c/SE 2695: In the matter of the hearing called by the OCC to consider revision of R-333-C & D & R-333-E.

istion, Transcript,

The deliverability of a gas well is calculated from the formula:

$$D = Q \times \left[\frac{PC^2 - PD^2}{PC^2 - PW^2}\right]^{SN}$$
 (1)

WHEPE:

D = Calculated well deliverability in MCFD.

Q = Measured flow in MCFD.

PC = Shut-in well head pressure, PSIA

PD = Some fraction of PC, currently Pool Percentage x PC. a Decision again, for

PW = Well head working pressure, PSIA

SN = Slope, determined by well formation.

With the exception of the slope, SN, none of the above variables are raw data, rather, they are the results of intermediate calculations performed on the actual data. The variables which are given as data points are:

METEPRES Deua weight meter flowing pressure, PSIA. Given as

an integer value.

FPRES Flowing pressure read from meter chart, PSIA. Given

as an integer value.

CCAGEPRES Average gauge pressure during flow test, PSIG. Given

as an integer value.

VOLUME Total gas flow during flow test, MCF. Given as an

integer value.

CTESTHRS Number of hours of flow test. Given as an integer

value.

TEGFPRES Dead weight tubing (casing) flowing pressure, PSIA.

(CSGFFRES) Given as an integer value.

TRGLTH Length of tubing (casing) string, feet. Given as

(CSGLTH) an integer value.

SPGRAV Specific gravity of gas. Given to three decimal

places.

TBGSIP Tubing (casing) shut-in pressure, FSIA. Given as

(CSGSIP) an integer value.

SN Slope. Given to two decimal places.

The following formulas are used to convert the raw data to the variables of equation.

(1)

VOLUME (S) TEGSIP OR: Avg. Offset SIP Offre JR: PC CSGSIP (3) (4) PD PC Pool Percentage (CGAGEPRES + 12) (* (METFFRES - FPRES) + PT (TEGFPRES -METFPRES) (5) OR: (CGAGEPRES + 12) + (METFPRES - FPRES) + (CSGFPRES -(6) METFPRES)

 $\mathbf{z} \quad \mathbb{R}^2 \quad \Rightarrow \quad \text{FCL } \mathbf{x} \quad (\text{FC } \mathbf{x} \quad \mathbb{Q})^2$

* Where FGL is a tabular function of SPGRAV x TECLTH (or SPGRAV x CSGLTH) and FC is a tabular function of TEGOD or CSGOD.

The procedure to be used on the 188 7070 to implement these formulas are listed below and on the following pages.

1. Meter error is calculated as the difference between the dead weight meter flowing pressure and the flowing pressure read from the chart.

This value is carried as a whole number.

MATEROR = METEPRES = FPRES

XXX = XXXX. - XXXX.

2. The flow rate correction factor is obtained by dividing the dead weight meter flowing pressure by the chart flow pressure. The result is truncated at four places to the right of the decimal.

CFACT - METFPRESS/FPRESS

X.XXXX = XXXX./XXXX.

3. The square root of the flow rate correction factor is determined by Newton's Approximation. The result is rounded to four places to the right of the decimal.

SQRCFACT = $\sqrt{\text{CFACT}}$ X.XXXX = $\sqrt{\text{X.XXXX}}$

4. The seven or eight day average flowing pressure is calculated as the 7-day or 8-day average chart pressure plus 12.

AVGPRES = CGAGEPRES + 12.

 $\overline{XXXX} = XXXX. + XX.$

5. The corrected average pressure is obtained by adding the meter error to the calculated average pressure.

CORPRES = AVGPRES + METERROR

XXXX = XXXX. + XXX.

6. The integrated volume is equal to the measured volume, multiplied by 24 and divided by the number of hours the test was run.

The result is rounded to the nearest whole number.

QI = (VOLUME x 24)/CTESTHRS XXXXXXXXX = XXXXXXXXXXX x XX./XXXX

7. The integrated volume is multiplied by the square root of the flow rate factor to give the corrected volume. The corrected volume is rounded to the nearest integer value.

Q = QI x SQRC7ACT

XXXXXX. = XXXXXXX. x X.XXXX

3. The friction loss, the static head, and the proper shut-in pressure are determined as functions of the type of flow in the well:

A. TUBING FLOW:

(1) The friction loss is the difference between the tubing flowing pressure and the meter flowing pressure.

FRLOSS = TEGFPRES - METFPRES

XXXX. = XXXX. - XXXX.

(2) The tubing length and the specific gravity are multiplied and the result rounded to the nearest integer value.

GL = TBGLTH \times SPGRAV XXXX. = XXXXX. \times X.XXX

(3) A friction factor is chosen from a table according to outside tubing diameter and tubing weight. This factor is carried to four places to the right of the decimal.

NOTE: Before each calculation, Gas Engineer needs to be able to delete or add new tubing OD to Table. Therefore, we need a Table size of 40 different entries. It will be necessary to find an equal on IBGOD and IBGWT when using the Table.

FU = XX.XXXX

(4) The shut-in pressure to be used in the calculation is set equal to the greatest of the three shut-in pressures.

If the Avg. Offset SIP is the greatest, put out message:

"Average Offset SIP [used for PC."]

PC = Greatest SIP

XXXX = XXXX.

B. CASING FLOW:

(1) The friction loss is the difference between the casing flowing pressure and the meter flowing pressure.

FRLOSS = CSGFPRES - METFPRES
XXXX. = XXXX. - XXXX.

(2) A comparison is made between the CSGLTR (XXXXX.) and the PAYZNFRM (XXXXX.) and the smaller number is multiplied by the SPGRAV to obtain GL. The result is rounded to the nearest integer value. Do not substitute any indicative data on C-122A Test Sheet.

GL = SPGRAV x Smaller Length XXXX. = X.XXX x XXXXX.

(3) A friction factor is chosen from a Table according to outside casing diameter and casing weight. This factor is carried to four places to the right of the decimal.

NOTE: Before each calculation, Gas Engineer needs to be able to delete or add new casing OD to Table. Therefore, we need a Table size of 125 different entries. It will be necessary to find an equal on CSGOD and CSGWT when using the Table.

FC = XX.XXXX

can Designated Final

the greatest of the three shut-in pressures. If

the Average Office Final

"Average Office SIP used for PC.

PC = Greatest SIP

XXXX. = XXXX.

C. ANNULAR FLOW:

(1) The friction is set to the difference between the casing flowing pressure and the meter flowing pressure.

FRLOSS = CSGFPRES - METFPRES

XXXX. = XXXX. - XXXX.

(2) A comparison is made between the CSGLTH (XXXXX.) and the PAYZNFRM (XXXXX.) and the smaller number is multiplied by the SPCRAV to obtain GL. The result is rounded to the nearest integer value. Do not substitute any indicative data on C-122A Test Sheet. GLSPGRAV Smaller Length XXXX. X.XXX XXXXX. (3) A friction factor is calculated from one of two formulas: 57.1053794 (a) FC 1.612 (CSGID + TBGOD) x (CSGID - TBGOD) OR (b) FC 1.582 TBGOD) x (CSGID - TBGOD) (CSGID + If FC by Formula (a) is equal to or less than 1.357 then recalculate FC by Formula (b). The shut-in pressure to be used in the calculation is set equal to the greatest of the three shut-in pressures. If the Average Offset SIP is the greatest, put out message: "Ave Offset CIP used for PC."

FC = Greatest SIP

(b) Business xxx. = xxx.

The calculating pressure is set equal to a Pool Percentage of PC. It is rounded to a integral value. Each pool can be a different percentage, therefore, a Table will have to be set up to keep the percentages and before each calculation, Gas Engineers will need the privilege of changing the percentages and/or adding or eliminating a pool from the Table, as necessary, up to a pool limit of sixty. The following is an example of the necessary Table:

POOL PERCENT SLOPE DRAWDOWN DECKT

The formula for PD is as follows:

PD = PC x Pool Percent

 $XXXX. = XXXX. \times .XX$

NOTE: Slope in this Table will be utilized in Item 20 of this write up.

Drawdown Percent will be utilized in Item 17.

		corrected average breaking bins the ross one to inicitou.	
		PT = CORFRES + FRLOSS	
		XXXX. = XXXX.	
	11.	The well head pressure is squared, the decimal is shifted three	
		places to the left.	
		$PT^2 = PT \times PT \times 0.001$	
		xxx. x . xxx .	
	12.	A tabular function of GL is determined. Three decimals are	KONNO.
		carried in this function. The current Table size will be sufficient	r6.
		FGL = .XXX	
	13.	The product of the corrected volume and the friction factor is	
		computed, the decimal is shifted three positions to the left and	
		the product is rounded to three decimal places.	
		$FCQ = FC \times Q \times .001$	
		$XXX. x . XXXXXX \times XXXX.XX = XXX.XXXXX$	
	14.	The value FCQ is squared and the result is rounded to three places	
		to the right of the decimal.	
		$(FCQ)^2 = FCQ \times FCQ$	
		XXXXXXXXX = XXXXXXXXXXXXXXXXXXXXXXXXXX	
	15.	The friction effect is calculated as the product of the GL factor	
		and the square of the FCQ result. This friction effect is rounded	
		three places to the right of the decimal.	
		$R^2 = FGL \times (FCQ)^2$	
		XXX. XXXXX x XXXX. xXXXXX	
	16.	The square of the well head working pressure is computed as the sun	ת
•		of the friction effect and square of the well head flowing pressure	э.
		(1)	
		PW ² = PT ² + R ² XXXXX.XXX = XXXXX.XXX + XXXXX.XXX	

The well head corrected 7-day average pressure is computed as the

VPWX103

(1) If the addition of R2 at this point fails to change the value of

The square root of the above result is extracted to give the well head working pressure. The result is rounded to the nearest integral value.

VXXXXX.XXX × 10-3

PW2 is set equal to PT2.

PW

XXXX.

PW by less than - 0.5, i.e. if $R^2 \neq PT$, then R^2 is ignored and

NOTE: A comparison is made between the working pressure; PW and PC. If the calculated Drawdown is less than the Drawdown exhibited in the Pool Table (Item 9) a message is to be put out: to obtain 👱 🏂 Drawdown."

This percent value is taken from Drawdown in Pool Table. The following formula should be used to make the comparison:

$$\frac{PC - PW}{PC}$$

18. The denominator of the deliverability ratio is calculated as the square of the shut-in pressure, (the decimal is shifted three places to the left) less the square of the well head working pressure.

DIVHOLD =
$$(PC \times PC \times .001) - PW^2$$

XXX.XXXX (XXXX)

The deliverability ratio is calculated as the difference between the square of the shut-in pressure and the square of the calculating pressure (the decimal is shifted three places to the left) divided by the result obtained in Item 18. This quotient is truncated at four decimal places.

RATIOL =
$$\frac{(PC \times PC) - (PD \times PD) \times .001}{DIVHOLD}$$

XX.XXXX = $\frac{(XXXX. \times XXXX.) - (XXXX. \times XXXX.)}{XXXXX.XXX}$

20, The deliverability correction factor is computed by raising the deliverability ratio to a given power. The result is carried to four decimal places.

$$XX.XXXX = (XX.XXXX)^{XX}$$

NOTE: Compare SN to Tabular Value from Pool Table and if equal continue to raise to power. However, if (high or low) variations occur use Slope from Pool Table, and put out message: "Pool Table Slope used for n." This Table is indicated in Item 9.

