AE Order Number Banner

Application Number: pEG2519236074

Application

Part 1

SWD-2658

MACK ENERGY CORP [13837]

Received: 06/26/2025

Released to Imaging: 7/11/2025 2:21:35 PM

RECEIVED:	REVIEWER:	TYPE:	APP NO:
		ABOVE THIS TABLE FOR OCD	DIVISION USE ONLY
	- Geolog	CO OIL CONSERV Jical & Engineering Francis Drive, Sant	g Bureau –
THIS CH	ECKLIST IS MANDATORY FOR		ION CHECKLIST CATIONS FOR EXCEPTIONS TO DIVISION RULES AND E DIVISION LEVEL IN SANTA FE
Applicant: /ell Name:			OGRID Number: API:
ool:			Pool Code:
	ATION: Check those		۹]
A. Location –	Spacing Unit – Simu SL INSPo	JItaneous Dedicatic (project area)	
[] Comm [e only for [I] or [II] hingling – Storage – I DHC □CTB □ on – Disposal – Press		OLS OLM anced Oil Recovery
	WFX PMX	SWD 🗌 IPI 🗌 E	
	REQUIRED TO: Checl operators or lease ho		y. Notice Complete
B. 🗍 Royalty	, overriding royalty o	owners, revenue ov	wners Application
	ation requires publis ation and/or concur		
	ation and/or concur		
		of notification or pu	ublication is attached, and/or,
	cerequied		
administrative a understand tha	approval is accurate	e and complete to a aken on this applica	ubmitted with this application for the best of my knowledge. I also ation until the required information and
Note	e: Statement must be comp	leted by an individual witl	h managerial and/or supervisory capacity.
			Date

Print or Type Name

Phone Number

Deana Weaver

Signature

e-mail Address

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL **RESOURCES DEPARTMENT**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

Page 3 of 88 FORM C-108 Revised June 10, 2003

	APPLICATION FOR AUTHORIZATION TO INJECT							
I.	PURPOSE: Secondary Recovery Pressure Maintenance XX Disposal Storage Application qualifies for administrative approval? XX Yes No Storage							
II.	OPERATOR: Mack Energy Corporation							
	ADDRESS: P.O. Box 960 Artesia, NM 88210							
	CONTACT PARTY: Deana Weaver PHONE: 575-748-1288							
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.							
IV.	Is this an expansion of an existing project? Yes XX No If yes, give the Division order number authorizing the project:							
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.							
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.							
VII.	Attach data on the proposed operation, including:							
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.). 							
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.							
IX.	Describe the proposed stimulation program, if any.							
*Х.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).							
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.							
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.							
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.							
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.							
	NAME: Deana Weaver TITLE: Regulatory Tech II							
	SIGNATURE Deana Weaver DATE 6/26/2025							

SIGNATURE:

*

DATE: 6/26/2025

E-MAIL ADDRESS: dweaver@mec.com

If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:

Side 2

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.

(4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,

(4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

Side 1

•

INJECTION WELL DATA SHEET

OPERATOR: Mack Energy Corporation

WELL NAME & NUMBER: Gander SWD #1

WELL LOCATION: 415 FNL 2390 FWL	С	11	T15S	R31E
FOOTAGE LOCATION	UNIT LETTER	SECTION	TOWNSHIP	RANGE
<u>WELLBORE SCHEMATIC</u>		<u>WELL CO</u> Surface C	DNSTRUCTION DA1 Casing	<u>74</u>
Gender SWD #1 Opension: Mark Energy Cosporation Location: Sec. 11 1156 (2016) 415 FNL 2300 FWL Objective: SWQ: Devolution Objective: SWQ: Devolution Objective: SWQ: P	Hole Size: <u>17 1/2"</u> Cemented with: <u>1020</u>		Casing Size: <u>13 3/8</u> <i>or</i>	
Depth Hele Size & Caning De Coning De 17 10° hole 1338° 1020ex 1435 At 5	Top of Cement: Surface		Method Determined	
Open B Safes 1437 12 114" hole 9 56" 12 114" hole 9 50° 4.00" 12 100" hole 950 co 950 co 950 co 12,00" A 3 950 co 950 co 12,00" A 3 12,00" A 3 14,00" 14,00" 14,00" 14,00"	Hole Size: <u>12 1/4</u> " Cemented with: 960	sx.	Casing Size: 9 5/8" <i>or</i> Method Determined	ft ³
2 78" 6.59 -50 0-12,90 Read Rec 12,907 12,907 12,907 20000 X0000 X0000 X0000	Hole Size: <u>8 3/4</u> " Cemented with: <u>1475</u> Top of Cement: Surface	SX.	<i>or</i> Method Determined	ft ³
TG-14,007	13,090'		to_13,790'	

(Perforated or Open Hole; indicate which)

Side 2

.

INJECTION WELL DATA SHEET

ing Size: 2 7/8" Lining Material: EUE IPC							
Type of Packer: Arrow Set 10K Nickel Plated Packer w/ 2.31 Profile Nipple							
Packer Setting Depth: 12,990'							
er Type of Tubing/Casing Seal (if applicable):							
Additional Data							
Is this a new well drilled for injection? XX YesNo							
If no, for what purpose was the well originally drilled?							
Name of the Injection Formation: Devonian							
Name of Field or Pool (if applicable): SWD; Devonian							
Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. <u>N/A</u>							
5. Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: <u>Miss- 12,025', L. Miss- 12,450', Woodford- 13,010'</u>							
Montoya- 13,790'							

Mack Energy Corporation Gander SWD #1- C-108

III. Well Data

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name: Well No.; Location by Section, Township and Range; and footage location within the section.

Operator: Mack Energy Corporation (OGRID # 013837) Lease/Well Name & Number: Gander SWD #1 Legal Location: 415 FNL & 2390 FWL – Unit C – Section 11 T15S R31E – Chaves County

Coordinates: 33.0365826, -103.7931304 (NAD 83)

(2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.

Casing String	Hole Size (in)	Casing Size (in)	Casing Depth (ft)	Sacks Cmt (sx)	Top of Cmt (ft)	Method Determined
Surface	17 1/2	13 3/8	1450'	1020	0	Circulation
Intermediate	12 1/4	9 5/8	4,000'	960	0	Circulation
Production	8 3/4	7	14,000'	1,475sx	0	Circulation

DV Tool: @ 12,890' & 3,950' on Production Casing string.

- A wellbore diagram is included in *Attachment 1*.
 - (3) A description of the tubing to be used including its size, lining material and setting depth.

2 7/8" 6.5 J-55 EUE IPC @ 12,990'

- (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used. Arrow Set 10K Nickel Plated Packer w/ 2.31 R Profile Nipple @ 12,990'
- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name. Injection Formation Name- Devonian Pool Name- SWD; Devonian Pool Code- 96101
 - (2) The injection interval and whether it is perforated or open-hole. Perforated injection between 13,090-13,790'
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well. New Drill for Injection
 - (4) Give the depths of any other perforated intervals and details on the sacks of cement or bridge plugs used to seal off such perforations. None

Mack Energy Corporation Gander SWD #1- C-108

- (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.
 - Overlying
 - Rustler (1390') Top Salt (1470') Base Salt (2175') Yates (2405') Seven Rivers (2650') Queen (3200') Grayburg (3620') San Andres (3960') Glorieta (5470') Tubb (6775') Abo (7540') Wolfcamp (8840')

Cisco (9625') Atoka (11,325') Miss (12,025') L. Miss (12,450') Woodford (13,010')

- Underlying
 - Devonian (13,090') Montoya (13,790')

V. AOR Maps

Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.

The following figures are included in Attachment 2:

- 2-Mile Well Map
- 1-Mile Well Map
- 1-Mile AOR Well List
- 2-Mile Lease Map
- 1-Mile Surface Ownership Map
- 1-Mile Mineral Ownership Map

VI. AOR List

Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.

Details of the wells within the 1-mile AOR are included in Attachment 2.

VII. Operational Information

Attach data on the proposed operation, including:

- (1) Proposed average and maximum daily rate and volume of fluids to be injected; Maximum: 20,000 bwpd Average: 15,000 bwpd
- (2) Whether the system is open or closed;

The system is closed.

Mack Energy Corporation Gander SWD #1- C-108

- (3) Proposed average and maximum injection pressure; Maximum: 2,618 psi Average: 1,000 psi
- (4) Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; It is anticipated that produced water from San Andres production wells in the area will be injected into the proposed SWD. Therefore, water analyses from this formation was obtained and are included in Attachment 3.
- (5) If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.)

N/A- There is not a Devonian well in the area to get a sample. We can provide the sample during completion. We can perf and swab the well to provide a sample.

VIII. Geologic Description

Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.

The Gander SWD #1 injected fluid will be contained within the Devonian Formation. Immediately above the Devonian, the Woodford Shale is low permeability and the Mississippian Lime Formation is low porosity and low permeability carbonate. The Woodford and Mississippian Lime Formations, which are combined 1065' thick, will be the upper seal and contain the Devonian injected fluid. Below the Devonian Formation is 100' of low porosity and low permeability carbonate in the Montoya Formation. The top 100' of the Montoya will be the bottom seal and contain the Devonian injected fluid.

- Lithologic Detail- Dolomite
- Geological Name- Devonian
- Thickness- 700'
- TD- 14,000'
- Injection Depth- 13,090'- 13,790' perforated completion

A Seismic Risk Assessment is included in Attachment 4.

IX. Proposed Stimulation Program

Describe the proposed stimulation program, if any.

Treated with 10,000 gallons 15% acid.

X. Logging and Test Data

Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).

Logs will be run and submitted to the Division once the well is completed.

XI. Groundwater Wells

Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.

Based on data obtained from the New Mexico Office of the State Engineer (OSE), a total of 4 groundwater wells are located within 1 mile of the proposed SWD location.

Attachment 5 includes a 1-Mile Water well Map and Water Sample will be forwarded.

XII. No Hydrologic Connection Statement

Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.

A signed affirmative statement is included in Attachment 6.

XIII. Proof of Notice

Applicants must complete the "Proof of Notice" section on the reverse side of this form. All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

A copy of the application was mailed to the Affected Persons, including the OCD District Office, surface owner, leasehold operators within the AOR and BLM/SLO if they own minerals within the AOR. **Attachment 7** includes a list and letters of the Affected Persons receiving notice of the application and the associated certified mailing receipts.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located.

A Public Notice was published in the Roswell Daily Record, a newspaper of general circulation in the area, and the associated affidavit is included in **Attachment 7**.

Received by OCD: 6/26/2025 2:5	Energy, Minerals & Natural Resources Department	Revised J R49		of 88	
	Submit Electronically Via OCD Permitting	OIL CONSERVATION DIVISION		Initial Submittal	
			Submittal Type:	Amended Report]

·•	

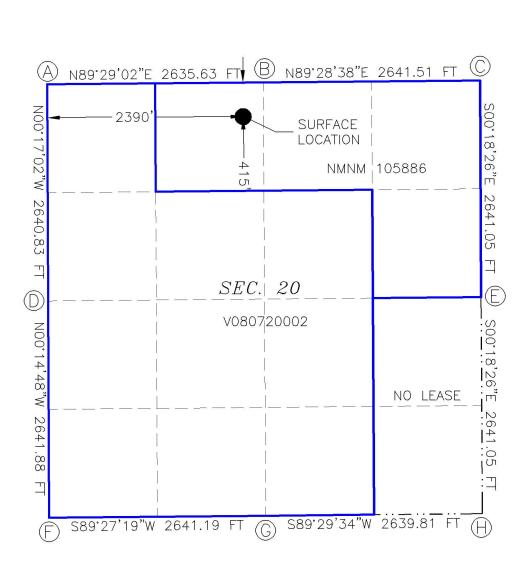
Amended Report \Box As Drilled

WELL LOCATION INFORMATION						
API Number	Pool Code 96101	Pool Name SWD; Devonian				
Property Code	Property Name GANDER SWD	Property Name GANDER SWD				
OGRID No. 13837	Operator Name MACK ENERGY	Operator Name MACK ENERGY CORPORATION				
Surface Owner: □State ☑Fee		Mineral Owner: □State →Fee □Tribal ☑I	Federal			

	Surface Location									
UL C	Section 11	Township 15 S	Range 31 E	Lot	Ft. from N/S 415 NORTH	Ft. from E/W 2390 WEST	Latitude 33.0365826°N	Longitude 103.7931304°W	County CHAVES	
	Bottom Hole Location									
UL C	Section	Township 15 S	Range 31 E	Lot	Ft. from N/S 415 NORTH	Ft. from E/W 2390 WEST	Latitude 33.0365826°N	Longitude 103.7931304°W	County CHAVES	

Dedicated Acres 40	Infill or Defining Well Infill	Defining Well API	Overlapping Spacing Unit (Y/N) N	Consolidation Code N/A
Order Numbers.			Well setbacks are under Common	Ownership: ☑Yes □No

Kick Off Point (KOP)									
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
I									
	First Take Point (FTP)								
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County
	Last Take Point (LTP)								
UL	Section	Township	Range	Lot	Ft. from N/S	Ft. from E/W	Latitude	Longitude	County


Unitized Area or Area of I	Uniform Interest	Spacing Unit Type □Horiz	contal Vertical	Ground Floor Elevation:		
OPERATOR CERTIFICA	TIONS		SURVEYOR CERTIF	VICATIONS		
ofmy knowledge and belief, an organization either owns a we including the proposed bottom location pursuant to a contrac- interest, or to a voluntary poo- entered by the division. If this well is a horizontal wel consent of at least one lessee	nd, if the well is a vertical orking interest or unlease in hole location or has a r ct with an owner of a wood ling agreement or a com l, I further certify that th or owner of a working in ol or formation) in which ained a compulsory pood	ed mineral interest in the land right to drill this well at this rking interest run leased mineral pulsory pooling order here to fore is organization has received the terest or unleased mineral interest o any part of the well's completed ling order from the division.				
Signature	Date		Signature and Seal of Professional Surveyor FILIMON F. JARAMILLO			
Deana Weaver						
Printed Name			CertificateNumber	Dateof Survey		
dweaver@])mec.com		PLS 12797	APRIL 18, 2025		
Email Address				SURVEY NO. 1041		

