

PO Box 2948 | Hobbs, NM 88241 | Phone 575.393.2967

April 24, 2015

Dr. Tomas Oberding New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

RE: Investigation and Characterization Plan (ICP) Rice Operating Company – BD SWD System BD L-36 EOL (1R426-278): UL/L, Sec. 36, T21S, R37E

Dr. Oberding:

RICE Operating Company (ROC) has retained Basin Environmental Service Technologies (Basin) to address potential environmental concerns at the abovereferenced site in the BD Salt Water Disposal (SWD) system.

ROC is the service provider (agent) for the BD SWD System and has no ownership of any portion of the pipeline, well, or facility. The system is owned by a consortium of oil producers, System Parties, who provide all operating capital on a percentage ownership/usage basis.

For all such environmental projects, ROC will choose the path forward that:

- Protects public health,
- Provides the greatest net environmental benefit,
- Complies with NMOCD Rules, and
- Is supported by good science.

Each site shall generally have three submissions:

- 1. This <u>Investigation and Characterization Plan</u> (ICP) is proposed for gathering data and site characterization and assessment.
- 2. Upon evaluating the data and results from the ICP, a recommended remedy will be submitted in a <u>Corrective Action Plan</u> (CAP), if warranted.
- 3. Finally, after implementing the remedy, a <u>Termination Request</u> with final documentation will be submitted.

Background and Previous Work

The site is located approximately 2 miles east of Eunice, New Mexico at UL/L, Sec. 36, T21S, R37E as shown on the Geographical Location Map and Area Map (Figures 1 and 2). NM OSE records indicate that groundwater will likely be encountered at a depth of approximately 48 +/- feet.

In 2010, ROC initiated work on the former L-36 EOL junction box. The site was delineated using a backhoe to form a 20 ft x 10 ft x 12 ft deep excavation and soil samples were screened at regular intervals for both hydrocarbons and chlorides. From the excavation, a 4-wall composite sample and a bottom composite sample were sent to a commercial laboratory for analysis. The 4-wall composite returned a chloride reading of 896 mg/kg, a Gasoline Range Organics (GRO) reading non-detect and a Diesel Range Organics (DRO) reading of 330 mg/kg. The bottom composite sample returned a chloride reading of 3,280 mg/kg, a GRO reading of non-detect and a DRO reading of 242 mg/kg. The excavated soil was blended on site and a representative sample was sent to a commercial laboratory for analysis. The sample returned a chloride reading of 560 mg/kg, a GRO reading of non-detect and a DRO reading of 69.5 mg/kg. The blended backfill was returned to the excavation up to 5 ft below ground surface (bgs). At 5-4 ft bgs, a 1 ft thick clay barrier was installed. The clay layer will provide a barrier that will inhibit the downward migration of chlorides to groundwater. The remaining blended backfill soil was returned to the excavation, and clean, imported soil was used to backfill the excavation to the ground surface and to contour the site to the surrounding area. On April 29th, 2010, the site was seeded with a blend of native vegetation.

To further investigate the depth of chloride presence, a soil bore was installed on June 11th, 2010. The soil bore was installed at 10 ft north of the former junction box site and was advanced to a depth of 39 ft bgs. Soil samples were collected every 3 ft between 15 and 39 ft and each sample was field titrated for chlorides and field screened for PIDs. The 36 ft and 39 ft sample were sent to a commercial laboratory for analysis, resulting in a 36 ft chloride concentration of 3,680 mg/kg and GRO and DRO concentrations of non-detect. The 39 ft sample resulted in a chloride concentration of 3,360 mg/kg and GRO and DRO concentrations of non-detect. The ground surface.

NMOCD was notified of potential groundwater impact on October 5th, 2010. A junction box disclosure report (Appendix A) was submitted to NMOCD with all the 2010 junction box closures and disclosures.

ROC proposes additional investigative work at the site to determine if there is potential for groundwater degradation from residual chlorides at the site.

Proposed Work Elements

- 1. Conduct vertical and lateral delineation of residual chlorides and hydrocarbons from samples taken using a hand auger, backhoe and/or drill rig (see Appendix B for Quality Procedures).
 - a. Vertical sampling will be conducted until of the following criteria are met in the field.
 - i. Three samples in which the chloride concentration decreases and the third sample has a chloride concentration of ≤ 250 ppm; and,
 - ii. Three samples in which PID readings decrease and the third sample has a PID reading of ≤ 100 ppm; or,
 - iii. The sampling reaches the capillary fringe.
 - b. Lateral sampling will be conducted until the following criteria are met in the field.
 - i. A decrease is observed in chloride concentrations between lateral bores at similar depths; and,
 - ii. A chloride concentration of ≤ 250 ppm is observed in a lateral surface sample; or,
 - iii. Safety concerns impede further lateral delineation
- 2. If warranted, install a monitor well to provide direct measurement of the potential groundwater impact at the site. Additional monitoring wells may be required to fully delineate groundwater quality. (All monitor wells will be installed by EPA, NMOCD, and industry standards.)
- 3. Evaluate the risk of groundwater impact based on the information obtained.

If the evaluation of the site shows no threat to groundwater from residual chlorides, then only a vadose zone remedy will be undertaken. However, if groundwater shows impact from residual chlorides, a CAP will be developed to address these concerns.

RECS appreciates the opportunity to work with you on this project. Please call Hack Conder at (575) 393-2967 or me if you have any questions or wish to discuss the site.

Sincerely,

Hores

Laura Flores Environmental Project Manager Basin Environmental Service Technologies

