350,460 LBS BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) = 0.8519 BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR = 298,560 LBS

9/4/2019 Casing Design - Black Marlin Fed Com 2H v4 9-4-2019

₽

=

299,000 LBS

Wolfcamp Casing Design TAPERED STRING (11,800'-12212' TVD/12300' MD)

		0'-12212' TVD/12300' MD)			
SECOND INTERMEDIAT WEIGHT: GRADE: CONNECTION:	E 7-5/8" 29.7 #/ft P-110 LTC	COLLAPSE RATING: BURST RATING: JOINT STRENGTH:	5,340 9,470 769,000	PSI	-
SHOE MD SHOE TVD BACK-UP GRADIENT	' MD ' TVD 9.5 PPG EMW	MW @ INTERMEDIATE TD FG @ INTERMEDIATE SHOE: GAS GRADIENT:		PPg PPG EMW psi/ft	
TVD NEXT HOLE SECTION MASP CONSIDERATION LESS THAN 10,000' BETWEEN 10,000' - 12,000' MORE THAN 12,000'	12350 'TVD <u>MUD% GAS DENS</u> 30 0.10 40 0.15 50 0.15	MWT FOR NEXT HOLE SECT OPEN HOLE MAX PORE PSI MUD % FOR MASP CALC GAS CUT MUD EQ DENSITY	13.0000 13.0000 0.5000 0.413	ppg	
COLLAPSE SAFTEY FACT	OR	· ·	=	1.2	
COLLAPSE SAFETY FACTOR = COLLAPSE COLLAPSE SAFETY FACTOR = COLLAPSE					
TENSION SAFTEY FACTO	R		=	2.1	
FENSION SAFETY FACTOR = CASING IOP	NT STRENGTH / CASING WEIGHT D	N AIR			
TENSION SAFETY FACTOR = CASING JOR TENSION SAFETY FACTOR = CASING JOR BURST SAFTEY FACTOR				1.0	
TENSION SAFETY FACTOR = CASING JOIN	VT STRENGTH / (CASING WEIGHT	P MD @TD)		1.0	
TENSION SAFETY FACTOR = CASING JOIN BURST SAFETY FACTOR = CASING BURS' BURST SAFETY FACTOR = CASING BURS' BURST SAFETY FACTOR = CASING BURS'	VT STRENGTH / (CASING WEIGHT	° MD @TD) D SURFACE PRESSURE @ SHOE) - (GAS GRADIENT* TVD @ S		1.0	PSI
TENSION SAFETY FACTOR = CASING JOIN BURST SAFTEY FACTOR BURST SAFETY FACTOR = CASING BURS' BURST SAFETY FACTOR = CASING BURS' MAXIMUM ANTICIPATED SURFACE	VT STRENGTH / (CASING WEIGHT T RATING / MAXIMUM ANTICIPATE T / (((FRAC GRAD +0.5) * 0.052 * TVE RFACE PRESSURE (LESSER OF SHO PRESSURE (SHOE FRACTURE V	P MD @TD) D SURFACE PRESSURE @ SHOE) - (GAS GRADIENT• TVD @ S DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE)			PSI PSI
TENSION SAFETY FACTOR = CASING JOIN BURST SAFETY FACTOR = CASING BURS' BURST SAFETY FACTOR = CASING BURS' BURST SAFETY FACTOR = CASING BURS' MAXIMUM ANTICIPATED SURFACE MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ MASP = MAXIMUM SURFACE PRESSI	VT STRENGTH / (CASING WEIGHT T RATING / MAXIMUM ANTICIPATE T / (((FRAC GRAD +0.5) * 0.052 * TVE RFACE PRESSURE (LESSER OF SHO PRESSURE (SHOE FRACTURE V 3 SHOE) - (GAS GRAD * TVD @ SHOI JRE (GAS CUT MUD TO BALANG	P MD @TD) D SURFACE PRESSURE @ SHOE) - (GAS GRADIENT* TVD @ S DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) =)		3,248	
TENSION SAFETY FACTOR = CASING JOIN BURST SAFETY FACTOR = CASING BURS' BURST SAFETY FACTOR = CASING BURS' BURST SAFETY FACTOR = CASING BURS' MAXIMUM ANTICIPATED SURFACE MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ MASP = MAXIMUM SURFACE PRESSI	VT STRENGTH / (CASING WEIGHT T RATING / MAXIMUM ANTICIPATE T / (((FRAC GRAD +0.5) * 0.052 * TVE RFACE PRESSURE (LESSER OF SHO PRESSURE (SHOE FRACTURE V 0) SHOE) - (GAS GRAD * TVD @ SHOI JRE (GAS CUT MUD TO BALANG VD * EQUIV GAS MUD PSI/FT)	P MD @TD) D SURFACE PRESSURE @ SHOE) - (GAS GRADIENT* TVD @ S DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) =)		3,248 9,472 3,248	PSI
TENSION SAFETY FACTOR = CASING JOIN BURST SAFETY FACTOR = CASING BURST BURST SAFETY FACTOR = CASING BURST BURST SAFETY FACTOR = CASING BURST MAXIMUM ANTICIPATED SURFACE I MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ MASP = (MAXIMUM SURFACE PRESSI MASP = (TD PP * 0.052 * TD TVD) - (TD T WELL HEAD TEST PRESSI	NT STRENGTH / (CASING WEIGHT T RATING / MAXIMUM ANTICIPATE T / (((FRAC GRAD +0.5) * 0.052 * TVE RFACE PRESSURE (LESSER OF SHO PRESSURE (SHOE FRACTURE N) SHOE) - (GAS GRAD * TVD @ SHOI JRE (GAS CUT MUD TO BALANG VD * EQUIV GAS MUD PSI/FT) JRE	P MD @TD) D SURFACE PRESSURE @ SHOE) - (GAS GRADIENT* TVD @ S DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) =)	HOE))	3,248 9,472 3,248	PSI PSI
TENSION SAFETY FACTOR = CASING JOIN BURST SAFETY FACTOR = CASING BURST BURST SAFETY FACTOR = CASING BURST BURST SAFETY FACTOR = CASING BURST MAXIMUM ANTICIPATED SURFACE I MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ MASP = MAXIMUM SURFACE PRESSIN MASP = (TD PP * 0.052* TD TVD) - (TD T WELL HEAD TEST PRESSURE = 50% OF CA	T STRENGTH / (CASING WEIGHT T RATING / MAXIMUM ANTICIPATE T / (((FRAC GRAD +0.5) * 0.052 * TVE RFACE PRESSURE (LESSER OF SHO PRESSURE (SHOE FRACTURE N) SHOE) - (GAS GRAD * TVD @ SHOI) SHOE) - (GAS CUT MUD TO BALANG VD * EQUIV GAS MUD PSI/FT)] RE SING COLLAPSE RATING 70% OF CASING BURST OR MA	P MD @TD) D SURFACE PRESSURE @ SHOE) - (GAS GRADIENT* TVD @ S DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) (5) CE MAX OPEN HOLE PORE PSI) SP + 500 PSI - LESSER OF)	HOE))	3,248 9,472 3,248	PSI PSI PSI PSI
TENSION SAFETY FACTOR = CASING JOI BURST SAFETY FACTOR = CASING BURST BURST SAFETY FACTOR = CASING BURST BURST SAFETY FACTOR = CASING BURST MAXIMUM ANTICIPATED SU MAXIMUM ANTICIPATED SURFACE J MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ MASP = (AXIMUM SURFACE PRESSI MASP = (TD PP * 0.052* TD TVD) - (TD T WELL HEAD TEST PRESSURE = 50% OF CA CASING TEST PRESSURE (T STRENGTH / (CASING WEIGHT T RATING / MAXIMUM ANTICIPATE T / (((FRAC GRAD +0.5) * 0.052 * TVE RFACE PRESSURE (LESSER OF SHO PRESSURE (SHOE FRACTURE N) SHOE) - (GAS GRAD * TVD @ SHOI) SHOE) - (GAS CUT MUD TO BALANG VD * EQUIV GAS MUD PSI/FT)] RE SING COLLAPSE RATING 70% OF CASING BURST OR MA	P MD @TD) D SURFACE PRESSURE @ SHOE) - (GAS GRADIENT* TVD @ S DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) (5) CE MAX OPEN HOLE PORE PSI) SP + 500 PSI - LESSER OF)	HOE))	3,248 9,472 3,248 2,670 3748	PSI PSI PSI PSI
TENSION SAFETY FACTOR = CASING JOI BURST SAFETY FACTOR = CASING BURST BURST SAFETY FACTOR = CASING BURST BURST SAFETY FACTOR = CASING BURST MAXIMUM ANTICIPATED SU MAXIMUM ANTICIPATED SURFACE J MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ MASP = ((FRAC GRAD +0.5) * 0.052 * TVD @ MASP = (TD PP * 0.052 * TD TVD) - (TD T WELL HEAD TEST PRESSURE = 50% OF CA CASING TEST PRESSURE = 50% OF CA	T STRENGTH / (CASING WEIGHT T RATING / MAXIMUM ANTICIPATE T / (((FRAC GRAD +0.5) * 0.052 * TVE RFACE PRESSURE (LESSER OF SHO PRESSURE (SHOE FRACTURE N) SHOE) - (GAS GRAD * TVD @ SHOI) SHOE) - (GAS CUT MUD TO BALANG VD * EQUIV GAS MUD PSI/FT)] RE SING COLLAPSE RATING 70% OF CASING BURST OR MA	P MD @TD) D SURFACE PRESSURE @ SHOE) - (GAS GRADIENT* TVD @ S DE FRAC, OR GAS CUT MUD) WITH GAS TO SURFACE) (5) CE MAX OPEN HOLE PORE PSI) SP + 500 PSI - LESSER OF)	(HOE)) 	3,248 9,472 3,248 2,670 3748 9.7	PSI PSI PSI

Wolfcamp Casing Design TAPERED STRING (0'-11,800')

*STILL INSIDE SECOND INTERMEDIATE CASING @ RUNNING DEPTH

WEIGHT:	23.0 #/ft	COLLAPSE RATING:	15,990 PSI
GRADE:	P-110	BURST RATING:	14,530 PSI
CONNECTION:	ULTRA QX	JOINT STRENGTH:	729,000 LBS
CSG TOP MD	0 ' MD		
CSG TOP TVD	0 ' TVD	RESERVOIR PORE PRESSURE	12.3 PPG
SHOE MD	11,800 'MD	MW @ TD	13.0 PPG EMW
SHOE TVD	11,800 'TVD	FG@TD	17.3 PPG EMW
BACK-UP GRADIENT	9.7 PPG EMW	GAS GRADIENT:	0.1500 psi/ft
PREVIOUS SHOE MD	12300	ABANDONMENT RESERVOIR PSI	1770.0000 PSI
PREVIOUS SHOE TVD	12212	COMPLETION FLUID DENSITY	8.3300 PPG
PREVIOUS SHOE FRAC	17.3		

COLLAPSE SAFTEY FACTOR 2.6 = COLLAPSE SAFETY FACTOR = ABANDONMENT RESERVOIR PRESSURE WITH MWT ON BACKSIDE COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - RESERVOIR ABANDON PSI) **TENSION SAFTEY FACTOR** = 2.7 TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD) **BURST SAFTEY FACTOR** 2.9 = BURST SAFETY FACTOR = BURST RATING / (MASP + (CMP FLUID PPG - BACKUP PPG) * 0.052 * TD TVD) MAXIMUM ANTICIPATED SURFACE PRESSURE 5,777

MAXIMUM ANTICIPATED SURFACE PRESSURE (PERFORATED RESERVIOR WITH GAS TO SURFACE) MASP = (TVD*.052*PORE PSI) - (GAS GRADIENT *TVD)					PSI
CASING TEST PRESSURE (70% OF CASING BUR	RST, OR MASP + 500 PSI, PREV LOT + 500)			6277	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT MASP + 500 PSI PREVIOUS SHOE LOT + 500 PSI TO INSURE LAP ISOLATION	Γ - BACKUP) * .052*SHOE TVD))	8146 6277 3231	T	13.0	TEST MWŢ
CASING SLIP WEIGHT	·····		=	218,000	LBS
STRING WEIGHT IN AIR = CASING WT • MD @ TD = BOUYANCY FACTOR = (PPG STEEL • MW) / PPG STEEL) =	271,400 LBS 0.8024				

217,771 LBS

BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) = BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR =

9/4/2019 Casing Design - Black Martin Fed Com 2H v4 9-4-2019

PSI

Wolfcamp Casing Design TAPERED STRING (11800'-12350' TVD/22620' MD)

WEIGHT	23.0 #/ft	COLLAPSE RATING	14,540 PSI
GRADE:	P-110	BURST RATING:	14,530 PSI
CONNECTION:	ULTRA FJ	JOINT STRENGTH:	724,000 LBS
CSG TOP MD	11800 ' MD		
CSG TOP TVD	11800 ' TVD	RESERVOIR PORE PRESSURE	12.3 PPG
SHOE MD	' MD	MW @ TD	13.0 PPG EMW
SHOE TVD	' TVD	FG @ TD	17.3 PPG EMW
BACK-UP GRADIENT	9.7 PPG EMW	GAS GRADIENT:	0.1500 psi/ft
PREVIOUS SHOE MD	12300	ABANDONMENT RESERVOIR PSI	1852.5000 PSI
PREVIOUS SHOE TVD	12212	COMPLETION FLUID DENSITY	8.3300 PPG
PREVIOUS SHOE FRAC	17.3		

COLLAPSE SAFTEY FACTOR

COLLAPSE SAFETY FACTOR = ABANDONMENT RESERVOIR PRESSURE WITH MWT ON BACKSIDE COLLAPSE SAFETY FACTOR = COLLAPSE RATING / (MW@TD * 0.052 * TVD - RESERVOIR ABANDON PSI)

TENSION SAFTEY FACTOR

TENSION SAFETY FACTOR = CASING JOINT STRENGTH / CASING WEIGHT IN AIR TENSION SAFETY FACTOR = CASING JOINT STRENGTH / (CASING WEIGHT * MD @TD)

BURST SAFTEY FACTOR

BURST SAFETY FACTOR = BURST RATING / (MASP + (CMP FLUID PPG - BACKUP PPG) * 0.052 * TD TVD)

MAXIMUM ANTICIPATED SURFACE PRESSURE			-	6,047	PSI
MAXIMUM ANTICIPATED SURFACE PRESSURE (PERFORATED MASP = (TVD*.052*PORE PSI) - (GAS GRADIENT *TVD)		6,047	PSI		
CASING TEST PRESSURE (70% OF CASING BURST, OF	R MASP + 500 PSI, PREV LOT + 500)		I	6547	PSI
70% OF CASING BURST = (0.7* BURST RATING) - ((TEST MWT - BAC	KUP) * .052*SHOE TVD))	8052	Ľ	13.0	TEST MWT
MASP + 500 PSI		6547			
PREVIOUS SHOE LOT + 500 PSI TO INSURE LAP ISOLATION 323					
CASING SLIP WEIGHT			=	200,000	LBS
STRING WEIGHT IN AIR = CASING WT • MD @ TD =	248,860 LBS				
BOUYANCY FACTOR = (PPG STEEL - MW) / PPG STEEL) =	0.8024				
BOUYED WEIGHT = STRING WEIGHT * BOUYANCY FACTOR =	199,685 LBS				

2.2

2.9

2,8

=

II

=

CLILIS ENERGY

Well Description: PATTERSON 762 Antelope 1H Latitude: 31.98453 Longitude: -103.25875 TRRC Permit #: 834879

H₂S Contingency Plan

Marsz Safety

(210) 560-6705

Table of Contents

I.	EMERGENCY ASSISTANCE TELEPHONE LIST
II.	H ₂ S CONTINGENCY PLAN SECTION
III.	OPERATING PROCEDURES
IV.	OPERATING CONDITIONS
V.	EMERGENCY PROCEDURES
VI.	POST EMERGENCY ACTIONS
VII.	IGNITION PROCEDURES
VIII.	TRAINING PROGRAM
IX.	EMERGENCY EQUIPMENT
X .	CHECKLISTS
XI.	BRIEFING PROCEDURES
XII.	EVACUATION PLAN
XIII.	MAPS AND PLATS
XIV.	DIRECTIONS / 3,000' RADIUS MAP
XV.	APPENDICES AND GENERAL INFORMATION

I. EMERGENCY ASSISTANCE TELEPHONE LIST

PUBLIC SAFE	TY:			911 or
Winkler Cou	(432) 586-3461			
Fire Departm	nent:	•		
	Kermit, TX			(432) 586-2577
	Wink, TX			(432) 527-3333
EMS:	Kermit EMS			(432) 547-2240
	Wink EMS			(432) 586-2055
Hospitals:	Reeves Co. Hospita	al (Pecos)		(432)447-3551
	Ward Memorial Ho	ospital (Monah	ans)	(432) 943-2511
	Winkler Co. Hospit	al (Kermit)		(432) 586-5864
Texas Dept. o	of Transportation:	Kermit		(432) 586-3134
·		Pecos	Joel Griner	(432) 445-4737
Texas Railroa	ad Commission:	Main Line		(887)228-5740
		24hr. Accid	ent Reporting	(512) 463-6788
OSHA 24 Hr.	Reporting			(800) 321-6742
(8 hrs	after death or 24 hrs afte	r in-patient, ampu	utation, loss of an eye)
Lilis Energy	/ Offices			
- Kermit Offi				(432) 248-3816
- San Antonio	o Office			(210) 999-5400
Drilling Gene	eral Manager			
	<u></u>			Office
				Cell
Patterson U	FI Rig Manager			
Bobby	y Burngardner			(361) 793-8330
Clay E	Bennett			(601) 467-3117

Lilis Drilling and Con	npletion Superintendent		
David A. Jorda	n		5) 890-4492 5) 357-8895
<u>Field Superintend</u> Trae Laird Randy Bridges		•	5) 441-4006 6) 891-4760
Production Operation	ons Manager		
George M. Pl	acke	•	10) 999-5400 10) 865-1239
Drilling Rig Name: Patterson 762	2		
Drilling Consultant:	-		
Brent New		(30	51) 235-9611
Emergency Accomm	odations		
Pecos Lodge	(Pecos)	(8	55) 582-7438
Southern Inn	& Suites (Kermit)	(4	32) 586-2540
Safety Consultants			
Marsz Safety	Sean Farnsworth	Cell (210) 560-6705

II. H₂S CONTINGENCY PLAN SECTION

Scope:

This contingency plan provides an organized plan of action for alerting and protecting the public within an area of exposure prior to an intentional release, or following the accidental release of a potentially hazardous volume of hydrogen sulfide. The plan establishes guidelines for all personnel whose work activity may involve exposure to Hydrogen Sulfide Gas (H₂S).