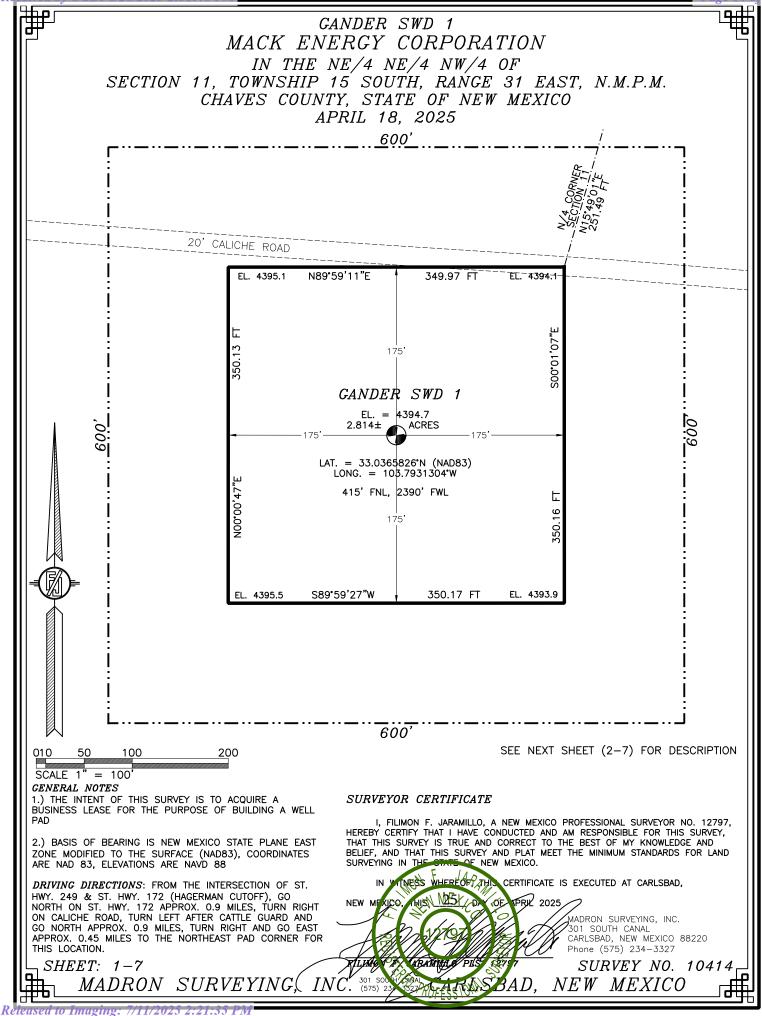
Note: No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Received by OCD: 6/26/2025 2:51:48 PM ACREAGE DEDICATION PLATS

This grid represents a standard section. You may superimpose a non-standard section, or larger area, over this grid. Operators must outline the dedicated acreage in a red box, clearly show the well surface location and bottom hole location, if it is directionally drilled, with the dimensions from the section lines in the cardinal directions. If this is a horizontal wellbore show on this plat the location of the First Take Point and Last Take Point, and the point within the Completed interval (other than the First Take Point or Last Take Point) that is closest to any outer boundary of the tract.

Surveyors shall use the latest United States government survey or dependent resurvey. Well locations will be in reference to the New Mexico Principal Meridian. If the land is not surveyed, contact the OCD Engineering Bureau. Independent subdivision surveys will not be acceptable.

GEODETIC COORDINATES NAD 83 NMSP EAST SURFACE LOCATION 415' FNL, 2390' FWL N.=741271.66 E.=706883.66 LAT.=33.0365826*N LONG.=103.7931304*W


GANDER SWD 1 EL. = 4394.7

BOTTOM OF HOLE 415' FNL, 2390' FWL N.=741271.66 E.=706883.66 LAT.=33.0365826'N LONG.=103.7931304'W

CORNER COORDINATES TABLE					
	NAD 83 NMS	P EAST			
Α —	N.=741664.96	E.=704492.22			
В —	N.=741688.69	E.=707127.06			
С —	N.=741712.79	E.=709767.77			
D —	N.=739024.86	E.=704505.31			
Е —	N.=739072.48	E.=709781.92			
F —	N.=736383.69	E.=704516.67			
G —	N.=736408.79	E.=707157.06			
Н —	N.=736432.16	E.=709796.08			

LEGENI	D
	SECTION LINE
	QUARTER LINE
	LEASE LINE
	WELL PATH

Page 14 of 88

GANDER SWD 1 MACK ENERGY CORPORATION IN THE NE/4 NE/4 NW/4 OF SECTION 11, TOWNSHIP 15 SOUTH, RANGE 31 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO APRIL 18. 2025

DESCRIPTION

A CERTAIN PIECE OR PARCEL OF LAND AND REAL ESTATE LYING IN FEE LAND IN THE NE/4 NE/4 NW/4 OF SECTION 11, TOWNSHIP 15 SOUTH, RANGE 31 EAST, N.M.P.M., CHAVES COUNTY, NEW MEXICO.

BEGINNING AT THE NORTHEAST CORNER OF THE PARCEL, WHENCE THE NORTH QUARTER CORNER OF SECTION 11, TOWNSHIP 15 SOUTH, RANGE 31 EAST, N.M.P.M. BEARS N15'49'01"E, A DISTANCE OF 251.49 FEET;

THENCE SO0'01'07"E A DISTANCE OF 350.16 FEET TO THE SOUTHEAST CORNER OF THE PARCEL; THENCE S89'59'27"W A DISTANCE OF 350.17 FEET TO THE SOUTHWEST CORNER OF THE PARCEL; THENCE NO0'00'47"E A DISTANCE OF 350.13 FEET TO THE NORTHWEST CORNER OF THE PARCEL; THENCE N89'59'11"E A DISTANCE OF 349.97 FEET TO THE NORTHEAST CORNER OF THE PARCEL. THE POINT OF BEGINNING;

CONTAINING 2.814 ACRES MORE OR LESS.

GENERAL NOTES 1.) THE INTENT OF THIS SURVEY IS TO ACQUIRE A BÚSINESS LEASE FOR THE PURPOSE OF BUILDING A WELL PAD

2.) BASIS OF BEARING IS NEW MEXICO STATE PLANE EAST ZONE MODIFIED TO THE SURFACE (NAD83), COORDINATES ARE NAD 83, ELEVATIONS ÀRE NÁVD 88

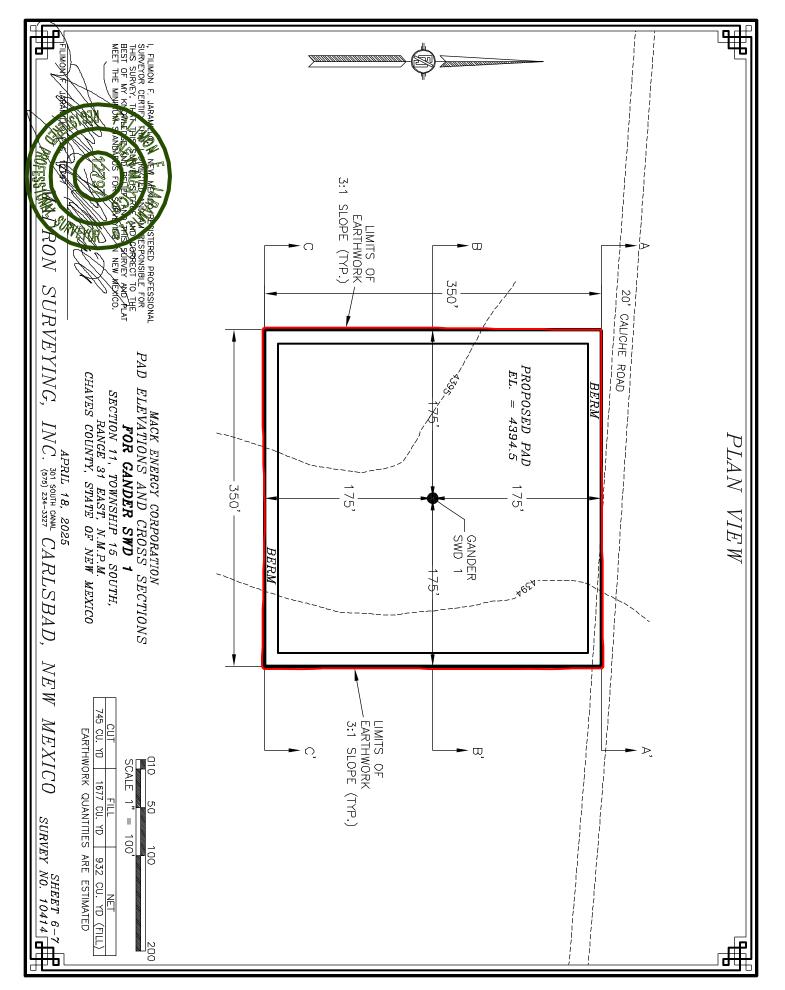
SURVEYOR CERTIFICATE

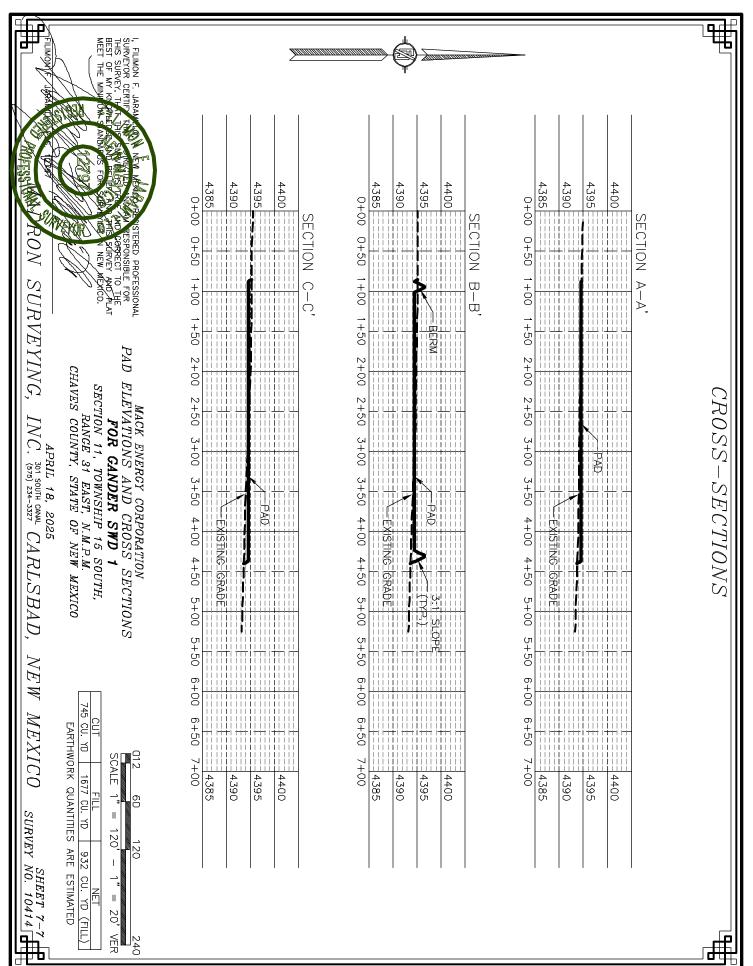
I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE E NEW MEXICO.