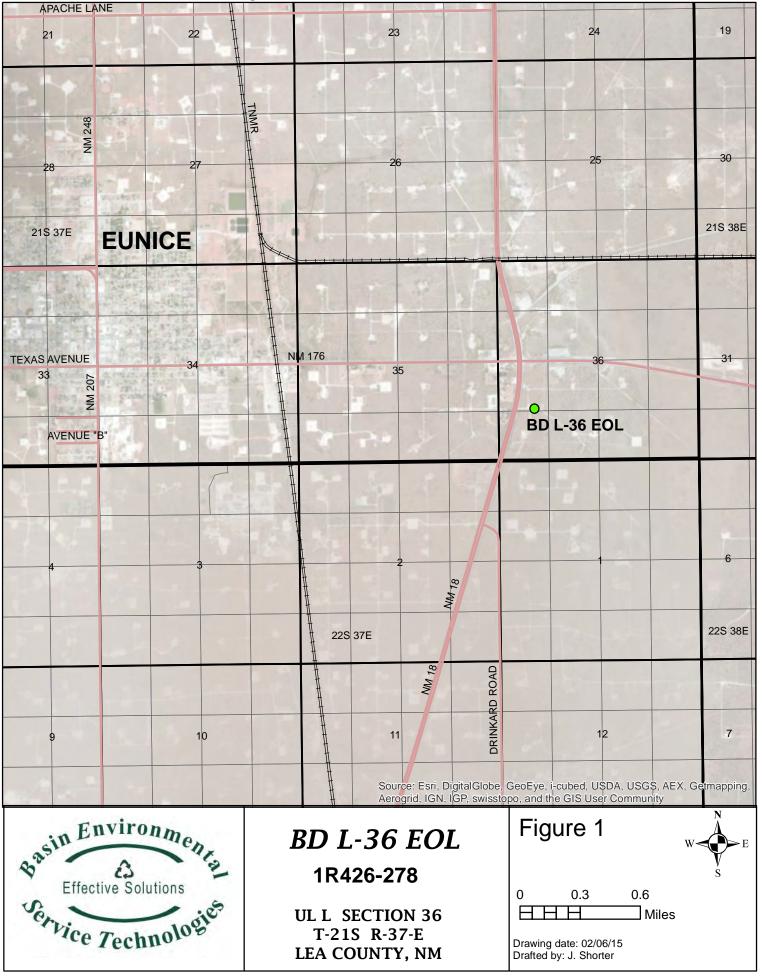
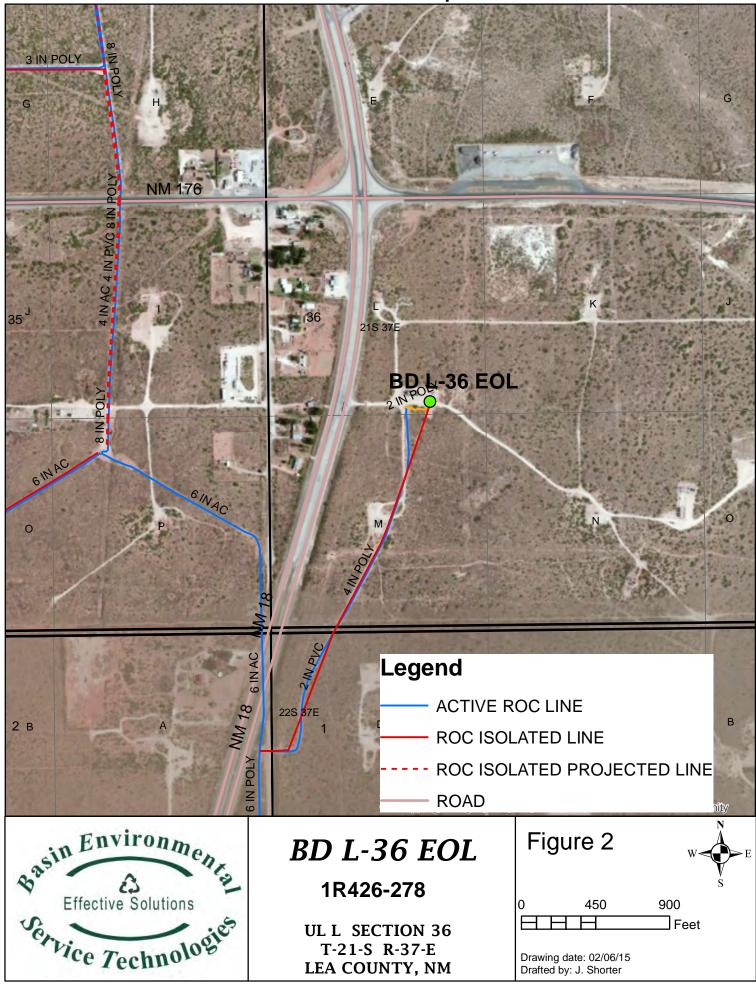

Attachments:

Figure 1 – Geographical Location Map Figure 2 – Area Map Appendix A – Junction Box Disclosure Report Appendix B – Quality Procedures


Figures

Basin Environmental Service Technologies P.O. Box 2948, Hobbs, NM 88241 Phone 575.393.2967

Geographical Location Map

Area Map

Appendix A Junction Box Disclosure Report

Basin Environmental Service Technologies P.O. Box 2948 Hobbs, NM 88241 Phone 575.393.2967

RICE OPERATING COMPANY JUNCTION BOX DISCLOSURE REPORT and a second second

				BOX LO	CATION					-
SWD SYSTEM	JUNCTION	UNIT	SECTION	TOWNSHIP	RANGE	COUNTY	BOX D	MENSIONS	S - FEET	
Blinebry-Drinkard	L-36 EOL		36	215	37E	Lea	Length 12 ft.	Width 6 ft.	Dept 4 ft	
(BD)	L-30 EUL	- F	- 50	210	SIL		Mo	oved 149' W	/est	
LAND TYPE	BLM	STATE X	FEE LA	NDOWNER			OTHER			
Depth to Groui	ndwater	48	feet	NM	OCD SITE A	SSESSMENT	RANKING S	CORE:	20	_
Date Started	4/22/	2010	Date Co	mpleted	6/11/201	0 OCD	Witness	n	0	-
Soil Excavated	88.9	cubic yar	ds Exe	cavation Le	ngth 2	0 Width	10	Depth	12	fee
Soil Disposed	13	cubic yar	ds Of	fsite Facility	Sundar	ce Services	Location	Eun	ice, NM	_

FINAL ANALYTICAL RESULTS:

4/26/2010, 6/11/2010 Sample Depth 12 ft., 36 ft., 39 ft. Sample Date

Procure 5-point composite sample of bottom and 4-point composite sample of sidewalls. TPH and Chloride laboratory test results completed by using an approved lab and testing procedures pursuant to NMOCD guidelines. FILL D TEOTO

Sample	PID (field) ppm	GRO mg/kg	DRO mg/kg	Chlorides mg/kg
4-WALL COMP.	2.0	<10.0	330	896
BOTTOM COMP.	4.3	<10.0	242	3,280
BACKFILL COMP.	8.1	<10.0	69.5	560
SB#1@36ft.	0.4	<10.0	<10.0	3,680
SB#1@39ft.	0.5	<10.0	<10.0	3,360

General Description of Remedial Action: This junction box was addressed during the pipeline replacement/upgrade program. A new, water tight junction box was built 149 ft. west of the former junction box. After the junction box was removed, an investigation was conducted using a backhoe to collect soil samples at regular intervals creating a 20X10X12-ft. deep excavation. Chloride field tests performed on each sample yielded elevated chloride concentrations. Organic vapors were measured using a PID, which yielded low

LOCATION	DEPTH	mg/kg
4-wall comp.	n/a	536
bottom comp.	12'	1612
backfill comp.	n/a	659
	15'	1,114
	18'	853
	21'	811
SB#1 at 10	24'	662
ft. north of	27'	1,841
junction (source)	30'	2,147
(source)	33'	2,699
	36'	2,970
	39'	3,009

concentrations. The excavated soil was blended on site and representative samples were

collected from the blended backfill, the bottom of the excavation, and the excavation walls. The representative samples were sent to a commercial laboratory for analysis of chloride and TPH. The blended backfill was returned to the excavation to 5 ft. below ground surface (BGS). At 5-4 ft. BGS, a 1-ft. thick clay barrier was installed with compaction test performed on 4/29/2010. The remaining excavation was backfilled with the blended backfill to 1 ft. BGS and clean imported soil was used to backfill to ground surface and contoured to the surrounding area. On 4/29/2010, the site was seeded with a blend of native vegetation and is expected to return to a productive capacity at a normal rate. An identification plate was placed on the surface at the former junction box site to mark the presence of clay below. To further investigate the depth of chloride presence, a soil bore was initiated on 6/11/2010. The boring was advanced to a depth of 39 ft. BGS with soil samples collected every 3 ft. between 15-39-ft. Chloride field test were performed on each sample and organic vapors were measured using a PID The 36 ft, and 39 ft, samples were taken to a commercial laboratory for analysis of chloride and TPH. The entire bore hole was plugged with bentonite to ground surface. NMOCD was notified of potential groundwater impact on 10/05/2010.