The final deliverability figure is the product of the corrected volume and the deliverability correction factor. The result is rounded to the nearest integral value.

A Compression in more en weder benefit as casculated in Illen to the values OR DE OCH I BOURD ON (DON'T MARKE COMPENTATIONS) & the SOMELEN WOLLDE ST Direct 1 1545 Be used Tetage wine is used. Pod and message in mormon municipals used. Bollows. It CALCUCATED DEACT with BO RECLECTED ON the Clant Test Street

19. planner se y Deponish

NEW MEXICO OIL CONSERVATION COMMISSION P. O. Box 871 SANTA FE, NEW MEXICO

MEMORANDUM:

TO:

ALL-OPERATORS AND WELL TESTERS OF THE GAS WELLS IN SAN JUAN

FROM:

A. L. PORTER, JR., SECRETARY-DIRECTOR

SUBJECT:

DELIVERABILITY PRESSURES (P_d) AND LIMITING MULTIPLIERS FOR GAS WELLS IN THE SAN JUAN BASIN AS REQUIRED BY ORDER R-333-F

As required by Chapter II, Section 2 of New Moxico Oil Conservation Commission Order R-333-F, a study of 1962 test data has been made for all gas wells tested in 1962. Based on the results of the study, the deliverability pressures (Pd) for calculating 1963 Annual Deliverability Tests are established as follows:

All Dakota gas wells

P_d = 50% P_c / P_d = 80% P_c /

Ail other gas wells

Multiplier for any gas well shall not exceed 2.0

The value of Fd shall be determined by multiplying the seven-day shut-in pressure, which has been measured for the test being calculated, by the percentage listed above.

is greater than 2.0 for a test being calculated, the test shall not be reported until the supervisor of the Aztec office has given specific permission in writing to do so after he has determined that the shut-in pressure and drawdown conditions are satisfactory and that the use of such a factor will allow the operator to calculate an accurate deliverability for the well.

The above mentioned 1963 Annual Deliverability Tests shall be used for proration purposes effective February 1, 1964.

Any test which is the initial, the first annual test or the first test after workover should be calculated using 50% of the seven-day shut-in pressure (P_c) as the deliverability pressure (P_d) . This is done for the reason that the deliverability from such tests will be used for proration purposes in the 1903 calendar year and all such deliverabilities must be calculated to a common base in order to be equitable.

February 25, 1963

BEFORE THE OIL CONSERVATION COMMISSION OF THE STATE OF NEW MEXICO

IN THE MATTER OF THE HEARING CALLED BY THE OIL COMBERVATION COMPASSION OF THE STATE OF NEW MEXIC. FOR THE PURPOSE OF COMSIDERING:

> CASE No. 2695 Order No. R-333-P

THE APPLICATION OF THE OIL CONCERVATION CONCESSION UPON ITS OWN MOTION FOR AN ORDER REVISING, AMENDING, OR DELETING CERTAIN PORTIONS OF CRORR R-333-C & D AS AMENDED BY ORDER R-333-E PERTAINING TO CAS WELL TESTING PROCEDURE APPLICABLE TO GAE WELLS COMPLETED IN SAN JUAN, RIO ARRIBA, MCKINLEY, AND SANDOVAL COUNTIES, NEW MEXICO.

ORDER OF THE COMMISSION

BY THE COMMISSION:

This cause cause on for hearing at 9 o'clock a.m. on November 8, 1962, at Santa Fe, New Mexico, before Daniel 3. Netter, Examiner duly appointed by the Oil Conservation Commission of New Mexico, horeinafter referred to as the "Commission," in accordance with Rule 1214 of the Commission Rules and Regulations.

NOW, on this 30th day of November, 1962, the Commission, a quorum being present, having considered the application, the evidence adduced, and the recommendations of the Examiner, Daniel S. Mutter, and being fully advised in the premises,

FINDS (

- (1) That due public notice having been given as required by law, the Commission has jurisdiction of this cause and the subject matter thereof.
- (2) That there is need for a number of additions to and revisions of Order No. R-333-C & D as amended by Order No. R-333-E heretofore entered by the Commission, said order outlining a testing procedure for gas wells completed in the Counties of San Juan, Rio Arriba, McKinley, and Sandoval, New Mexico.
- (3) That the following rules and regulations should be adopted, and that said rules and regulations are in the interest of conservation.

-2-CASE No. 2695 Order No. R-333-F

IT IS THEREFORE ORDERED:

(1) That the following Special Rules and Regulations governing gas well testing in the San Juan Basin (Counties of San Juan, Rio Arriba, McKinley, and Sandoval, New Mexico), superseding the rules and regulations contained in Commission Order No. R-333-C & D, as amended by Order No. R-333-E, are hereby promulgated and adopted as an exception to Rules 401 and 402 of the general state-wide rules and regulations of this Commission relating to gas well testing procedures.

GAS WELL TESTING RULES AND PROCEDURES SAN JUAN BASIN, NEW MEXICO

CHAPTER I TYPE OF TESTS DEGUIRED

Section 1: Initial Deliverability and Shut-In Pressure Tests for Hevly Completed Wells

- A. Immediately upon completion of each yes well in the San Juan Basin, a shut-in pressure test of at least seven days duration shall be made.
- P. Within 60 days after a well is connected to a gas transportation facility, the well shall have been tested in accordance with Section 1 of Chapter II of these rules, "Initial Deliversimility and Shut-In Pressure Test Procedures," and the Fourists of the test filed with the Commission's Astec office and with the gas transportation facility to which the well is connected. Failure to file said test within the above-prescribed 60-day period will subject the well to the loss of one day's allowable for each day the test is late.
- C. The requirements for Initial Tests and Annual Deliverability and Shut-In Pressure Tests and the Motification requirements and scheduling of such tests which apply to making completed wells shall also apply to reworked or recompleted wells.
- D. Any tests taken for informational purposes prior to pipeline connection shall not be recognised as official tests for the assignment of allowables.

Section 2: Annual Deliverability and Shut-In Pressure Tests

A, Annual Deliverability and Shut-In Pressure Tests shall be made on all gas wells during the period from January 1

CASE No. 2695 Order No. R-333-F

through December 31 each year except as follows:

- An Annual Deliverability and Shut-In Pressure Test will not be required during the current year for any well connected to a gas transportation facility after October 31. Such tests may be taken at the option of the operator of the well, however.
- 2. When the Initial Deliverability and Shut-In Pressure Test required by Section 1-8 above has been taken in accordance with the annual testing procedure outlined in Section 2 of Chapter II of these rules, the initial test may be considered the annual test for the year in which the test was completed. Provided however, that if an operator intends to use such initial test as the first annual test, he must notify the Commission and the yes transportation facility to which the well is connected of his intent in writing prior to the conclusion of the 14-day conditioning period.
- B. All Limbel Deliverability and Shut-In Pressure Tests required by these rules must be filed with the Commission's Axtec office and with the appropriate gas transportation facility within 30 days after the end of the month during which the test is completed. Provided however, that any test completed between December 1 and December 31 must be filed not later than January 10. Failure to file any test within the above-prescribed times will subject the well to the loss of one day's allowable for each day the test is late. No extension of time for filing tests beyond January 10 will be granted except after notice and hearing.

Section 3: Scheduling of Tests

A. Annual Deliverability Tests

By December 1 of each year, each gas transportation facility shall, in cooperation with the operators involved, prepare and submit a schedule of the wells to which it is connected which are to be tested during the ensuing January and February. Said schedule shall be entitled, "Annual Deliverability and Shut-In Pressure Test Schedule," and shall be submitted in triplicate to the Commission's Axtec office. At least one copy shall also be furnished each operator concerned. The schedule shall indicate the date of tests, pool, operator, lease, well number, and location of each well. At least 30 days prior to the beginning of each succeeding 2-month testing interval, a similar achedule shall be prepared and filed in accordance with the above.

CASE No. 2695 Order Mo. R-333-F

The gas transportation facility shall be notified immediately by any operator unable to cenduct any test as scheduled. In the event a well is not tested in accordance with the test schedule, the well shall be re-scheduled by the gas transportation facility, and the Commission and the operator of the hall so notified in writing. Notice to the Commission must be received prior to the conclusion of the 14-day conditioning period.

It shall be the responsibility of each operator to determine that all of its wells are properly scheduled for testing by the gas transportation facility to which they are connected, in order that all annual tests may be completed during the testing season.

B. Deliverability Ro-Tests

An operator may, in cooperation with the gas transportation facility, schedule a well for a deliverability re-test upon notification to the Commission's Astec office at least ten days before the test is to be commenced. Such re-test shall be for good and substantial reason and shall be subject to the approval of the Commission. Re-tests shall in all ways be conducted in conformance with the Annual Deliverability Test Procedures of these rules. The Commission, at its discretion, way require the re-testing of any well by sotification to the operator to schedule such re-test.

Section 4: <u>Witnessing of Tests</u>

Any Initial or Annual Deliverability and Shut-In Pressure Test may be witnessed by any or all of the following: an agent of the Commission, an offset operator, a representative of the gas transportation facility connected to the well under test, or a representative of the gas transportation facility taking gas from an offset operator.

CHAPTER II PROCEDURE FOR TESTING

Section 1: Initial Deliverability and Shut-In Pressure Test Precedure

A. Within 60 days after a newly completed well is connected to a gas transportation facility, the operator shall complete a deliverability and shut-in pressure test of the well in conformance with the "Annual Deliverability and Shut-In Pressure Test Procedures" prescribed in Section 2 of this

-5-CASE No. 2695 Order No. R-333-F

chapter. Results of the test shall be #iled as required by Section 1 of Chapter I of these rules.

- B. In the event it is impractical to test a newly completed well in conformance with Paragraph A above, the operator may conduct the deliverability and shut-in pressure test in the following manner (provided, however, that any test so conducted will not be accepted as the first annual deliverability and shut-in pressure test as described in Paragraph A-2 of Section 2, Chapter I):
 - 1. A 7- or 8-day production chart may be used as the basis for determining the well's deliverability, providing the chart so used is preceded by at least 14 days continuous production. The well should produce through either the caving or tubing, but not both, into a pipeline during these pariods. The production valve and the choke settings shall not be changed during either the conditioning or flow period with the exception of the first week of the conditioning period when maximum production would over-range the meter chart or location production equipment.
 - A shut-in pressure of at least seven days duration shall be taken. This shall be the shut-in test required in Paragraph A, Section 1 of Chapter I of these rules.
 - 3. The average daily static meter pressure shall be determined in accordance with Section 2 of Chapter II of these rules. This pressure shall be used as Pt in calculating Pt for the Deliverability Calculation.
 - 4. The daily average rate of flow shall be determined in accordance with Section 2 of Chapter II.
 - 5. The static wellhead working pressure (Pw) shall be determined in accordance with Section 2 of Chapter II.
 - 6. The deliverability of the well shall be determined by using the data determined in Paragraphs 1 through 5 above, in the deliverability formula in accordance with Section 2 of Chapter II.
 - 7. The data and calculations for Paragraphs 1 through 6 above shall be reported as required in Section 1 of Chapter I of these rules, upon the blue-colored Form C-122-A.