WHERE OF THIS CERTIFICATE IS EXECUTED AT CARLSBAD, NEW M RH 2025 MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3327 SURVEY NO. 10414 MADRON SURVEYING(INC NEW A I) MEXICO

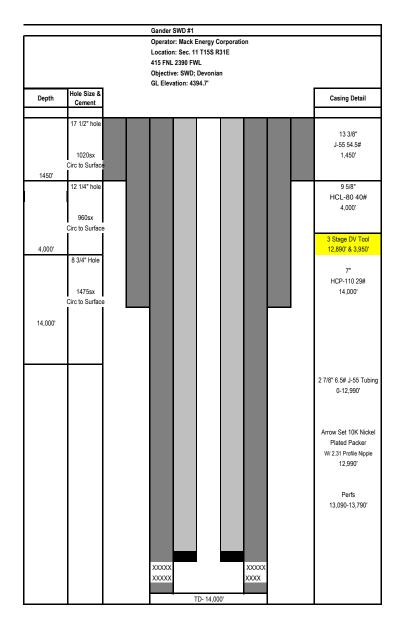
SHEET: 2-7

Received by OCD: 6/26/2025 2:51:48 PM Page 16 of 88 GANDER SWD 1 MACK ENERGY CORPORATION IN THE NE/4 NE/4 NW/4 OF SECTION 11, TOWNSHIP 15 SOUTH, RANGE 31 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO APRIL 18, 2025 SITE MAP 20' CALICHE ROAD 175' NORTH OFFSET EL. 4395.0 175' GANDER SWD 1 175'EAST OFFSET EL. 4394.3 175' WEST OFFSET EL. 4395.4 175 ELEV. = 4394.7 LEV. = 4394.7 LAT. = 33.0365826*N (NAD83) LONG. = 103.7931304*W NMSP EAST (FT) N = 741271.66 E = 706883.66 175' 175' SOUTH OFFSET EL. 4394.8 010 50 100 200 FIL IMON SURVE<u>XOR</u> SURVEY, 1 KNOWLEDO SCALE 1" = 100' THΔ SURVEY NO. 10414 SHEET: HOFESS (V SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO MADRON


Released to Imaging:


Page 17 of 88

Page 18 of 88



Gander SWD #1 415 FNL 2390 FWL Sec. 11 T15S R31E Formation Tops

Rustler	1,390'		
Top Salt	1,470'		
Base Salt	2,175'		
Yates	2,405'		
Seven Rivers	2,650'		
Queen	3,200'		
Grayburg	3,620'		
San Andres	3,960'		
Glorieta	5,470'		
Tubb	6,775'		
Abo	7,540'		
Wolfcamp	8,840'		
Cisco	9,625'		
Atoka	11,325'		
Miss	12,025'		
L. Miss	12,450'		
Woodford	13,010'		
Devonian	13,090'		
Montoya	13,790'		

I

Legal Notice

Mack Energy Corporation, Post Office Box 960, Artesia, NM 88211-0960, has filed an Application with the New Mexico Oil Conservation Division seeking authorization to inject produced water into the Gander SWD #1 415 FNL 2390 FWL of Section 11, T15S, R31E, NMPM, Chaves County, New Mexico. The water will be injected into the Devonian at a disposal depth of 13,090-13,790' (Perforated). Water will be injected at a maximum surface pressure of 2,618# and a maximum injection rate of 15,000-20,000 BWPD. Any interest party with questions or comments may contact Deana Weaver at Mack Energy Corporation, Post Office Box 960, Artesia, NM 88211-0960 or call 575-748-1288. Objections to this application or requests for hearing must be filed with the Oil Conservation Division, 1220 South Saint Francis Drive, Santa Fe, New Mexico 87505, within fifteen days of the date of publication of this notice. Received DeguDy 61 Page 25 of 883 P

Publish June 27th, 2025

Legal Notice

Mack Energy Corporation, Post Office Box 960 Artesia, NM 88211-0960, has filed an Application with the New Mexico Oil Conservation Division seeking authorization to inject produced water into the Gander SWD #1 415 FNL 2390 FWL of Section 11, T15S R31E, NMPM, Chaves County, New Mexico. The water will be injected into the Devonian at a disposal depth of 13,090-13,790' (Perforated). Water will be injected at a maximum surface pressure of 2,618# and a maximum injection rate of 15,000-20,000 BWPD. Any interest party with questions or comments may contact Deana Weaver at Mack Energy Corporation, Post Office Box 960, Artesia, NM 88211-0960 or call 575-748-1288. Objections to this application or requests for hearing must be filed with the Oil Conservation Division, 1230 South Saint Francis Drive, Santa Fe, New Mexico 87505, Within Inteen days of the date of publication of this notice.

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

March 23, 2022

Mr. Dean McClure Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

RE: Mack Energy Corporation & Chase Affiliates

Dear Mr. McClure:

Mack Energy Corporation is a Chase Family owned entity. The following Chase individuals or companies are all affiliates of Mack Energy Corporation and usually own an interest in wells drilled and/or operated by Mack Energy Corporation.

- Mack C. Chase Trust
- Robert C. Chase or RDC Minerals LLC
- Richard L. Chase or Ventana Minerals LLC
- Gerene Dianne Chase Ferguson or DiaKan Minerals LLC
- Broken Arrow Royalties LLC
- Chase Oil Corporation
- Sendero Energy LLC
- Katz Resources LLC
- M Squared Energy LLC

All of these family members and companies all office in the same building so notifications can be hand delivered; therefore we request that the certified mail process be waived when these parties are involved.

If you have any questions or need additional information please do not hesitate to contact me. Your assistance is greatly appreciated.

Sincerely, Mack Energy Corporation

Staci Sanders Land Manager

/ss

Re: Application of Mack Energy Corporation for administrative approval for Central Tank Battery and Off Lease Measurement of oil and gas production at a CTB Facility located in Section 28, Township 15S Range 29E, NMPM, Chaves County, New Mexico.

List of Affected Parties Sendero Energy LLC Katz Resources LLC M Squared Energy LLC Chase Oil Corp Robert C Chase Broken Arrow Royalties LLC Ventana Minerals LLC DiaKan Minerals LLC Bureau of Land Management

Statement of Affected Person Notification C-108 Gander SWD #1 Mack Energy Corporation Proposed Disposal Well

Name	Address	City	State	Zip	Certified Mail Id
New Mexico State Land Office	310 Old Santa Fe Trail	Santa Fe	NM	87501	9589 0710 5270 0130 1882 48
McCright & Associates, LLC	306 W. Wall St. Suite 1000	Midland	TX	79701	9589 0710 5270 0130 1882 55
Chevron USA Inc	6301 Deauville Blvd	Midland	TX	79706	9589 0710 5270 0130 1882 62
Chase Oil	PO Box 1767	Artesia	NM	88211-1767	
ConocoPhillips Company	600 W. Illinois Ave	Midland	TX	79701	9589 0710 5270 0130 1882 79
Coterra Energy Operating Co.	6001 Deauville Blvd Suite 300N	Midland	TX	79706	9589 0710 5270 0130 1882 86
Bam Permian Operating LLC	4416 Briarwood Ave Ste 100 PMB 53	Midland	TX	79707	9589 0710 5270 0130 1882 93
COG Operating LLC	600 W. Illinois Ave	Midland	TX.	79701	9589 0710 5270 0130 1883 09
Magnum Hunter Production Inc	6001 Deauville Blvd Suite 300 N	Midland	TX	79706	9589 0710 5270 0130 1883 16
Kevin O Butler & Assco Inc	PO Box 1171	Midland	TX	79702	9589 0710 5270 0130 1883 23
KerrMcGee	P.O. Box 1330	Houston	TX	77251	9589 0710 5270 0130 1883 30
Union Oil Co of California	PO Box 2100	Houston	TX	77210	9589 0710 5270 0130 1883 47
801, LLC	PO Box 900	Artesia	NM	88211-0900	9589 0710 5270 0130 1883 54
Medlin Ranches, Inc	P.O. Box 50	Maljamar	NM	88264	9589 0710 5270 0130 1886 06
Harvard Petroleum Company, LLC	P.O. Box 936	Roswell	NM	88202	9589 0710 5270 0130 1886 13
Team Operating, LLC	P.O. Box 835	Pinehurst	TX	77362	9589 0710 5270 0130 1886 20
Bureau Of Land Management	2909 W. 2nd Street	Roswell	NM	88201	9589 0710 5270 0130 1887 43

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

June 26, 2025

Via Certified Mail 9589 0710 5270 0130 1883 23 Return Receipt Requested

Kevin O Butler & Assoc. Inc P.O. Box 1171 Midland, TX 79702

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

eanaweaver

Deana Weaver Regulatory Technician II

DW/

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

June 26, 2025

Via Certified Mail 9589 0710 5270 0130 1883 30 Return Receipt Requested

Kerr McGee P.O. Box 1330 Houston, TX 77251

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

weaver

Deana Weaver Regulatory Technician II

DW/

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

June 26, 2025

Via Certified Mail 9589 0710 5270 0130 1883 47 Return Receipt Requested

Union Oil Co of California P.O. Box 2100 Houston, TX 77210

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

inaweaver

Deana Weaver Regulatory Technician II

DW/

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

June 26, 2025

Via Certified Mail 9589 0710 5270 0130 1883 54 Return Receipt Requested

801, LLC P.O. Box 900 Artesia, NM 88211-0900

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

anaweaver

Deana Weaver Regulatory Technician II

DW/

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

June 26, 2025

Via Certified Mail 9589 0710 5270 0130 1886 06 Return Receipt Requested

Medlin Ranches, Inc P.O. Box 50 Maljamar, NM 88264

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

nawlaver

Deana Weaver Regulatory Technician II

DW/

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

June 26, 2025

<u>Via Certified Mail 9589 0710 5270 0130 1886 13</u> Return Receipt Requested

Harvard Petroleum Company, LLC P.O. Box 936 Roswell, NM 88202

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

unaWlaver

Deana Weaver Regulatory Technician II

DW/

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

June 26, 2025

Via Certified Mail 9589 0710 5270 0130 1886 20 Return Receipt Requested

Team Operating, LLC P.O. Box 835 Pinehurst, TX 77362

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

eana weaver

Deana Weaver Regulatory Technician II

DW/

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

June 26, 2025

<u>Via Certified Mail 9589 0710 5270 0130 1887 43</u> Return Receipt Requested

Bureau of Land Management 2909 W. Second Street Roswell, NM 88201

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

anaweauer

Deana Weaver Regulatory Technician II

DW/

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 746-9539

June 26, 2025

Via Certified Mail 9589 0710 5270 0130 1882 48 Return Receipt Requested

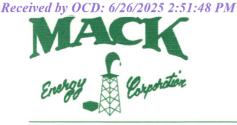
New Mexico State Land Office 310 Old Santa Fe Trail Santa Fe, NM 87501

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,


Mack Energy Corporation

natureauer

Deana Weaver Regulatory Technician II

DW/

Page 38 of 88

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 746-9539

June 26, 2025

<u>Via Certified Mail 9589 0710 5270 0130 1882 55</u> Return Receipt Requested

McCright & Associates, LLC 306 W. Wall St. Suite 1000 Midland, TX 79701

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

inaweauer

Deana Weaver Regulatory Technician II

DW/

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

June 26, 2025

Via Certified Mail 9589 0710 5270 0130 1882 62 Return Receipt Requested

Chevron USA Inc 6301 Deauville Blvd. Midland, TX 79706

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

inaweaver

Deana Weaver Regulatory Technician II

DW/

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

June 26, 2025

Via Certified Mail 9589 0710 5270 0130 1882 79 Return Receipt Requested

ConocoPhillips Company 600 W. Illinois Ave Midland, TX 79701

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

eanableaver

Deana Weaver Regulatory Technician II

DW/

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

June 26, 2025

Via Certified Mail 9589 0710 5270 0130 1882 86 Return Receipt Requested

Coterra Energy Operating Co. 6001 Deauville Blvd. Suite 300N Midland, TX 79706

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

eana weaver

Deana Weaver Regulatory Technician II

DW/

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

June 26, 2025

<u>Via Certified Mail 9589 0710 5270 0130 1882 93</u> Return Receipt Requested

Bam Permian Operating LLC 4416 Briarwood Ave. Ste. 100 PMB 53 Midland, TX 79707

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

eanaweaver

Deana Weaver Regulatory Technician II

DW/

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

June 26, 2025

Via Certified Mail 9589 0710 5270 0130 1883 09 Return Receipt Requested

COG Operating LLC 600 W. Illinois Ave. Midland, TX 79701

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,

Mack Energy Corporation

und weaver

Deana Weaver Regulatory Technician II

DW/

P.O. Box 960 Artesia, NM 88211-0960 Office (575) 748-1288 Fax (575) 748-7374

June 26, 2025

<u>Via Certified Mail 9589 0710 5270 0130 1883 16</u> Return Receipt Requested

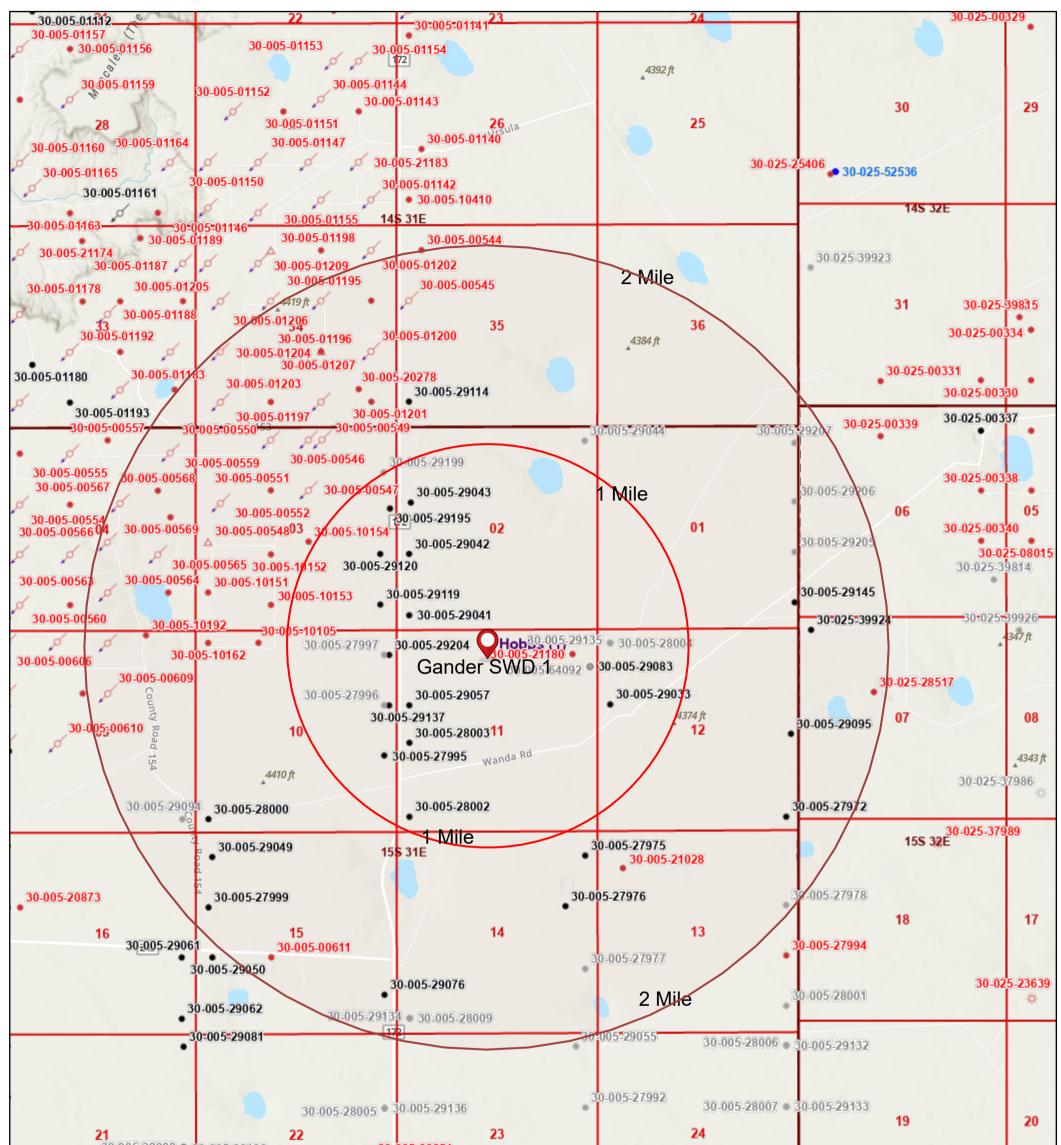
Magnum Hunter Production Inc 6001 Deauville Blvd Suite 300 N Midland, TX 79706

To all Interest Owners:

Enclosed for you review is a copy of Mack Energy Corporation's application for a Devonian SWD well. Produced water will be injected at a proposed depth of 13,090-13,790'. The Gander SWD #1 located 415 FNL & 2390 FWL, Sec. 11 T15S R31E, Chaves County.