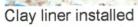
ADDITIONAL EVALUATION IS HIGH PRIORITY

enclosures: photos, boring log, lab results, PID (field) screenings, cross-section, hydraulic conductivity, proctor, compaction test, chloride curve

I HEREBY ACKNOWLEDGE THAT THE INFORMATION ABOVE IS TRUE AND COMPLETE TO THE BEST OF MY KNOWLEDGE AND BELIEF

RICE OPERATING COMPANY COMPANY SIGNATURE SITE SUPERVISOR Robert Egans REPORT INITIAL ASSEMBLED BY Larry Bruce Baker Jr. PROJECT LEADER Lamy Bruce Baker Jr. SIGNATURE Lamy Bruce Bruce Bruce Bruce Bacher DATE consideration

BD L-36 EOL Unit L, Section 36, T21S, R37E



Sample being collected

4/22/2010

Site prior to Delineation

4/29/2010

Seeding site

5/12/2010

Soil bore # 1 plugged with bentonite

6/11/2010

Log	Ha	ordan Woo rrison & Co	oper	,SB-1	NEE DPER	TING COMPANY			
Dril		Drilling, In	c.	17	2	the second secon			
Consu		N/A		LI		E 1955			
Drilling		Air Rotan 6/11/2010		~		and the second			
End		6/11/2010			Project Name:	Well ID:			
Comme				ngs. Located 10' north of	BD L-36 EO				
	ner junction	box site. Drafte		Weinheimer DGW = 48 ft		L sec. 36 T21S R37E "N County: Lea			
Depth	chloride	LAB	PID	Description	Lithology Well Construct				
feet)	field tests			10 - 15 ft	1.1.1.1.1.1.1.1				
					-1-1-1-1-1-1-1-				
				SAND					
15 ft	1114		0.4	tan	1-1-1-1-1-1-1				
				15 - 18 ft	and the second				
				SAND AND CALICHE	8.5 = e.0				
40.0	050		0.4	tan to brown	in the second				
18 ft	853	-	0.4						
		-		18 - 24 ft					
21 ft	811		0.2	SAND	1-1-2-1-1-1				
				tan					
					0000000				
24 ft	662	-	0.2						
				24 - 30 ft		bentonite			
27 ft	1841		0.2	SAND AND CALICHE		seal			
				tan					
		1							
	0.117	1							
30 ft	2147		0.1	00 00.0					
		-		30 - 33 ft					
				CALICHE					
33 ft	2699		0.2	white					
		CI-		33 - 39 ft					
36 ft	2970	3680	0.4	55 - 59 IL					
		GRO <10		SAND					
		DRO							
		<10		white					
00.0	0000	Cl-	0.5						
39 ft	3009	3360 GRO	0.5	CODV					
		<10		COPY					
		DRO							
		<10			· · · · · · · · · · · ·				

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: HACK CONDER 112 W. TAYLOR HOBBS, NM 88240

Receiving Date: 06/11/10 Reporting Date: 06/14/10 Project Number: NOT GIVEN Project Name: EME L-36 EOL Project Location: EME L-36 EOL Sampling Date: 06/11/10 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: JH Analyzed By: AB

GRO DRO (C₆-C₁₀) (>C₁₀-C₂₈) CI* (mg/kg) (mg/kg) (mg/kg)

LAB NUMBER SAMPLE ID

ANALYSIS DATE		06/12/10	06/12/10	06/11/10
H20101-1 SB #1 @ 36'		<10.0	<10.0	3,680
H20101-2 SB #1 @ 39'		<10.0	<10.0	3,360
	COP	Y		
Quality Control		461	423	500
		EDO	500	500
True Value QC		500	200	000
True Value QC % Recovery		92.2	84.6	100

METHODS: TPH GRO & DRO: EPA SW-846 8015 M; CI: Std. Methods 4500-CIB *Analyses performed on 1:4 w:v aqueous extracts.

Reported on wet weight.

Chemist

H20101 TCL RICE

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

RDINAL LABORATORIES

01 East Marland, Hobbs, NM 88240	2111 Beechwood, Abilene, TX 79603
(505) 393-2326 EAX (505) 393-2476	(325) 673-7001 EAX (325)673-7020

Company Name	Rice Operating Company				-		1			E	311	LTO					1	NAL	YSIS	RE	QUES	ST			
Project Manage	r: Hack Conder							P.0	. #:											1111					
Address: 122								Cor	npa	ny:								S		1					
City: Hobbs	State: NM	Zip	: 88	3240	_			Attr	n:						. 3			ō							
Phone #: 393-9	9174 Fax #: 397-14	71						Add	dres	s:								An							
Project #:	Project Owne	r:		_				City	:					0	Σ		I	S/I							
Project Name:	BD L-36 EOL							Sta	te:			Zip:		Chlorides	12	×	TPH	UO							
Project Locatio	n: BD L-36 EOL							Pho	one	#:				i	80	BTEX	S	ati							
Sampler Name:	Jordan Woodfin		_					Fax	-	_	_			물	I	m	Xa	0						- 1	
FOR LAB USE ONLY Lab I.D. HZ.D ID [-1 Z	Sample I.D. SB # 1 @ 36' SB # 1 @ 39'	CE (G)RAB OR (C)OMP.	1 L # CONTAINERS	GROUNDWATER		1					HER :	SAMPLI CONTE 0/11/10	TIME (۱: ۲۰ (۱: ۲۰ (۱: ۲۰)	V V	< < TPH 8015		Texas	Complete Cations/Anions							
analyses. All claims inclus	and Damages. Cardinal's liability and client's exclusive remedy for	deeme	ed wat	ved unles	is made	e in wri	iting an	d recei	ived by	y Card	final v	vithin 30 days after	r completion of	the applica	able				6		P.C	17			
affiliates or successors an Relinquished E JOICA Relinquished E Delivered By	n Woodfin Time: 2:30	Re	ecei	ived I	By: By: By: Cool	le Co	holaim	tion		CHI	D- ECK	MC. (ED BY: iials)	Phone Ri Phone Ri Fax Resu REMARK email Hcon Lweir	der(Drice	es Z		Add'I	oodf		prices	swd.c	com;		

† Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476

NEED SAMPLES BACK, PLEASE

ANALYTICAL RESULTS FOR RICE OPERATING COMPANY ATTN: BRUCE BAKER 112 W. TAYLOR HOBBS, NM 88240

Receiving Date: 04/26/10 Reporting Date: 04/28/10 Project Number: NOT GIVEN Project Name: BD L-36-EOL Project Location: BD L-36-EOL Sampling Date: 04/26/10 Sample Type: SOIL Sample Condition: COOL & INTACT Sample Received By: JH Analyzed By: AB/HM

LAB NUMBER SAMPLE ID

ANALYSIS [DATE	04/28/10	04/28/10	04/28/10
H19756-1	5PT BOTTOM COMP @ 12'	<10.0	242	3,280
H19756-2	4-WALL COMP	<10.0	330	896
H19756-3	BLENDED BACKFILL	<10.0	69.5	560
Quality Cont	trol	596	569	490
True Value		500	500	500
% Recovery		119	114	98.0
	cent Difference	0.6	1.1	2.0

METHODS: TPH GRO & DRO: EPA SW-846 8015 M; Cl⁻. Std. Methods 4500-Cl⁻B *Analyses performed on 1:4 w:v aqueous extracts.

Reported on wet weight.

Chemist

H19756 TCL RICE

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above-stated reasons or otherwise. Results relate only to the samples identified above, This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

ARDINAL LABORATORIES

ALE DEST

	(505) 393-2326 FAX					3-10	01	FA	(13	20)	013	1	LTO			and a straight Alberta	- CO - BP	ANAL	VSI	R	OU	EST	and the second second	NUMBER OF STREET	
ompany Name:	Rice Operat	ing con	Apa	14					2.0.		2-11		SHALLANN	វប់គ្រប់លោធារារ			and the state of the state		1010		T	T	-		
	Bruce Bake							+																	
ddress: 12	2 W. Taylor	Blad			* 1			-19	om		ly:	-													
ity: Hobb.	5 -393-9174 F	State: NM	Zip:	88	5%	40	-	-1	ttn	-		-													
hone #: 575	-393-9174 F	ax #: 575	-3	27	7-	14	71		dd		1														
roject#:	P	roject Owner	1					_	City											-					
roject Name:				_			_	_	Stab	01		Z	lp:				8015M								
roject Location		-	-					_	Pho	ne	¥;	_					5							- 1	
ampler Name:	Robert Ega	15						and the local division of the local division	Fax	-							0								
FOR LAB USE ONLY				ŀ		MA	TRIX	(F	RE	BERV	4	SAMPLI	NG			VP			1					
Lab I.D.	Sample I.D		(G)RAB OR (C)OMP	# CONTAINENS	GROUNDWATER	SOIL	OIL	SUDGE	OTHER :	ACIDIBASE	ICE/COOL	- VIIIIO	DATE	TIME		54	TPH								
H19756-1	50T BO HOM CON	1pe 12'		1		+	1.				4		4-26-10	1:16pt	4	V	1 -	1							
7	SpT Bottom Con 4-Wall Comp Blended bac		C	1		1	1				-	T	11-26-10			V	V	1	1	-		_	_		
3	Blanded bac	KEill	C	1			1			1	~		4-26-10	1.415 pm		V	V	1-	-	-	_	-			
												1				_	-		-	_		-	_	-	
				_			1	-		_	_	1				_	-			P	F	7)//	1
				_			1	-		_	-	_				_			1	Y	4	2			
				_			-	-				_								-		-+			
				_			+-		_	-		-						-				-+			-
				_		-	+	-	-	-		-					-		-	-		-+			
enstyses. All doine inch	and Damages. Cardna's hebity and oler dag troces for ne disease and any other a Cardnal be itable for hebitanial or comag abg ext of or related to the sertomance	kas whatsoever shall b	ba deemoo	WEY	ad unia	sa med	Intern	ting at	d ress	fund t	or loss	ALN	within 30 days at	nient ita subal	diarios Wigu,		1								hanna da
Relinquished	ly:	Onte:	Re	cel	ved	By:	Contractory of the second				10			Phone P		Yes	NO	Add	Pho	ne #: #:					
Rober	Í	Time:												REMAR	KB: F-A	yail	Re	sul	T5 :	To	4				
Relinguished	By:	Date 16A		Cel	ved C	li	-	K	le	И	10	9	n	J PU B.bak	rvis er " ans 1	Rice	5000	.com		4					
am	Y: (Circle One) 8 - Bus - Other:		<u> </u>	ſ	T	Sam	11	tent	1	T	CHE	Ant Z	KED BY:	R Eg	ens 1	l	11	+ 1							

101 East Marland, Hobbs, NM 88240 2111 Beechwood, Abilene, TX 79603

† Cardinal cannot accept verbal changes. Please fax written changes to 505-393-2476

RICE OPERATING COMPANY

122 West Tayor Hobbs, NM 88240 PHONE: (575) 393-9174 FAX: (575) 397-1471 PID METER CALIBRATION & FIELD REPORT FORM

Check Model Number:

/	ļ
1	

Model: PGM 7300 Serial No Model: PGM 7300 Serial No Model: PGM 7300 Serial No

Serial No: 590-000183 Serial No: 590-000508 Serial No: 590-000504

Model: PGM 7600 Model: PGM 7600 Model: PGM 7600 Serial No: 110-023920 Serial No: 110-013744 Serial No: 110-013676

GAS COMPOSITION: ISOBUTYLENE 100PPM / AIR: BALANCE

EXPIRATION DATE: 11-16-12
METER READING ACCURACY: (DD

ACCURACY : +/- 2%

SYSTEM	JUNCTION	UNIT	SECTION	TOWN SHIP	RANGE
BD	L-36 GOL	L	300	215	37E

SAMPLE ID	PID	SAMPLE ID	PID
5B#1			
Б'	0.4		
18	0.4		
21	0.2		
24'	0-2		
27'	0.2		
30'	0.1		
53'	0.2		
34'	0.4	COPY	
53' 36' 39'	0.5		

I verify that I have calibrated the above instrument in accordance to the manufacture operation manual.

SIGNATUE: (

- Jardan Woodf

DATE: 6-11-10

RICE OPERATING COMPANY

122 West Tayor Hobbs, NM 88240 PHONE: (575) 393-9174 FAX: (575) 397-1471 PID METER CALIBRATION & FIELD REPORT FORM

Check Model Number:

	19
194	V
12.3	12

Model: PGM 7300 Serial 2 Model: PGM 7300 Serial 2 Model: PGM 7300 Serial 2

Serial No: 590-000183 Serial No: 590-000508 Serial No: 590-000504

Model: PGM 7600 Model: PGM 7600 Model: PGM 7600 Serial No: 110-023920 Serial No: 110-013744 Serial No: 592-903318

GAS COMPOSITION: ISOBUTYLENE 100PPM / AIR: BALANCE

LOT NO :	928547	EXPIRATION DATE: 2-4-2013
FILL DATE:		METER READING ACCURACY: 100 ppm
		ACCURACY : +/- 2%

SYSTEM	JUNCTION	UNIT	SECTION	TOWN SHIP	RANGE
BD	1-26 FOI	L	36	21	37

SAMPLE ID	PID	SAMPLE ID	PID
Spt Bottom Composite	4.3		
4-Wall Composite	2.0		
Blended Buckfill	8.1		
		GOPY	

I verify that I have calibrated the above instrument in accordance to the manufacture operation manual.