Objective:

Prevent any and all accidents, and prevent the uncontrolled release of H₂S into the atmosphere. Provide proper evacuation procedures to cope with emergencies. Provide immediate and adequate medical attention should an injury occur.

Purpose, Distribution and Updating of Contingency Plan:

The Purpose of this contingency plan is to protect the general public from the harmful effects of H₂S accidentally escaping from the subject producing well. This plan is designed to accomplish its purpose by assuring the preparedness necessary to:

- 1. Minimize the possibility of releasing H₂S into the atmosphere during related operations.
- 2. Provide for the logical, efficient, and safe emergency actions required to protect the general public in the event of an accidental release of a potentially hazardous quantity of H₂S.

Supplemental information is included with this plan and is intended as reference material for anyone needing a more detailed understanding of the many factors pertinent to H₂S drilling operations safety. The release of a potentially hazardous quantity of H₂S is highly unlikely. If such a release should occur however, obviously the exact time, rate, duration, and other pertinent facts will be known in advance thus, this contingency plan must necessarily be somewhat general. The plan does review in detail, as is reasonably possible, the type of accidental release that could possibly endanger the general public, the probable extent of such danger, and the emergency actions generally appropriate. In the event of such an accidental release, the specific actions to be taken will have to be determined at the time of release by the responsible personnel at the drilling location. Complete familiarity with this plan will help such personnel make the proper decisions rapidly. Familiarity with this plan is so required al all operators, operator representatives, and drilling contractor supervisory personnel who could possibly be on duty at the drilling location at the time of an H2S emergency.

IT IS THE RESPONSIBILITY OF THE OPERATOR TO ASSURE SUCH FAMILIARITY BEFORE DRILLING WITHIN 1000' OR THREE DAYS PRIOR TO PENETRATION OF THE SHALLOWEST FORMATION KNOWN OR SUSPECTED TO CONTAIN H₂S IN POTENTIALLY HAZARDOUS QUANTITIES, AND ALSO TO ASSURE THE TIMELY ACCOMPLISHMENT OF ALL THE OTHER ACTION SPECIFIED HERE IN.

As this contingency plan was prepared considerably in advance of the anticipated H₂S operation, the plan must be kept current if it is to effectively serve its purpose. The operators will be responsible for seeing that all copies are updated. Updating the plan is required when any changes to the personnel Call List (Section) including telephone numbers occur or when any pertinent data or plans for the well are altered. The plan must also be updated when any changes in the general public likely to be within the exposure area in the event of an accidental release from the well bore of a potentially hazardous quantity of H₂S. Two copies of this plan shall be retained at the office of Anadarko Petroleum Corporation. Two copies shall be retained at the drilling location.

Discussion of Plan:

Suspected Problem Zones:

Implementation: This plan, with all details, is to be fully implemented 1000' before drilling into the first sour zone.

Emergency Response Procedure: This section outlines the conditions and denotes steps to be taken in the event of an emergency.

Emergency Equipment and Procedure: This section outlines the safety and emergency equipment that will be required for the drilling of this well.

Training Provisions: This section outlines the training provisions that must be adhered to 1000' before drilling into the first sour zone.

Emergency call list: Included are the telephone numbers of all persons that would need to be contacted, should an H₂S emergency occur.

Briefing: This section deals with the briefing of all persons involved with the drilling of this well.

Public Safety: Public Safety Personnel will be made aware of the drilling of this well.

Check Lists: Status check lists and procedural check lists have been included to ensure adherence to the plan.

General Information: A general information section has been included to supply support information.

III. OPERATING PROCEDURES

A. Blowout Preventer Drills

Due to the special piping and manifolding necessary to handle poisonous gas, particular care will be taken to insure that all rig personnel are completely familiar with their jobs during the drills. The Drilling Consultant and Tool Pusher (Rig Superintendent) in particular are thoroughly familiar with the additional controls and piping necessary.

B. H₂S Alarm Drills

The Company Man and/ or designee will conduct frequent H₂S alarm drills for each crew by injecting a trace of H₂S where the detector will give an alarm. Under these conditions all personnel on location will put on air equipment and remain masked until all clear is announced.

C. Surface Annular Preventer/ Diverter System Testing

After installation of the surface annular preventer, Hydraulic Control Valve and diverter system, both of these are to be function tested. They also should be function tested frequently while drilling surface hole.

D. Blowout Preventer

After installation of the Blowout Preventer Stack, the stack will be pressure tested. The Choke manifold is also to be pressure tested at this time. This procedure will be repeated as required by the TRRC or if any of the stack is nippled down. Also at this time, the Blind and Pipe Rams are checked for correct operation.

E. Well Control Practice Drills and Safety Meeting for Crew Members

Pit drills are for the purpose of acquainting each member of the drilling crew with his duties in the event of an emergency. Drills will be held with each crew as frequently as required to thoroughly familiarize each man with his duties. Drills are to be held at least weekly from that time forward.

1. BOP Drill while on Bottom Drilling:

A. Signal will be three or more long blast given by driller on the horn.

B. Procedure will be as follows:

- 1. Tool Pusher: Supervises entire operation.
- 2. Driller
 - a. Gives signal.
 - b. Picks up Kelly.
 - c. Stops pumps.
 - d. Observes flow.
 - e. Signal to close (pipe rams if necessary).
 - f. Check that Choke Manifold is closed.
 - g. Record drill pipe pressure, casing pressure and determine mud
 - volume gain.
- 3. Motorman
 - a. Go to closing unit and standby for signal to close BOP.
 - b. Close BOP in signal.
 - c. Check on BOP closing.

- d. Go to floor to assist driller. (NOTE: During test drills the BOP
 - need not be completely closed at the discretion of the supervisor. Supervisor
 - should make it very clear that it is a test drill only!)
- 4. Derrickman
 - a. Check pumps.
 - b. Go to floor for directions from the driller.
- 5. Floorman
 - a. Go to manifold.
 - b. Observe and record pressure.
 - c. Check manifold and BOP for leaks.
 - d. Check with driller for additional instructions.
- 2. BOP Drill While Making Trip:
 - A. During trip driller will fill hole every five (5) stands and check the pits to be sure hole is taking mud.
 - B. Drill Procedure is as follows:
 - 1. Driller
 - a. Order Safety valve installed.
 - b. Alert those not on the floor.
 - c. Go to stations as described in above drill.
- 3. Safety Meetings
 - A. Every person involved in the operating will be informed of the characteristics of H₂S, its danger and safety procedures to be used when it is encountered, and recommended first-aid procedure for regular rig personnel. This will be done through a series of talks made before spud.
 - B. The Safety Advisor or Drilling Supervisor will conduct these training sessions and will repeat them as deemed necessary by him. Talks may include the following subjects:
 - 1. Dangers of Hydrogen Sulfide (H₂S).
 - 2. Use and limitations of air equipment.
 - 3. Use of resuscitator.
 - 4. Organize Buddy System.
 - 5. First Aid procedures.
 - 6. Use of H₂S detection devices.
 - 7. Designate responsible people.
 - 8. Explain rig layout and policy to visitors.
 - a. Designate smoking and safety or Muster area.
 - b. Emphasize the importance of wind directions.
 - 9. Describe and explain operation of BOP stack, manifold, separator, and pit piping. Include maximum allowable pressure for casing procedure.
 - 10. Explain functions of Safety Supervisor.
 - 11. Explain organize H₂S Drills.
 - 12. Explain the overall emergency plan with emphasis given to the evacuation phase of the plans.

Note: The above talks will be attended by every person involved in the operation. When drilling has
reached a depth where H₂S is anticipated, temporary service personnel and visitors will be directed to
the Drilling Consultant, who will designate the air equipment to be used by them in case of emergency,
acquaint them with the dangers involved and be sure of their safety while they are in the area. He will
point out the Briefing Areas, Wind Socks, and Smoking Areas. He may refuse entrance to anyone, who in
his opinion should not be admitted because of lack of safety equipment, special operations in progress
or for other reasons involving personnel safety.

F. Outside Service Personnel

All service people such as cementing crews, logging crews, specialist, mechanics, and welders will furnish their own safety equipment. The Company Man/ or designee will be sure that the number of people on location does not exceed the number of masks on location, and they have been briefed in regard to safety procedures. He will also be sure each of these people know about smoking and "Briefing Areas", and know what to do in case of an emergency alert or drill. Visitors will be restricted, except with special permission from the Drilling Consultant, when H₂S might be encountered. They will be briefed as to what to do in case of an alert or drill.

G. Onsite/ off shift workers

All workers that are staying on site must be identified as to where they are staying while off tour. If a drill/ or emergency takes place related to an H2S release, each crew must have a designated person(s) that will wake them up and ensure that they are cleared to the appropriate muster area immediately.

H. Simultaneous Operations (SIMOPS)

If work is going on adjacent to the location is the responsibility of the Drilling Consultant or designee to communicate any applicable risks that may affect personnel working on that adjacent location. In the case of an H2S drill or event, there should be a designated crew member that is responsible for making contact with personnel on adjacent locations. This could include just communication on potential events or in case of an event, notification to evacuate location. Drilling Consultant or designee are the Point of Contact and are in charge of all activities at such point of an H2S event occurrence.

I. Area Residences/ Occupied Locations/ Public Roads

Any occupied residences/ businesses that are within a reasonable perimeter of the location (attached map will identify a 3000' radius around location) should be identified as part of this contingency and a reasonable effort will be made to gain contact information for them. As part of the briefing of the contingency plan, the team reviewing should identify where these potential receptors are and make a plan on who will contact them in case of a release that may impact that area.

J. Drilling Fluids

<u>Drilling Fluid Monitoring</u> – On Any Hazardous H₂S gas well, the earlier the warning of danger the better chance to control operations. Mud Company will be in daily contact with Anadarko Petroleum Corporation Consultant. The Mud Engineer will take samples of the mud, analyze these samples, and make necessary recommendations to prevent H₂S gas from the formation, the pH will be increased as necessary for corrosion control.

<u>pH Control</u> – For normal drilling, pH of 10.5 – 11.5. Would be sufficient for corrosion protection. If there is an influx of H_2S gas from the formation, the pH will be increased as necessary for corrosion control.

<u> H_2S Scavengers</u> – If necessary H_2S scavengers will be added to the drilling mud.

IV. OPERATING CONDITIONS

A. Posting Well Condition Flags

Post the green, yellow or red well condition flag, as appropriate, on the well condition sign at the location entrance, and take necessary precautions as indicated below:

- 1. Green Flag: Potential Danger- When Drilling in known H₂S zones or when H₂S has been detected in the drilling fluid atmosphere. Protective breathing equipment shall be inspected, and all personnel on duty shall be alerted to be ready to use this equipment.
- Yellow Flag: Potential Danger- When the threshold limit value of H₂S (10 PPM) or of SO₂ (5 PPM) is reached. If the concentration of H₂S or SO₂ reaches 10 PPM, protective breathing equipment shall be worn by all working personnel, and non-working personnel shall go to the upwind Safe Briefing Area.
- 3. **Red Flag**: Extreme danger*- When the ambient concentration of H₂S or SO₂ is reasonably believed or determined to have exceeded the potentially hazardous level. All non-essential personnel shall leave the drilling location taking the route most likely to exposure to escapinggas.

B. Requiring Air Masks Conditions

- 1. Whenever air masks are used, the person must be clean shaven as shown in the APC Guidelines
- 2. When breaking out any line where H_2S can reasonably be expected.
- 3. When sampling air in areas to determine if toxic concentrations of H₂S exist.
- 4. When working in areas where 10 PPM or more of H_2S has been detected.
- 5. At any time there is doubt as to the H_2S level in the area to be entered.

C. Kick Procedure

- 1. It is very important that the driller be continuously alert, especially when approaching a gas formation.
- 2. Should gas come into the well bore, it is very important to be aware of a kick at the earliest time.
- 3. If a kick is identified, follow appropriate diverter or shut in procedures according to the situation that is presented utilizing appropriate kick procedures.

V. EMERGENCY PROCEDURES

- I. In the event of any evidence of H₂S level above 10ppm, take the following steps immediately:
 - a. Secure breathing apparatus.
 - b. Order non-essential personnel out of the danger zone.
 - c. Take steps to determine if the H₂S level can be corrected or suppressed, and if so, proceed with normal operations.
- II. If uncontrollable conditions occur, proceed with the following:
 - a. Take steps to protect and/or remove any public downwind of the rig, including partial evacuation or isolation. Notify necessary public safety personnel.
 - b. Remove all personnel to the Safe Briefing Area.
 - c. Notify public safety personnel for help with maintaining roadblocks, thus limiting traffic and implementing evacuation.
 - d. Determine and proceed with the best possible plan to regain control of the well. Maintain tight security and safety measures.
- III. Responsibility
 - a. The Company Approved Supervisor shall be responsible for the total implementation of the plan.
 - b. The Company Approved Supervisor shall be in complete command during any emergency.
 - c. The Company Approved Supervisor shall designate a backup Supervisor in the event that he/she is not available.
- IV. Actions to be taken
 - a. Assign specific tasks to drilling location personnel
 - b. Evacuate the general public from the exposure area
 - c. Cordon off the exposure area to prevent entry by unauthorized persons
 - d. Request assistance if and as needed and initiate emergency notifications
 - e. Stop the dispersion of H₂S
 - f. Complete emergency notifications as required
 - g. Return the situation to normal

EMERGENCY PROCEDURE IMPLEMENTATION

Drilling or Tripping

Ι.

- a. <u>All Personnel</u>
 - i. When alarm sounds, don escape unit and report to upwind Safe Briefing Area.
 - ii. Check status of other personnel (buddy system).
 - iii. Secure breathing apparatus.
 - iv. Wait for orders from supervisor.
- b. <u>Drilling Foreman</u>
 - i. Report to the upwind Safe Briefing Area.
 - ii. Don Breathing Apparatus and return to the point of release with the Tool Pusher or Driller (buddy system).
 - iii. Determine the concentration of H_2S .
 - iv. Assess the situation and take appropriate control measures.
- c. <u>Tool Pusher</u>
 - i. Report to the upwind Safe Briefing Area.
 - ii. Don Breathing Apparatus and return to the point of release with the Drilling Foreman or the Driller (buddy system).
 - iii. Determine the concentration of H_2S .
 - iv. Assess the situation and take appropriate control measures.
- d. <u>Driller</u>
 - i. Check the status of other personnel (in a rescue attempt, always use the buddy system).
 - ii. Assign the least essential person to notify the Drilling Consultant and Tool Pusher, in the event of their absence.
 - iii. Assume the responsibility of the Drilling Consultant and the Tool Pusher until they arrive, in the event of their absence.
- e. Derrick Man and Floor Hands
 - i. Remain in the upwind Safe Briefing Area until otherwise instructed by a supervisor.
- f. Mud Engineer
 - i. Report to the upwind Safe Briefing Area.
 - ii. When instructed, begin check of mud for pH level and H_2S level.
- g. <u>Safety Personnel</u>
 - i. Don Breathing Apparatus.
 - ii. Check status of personnel.
 - iii. Wait for instructions from Drilling Consultant or Tool Pusher.

II. Taking a Kick

- a. All Personnel report to the upwind Safe Briefing Area.
- b. Follow standard BOP/ diverter procedures.

III. Open Hole Logging

- a. All unnecessary personnel should leave the rig floor.
- b. Drilling Consultant and Safety Personnel should monitor the conditions and make necessary safety equipment recommendations.

IV. Running Casing or Plugging

- a. Follow "Drilling or Tripping" procedures.
- b. Assure that all personnel have access to protective equipment.

VI. POST EMERGENCY ACTIONS

In the event this plan is activated, the following post emergency actions shall be taken in an effort to reduce the possibility of a reoccurrence of the type of problem that required its activation, and/or assure that any future activation of a similar plan will be as effective as possible.

- A. Review the factors that caused or permitted the emergency occur, and if the need is indicated, modify operating, maintenance and/or surveillance procedures.
- B. If the need is indicated, retrain employees in blowout prevention, H₂S emergency procedures and etc.
- C. Clean up, recharge, restock, repair, and/ or replace H₂S emergency equipment as necessary, and return it to its proper place. (For whatever rental equipment is used, this will be the responsibility of Rental Company).
- D. See that future H₂S drilling contingency plans are modified accordingly, if the need is indicated.

VII. IGNITION PROCEDURES

Responsibilities:

The decision to ignite the well is the responsibility of the DRILLING Consultant in concurrence with the STATE POLICE. In the event the Drilling Consultant is incapacitated, it becomes the responsibility of the RIG TOOL PUSHER. This decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope of controlling the blowout under the prevailing conditions.

If time permits, notify the main office, but do not delay if human life is in danger. Initiate the first phase of the evacuation plan.

Instructions for Igniting the Well:

- 1. Two people are required for the actual igniting operation. Both men must wear self-contained breathing apparatus and must use a full body harness and attach a retrievable safety line to the D-Ring in the back. One man must monitor the atmosphere for explosive gases with the LEL monitor, while the Drilling Consultant is responsible for igniting the well.
- 2. The primary method to ignite is a 25mm flare gun with a range of approximately 500 feet.
- 3. Ignite from upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best suited for protection and which offers an easy escape route.
- 5. Before igniting, check for the presence of combustible gases.
- 6. After igniting, continue emergency actions and procedures as before.
- 7. All unassigned personnel will limit their actions to those directed by the Drilling Consultant.

Note: After the well is ignited, burning Hydrogen Sulfide will convert to Sulfur Dioxide, which is also highly toxic. Also both are heavier than air. Do not assume the area is safe even after the well is ignited.