The letter will serve as a notice that Mack Energy Corporation has requested administrative approval from the NMOCD to drill this well as a water disposal. If you have any objections, you must notify the Oil Conservation Division in Santa Fe in writing at 1220 South St. Francis Drive, Santa Fe, NM 87505 within fifteen (15) days of receiving this letter.

Sincerely,


Mack Energy Corporation

ana weaver

Deana Weaver Regulatory Technician II

DW/

2 Mile Well Map

28	30-005-29172	27	-30.005-2 30-005-28019 <mark>26 - 30-005-1041</mark>			30	29
30-005-2118	1	4399 ft	30-005-27990	_4372 ft	-•	30-025-39971	88 4341 ft
21 30:005-29080 ● <u>2</u>	30-005-29186	•	005-00651 • 30-005-27991	24	.3	0-005-28008	

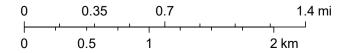
4/28/2025, 2:21:53 PM

Override 1

Wells - Large Scale

- 章 Gas, Cancelled
- * Gas, Plugged
- ø Injection, Active

Injection, Plugged


- Oil, Active
- Oil, Cancelled

Oil, New

- Oil, Plugged
- Salt Water Injection, Plugged **OCD** Districts
- **PLSS First Division**

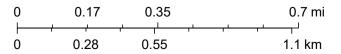
PLSS Townships

1:36,112

Esri, NASA, NGA, USGS, FEMA, Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community, OCD, BLM

New Mexico Oil Conservation Division

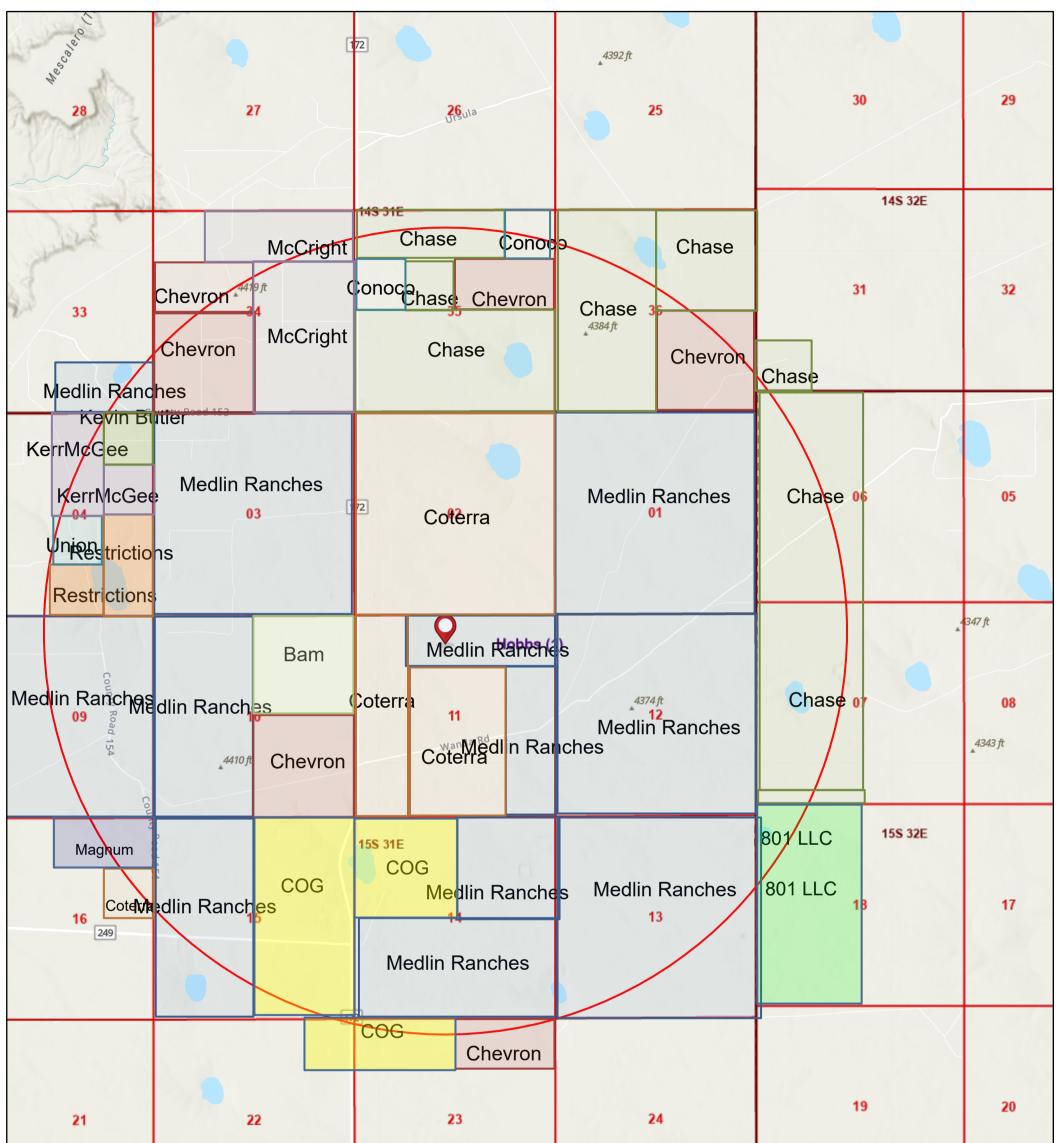
1 Mile Well Map


		30-005	-01207 30-005 0				LIFOR.	4384 ft			NUT
(L)	(K)	N₩30-005- (J)	01196 NESE (I)	NWSW (L)	NESW (K)	NWSE (J)	NESE (1)	NWSW (L)	NESW (K)	NWSE (J)	(1)
swsw (M)	14S 31E SES ³⁰⁻⁰⁰⁵⁻⁰ (N)	34 1208 SWSE (+O) 30-00	30-005-20278 30-005-012017 15-01197(P)	² 30;005-29114 (M)	3 SESW (N)	SWSE (O)	SESE (P)	SWSW (M)	36 SESW (N)	SWSE (O)	SESE (P)
	30-005-00550	30-00	5-00549				30-0	05-29044			/
L4	L 3 ³⁰⁻⁰⁰	5-00546 2	L1	5-29199	L3	L2	L1	L 4	L3	L2	L1
SWNW	30-005-00551 SENW	30-005-005 SWNE	547 30-005-29195	30-005-29043	4395 ft SENW	SWNE	SENE	swinw	SENW	SWNE	SENE
(E)	(F) 	(G) - 03		(E)	(F)	(G))2	(H)	(F) Mil	e (F) 01	(G)	(H)
wsw (L)	NES ³⁰⁻⁰⁰⁵⁻¹ (K)	30/005-101 0152 _{NWSE} (J)	54 30-005-29120 (1)	30-005-29042 (L)	NESW (K)	NWSE (J)	NESE (1)	NWSW (L)	NESW (K)	NWSE (J)	NESE (1)
swsw (M)	SES <mark>30-005</mark> -1 (N)	0153 _{SWSE} (0)	SESE 30-005 (P)	-291 <u>19</u> /sw 30-005-29041	SESW (N)	SWSE (0)	SESE (P)	43 SWSW (M)	58 ft	SWSE (0)	I SESE (P)
_	30-005-1010	5				4392 ft					
WNW (D)	NENW (C)	NWNE (B)	30-005-27997 30 7 (A)	005-29204, (D)	Gander	SWD <mark>MNE</mark>	30-005-291 NEN <mark>30-005-2 (A)</mark> 30-005-64092 • 3 0	(D)	NENW (C)	NWNE (B)	NENE (A)
swnw (E)	SENW (F)	SWNE (G)	30-005- <u>2799</u> 6 30-005-2913 7	15S 31E 30-005-29057 (E)	SENW (F)	SWNE (G)	SENE (H)	30-005-290 (E)	33 _{SENW} (F) <i>4374.ft</i>	SWNE (G)	 SENE (H)
·		10	NECE 30-00	30-005-28003	4	1	NESE	NWSW	12	NWSE	NESE
(L)	(K)	(3)	NESE 30-00 (1)	(L) Wanda Rd	NESW (K)	Wanda (J)	(1)	(L)	(K)	(J)	(1)
swsw (M)	SESW (N)	SWSE (0)	1 Mile	<mark>SWSW</mark> 30 ¹ 005-28002	SESW (N)	SWSE (0)	SESE (P)	SWSW (M)	SESW (N)	SWSE (O)	SESE (P)
WNW (D)	NENW (C)	NWNE (B)	NENE (A)	NWNW (D)	NENW (C)	4387 ft NWNE (B)	NENE 30-0 (A)	05-2797,5iw (D30-005	NENW -21028 (C)	NWNE (B)	NENE (A)
SWNW (E)	SENW (F)	15 SWNE (G)	SENE 172 (H)	SWNW (E)	SENW 1 (F)	4 SWNE (G)	<mark>,520,005-279</mark> (Н)	76 _{SWNW} (E)	SENW 13 (F)	SWNE (G)	
wsw (L)	NESW0-005-	00611 NWSE (J)	NESE (1)		NESW (K)	NWSE (J)	NESE (1) 30-0	NWSW (L) 05-27977	NESW (K)	NWSE (J)	NESE (1)

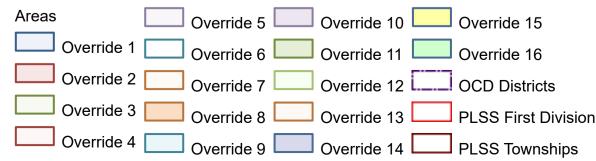
4/28/2025, 2:24:00 PM

Wells - Large Scale Δ

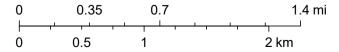
- Salt Water Injection, Plugged
- ø Injection, Plugged PLSS Second Division
- PLSS First Division ٠ Oil, Active
- 0 Oil, Cancelled PLSS Townships
- ٠ Oil, Plugged


1:18,056

Esri, NASA, NGA, USGS, FEMA, Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community, OCD, BLM

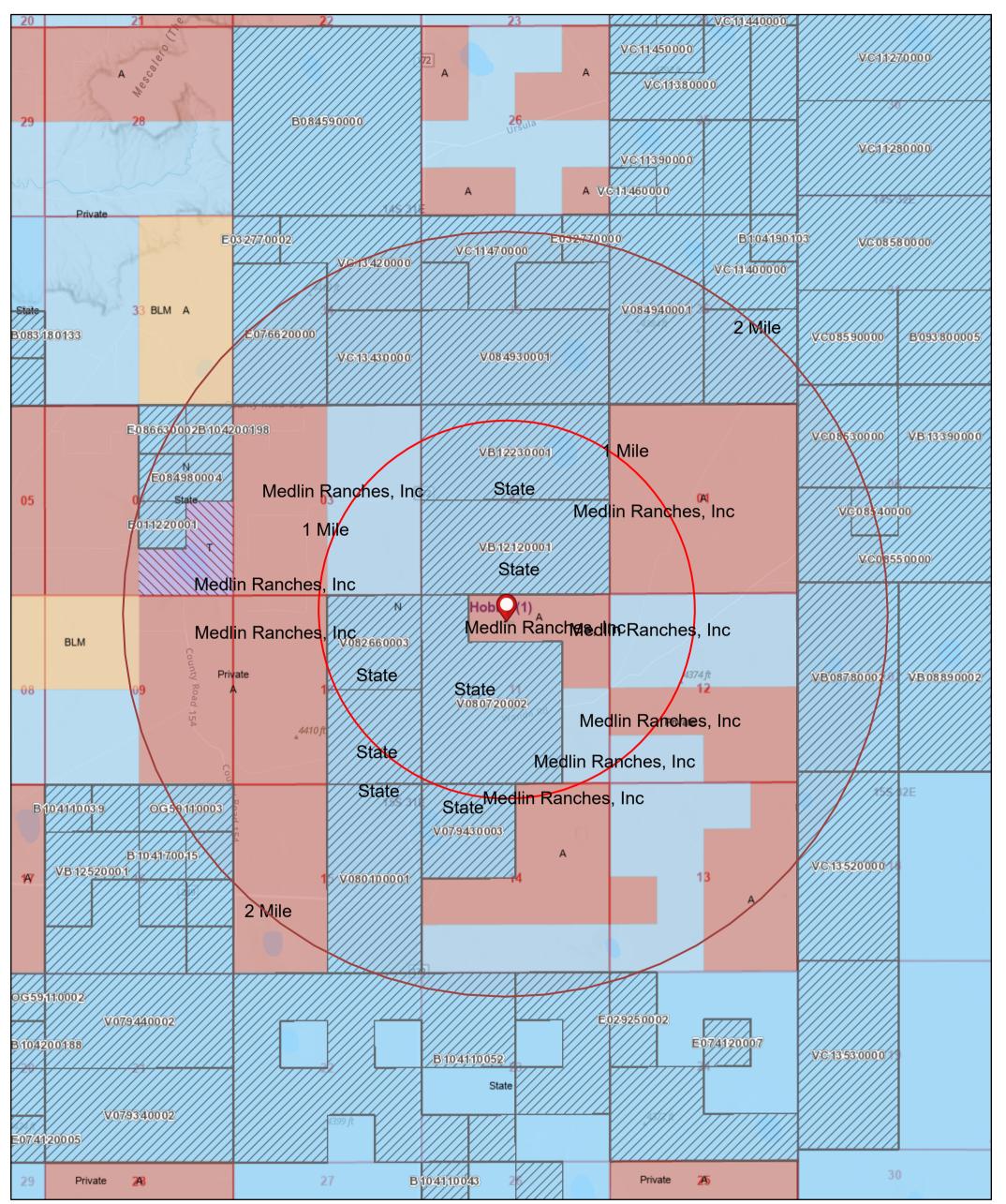

New Mexico Oil Conservation Division

2 Mile Lease Map



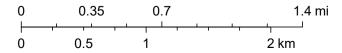
	4399 ft		4372 ft		4341 ft
28	27	26	25	30	29