-6-CASE No. 2695 Order No. R-333-F

Section 2: Annual Deliverability and Shut-In Pressure Test Procedure

This test shall be taken by producing a well into the pipeline through either the casing or tubing, but not both. The production valve and choke settings shall not be changed during either the conditioning or flow periods except during the first seven days of the conditioning period when maximum production would over-range the meter chart or the location production equipment. The daily flowing rate shall be determined from an average of seven consecutive producing days, following a minimum conditioning period of 14 consecutive days production. The first seven days of said conditioning period shall have not more than one interruption, which interruption shall be no more than 36 continuous hours in duration. The eighth to fourteenth days, inclusive, of said conditioning period shall have no interruptions whatsoever. All production during the 14-day conditioning period plus the 7-day deliverability test period shall be at static wellhead working pressures not in excess of 75 percent of the previous annual 7-day shut-in pressure of the well if such previous annual shut-in pressure information is available; otherwise, the 7-day initial deliverability shut-in pressure of the well shall be used.

In the event that the existing line pressure does not permit a drawdown as specified above with the well producing unrestrictedly into the pipeline, the operator shall request an exception to this requirement on Form C-122-A. The requirement shall state the reasons for the necessity for the exception.

Instantaneous prescures shall be measured by deadweight gauge during the 7-day flow period at the casinghead, tubinghead, and orifice meter, and shall be recorded along with instantaneous meter-chart static pressure reading.

When it is necessary to restrict the flow of gas between the wellhead and orifice meter, the ratio of the downstream pressure to the upstream pressure shall be determined. When this ratio is 0.57, or less, critical flow conditions shall be considered to exist across the restriction.

When more than one restriction between the wellhead and orifice meter causes the pressures to reflect critical flow between the wellhead and orifice meter, the pressures across each of these restrictions shall be measured to determine whether critical flow exists at any restriction. When critical flow does not exist at any restriction, the pressures taken to disprove critical flow shall be reported to the Commission on Form C-122-A in the "Remarks" section of the form. When critical flow conditions exist, the instantaneous flowing pressures required hereinabove shall be measured during the last 48 hours of the 7-day flow period.

CARR No. 2695 Order No. R-333~F

when critical flow exists between the wellhead and orifice meter, the measured wellhead flowing pressure of the string through which the well flowed during text shall be used as Pt when calculating the static wellhead working pressure (Pw) using the method established below.

When critical flow does not exist at any restriction, Pt shall be the corrected average static pressure from the meter chart plus friction loss from the wellhead to the orifice meter.

The static wellhead working pressure (Pw) of any well under test shall be the calculated 7-day average static tubing pressure if the well is flowing through the casing; it shall be the calculated 7-day average static casing pressure if the well is flowing through the tubing. The static wellhead working pressure (Pw) shall be calculated by applying the tables and procedures set out in the Mew Mexico Oil Conservation Commission Nanual entitled "Method of Calculating Pressure Loss Due to Friction in Gas Well Flow Strings for San Juan Basin."

To obtain the shut-in pressure of a well under test, the well shall be shut in immediately after the 7-day deliverability flow test for the full period of seven consecutive days. Such shut-in pressure shall be measured within the next succeeding twenty-four hours following the 7-day shut-in period. The 7-day shut-in pressure shall be measured an both the tubing and the casing when communication exists **stween the two strings. The higher of such pressures shall be used as P in the deliverability calculation. When any such shut-in pressure is determined by the Commission to be abnormally low, the shut-in pressure to be used shall be determined by one of the following methods:

- 1. A Commission-designated value.
- 2. An average shut-in pressure of all offset wells completed in the same zone.
- 3. A calculated surface pressure based on a measured bottom-hole pressure. Such calculation shall be made in accordance with the New Mexico Oil Conservation Commission "Back Fressure Mannual," Example No. 7.

All wellhead pressures as well as the flowing meter pressure tests which are to be taken during the 7-day deliverability test period as required hereinthous shall be taken with a deadweight gauge. The deadweight reading and the date and time according to the chart shall be recorded and maintained in the operator's records with the test information.

orifice meter charts shall be changed and so arranged as to reflect upon a single chart the flow data for the gas from each well

-8-CASE Fo. 2095 Order No. R-333-P

for the full 7-day deliverability test period; however, no tests shall be voided if satisfactory explanation is made as to the necessity for using test volumes through two chart periods. Corrections shall be made for pressure base, measured flowing temperature, specific grawity, and supercompressibility; provided however, if the specific grawity of the gas from any well under test is not available, an estimated specific gravity may be assumed therefor, based upon that of gas from near-by wells, the specific grawity of which has been actually determined by measurement.

The 7-day average flowing meter pressure shall be calculated by taking the average of all consecutive 2-hour flowing meter pressure readings as recorded on the 7-day flow period chart. The pressure so calculated shall be used in calculating the wellhead working pressure, determining supercompressibility factors, and calculating flow volumes.

The 7-day flow period volume shall be calculated from the integrated readings as determined from the flow period orifice meter chart. The volume so calculated shall be divided by the number of testing days on the chart to determine the average daily rate of flow during said flow period. The flow chart shall have a minimum of seven and a maximum of eight legibly recorded flowing days to be acceptable for test purposes. The volume used in this calculation shall be corrected to New Mexico Oil Conservation Commission standard conditions.

The average flowing meter pressure for the 7-day or 3-day flow period and the corrected integrated volume shall be determined by the purchasing company that integrates the flow charts and furnished to the operator or testing agency when such operator or testing agency requests such information.

The daily volume of flow as determined from the flow period chart integrator readings shall be calculated by applying the Basic Orific Meter Formula:

$$Q = C' \sqrt{h_w P_f}$$

Where:

- Q = Metered volume of flow Mcfd @ 15.025, 60° F., and 0.60 specific gravity.
- C = The 24-hour basic orifice meter flow factor corrected for flowing temperature, gravity, and supercompressibility.

CASE No. 2695 Order No. R-333-F

hw = Daily average differential meter pressure from flow period chart.

Pf = Daily average flowing meter pressure from flow period chart.

The basic orifice meter flow factors, flowing temperature factor, and specific gravity factor shall be determined from the New Mexico Oil Conservation Commission "Back Pressure Test Manual.

The daily flow period average corrected flowing meter pressure, psig, shall be used to determine the supercompressibility factor. Supercompressibility Tables may be obtained from the New Mexico Oil Conservation Commission.

When supercompressibility correction is made for a gas containing either nitrogen or carbon dicaide in excess of two percent, the supercompressibility factors of such gas shall be determined by the use of Table V of the C.H.G.A. Bulletin TS-402 for pressures 100-500 psig, or Table II, TS-461 for pressures in excess of 500 psig.

The use of tables for calculating rates of flow from integrator readings which do not specifically conform to the New Mexico Oil Conservation Commission "Back Pressure Test Manual" may be approved for determining the daily flow period rates of flow upon a showing that such tables are appropriate and necessary.

The daily average integrated rate of flow for the 7-day flow period shall be corrected for meter error by multiplication by a correction factor. Said correction factor shall be determined by dividing the square root of the chart flowing meter pressure, pais, into the square root of the deadweight flowing meter pressure, pais.

Deliverability pressure, as used herein, is a defined pressure applied to each well and used in the process of comparing the abilities of wells in a pool to produce at static wellhead working pressures equal to a percentage of the 7-day shut-in pressure of the respective individual wells. Such percentage shall be determined and announced periodically by the Commission based on the relationship of the average static wellhead working pressures (P,) divided by the average 7-day shut-in pressure (P,) of the pool.

The deliverability of gas at the "deliverability pressure" of any well under test shall be calculated from the test data derived from the tests hereinabove required by use of the following deliverability formula:

-10-CASE No. 2695 Order No. R-333-F

$$D = Q = \begin{bmatrix} \begin{bmatrix} P_{C} & P_{d} \\ C & P_{d} \end{bmatrix} \\ \begin{bmatrix} P_{C} & P_{W} \end{bmatrix} \end{bmatrix}^{2}$$

Mhere:

- D = Deliverability Mcfd at the deliverability pressure, (P_d) , (at Standard Conditions of 15.025 psia and $60^{\circ}F$).
- Ω = Daily flow rate in Mcfd, at wellhead pressure (P_w) .
- For Today shut-in wellhead pressure, pela, determined in accordance with Section 2 of Chapter II.
- Pd = Deliverability pressure, psia, as defined
- P. * Average static wellhead working pressure, as determined from 7-day flow period, psia, and calculated from New Mexico Oil Conservation Commission "Pressure Lose Due to Fristian" Tables for San Juan Basin.
- n * Average pool slope of back pressure curves as follows:

Mesaverde Formation	0.75
Dakota Producing Interval	0.75
Fruitland Formation	0.85
Farrington Formation	0.85
Pictured Cliffs Formation	0.85
Other Powertions	0.75

(Note: Special Rules for Any Specific Pool or Formation May Supersede The Above Values. Check Special Rules If In Doubt.)

The value of the multiplier in the above formula (ratio factor after the application of the pool slope) by which Q is multiplied shall not exceed a limiting value to be determined and announced periodically by the Commission. Such determination shall be made after a study of the test data of the pool obtained during the previous testing season. The limiting value of the multiplier may be exceeded only after the operator has conclusively shown to the Commission that the shut-in pressure (P_C) is accurate or that

-11-CASE No. 2695 Order No. R-333-F

the static wellhead pressure $(P_{\mathbf{w}})$ cannot be lowered due to existing producing conditions.

Any test prescribed herein will be considered unacceptable if the average flow rate for the final 7-day deliverability test is more than ten percent in excess of any consecutive 7-day average of the preceding two weeks. A deliverability test not meeting this requirement shall be invalid and the well shall be re-tested.

All charts relative to initial or annual deliverability tests or photostats thereof shall be made available to the Commission upon its request.

All testing agencies, whether individuals, companies, pipeline companies, or operators, shall maintain a log of all tests accomplished by them, including all field test data.

All forms heretofore mentioned are hereby adopted for use in the San Juan Basin Area in open form subject to such modification as experience may indicate desirable or necessary.

Initial and Annual Deliverability and Shut-In Pressure Tests for gas wells in all formations shall be conducted and reported in accordance with these rules and procedures. Provided however, these rules shall be subject to any specific modification or change contained in Special Pool Rules adopted for any pool after notice and hearing.

CHAPTER III INFORMATIONAL TRETS

A. A case-point back pressure test may be taken on newly completed wells before their connection or reconnection to a gas transportation facility. This test shall not be required official test but may be taken for informational purposes at the option of the operator. When taken, this test must be taken and reported as prescribed below:

ONE-POINT BACK PRESSURE POTENTIAL TEST PROCEDURE

- 1. This test shall be accomplished after a minimum shut-in of seven days. The shut-in pressure shall be measured with a deadweight gauge.
- 2. The flow rate shall be measured by flowing the well three hours through a positive choke, which has a 3/4-inch orifice.
- 3. A 2-inch nipple which provides a mechanical means of accurately measuring the pressure and temperature

-12-CASE No. 2695 Order No. R-333-F

of the flowing gas shall be installed immediately upstream from the positive choke.