VII. TRAINING ROGRAM

When working in an area where Hydrogen Sulfide (H₂S) might be encountered, definite training requirements must be carried out. The Company Supervisor will ensure that all personnel, at the well site, have had adequate training in the following:

- **1.** Hazards and characteristics of Hydrogen Sulfide (H₂S).
- 2. Physicals effects of Hydrogen Sulfide on the human body.
- **3.** Toxicity of Hydrogen Sulfide and Sulfur Dioxide.
- 4. H₂S detection, Emergency alarm and sensor location.
- 5. Don and Doff of SCBA and be clean shaven.
- 6. Emergency rescue.
- 7. Resuscitators.
- 8. First aid and artificial resuscitation.
- 9. The effects of Hydrogen Sulfide on metals.
- **10.** Location safety.

Service company personnel and visiting personnel must be notified if the zone contains H₂S, and each service company must provide adequate training and equipment for their employees before they arrive at the well site.

IX. EMERGENCY EQUIPMENT

Lease Entrance Sign:

Should be located at the lease entrance with the following information:

CAUTION -- POTENTIAL POISON GAS HYDROGEN SULFIDE NO ADMITTANCE WITHOUT AUTHORIZATION

Respiratory Equipment:

- Fresh air breathing equipment should be placed at the safe briefing areas and should include the following:
- Two SCBA's at each briefing area.
- Enough airline units to operate safely, anytime the H₂S concentration reaches the IDLH level (100ppm).
- Cascade system with enough breathing air hose and manifolds to reach the rig floor, the derrickman and the other operation areas.

Windsocks or Wind Streamers:

- A minimum of two 10" windsocks located at strategic locations so that they may be seen from any point on location.
- Wind streamers (if preferred) should be placed at various locations on the well site to ensure wind consciousness at all times. (Corners of location).

Hydrogen Sulfide Detector and Alarms:

- **1** Four channel H₂S monitor with alarms.
- Three (3) sensors located as follows: #1 Rig Floor, #2 Shale Shaker, #3 Cellar.
- **Gastec or Draeger pump with tubes.**
- Sensor test gas.

Well Condition Sign and Flags:

The Well Condition Sign w/flags should be placed a minimum of 150' before you enter the location. It should have three (3) color coded flags (green, yellow and red) that will be used to denote the following location conditions:

GREEN – Normal Operating Conditions YELLOW – Potential Danger RED – Danger, H₂S Gas Present

Auxiliary Rescue Equipment:

- **D** Stretcher
- 2 100' Rescue lines.
- **First Aid kit properly stocked.**

Mud Inspection Equipment:

Garret Gas Train or Hach Tester for inspection of Hydrogen Sulfide in the drilling mud system.

Fire Extinguishers:

Adequate fire extinguishers shall be located at strategic locations.

Blowout Preventer:

- **I** The well shall have hydraulic BOP equipment for the anticipated bottom hole pressure (BHP).
- **The BOP should be tested upon installation.**
- **BOP**, Choke Line and Kill Line will be tested as specified by Operator.

Confined Space Monitor:

There should be a portable multi-gas monitor with at least 3 sensors (O_2 , LEL H_2S), preferably 4 (O_2 , LEL, H_2S , CO). This instrument should be used to test the atmosphere of any confined space before entering. It should also be used for atmospheric testing for LEL gas before beginning any type of Hot Work. Proper calibration documentation will need to be provided.

Communication Equipment:

Proper communication equipment such as cell phones or 2-way radios should be available at the rig.

- Radio communication shall be available for communication between the company man's trailer, rig floor and the tool pusher's trailer.
- **D** Communication equipment shall be available on the vehicles.

Special Control Equipment:

- B Hydraulic BOP equipment with remote control on the ground.
- Rotating head at the surface casing point.

Evacuation Plan:

- **Evacuation routes should be established prior to spudding the well.**
- Should be discussed with all rig personnel.

Designated Areas:

Parking and Visitor area:

- All vehicles are to be parked at a pre-determined safe distance from the wellhead.
- Designated smoking area.

Safe Briefing Areas:

- Two Safe Briefing Areas shall be designated on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds or they are at a 180 degree angle if wind directions tend to shift in the area.
- Personal protective equipment should be stored at both briefing areas or if a moveable cascade trailer is used, it should be kept upwind of existing winds. When wind is from the prevailing direction, both briefing areas should be accessible.

Note:

- Additional equipment will be available at the H2S Provider Safety office.
- Additional personal H₂S monitors are available for all employees on location.
- Automatic Flare Igniters are recommended for installation on the rig.

X. PROCEDURAL CHECKLIST

Perform the following on each tour:

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to ensure that they have not been tampered with.
- 3. Check pressure on the supply air bottles to make sure they are capable of recharging.
- 4. Make sure all of the Hydrogen Sulfide detection systems are operative.
- 5. Ensure that all BOP/ Surface Annular/ Diverter systems are functioning and operational.

Perform the following each week:

- Check each piece of breathing equipment to make sure that they are fully charged and operational. This
 requires that the air cylinder be opened and the mask assembly be put on and tested to make sure that
 the regulators and masks are properly working. Negative and Positive pressure should be conducted on
 all masks.
- 2. BOP skills.
- 3. Check supply pressure on BOP accumulator stand-by source.
- 4. Check all breathing air mask assemblies to see that straps are loosened and turned back, ready for use.
- 5. Check pressure on cascade air cylinders to make sure they are fully charged and ready to use for refill purposes if necessary.
- 6. Check all cascade system regulators to make sure they work properly.
- 7. Perform breathing drills with on-site personnel.
- 8. Check the following supplies for availability (may be with H2S TechsOn-call):
 - Stretcher
 - Safety Belts and Ropes
 - Spare air Bottles
 - Spare Oxygen Bottles (if resuscitator required)
 - Gas Detector Pump and Tubes
 - Emergency telephone lists
 - Test the Confined Space Monitor to verify the batteries are good.

XI. BRIEFING PROCEDURES

The following scheduled briefings will be held to ensure the effective drilling and operation of this project:

Pre-Spud Meeting

Date: Prior to spudding the well.

- Attendance: Drilling Supervisor Drilling Engineer Drilling Consultant Rig Tool Pushers Rig Drillers Mud Engineer All Safety Personnel Key Service Company Personnel
- Purpose: Review and discuss the well program, step-by-step, to insure complete understanding of assignments and responsibilities.

XII. EVACUATION PLAN

General Plan

The direct lines of action prepared by Anadarko Petroleum Corporation to protect the public from hazardous gas situations are as follows:

- 1. When the company approved supervisor (Drilling Consultant, Tool Pusher or Driller) determine that Hydrogen Sulfide gas cannot be limited to the well location, and the public will be involved, he will activate the evacuation plan. Escape routes are noted on the area map.
- 2. Company safety personnel or designee will notify the appropriate local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company approved safety personnel that have been trained in the use of the proper emergency equipment will be utilized.
- 4. Law enforcement personnel (State Police, Local Police Department, Fire Department, and the Sheriff's Department) will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.
- NOTE: Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.
 - 5. After the discharge of gas has been controlled, "Company" personnel will determine when the area is safe for re-entry.
 - 6. If a major release is secured, all exposed housing, vehicles, rig buildings, and low lying areas and other structures downwind must be tested and clear with SCBAs donned to ensure that all residual H2S is cleared. Fans, or opening of doors is recommended to ensure that areas are cleared out as part of this process.

XIII. PERMITS AND PLATS

RAILROAD COMMISSION OF TEXAS OIL & GAS DIVISION

PERMIT TO DRILL, DEEPEN, FLUG BACK, OR RE-ENTER ON A REGULAR OR ADMINISTRATIVE EXCEPTION LOCATION

PERMIT NUMBER	4879	DATE PERMIT ISSUED OR AMEND Jan 12, 2018	ED	DISTRICT	* 0	8	
API NUMBER	42-495-34034	Form W-J RECEIVED Jan 05, 2018		COUNTY	WINK	LER	-
TYPE OF OPERATIO	N	WELLBORE PROFILE(S)		ACRES			
NEW	DRILL	Horizontal			71	3	
OPERATOR		423	3519		NOTI		
IMPETRO O 300 E SON1 SAN ANTOI		revoked if C	payment for for commission is a	elephone No:			
LEASE NAME	ANT	ELOPE		WELL NU	• •	1H	
LOCATION 13	3 miles NW dire	tion from KERMIT		TOTAL DE	ртн	11200	
Section, Block and/or St	urvey						
SECTION 🗨 13		BLOCK C23	ABSTRA	cr 🗨 138	6		
SURVEY K PSL /	COWDEN, C C						
DISTANCE TO SURVE	EY LINES 250 ft. S	1267 ft: W		DISTANCE	TO NEARE	st lease lin D ft.	E
DISTANCE TO LEASE	LINES 250 ft. S	1267 ft. W		DISTANCE		ST WELL ON L D(s) Below	EASE
FUELD NAME LEASE NAME				ACRES NEAREST LE	DEPTH ASE	WELL # NÉAREST WE	DÍST
·•· ··· • •		••••••••••••••••••••••••••••••••••••••					
SANDBAR (BONE ANTELOPE	•			713.00 200	11,200	1H 0	08
WELLBORE PROFIL							
	Vermitted for of Lateral: THI Penetration Poir Leese Linos:	IT Location 250.0 f 8 5 1261.0 f 8 5					
	Terminus Locatic BE County: WIN Section: 13		AL	ante Eann			
	Survey: PSU Indise Lidas: Survey Lines:	204.0 P (i L 994.0 P (i L 204.0 P (i L					
	· • • • • • • • • • • • • • • • • • • •	390.0 FW 1		 .		· ••	
PHANTOM (WOLF	CAMP)			713.00	11,200	1H	08
ANTELOPE	Ē			200		Ő	
WELLBORE PROFIL	LE(s) FOR FIELD:	Horizontal					
RESTRICTIONS.	Permitted for of This is a hydrod	l only. An aulfide field, Hydrogen Sulf	ناطم ۲۹	alda with:	Derforstio	ng mat be	
		Jan 15, 2018 8:28 AM(Current Version				e 3 of 6	

Data Validation Time Stamp: Jan 15, 2018 8:28 AM(Current Version) Page 3 of 6

RAILROAD COMMISSION OF TEXAS OIL & GAS DIVISION

PERMIT NUMBER 834879	DATE PERMIT ISSUED OR AMENDED Jan 12, 2018	DISTRICT * 08
API.NUMBER. 42-495-34034	FORM W-1 RECEIVED Jan 05, 2018	COUNTY
TYPE OF OPERATION	WELLBORE PROFILE(S)	ACRES
NEW DRILL	Horizontal	713
OPERATOR	423519	NOTICE
IMPETRO OPERATING LL 300 E SONTERRA BLVD S	This permit and any allowable assigned may be revoked if payment for fee(s) submitted to the Commission is not honored. District Office Telephone No:	
SAN ANTONIO, TX 78258-	0000	(432) 684-5581
LEASE NAME	ELOPE	WELL NUMBER 1H
LOCATION 13 miles NW dire		TOTAL DEPTH 11200
Section, Block and/or Survey		
SECTION		ACT 🗨 1386
SURVEY		
DISTANCE TO SURVEY LINES 250 ft. S	1267 ft. W	DISTANCE TO NEAREST LEASE LINE 200 ft.
DISTANCE TO LEASE LINES 250 ft. S	1267 ft. W	DISTANCE TO NEAREST WELL ON LEASE See FIELD(s) Below
* SI FIELD NAME LEASE NAME	EE FIELD DISTRICT FOR REPORTING	PURPOSES * ACRES DEPTH WELL # DIST NEAREST LEASE NEAREST WE
Fields with SWR	sted per State Wide Rule 36 and a Ford 10 authority to downhole commingle mu for to commingling production.	
Lateral: THI Penetration Poly Lease Lines:	nt Location 250.0 F S L	
Terminus Locatia	1257.0 P W L	
Lease Linea:	200.0 P N L 990.0 P W L	
Burvey Lines:		
This well shall be completed and product well is to be used for brine mining, under salt formations, a permit for that specific drilling, of the well in accordance with St This well must comply to the new SWR 3	ground storage of liquid hydrocarbons in salt purpose must be obtained from Environment	or statewide spacing and density rules. If this formations, or underground storage of gas in al Services prior to construction, including any potential flow zones and zones with

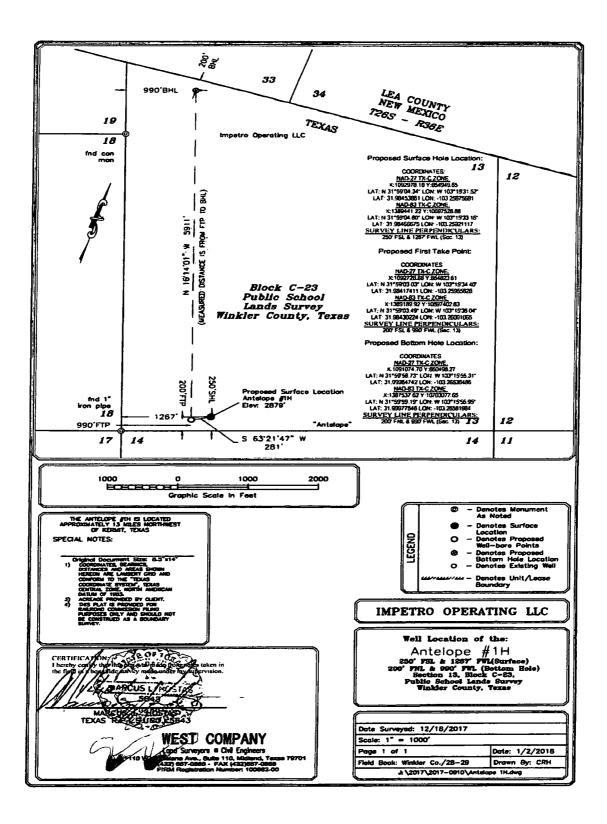
PERMIT TO DRILL, DEEPEN, PLUG BACK, OR RE-ENTER ON A REGULAR OR ADMINISTRATIVE EXCEPTION LOCATION

Data Validation Time Stamp: Jan 15, 2018 8:28 AM(Current Version)

Page 4 of 6

RAILROAD COMMISSION OF TEXAS OIL & GAS DIVISION

.


PERMIT NUMBER	DATE PERMIT ISSUED OR AMENDED	DISTRICT
834879	Jan 12, 2018	* 08
API NUMBER. 42-495-34034	FORM W-I RECEIVED Jan 05, 2018	
TYPE OF OPERATION	WELLBORE PROFILE(S)	ACRES
NEW DRILL	Horizontal	713
OPERATOR	423519	NOTICE
IMPETRO OPERATING LL 300 E SONTERRA BLVD S SAN ANTONIO, TX 78258	SUITE 1220	This permit and any allowable assigned may be revoked if payment for fee(s) submitted to the Commission is not honored. District Office Telephone No:
LEASENAME		(432) 684-5581 WELL NUMBER
	ELOPE	1H
LOCATION 13 miles NW dire	ction from KERMIT	TOTAL DEPTH 11200
Section, Block and/or Survey		· - · · · · · · · · · · · · · · · · · ·
SECTION 🗲 13		ACT 🗨 1386
SURVEY	<u> </u>	
DISTANCE TO SURVEY LINES 250 ft. S	1267 ft. W	DISTANCE TO NEAREST LEASE LINE 200 ft.
DISTANCE TO LEASE LINES 250 ft. S	1267 ft. W	DISTANCE TO NEAREST WELL ON LEASE See FIELD(s) Below
_	EE FIELD DISTRICT FOR REPORTING	
FIELD NAME LEASE NAME		ACRES DEPTH WELL# DIST NEAREST LEASE NEAREST WE
another field or fields in this district. In the designation on this lease. Further, if the assignment of reservoir and the applicar may not be assigned an allowable until t	of the fields approved in this permit appears to the case of conflicting designated intervals you designated interval overlap of wells on this le at cannot conclusively demonstrate that there he conflict is resolved. Because of the overla es that the completion of the well will be appr ed on the approved permit application.	u will be required to be consistent in field ease results in an actual or potential double is no double assignment, the permitted well
Data Validation Time Stamp:	Jan 15, 2018 8:28 AM(Current Version)	Page 5 of 6

RAILROAD COMMISSION OF TEXAS OIL & GAS DIVISION SWR #13 Formation Data

WINKLER (495) County

Formation	Shallow Top	Деер Тор	Remarks	Geological Order	Effective Date
RUSTLER	725	725	possible flow; possible usable quality water	1	12/17/2013
COLBY-QUEEN	2,900	3,200		2	12/17/2013
YATES	2,280	3,200		3	12/17/2013
QUEEN-SEVEN RIVERS	2,700	3,400		4	12/17/2013
SAN ANDRES	3,600	4,400	high flows, H2S, corrosive	5	12/17/2013
HOLT	4,500	4,800		6	12/17/2013
DELAWARE	4,300	5,000		7	12/17/2013
GLÓRIETA	4,900	5,600		8	12/17/2013
CLEARFORK	4,750	6,200		9	12/17/2013
WICHITA ALBANY	6,600	6,850		10	12/17/2013
BRUSHY CANYON	7,300	7,300		11	12/17/2013
CHERRY CANYON	6,000	7,800		12	12/17/2013
CANYON	8,400	8,400		13	12/17/2013
BONE SPRINGS	9,000	9,800		14	12/17/2013
MONTOYA	10,300	10,300		15	12/17/2013
WADDELL	11,000	11,000		16	12/17/2013
WOLFCAMP	7,600	12.400		17	12/17/2013
АТОКА	12,900	12,900		18	12/17/2013
STRAWN	8,100	14,800		19	12/17/2013
PENNSYLVANIAN	8,000	15,500		20	12/17/2013
MISSISSIPPLAN	10,200	17,300		21	12/17/2013
DEVONIAN	7,900	17,800		22	12/17/2013
SILURIAN	8,500	18,000		23	12/17/2013
FUSSELMAN	9,700	18,800		24	12/17/2013
ELLENBURGER	9,500	21,400		25	12/17/2013

The above list may not be all inclusive, and may also include formations that do not intersect all wellbores. Formation "TOP" information listed reflects an estimated range based on geologic variances across the county. To clarify, the "Deep Top" is not the bottom of the formation; it is the deepest depth at which the "TOP" of the formation has been or might be encountered. This is a dynamic list subject to updates and revisions. It is the operator's responsibility to make sure that at the time of spudding the well the most current list is being referenced. Refer to the RRC website at the following address for the most recent information. http://www.rrc.texas.gov/oil-gas/compliance-enforcement/rule-13-geologic-formation-info

XIV. DIRECTIONS / 3,000' RADIUS MAP

Antelope 1H (N31.98453/W-103.25875)

Winkler Co.