4/29/2025, 8:52:12 AM


1:36,112

Esri, NASA, NGA, USGS, FEMA, Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community, OCD, BLM

New Mexico Oil Conservation Division

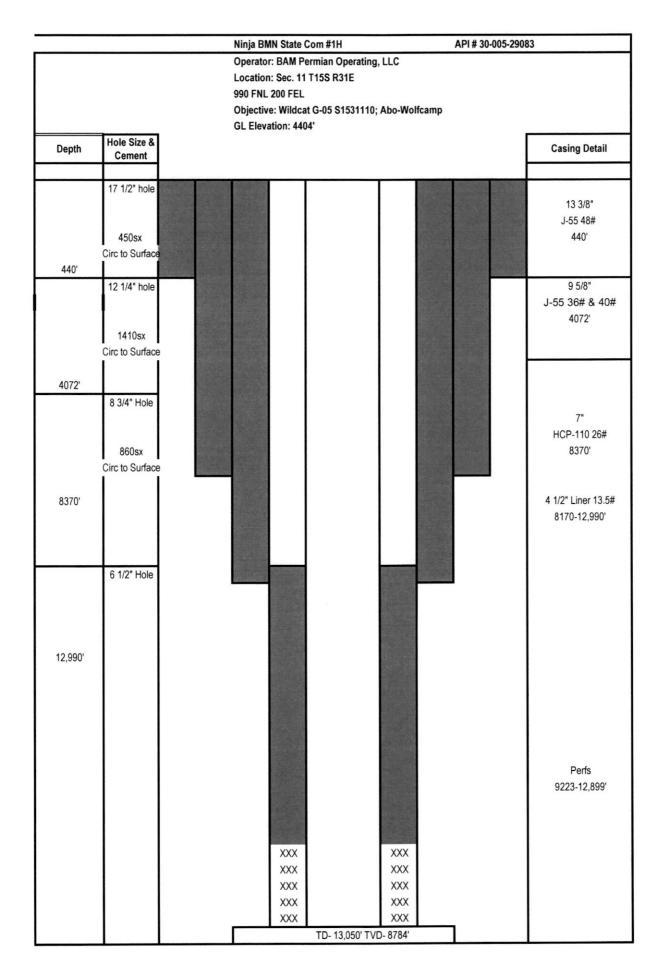

1 Mile Surface Ownership Map

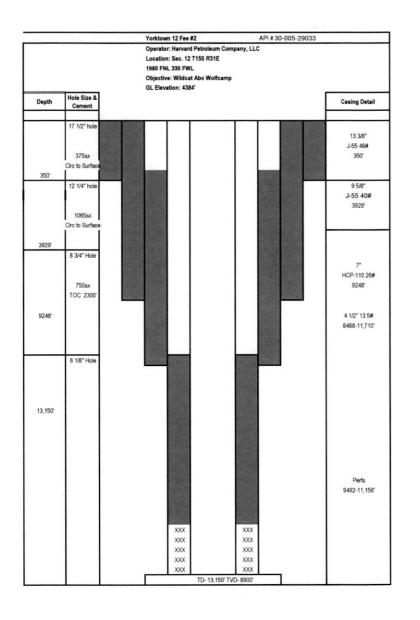
4/29/2025, 9:22:43 AM

U.S. BLM, Esri, NASA, NGA, USGS, FEMA, Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community, OCD, BLM

New Mexico Oil Conservation Division

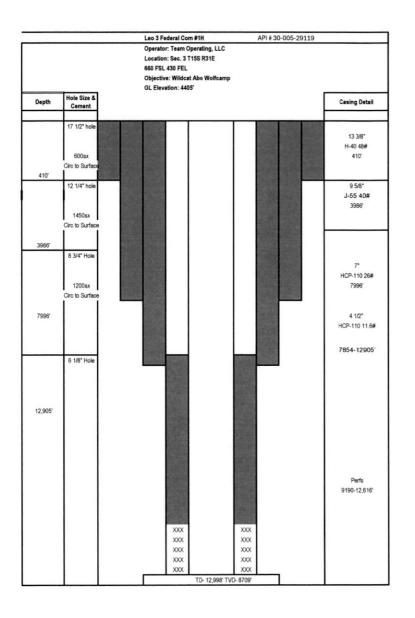
1 Mile Mineral Map

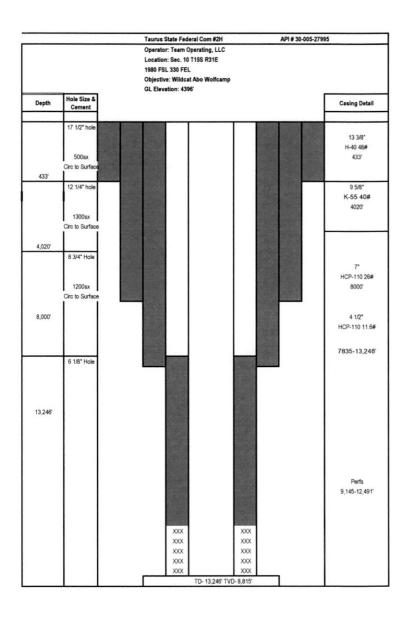

	WESW (*) 7.662.00.00	WC134	NESE		NESW (K)	1945E (1) 30001		WVSW384.ft UU 	NESW (K) 40.00 1 36	
SWSW (N)	SESW UNI	SWSE	sest (P)	72 SWSW LMJ	SESW (N)	SWISE (0)	stse (P)	SWSW (N)	SESW (N)	SWISE XOX
24	13	L2	L1		X8	230 00 1		LA		xr
SWINN	SENW (F)	SWNE (G) -03	SENE (H)	Stortwo	439517 SEKWI State	SWME	SEME	SWNW (E)	SENW (E)	SWINE (G)
	WESW (K)	NWSE (J) Medlin Rand	NESE (1) thes Inc		NESW VKV	NVSE (1) 12.000.1		DIWSW (1) 	NESW	NWISE (J)
SWSW (M)	sesw (N) BLM	SWSE (0)	SESE (P)	SWSW S		SWSE (0) 3352 Jr	SESE (P)	SWSW (NI)	sesw (N)	swse (0)
	NENW (C) BLM	NWME (B) Sta			NENW Q	NWNE NMNM 105 BLM	886 (A)	NWNW (D) Medlin F	NENW (C) Ranches Inc	NWNE (B)
SWINW (E)	SÉNW	SWINE (G)	SEME (H)	SMUNIU LEI SI	158 31E SERWI LEI	SWNE 1G1	SENE (H)	SWNW (E)	SENW (F) 4374 <i>f</i> t	SWNE (G)
	NM 105885 NESW (K)	X/////X//	MESE TH State	WWSW W	V080720002 MESW KI	Manua Wilste	NESE (1)	BLM	NNT 105886	
SWSW (M)	SESW (N)	SWSE	sese	SWSW (M)	SESW (N)	SWISE	Med lin ⊧Rar (₽)	cheswinc (M)	SESW (N)	SWSE (0)
					NEMW KCX 430003	387 PT NWNE (B)		NWNW (D)	NENW (C)	NWNE (B)
		15 V0801	0 000 1			4			13	

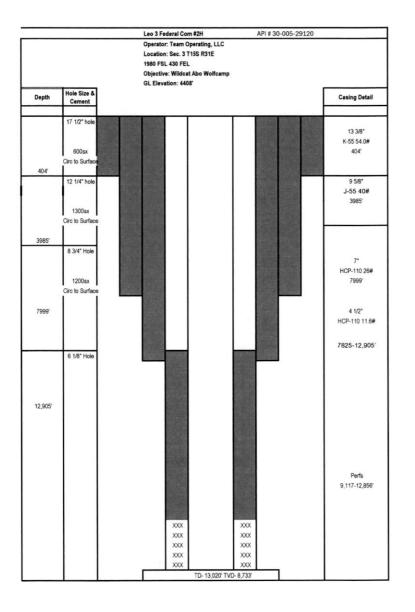


U.S. Department of Interior, Bureau of Land Management (BLM), Esri, NASA, NGA, USGS, FEMA, Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community, OCD, BLM