SIGNATUE: Mallet Egora

DATE: 4-26-2010

BD L-36 EOL Unit 'L', Sec. 36, T21S, R37E

Excavation Cross-Section

N

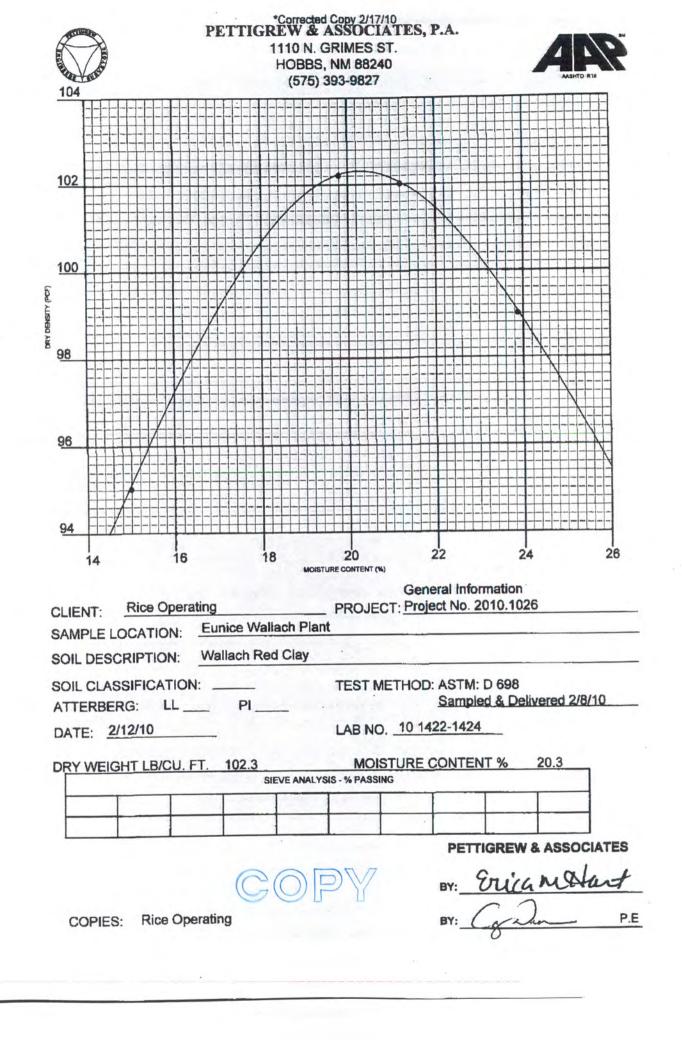
Clay Barrier 100 clean imported soil 1' BGS to surface 0 former box site 2 blended backfill = 69.5 TPH, 560 Cl 4 feet BGS 8 10 blended backfill = 69.5 TPH, 560 Cl⁻ 12 bottom comp. = 242 TPH, 3,280 Cl⁻

10 ft.

Soil boring at 10 ft. north of former junction TD = 39 ft

S

Excavation


Boundary

ETTL Engineers & Consultants Inc. DEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRELLING * LANDFILLS

HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

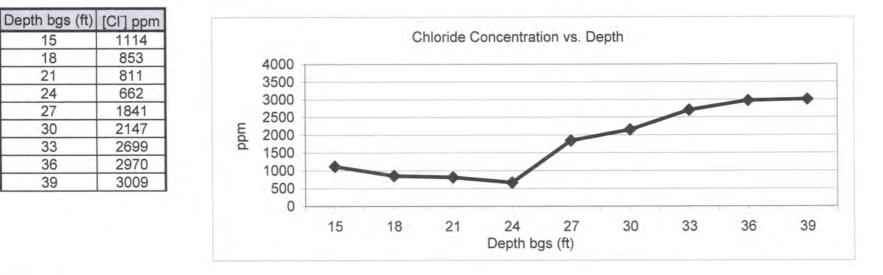
Project :		Associates, I		NM - Project			Report No: 1-	1201-00000	3
Dale:	2/5/2010			anel Number		P3: ASTM	D 6084		
	C 4635-101	Per	mometer D			aut Mercury to		4.0	
Boring No.:			ap =	0.031416		Binst Bn si	Equilibriara	1.8	om3
Sample:	8540		# BB	0.767120			Pipet Rp	6.7	cm3
Depth (ft):			M1 =	0.030180		0.000434704		1.6	cm3
	Wallach Plan	t Eunice	M2 =	1.04095	3 T=	0.203790628		AND aumon ((able test
Material Des	cription :	Red Clay (Your Samp	16 NO 10 1422	-1424) Gom	pacted D 698 a	1 82% of your p	WD CIIVE (Wat sius)
				SAMPL	E DATA				
Wet WL sam	pla + ring or t	are :	561.37	9					
Tare or ring			0.0	g		Bafor	e Test	After	Test
Wet WE of S	ample :		581.37	9		Tare No .:	T 6	Tare No .:	T 3
Diameter:	2.77	in	7.06	GTR2	-	Wel WL+tere:	731.90	Wat Wt.+Lere	800.51
Length :	2.79	In	7.08	cm		Dry Wt.+tere:	841.75	Dry Wt.+tare:	690.35
Area:	6.04	In^2	38.99	cm2	-	Tare Wt:	218.78	Tare Wt:	220.69
volume :	16.84	In^3	275.92	cm3		Dry WA .:	422.97	Dry Wt .:	489.66
Unit Wt. (wet):	126.95	pcf	2.03	g/cm*3		Water Wt.;	90.15	Water WL:	t10.16
Unit Wt.(dry):	104.85	pcf	1.68	g/om*3		% molat.:	21.3	% molat.:	23.5
Dentity Dentity		2.77	May Day D	ensity(pci) =	104.6948	OMO	21.3135683		
Specific Gravity:			Million Diy L	% of max		+/- OMC =			
Calculate d d	. Antistallan	99.58	Mold	ratio (e) =	0.85	Porcelly (n)=	0.39	· · · · ·	
Caliculation 7	6 saturation:	68.00	4000	101.04		- Followick Bill-	0.00		
	1.1.1.5.97	- A 141		THE OWNER AND INCOME.	ADINGS	Oredland	6.10		
21 (Mercury I	teight Differen	nce (g (1):	5.1	cm	Plydraulic	Gradient =	9.10		
Date	elapsed t	z	AZR	temp	α	k	k		
	(abnoose)	(pipet (t)	(cm)	(deg C)	(isano com)	(cm/sec)	(t./day)	Reset = *	
2/5/2010	4740	6	0.656997	26	0.889	1.17E-08	3.32E-05		
2/5/2010	5940	5.9	0.758997	25	0.889	1.09E-08	3.09E-05		
2/5/2010	6900	5.8	0.856997	25	0.889	1.08E-08	3,05E-05		
2/5/2010	7800	5.7	0.956997	25	0.889	1.08E-08	3.05E-05		
				SUM	MARY				
1000		ka =	1.10E-08	cm/sec		Acceptance c	riteria =	25	%
		ki			Vm				
		k1 =	1.17E-08	cm/sec	6.3	%	Vm =	ka-ki i	x 100
		k2 =	1.09E-08	cm/sac	1.2	%		íce	
		k3 =	1.08E-08	om/sec	2,5	%			
		k4 =	1.08E-08	cm/sec	2.5	%			
	Hydraulic con	nductivity	k#	1.10E-08	cm/sec	3.13E-05	ft/day	i	
	Void Ratio	in a second second	8 -				in any		
	Porosity		n						C
	Bulk Density				p/om3	127.0	pot		
	Water Conte		w	0.36	cm3/cm3	(at 20 deg C			
	Intrinalc Perr		kint =		cm2	(at 20 dag C			
	Liquid Limit	11.		1					
	Plastic Limit			1					
				1		~ -			
	Plasticity Ind	Iex PI		4		MA	100	17	
	- 200 Sleve			19%		CO	NEV	/	
	+ No 40 Slev	re l		%		00	1 11		
	+ No 4 Sleve			%			- 6		
	al			1717 Ee				707 West	Cotion Street
210 Beech Stre				Walter Marrie					
Texarkane, AR	71854			1 1			La	ngview, Texas	
	71854 hone				421 Phone		Le	903-786	75604-6503 -0915 Phone 68-8245 Fax