Directions: From the intersection of State Hwy 302 and CR 101 go north 12.5 miles . Well is located 417' off to the east side of CR 101.

XV. APPENDICES AND GENERAL INFORMATION

Radius of Exposure Affected Notification List

(within a 65' radius of exposure @100ppm)

The geologic zones that will be encountered during drilling are known to contain hazardous quantities of H2S. The accompanying map illustrates the affected areas of the community. The residents within this radius will be notified via a hand delivered written notice describing the activities, potential hazards, conditions of evacuation, evacuation drill siren alarms and other precautionary measures.

Evacuee Description: Residents:

Notification Process:

A continuous siren audible to all residence will be activated, signaling evacuation of previously notified and informed residents.

Evacuation Plan:

All evacuees will migrate lateral to the wind direction.

The Operating Company will identify all home bound or highly susceptible individuals and make special evacuation preparations, interfacing with the local and emergency medical service as necessary.

Toxic Effects of H₂S Poisoning

Hydrogen Sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 PPM, which is .001% by volume. Hydrogen Sulfide is heavier than air (specific gravity – 1.192) and is colorless and transparent. Hydrogen Sulfide is almost as toxic as Hydrogen Cyanide and is 5-6 times more toxic than Carbon Monoxide. Occupational exposure limits for Hydrogen Sulfide and other gases are compared below in Table 1. Toxicity table for H₂S and physical effects are shown in Table 2.

Table 1 Permissible Exposure Limits of Various Gases

Common Name	<u>Symbol</u>	<u>Sp. Gravity</u>	<u>TLV</u>	<u>STEL</u>	<u>IDLH</u>
Hydrogen Cyanide	HCN	.94	4.7 ppm	4.7 ppm	50 ppm
Hydrogen Sulfide	H₂S	1.192	10 ppm	15 ppm	100 ppm

Sulfide Dioxide	SO2	2.21	2 ppm	5 ppm	100 ppm
Chlorine	CL	2.45	.5 ppm	1 ppm	10 ppm
Carbon Monoxide	со	.97	25 ppm	200 ppm	1200 ppm
Carbon Dioxide	CO ₂	1.52	5000 ppm	30,000 ppm	40,000 ppm
Methane	CH₄	.55	5% LEL	15% UEL	

Definitions

- A. TLV Threshold Limit Value is the concentration employees may be exposed based on a TWA (time weighted average) for eight (8) hours in one day for 40 hours in one (1) week. This is set by ACGIH (American Conference of Governmental Hygienists) and regulated by OSHA.
- B. STEL Short Term Exposure Limit is the 15 minute average concentration an employee may be exposed to providing that the highest exposure never exceeds the OEL (Occupational Exposure Limit). The OEL for H₂S is 20 PPM.
- C. IDLH Immediately Dangerous to Life and Health is the concentration that has been determined by the ACGIH to cause serious health problems or death if exposed to this level. The IDLH for H₂S is 100 PPM.
- D. TWA Time Weighted Average is the average concentration of any chemical or gas for an eight (8) hour period. This is the concentration that any employee may be exposed based on a TWA.

Toxicity Table of H₂S

<u>Percent %</u> .0001	<u>PPM</u> 1	Physical Effects Can smell less than 1 ppm.
.001 .0015	10 15	TLV for 8 hours of exposure. STEL for 15 minutes of exposure.
.01	100	Immediately Dangerous to Life & Health. Kills sense of smell in 3 to 5 minutes.
.02	200	Kills sense of smell quickly, may burn eyes and throat.
.05	500	Dizziness, cessation of breathing begins in a few minutes.
.07	700	Unconscious quickly, death will result if not rescued promptly.
.10	1000	Death will result unless rescued promptly. Artificial resuscitation may be necessary.

PHYSICAL PROPERTIES OF H₂S

The properties of all gases are usually described in the context of seven major categories:

COLOR ODOR VAPOR DENSITY EXPLOSIVE LIMITS FLAMMABILITY SOLUBILITY (IN WATER) BOILING POINT

Hydrogen Sulfide is no exception. Information from these categories should be considered in order to provide a fairly complete picture of the properties of the gas.

COLOR – TRANSPARENT

Hydrogen Sulfide is colorless so it is invisible. This fact simply means that you can't rely on your eyes to detect its presence. In fact that makes this gas extremely dangerous to be around.

ODOR – ROTTEN EGGS

Hydrogen Sulfide has a distinctive offensive smell, similar to "rotten eggs". For this reason it earned its common name "sour gas". However, H₂S, even in low concentrations, is so toxic that it attacks and quickly impairs a victim's sense of smell, so it could be fatal to rely on your nose as a detection device.

VAPOR DENSITY - SPECIFIC GRAVITY OF 1.192

Hydrogen Sulfide is heavier than air so it tends to settle in low-lying areas like pits, cellars or tanks. If you find yourself in a location where H₂S is known to exist, protect yourself. Whenever possible, work in an area upwind and keep to higher ground.

EXPLOSIVE LIMITS – 4.0% TO 44%

Mixed with the right proportion of air or oxygen, H₂S will ignite and burn or explode, producing another alarming element of danger besides poisoning.

FLAMMABILITY

Hydrogen Sulfide will burn readily with a distinctive clear blue flame, producing Sulfur Dioxide (SO₂), another hazardous gas that irritates the eyes and lungs.

SOLUBILITY – 4 TO 1 RATIO WITH WATER

Hydrogen Sulfide can be dissolved in liquids, which means that it can be present in any container or vessel used to carry or hold well fluids including oil, water, emulsion and sludge. The solubility of H2S is dependent on temperature and pressure, but if conditions are right, simply agitating a fluid containing H2S may release the gas into the air.

BOILING POINT – (-77° Fahrenheit)

Liquefied Hydrogen Sulfide boils at a very low temperature, so it is usually found as a gas.

30

RESPIRATOR USE

The Occupational Safety and Health Administration (OSHA) regulate the use of respiratory protection to protect the health of employees. OSHA's requirements are written in the Code of Federal Regulations, Title 29, Part 1910, Section 134, Respiratory Protection. This regulation requires that all employees who might be required to wear respirators, shall complete an OSHA mandated medical evaluation questionnaire. The employee then should be fit tested prior to wearing any respirator while being exposed to hazardous gases.

Written procedures shall be prepared covering safe use of respirators in dangerous atmospheric situations, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available respirators.

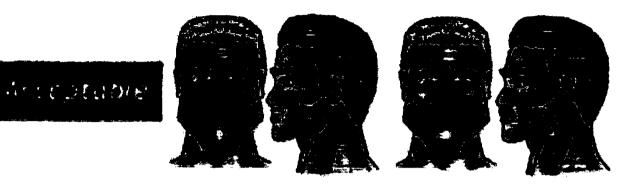
Respirators shall be inspected prior to and after each use to make sure that the respirator has been properly cleaned, disinfected and that the respirator works properly. The unit should be fully charged prior to being used.

Anyone who may use respirators shall be properly trained in how to properly seal the face piece. They shall wear respirators in normal air and then in a test atmosphere. (Note: Such items as facial hair (beard or sideburns) and eyeglass temple pieces will not allow a proper seal.) Anyone who may be expected to wear respirators should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses. Contact lenses should not be allowed.

Respirators shall be worn during the following conditions:

- A. Any employee who works near the top or on the top of any tank unless tests reveal less than 20 ppm of H₂S.
- B. When breaking out any line where H₂S can reasonably be expected.
- C. When sampling air in areas where H_2S may be present.
- D. When working in areas where the concentration of H₂S exceeds the Threshold Limit Value for H₂S (10 ppm).
- E. At any time where there is a doubt as to the H_2S level in the area to be entered.

EMERGENCY RESCUE PROCEDURES


DO NOT PANIC!!!

Remain Calm – Think

- 1. Before attempting any rescue you must first get out of the hazardous area yourself. Go to a safe briefing area.
- 2. Sound alarm and activate the 911 system.
- 3. Put on breathing apparatus. At least two persons should do this, when available use the buddy system.
- 4. Rescue the victim and return them to a safe briefing area.
- 5. Perform an initial assessment and begin proper First Aid/CPR procedures.
- 6. Keep victim lying down with a blanket or coat, etc.., under the shoulders to keep airway open. Conserve body heat and do not leave unattended.
- 7. If the eyes are affected by H₂S, wash them thoroughly with potable water. For slight irritation, cold compresses are helpful.
- 8. In case a person has only minor exposure and does not lose consciousness totally, it's best if he doesn't return to work until the following day.
- 9. Any personnel overcome by H₂S should always be examined by medical personnel. They should always be transported to a hospital or doctor.

Facial Hair – Clean Shaven Examples

Purpose: To define clean shaven expectations in the field for: 1) Respirator Use, if applicable and 2) First Aid Administration, if situation occurs related to H2S exposure, having no facial hair can greatly benefit response time and treatment ability.

1.785

FUMIRES MURACINE Chin Har

Goster & Narrow Wustache Goster & Wide Muslache

Wide Huslache

Impetro Operating, LLC

Lea County, NM (NAD83) Sec 19-25S-36E Black Marlin Fed Com #2H

Wellbore #1

Plan: Plan #1

Standard Planning Report

10 April, 2019

Planning Report

Database: Company:	- DM ~	000.15 Single	User Dh		Local Co.o	rdinate Refe	ence V	Vell Black Marlin	Fed Com #24	н
		Operating, L						GL @ 3186.00us		•
•••	•	ounty, NM (NA			TVD Refer			-		
roject: ite:		-25S-36E	003)		MD Refere			6L@ 3186.00us Sciel	п	
			- 4011		North Refe			Brid Sini-sum Current		
/ell:		Marlin Fed Cor	n #2H		Survey Ca	culation Met	hod: N	linimum Curvatu	ire	
fellbore:	Wellbo									
)esign:	Plan #1	r 			· · ·					
Project	Lea Cou	unty, NM (NAD)83)						·····	
Map System:		Plane 1983			System Date	ım:	Me	an Sea Level		
Geo Datum:		erican Datum								
Map Zone:	New Mex	ico Eastern Zo	one							
Site	Sec 19-	25S-36E								
Site Position:			Norti	ning:	415,	236.19 usft	Latitude:			32.1373
From:	Lat/L	ong	East	-	861.	230.92 usft	Longitude:			-103.2998
Position Uncertaint		-		Radius:		13-3/16 "	Grid Converge	nce:		0.55
	Black Ma	arlin Fed Com	#2H							
Nell Position	+N/-S			orthing:		415,236,19	usft I ###			32.1373
TVII I VOILIVII	+E/-W			asting:		861,230.92		gitude:		-103.2998
				-		001,230.92		-		
Position Uncertaint	ty	0.0	DO usft 🛛 🕅	ellhead Eleva	tion:		Grou	und Level:		3,186.00 us
Wellbore	Wellbo	re #1								<u> </u>
Magnetics	 Mod	del Name	Samp	le Date	Declinat	ion	Dip A	-		trength
,					(°)	-	(°)			IT)
		IGRF2015		12/31/2004		8.21		60.32	49,2	56.03749830
Design	Plan #1								· · · · - ·	
Audit Notes:		•··· · ·		<u>+</u>						
Version:			Pha	se: l	PLAN	Tie	On Depth:	C	0.00	
Vertical Section:					+N/-S			Dire	ction	
			eptn From (i	vu;	TR/-3	+E	J-44	0110	cuon	
		0)epth From (1 (usft)	v Oj	(usft)		sft)		°)	
				••••		(u		(
			(usft) 0.00		(usft)	(u	sft)	(°)	
Plan Survey Tool P	-	Date	(usft)	·····	(usft)	(u	sft)	(°)	
Plan Survey Tool P Depth From	Depth	Date	(usft) 0.00 4/9/2019		(usft) 0.00	(u	sft) .00	(°)	
Plan Survey Tool P Depth From (usft)	Depth (usf	Date 1 To t) Survey	(usft) 0.00 4/9/2019 (Wellbore)		(usft) 0.00 Tool Name	(u	sft)	(°)	
Plan Survey Tool P Depth From	Depth (usf	Date 1 To t) Survey	(usft) 0.00 4/9/2019		(usft) 0.00	(u	sft) .00	(°)	
Plan Survey Tool P Depth From (usft)	Depth (usf	Date 1 To t) Survey	(usft) 0.00 4/9/2019 (Wellbore)		(usft) 0.00 Tool Name	(u 0.	sft) .00	(°)	
Plan Survey Tool P Depth From (usft) 1 0.00	Depth (usf	Date 1 To t) Survey	(usft) 0.00 4/9/2019 (Wellbore)		(usft) 0.00 Tool Name MWD	(u 0.	sft) .00	(°)	
Plan Survey Tool P Depth From (usft) 1 0.00 Plan Sections	Depth (usf	Date 1 To t) Survey	(usft) 0.00 4/9/2019 (Wellbore) (Wellbore #1		(usft) 0.00 Tool Name MWD	(u O	sft) .00 Remarks	(174	°)	
Plan Survey Tool P Depth From (usft) 1 0.00 Plan Sections Measured	Depth (usf) 22,70	Date 1 To t) Survey 5.80 Plan #1	(usft) 0.00 4/9/2019 (Wellbore) (Wellbore #1)	(usft) 0.00 Tool Name MWD MWD - Standa	(u 0. rd Dogleg	sft) .00 Remarks Build	(174	9) 4.17	
Plan Survey Tool P Depth From (usft) 1 0.00 Plan Sections Measured	Depth (usf	Date 1 To t) Survey	(usft) 0.00 4/9/2019 (Wellbore) (Wellbore #1		(usft) 0.00 Tool Name MWD	(u O	sft) .00 Remarks	(174	°)	Target
Plan Survey Tool P Depth From (usft) 1 0.00 Plan Sections Measured Depth Inc (usft)	Depth (usf) 22,70 :lination (°)	Date To t) Survey 5.80 Plan #1 Azimuth (°)	(usft) 0.00 4/9/2019 (Wellbore) (Wellbore #1 Vertical Depth) +N/-S (usft)	(usft) 0.00 Tool Name MWD MWD - Standa	(u 0. rd Dogleg Rate	sft) .00 Remarks Build Rate	(174	°) 4.17 	Target
Plan Survey Tool P Depth From (usft) 1 0.00 Plan Sections Measured Depth Inc (usft) 0.00	Depth (usf) 22,70 :lination (°) 0.00	Date To t) Survey 5.80 Plan #1 Azimuth (°) 0.00	(usft) 0.00 4/9/2019 (Wellbore) (Wellbore #1 Vertical Depth (usft) 0.00	+N/-S (usft) 0.00	(usft) 0.00 Tool Name MWD MWD - Standa +E/-W (usft) 0.00	(u 0. nd Dogleg Rate (°/100ft) 0.00	sft) .00 Remarks Build Rate (°/100ft) 0.00	(174 Turn Rate (°/100ft) 0.00	°) 4.17 TFO (°) 0.00	Target
Plan Survey Tool P Depth From (usft) 1 0.00 Plan Sections Measured Depth Inc (usft) 0.00 2,000.00	Depth (usf) 22,70 :ilnation (°) 0.00 0.00	Date 1 To 1) Survey 5.80 Plan #1 Azimuth (°) 0.00 0.00	(usft) 0.00 4/9/2019 (Wellbore) (Wellbore #1 Vertical Depth (usft) 0.00 2,000.00	+N/-S (usft) 0.00 0.00	(usft) 0.00 Tool Name MWD MWD - Standa +E/-W (usft) 0.00 0.00	(u 0. nd Dogleg Rate (°/100ft) 0.00 0.00	sft) .00 Remarks Build Rate (°/100ft) 0.00 0.00	(174 Turn Rate (°/100ft) 0.00 0.00	°) 4.17 TFO (°) 0.00 0.00	Target
Plan Survey Tool P Depth From (usft) 1 0.00 Plan Sections Measured Depth Inc (usft) 0.00 2,000.00 2,300.00	Depth (usf) 22,70 :ilnation (°) 0.00 0.00 6.00	Date 1 To 1) Survey 5.80 Plan #1 Azimuth (°) 0.00 0.00 84.95	(usft) 0.00 4/9/2019 (Wellbore) (Wellbore #1 (Wellbore #1 Uertical Depth (usft) 0.00 2,000.00 2,299.45) +N/-S (usft) 0.00 0.00 1.38	(usft) 0.00 Tool Name MWD MWD - Standa +E/-W (usft) 0.00 0.00 15.63	(u 0. nd Dogleg Rate (°/100ft) 0.00 0.00 2.00	sft) .00 Remarks Build Rate (°/100ft) 0.00 0.00 2.00	(174 Turn Rate (°/100ft) 0.00 0.00 0.00	°) 4.17 TFO (°) 0.00 0.00 84.95	Target
Plan Survey Tool P Depth From (usft) 1 0.00 Plan Sections Measured Depth Inc (usft) 0.00 2,000.00 2,300.00 11,211.25	Depth (usf) 22,70 :ilnation (°) 0.00 0.00 6.00 6.00	Date 1 To 1) Survey 5.80 Plan #1 Azimuth (°) 0.00 0.00 84.95 84.95	(usft) 0.00 4/9/2019 (Wellbore) (Wellbore #1 Uertical Depth (usft) 0.00 2,000.00 2,299.45 11,161.88	+N/-S (usft) 0.00 0.00 1.38 83.37	(usft) 0.00 Tool Name MWD MWD - Standa +E/-₩ (usft) 0.00 0.00 15.63 943.50	(u 0, nd Dogleg Rate (*/100ft) 0.00 0.00 2.00 0.00	sft) .00 Remarks Build Rate (°/100ft) 0.00 0.00 2.00 0.00	(174 Turn Rate (°/100ft) 0.00 0.00 0.00 0.00	°) 4.17 TFO (°) 0.00 84.95 0.00	Target
Plan Survey Tool P Depth From (usft) 1 0.00 Plan Sections Measured Depth Inc (usft) 0.00 2,000.00 2,300.00 11,211.25 11,511.25	Depth (usf) 22,70 :Ilnation (°) 0.00 0.00 6.00 6.00 0.00	Date 1 To 1) Survey 5.80 Plan #1 Azimuth (°) 0.00 0.00 84.95 84.95 0.00	(usft) 0.00 4/9/2019 (Wellbore) (Wellbore #1 Uertical Depth (usft) 0.00 2,000.00 2,299.45 11,161.88 11,461.34	+N/-S (usft) 0.00 0.00 1.38 83.37 84.76	(usft) 0.00 Tool Name MWD MWD - Standa +E/-₩ (usft) 0.00 0.00 15.63 943.50 959.13	(u 0, nd Dogleg Rate (*/100ft) 0.00 0.00 2.00 0.00 2.00	sft) .00 Remarks Build Rate (°/100ft) 0.00 0.00 2.00 0.00 -2.00	(174 Turn Rate (°/100ft) 0.00 0.00 0.00 0.00 0.00 0.00	°) 4.17 TFO (°) 0.00 84.95 0.00 180.00	Target
Plan Survey Tool P Depth From (usft) 1 0.00 Plan Sections Measured Depth Inc (usft) 0.00 2,000.00 2,300.00 11,211.25	Depth (usf) 22,70 :ilnation (°) 0.00 0.00 6.00 6.00	Date 1 To 1) Survey 5.80 Plan #1 Azimuth (°) 0.00 0.00 84.95 84.95 0.00 0.00 0.00	(usft) 0.00 4/9/2019 (Wellbore) (Wellbore #1 Uertical Depth (usft) 0.00 2,000.00 2,299.45 11,161.88 11,461.34 11,872.54	+N/-S (usft) 0.00 0.00 1.38 83.37	(usft) 0.00 Tool Name MWD MWD - Standa +E/-₩ (usft) 0.00 0.00 15.63 943.50	(u 0, nd Dogleg Rate (*/100ft) 0.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00	sft) .00 Remarks Build Rate (°/100ft) 0.00 2.00 0.00 -2.00 0.00	(174 Turn Rate (*/100ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	°) 4.17 TFO (°) 0.00 84.95 0.00 180.00 0.00	Target
Plan Survey Tool P Depth From (usft) 1 0.00 Plan Sections Measured Depth Inc (usft) 0.00 2,000.00 2,300.00 11,211.25 11,511.25	Depth (usf) 22,70 :Ilnation (°) 0.00 0.00 6.00 6.00 0.00	Date 1 To 1) Survey 5.80 Plan #1 Azimuth (°) 0.00 0.00 84.95 84.95 0.00	(usft) 0.00 4/9/2019 (Wellbore) (Wellbore #1 Uertical Depth (usft) 0.00 2,000.00 2,299.45 11,161.88 11,461.34	+N/-S (usft) 0.00 0.00 1.38 83.37 84.76	(usft) 0.00 Tool Name MWD MWD - Standa +E/-₩ (usft) 0.00 0.00 15.63 943.50 959.13	(u 0, nd Dogleg Rate (*/100ft) 0.00 0.00 2.00 0.00 2.00	sft) .00 Remarks Build Rate (°/100ft) 0.00 0.00 2.00 0.00 -2.00	(174 Turn Rate (°/100ft) 0.00 0.00 0.00 0.00 0.00 0.00	°) 4.17 TFO (°) 0.00 84.95 0.00 180.00	Target
Plan Survey Tool P Depth From (usft) 1 0.00 Plan Sections Measured Depth Inc (usft) 0.00 2,000.00 2,300.00 11,211.25 11,511.25 11,922.45	Depth (usf) 22,70 :Ilnation (°) 0.00 0.00 6.00 6.00 0.00 0.00 0.00	Date 1 To 1) Survey 5.80 Plan #1 Azimuth (°) 0.00 0.00 84.95 84.95 0.00 0.00 0.00	(usft) 0.00 4/9/2019 (Wellbore) (Wellbore #1 Uertical Depth (usft) 0.00 2,000.00 2,299.45 11,161.88 11,461.34 11,872.54	+N/-S (usft) 0.00 0.00 1.38 83.37 84.76 84.76	(usft) 0.00 Tool Name MWD MWD - Standa +E/-W (usft) 0.00 0.00 15.63 943.50 959.13 959.13	(u 0, nd Dogleg Rate (*/100ft) 0.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00	sft) .00 Remarks Build Rate (°/100ft) 0.00 2.00 0.00 -2.00 0.00	(174 Turn Rate (*/100ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	°) 4.17 TFO (°) 0.00 84.95 0.00 180.00 0.00 179.43	Target