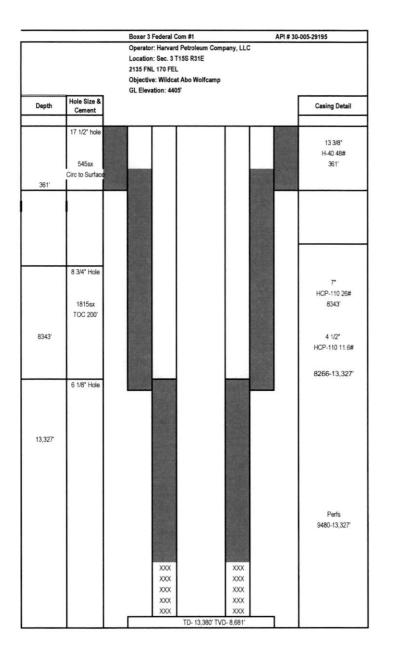
New Mexico Oil Conservation Division

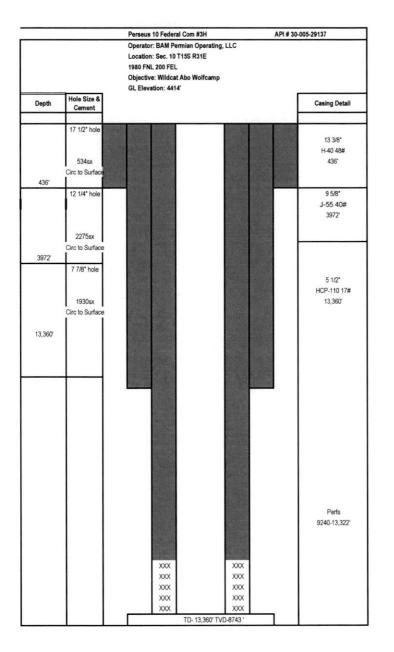

API	Well Name	Well Type	Well Status	ogrid	ogrid_name	PLSS Location (ULSTR)	SPUD Date	Lease Type	Measured Depth	Associated Pools	Effective Date	Last Produced	Plug Date
30-005-21180	PRE-ONGARD WELL #001	Oil	Plugged (site released)	214263	PRE-ONGARD WELL OPERATOR	A-11-15S-31E	12/31/1899	No Data	0	No Data	12/31/1899	12/30/9999	12/31/1899
30-005-29083	NINJA BMN STATE COM #001H	Oil	Active	328565	BAM Permian Operating, LLC	A-11-15S-31E	2/12/2009	Federal	13,050	[97715] WILDCAT G-05 S153111O, ABO-WOLFCAMP	11/14/2021	1/31/2025	
30-005-29033	YORKTOWN 12 FEE #002	Oil	Active	10155	HARVARD PETROLEUM COMPANY, LLC	E-12-15S-31E	8/13/2008	Fee	13,150	[17290] DENTON, WOLFCAMP; [97715] WILDCAT G-05 S1531110, ABO-WOLFCAMP	5/22/2023	1/31/2025	
30-005-29119	LEO 3 FEDERAL COM #001H	Oil	Active	332148	TEAM OPERATING, L.L.C.	P-03-15S-31E	4/29/2011	Federal	12,998	[97715] WILDCAT G-05 S1531110, ABO-WOLFCAMP	8/6/2024	1/31/2025	
30-005-27995	TAURUS STATE FEDERAL COM #002H	Oil	Active	332148	TEAM OPERATING, L.L.C.	I-10-15S-31E	10/15/2009	State	13,246	[97715] WILDCAT G-05 S1531110, ABO-WOLFCAMP	11/16/2023	1/31/2025	
30-005-29120	LEO 3 FEDERAL COM #002H	Oil	Active	332148	TEAM OPERATING, L.L.C.	I-03-15S-31E	5/4/2012	Federal	13,020	[97715] WILDCAT G-05 S1531110, ABO-WOLFCAMP	8/13/2024	1/31/2025	
30-005-29195	BOXER 3 FEDERAL COM #001H	Oil	Active	10155	HARVARD PETROLEUM COMPANY, LLC	H-03-15S-31E	1/7/2012	Federal	13,380	[97715] WILDCAT G-05 S1531110, ABO-WOLFCAMP	5/22/2023	1/31/2025	
30-005-29204	PERSEUS 10 FEDERAL COM #004H	Oil	Active	328565	BAM Permian Operating, LLC	A-10-15S-31E	7/5/2013	Federal	13,330	[97715] WILDCAT G-05 S1531110, ABO-WOLFCAMP	1/26/2022	1/31/2025	
30-005-29137	PERSEUS 10 FEDERAL COM #003H	Oil	Active	328565	BAM Permian Operating, LLC	H-10-15S-31E	6/16/2010	Federal	13,362	[97715] WILDCAT G-05 S1531110, ABO-WOLFCAMP	1/26/2022	1/31/2025	
30-005-29042	WASP 2 STATE #002H	Oil	Active	10155	HARVARD PETROLEUM COMPANY, LLC	L-02-15S-31E	8/22/2010	State	13,256	[97019] WILDCAT, ABO; [97715] WILDCAT G-05 S1531110, ABO-WOLFCAMP	5/22/2023	1/31/2025	
30-005-29057	ENTERPRISE 11 FEDERAL COM #003H	Oil	Active	10155	HARVARD PETROLEUM COMPANY, LLC	E-11-15S-31E	10/19/2008	Federal	13,258	[97715] WILDCAT G-05 S1531110, ABO-WOLFCAMP	5/22/2023	1/31/2025	
30-005-28002	ENTERPRISE 11 STATE COM #001	Oil	Active	10155	HARVARD PETROLEUM COMPANY, LLC	M-11-15S-31E	4/22/2008	State	13,242	[97715] WILDCAT G-05 S1531110, ABO-WOLFCAMP	5/22/2023	1/31/2025	
30-005-28003	ENTERPRISE 11 STATE COM #002	Oil	Active	10155	HARVARD PETROLEUM COMPANY, LLC	L-11-15S-31E	10/4/2008	State	13,210	[97715] WILDCAT G-05 S1531110, ABO-WOLFCAMP	5/22/2023	1/31/2025	
30-005-29041	WASP 2 STATE #001H	Oil	Active	10155	HARVARD PETROLEUM COMPANY, LLC	M-02-15S-31E	2/12/2010	State	13,232	[97019] WILDCAT, ABO; [97715] WILDCAT G-05 S1531110, ABO-WOLFCAMP	5/22/2023	1/31/2025	
30-005-29043	WASP 2 STATE #003H	Oil	Active	10155	HARVARD PETROLEUM COMPANY, LLC	E-02-15S-31E	3/18/2011	State	13,041	[97019] WILDCAT, ABO; [97715] WILDCAT G-05 S1531110, ABO-WOLFCAMP	5/22/2023	1/31/2025	

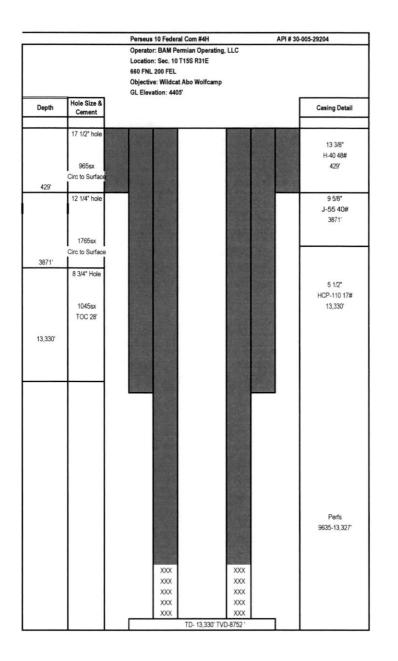


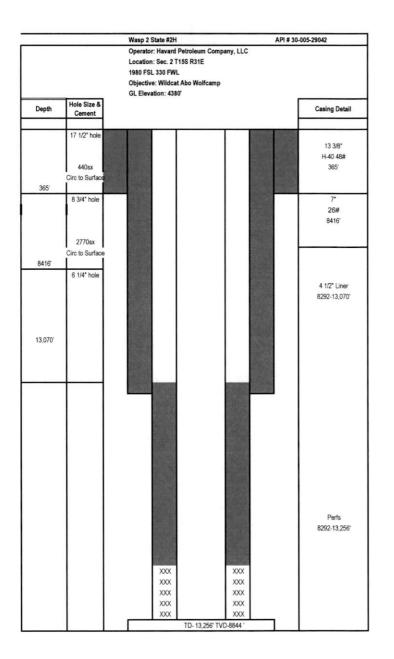


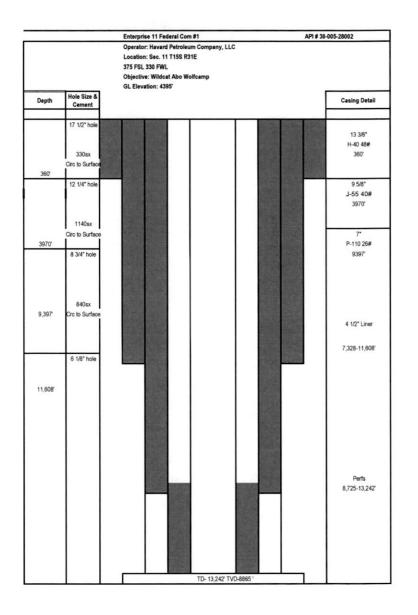
Ι


•

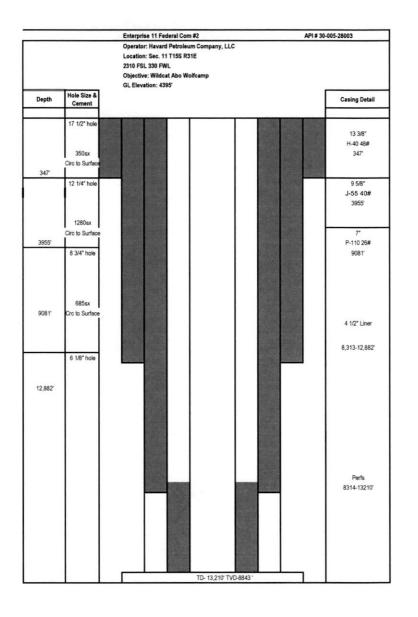


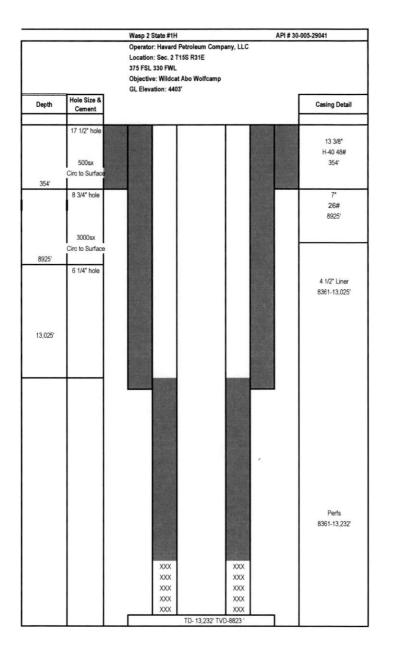


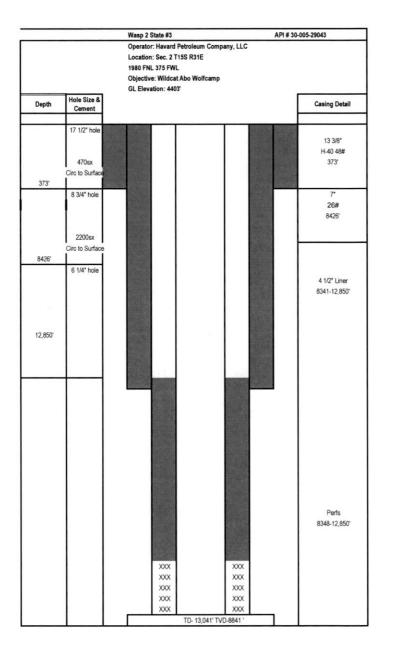

•

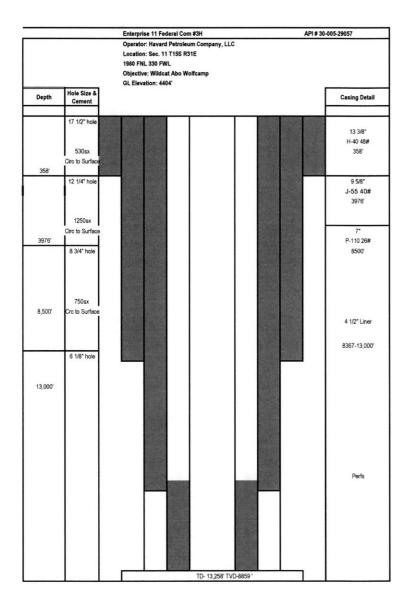


•




.


.


•

•

.

P&A- 8/15/1948		Pre-Ongard Well #1	API # 30	-005-21180
		Operator: Pre-Onard Well Operator		
		Location: Sec. 11 T15S R31E		
		660 FNL 660 FEL		
		Objective:		
		GL Elevation: 3885'		
Depth	Hole Size &			Casing Detail
	Cement			
			No. of Concession, Name	
		PARTY CONTRACTOR OF STREET		
		and the second second		
		Sec.		
		5		
		and the		
		The second	10.5	
		and the second		
		Charles and		
		Sec. 1		
		S. S		
		and the second s		
			ALC: N	10sx cmt plug @
				200'
				1550'
		Same and		2150'
		The second s		
		TD- 3616"		

1

.

.

•

Customer:	Mack Energy	Corporation		Sample #:	81463	
Area:	Artesia	9		Analysis ID #:	80383	
Lease:	Prince Ruper	t				
Location:	Fed #4H		0			
Sample Point:	Wellhead	San Andres				

Sampling Date:	1/10/2019	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	1/22/2019	Chloride:	89383.7	2521.19	Sodium:	53970.0	2347.56
Analyst:	Catalyst	Bicarbonate:	175.7	2.88	Magnesium:	1013.0	83.33
TDS (mg/l or g/m3):	150968.6	Carbonate:			Calcium:	2725.0	135.98
Density (g/cm3):	1.102	Sulfate:	2800.0	58.3	Potassium:	644.4	16.48
Density (g/cilis).	1.102	Borate*:	190.4	1.2	Strontium:	55.6	1.27
	9	Phosphate*			Barium:	0.9	0.01
Hydrogen Sulfide:	5				Iron:	9.0	0.32
Carbon Dioxide:	97		ised on measured on and phosphor		Manganese:	0.857	0.03
0		pH at time of sampl	ling:	6.65			
Comments:		pH at time of analys	sis:				
		pH used in Calcula	ation:	6.65	0		000070
		Temperature @ lal	b conditions (F):	75	Conductivity (mi Resistivity (ohm		200079 .0500

		Values Calculated at the Given Conditions - Autounts of Scale in Ib/1000 bbl											
Temp		alcite aCO ₃		sum 04*2H2 0		iyori∶e aSO ₄		estite rSO ₄		rite ISO ₄			
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount			
80	0.05	0.91	-0.13	0.00	-0.13	0.00	-0.11	0.00	1.22	0.60			
100	0.13	2.72	-0.20	0.00	-0.13	0.00	-0.13	0.00	1.02	0.30			
120	0.22	4.84	-0.26	0.00	-0.11	0.00	-0.15	0.00	0.84	0.30			
140	0.30	7.26	-0.30	0.00	-0.06	0.00	-0.15	0.00	0.69	0.30			
160	0.37	9.68	-0.34	0.00	0.00	6.96	-0.15	0.00	0.56	0.30			
180	0.45	12.70	-0.37	0.00	0.08	166.07	-0.14	0.00	0.45	0.30			
200	0.52	15.73	-0.40	0.00	0.18	328.81	-0.13	0.00	0.36	0.30			
220	0.60	18.75	-0.42	0.00	0.28	485.19	-0.11	0.00	0.28	0.30			

Customer:	Mack Energy Co	prporation		Sample #:	78595
Area:	Artesia			Analysis ID #:	76096
Lease:	Chilliwack				
Location:	Fed Com 1H		0		
Sample Point:	Wellhead	San Andres			

Sampling Date:	11/28/2018	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	12/3/2018	Chloride:	104292.8	2941.72	Sodium:	63550.0	2764.27
Analyst:	Catalyst	Bicarbonate:	131.8	2.16	Magnesium:	1027.0	84.49
TDS (mall or a/m2):	175963.5	Carbonate:			Calcium:	2882.0	143.81
TDS (mg/l or g/m3): Density (g/cm3):	1.118	Sulfate:	3200.0	66.62	Potassium:	707.0	18.08
Density (g/cilis).	1.110	Borate*:	108.1	0.68	Strontium:	63.7	1.45
		Phosphate*			Barium:	0.8	0.01
Hydrogen Sulfide:	4				Iron:	0.1	0.
Carbon Dioxide:	108		*Calculated based on measured elemental boron and phosphorus.			0.189	0.01
		pH at time of samp	ling:	6.95			
Comments:		pH at time of analy	sis:				
		pH used in Calcul	ation:	6.95			
		Temperature @ la	b conditions (F):	75	Conductivity (mi Resistivity (ohm		200381 .0499