Test No.	Location	Depth of Probe "Dry Density % Max	e: 6" % Moisture	Depth
Date of Test:	April 29, 2010	Depth:	See Below	
Project:	BDL-36 EOL (21/37) Project No. 2010.1120			
To:	Rice Operating Company 122 W. Taylor Hobbs, NM 88240	Material: Test Method:	Wallach Red Clay ASTM: D 2922	
The state of the s	PETTIGRE	ATORY TEST REPORT W & ASSOCIATES, P. 1110 N. GRIMES OBBS, NM 88240 (575) 393-9827	DEBR WILLIA	ABHTO RID A.P. HICKS, P.E./L.S.I. M.M. HICKS, JII, P.E./P.S.

COPY

Control Density:	102.3 ASTM: D 698
Required Compac	tion: 90-95%
Lab No.:	10 4898-4899
Copies To:	Rice Operating

Optimum Moisture: 20.3%


Densometer ID: 5572 PETTIGREW & ASSOCIATES

BY: P.E.

Unit 'L', Sec. 36, T21S, R37E

Soil bore 10 ft. north of former junction box (source)

Groundwater = 48 ft.

Appendix B _{Quality Procedures}

Basin Environmental Service Technologies P.O. Box 2948 Hobbs, NM 88241 Phone 575.393.2967

Table of Contents

- QP-1 Soil Samples for Transportation to a Laboratory
- QP-2 Chloride Titration Using 0.282 Normal Silver Nitrate Solution
- QP-3 Development of Cased Water-Monitoring Wells
- QP-4 Sampling of Cased Water-Monitoring Well
- QP-5 Composite Sampling of Excavation Sidewalls and Bottoms for TPH and Chloride Analysis
- QP-6 Sampling and Testing Protocol for VOC in soil
- QP-7 Composite Sampling of Excavation Sidewalls and Bottoms for BTEX
- QP-8 Procedure for Plugging and Abandonment of Cased Water-Monitoring wells

Quality Procedure Soil Samples for Transportation to a Laboratory

1.0 Purpose

This procedure outlines the methods to be employed when obtaining soil samples to be taken to a laboratory for analysis.

2.0 Scope

This procedure is to be used when collecting soil samples intended for ultimate transfer to a testing laboratory.

3.0 Preliminary

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the soil.
- 3.2 If collecting TPH, BTEX, RCRA 8 metals, cation /anions or O&G, the sample jar may be a clear 4 oz. container with Teflon lid. If collecting PAH's, use an amber 4 oz. container.

4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the number, location and designation of each planned sample and the individual tests to be performed on the sample. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label.) Affix the labels to the jars.

5.0 Sampling Procedure

- 5.1 Do not touch the soil with your bare hands. Use new nitrile gloves to help minimize any contamination.
- 5.2 Go to the sampling point with the sample container. If not analyzing for ions or metals, use a trowel to obtain the soil.

- 5.3 Pack the soil tightly into the container leaving the top slightly domed. Screw the lid down tightly. Enter the time of collection onto the sample collection jar label.
- 5.4 Place the sample directly on ice for transport to the laboratory if required.
- 5.5 Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

6.0 Documentation

- 6.1 The testing laboratory shall provide the following minimum information:
 - a. Project and sample name.
 - b. Signed copy of the original Chain of Custody Form including the time the sample was received by the lab.
 - c. Results of the requested analyses
 - d. Test Methods employed
 - e. Quality Control methods and results

QUALITY PROCEDURE Chloride Titration Using 0.282 Normal Silver Nitrate Solution

1.0 Purpose

This procedure is to be used to determine the concentration of chloride in soil.

2.0 Scope

This procedure is to be used as the standard field measurement for soil chloride concentrations.

3.0 Sample Collection and Preparation

- 3.1 Collect at least 80 grams of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample for soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
- 3.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag. Care should be taken to insure that no cross-contamination occurs between the soil sample and the collection tools or sample processing equipment.
- 3.3 The sealed sample bag should be massaged to break up any clods.

4.0 Sample Preparation

- 4.1 Take a clean glass vial having a minimum 40 ml capacity. Add at least 10 grams of the soil sample and record the weight.
- 4.2 Add at least 20 grams of reverse osmosis water to the soil sample and shake well.
- 4.3 Allow the sample to set for a period of 5 minutes or until the separation of soil and water.

5.0 Titration Procedure

- 5.1 Using a graduated pipette, remove 10 ml extract and dispense into a clean plastic cup.
- 5.2 Add 2-3 drops potassium chromate (K_2CrO_4) to mixture if necessary.

- 5.3 Using a 1 ml pipette, carefully add .282 normal silver nitrate (one drop at a time) to the sample while constantly agitating it. Stop adding silver nitrate when the solution begins to change from yellow to red. Be consistent with endpoint recognition.
- 5.4 Record the ml of silver nitrate used.