4/10/2019 9:56:30AM

COMPASS 5000.15 Build 91

Planning Report

-				
Database:	EDM 5000.15 Single User Db	Local Co-ordinate Reference:	Well Black Marlin Fed Com #2H	
Company:	Impetro Operating, LLC	TVD Reference:	GL @ 3186.00usft	
Project:	Lea County, NM (NAD83)	MD Reference:	GL @ 3186.00usft	
Site:	Sec 19-25S-36E	North Reference:	Grid	
Well:	Black Marlin Fed Com #2H	Survey Calculation Method:	Minimum Curvature	
Wellbore:	Wellbore #1			
Design:	Plan #1	s 	[

____.

- -----

Planned Survey	
----------------	--

5

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100ft)	Build Rate (°/100ft)	Turn Rate (°/100ft)
								· · · ·	(710014)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0.00	0.00
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
400.00	0.00	0.00	400.00	0.00	0.00	0.00	0.00	0.00	0.00
500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.00	0.00	0.00
600.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00	0.00	0.00
700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	0.00
900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
1,100.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
1,200.00	0.00	0.00	1,200.00	0.00	0.00	0.00	0.00	0.00	0.00
1,300.00	0.00	0.00	1,300.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00								
1,400.00		0.00	1,400.00	0.00	0.00	0.00	0.00	0.00	0.00
1,500.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00
1,600.00	0.00	0.00	1,600.00	0.00	0.00	0.00	0.00	0.00	0.00
1,700.00	0.00	0.00	1,700.00	0.00	0.00	0.00	0.00	0.00	0.00
1,800.00	0.00	0.00	1,800.00	0.00	0.00	0.00	0.00	0.00	0.00
1,900.00	0.00	0.00	1,900.00	0.00	0.00	0.00	0.00	0.00	0.00
2,000.00	0.00	0.00	2,000.00	0.00	0.00	0.00	0.00	0.00	0.00
2,100.00	2.00	84.95	2,099.98	0.15	1.74	0.02	2.00	2.00	0.00
2,200.00	4.00	84.95	2,199.84	0.61	6.95	0.09	2.00	2.00	0.00
2,300.00	6.00	84.95	2,299,45	1.38	15.63	0.21	2.00	2.00	0.00
2,400.00	6.00	84.95	2,398.90	2.30	26.04	0.36	0.00	0.00	0.00
2,500.00	6.00	84.95	2,498.36	3.22	36.46	0.50	0.00	0.00	0.00
2,600.00	6.00	84.95	2,597.81	4.14	46.87	0.64	0.00	0.00	0.00
2,700.00	6.00	84.95	2,697.26	5.06	57.28	0.78	0.00	0.00	0.00
2,800.00	6.00	84.95	2,796.71	5.98	67.69	0.92	0.00	0.00	0.00
2,900.00	6.00	84.95	2,896.17	6.90	78.11	1.06	0.00	0.00	0.00
3,000.00	6.00	84.95	2,995.62	7.82	88.52	1.21	0.00	0.00	0.00
3,100.00	6.00	84.95	3,095.07	8.74	98.93	1.35	0.00	0.00	0.00
3,200.00	6.00	84.95	3 194.52	9.66	109.34	1.49	0.00	0.00	0.00
3,300.00	6.00	84.95	3,293.97	10.58	119.76	1.63	0.00	0.00	0.00
3,400.00	6.00	84.95	3,393.43	11.50	130.17	1.77	0.00	0.00	0.00
3,500.00	6.00	84.95	3,492.88	12.42	140.58	1.92	0.00	0.00	0.00
3,600.00	6.00	84.95	3,592.33	13.34	150.99	2.06	0.00	0.00	0.00
3,700.00	6.00	84.95	3,691.78	14.26	161.40	2.20	0.00	0.00	0.00
3,800.00	6.00	84.95	3,791.23	15.18	171.82	2.34	0.00	0.00	0.00
3,900.00	6.00	84.95	3,890.69	16.10	182.23	2.48	0.00	0.00	0.00
4,000.00	6.00	84.95	3,990.14	17.02	192.64	2.63	0.00	0.00	0.00
4,100.00	6.00	84.95	4,089.59	17.94	203.05	2.77	0.00	0.00	0.00
4,200.00	6.00	84.95	4,189.04	18.86	213.47	2.91	0.00	0.00	0.00
4,300.00	6.00	84.95	4,288.50	19.78	223.88	3.05	0.00	0.00	0.00
4,400.00	6.00	84.95	4,387.95	20.70	234.29	3.19	0.00	0.00	0.00
4,500.00	6.00	84.95	4,487.40	21.62	244.70	3.34	0.00	0.00	0.00
4,600.00	6.00	84.95	4,586.85	22.54	255.11	3.48	0.00	0.00	0.00
4,700.00	6.00	84.95	4,686.30	23.46	265.53	3.62	0.00	0.00	0.00
4,800.00	6.00	84.95	4,785.76	24.38	275.94	3.76	0.00	0.00	0.00
4,900.00	6.00	84.95	4,885.21	24.38	286.35	3.90	0.00	0.00	0.00
5.000.00	6.00	84.95	4.984.66	26.22	296.76	4.05	0.00	0.00	0.00
5,100.00	6.00	84.95	5,084.11	27.14	307.18	4.19	0.00	0.00	0.00
	6.00	84.95					0.00		
5,200.00			5,183.57	28.06	317.59	4.33		0.00	0.00
5,300.00	6.00	84.95	5,283.02	28.98	328.00	4.47	0.00	0.00	0.00

4/10/2019 9:56:30AM

COMPASS 5000.15 Build 91

Planning Report

Database:	EDM 5000.15 Single User Db	Local Co-ordinate Reference:	Well Black Marlin Fed Com #2H
Company:	Impetro Operating, LLC	TVD Reference:	GL @ 3186.00usft
Project:	Lea County, NM (NAD83)	MD Reference:	GL @ 3186.00usft
Site:	Sec 19-25S-36E	North Reference:	Grid
Well:	Black Marlin Fed Com #2H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Pian #1	1	

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100ft)	(°/100ft)	(°/100ft)
 5,400.00	6.00	84.95	5,382.47	29.90	338.41	4.61	0.00	0.00	0.00
5,500.00	6.00	84.95	5,481.92	30.83	348.83	4.75	0.00	0.00	0.00
5,600.00	6.00	84.95	5,581.37	31.75	359.24	4.90	0.00	0.00	0.00
5,700.00	6.00	84.95	5,680.83	32.67	369.65	5.04	0.00	0.00	0.00
5,800.00	6.00	84.95	5,780.28	33.59	380.06	5.18	0.00	0.00	0.00
5,900.00	6.00	84.95	5,879.73	34.51	390.47	5.32	0.00	0.00	0.00
6,000.00	6.00	84.95	5,979.18	35.43	400.89	5.46	0.00	0.00	0.00
6,100.00	6.00	84.95	6,078.64	36.35	411.30	5.61	0.00	0.00	0.00
6,200.00	6.00	84.95	6,178.09	37.27	421.71	5.75	0.00	0.00	0.00
6,300.00	6.00	84.95	6,277.54	38.19	432.12	5.89	0.00	0.00	0.00
6,400.00	6.00	84.95	6,376.99	39.11	442.54	6.03	0.00	0.00	0.00
6,500.00	6.00	84.95	6,476.44	40.03	452.95	6.17	0.00	0.00	0.00
6,600.00	6.00	84.95	6,575.90	40.95	463.36	6.32	0.00	0.00	0.00
6,700.00	6.00	84.95	6,675.35	41.87	473.77	6.46	0.00	0.00	0.00
6,800.00	6.00	84.95	6,774.80	42.79	484.18	6.60	0.00	0.00	0.00
6,900.00	6.00	84.95	6,874.25	43.71	494.60	6.74	0.00	0.00	0.00
7,000.00	6.00	84.95	6,973.71	44.63	505.01	6.88	0.00	0.00	0.00
7,100.00	6.00	84.95	7,073.16	45.55	515.42	7.03	0.00	0.00	0.00
7,200.00	6.00	84.95	7,172.61	46.47	525.83	7.17	0.00	0.00	0.00
7,300.00	6.00	84.95	7,272.06	47.39	536.25	7.31	0.00	0.00	0.00
7,400.00	6.00	84.95	7,371.51	48.31	546.66	7.45	0.00	0.00	0.00
7,500.00	6.00	84.95	7,470.97	49.23	557.07	7.59	0.00	0.00	0.00
7,600.00	6.00	84.95	7,570.42	50.15	567.48	7.74	0.00	0.00	0.00
7,700.00	6.00	84.95	7,669.87	51.07	577.90	7.88	0.00	0.00	0.00
7,800.00	6.00	84.95	7,769.32	51.07	588.31	8.02	0.00	0.00	0.00
7,900.00	6.00	84.95	7,868.77	52.91	598.72	8.16	0.00	0.00	0.00
•									
8,000.00	6.00	84.95	7,968.23	53.83	609.13	8.30	0.00	0.00	0.00
8,100.00	6.00	84.95	8,067.68	54.75	619.54	8.44	0.00	0.00	0.00
8,200.00	6.00	84.95	8,167.13	55.67	629.96	8.59	0.00	0.00	0.00
8,300.00	6.00	84.95	8,266.58	56.59	640.37	8.73	0.00	0.00	0.00
8,400.00	6.00	84.95	8,366.04	57.51	650.78	8.87	0.00	0.00	0.00
8,500.00	6.00	84.95	8,465.49	58.43	661.19	9.01	0.00	0.00	0.00
8,600.00	6.00	84.95	8,564.94	59.35	671.61	9.15	0.00	0.00	0.00
8,700.00	6.00	84.95	8,664.39	60.27	682.02	9.30	0.00	0.00	0.00
8,800.00	6.00	84.95	8,763.84	61.19	692.43	9.44	0.00	0.00	0.00
8,900.00	6.00	84.95	8,863.30	62.11	702.84	9.58	0.00	0.00	0.00
9,000.00	6.00	84.95	8,962.75	63.03	713.25	9.72	0.00	0.00	0.00
9,100.00	6.00	84.95	9,062.20	63.95	723.67	9.86	0.00	0.00	0.00
9,200.00	6.00	84.95	9,161.65	64.87	734.08	10.01	0.00	0.00	0.00
9,300.00	6.00	84.95	9,261.11	65.79	744.49	10.15	0.00	0.00	0.00
9,400.00	6.00	84.95	9,360.56	66.71	754.90	10.29	0.00	0.00	0.00
9,500.00	6.00	84.95	9,460.01	67.63	765.32	10.43	0.00	0.00	0.00
9,600.00	6.00	84.95	9,559.46	68.55	775.73	10.57	0.00	0.00	0.00
9,700.00	6.00	84.95	9,658.91	69.47	786.14	10.72	0.00	0.00	0.00
9,800.00	6.00	84.95	9,758,37	70.39	796.55	10.86	0.00	0.00	0.00
9,900.00	6.00	84.95	9,857.82	71.31	806.97	11.00	0.00	0.00	0.00
10,000.00	6.00	84.95	9,957.27	72.23	817.38	11.14	0.00	0.00	0.00
10,100.00	6.00	84.95	10,056.72	73.15	827.79	11.28	0.00	0.00	0.00
10,200.00	6.00	84.95	10,156.18	74.07	838.20	11.43	0.00	0.00	0.00
10,300.00	6.00	84.95 84.95	10,156.18	74.07	848.61	11.43	0.00	0.00	0.00
10,300.00	6.00	84.95 84.95	10,255.63	74.99 75.91	859.03	11.57	0.00	0.00	0.00
10,500.00	6.00	84.95	10,454.53	76.83	869.44	11.85	0.00	0.00	0.00
10,600.00	6.00	84.95	10,553.98	77.75	879.85	11.99	0.00	0.00	0.00
10,700.00	6.00	84.95	10,653.44	78.67	890.26	12.13	0.00	0.00	0.00

4/10/2019 9:56:30AM

COMPASS 5000.15 Build 91

. .