Тетр		Values Calculated at the Given Conditions - Amounts of Scale in Ib/1000 bbl											
		Calcite CaCO ₃		Gypsum CaSO ₄ 2H ₂ 0		Anhydrite CaSO ₄		estite rSO ₄	Barite BaSO ₄				
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount			
80	0.28	2.95	-0.07	0.00	-0.05	0.00	-0.04	0.00	1.17	0.30			
100	0.32	3.84	-0.14	0.00	-0.06	0.00	-0.07	0.00	0.97	0.30			
120	0.36	5.02	-0.21	0.00	-0.05	0.00	-0.09	0.00	0.79	0.30			
140	0.39	6.20	-0.26	0.00	-0.01	0.00	-0.10	0.00	0.63	0.30			
160	0.43	7.38	-0.31	0.00	0.05	111.64	-0.10	0.00	0.50	0.30			
180	0.46	9.16	-0.34	0.00	0.12	261.08	-0.09	0.00	0.38	0.30			
200	0.50	10.93	-0.38	0.00	0.21	418.50	-0.08	0.00	0.29	0.30			
220	0.55	12.99	-0.41	0.00	0.31	573.26	-0.07	0.00	0.21	0.30			

Customer:	Mack Energy Corporation	Sample	e #:	81533	
Area:	Artesia	Analysi	is ID #:	80615	
Lease:	Saskatoon				
Location:	Fed Com 1H	0			
Sample Point:	Wellhead	San Andres			

Sampling Date:	1/10/2019	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	1/23/2019	Chloride:	91681.1	2585.99	Sodium:	54050.0	2351.04
Analyst:	Catalyst	Bicarbonate:	153.7	2.52	Magnesium:	1173.0	96.5
TDS (mg/l or g/m3):	151377.2	Carbonate:			Calcium:	2767.0	138.07
Density (g/cm3):	1.105	Sulfate:	700.0	14.57	Potassium:	647.0	16.55
Density (greins).	1.105	Borate*:	144.3	0.91	Strontium:	60.1	1.37
		Phosphate*			Barium:	0.6	0.01
Hydrogen Sulfide:	4				Iron:	0.0	0.
Carbon Dioxide:	90		ised on measured on and phosphore	-	Manganese:	0.416	0.02
- 10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		pH at time of sampl	ling:	7.23			
Comments:		pH at time of analys	sis:	~			
	8	pH used in Calcula	ation:	7.23		a shi a	
		Temperature @ lal	b conditions (F):	75	Conductivity (mi Resistivity (ohm		197210 .0507

		Values Calculated at the Given Conditions - Amounts of Scale in Ib/1000 bbl												
Тетр		Calcite CaCO ₃		Gypsum CaSO ₄ *2H ₂ 0		Anhydri <i>t</i> e CaSO ₄		Celestite SrSO ₄		rite aSO ₄				
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount				
80	0.57	6.35	-0.72	0.00	-0.71	0.00	-0.66	0.00	0.45	0.30				
100	0.57	7.26	-0.79	0.00	-0.72	0.00	-0.69	0.00	0.25	0.00				
120	0.58	8.77	-0.84	0.00	-0.69	0.00	-0.70	0.00	0.07	0.00				
140	0.59	10.28	-0.89	0.00	-0.65	0.00	-0.71	0.00	-0.08	0.00				
160	0.60	12.10	-0.93	0.00	-0.59	0.00	-0.70	0.00	-0.21	0.00				
180	0.63	13.91	-0.96	0.00	-0.51	0.00	-0.70	0.00	-0.32	0.00				
200	0.66	16.03	-0.99	0.00	-0.41	0.00	-0.69	0.00	-0.42	0.00				
220	0.71	18.45	-1.01	0.00	-0.31	0.00	-0.67	0.00	-0.49	0.00				

Customer:	Mack Energy Corporation		Sample #:	118208
Area:	Artesia		Analysis ID #:	107555
Lease:	Montreal			
Location:	1H	0		
Sample Point:	Wellhead	San And	Ires	

Sampling Date:	2/13/2020	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	3/4/2020	Chloride:	101615.8	2866.21	Sodium:	62440.0	2715.99
Analyst:	Catalyst	Bicarbonate:	197.6	3.24	Magnesium:	965.3	79.41
/ TDC (172020.9	Carbonate:			Calcium:	2569.0	128.19
TDS (mg/l or g/m3):	1.116	Sulfate:	3400.0	70.79	Potassium:	660.8	16.9
Density (g/cm3):	1.110	Borate*:	110.4	0.7	Strontium:	57.8	1.32
		Phosphate*			Barium:	3.4	0.05
Hydrogen Sulfide:	7,4				Iron:	0.2	0.01
Carbon Dioxide:	102		ased on measured on and phosphore	Contraction of the second second second	Manganese:	0.550	0.02
		pH at time of samp	ling:	7.14			
Comments:	20 Entering	pH at time of analy	sis:				
	A STATE OF STATE	pH used in Calcul	ation:	7.14			
	and the second	Temperature @ la	b conditions (F):	75	Conductivity (min Resistivity (ohm		199270 .0502

	and and	Values Calculated at the Given Conditions - Amounts of Scale in Ib/1000 bbl											
Temp		Calcite CaCO ₃		Gypsum CaSO ₄ *2H ₂ 0		Anhydrite CaSO 4		Celestite SrSO ₄		rite aSO ₄			
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount			
80	0.58	8.60	-0.09	0.00	-0.08	0.00	-0.05	0.00	1.83	1.78			
100	0.59	10.08	-0.16	0.00	-0.08	0.00	-0.08	0.00	1.63	1.78			
120	0.60	11.86	-0.23	0.00	-0.07	0.00	-0.10	0.00	1.45	1.78			
140	0.61	13.93	-0.28	0.00	-0.03	0.00	-0.10	0.00	1.30	1.78			
160	0.63	16.01	-0.32	0.00	0.03	69.97	-0.10	0.00	1.16	1.78			
180	0.65	18.38	-0.36	0.00	0.11	226.51	-0.10	0.00	1.05	1.78			
200	0.68	21.05	-0.39	0.00	0.19	391.65	-0.09	0.00	0.95	1.48			
220	0.73	24.01	-0.42	0.00	0.29	555.31	-0.08	0.00	0.87	1.48			

Received by OCD: 6/26/2025 2:51:48 PM Water Analysis- San Andres

Catalyst Oilfield Services 11999 E Hwy 158 Gardendale, TX 79758 (432) 563-0727 Fax: (432) 224-1038

Customer:	Mack Energy Corpora	ition	Sample #:	100487	
Area:	Drilling		Analysis ID #:	94751	
Lease:	Maple Ridge				
Location:	Fed #1	0			
Sample Point:	Wellhead	San Andres			

Sampling Date:	7/29/2019	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	8/8/2019	Chloride:	84902.3	2394.79	Sodium:	51250.0	2229.25
Analyst:	Catalyst	Bicarbonate:	241.6	3.96	Magnesium:	1177.0	96.82
TDE /	144232	Carbonate:			Calcium:	2566.0	128.04
TDS (mg/l or g/m3):	1.097	Sulfate:	3300.0	68.71	Potassium:	564.2	14.43
Density (g/cm3):	1.097	Borate*:	173.9	1.1	Strontium:	53.5	1.22
		Phosphate*			Barium:	1.5	0.02
Uudrogen Culfide:	14				Iron:	1.5	0.05
Hydrogen Sulfide:		*Calculated ba	sed on measure	d	Manganese:	0.460	0.02
Carbon Dioxide:	162.8	elemental boro	on and phosphor	us.			
		pH at time of sampl	ling:	6.41			
Comments:		pH at time of analys	sis:				
		pH used in Calcula	ation:	6.41	and the second		
		Temperature @ lat	b conditions (F):	75	Conductivity (min	and the second second second second	194536 .0514

and the second		Values Calculated at the Given Conditions - Amounts of Scale in Ib/1000 bbl										
Temp	States and the second second	Calcite		Gypsum CaSO4 [*] 2H ₂ 0		Anhydrite CaSO ₄		Celestite SrSO ₄		rite ISO ₄		
°F	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount		
80	-0.09	0.00	-0.09	0.00	-0.09	0.00	-0.04	0.00	1.52	0.91		
100	0.01	0.30	-0.15	0.00	-0.08	0.00	-0.06	0.00	1.33	0.91		
120	0.10	3.96	-0.20	0.00	-0.06	0.00	-0.08	0.00	1.15	0.61		
140	0.21	8.22	-0.25	0.00	-0.01	0.00	-0.08	0.00	1.00	0.61		
160	0.31	12.48	-0.28	0.00	0.06	131.82	-0.08	0.00	0.87	0.61		
180	0.41	17.35	-0.31	0.00	0.14	299.86	-0.07	0.00	0.76	0.61		
200	0.51	21.92	-0.33	0.00	0.24	471.86	-0.06	0.00	0.67	0.61		
220	0.61	26.79	-0.35	0.00	0.35	637.46	-0.04	0.00	0.60	0.61		

Received by OCD: 6/26/2025 2:51:48 PM Water Analysis- San Andres

Catalyst Oilfield Services 11999 E Hwy 158 Gardendale, TX 79758 (432) 563-0727 Fax: (432) 224-1038

Water Analysis Report

Customer:	Mack Energy Corp	poration	Sample #:	55880	
Area:	Artesia		Analysis ID #:	53988	
Lease:	White Rock				
Location:	Federal #1H	0			
Sample Point:	Wellhead	San Andres			

Sampling Date:	12/21/2017	Anions	mg/l	meq/l	Cations	mg/l	meq/l
Analysis Date:	1/6/2018	Chloride:	93901.4	2648.62	Sodium:	58100.0	2527.21
Analyst:	Catalyst	Bicarbonate:	241.6	3.96	Magnesium:	969.6	79.76
TDS (mg/l or g/m3):	161820.5	Carbonate:			Calcium:	2737.0	136.58
Density (g/cm3):	1.107	Sulfate:	5000.0	104.1	Potassium:	571.6	14.62
Density (grans).	1.107	Borate*:	229.5	1.45	Strontium:	66.0	1.51
		Phosphate*			Barium:	0.0	0.
Hydrogen Sulfide:	11				Iron:	3.8	0.14
· · · · · · · · · · · · · · · · · · ·	100		ised on measure		Manganese:	0.000	0.
Carbon Dioxide:	242	elemental boro	on and phosphor	us.			
		pH at time of sampl	ling:	6.9			
Comments:		pH at time of analysis:					
		pH used in Calcula	ation:	6.9	2012		176042
		Temperature @ lal	75				

Temp °F		Values Calculated at the Given Conditions - Amounts of Scale in Ib/1000 bbl													
		Calcite CaCO ₃		Gypsum CaSO ₄ *2H ₂ 0		aso ₄		estite rSO ₄		rite aSO ₄					
	Index	Amount	Index	Amount	Index	Amount	Index	Amount	Index	Amount					
80	0.43	9.88	0.10	359.72	0.11	305.55	0.18	14.96	0.00	0.00					
100	0.49	12.27	0.03	111.03	0.10	296.88	0.16	13.17	0.00	0.00					
120	0.55	14.96	-0.03	0.00	0.13	355.53	0.14	11.97	0.00	0.00					
140	0.60	17.96	-0.08	0.00	0.17	467.16	0.13	11.67	0.00	0.00					
160	0.64	20.95	-0.12	0.00	0.23	615.30	0.14	11.67	0.00	0.00					
180	0.69	24.54	-0.15	0.00	0.31	784.69	0.14	12.27	0.00	0.00					
200	0.75	28.13	-0.18	0.00	0.40	962.15	0.15	12.87	0.00	0.00					
220	0.80	31.72	-0.20	0.00	0.51	1137.23	0.17	13.77	0.00	0.00					

•

Attachment 4

June 25, 2025

PN 1904.SEIS.00

Mr. Phillip Goetze, P.G. NM EMNRD – Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

Subject: Mack Energy Corporation Gander SWD #1 - Seismic Potential Letter

Dear Mr. Goetze,

At the request of Mack Energy Corporation (Mack), ALL Consulting, LLC (ALL) has assessed the potential injection-induced seismicity risks in the vicinity of Mack's Gander SWD #1, a proposed saltwater disposal (SWD) facility in Chaves County, New Mexico, and summarized the findings in this letter. This assessment used publicly available data to identify the proximity and characteristics of seismic events and known faults to evaluate the potential for the operation of the Gander SWD #1 to contribute to seismic activity in the area.

Geologic Evaluation

The Gander SWD #1 is requesting a permit to inject into the Devonian-Silurian Formation at a depth of 13,090-13,790 feet below ground surface (bgs). The Devonian-Silurian Formation consists of limestones, shales, and dolomites and is overlain by approximately 80 feet of low porosity and permeability Woodford Shale, which would prevent the upward migration of injection fluid and serve as the upper confining layer (see **Attachment 1**). Additionally, the Devonian-Silurian Formation is underlain by various low porosity and permeability zones within the Montoya and Simpson Groups, which consist of limestones, dolomites, and interbedded shale zones. No geophysical logs penetrating the Montoya Group were identified within 10 miles of the Gander SWD #1. A stratigraphic chart depicting the geologic setting is included as **Figure 1**.¹

ALL Consulting Phone 918.382.7581

1718 South Cheyenne Ave. Fax 918.382.7582 v

Tulsa, OK 74119 www.ALL-LLC.com

¹ Yang, K.-M., & Dorobek, S. L. (1995). The Permian Basin of west Texas and New Mexico: Tectonic history of a "composite" Foreland Basin and its effects on stratigraphic development. *Stratigraphic Evolution of Foreland Basins*, 149–174. https://doi.org/10.2110/pec.95.52.0149

Seismic Events and Fault Data

A review of United States Geological Survey (USGS) and New Mexico Tech Seismological Observatory (NMTSO) earthquake catalogues determined that the closest recorded seismic event was a M1.44 that occurred on May 16, 2021, and was located approximately 1.55 miles west of the Gander SWD #1 (see Attachment 2). Per the USGS earthquake catalog, zero (0) seismic event M2.5 or greater have been recorded within 10 miles of the Gander SWD #1.²

Fault data from United States Geological Survey (USGS) and the Texas Bureau of Economic Geology (BEG)³ indicates that the closest known fault is located approximately 5.2 miles east of the Gander SWD #1 (see **Attachment 2**). This identified fault is within the Precambrian basement, which is approximately 2,210 feet below the proposed injection interval. A map of the seismic events and faults within 10 miles of the Gander SWD #1 is included as **Attachment 2**.