- 4. The absolute open flow shall be calculated using the conventional back pressure formula as shown in the New Mexico Oil Conservation Commission "Back Pressure Test Manual."
- 5. The observed data and flow calculations shall be reported in duplicate on Form C+122, "Multi-Point Back Pressure Test for Gas Wells."
- 6. Won-critical flow shall be considered to exist when the choke pressure is 13 paig or less. When this condition exists the flow rate shall be measured with a pitot tube and nipple as specified in the Commission's Manual of "Tables and Procedure for Pitot Tests." The pitot test nipple shall be installed immediately downstream from the 3/4-inch positive choke.
- Any well completed with 2-inch nominal size tubing (1.995-inch ID) or larger shall be tested through the tubing.
- B. Other tests for informational purposes may be conducted prior to obtaining a pipeline connection for a newly completed well upon receiving specific approval therefor from the Commission's Astec office. Approval of these tests shall be based primarily upon the volume of gas to be vented.
- (2) That jurisdiction of this cause is retained for the entry of such further orders as the Commission may deem necessary.

DOME at Santa Fe, New Mexico, on the day and year hereinabove designated.

> STATE OF NEW MEXICO OIL CONSERVATION CONDUSSION

EDWIN L. MECHEM, Chairman

Esmolker

E. S. WALKER, Member

A. L. PORTER, Jr., Member & Secretary

osr/

OIL CONSERVATION COMMISSION P. O. BOX 871 SANTA FE. NEW MEXICO

December 17, 1962

Mr. Emery C. Arnold Ristrict Supervisor Oil Compervation Commission 1000 Rio Brases Road Astec, New Mexico

Dear Emery:

Reclared herewith is Page 6 (nevised) of Order No. R-333-F entered by the Commission on November 30, 1962, a copy of which has previously been mailed to you.

A slight typographical error required that Page 6 be done over. Figure insert this copy in the order which you received and return the former Page 6 to us.

Very truly yours,

DAMIEL S. NUTTER Chief Engineer

Dem/ear Enclosure

OIL CONSERVATION COMMISSION P. O. BOX 871

SANTA FE. NEW MEXICO

December 17, 1962

Mr. Guy Buell Pan American Petroleum Corporation F. C. Box 1410 Fort Worth, Texas

Dear Guy:

Enclosed herewith is Page 6 (revised) of Order No. R-323-F entered by the Commission Movember 30, 1962, a copy of which has previously been mailed to you.

A slight typographical error required that Page 6 be done over. Please insert this copy in the order which you received and return the former Page 6 to us.

Very truly yours,

DANIEL S. NUTTER Chief Engineer

DSM/esr Enclosure

OIL CONSERVATION COMMISSION P. O. BOX 871 SANTA FE. NEW MEXICO

December 17, 1963

Mr. R. W. Byram R. W. Syram & Company Drawer M - Capitol Station Austin, %cras

Dear Mr. Byram:

Enclosed herewith is Page 6 (revised) of Order No. R-333-F entered by the Commission on November 30, 1962, a copy of which has previously been mailed to you.

A slight typographical error required that Page 6 be done over. Please insert this copy in the order which you received and saturn the former Page 6 to us.

Very truly yours,

DANIEL 8. NUTTER Chief Engineer

DSM/esr Enclosure

OIL CONSERVATION COMMISSION P. O. BOX 871 SANTA FE. NEW MEXICO

December 17, 1962

Mr. Morman Woodruff R1 Paso Matural Gas Company P. O. Box 1492 E1 Paso, Texas

Dear Morman:

Enclosed herewith is Page 6 (revised) of Order No. R-333-F entered by the Commission on November 30, 1962, a copy of which has previously been mailed to you.

A slight typographical error required that Page 5 be done over. Please insert this copy in the order which you received and return the former Page 6 to us.

Very truly yours,

DANIEL S. NUTTER Chief Engineer

DSH/esr Enclosure

OIL CONSERVATION COMMISSION P. C. BOX 871 SANTA FE. NEW MEXICO

December 17, 1962

Mr. Bradley H. Keyes Geolectric, Inc. Aztec, New Mexico

Dear Brad:

Enclosed herewith is Page 6 (revised) of Order No. R-333-F entered by the Commission on Movember 30, 1962, a copy of which has previously been mailed to you.

A slight typographical error required that Page 6 be done over. Please insert this copy in the order which you received and return the former Page 6 to us.

Very truly yours,

DANIEL S. NUTTER Chief Engineer

DSM/esr Enclosure

OIL CONSERVATION COMMISSION P. O. BOX 871

SANTA FE. NEW MEXICO

December 17, 1962

Mr. Ray Bynum Southern Union Gas Company 1500 Fidelity Union Tower Dellas, Texas

Dear Mr. Bynum:

Enclosed herewith is Page 6 (revised) of Order No. R-333-F entered by the Commission on November 30, 1962, a copy of which has previously been mailed to you.

A slight typographical error required that Page 6 be done over. Please insert this copy in the order which you received and return the former Page 6 to us.

Very truly yours,

DANIEL S. NUTTER Chief Engineer

DSM/esr Enclosure HOWSER, GOTGHLIN & SCHMITT

STEAST FOOTHILL BOULEVARD

ARCADIA, GALIFORNIA

FRED N.HOWSER
JAMES J. COUGHLIN
WILFRED J. SCHMITT

November 1, 1962

New Mexico Oil Conservation Commission

Gentlemen:

For and on behalf of A. K. Barbour and Associates, would you please register our objection to the 4th paragraph on page 6 of your proposed revision of Orders R-333-C and D and R-333-E, relating to the seven day shut-in pressure. It is our belief that the use of the highest shut-in pressure would result in a decrease of the calculated deliverability of the well.

Yours very truly,

A. K. BARBOUR & ASSOCIATES

Attorney

FNH/hc

TIDEWATER OIL COMPANY

THE CONTRACTOR CANADA MENA

B. H. COF. DISTRICT MANAGER.

H. G. WESBERRY, ASST. DISTRICT MANAGER

R. N. MILLER DISTRICT (NO)NEER

THE LUCES ADMINISTRATING ASSE

November 6, 1962

New Mexico Oil Conservation Commission Santa Fe, New Mexico c/o B. H. Keyes Box 842 Aztec, New Mexico

Gentlemen:

We would like to be placed on record as opposing fourth paragraph of page 6 of proposed revision of orders R-333-C and D, and R-333-E; wherein the higher of shut-in casing and tubing pressure will be used in calculating P_C in deliverability.

Very truly yours,

TIDEWATER OIL COMPANY

R. H. Coe, District Production Manager

JS:ep

OSCAR ABRAHAM

OIL AND NATURAL GAS PRODUCTION

224 FIRST NATIONAL BANK BUILDING ALBUQUERQUE, NEW MEXICO TELEPHONE 247-8816

814 MERCANTILE BANK BUILDING DALLAS TEXAS TELEPHONE RI 8-5050

November-2-1962

New Mexico Oil Conservation Commission Santa Fe, New Mexico

Dear Sirs:

I have read your Oil Commission proposed revision of order R-3338 and D and R-333E.

The only revision that I am against appears in the fourth paragraph on page 6, where it states: "The seven-day {7} shut -in pressure shall be measured on both the tubing and the rasing when communication exists between the two strings.

The high of such pressures shall be used as Pc in the deliverability calculation.

Using the highest shut-in pressure would decrease the calculated deliverability of the well.

Yours very truly,

R. abraham

J.R. Abraham

соносо

2694

CONTINENTAL OIL COMPANY

1845 Sherman Street Columbine Building Denver 3, Colorado November 6, 1962

New Mexico Oil Conservation Commission Post Office Box 871 Santa Fe, New Mexico

Attn: Mr. A. P. Porter, Jr.

Secretary - Director

Re: CASES NO. 2694 AND 2695

TO BE HEARD ON NOV. 8, 1962.

Gentlemen:

Continental Oil Company submits the following concerning Cases No. 2694 and 2695 to be heard on November 8, 1962.

CASE NO. 2694

Continental supports the application of Southern Union Production Company for an amendment to the Northwest New Mexico Gas Proration Rules and Regulations which will permit wells ordered shut-in for extended periods to make up accumulated overproducing to produce a minimum of 500 MCF each month during shut-in. Such a provision will allow an operator to maintain a well bore condition free from accumulated formation water during the shut-in periods which will allow a more economic lease operation and prevent waste which could result from possible damage to the producing formation. Continental does question however, the use of the word minimum in the last sentence of Case No. 2594 as presented on the docket.

CASE NO. 2695

Our comments on the proposed revision are as follows:

1. The use of the word "static" when describing the pressure obtained during a flow period, may better be described by substitution of the word "stabilized". This will eliminate confusion to those who associate static pressure as that obtained during shut-in periods. A rinor point and is suggested only to help prevent misunderstanding by some operators.

NMOCC Page Two

CASE NO. 2695

- 2. The definition of <u>Deliverability Pressure</u> as offered on the bottom of Page 8 is difficult to interpret and should be explained more clearly.
- 3. Section "C" on Page 10 should be expanded to indicate that tests other than One-point Back Pressure Test may be run for information purposes at the option of the operator, eg. Four-point Back Pressure and Iso bronal Tests. As written this Rule implies that only a One-point Test may be taken and only as prescribed thereunder.

The information obtained from a One-point Test is limited. It may suffice in areas where adequate performance information is available from offsetting wells through previous production history. However, in areas where there are no nearby wells, and consequently no nearby gas transportation lines, additional well performance information may be a vital factor in obtaining a market connection. In these cases both the operator and the potential gas purchaser must have a reasonable prediction of a well's capability to produce before they can determine whether the cost of connections is economically feasible. A Multipoint back pressure test or Isochronal Test can be more useful in such instances. In areas of low permeability reservoirs such as many of those in San Juan Basin the Isochronal Test provides a much batter basis for predicting future well performance than does the One-point Test.

In these remote areas, some distance from existing gas production and gas sales facilities, where gas reserves or gas deliverabilities are questionable, provisions should be made for allowing testing by a method or methods selected by the operator.

For this reason we recommend the Rule be modified to permit a seven day period in which the operator may run such tests as he deems necessary on a newly completed well before connection or recommection to a gas transportation facility. These informational tests to be taken at the option of the operator and if run to be reported to the Commission.

Yours very truly

E. White

Division Superintendent Production Department

GeoLectric, Inc.

Federal 4-6580 4-6824

P. O. Box 842 . AZTEC, NEW MEXICO

November 12, 1962

Mr. Dan Nutter, Crief Engineer New Mexico Oil Conservation Commission P. O. Box 871 Santa Fe, New Mexico

Danı

Enclosed is a letter from deorge D. Locke pertaining to the revised deliverability formula and also some other rather pertinent information for your consideration and guidance.

As you can see from this letter and other letters placed in evidence at the hearing on November 8th, the independent operators do not wholeheartedly and without reservation agree with the proposed change or revision of the Northwest Proration Schedule.

Sincerely,

B. H. Keyes

Encl.

CANDADO PRODUCTION COMPANY

A NEW MEXICO CORPORATION

GEORGE D. LOCKE PRESIDENT EDWARD F. WILLIAMS VICE PRESIDENT DOROTHY H. EGGERT SECRETARY Producers of Petroleum Products

716 FIRST NATIONA: BANK BUILDING 411 NORTH CENTRAL AVENUE
PHOENIX, ARIZONA

New Mexico Office AZTEC, NEW MEXICO

November 8, 1962

Mr. B. H. Keyes GeoLectric, Inc. P. O. Box 842 Aztec, New Mexico

My dear Brad:

I have considered your letter of October 29, 1962, and also the Oil Commission's proposed provision of Orders R-333-C and D, and R-333-E, and advise you as follows:

That I feel that the provision in the fourth paragraph on page 6, to the effect that,

"The seven-day (7) shut-in pressure shall be measured on both the tubing and the casing when communication exists between two strings. The high of such pressures shall be used as Pc in the deliverability calculation."

is unfair because to use the highest shown pressure would certainly decrease the calculated deliverability of the well.