Planning Report

Database:	EDM 5000.15 Single User Db	Local Co-ordinate Reference:	Well Black Marlin Fed Com #2H
Company:	Impetro Operating, LLC	TVD Reference:	GL @ 3186.00usft
Project:	Lea County, NM (NAD83)	MD Reference:	GL @ 3186.00usft
Site:	Sec 19-25S-36E	North Reference:	Grid
Well:	Black Marlin Fed Com #2H	Survey Calculation Method:	Minimum Curvature
Nellbore:	Wellbore #1		
Design:	Plan #1		н. — — — — — — — — — — — — — — — — — — —

Planned Survey

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100ft)	(°/100ft)	(°/100ft)
10,800.00	6.00	84.95	10,752.89	79.59	900.68	12.28	0.00	0.00	0.00
10,900.00	6.00	84.95	10,852.34	80.51	911.09	12.42	0.00	0.00	0.00
11,000.00	6.00	84.95	10,951.79	81.43	921.50	12.56	0.00	0.00	0.00
11,100.00	6.00	84.95	11,051.24		921.50 931.91			0.00	0.00
				82.35		12.70	0.00		0.00
11,200.00	6.00 6.00	84.95	11,150.70	83.27	942.32	12.84	0.00	0.00	0.00
11,211.25		84.95	11,161.88	83.37	943.50	12.86	0.00	0.00	0.00
11,300.00	4.22	84.95	11,250.28	84.07	951.37	12.97	2.00	-2.00	0.00
11,400.00	2.22	84.95	11,350.12	84.57	956.98	13.04	2.00	-2.00	0.00
11,500.00	0.22	84.95	11,450.09	84.75	959.11	13.07	2.00	-2.00	0.00
11,511.25	0.00	0.00	11,461.34	84.76	959.13	13.07	2.00	-2.00	0.00
11,600.00	0.00	0.00	11,550.09	84.76	959.13	13.07	0.00	0.00	0.00
11,700.00	0.00	0.00	11,650.09	84.76	959.13	13.07	0.00	0.00	0.00
11,800.00	0.00	0.00	11,750.09	84.76	959.13	13.07	0.00	0.00	0.00
11,900.00	0.00	0.00	11,850.09	84.76	959.13	13.07	0.00	0.00	0.00
11,922.45	0.00	0.00	11,872.54	84.76	959.13	13.07	0.00	0.00	0.00
11,925.00	0.31	179.43	11,875.09	84.75	959.13	13.08	12.00	12.00	0.00
11,950.00	3.31	179.43	11,900.07	83.96	959.13	13.86	12.00	12.00	0.00
11,975.00	6.31	179.43	11,924.98	81.87	959.16	15.95	12.00	12.00	0.00
12,000.00	9.31	179.43	11,949.75	78.47	959.19	19.33	12.00	12.00	0.00
12,025.00	12.31	179.43	11,974.30	73.79	959.24	24.00	12.00	12.00	0.00
12,050.00	15.31	179.43	11,998.58	67.82	959.30	29.94	12.00	12.00	0.00
12,075.00	18.31	179.43	12,022.51	60.59	959.37	37.14	12.00	12.00	0.00
12,100.00	21.31	179.43	12,046.02	52.12	959.45	45.57	12.00	12.00	0.00
12,125.00	24.31	179.43	12,069.07	42.44	959.55	55.22	12.00	12.00	0.00
12,150.00	27.31	17 9 .43	12,091.57	31.55	959.66	66.05	12.00	12.00	0.00
12,175.00	30.31	179.43	12,113.47	19.51	959.78	78.05	12.00	12.00	0.00
12,200.00	33.31	179.43	12,134.72	6.34	959.91	91.17	12.00	12.00	0.00
40 005 00	36.31	179.43	40 455 04	-7.93	060.05	105.38	42.00	42.00	0.00
12,225.00			12,155.24		960.05		12.00	12.00	0.00
12,250.00	39.31	179.43	12,174.99	-23.25	960.21	120.64	12.00	12.00	0.00
12,275.00	42.31 45.31	179.43	12,193.91	-39.59	960.37	136.90	12.00	12.00	0.00
12,300.00 12,325.00	48.31	179.43 179.43	12,211.95 12,229.06	-56.89 -75.11	960.54 960.73	154.13 172.28	12.00 12.00	12.00	0.00 0.00
12,325.00	40.31	178.43	12,229.00		900.73	1/2.20	12.00	12.00	0.00
12,350.00	51.31	179.43	12,245.20	-94.21	960.92	191.29	12.00	12.00	0.00
12,375.00	54.31	179.43	12,260.31	-114.12	961.12	211.12	12.00	12.00	0.00
12,400.00	57.31	179.43	12,274.36	-134.80	961.32	231.71	12.00	12.00	0.00
12,425.00	60.31	179.43	12,287.30	-156.18	961.54	253.01	12.00	12.00	0.00
12,450.00	63.31	179.43	12,299.11	-178.21	961.76	274.95	12.00	12.00	0.00
12,475.00	66.31	179.43	12,309.75	-200.83	961.98	297.47	12.00	12.00	0.00
12,500.00	69.31	179.43	12,319.20	-223.97	962.21	320.52	12.00	12.00	0.00
12,525.00	72.31	179.43	12,327.41	-247.58	962.45	344.03	12.00	12.00	0.00
12,550.00	75.31	179.43	12,334.39	-271.58	962.69	367.93	12.00	12.00	0.00
12,575.00	78.31	179.43	12,340.09	-295.92	962.93	392.16	12.00	12.00	0.00
		170 49	13 344 54						0.00
12,600.00	81.31 84.31	179.43 179.43	12,344.51 12,347.64	-320.52	963.18 963.43	416.66 441.36	12.00	12.00	0.00 0.00
12,625.00			12,347.64	-345.32			12.00	12.00	
12,650.00	87.31	179.43	12,349.47	-370.25	963.67 063.00	466.19	12.00	12.00 12.00	0.00
12,672.45	90.00	179.43	•	-392.68	963.90 964.17	488.53	12.00		0.00
12,700.00	90.00	179.43	12,350.00	-420.24	964.17	515.97	0.00	0.00	0.00
12,800.00	90.00	179.43	12,350.00	-520.23	965.17	615.55	0.00	0.00	0.00
12,900.00	90.00	179.43	12,350.00	-620.23	966.17	715.13	0.00	0.00	0.00
13,000.00	90.00	179.43	12,350.00	-720.22	967.17	814.71	0.00	0.00	0.00
13,100.00	90.00	179.43	12,350.00	-820.22	968.17	914.29	0.00	0.00	0.00
13,200.00	90.00	179.43	12,350.00	-920.21	969.17	1,013.87	0.00	0.00	0.00
13,300.00	90.00	179.43	12,350.00	-1,020.21	970.17	1,113.44	0.00	0.00	0.00
13,300.00	90.00	179.43	12,350.00	-1,120.20	970.17 971.17	1,113.44	0.00	0.00	0.00

COMPASS 5000.15 Build 91

Planning Report

Design:	Plan #1	· · •	· · · · · · · · · · · · · · · · · · ·
Well: Wellbore:	Black Marlin Fed Com #2H Wellbore #1	Survey Calculation Method:	Minimum Curvature
Site:	Sec 19-25S-36E	North Reference:	Grid
Project:	Lea County, NM (NAD83)	MD Reference:	GL @ 3186.00usft
Database: Company:	EDM 5000.15 Single User Db Impetro Operating, LLC	Local Co-ordinate Reference: TVD Reference:	Well Black Marlin Fed Com #2H

i.