Seismic Potential Evaluation

Experience in evaluating induced seismic events

indicates that most injection-induced seismicity throughout the U.S. (e.g., Oklahoma, Ohio, Texas, New Mexico, and Colorado) occurs as a result of injection into Precambrian basement rock, into overlying formations that are in hydraulic communication with the Precambrian basement rock, or as a result of injection near critically stressed and optimally oriented faults. Seismicity at basement depths occurs because critically stressed faults generally originate in crystalline basement rock and may also extend into overlying sedimentary formations. ⁴

Injection into either the Precambrian basement rock or its overlying formations that are hydraulically connected to the basement rock through faulting or fracture networks can increase the pore pressure and may lead to the fault slipping, resulting in a seismic event.⁴ As such, the vertical distance between the injection formation and Precambrian basement rock and the

SYSTEM	SERIES/ STAGE	CENTRAL BASIN PLATFORM	DELAWARE BASIN			
	OCHOAN	DEWEY LAKE RUSTLER SALADO	DEWEY LAKE RUSTLER SALADO CASTILE			
PERMIAN	GUADALUPIAN	TANSILL YATES SEVEN RIVERS QUEEN GRAYBURG SAN ANDRES GLORIETA	DELAWARE MT GROUP BELL CANYON CHERRY CANYON BRUSHY CANYON			
	LEONARDIAN	CLEAR FORK	BONE SPRING			
	WOLFCAMPIAN	WOLFCAMP	WOLFCAMP			
	VIRGILIAN	CISCO	CISCO			
	MISSOURIAN	CANYON	CANYON			
PENNSYLVANIAN	DESMOINESIAN	STRAWN	STRAWN			
	ATOKAN	ATOKA BEND	ATOKA BEND			
	MORROWAN	(ABSENT)	MORROW			
MISSISSIPPIAN	CHESTERIAN MERAMECIAN OSAGEAN	CHESTER BARNET	CHESTER BARNET			
	KINDERHOOKIAN	KINDERHOOK	KINDERHOOK			
DEVONIAN		DEVONIAN	WOODFORD DEVONIAN			
SILURIAN		SILURIAN SHALE FUSSELMAN	MIDDLE SILURIAN FUSSELMAN			
	UPPER	MONTOYA	SYLVAN MONTOYA			
ORDOVICIAN	MIDDLE	SIMPSON	SIMPSON			
	LOWER	ELLENBURGER	ELLENBURGER			
CAMBRIAN	UPPER	CAMBRIAN	CAMBRIAN			
PRECAMBRIAN						

Figure 1 – Delaware Basin Stratigraphic Chart (Adapted from Yang and Dorobek 1995)

Page 76 of 88

² USGS Earthquake Catalog. U.S. Geological Survey. (n.d.). https://earthquake.usgs.gov/earthquakes/search/

³ Horne E. A. Hennings P. H., and Zahm C. K. 2021. Basement structure of the Delaware Basin, in The Geologic Basement of Texas: A Volume in Honor of Peter Flawn, Callahan O. A., and Eichubl P., The University of Texas at Austin, Bureau of Economic Geology.

⁴ Ground Water Protection Council and Interstate Oil and Gas Compact Commission.

Potential Injection-Induced Seismicity Associated with Oil & Gas Development: A Primer on Technical and

Regulatory Considerations Informing Risk Management and Mitigation. 2015. 141 pages.

presence or lack of faulting within the injection interval are major considerations when determining the risk of injection-induced seismicity.

Depth to Precambrian Basement

Geophysical data from nearby well records, aeromagnetic surveys, and gravity surveys indicates the top of the Precambrian basement to be approximately 16,000 feet bgs at the Gander SWD #1, or approximately 2,210 feet below the proposed injection interval.³ There are insufficient Precambrian basement penetrations and/or public well data regarding Precambrian basement depth to generate an accurate structural contour map of the Precambrian basement in the vicinity of the Gander SWD #1.

Formation Parting Pressure

Class II SWDs in New Mexico are administratively permitted with a maximum injection pressure gradient of 0.2 psi/ft. Review of New Mexico Oil Conservation Division (NMOCD) Order IPI-537 from the Mack Energy Round Tank SWD #1, which is located approximately 16.3 miles southwest of the proposed Gander SWD #1, determined the fracture gradient of the Devonian Formation in the region is 0.41 psi/ft from an approved step-rate test. Typical SWD permitting standards in New Mexico would indicate that formation parting pressure would not be exceeded by the Gander SWD #1.

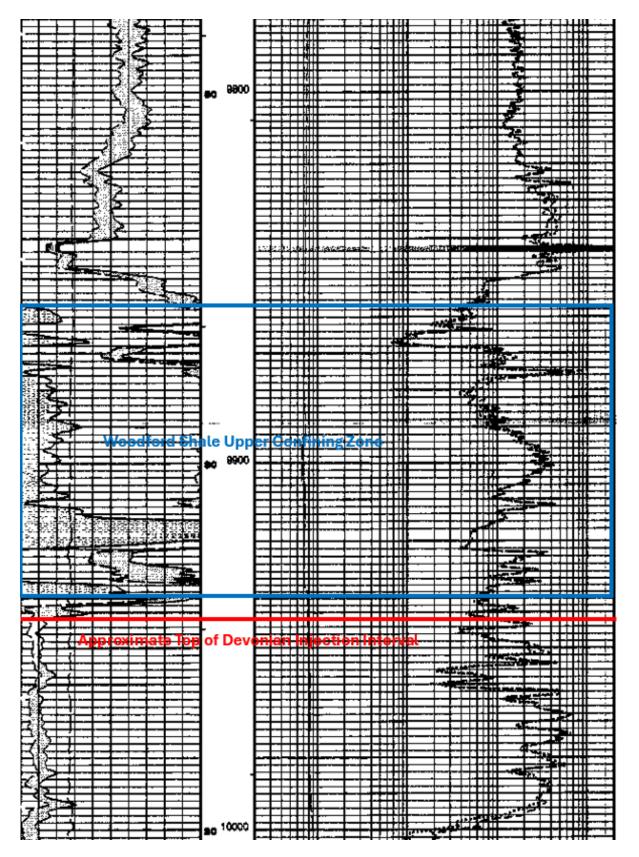
Conclusion

As experts on the issue of induced seismicity, seismic monitoring, and mitigation, it is our expert opinion that the potential for the Gander SWD #1 to cause injection-induced seismicity is expected to be minimal, at best. This conclusion assumes the Gander SWD #1 will be operated under formation parting pressure at the regulated 0.2 psi per foot and is based on (1) the presence of confining layers above and below the proposed injection interval, (2) the significant vertical and lateral distance between the proposed injection interval and the nearest identified Precambrian basement fault, and (3) the lack of historic seismicity on mapped deep faults within 10-miles of the proposed Gander SWD #1 location.

Sincerely, ALL Consulting

Reed Davis Geophysicist

Thomas Tomastik


Thomas Tomastik Chief Geologist

Attachment 1

Upper Confining Zone

Released to Imaging: 7/11/2025 2:21:35 PM

.



Woodford Shale Upper Confining Zone from API No. 30-025-33185

Page 5

Attachment 2 Seismic Analysis Map

.

Gander SWD #1 Nearby Seismic Events and Faults

Page 7

Attachment 6

XII. AFFIRMATIVE STATEMENT

RE: Gander SWD #1

We have examined the available geologic and engineering data and find no evidence of open faults or any other hydraulic connection between the disposal zone and any underground source of drinking water.

Mack Energy Corporation

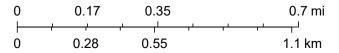
Date: 4/28/25

c Charles Sadler, Geologist

Attachment 5

1 Mile Water Well Lookup

NESW (K)	NWSE (J)	NESE (1)	NWSW (L)	NESW (K)	NWSE (J)	NESE (1)	_4384.ft NWSW (L)	NESW (K)	NWSE (J)	NESE (1)
14S SESW (N)	31E 34 SWSE (0)	(P) 1	5103 <u>47,45</u> 01 /4/1956л) V = 266.12	3 SESW (N)	SWSE (O)	SESE (P)	SWSW (M)	36 SESW (N)	SWSE (0)	SESE (P)
L3	L2	L1	14	L 3	L2	L1	L4	L 3	L2	L1
SENW (F)	SWNE (G)	SENE (H)	SWNW (E)	4395 ft SENW (F)	SWNE (G)	SENE (H)	SWNW (E)	SENW (F)	SWNE (G)	SENE (H)
4416 ft NESW (K)	NWSE (J)	NESE (1)	NWSW (L)	NESW (K)	NWSE (J)	NESE (I)	NWSW (L)	NESW (K)	NWSE (J)	NESE (1)
SESW (N)	SWSE (0)	SESE (P)	swsw (M)	SESW (N)	SWSE (O) 4392 ft	SESE (P)	1	sesw 15103464101 /27/1981 W = 248.33	SWSE (0)	SESE (P)
NENW (C)	NWNE (B)	NENE (A)	72 _{NWNW} (B)	NENW (C)	NWNE (B)	NENE (A)	NWNW (D)	NENW (C)	NWNE (B)	NENE (A)
SENW (F)	SWNE (G)	SENE (H)	SWNW (E)	15S 31E SENW (F)	SWNE (G)	SENE (H)	SWNW (E)	SENW (F) 4374 <i>f</i> t	SWNE (G)	 SENE (H)
NESW (K)		NESE (1)	NWSW (L) Wanda Rd	NESW (R)	NWSE Wanda ^{BO} J)	330141103470901 4/6/1976 DTW = 252.73	NWSW (L)	NESW (K)	NWSE (J)	NESE (1)
SESW (N)	SWSE (0)	SESE	swsw (M)	SESW (N)	SWSE (O)			SESW (N)	SWSE (0)	SESE (P)
NENW (C)	NWNE (B)	NENE (A)	NWNW (D)	NENW (C)	⁴³⁸⁷ f ^t NWNE (B)	NENE (A)	NWNW (D)	NENW (C)	NWNE (B)	NENE (A)
SENW (F)	_{SWNE} 15 (G)	SENE 172 (H)	SWNW (E)	(F)	4 SWNE (G)	SENE (H)	SWNW (E)	SENW 13 (F)	SWNE (G)	 SENE (H)
NESW 249K)	NWSE (J)	NESE (1)	- 3300511034 1/8/198 NDTW = 23 (L)		NWSE (J)	NESE (1)	NWSW (L)	NESW (K)	NWSE (J)	NESE (1)


5/6/2025, 2:06:44 PM

- $oldsymbol{\circ}$ **OSE** Water PODs
- ۸ **USGS Historical GW Wells**
- _ _ PLSS Second Division

PLSS First Division

PLSS Townships

Esri, NASA, NGA, USGS, FEMA, Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community, USGS, OCD, BLM

New Mexico Oil Conservation Division

Released to Imaging: 7/11/2025 2:21:35 RM OCD Oil and Gas Map. http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=4d017f2306164de29fd2fb9f8f35ca75: New Mexico Oil Conservation Division

Page 86 of 88

New Mexico Office of the State Engineer Active & Inactive Points of Diversion

			(acre ft per annum)						(R=POD has been replaced and no longer serves this file, C=the file is closed)			(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest)						(NAD83 UTM in meters)		
WR File Nbr	Sub basin	Use	Diversion	Owner	County	POD Number	Well Tag	Code	Grant	Source	q64	q16	q4	Sec	Tws	Range	X	Y	Мар	
<u>L 03600</u>	L	SRO	890.000	UNION OIL CO. OF CALIFORNIA	LE	<u>L 03608</u>						NE	SW	11	15S	31E	612583.0	3655108.0 *	•	
					LE	<u>L 03609</u>						NW	NW	11	15S	31E	612171.0	3655906.0 *	٩	
<u>L 03608</u>	L	IRR	0.000	UNION OIL CO. OF CALIFORNIA	LE	<u>L 03608</u>						NE	SW	11	15S	31E	612583.0	3655108.0 *	•	
<u>L 03609</u>	L	IRR	0.000	UNION OIL CO. OF CALIFORNIA	LE	<u>L 03609</u>						NW	NW	11	15S	31E	612171.0	3655906.0 *	•	
<u>L 06307</u>	L	DOL	3.000	JESSIE WSTEVENS	СН	<u>L 06307</u>				Shallow	NE	SE	SW	11	15S	31E	612686.0	3654805.0 *	٠	

Record Count: 5

Filters Applied:

PLSS Search: Range: 31E Township: 15S Section: 11

\ast UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
MACK ENERGY CORP	13837
P.O. Box 960	Action Number:
Artesia, NM 882110960	479413
	Action Type:
	[C-108] Fluid Injection Well (C-108)

CONDITIONS

Created By	Condition	Condition Date
erica.gordan	None	7/11/2025

Page 88 of 88

Action 479413