Since, under the Commission's regulations, we are already penalized by losing fifty percent of the bottom hole pressure of each well in Largo Canyon, the addition of the foregoing penalty would have the effect of so impairing the income from production as to make future operations unprofitable.

You might also say to the commission that the amendment they should make to their proration orders is on eleminating rationing altogether, and restoring the control of production to the producers and pipe line company under an order requiring a rateable take from each well in the field, this being the only fair and equitable method of controling the production and conserving the resources of such production to the State of New Mexico.

Very truly yours,

GEORGÉ D. LOCKE

GDL:gd

DOCKET: EXAMINER HEARING - THURSDAY - NOVEMBER 8, 1962

9 A.M. - OIL CONSERVATION COMMISSION CONFERENCE ROOM, STATE LAND OFFICE BUILDING, SANTA FE, NEW MEXICO

The following cases will be heard before Daniel S. Nutter, Examiner, or Elvis A. Utz, alternate examiner:

CASE 2682: Application of Pan American Petroleum Corporation for the creation of a new pool and the establishment of special rules and regulations, San Juan County, New Mexico.

Applicant, in the above-styled cause, seeks the creation of a new oil pool to be designated the Simpson-Gallup Oil Pool comprising the S/2 of Section 23, SW/4 of Section 24, N/2 of Section 25, and the NE/4 of Section 26, Township 28 North, Range 12 West, San Juan County, New Mexico. Applicant further seeks the establishment of special pool rules including the provisions for 80-acre proration units.

CASE 2663: Application of Curtis R. Inman for approval of a unit agreement, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks approval of the Carnero Peak Unit Area comprising 12,151 acres, more or less, or State, Federal and Fee lands in Townships 22 and 23 South, Ranges 24 and 25 East, Eddy County, New Mexico.

CASE 2684: Application of Gulf Oil Corporation for a triple completion, Lea County, New Mexico. Applicant, in the above-styled cause, seeks authority to complete its H. T. Mattern (NCT-A) Well No. 3, located in Unit P of Section 24, Township 21 South, Range 36 East, Lea County, New Mexico, as a triple completion (conventional) to produce oil from the Paddock, Blinebry, and Drinkard Oil Pools through parallel strings of tubing.

CASE 2685: Application of Gulf Oil Corporation for a triple completion,
Lea County, New Mexico. Applicant, in the above-styled
cause, seeks authority to complete its Graham State (NCT-I)
Well No. 2 located in Unit L of Section 19, Township 21 South,
Range 37 East, Lea County, New Mexico, as a triple completion
(conventional) to produce cil from the Paddock, Blinebry,
and Drinkard Cil Pools through parallel strings of tubing.

CASE 2686: Application of Marathon Oil Company for a dual completion,
Lea County, New Mexico. Applicant, in the above-styled
cause, seeks authority to complete its State Hansen Well No.
5, located in Unit H of Section 16, Township 20 South, Range
37 East, Lea County, New Mexico, as a dual completion

-2-Docket No. 32-62

CASE 2686 (Cont.)

(conventional), to produce oil from the Weir-Blinebry and Monument-Tubb Pools through parallel strings of 1.41 ID and 2-inch ID tubing.

CASE 2687:

Application of Shell Oil Company for a dual completion, Lea County, New Mexico. Applicant, in the above-styled cause, seeks au hority to complete its Emerald Unit Well No. 1 located in Unit C of Section 23, Township 16 South, Range 32 East, Lea County, New Mexico as a dual completion (Conventional) to produce oil from the Penrose and Wolfcamp formations through parallel strings of tubing.

CASE 2688:

Application of Socony Mobil Oil Company for a quadruple Completion, Lea County, New Mexico. Applicant, in the above-styled cause, seeks authority to complete its State Bridges Well No. 95 located in Unit P of Section 26, Township 17 South, Range 34 East, Lea County, New Mexico, as a quadruple completion (conventional) to produce oil from the Abo, Wolfcamp, Pennsylvanian and Devonian formations through parallel strings of tubing.

CASE 2689:

Application of Socony Mobil Oil Company for a dual completion and certain administrative procedures, Lea County, New Mexico. Applicant, in the above-styled cause, seeks authority to complete its State Bridges Well No. 27-DD located in Unit H of Section 26, Township 17 South, Range 34 East, Lea County, New Mexico as a dual completion (conventional) to produce oil from the Vacuum (San Andres) Pool and an undesignated Yeso pool through parallel strings of 2 3/8 inch and 2 3/8 x 1 1/4 inch tapered tubing strings. Applicant further seeks the establishment of administrative procedures whereby similar dual completions could be approved in this area.

CASE 2690:

Application of Phillips Petroleum Company for a special allowable, Lea County, New Mexico. Applicant, in the above-styled cause, seeks an order authorizing the assignment of a special allowable to its Mexco "A" Well No. 2, located in Unit I of Section 2, Township 17 South, Range 32 East, Maljamar Pool, Lea County, New Mexico. Said well offsets and has received a response from Boller and Nichols Water-flood project in said Section 2.

-3-Docket No. 32-62

CASE 2691:

Application of El Paso Natural Gas Company for the creation of a new gas pool and establishment of special rules and regulations, Lea County, New Mexico. Applicant, in the above-styled cause, seeks the creation of a new gas pool for the Morrow formation underlying Sections 18, 19, 20, and 29, Township 19 South, Range 32 East, Lea County, New Mexico. Applicant further seeks establishment of special pool rules including provisions for 640-acre proration units and the allocation of allowables to non-marginal wells in the proportion that each well's acreage factor bears to the total of the acreage factors for all non-marginal wells in the pool.

CASE 2692:

Application of Amerada Petroleum Corporation for an exception to a Commission shut-in order, Lea County, New Mexico.

Applicant, in the above-styled cause, seeks an exception to Rule 15 (A) Order R-1670, Southeast New Mexico Gao Proration Rules and Regulations, to permit its Shell-Amerada State "A" Unit Well No. 1 located in Unit P, Section 33, Township 11 South, Range 33 East, Bagley-Lower Pennsylvanian Gas Pool, Lea County, New Mexico, to produce a minimum of 2000 MCF per month in exception to an overproduction shut-in notice.

CASE 2693:

Application of NWJ Producing Company for an uncrthodox location, Lea County, New Mexico. Applicant, in the above-styled cause, seeks approval of an unorthodox oil well location 330 feet from the South and West lines of Section 14, Township 15 South, Range 38 East, Medicine Rock-Devonian Pool, Lea County, New Mexico, in exception to Rule 3, Order R-2315, Medicine Rock-Devonian Pool Rules.

CASE 2694:

Application of Southern Union Production Company for an amendment to the Northwest New Mexico Gas Proration Rules and Regulations. Applicant, in the above-styled cause, seeks an amendment to Order R-1670 as amended by Order No. R-2086, Rules and Regulations for Prorated Gas Pools, San Juan, Rio Arriba, McKinley and Sandoval Counties, New Mexico, to permit wells ordered shut-in for extended periods to make up accumulated overproduction to produce a minimum of 500 MCF each month during such shut-in.

CASE 2695:

In the matter of the hearing called on the motion of the Oil Conservation Commission to consider revising Commission Orders R-333-C & D and R-333-E as the same relate to the season for taking Northwest New Mexico gas well deliverability tests and to the procedure for taking and calculating such tests, San Juan, Rio Arriba, McKinley and Sandoval Counties, New Mexico.

Docket No. 32-62

CASE 2670: (Cont)

Application of Elwyn C. Hale for a quadruple completion, Lea County, New Mexico. Applicant, in the above-styled cause, seeks approval of the quadruple completion (combination) of his Hale State Well No. 3, located in Unit H of Section 2, Township 25 South, Range 37 East, Lea County, New Mexico, in such a manner as to produce oil from the Devonian, McKee, Waddell and Ellenburger Pools, North Justis Field, through two strings of 2 7/8 inch casing and two strings of 3 1/2 inch casing all cemented in a common well bore.

PROPOSED REVISION OF ORDERS R-333+C&D AND R+333+E

The following is a copy of the proposed Special Rules and Regulations governing gas well testing in the San Juan Basin which will be considered at a hearing to be held in the Oil Conservation Commission Conference Room, State Land Office Building, Santa Fe, New Mexico, at 9:00 a.m., November 8, 1962.

These rules would supersede Commission Orders R-333-C and D and R-333-E and would govern gas well testing in the Counties of San Juan, Rio Arriba, McKinley, and Sandoval.

GAS WELL TESTING RULES AND PROCEDURES FOR SAN JUAN BASIN AREA

SECTION A. TYPE OF GAS WELL TESTS REQUIRED:

I. THE INITIAL DELIVERABILITY AND SHUT-IN PRESSURE TESTS FOR NEWLY COMPLETED GAS WELLS.

- (A) Immediately upon completion of each gas well in San Juan Basin, a shut-in pressure test of at least 7 days duration shall be made.
- (B) Within 60 days after a well is connected to a gas transportation facility the well shall be tested in accordance with Section B, Subsection I, Paragraph (A) of this order, and the results of the test reported to the Commission, and to the gas transportation facility to which the well is connected. Failure to file the required test within the time prescribed above will subject the delinquent well to the loss of one day's allowable for each day the test is late.
- (C) Any tests accomplished for information purposes prior to pipeline connection shall not be recognized as an official test for the establishment of allowables.

II. ANNUAL DELIVERABILITY AND SHUT-IN PRESSURE TESTS:

Annual Deliverability and Shut-In Pressure Tests of all producing

	BEFORE EXAMINER NUTTER
	OIL CONSERVATION COMMISSION
I	OCC EXHIBIT NO.
	CASE NO. 2695

gas wells are required to be made during the period from January 1, through December 31, of each year.

- 1. Annual Deliverability and Shut-In Pressure tests shall not be required during the current annual test period for wells connected after Occober 31 to a gas transportation facility but such tests may be taken at the option of operator.
- 2. An initial deliverability test accomplished in accordance with annual testing procedures set out in this order shall be used as the annual test of the well for the year in which the test was accomplished.

All Annual Deliverability and Shut-In Pressure Tests required by this order shall be filed with the Commission and with the gas transportation facility to which the wells are connected within thirty (30) days after the end of the month during which the test is completed; provided however, that all tests completed during the period from December 1 through December 31, shall be reported not later than January 10 of the following year. Failure to file the required tests within the time prescribed above may subject the delinquent wells to the loss of one day's allowable for each day the test is late. No extension of time will be allowed after January 10, except after notice and hearing.

III. SCHEDULE OF TESTS:

(A) ANNUAL DELIVERABILITY TESTS

At least 30 days prior to the beginning of the tests the gas transportation facilities receiving gas from wells to be tested shall, in cooperation with respective operators, submit to the Commission's Aztec office a testing schedule for the Annual Deliverability and Shut-in Pressure Tests. Three copies of the schedule shall be furnished to the Commission and one copy shall be furnished to each operator concerned. Such schedule shall indicate the dates of tests, pool, operator, lease, well number and location of each well. The gas transportation facility making the schedule of tests shall be notified immediately by any operator unable to take such tests as scheduled.