l

Lueft) (y) (y) (unit) (unit) (unit) (unit) (Y100t) (Y100t) (Y100t) 13.500.00 90.00 1784.3 12.350.01 1,220.20 972.17 1,312.60 0.00 0.00 0.00 13.500.00 90.00 1784.3 12.350.00 1,220.10 977.11 1,312.60 0.00 0.00 13.800.00 90.00 1774.43 12.350.00 1,220.10 977.11 1,811.34 0.00 0.00 0.00 14.000.01 90.00 1774.43 12.350.00 -1,200.17 977.16 1,811.34 0.00 0.00 0.00 14.200.00 90.00 1774.43 12.350.00 -2,201.16 978.16 2,098.60 0.00	Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
13.800.00 90.00 179.43 12.350.00 -1.320.18 973.16 1.121.18 0.00 0.00 0.00 13.800.00 90.00 179.43 12.350.00 -1.420.18 975.16 1.111.34 0.00 0.00 0.00 14.000.00 90.00 179.43 12.350.00 -1.220.17 977.16 1.110.50 0.00 0.00 0.00 14.100.00 90.00 179.43 1.2350.00 -1.220.17 977.16 1.110.50 0.00 0.00 0.00 14.300.00 90.00 179.43 1.2350.00 -2.021.16 980.16 2.109.24 0.00 0.00 0.00 14.400.01 90.00 179.43 1.2350.00 -2.201.16 981.16 2.304.20 0.00 0.00 0.00 14.600.01 90.00 179.43 1.2350.00 -2.201.16 981.16 2.204.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-			-						
13.700.00 90.00 179.43 12.550.00 -1.620.18 977.16 1,511.76 0.00 0.00 0.00 13.800.00 90.00 179.43 12.350.00 -1.520.18 975.16 1,911.34 0.00 <t< td=""><td>13,500.00</td><td>90.00</td><td>179.43</td><td>12,350.00</td><td>-1,220.20</td><td>972.17</td><td>1,312.60</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	13,500.00	90.00	179.43	12,350.00	-1,220.20	972.17	1,312.60	0.00	0.00	0.00
158000 9000 17943 128500 -152018 97516 191134 0.00 0.00 0.00 139000 9000 17943 123500 -152019 97516 171132 0.00 0.00 0.00 14,000,00 9000 17943 123500 -152017 77516 171102 0.00 0.00 0.00 14,200,00 90.00 17943 1235000 -162017 77516 219824 0.00 0.00 0.00 14,400,00 80.00 17943 1235000 -2.2015 88216 2.30840 0.00 0.00 0.00 14,500,00 80.00 17943 12.35000 -2.2013 88215 2.40714 0.00 0.00 0.00 14,500,00 80.00 17943 12.35000 -2.2013 88515 2.60714 0.00 0.00 0.00 14,600,00 60.00 17943 12.35000 -2.2012 88615 2.60758 0.00 0.00 0.00	13,600.00	90.00	179.43	12,350.00	-1,320.19	973.16	1,412.18	0.00	0.00	0.00
13.800.00 90.00 179.43 12.350.00 -1.620.18 977.16 1110.50 0.00 0.00 0.00 14.000.00 50.00 179.43 12.350.00 -1.820.17 977.16 1.810.50 0.00 0.00 0.00 14.200.00 50.00 179.43 12.350.00 -2.020.16 860.16 2.109.24 0.00 0.00 0.00 14.400.00 50.00 179.43 12.350.00 -2.202.15 881.16 2.208.40 0.00 0.00 0.00 14.600.00 60.00 179.43 12.350.00 -2.202.15 881.15 2.407.86 0.00 0.00 0.00 0.00 1.00 0.	13,700.00	90.00	179.43	12,350.00	-1,420.19	974.16	1,511.76	0.00	0.00	0.00
14.000.00 90.00 179.43 12.350.00 -1.720.17 977.16 1910.08 0.00 0.00 0.00 14.300.00 90.00 179.43 12.350.00 -1.920.16 979.16 1910.08 0.00 0.00 0.00 14.300.00 90.00 179.43 12.350.00 -2.020.16 980.16 2.105.24 0.00 0.00 0.00 14.400.00 90.00 179.43 12.350.00 -2.220.15 982.15 2.304.40 0.00 0.00 0.00 14.800.00 90.00 179.43 12.350.00 -2.220.15 982.15 2.307.56 0.00 0.00 0.00 0.00 0.00 1.00 0.0	13,800.00		179.43	12,350.00	-1,520.18	975.16	1,611.34	0.00	0.00	0.00
14,100,00 90,00 179,43 12,350,00 -1,820,17 978,16 1910,06 0.00 0.00 0.00 14,300,00 90,00 179,43 12,350,00 -2,020,16 979,16 2,006,66 0.00 0.00 0.00 14,400,00 90,00 179,43 12,350,00 -2,220,15 981,16 2,109,24 0.00 0.00 0.00 14,600,00 90,00 179,43 12,350,00 -2,320,14 983,15 2,407,56 0.00 0.00 0.00 14,700,00 90,00 179,43 12,350,00 -2,520,13 985,15 2,607,14 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.	13,900.00		179.43	12,350.00	-1,620.18	976.16	1,710.92	0.00	0.00	0.00
14,200.00 90.00 178.43 12,350.00 -1,920.16 979.16 2,009.66 0.00 0.00 0.00 14,300.00 90.00 178.43 12,350.00 -2,020.16 980.16 2,109.24 0.00 0.00 0.00 14,400.00 90.00 178.43 12,350.00 -2,220.15 982.15 2,309.40 0.00 0.00 0.00 0.00 14,800.00 90.00 178.43 12,350.00 -2,220.15 982.15 2,307.40 0.00 0.00 0.00 0.00 14,800.00 90.00 178.43 12,350.00 -2,620.13 986.15 2,706.72 0.00 0				-		977.16	1,810.50		0.00	0.00
	14,100.00	90.00	179.43	12,350.00	-1,820.17	978.16	1,910.08	0.00	0.00	0.00
14.400.00 90.00 179.43 12.550.00 -2.120.15 981.16 2.208.40 0.00 0.00 0.00 14.560.00 90.00 179.43 12.350.00 -2.200.14 982.15 2.407.96 0.00 0.00 0.00 14.700.00 90.00 179.43 12.350.00 -2.201.14 984.15 2.607.14 0.00 0.00 0.00 14.800.00 90.00 179.43 12.350.00 -2.620.13 986.15 2.607.34 0.00 0.00 0.00 15.000.00 90.00 179.43 12.350.00 -2.820.11 989.15 3.005.46 0.00 0	14,200.00	90.00	179.43	12,350.00	-1,920.16	979.16	2,009.66	0.00	0.00	0.00
14.500.00 90.00 179.43 12.550.00 -2.20.15 982.15 2.308.40 0.00 0.00 0.00 14.700.00 90.00 179.43 12.350.00 -2.420.14 984.15 2.507.56 0.00 0.00 0.00 14.800.00 90.00 179.43 12.350.00 -2.620.13 986.15 2.607.14 0.00 0.00 0.00 15.000.00 90.00 179.43 12.350.00 -2.620.13 986.15 2.607.14 0.00 0.00 0.00 15.100.00 90.00 179.43 12.350.00 -2.620.12 987.15 2.805.88 0.00 0.00 0.00 15.300.00 90.00 179.43 12.350.00 3.202.11 989.15 3.005.44 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	•					980.16	2,109.24			0.00
14,800.00 90.00 179.43 12,350.00 -2,201.14 984.15 2,407.58 0.00 0.00 0.00 14,700.00 90.00 179.43 12,350.00 -2,201.13 985.15 2,607.58 0.00 0.00 0.00 14,800.00 90.00 179.43 12,350.00 -2,201.13 985.15 2,807.14 0.00 0.00 0.00 15,000.00 90.00 179.43 12,350.00 -2,200.12 987.15 2,806.30 0.00 0.00 0.00 15,200.00 90.00 179.43 12,350.00 -2,200.11 989.15 3,005.46 0.00 0.00 0.00 15,400.00 90.00 179.43 12,350.00 -3,120.10 991.14 3,004.20 0.00 0.00 0.00 15,400.00 90.00 179.43 12,350.00 -3,220.10 991.14 3,402.20 0.00	•			•	-2,120.15	981.16	2,208.82		0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				12,350.00	-2,220.15	982.15	2,308.40	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										0.00
14 800.00 90.00 179.43 12,350.00 -2,262.13 986.15 2,767.2 0.00 0.00 0.00 15,000.00 90.00 179.43 12,350.00 -2,220.12 986.15 2,906.30 0.00 0.00 0.00 15,000.00 90.00 179.43 12,350.00 -2,220.11 999.15 3,056.46 0.00 0.00 0.00 15,300.00 90.00 179.43 12,350.00 -3,202.11 999.15 3,105.04 0.00 0.00 0.00 15,500.00 90.00 179.43 12,350.00 -3,220.11 999.14 3,40.22 0.00 0.00 0.00 15,500.00 90.00 179.43 12,350.00 -3,320.09 993.14 3,403.78 0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00	14,700.00	90.00	179.43	12,350.00	-2,420.14	984.15	2,507.56	0.00	0.00	0.00
15,000.00 90.00 179.43 12,350.00 -2,272.12 987.15 2,005.86 0.00 0.00 0.00 15,100.00 90.00 179.43 12,350.00 -2,920.11 989.15 3,005.46 0.00 0.00 0.00 15,300.00 90.00 179.43 12,350.00 -3,220.11 990.15 3,105.04 0.00 0.00 0.00 15,400.00 90.00 179.43 12,350.00 -3,220.10 992.14 3,404.20 0.00 0.00 0.00 15,600.00 90.00 179.43 12,350.00 -3,320.99 993.14 3,603.36 0.00 0.00 0.00 15,700.00 90.00 179.43 12,350.00 -3,220.99 994.14 3,603.36 0.00 0.00 0.00 15,800.00 90.00 179.43 12,350.00 -3,220.69 995.14 3,602.93 0.00 0.00 0.00 15,800.00 90.00 179.43 12,350.00 -3,220.69 990.167 0.00 0.00 <td>14,800.00</td> <td>90.00</td> <td>179.43</td> <td>12,350.00</td> <td>-2,520.13</td> <td>985.15</td> <td>2,607.14</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	14,800.00	90.00	179.43	12,350.00	-2,520.13	985.15	2,607.14	0.00	0.00	0.00
15,100.00 90.00 179.43 12,350.00 -2,920.12 988.15 2,005.86 0.00 0.00 0.00 15,200.00 90.00 179.43 12,350.00 -2,920.11 999.15 3,105.04 0.00 0.00 0.00 15,300.00 90.00 179.43 12,350.00 -3,120.10 991.15 3,104.62 0.00 0.00 0.00 15,500.00 90.00 179.43 12,350.00 -3,220.11 991.15 3,204.62 0.00 0.00 0.00 15,600.00 90.00 179.43 12,350.00 -3,320.09 993.14 3,403.76 0.00 0.00 0.00 15,800.00 90.00 179.43 12,350.00 -3,620.08 995.14 3,602.99 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 1.00 1.	14,900.00	90.00	179.43	12,350.00	-2,620.13	986.15	2,706.72	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15,000.00	90.00	179.43	12,350.00	-2,720.12	987.15	2,806.30	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15,100.00	90.00	179.43	12,350.00	-2,820.12	988.15	2,905.88	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15,200.00	90.00	179.43	12,350.00	-2,920.11	989.15	3,005.46	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15,300.00	90.00	179.43	12,350.00	-3,020.11	990.15	3,105.04	0.00	0.00	0.00
15,600.00 90.00 179.43 12,350.00 -3,220.09 993.14 3,403.78 0.00 0.00 0.00 15,700.00 90.00 179.43 12,350.00 -3,220.09 994.14 3,503.36 0.00 0.00 0.00 15,800.00 90.00 179.43 12,350.00 -3,520.08 996.14 3,702.51 0.00 0.00 0.00 0.00 16,100.00 90.00 179.43 12,350.00 -3,720.07 997.14 3,802.09 0.00 0.00 0.00 0.00 16,100.00 90.00 179.43 12,350.00 -3,720.07 997.14 3,802.09 0.00 0.00 0.00 0.00 16,200.00 90.00 179.43 12,350.00 -4,120.05 1,001.13 4,200.41 0.00	15,400.00	90.00	179.43	12,350.00	-3,120.10	991.15	3,204.62		0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15,500.00	90.00	179.43	12,350.00	-3,220.10	992.14	3,304.20	0.00	0.00	0.00
	15,600.00	90.00	179.43	12,350.00	-3,320.09	993.14	3,403.78	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15,700.00	90.00	179.43	12,350.00	-3,420.09	994.14	3,503.36	0.00	0.00	0.00
15,900.00 90.00 179.43 12,350.00 -3,820.08 997.14 3,702.51 0.00 0.00 0.00 16,000.00 90.00 179.43 12,350.00 -3,720.07 997.14 3,802.09 0.00 0.00 0.00 16,100.00 90.00 179.43 12,350.00 -3,920.06 999.14 4,001.25 0.00 0.00 0.00 16,200.00 90.00 179.43 12,350.00 -4,020.06 1,001.14 4,100.83 0.00 0.00 0.00 16,400.00 90.00 179.43 12,350.00 -4,220.05 1,002.13 4,299.99 0.00 0.00 0.00 16,600.00 90.00 179.43 12,350.00 -4,220.05 1,002.13 4,999.57 0.00 0.00 0.00 1.00 1.00 4,999.15 0.00 0.00 0.00 0.00 1.00 1.04,499.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td>15,800.00</td> <td>90.00</td> <td>179.43</td> <td>12,350.00</td> <td>-3,520.08</td> <td>995.14</td> <td>3,602.93</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	15,800.00	90.00	179.43	12,350.00	-3,520.08	995.14	3,602.93	0.00	0.00	0.00
16,100.00 90.00 179.43 12,350.00 -3,820.07 998.14 3,901.67 0.00 0.00 0.00 16,200.00 90.00 179.43 12,350.00 -3,920.06 999.14 4,001.25 0.00 0.00 0.00 0.00 16,300.00 90.00 179.43 12,350.00 -4,220.05 1,001.14 4,200.41 0.00 <	15,900.00	90.00	179.43	12,350.00	-3,620.08	996.14	3,702.51	0.00	0.00	0.00
16,100.00 90.00 179.43 12,350.00 -3,820.07 998.14 3,901.67 0.00 0.00 0.00 16,200.00 90.00 179.43 12,350.00 -3,920.06 999.14 4,001.25 0.00 0.00 0.00 0.00 16,300.00 90.00 179.43 12,350.00 -4,220.05 1,001.13 4,209.41 0.00 <	16,000.00	90.00	179.43	12,350.00	-3,720.07	997.14	3,802.09	0.00	0.00	0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16,100.00	90.00	179.43				3,901.67			
16,400.00 90.00 179.43 12,350.00 -4,120.05 1,001.13 4,200.41 0.00 0.00 0.00 16,500.00 90.00 179.43 12,350.00 -4,220.05 1,002.13 4,299.99 0.00 0.00 0.00 0.00 16,600.00 90.00 179.43 12,350.00 -4,320.04 1,003.13 4,399.57 0.00 0.00 0.00 16,700.00 90.00 179.43 12,350.00 -4,420.04 1,004.13 4,499.15 0.00 0.00 0.00 16,800.00 90.00 179.43 12,350.00 -4,620.03 1,006.13 4,698.31 0.00 0.00 0.00 17,000.00 90.00 179.43 12,350.00 -4,720.02 1,008.13 4,897.47 0.00 0.00 0.00 0.00 179.43 12,350.00 -5,120.00 1,011.12 5,198.21 0.00 0.00 0.00 0.00 1.000 0.00 0.00 0.00 0.00 1.000.00 0.00 0.00 0.00	16,200.00	90.00	179.43		•					
16,400.00 90.00 179.43 12,350.00 -4,120.05 1,001.13 4,200.41 0.00 0.00 0.00 16,500.00 90.00 179.43 12,350.00 -4,220.05 1,002.13 4,299.99 0.00 0.00 0.00 0.00 16,600.00 90.00 179.43 12,350.00 -4,220.04 1,003.13 4,399.57 0.00 0.00 0.00 16,700.00 90.00 179.43 12,350.00 -4,420.04 1,004.13 4,499.15 0.00 0.00 0.00 16,800.00 90.00 179.43 12,350.00 -4,620.03 1,006.13 4,687.31 0.00 0.00 0.00 17,000.00 90.00 179.43 12,350.00 -4,620.02 1,008.13 4,897.47 0.00 0.00 0.00 17,000.00 90.00 179.43 12,350.00 -5,020.01 1,010.13 5,096.63 0.00 0.00 0.00 17,400.00 90.00 179.43 12,350.00 -5,120.00 1,011.12	16,300.00	90.00	179.43	12,350.00	-4,020.06	1,000.14	4,100.83	0.00	0.00	0.00
16,600.00 90.00 179.43 12,350.00 -4,320.04 1,003.13 4,399.57 0.00 0.00 0.00 16,700.00 90.00 179.43 12,350.00 -4,420.04 1,004.13 4,499.15 0.00 0.00 0.00 16,800.00 90.00 179.43 12,350.00 -4,520.03 1,006.13 4,598.73 0.00 0.00 0.00 16,900.00 90.00 179.43 12,350.00 -4,520.02 1,007.13 4,797.89 0.00 0.00 0.00 17,000.00 90.00 179.43 12,350.00 -4,820.02 1,008.13 4,897.47 0.00 0.00 0.00 17,100.00 90.00 179.43 12,350.00 -5,020.01 1,019.13 5,996.63 0.00 0.00 0.00 17,300.00 90.00 179.43 12,350.00 -5,220.00 1,011.12 5,196.21 0.00 0.00 0.00 17,500.00 90.00 179.43 12,350.00 -5,120.00 1,011.12 5,945.53	16,400.00	90.00	179.43	12,350.00	-4,120.05	1,001.13	4,200.41	0.00	0.00	0.00
16,700.00 90.00 179.43 12,350.00 -4,420.04 1,004.13 4,499.15 0.00 0.00 0.00 16,800.00 90.00 179.43 12,350.00 -4,520.03 1,005.13 4,598.73 0.00 0.00 0.00 16,800.00 90.00 179.43 12,350.00 -4,620.03 1,006.13 4,698.31 0.00 0.00 0.00 17,000.00 90.00 179.43 12,350.00 -4,720.02 1,007.13 4,797.89 0.00 0.00 0.00 17,100.00 90.00 179.43 12,350.00 -4,820.02 1,008.13 4,897.47 0.00 0.00 0.00 17,200.00 90.00 179.43 12,350.00 -5,020.01 1,010.13 5,096.63 0.00 0.00 0.00 17,400.00 90.00 179.43 12,350.00 -5,220.00 1,011.12 5,198.21 0.00 0.00 0.00 17,600.00 90.00 179.43 12,350.00 -5,519.98 1,016.12 5,994.53	16,500.00	90.00	179.43	12,350.00	-4,220.05	1,002.13	4,299.99	0.00	0.00	0.00
16,800.00 90.00 179.43 12,350.00 -4,520.03 1,005.13 4,598.73 0.00 0.00 0.00 16,900.00 90.00 179.43 12,350.00 -4,620.03 1,006.13 4,698.31 0.00 0.00 0.00 17,000.00 90.00 179.43 12,350.00 -4,720.02 1,007.13 4,797.89 0.00 0.00 0.00 17,100.00 90.00 179.43 12,350.00 -4,820.02 1,008.13 4,897.47 0.00 0.00 0.00 17,200.00 90.00 179.43 12,350.00 -5,020.01 1,009.13 4,997.05 0.00 0.00 0.00 17,300.00 90.00 179.43 12,350.00 -5,120.00 1,011.12 5,198.21 0.00 0.00 0.00 17,600.00 90.00 179.43 12,350.00 -5,220.00 1,012.12 5,395.37 0.00 0.00 0.00 17,600.00 90.00 179.43 12,350.00 -5,519.98 1,015.12 5,594.53	16,600.00	90.00	179.43	12,350.00	-4,320.04	1,003.13	4,399.57	0.00	0.00	0.00
16,900.00 90.00 179.43 12,350.00 -4,620.03 1,006.13 4,698.31 0.00 0.00 0.00 17,000.00 90.00 179.43 12,350.00 -4,720.02 1,007.13 4,797.89 0.00 0.00 0.00 17,100.00 90.00 179.43 12,350.00 -4,820.02 1,008.13 4,897.47 0.00 0.00 0.00 17,200.00 90.00 179.43 12,350.00 -5,020.01 1,009.13 4,997.05 0.00 0.00 0.00 17,400.00 90.00 179.43 12,350.00 -5,020.01 1,011.12 5,198.21 0.00 0.00 0.00 0.00 17,600.00 90.00 179.43 12,350.00 -5,220.00 1,012.12 5,295.79 0.00 0.00 0.00 17,600.00 90.00 179.43 12,350.00 -5,519.98 1,014.12 5,494.95 0.00 0.00 0.00 17,600.00 90.00 179.43 12,350.00 -5,519.98 1,016.12	16,700.00	90.00	179.43	12,350.00	-4,420.04	1,004.13	4,499.15	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16,800.00	90.00	179.43	12,350.00	-4,520.03	1,005.13	4,598.73	0.00	0.00	0.00
17,100.00 90.00 179.43 12,350.00 -4,820.02 1,008.13 4,897.47 0.00 0.00 0.00 17,200.00 90.00 179.43 12,350.00 -4,820.01 1,009.13 4,997.05 0.00 0.00 0.00 17,300.00 90.00 179.43 12,350.00 -5,020.01 1,010.13 5,096.63 0.00 0.00 0.00 17,400.00 90.00 179.43 12,350.00 -5,120.00 1,011.12 5,196.21 0.00 0.00 0.00 17,600.00 90.00 179.43 12,350.00 -5,319.99 1,013.12 5,395.37 0.00 0.00 0.00 17,600.00 90.00 179.43 12,350.00 -5,519.98 1,014.12 5,494.95 0.00 0.00 0.00 17,800.00 90.00 179.43 12,350.00 -5,519.98 1,016.12 5,694.53 0.00 0.00 0.00 17,800.00 90.00 179.43 12,350.00 -5,519.98 1,016.12 5,694.11 0.00 0.00 0.00 17,900.00 90.00 179.43 <td>16,900.00</td> <td>90.00</td> <td>179.43</td> <td>12,350.00</td> <td>-4,620.03</td> <td>1,006.13</td> <td>4,698.31</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	16,900.00	90.00	179.43	12,350.00	-4,620.03	1,006.13	4,698.31	0.00	0.00	0.00
17,200.0090.00179.4312,350.00-4,920.011,009.134,997.050.000.000.0017,300.0090.00179.4312,350.00-5,020.011,010.135,096.630.000.000.0017,400.0090.00179.4312,350.00-5,120.001,011.125,196.210.000.000.0017,500.0090.00179.4312,350.00-5,220.001,012.125,295.790.000.000.0017,600.0090.00179.4312,350.00-5,319.991,013.125,395.370.000.000.0017,700.0090.00179.4312,350.00-5,519.981,015.125,594.530.000.000.0017,800.0090.00179.4312,350.00-5,519.981,016.125,694.110.000.000.0017,900.0090.00179.4312,350.00-5,719.971,017.125,793.690.000.000.0018,000.0090.00179.4312,350.00-5,819.971,018.125,893.270.000.000.0018,300.0090.00179.4312,350.00-5,919.961,021.116,092.420.000.000.0018,300.0090.00179.4312,350.00-5,919.961,021.116,092.420.000.000.0018,400.0090.00179.4312,350.00-6,119.951,021.116,921.580.000.000.0018,600.0090.00179.4312,	17,000.00				-4,720.02	1,007.13	4,797.89	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,			12,350.00	-4,820.02	1,008.13	4,897.47	0.00	0.00	0.00
17,400.0090.00179.4312,350.00-5,120.001,011.125,196.210.000.000.0017,500.0090.00179.4312,350.00-5,220.001,012.125,295.790.000.000.0017,600.0090.00179.4312,350.00-5,319.991,013.125,395.370.000.000.0017,700.0090.00179.4312,350.00-5,519.981,014.125,494.950.000.000.0017,800.0090.00179.4312,350.00-5,519.981,015.125,594.530.000.000.0017,900.0090.00179.4312,350.00-5,619.981,016.125,694.110.000.000.0017,900.0090.00179.4312,350.00-5,719.971,017.125,793.690.000.000.0018,000.0090.00179.4312,350.00-5,919.961,019.125,893.270.000.000.0018,200.0090.00179.4312,350.00-5,919.961,019.125,992.840.000.000.0018,300.0090.00179.4312,350.00-6,019.961,020.116,092.420.000.000.0018,400.0090.00179.4312,350.00-6,119.951,021.116,192.000.000.000.0018,600.0090.00179.4312,350.00-6,219.951,022.116,291.580.000.000.0018,600.0090.00179.4312,	17,200.00	90.00	179.43	12,350.00	-4,920.01	1,009.13	4,997.05	0.00	0.00	0.00
17,500.0090.00179.4312,350.00-5,220.001,012.125,295.790.000.000.0017,600.0090.00179.4312,350.00-5,319.991,013.125,395.370.000.000.0017,700.0090.00179.4312,350.00-5,419.991,014.125,494.950.000.000.0017,800.0090.00179.4312,350.00-5,519.981,015.125,594.530.000.000.0017,900.0090.00179.4312,350.00-5,619.981,016.125,694.110.000.000.0017,900.0090.00179.4312,350.00-5,719.971,017.125,793.690.000.000.0018,000.0090.00179.4312,350.00-5,819.971,018.125,893.270.000.000.0018,200.0090.00179.4312,350.00-5,919.961,019.125,992.840.000.000.0018,300.0090.00179.4312,350.00-6,019.961,020.116,092.420.000.000.0018,400.0090.00179.4312,350.00-6,119.951,021.116,192.000.000.000.0018,600.0090.00179.4312,350.00-6,119.951,022.116,291.580.000.000.0018,600.0090.00179.4312,350.00-6,219.951,022.116,291.580.000.000.0018,600.0090.00179.4312,										0.00
17,600.0090.00179.4312,350.00-5,319.991,013.125,395.370.000.000.0017,700.0090.00179.4312,350.00-5,419.991,014.125,494.950.000.000.0017,800.0090.00179.4312,350.00-5,519.981,015.125,594.530.000.000.0017,900.0090.00179.4312,350.00-5,619.981,016.125,694.110.000.000.0018,000.0090.00179.4312,350.00-5,719.971,017.125,793.690.000.000.0018,100.0090.00179.4312,350.00-5,819.971,018.125,893.270.000.000.0018,200.0090.00179.4312,350.00-5,919.961,019.125,992.840.000.000.0018,300.0090.00179.4312,350.00-6,019.961,020.116,092.420.000.000.0018,400.0090.00179.4312,350.00-6,119.951,021.116,192.000.000.000.0018,500.0090.00179.4312,350.00-6,119.951,022.116,291.580.000.000.0018,600.0090.00179.4312,350.00-6,219.951,022.116,291.580.000.000.0018,600.0090.00179.4312,350.00-6,319.941,023.116,391.160.000.000.0018,600.0090.00179.4312,	17,400.00				-5,120.00	1,011.12	5,196.21	0.00	0.00	0.00
17,700.0090.00179.4312,350.00-5,419.991,014.125,494.950.000.000.0017,800.0090.00179.4312,350.00-5,519.981,015.125,594.530.000.000.0017,900.0090.00179.4312,350.00-5,619.981,016.125,694.110.000.000.0018,000.0090.00179.4312,350.00-5,719.971,017.125,793.690.000.000.0018,100.0090.00179.4312,350.00-5,819.971,018.125,893.270.000.000.0018,200.0090.00179.4312,350.00-5,919.961,019.125,992.840.000.000.0018,300.0090.00179.4312,350.00-6,019.961,020.116,092.420.000.000.0018,400.0090.00179.4312,350.00-6,119.951,021.116,192.000.000.000.0018,500.0090.00179.4312,350.00-6,219.951,022.116,291.580.000.000.0018,600.0090.00179.4312,350.00-6,219.951,022.116,291.580.000.000.0018,600.0090.00179.4312,350.00-6,319.941,023.116,391.160.000.000.0018,600.0090.00179.4312,350.00-6,319.941,024.116,490.740.000.000.0018,700.0090.00179.4312,	17,500.00			12,350.00	-5,220.00	1,012.12	5,295.79	0.00	0.00	0.00
17,800.00 90.00 179.43 12,350.00 -5,519.98 1,015.12 5,594.53 0.00 0.00 0.00 17,900.00 90.00 179.43 12,350.00 -5,619.98 1,016.12 5,694.11 0.00 0.00 0.00 1.00 18,000.00 90.00 179.43 12,350.00 -5,719.97 1,017.12 5,793.69 0.00 0.00 0.00 18,100.00 90.00 179.43 12,350.00 -5,819.97 1,018.12 5,893.27 0.00 0.00 0.00 18,200.00 90.00 179.43 12,350.00 -5,919.96 1,019.12 5,992.84 0.00 0.00 0.00 18,300.00 90.00 179.43 12,350.00 -6,019.96 1,020.11 6,092.42 0.00 0.00 0.00 18,400.00 90.00 179.43 12,350.00 -6,119.95 1,021.11 6,192.00 0.00 0.00 0.00 18,400.00 90.00 179.43 12,350.00 -6,119.95 1,022.11	•				•	•				
17,900.0090.00179.4312,350.00-5,619.981,016.125,694.110.000.000.0018,000.0090.00179.4312,350.00-5,719.971,017.125,793.690.000.000.0018,100.0090.00179.4312,350.00-5,819.971,018.125,893.270.000.000.0018,200.0090.00179.4312,350.00-5,919.961,019.125,992.840.000.000.0018,300.0090.00179.4312,350.00-6,019.961,020.116,092.420.000.000.0018,400.0090.00179.4312,350.00-6,119.951,021.116,192.000.000.000.0018,500.0090.00179.4312,350.00-6,219.951,022.116,291.580.000.000.0018,600.0090.00179.4312,350.00-6,319.941,023.116,391.160.000.000.0018,700.0090.00179.4312,350.00-6,319.941,024.116,490.740.000.000.00	17,700.00	90.00	179.43	12,350.00	-5,419.99	1,014.12	5,494.95	0.00	0.00	0.00
17,900.0090.00179.4312,350.00-5,619.981,016.125,694.110.000.000.0018,000.0090.00179.4312,350.00-5,719.971,017.125,793.690.000.000.0018,100.0090.00179.4312,350.00-5,819.971,018.125,893.270.000.000.0018,200.0090.00179.4312,350.00-5,919.961,019.125,992.840.000.000.0018,300.0090.00179.4312,350.00-6,019.961,020.116,092.420.000.000.0018,400.0090.00179.4312,350.00-6,119.951,021.116,192.000.000.000.0018,500.0090.00179.4312,350.00-6,219.951,022.116,291.580.000.000.0018,600.0090.00179.4312,350.00-6,319.941,023.116,391.160.000.000.0018,700.0090.00179.4312,350.00-6,319.941,024.116,490.740.000.000.00	17,800.00	90.00	179.43	12,350.00	-5,519.98	1,015.12	5,594.53	0.00	0.00	0.00
18,000.00 90.00 179.43 12,350.00 -5,719.97 1,017.12 5,793.69 0.00 0.00 0.00 18,100.00 90.00 179.43 12,350.00 -5,819.97 1,018.12 5,893.27 0.00 0.00 0.00 0.00 18,200.00 90.00 179.43 12,350.00 -5,919.96 1,019.12 5,992.84 0.00 0.00 0.00 18,300.00 90.00 179.43 12,350.00 -6,019.96 1,020.11 6,092.42 0.00 0.00 0.00 18,400.00 90.00 179.43 12,350.00 -6,119.95 1,021.11 6,192.00 0.00 0.00 0.00 18,400.00 90.00 179.43 12,350.00 -6,119.95 1,021.11 6,192.00 0.00 0.00 0.00 18,500.00 90.00 179.43 12,350.00 -6,219.95 1,022.11 6,291.58 0.00 0.00 0.00 18,600.00 90.00 179.43 12,350.00 -6,319.94 1,023.11	17,900.00	90.00								
18,100.00 90.00 179.43 12,350.00 -5,819.97 1,018.12 5,893.27 0.00 0.00 0.00 0.00 18,200.00 90.00 179.43 12,350.00 -5,919.96 1,019.12 5,992.84 0.00 0.00 0.00 0.00 18,300.00 90.00 179.43 12,350.00 -6,019.96 1,020.11 6,092.42 0.00 0.00 0.00 0.00 18,400.00 90.00 179.43 12,350.00 -6,119.95 1,021.11 6,192.00 0.00 0.00 0.00 0.00 18,500.00 90.00 179.43 12,350.00 -6,219.95 1,022.11 6,291.58 0.00 0.00 0.00 0.00 18,500.00 90.00 179.43 12,350.00 -6,219.95 1,022.11 6,291.58 0.00 0.00 0.00 0.00 18,600.00 90.00 179.43 12,350.00 -6,319.94 1,023.11 6,391.16 0.00 0.00 0.00 0.00 0.00 0.00										
18,200.0090.00179.4312,350.00-5,919.961,019.125,992.840.000.000.0018,300.0090.00179.4312,350.00-6,019.961,020.116,092.420.000.000.0018,400.0090.00179.4312,350.00-6,119.951,021.116,192.000.000.000.0018,500.0090.00179.4312,350.00-6,219.951,022.116,291.580.000.000.0018,600.0090.00179.4312,350.00-6,319.941,023.116,391.160.000.000.0018,700.0090.00179.4312,350.00-6,419.941,024.116,490.740.000.000.00	18,100.00									
18,400.00 90.00 179.43 12,350.00 -6,119.95 1,021.11 6,192.00 0.00 0.00 0.00 0.00 18,500.00 90.00 179.43 12,350.00 -6,219.95 1,022.11 6,291.58 0.00 0.00 0.00 0.00 18,600.00 90.00 179.43 12,350.00 -6,319.94 1,023.11 6,391.16 0.00 0.00 0.00 18,700.00 90.00 179.43 12,350.00 -6,419.94 1,024.11 6,490.74 0.00 0.00 0.00					•					
18,400.00 90.00 179.43 12,350.00 -6,119.95 1,021.11 6,192.00 0.00 0.00 0.00 0.00 18,500.00 90.00 179.43 12,350.00 -6,219.95 1,022.11 6,291.58 0.00 0.00 0.00 0.00 18,600.00 90.00 179.43 12,350.00 -6,319.94 1,023.11 6,391.16 0.00 0.00 0.00 18,600.00 90.00 179.43 12,350.00 -6,319.94 1,023.11 6,391.16 0.00 0.00 0.00 18,700.00 90.00 179.43 12,350.00 -6,419.94 1,024.11 6,490.74 0.00 0.00 0.00	18,300.00	90.00	179.43	12,350.00	-6,019.96	1,020.11	6,092.42	0.00	0.00	0.00
18,500.0090.00179.4312,350.00-6,219.951,022.116,291.580.000.000.0018,600.0090.00179.4312,350.00-6,319.941,023.116,391.160.000.000.0018,700.0090.00179.4312,350.00-6,419.941,024.116,490.740.000.000.00										
18,600.00 90.00 179.43 12,350.00 -6,319.94 1,023.11 6,391.16 0.00 0.00 0.00 18,700.00 90.00 179.43 12,350.00 -6,419.94 1,024.11 6,490.74 0.00 0.00 0.00										
18,700.00 90.00 179.43 12,350.00 -6,419.94 1,024.11 6,490.74 0.00 0.00 0.00	•									
					•					
18,800.00 90.00 179.43 12,350.00 -6,519.93 1,025.11 6,590.32 0.00 0.00 0.00										