6.0 Calculation

To obtain the chloride concentration, insert measured data into the following formula:

<u>.282 X 35,450 X ml AgNO₃</u>	Х	grams of water in mixture
ml water extract		grams of soil in mixture

Using Step 5.0, determine the chloride concentration of the RO water used to mix with the soil sample. Record this concentration and subtract it from the formula results to find the net chloride in the soil sample.

Record all results on the delineation form.

Quality Procedure Development of Cased Water-Monitoring Wells

1.0 Purpose

This procedure outlines the methods to be employed to develop cased monitoring wells.

2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

3.0 Sample Collection and Preparation

- 3.1 Prior to development, the static water level and height of the water column within the well casing will be measured with the use of an electric D.C. probe.
- 3.2 All measurements will be recorded within a field log notebook.
- 3.3 All equipment used to measure the static water level will be decontaminated after each use by means of Liquinox, a phosphate free laboratory detergent, and water to reduce the possibility of crosscontamination. The volume of water in each well casing will be calculated.

4.0 Purging

- 4.1 Wells will be purged by using a 2" decontaminated submersible pump or dedicated one liter Teflon bailer. Wells should be purged until the pH and conductivity are stabilized and the turbidity has been reduced to the greatest extent possible.
- 4.2 If a submersible is used the pump will be decontaminated prior to use by scrubbing the outside surface of tubing and wiring with a Liquinox water mixture, pumping a Liquinox-water mixture through the pump, and a final flush with fresh water.

5.0 Water Disposal

5.1 All purge and decontamination water will be temporarily stored within a portable tank to be later disposed of in an appropriate manner.

6.0 Records

6.1 Basin Environmental Consulting and Safety will record the amount of water removed from the well during development procedures. The purge volume will be reported to the appropriate regulatory authority when filing the closure report.

Quality Procedure Sampling of Cased Water-Monitoring Well

1.0 Purpose

This procedure outlines the methods to be employed in obtaining water samples from cased monitoring wells.

2.0 Scope

This procedure shall be used for developed, cased water monitoring wells. It is not to be used for standing water samples such as ponds or streams.

3.0 Preliminary

- 3.1 Obtain sterile sampling containers from the testing laboratory designated to conduct analyses of the water.
- 3.2 The following table shall be used to select the appropriate sampling container, preservative method and holding times for the various elements and compounds to be analyzed.

Compound to be Analyzed	Sample Container Size	Sample Container Description	Cap Requirements	Preservative	Maximum Hold Time
BTEX	40 ml	VOA Container	Teflon Lined	HCL	14 days
TPH (8015 Extended)	40 ounces	(2) 40ml VOA vials	Teflon Lined	HCL and Ice	14 days
РАН	1 liter	amber glass	Teflon Lined	Ice	7 days
Cation/Anion	1 liter	HD polyethylene	Any Plastic	None	48 Hrs
Metals	1 liter	HD polyethylene	Any Plastic	Ice/HNO ₃	28 Days
TDS	300 ml	clear glass or 250 ml HD polyethylene	Any Plastic	Ice	7 Days
Cl-	500 ml	HD polyethylene	Any Plastic	None	28 Days

4.0 Chain of Custody

- 4.1 Prepare a Sample Plan. The plan will list the well identification and the individual tests to be performed at that location. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label). Affix the labels to the jars.

5.0 Bailing Procedure

- 5.1 Identify the well from the sites schematics. Place pre-labeled jar(s) next to the well. Remove the plastic cap from the well bore by first lifting the metal lever and then unscrewing the entire assembly.
- 5.2 Using a dedicated one liter Teflon bailer or submersible pump, purge a minimum of three well volumes. Place the water in storage container for transport to a ROC disposal facility.
- 5.3 If using a bailer, take care to insure that the bailing device and string does not become cross-contaminated. A clean pair of nitrile gloves should be used when handling either the retrieval string or bailer. The retrieval string should not be allowed to come into contact with the ground.

6.0 Sampling Procedure

- 6.1 Once the well has been bailed in accordance with 5.2 of this procedure, a sample may be decanted into the appropriate sample collection jar directly from the bailer or submersible pump.
- 6.2 Note the time of collection on the sample jar with a fine Sharpie.
- 6.3 Place the sample directly on ice for transport to the laboratory. The preceding table shows the maximum hold times between collection and testing for the various analyses.

6.4 Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

7.0 Documentation

- 7.1 The testing laboratory shall provide the following minimum information:
 - A. Project and sample name.
 - B. Signed copy of the original Chain of Custody Form including the time the sample was received by the lab.
 - C. Results of the requested analyses
 - D. Test Methods employed
 - E. Quality Control methods and results

Calculation for Determining the Minimum Bailing Volume for Monitor Wells Formula V= (πr²h) 2" well [V/231=gal] X 3 = Purge Volume

V=Volume

π=pi

r=inside radius of the well bore

h=maximum height of well bore in water table

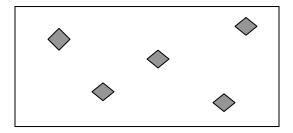
Example:

π	\mathbf{r}^2	h(in)	V(cu.in)	V(gal)	X 3 Volumes	Actual
3.1416	1	180	565.488	2.448	7.34 gal	>10 gal

Quality Procedure Composite Sampling of Excavation Sidewalls and Bottoms For TPH and Chloride Analysis

1.0 Purpose

This procedure outlines the methods to be employed when obtaining final composite soil samples for TPH and Chloride analysis.


2.0 Scope

This procedure is to be used in conjunction with *Quality Procedure – 02: Soil Samples for Transportation to a Laboratory* and will be inserted at subparagraph 5.2 of Section 5.0: Sampling Procedure.

3.0 Sampling Procedure

Follow *Quality Procedure – 02: Soil Samples for Transportation to a Laboratory* for all Sections and subparagraphs until subparagraph 5.2 of Section 5.0: Sampling Procedure. Instead of 5.2 instructions, perform the composite sample collection procedure as follows:

- 3.1 Go to the excavation with a new plastic baggie. If not analyzing for ions or metals, use a trowel to obtain the soil. If the excavation is deeper than 6' BGS, do not enter the pit, but use a backhoe to assist in procurement of the sample. (If a backhoe is used, the backhoe will obtain an amount of soil from each composite point; bring the purchase to the surface staging area where a sample-portion of soil will be extracted from the backhoe purchase. The remainder of the backhoe purchase will be staged on the surface with other staged soils.)
- 3.2 Sidewall samples
 - 3.2.1 On each sidewall, procure a 5oz sample from each of five distinct points on the sidewall with distinct points resembling the "W" pattern:

- 3.2.2 Thoroughly blend these five samples in a labeled baggie.
- 3.2.3 Repeat steps 3.2.1 through 3.2.4 for each remaining sidewall.
- 3.2.4 From each labeled baggie, procure a 5 oz portion and pour into a baggie labeled "Sidewall Composite". Blend this soil mixture completely.
- 3.2.5 Obtain proper laboratory sample container for "Sidewall Composite" and continue with subparagraph 5.3 of QP 01.
- 3.3 Bottom Sample
 - 3.3.1 From bottom of excavation, procure a 5oz sample from each of five distinct points with distinct points resembling the "W" pattern as illustrated above.
 - 3.3.2 Thoroughly blend these five samples in a clean baggie.
 - 3.3.3 Obtain proper laboratory sample container for "Bottom Composite" and continue with subparagraph 5.3 of QP 01.