When an Initial Deliverability Test accomplished in accordance with annual testing procedures is to be used as an annual test the operator shall notify the Commission, and the gas transportation facility to which the well is connected, in writing during the fourteen day conditioning period for said test.

In the event a well is not tested in accordance with the test schedule, the well shall be re-scheduled for testing, and the Commission shall be notified of such fact in writing not later than the fourteen day conditioning period for said test.

It shall be the responsibility of each operator to determine that its wells are properly scheduled by the transportation facility to which its wells are connected, in order that said wells can be tested within the testing season.

(B) <u>DELIVERABILITY RETESTS</u>

An operator may, in cooperation with the transportation facility, schedule a well for a deliverability retest by notification to the Commission ten (10) days before the retest is to commence. Such notification shall consist of scheduling the well as required for the annual deliverability test in subsection III, Paragraph A, above. Such retest shall be for good and substantial reason and shall be subject to the approval of the Commission, and conducted in conformance with the Annual Deliverability Test procedures of this order. The Commission may at its discretion require the retesting of any well by notification to the operator to schedule such retest.

The requirements for Initial and Annual Deliverability Tests and the notification and scheduling of such tests which apply to newly completed wells shall also apply to reworked or recompleted wells.

IV. WHO MAY WITNESS TESTS:

Any initial or annual deliverability and shut-in pressure test may be witnessed by any or all of the following: an agent of the Commission, an offset operator, a representative of the pipeline company taking gas from an offset operator, or a representative of a pipeline company taking gas from the well under test.

SECTION B. PROCEDURE FOR TESTS:

I. MESAVERDE FORMATION:

(A) INITIAL DELIVERABILITY AND SHIPT-IN DEECSURE TEST

1. Within sixty days (60) after a newly completed well is connected to a gas transportation facility the operator shall accomplish a deliverability and shut-in pressure test in conformance with annual test procedures

of this order and results reported as required in Section A, Subsection I, or:

- 2. In the event that it is impractical to test a newly completed well in accordance with paragraph 1 above, the operator may accomplish a deliverability and shut-in pressure test in the following manner:
 - (a) "A seven or eight day production chart may be used as a basis for determining the well's deliverability, providing the chart so used is preceded by at least fourteen (14) days continuous production. The well shall produce through either the casing or tubing, but not both, into a pipeline during these periods. The production valve and the choke settings shall not be changed during either the conditioning or flow period with the exception of the first week of the conditioning period when maximum production would over-range the meter chart and/or location production equipment."
 - (b) A shut-in pressure of at least seven days duration shall be taken. This shall be the shut-in test required in Section A, Subsection I, Paragraph (A).
 - (c) The average daily static meter pressure shall be determined in accordance with Section B, subsection I, Paragraph (B). This pressure shall be used as Pt in calculating Pw for the Deliverability Calculation.
 - (d) The daily average rate of flow shall be determined in accordance with Section B, Subsection I, Paragraph (B) of this order.
 - (e) The static wellhead working pressure $(P_{\mathbf{w}})$ shall be determined in accordance with Section B, Subsection I, Paragraph (B) of this order.
 - (f) The deliverability of the well shall be determined by using the data determined in Paragraphs (a) through (e) above, in the deliverability formula in accordance with Section B, Subsection I, Paragraph (B) of this order.
 - (g) The data and calculations for the above Paragraphs (a) through (f) shall be reported as required in Section A, Subsection I, upon the blue colored Form C-122-A.

(B) THE ANNUAL DELIVERABILITY AND SHUT-IN PRESSURE TESTS

This test shall be taken by producing a well into the pipeline through either the casing or tubing, but not both. The production valve and choke settings shall not be changed during either the conditioning or flow periods except during the first seven (7) days of the conditioning period when maximum production would overrange the meter chart and/or the location production equipment. The daily flowing rate shall be determined from an average of seven (7) consecutive producing days, following a minimum_conditioning period of fourteen (14) consecutive days production. The first seven (7) days of said conditioning period shall have not more than one (1) interruption, which interruption shall be no longer than 36 continuous hours in duration. The eighth to fourteenth days, inclusive, of said conditioning period shall have no interruptions whatsoever. All such production during the fourteen (14) days conditioning period plus the seven (7) day deliverability test period shall be at static wellhead working pressures not in excess of seventy-five (75) percent of the previous annual seven (7) day shut-impressure of such well if such previous annual shut-in pressure information is available; otherwise, the seven (7) day initial deliverability shut-in pressure of such well shall be used.

In the event that the existing line pressure does not permit a drawdown as specified above, with the well producing unrestrictedly into the pipeline, the operator shall request an exception to this requirement on the Form C-122-A. The request shall state the reasons for the necessity for the exception.

Instantaneous pressures shall be measured by deadweight gauge during the seven day flow period at the casinghead, tubinghead, and orifice meter and recorded along with the instantaneous meter chart static pressure reading.

When it is necessary to restrict the flow of gas between the wellhead and orifice meter the ratio of the downstream pressure to the upstream pressure shall be determined. When this ratio is 0.57, or less, critical flow conditions shall be considered to exist across the restriction.

When more than one restriction between the wellhead and orifice meter causes the pressures to reflect critical flow between the wellhead and orifice meter the pressures across each of these restrictions shall be measured to determine whether critical flow exists at any restriction. When critical flow does not exist at any restriction the pressures taken to disprove critical flow shall be reported to the Commission on Form C-122-A in the "remarks" section of the form. When critical flow conditions exist, the instantaneous flowing pressures required hereinabove shall be

measured during the last forty-eight (48) hours of the seven (7) day flow period.

When critical flow exists between the wellhead and orifice meter, the measured wellhead flowing pressure of the string through which the well flowed during test shall be used as P_t when calculating the static wellhead working pressure (P_w) using the method established below.

When critical flow does not exist at any restriction, P_t shall be the corrected average static pressure from the meter chart plus friction loss from the wellhead to the orifice meter.

The static wellhead working pressure $(P_{\rm W})$ of any well under test shall be the calculated seven (7) day average static tubing pressure if the well is flowing through the casing; or the calculated seven (7) day average static casing pressure if the well is flowing through the tubing. The static wellhead working pressure $(P_{\rm W})$ shall be calculated by applying the tables and procedures as set out in New Mexico Oil Conservation Commission Manual entitled "Method of Calculating Pressure Loss Due to Friction in Gas Well Flow Strings" for San Juan Basin.

To obtain the shut-in pressure of a well under test the well shall be shut-in immediately after the seven (7) day deliverability test for the full period of seven (7) consecutive days. Such shut-in pressure shall be measured within the next succeeding twenty-four (24) hours following the seven (7) day shut-in period aforesaid. The seven-day (7) shut-in pressure shall be measured on both the tubing and the casing when communication exists between the two strings. The high of such pressures shall be used as P_C in the deliverability calculation. When any such shut-in pressure has been determined by the Commission to be abnormally low, or when only one pressure is available, the shut-in pressure to be used shall be determined by one of the following methods:

- 1. A Commission designated value.
- 2. An average shut-in pressure of all offset wells completed in the same zone.
- 3. A calculated surface pressure based on a measured bottom hole pressure. Such calculation shall be made in accordance with New Mexico Oil Conservation Commission Back Pressure Manual, Example No. 7.

All wellhead pressures as well as the flowing meter pressure tests which are to be taken during the seven (7) day deliverability test period, as required hereinabove, shall be taken with a deadweight gauge. The

deadweight reading, the date and time according to the chart shall be recorded and maintained in the companies records with the test information.

Orifice meter charts shall be changed and so arranged as to reflect upon a single chart the flow data for the gas from each well for the full seven-day deliverability test period; except that no tests shall be voided if satisfactory explanation is made as to the necessity for using test volumes through two chart periods. Corrections shall be made for pressure base, measured flowing temperature, specific gravity, and supercompressibility provided however, that if the specific gravity of the gas from any well under test is not available, an estimated specific gravity may be assumed therefor, based upon that of gas from near-by wells, the specific gravity of which has been actually determined by measurement.

The seven (7) day average flowing meter pressure shall be calculated by taking the average of all consecutive 2-hour flowing meter pressure readings as recorded on the seven (7) day flow period chart (test chart #3). The pressure so calculated shall be used in calculating the wellhead working pressure, determining supercompressibility factors and calculating flow volumes.

The seven (7) day flow period volume shall be calculated from the integrated readings as determined from the flow period orifice meter chart, (chart #3). The volume so calculated shall be divided by the number or testing days on the chart to determine the average daily flow period rate of flow. The flow chart shall have legibly recorded a minimum of seven (7) days and a maximum of eight (8) flowing days to be acceptable for test purposes. The volume used in this calculation shall be corrected to New Mexico Oil Conservation Commission standard conditions.

The average flowing meter pressure for the seven (7) day or eight (8) day flow period and the corrected integrated volume shall be determined by the purchasing company that integrates the flow charts and furnished to the operator or testing agency when such operator or testing agency requests such information.

The daily volume of flow as determined from the flow period chart (Test Chart #3) integrator readings shall be calculated by applying the Basic Orifice meter formula.

$$Q = C' \sqrt{h_w p_1}$$

Where:

Q = Metered volume of flow MCFD @ 15.025, 60° F. and .60 specific gravity.

- C' = The 24-hour basic orifice meter flow factor corrected for flowing temperature, gravity and supercompressibility.
- h = Daily average differential meter pressure from flow period chart.
- p = Daily average flowing meter pressure from flow period
 f chart.

The basic orifice meter flow factors, flowing temperature factor and specific gravity factor shall be determined from New Mexico Oil Conservation Commission Back Pressure Test Manual.

The daily flow period average corrected flowing meter pressure, psig, shall be used to determine the supercompressibility factor. Supercompressibility Tables may be obtained from the New Mexico Oil Conservation Commission.

When supercompressibility correction is made for a gas containing either nitrogen or carbon dioxide in excess of 2 percent, the supercompressibility factors of such gas shall be determined by the use of Table V of the C.N.G.A. Bulletins TS-402 for pressure 100-500 psig or Table II, TS-461 for pressures in excess of 500 psig.

The use of tables for calculating rates of flow from integrator readings, which do not specifically conform to New Mexico Oil Conservation Commission Back Pressure Test Manual may be approved for determining the daily flow period rates of flow upon a showing that such tables are appropriate and necessary.

The daily average integrated rate of flow for the seven-day flow period shall be corrected for meter error by the multiplication by a correction factor determined by dividing the square root of the chart flowing meter pressure psia into the square root of the deadweight flowing meter pressure psia.

Deliverability pressure, as used herein for the Mesaverde formation, is a defined pressure applied to each well and used in the process of comparing the abilities of wells in this formation to produce at static wellhead working pressures equal to a percentage of the seven (7) day shut-in pressure of the respective individual wells. Such percentage shall be determined periodically by the Commission based on the relationship of the average static wellhead working pressures (P_w) divided by the average (P_c) seven-day shut-in pressure of the pool.

The deliverability of gas at the "deliverability pressure" of any well under test shall be calculated from the test data derived from the tests hereinabove required by use of the following deliverability formula:

$$D = Q = \begin{pmatrix} p^2 & - & p^2 \\ \hline \begin{pmatrix} p^2 & - & p^2 \\ \hline \end{pmatrix} \\ \begin{pmatrix} \hline p^2 & - & p^2 \\ \hline \end{pmatrix} \end{pmatrix}$$

WHERE:

Deliverability at the deliverability pressure, (Pd) Mcfd, (at Standard Condition of 15.025 psia and 60° F).