COMPASS 5000.15 Build 91

Planning Report

Database: Company: Project: Site: Vell: Vellbore: Design:	EDM 5000.15 Impetro Opera Lea County, N Sec 19-25S-30 Black Marlin F Wellbore #1 Plan #1	IM (NAD83) 6E		TVD R MD Re North	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:			Well Black Marlin Fed Com #2H GL @ 3186.00usft GL @ 3186.00usft Grid Minimum Curvature			
Planned Survey							<u></u>	·····			
Measured Depth	le alla atta a	6 -1	Vertical Depth	+N/-S	. 51 14	Vertical Section	Dogleg Rate	Build Rate	Turn Rate		
(usft)	Inclination (°)	Azimuth (°)	(usft)	+n/-S (usft)	+E/-W (usft)	(usft)	(°/100ft)	(°/100ft)	(°/100ft)		
18,900.00	90.00	179.43	12,350.00	-6,619.93	1.026.11	6.689.90	0.00	0.00	0.00		
19,000.00	90.00	179.43	12,350.00	-6,719.92	1,020.11	6,789.48	0.00	0.00	0.00		
19,100.00	90.00	179.43	12,350.00	-6,819.92	1,028.11	6,889.06	0.00	0.00	0.00		
19,200.00	90.00	179.43	12,350.00	-6,919.91	1,029.10	6,988.64	0.00	0.00	0.00		
-											
19,300.00	90.00	179.43	12,350.00	-7,019.91	1,030.10	7,088.22	0.00	0.00	0.00		
19,400.00	90.00	179.43	12,350.00	-7,119.90	1,031.10	7,187.80	0.00	0.00	0.00		
19,500.00	90.00	179.43	12,350.00	-7,219.90	1,032.10	7,287.38	0.00	0.00	0.00		
19,600.00	90.00	179.43	12,350.00	-7,319.89	1,033.10	7,386.96	0.00	0.00	0.00		
19,700.00	90.00	179.43	12,350.00	-7,419.89	1,034.10	7,486.54	0.00	0.00	0.00		
19,800.00	90.00	179.43	12,350.00	-7,519.88	1,035.10	7,586.12	0.00	0.00	0.00		
19,900.00	90.00	179.43	12,350.00	-7,619.88	1,036.10	7,685.70	0.00	0.00	0.00		
20,000.00	90.00	179.43	12,350.00	-7,719.87							
20,000.00	90.00	179.43	-	•	1,037.10	7,785.28	0.00	0.00 0.00	0.00		
•			12,350.00	-7,819.87	1,038.10	7,884.86	0.00		0.00		
20,200.00	90.00	179.43	12,350.00	-7,919.86	1,039.09	7,984.44	0.00	0.00	0.00		
20,300.00	90.00	179.43	12,350.00	-8,019.86	1,040.09	8,084.02	0.00	0.00	0.00		
20,400.00	90.00	179.43	12,350.00	-8,119.85	1,041.09	8,183.60	0.00	0.00	0.00		
20,500.00	90.00	179.43	12,350.00	-8,219.85	1,042.09	8,283.18	0.00	0.00	0.00		
20,600.00	90.00	179.43	12,350.00	-8,319.84	1,043.09	8,382.76	0.00	0.00	0.00		
20,700.00	90.00	179.43	12,350.00	-8,419.84	1,044.09	8,482.33	0.00	0.00	0.00		
				-							
20,800.00	90.00	179.43	12,350.00	-8,519.83	1,045.09	8,581.91	0.00	0.00	0.00		
20,900.00	90.00	179.43	12,350.00	-8,619.83	1,046.09	8,681.49	0.00	0.00	0.00		
21,000.00	90.00	179.43	12,350.00	-8,719.82	1,047.09	8,781.07	0.00	0.00	0.00		
21,100.00	90.00	179.43	12,350.00	-8,819.82	1,048.08	8,880.65	0.00	0.00	0.00		
21,200.00	90.00	179.43	12,350.00	-8,919.81	1,049.08	8,980.23	0.00	0.00	0.00		
21,300.00	90.00	179.43	12,350.00	-9,019.81	1,050.08	9,079.81	0.00	0.00	0.00		
21,400.00	90.00	179.43	12,350.00	-9,119.80	1,051.08	9,179.39	0.00	0.00	0.00		
21,500.00	90.00	179.43	12,350.00	-9,219.80	1,051.08	9,179.39	0.00	0.00	0.00		
21,600.00	90.00	179.43	12,350.00	-9.319.79	1,052.08	9,378.55	0.00	0.00	0.00		
21,700.00	90.00	179.43	12,350.00	-9,419.79	1,053.08	9,378.33 9,478.13	0.00	0.00	0.00		
			·	-							
21,800.00	90.00	17 9 .43	12,350.00	-9,519.7 8	1,055.08	9,577.71	0.00	0.00	0.00		
21,900.00	90.00	179.43	12,350.00	-9,619.78	1,056.08	9,677.29	0.00	0.00	0.00		
22,000.00	90.00	179.43	12,350.00	-9,719.77	1,057.08	9,776.87	0.00	0.00	0.00		
22,100.00	90.00	179.43	12,350.00	-9,819.77	1,058.07	9,876.45	0.00	0.00	0.00		
22,200.00	90.00	179.43	12,350.00	-9,919.76	1,059.07	9,976.03	0.00	0.00	0.00		
22,300.00	90.00	179.43	12,350.00	-10,019.76	1,060.07	10,075.61	0.00	0.00	0.00		
•	90.00			•	•	•					
22,400.00		179.43	12,350.00	-10,119.75	1,061.07	10,175.19	0.00	0.00	0.00		
22,500.00	90.00	179.43	12,350.00	-10,219.75	1,062.07	10,274.77	0.00	0.00	0.00		
22,600.00	90.00	179.43	12,350.00	-10,319.74	1,063.07	10,374.35	0.00	0.00	0.00		
22,625.80	90.00	179.43	12,350.00	-10,345.54	1,063.33	10,400.03	0.00	0.00	0.00		
22,705.80	90.00	179.43	12,350.00	-10,425.53	1,064.13	10,479.70	0.00	0.00	0.00		

Planning Report

Database: Company: Project: Site: Well: Wellbore: Design:	Impetro Op Lea County Sec 19-255	Fed Com #2)		TVD Refere MD Referen North Refer	ce:	GL @ 3186 GL @ 3186 Grid	Well Black Marlin Fed Com #2H GL @ 3186.00usft GL @ 3186.00usft Grid Minimum Curvature	
Design Targets Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
FTP Black Marlin Fed C - plan hits target ce - Point		0 0.00	12,086.17	34.30	959.64	415,270.49	862,190.55	32.13741	-103.29676
LTP Black Marlin Fed C - plan hits target ce - Point		0 0.00	12,350.00	-10,345.54	1,063.33	404,890.65	862,294.24	32.10888	-103.29675
PBHL Black Marlin Fed - plan hits target ce - Point		0 0.00	12,350.00	-10,425.53	1,064.13	404,810.66	862,295.05	32.10866	-103.29675
Plan Annotations Measu	red V	ertical	Loc	al Coordinates					<u> </u>

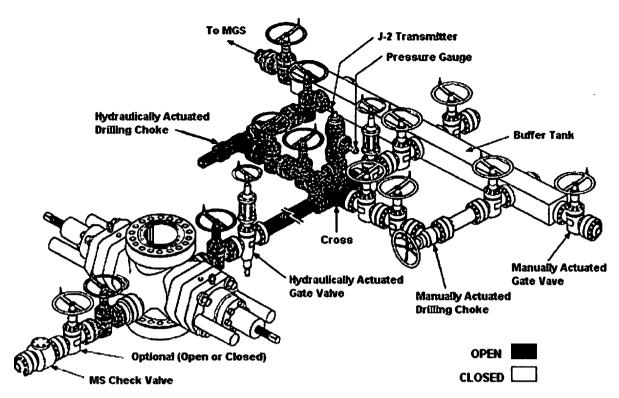
	mousarea	Depth (usft)			
	Depth (usft)		+N/-S (usft)	+E/-W (usft)	Comment
·	2,000.00	2,000.00	0.00	0.00	Nudge 2°/100'
	2,300.00	2,299.45	1.38	15.63	EON HLD 6° Inc.
	11,211.25	11,161.88	83.37	943.50	DROP 2°/100'
	11,511.25	11,461.34	84.76	959.13	EOD HLD 0° Inc.
	11,922.45	11,872.54	84.76	959.13	KOP BLD 12°/100'
	12,672.45	12,350.00	-392.68	963.90	EOB HLD 90° Inc.
	22,625.80	12,350.00	-10,345.54	1,063.33	CONT HLD 90° Inc.
	22,705.80	12,350.00	-10,425.53	1,064.13	TD at 22705.80
				· · · · · ·	······································

Well Control: Soft Shut in Procedure

If any positive kick indication is noticed and the flow check has showed that the well is flowing, it should be shut in immediately. If there is any doubt about the kick, the safest procedure is to shut the well in the check for surface pressures. A small gain can quickly turn into an uncontrolled situation leading to a blowout. There are a level of hesitation to shut the well in due the fear of stuck pipe. In general, the stuck pipe is minimized if the well is closed early, the influx will be small and the wellbore pressures will be reduced and controlled. Other issues which can lead to hesitate to close the well is the possibility of breaking down the formation, especially at the casing shoe.

There are different methods to close the well for different rig type. In this article, the procedures for a fixed rig are presented:

- Shut in while drilling
- Shut in while tripping


Soft shut in procedure

Circuit alignment during operations

During operations the circuit has to be aligned as follows:

- Manuel valve on choke line is opened
- Hydraulic valve on choke line has to be closed
- The choke on choke manifold has to be opened
- All the valves leading to the separator passing by the choke (downstream valves) have to be in open positions.

- Beside these valves, all the valves have to be in closed position.

Soft Shut in procedure while drilling

The procedure is performed as follows:

- if there is any kick indication, stop rotary, pick up off bottom and space out (Tool joint one meter above rotary table to avoid getting the next tool joint on the pipe rams)

- Stop pumps, perform flow check. If the well is flowing then:
- Open choke line valve at the BOP stack (Called HCR)
- Close annular BOP
- Close Choke
- Read and Record pressures and times. Check pit volume gain in order to prepare the kill sheet
- If the gas is migrating, control the wellbore pressures during the shut in

Soft Shut in procedure while tripping

If there is any kick indication, stop tripping immediately. Here, two different situations can be identified:

- a) The well is flowing, then the shut in is proceeded as follows:
- Set the string on the slips
- Install a fully opening safety valve in open position. Close the valve once is installed
- Open choke line valve at BOP stack (HCR valve)
- Close annular BOP

- Close choke.
- Read and record pressures and times, check pit volumes
- It depends on the situation to weather to start killing procedures or to strip back to the bottom.
- If the stripping is faced, then, Stab IBOP (Grey valve)
- Open the fully opening safety valve
- Reduce the annular pressure and start stripping the string to the bottom
- b) The well is not flowing:
- Set the string on the slips
- Install IBOP (grey valve or non-return valve)
- Run back in the hole with controlling the volumes, if any anomalies are noticed then proceed to the stripping. Once on bottom, circulate annular volume and evaluate the situation.

Well Control: Hard Shut in Procedure

Circuit alignment during operations

During operations the circuit has to be aligned as follows:

- Manuel valve on choke line is opened
- Hydraulic valve on choke line has to be closed
- The choke on choke manifold has to be closed
- All the valves leading to the separator passing by the choke (downstream valves) have to be in open positions.
- Beside these values, all the values have to be in closed position.

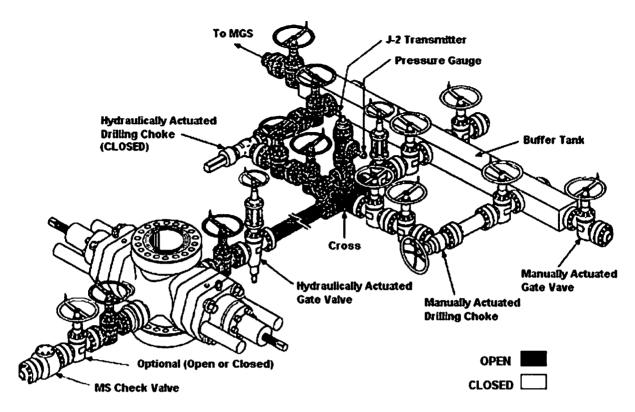


Fig 01- Circuit Alignment in Hard Shut in Procedure

Hard shut in procedure while drilling

- if there is any kick indication, stop rotary, pick up off bottom and space out (Tool joint one meter above rotary table to avoid getting the next tool joint on the pipe rams)

- Stop pumps, perform flow check. If the well is flowing then:
- Close annular or pipe rams
- Open choke line HCR valve
- Start plotting the trend of pressures, drill pipe pressure and casing pressure, note also the gain.

Hard shut in procedure while tripping

If any kick indication is noticed, the tripping has to be ceased immediately and the next steps have to be performed. Two situations ca be faced:

a) The well is flowing:

- Set the drilling string on the slips
- Install the fully opening safety valve in opened position

- Close the safety valve
- Close the annular BOP
- Open the HCR valve on the choke line
- Record the pressures with the time and the gain volume

b) If the well is not flowing

- Set the drilling string on the slips
- Install the IBOP (grey valve or the non-return valve)

- Trip back in the hole with controlling the volumes, if any anomalies are detected shut the well in following the hard procedure then continue the running in the hole with stripping. Once on bottom, circulate a bottom up volume and evaluate the situation.