QUALITY PROCEDURE Sampling and Testing Protocol for VOC in Soil

1.0 Purpose

This procedure is to be used to determine the concentrations of Volatile Organic Compounds in soils.

2.0 Scope

This procedure is to be used as the standard field measurement for soil VOC concentrations. It is not to be used as a substitute for full spectrographic speciation of organic compounds.

3.0 Procedure

- 3.1 Sample Collection and Preparation
 - 3.1.1 Collect at least 500 g. of soil from the sample collection point. Take care to insure that the sample is representative of the general background to include visible concentrations of hydrocarbons and soil types. If necessary, prepare a composite sample of soils obtained at several points in the sample area. Take care to insure that no loose vegetation, rocks or liquids are included in the sample(s).
 - 3.1.2 The soil sample(s) shall be immediately inserted into a one-quart or larger polyethylene freezer bag and sealed. When sealed, the bag should contain a nearly equal space between the soil sample and trapped air. Record the sample name and the time that the sample was collected on the Field Analytical Report Form.
 - 3.1.3 The sealed samples shall be allowed to set for a minimum of five minutes at a temperature of between 10-15 Celsius, (59-77⁰F). The sample temperatures may be adjusted by cooling the sample in ice, or by heating the sample within a generally controlled environment such as the inside of a vehicle. The samples should not be placed directly on heated surfaces or placed in direct heat sources such as lamps or heater vents.
 - 3.1.4 The sealed sample bag should be massaged to break up any clods, and to provide the soil sample with as much exposed surface area as practically possible.

- 3.2 Sampling Procedure
 - 3.2.1 The instrument to be used in conducting VOC concentration testing shall be a RAE Systems Photoionization device. (Device will be identified on VOC Field Test Report Form.) Prior to use, the instrument shall be zeroed-out in accordance with the appropriate maintenance and calibration procedure outlined in the instrument operation manual. The PID device will be calibrated each day it's used.
 - 3.2.2 Carefully open one end of the collection bag and insert the probe tip into the bag taking care that the probe tip not touch the soil sample or the sidewalls of the bag.
 - 3.2.3 Set the instrument to retain the highest result reading value. Record the reading onto the Field Test Report Form.
 - 3.2.4 If the instrument provides a reading exceeding 100 ppm, proceed to QP-7. If the reading is 100 ppm or less, NMOCD BTEX guideline has been met and no further testing for BTEX is necessary. File the Field Test Report Form in the project file.

4.0 Clean-up

After testing, the soil samples shall be returned to the sampling location, and the bags collected for off-site disposal. IN NO CASE SHALL THE SAME BAG BE USED TWICE. EACH SAMPLE CONTAINER MUST BE DISCARDED AFTER EACH USE.

Quality Procedure Composite Sampling of Excavation Sidewalls and Bottoms For BTEX

1.0 Purpose

This procedure outlines the methods to be employed when obtaining final composite soil samples for BTEX analysis.

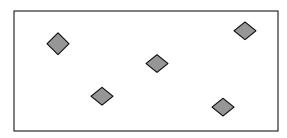
2.0 Scope

This procedure is to be used when collecting soil samples intended for ultimate transfer to a testing laboratory for BTEX analysis. This procedure is to be used only when the PID field-test results for OVM exceeds 100 ppm.

3.0 Preliminary

3.1 Obtain sterile, clear, 2 oz. glass containers with Teflon lid from a laboratory supply company or the testing laboratory designated to conduct analyses of the soil.

4.0 Chain of Custody


- 4.1 Prepare a Sample Plan. The plan will list the number, location and designation of each planned sample and the individual tests to be performed on the sample. The sampler will check the list against the available inventory of appropriate sample collection bottles to insure against shortage.
- 4.2 Transfer the data to the Laboratory Chain of Custody Form. Complete all sections of the form except those that relate to the time of delivery of the samples to the laboratory.
- 4.3 Pre-label the sample collection jars. Include all requested information except time of collection. (Use a fine point Sharpie to insure that the ink remains on the label.) Affix the labels to the jars.

5.0 Sampling Procedure

- 5.1.Do not touch the soil with your bare hands. Use new nitrile gloves to help minimize any cross-contamination.
- 5.2.If safe and within OSHA regulations, go to the sampling point with the sample container. If not analyzing for ions or metals, use a trowel to

obtain the soil. If the excavation is deeper than 6' BGS, do not enter the pit, but use a backhoe to assist in procurement of the sample. (If a backhoe is used, the backhoe will obtain an amount of soil from each composite point; bring the purchase to the surface staging area where a sample-portion of soil will be extracted from the backhoe purchase. The remainder of the backhoe purchase will be staged on the surface with other staged soils.)

- 5.3.Sidewall Samples
 - 5.3.1.On each sidewall, procure a 2oz sample from each of five distinct points on the sidewall with distinct points resembling the "W" pattern:

- 5.4.Pack the soil tightly into the container leaving the top slightly domed. Screw the lid down tightly. Enter the time of collection onto the sample collection jar label. Repeat for each sampling point.
- 5.5.Place the samples directly on ice for transport to the laboratory if required.
- 5.6.Complete the Chain of Custody form to include the collection times for each sample. Deliver all samples to the laboratory.

6.0 Documentation

- 6.1 The testing laboratory shall provide the following minimum information:
 - a. Project and sample name.
 - b. Signed copy of the original Chain of Custody Form including the time the sample was received by the lab.
 - c. Results of the requested analyses
 - d. Test Methods employed
 - e. Quality Control methods and results

Procedure for Plugging & Abandonment of Cased Water Monitoring Wells

1.0 Purpose

This procedure outlines the methods to be employed to plug and abandon cased monitoring wells.

2.0 Scope

This procedure shall be used for developed, cased water monitoring wells located in the State of New Mexico

3.0 Preliminary

3.1 No well may be drilled, modified or plugged without NMOCD approval. Additional approvals may be required if the well is situated in a sensitive area, within municipal jurisdictions or on federal or tribal lands.

4.0 Plugging

4.1 Each bore will be filled with a 1% - 3% bentonite/concrete slurry to three feet bgs. The remaining three feet will be capped with concrete only.

4.2 All wellheads will be removed to below ground surface.

5.0 Records

5.1 The company plugging the well shall prepare a report on their company letter head listing the site name and describing general well construction including total depth of the well, the diameter of casing, material used to plug the well (e.g. bentonite/cement slurry), and date of the plugging operation.

5.2 It is recommended but not required that photographs of the final surface restoration be taken and included within the records.

5.3 Copies of the plugging report shall be submitted to all appropriate agencies and retained by the well operator for a minimum period of ten years.