Daily flow rate in Mcfd, at wellhead pressure (P_w) .

7-day shut-in wellhead pressure, psia, determined in $P_{\mathbf{C}}$ accordance with Section B, Subsection I, Paragraph (B).

 ${\tt P_d}$ Deliverability pressure; psia, as defined above.

Average static wellhead working pressure, as determined from 7-day flow period, psia, and calculated from New Mexico Oil Conservation Commission "Pressure Loss Due to Friction" Tables.

Average pool slope of back pressure curve (.75) for Mesaverde wells).

The value of the multiplier in the above formula (ratio factor after the application of the pool slope) by which Q is multiplied shall not exceed a limiting value to be determined periodically by the Commission. Such determination shall be made after a study of the test data of the pool obtained during the previous testing season. The limiting value of multiplier may be exceeded only after the operator has conclusively shown to the Commission that the shut-in pressure (Pc) is accurate or that the static wellhead pressure (Pw) cannot be lowered due to existing producing conditions.

Any test hereinabove provided for will be considered unacceptable if the average flow rate for the final 7-day deliverability test is more than 10 percent in excess of any consecutive 7-day average of the preceding two weeks. A deliverability tost not meeting this requirement shall be invalid and the well shall be retested.

-10-CASE NO. 2695

All charts relative to annual deliverability tests shall be identified by the words "Test Chart No. 1" $(2,3,4,\,\text{etc.})$, and any or all charts or photostats thereof shall be made available to the Commission upon its request.

II. ALL FORMATIONS OTHER THAN MESAVERDE

(A) <u>Initial and/or annual deliverability and shut-in</u>
Pressure Tests:

Except as provided in Special Pool Rules these tests shall be made and reported in accordance with the procedure set out in this order for the Mesaverde formation, provided however, that the exponent "n" for the Pictured Cliffs and Fruitland formations shall be point eight five (0.85).

SECTION C. INFORMATION TEST FOR ALL FORMATIONS

I. TYPE OF TEST:

(A) A one-point back pressure test may be taken on newly completed wells before their connection or reconnection to a gas transportation facility. This test shall not be a required official test but may be taken for information purposes at the option of the operator. When taken, this test must be taken and reported as prescribed below:

(B) ONE-POINT BACK PRESSURE POTFNTIAL TEST PROCEDURE

- 1. This test shall be accomplished after a minimum shut-in of seven days. The shut-in pressure shall be measured with a deadweight gauge.
- 2. The flow rate shall be measured by flowing the well 3 hours through a positive choke, which has a 3/4 inch orifice.
- 3. A 2-inch nipple which provides a mechanical means of accurately measuring the pressure and temperature of the flowing gas shall be installed immediately upstream from the positive choke.
- 4. The absolute open flow shall be calculated using the conventional back pressure formula as shown in New Mexico Oil Conservation Commission Back Pressure Test Manual.

#11# CASE NO. 2695

- 5. The observed data and flow calculations shall be reported in duplicate on Form C-J.22, "Multi-Point Back Pressure Test for Gas Wells."
- 6. Non-critical flow exists when the choke pressure is 13 psig or less. When this condition exists the flow rate shall be measured with a pitot tube and nipple as specified in the Commission's manual of "Tables and Procedure for Pitot Tests." The pitot test nipple shall be installed immediately downstream from the 3/4 inch positive choke.
- 7. Any well completed with two-inch nominal size (1.995 inside diameter) or larger shall be tested through the tubing.

IT IS FURTHER ORDERED:

All forms heretofore mentioned, are hereby adopted for the use in the San Juan Basin Area in open form subject to such modification as experience may indicate.

All testing agencies whether individuals, companies, pipeline companies or operators shall maintain a log of all tests accomplished by them including all field test data.

BEFORE THE OIL CONSERVATION COMMISSION Santa Fe, New Mexico November 8, 1962

EXAMINER HEARING

IN THE MATTER OF:

The hearing called on the motion of the Oil Conservation Commission to consider revising Commission Orders R-333-C & D and R-333-E as the same relate to the season for taking Northwest New Mexico gas well deliverability tests and to the procedure for taking and calculating such tests, San Juan, Rio Arriba, McKinley and Sandoval Counties, New Mexico.

Case 2695

BEFORE: Daniel S. Nutter, Examiner.

TRANSCRIPT OF HEARING

MR. NUTTER: We will call next Case 2695.

MR. DURRETT: In the matter of the hearing called on the motion of the Oil Conservation Commission to consider revising Commission Orders R-333-C & D and R-333-E as the same relate to the season for taking Northwest New Mexico gas well deliverability tests and to the procedure for taking and calculating such tests, San Juan, Rio Arriba, McKinley and Sandoval Counties, New Mexico.

May it please the Commission, my name is James Durrett, appearing on behalf of the Commission and its staff. I have one

H

3

The state of the s

13

witness, Mr. Utz, who I will swear in at this time.

(Witness sworn.)

ELVIS A. UTZ

called as a witness, having been first duly sworn, testified as follows:

DIRECT EXAMINATION

BY MR. DURRETT:

Will you please state your name and position for the record?

Elvis A. Utz, Engineer for the New Mexico Oil Conservation Commission.

Mr. Utz, have you prepared proposed gas well testing rules and procedures for the San Juan Basin area in the State of New Mexico?

Yes, I have.

Does this area cover the counties as advertised on the docket of this case, that would be San Juan, Rio Arriba, McKinley and Sandoval Counties?

Yes, it does.

Have you prepared your proposed rules in the form of an exhibit for the purpose of this case?

Yes, I have, and they have so been marked.

Mr. Utz, will your proposed rules supersede certain

DEARNLEY-MEIER REPORTING

existing orders previously issued by the Commission and now in effect in the San Juan Basin area?

Yes, they will. If adopted they will supersede R-333-C and D, R-333-E, and a memorandum known as Memorandum 1-56, which has to do with initial potential tests.

Mr. Utz, I would like to proceed with you through these rules. I would like to ask you as we go through them to explain the major changes or revisions that these rules will cover.

First, let me ask you this, do your proposed rules clarify the penalty to be imposed for delinquent test?

Yes, they do. They do that with wording to this effect: "Failure to file the required test within the time prescribed above will subject the delinquent well to the loss of one day's allowable for each day the test is late."

MR. NUTTER: Where is that provision?

That's on page one, subsection I, paragraph (B). In other words, it's about the third paragraph up on page 1. Heretofore on tests that were late, at the end of the testing season they have been penalized the month of February and each month thereafter that they were late. In this manner, by penalizing a well one day's allowable for each day the test is late, they will all be penalized for the amount of time that the test is actually late rather than being penalized

DEARNLEY-MEIER REPORTING SERVICE.

one month's allowable if he only happens to be late three or four days.

Do your proposed rules clarify the responsibility for Q scheduling tests?

Yes, they do. On page 2, about the middle of the page, we have the same wording as previously read as to the loss of one day's allowable. I'm sorry, that is another rule which describes the penalty rather than the question asked. I would like to comment on that paragraph, however, that the last sentence in that paragraph relates that "No extension of time will be allowed after January 10, except after notice and hearing."

To answer the question that you asked, at the top of page 3, the second paragraph, that paragraph has been added to the previous rule and states that "It shall be the responsibility of each operator to determine that its wells are properly scheduled by the transportation facility to which its wells are connected, in order that said wells can be tested within the testing coason. I think that clarifies the vagueness that I feel sure, and I feel that a lot of other people thought, was in the previous order.

Do your proposed rules revise the existing extensions of time for taking tests?

Yes, sir. In relation to the period of time after a well is connected to the pipeline system, as well as the period

of time that a well is reconnected to the pipeline system after workover. At the bottom of page 3 you'll note the words "Within sixty days after a newly completed --" and so forth. The previous rule stated forty-five days plus an extension time of fifteen days; which had to be applied for and given administratively. In my opinion that was somewhat of an administrative burden to apply for the additional fifteen days. If we are going to grant them sixty days, I say let's just grant them sixty days and say so.

. Have you found it necessary to restrict the flow of wells into the pipeline under these rules?

Since we have quite a number of Dakota wells connected now, we have determined, well, first, let me say the previous rules stated that a well must be produced unrestrictedly into the pipeline. Due to the higher pressure of the Dakota formation it was found that the, not only the separation equipment and production equipment, heaters, treaters and separators as well as the meters which were installed to handle the average range of production was not capable of handling the volume of gas that these wells will produce unrestrictedly. Therefore, they had to be squeezed somewhere between the well head and production meter. That wording has been taken care of in the second paragraph of page 4.

DEALINLEY-MEIER REPORTING SERVICE, Inc.

Now, referring to restricting the flow between the well head and the meter, do your rules define critical flow and outline procedure to calculate tests when critical flow exists?

Yes. And due to the choking, yes, they do. Our district office discovered that in some cases we actually had critical flow in this area. Critical flow, generally pressure is twice the downstream pressure. Therefore, the measurement that we had to take between the well head and the meter in order to correct for friction loss was no longer applicable under critical flow conditions, and we had to devise a method in order to eliminate that.

Do your rules provide methods for taking shut-in pressure on wells which cannot have both casing and tubing measured and shut in pressures which appear to be low due to liquids in the bore?

Yes. On page 6, down about the fourth paragraph, the latter part of that paragraph we have entered this wording, some of which I will recommend a deletion, the second word, beginning with "the high of such pressures", that should be "the higher of such pressures shall be used as P_c in the deliverability calculation. When any such shut-in pressure has been determined by the Commission to be abnormally low, the shut-in pressure to be used shall be determined by one of the following methods:", then we

DEARNLEY-MEIER REPORTING SERVICE, Inc.

14

1 2

13 -

list three methods.

These three methods are as follows: "A Commission designated value." Well, first, I had better elaborate slightly on the portion that I would like deleted from this paragraph. After the words "abnormally low" I would suggest that we delete "or when only one pressure is available". In some instances it is not possible to get the second pressure or annular pressure normally on conventional wells, and even on dual completions where you can take but one pressure, if that pressure appears to be a normal shut-in pressure I doubt the feasibility of compelling the operator to prove that it is actually an accurate pressure by some other means.

The first method would be "A Commission designated value." This would be, it would have to be done only in instances where the shut-in pressure appeared to be abnormally low. The Commission may designate a value from its records. In other words, it is our intention to combour the previous year's pressures for each pool, which would give you a very good indication by location as to whether or not the pressure was abnormally low.

The second would be an average shut-in pressure of all offset wells completed in the same zone. Where this is possible the average shut-in pressure from all offset wells would be applicable pressure or acceptable pressure. The third method

DEARILEY-MEIER REPORTING

1 1

17

would be the calculation of surface pressure based on a measured bottom hole pressure, and this calculation should be made in accordance with the Example No. 7 in the Commission Back Pressure Manual, which simply means that you would run a bomb and determine the bottom hole pressure and calculate back to the surface on a gas gradient.

Do your rules provide whether casing pressure or tubing pressure shall be used in the deliverability calculation?

The rules would provide that the higher of the tubing or casing pressures be used in the deliverability calculation. Perhaps it would be well to give just a little background on why that rule change is necessary at this time. Prior to 1956, that was exactly the way that we required these wells to be tested. It was that we use the higher pressure. It is fairly common knowledge in my opinion that the higher pressure on a well is always the most accurate pressure. There can be a number of things cause the pressure to be low, but there's not very many things that can cause a pressure to be high and inaccurately high.

Due to the advent of long open hole completions and terrific shots of nitroglycerine that were used in order to make these wells more productive in which tubing was run, and to our consternation, and I'm quite sure to a number of operators!

DEARNLEY-MEIER REPORTING SERVICE, Inc.

SANTA FE, N. M. PHONE 983-3971

LBUQUEFQUE, N. M. PHONE 243.6691 consternation we found we had a very effective bridging around the tubing. Quite often the annular pressure was original pressures. In other words, that part of the formation had not yet had time to be drained and they were much higher than the producing zone pressures. Therefore, we changed our rule sometime during 1956 to state that only the pressure through the string through which the well flowed could be used, thereby allowing the operator to make use of the shut-in pressure which was applicable to the area in which the well was producing.

Since that time and since sand fracking has been in use for a number of years and shots are no longer used in the area, and since such a large number of these cased in wells have been, if not all, have been remedied where we have communication in most cases between the tubing and annulus, we now feel also because of liquid problems which we are now encountering, we again feel that the most equitable way and the most accurate way to calculate deliverabilities is by using the higher pressure.

Q Under your rules, will a pool deliverability pressure be used in lieu of 50% of individual well seven-day shut-in pressure?

A Yes. Due to liquid problems and in particular some pools in which the shut-in pressures are now approaching closely to the pipeline pressures, we have found that 50% gives us such a

high multiplier that in some cases we feel quite sure that this multiplier gives us an extremely exaggerated deliverability. Therefore, in order to relieve the need of having to have so much drawdown and/or using these high multipliers, we believe that on a pool basis that we should determine a deliverability pressure which would be applicable to all wells in that pool, and this would be based on previous years' shut-in pressure and static well head working pressure averages. This will cause the deliverability pressure to be closer to conditions under which the well is produced. In other words, the correction from actual test conditions to deliverability conditions will be much less and have a much less chance of error.

What method will be used to determine pool deliverability pressure?

The rules state, the proposed rules state that "Such percentage shall be determined periodically by the Commission based on the relationship of the average static wellhead working pressures (Pw) divided by the average (Pc) seven-day shut-in pressure of the pool."

Do your rules propose that a limiting multiplier be used concerning wells which report a very low shut-in pressure or that cannot achieve a 25% drawdown?

Yes, they do. Even though we propose a deliverability A

DE.4RNLEY-MEIER REPORTING SERVICE, Inc.

I-MEIEK KEF

BUQUERQUE, N. N. HONE 243-6691 pressure determined as stated, we know that in some instances where we have liquid problems and known liquid problems, that we will have shut-in pressure, surface shut-in pressures that are abnormally low. These surface shut-in pressures we know are not accurate.

The deliverability formula itself presumes that the P_C in the formula be an accurate indication of the reservoir pressure, static reservoir pressure. Therefore, to take care of these instances where we have abnormally low shut-in pressures, and in order to control those exaggerated deliverabilities, we believe that the multiplier, which is the value inside the brackets of the deliverability formula, after it's been raised to the power, should be limited to some value to be determined by the Commission.

To go a little farther with that, while the rule does not specifically state how that should be done, I believe that I will recommend that multiplier be, the maximum multiplier be determined in this manner, by the use of the lowest seven-day snut-in pressure in the pool which is determined to be accurate. In other words, no other reservoir conditions affecting that pressure. And the pool average working pressure be put in the deliverability formula to determine what the multiplier is under those conditions, and that no multiplier should be used higher

DEA.RNLEY-MEIER REPORTING SERVICE, Inc.

than that.

Do your proposed rules provide for a revision of the Q test period of flow rate previously allowed?

Yes, they do. This has been brought on to some extent by the fact that our previous rules allowed that the seven-day flow rate not be any higher than 25% above any seven-day period for the previous fourteen-day conditioning period. Some operators, my understanding, actually took advantage of this to try to rest their wells a little bit during the conditioning period. However, the major reason for this change is that due to the higher pressure, Dakota wells again, and the ease of which it is to twist a valve an eighth of a turn and get your 25%. So we have lowered that to 10% rather than 25%.

Is the Initial Potential Memo which was issued by the Commission, that's Memo No. 1-56, incorporated into your proposed order?

Yes. it is. And that memo was brought about also, well, it was Memo 1-56, so it had to be the first memo of 1956, it was brought about by the advent of sand fracking. Previous to this our approved method of taking absolute open flows in the San Juan Basin was using a three-hour open flow through the tubing and taking a Peto test at the end of three hours. Of course, this aggravated the waste of gas and vented to the air

DEARNLEY-MEIER REPORTING SERVICE, Inc.

much more gas than this rule stipulates.

Also due to the high velocity of gas flowing unrestrictedly through two inch tubing, it cut out a lot of wellheads, and actually the wellhead cut out, the operator finds himself in pretty serious condition to stop the flow of gas.

So this memorandum was promulgated and suggested as the official means of taking absolute open flow tests for any well which was completed, and before it was connected to a pipeline system. These are only for information purposes and are not required, but are required to be reported and taken in this manner when they are taken.

This test, briefly, requires that the well be flowed through a 3/4" positive choke for a period of three hours, the pressure at the end of three hours taken and corrected through absolute.

Do your rules exempt the Barker Dome-Dakota Pool and the Pennsylvanian formation from testing requirements?

Yes, they do. At the time the previous order was written it was conceived that it might be necessary to prorate the Barker Dome-Dakota-Pennsylvanian, or Barker Dome-Pennsylvanian Gas Pool, and the Barker Dome-Dakota storage area. least we felt we needed some productivity information on the Barker Dome storage area, but due to the fact that Barker Dome is on its last legs now, and we have now determined that we have no

EARNLEY-MEIER REPORTING SERVICE, Inc.

CE, Inc.

CET CALLILY SANTA FE, N. M. PHONE 983.3971

particular use for availability information from the Barker

Dome storage area, I recommend that those testing requirements

be removed from the rule.

Q Mr. Utz, do you have any typographical changes or corrections that you would like to make at this time on your Exhibit No. 1?

A Yes. I'll start over at the first again. It would be the fourth paragraph down on page 2. Where we use the word "may subject the delinquent wells to the loss of one day's allowable for each day the test is late", the word may to me implies that any individual or agent of the Commission may at his own discretion subjugate a well to this penalty. I think if we are going to have a penalty it ought to be for everybody. I suggest that we use the word "will".

Q What other changes would you like to make at this time?

a Over on page 4, the second full paragraph down where we use the words "and/or", in other words, we're referring to over-range meter charts, and our location production equipment, the wording "and/or" from a legal standpoint has been attacked, and I think properly so, on numerous occasions, and I suggest that we strike the word "and" and say "or". The word "or" to me means either or both.

MR. NUTTER: How about the little mark, do you want to

LBUODERQUE, N. M. PHONE 243.6691

DEAKNLEY-MEIER REPORTING SERVICE, Inc.

FARMINGTON, N. M. PHONE 325-1182

SANTA FE. N. M. HONE 283.3971

JUEAN INLEY-MEIER

A

strike it too?

A Well, I think it would come out too, also. The same correction on the top of page 5 down about five lines where we use the word "and/or".

MR. NUTTER: What comes out there, the "and"?

A Same words, "and/". I believe I've already covered the one on page 6 where I suggested we delete "or when only one pressure is available." At the top of page 10 I would suggest we change the first paragraph to read as follows: "All charts relative to initial or annual deliverability tests, or photostats thereof, shall be made available to the Commission upon its request." These charts are all dated and I see no particular reason why we have to number the charts 1, 2, 3, 4. We know what dates the test was run and we can tag the charts by dates.

MR. NUTTER: What's your recommendation there then?

I just read it.

REPURTER: (Reading) "All charts relative to initial or annual deliverability tests, or photostats thereof, shall be made available to the Commission upon its request."

A Now, under subsection II, the heading of paragraph (A) where we say "Initial and/or annual deliverability test", we make the usual deletion of "and/". In the paragraph following that, in the last line of that paragraph beginning with the

DEARNLEY-MEIER REPORTING SERVICE, Inc.

18

words "the Pictured Cliffs, comma, and Farmington formations shall be point eight five." In other words, we've added the Farmington formation. By inference, with the heading "All Formations Other Than Mesaverde", that means that all other formations except the three mentioned here will have the slope of point seven five.

Now, under information tests for all formations, paragraph (A) under I, I would suggest that we add a sentence at the end of this paragraph to this effect: "This rule does not preclude the taking of information tests in addition to this test." Somehow or other someone interpreted this to mean that this was the only type of information test that could be taken, and that was not true. I believe that covers all my typographical errors.

(By Mr. Durrett) Mr. Utz, in your opinion will the adoption of these proposed gas well testing rules and procedures for the San Juan Basin area be in the interest of conservation of natural resources, protection of correlative rights, and prevention of waste?

Yes, I believe they will. I also believe they will give us more accurate deliverability test.

Now, for the purpose of clarification, on your sentence you just added on page 10 to the effect that additional tests could be taken, would that be at the option of the operator?

Certainly.

Not to be required?

No. As a matter of fact, this test mentioned here is not required.

MR. DURRETT: If the Examiner please, I would like to move the introduction of Exhibit No. 1, and that concludes our direct examination.

MR. NUTTER: Exhibit No. 1 will be admitted in evidence in this case.

> (Whereupon, Commission's Exhibit No. 1 was admitted into evidence.)

MR. NUTTER: Does anyone have any questions of Mr. Utz? Mr. Arnold.

CROSS EXAMINATION

BY MR. ARNOLD:

Mr. Utz, on page 10, Section II, the paragraph that you were just amending, didn't you also intend to add the exponent for the Dakota formation in that?

A No. As I explained, the heading "All Formations Other Than Mesaverde" takes care of the Dakota.

Q But the Dakota doesn't use a point eight five.

It simply means that it would use the same as the Mesaverde, which has been prescribed in the many previous pages. In other words, this whole sentence here from II down to Section (

*

has to deal with the testing of all formations other than Mesaverde.

Is it your point that nowhere does it actually say what the Dakota exponent is?

FIR. NUTTER: That's a point that is confusing to me.

Well, this is a wording "Except as provided in Special Pool Rules these tests shall be made and reported in accordance with the procedure set out in this order for the Mesaverde formation, provided however, that the exponent in for the Pictured Cliffs, Fruitland and Farmington formations shall be point eight five."

MR. NUTTER: Any further questions of Mr. Utz? BY MR. NUTTER:

I want to clarify some things in my own mind on this order. Getting over here to the first page of it, for example, in Section (B) of Roman numeral I, it says "the results of the test reported to the Commission". Where does the operator file the test results with the Commission, with the district office?

Well, he files them with the Aztec office, and I A believe that's covered somewhere in here, but I'm not real sure I can put my finger on it at the moment.

It's the district office, though?

14

Over on page 4 I presume that in Section 2 there of little (a) --

If I may interrupt, it's on "shall submit to the Commission's Aztec office", that is on page 2, next to the last paragraph.

That's applicable to the annual deliverability test. and I presume the initial deliverability tests, shut-in pressure tests?

If you will read down the next paragraph where it reads A "When an Initial Deliverability Test accomplished in accordance with annual testing procedures is to be used as an annual test the operator shall notify the Commission, and the gas transportation facility to which the well is connected, in writing during the fourteen day conditioning period for gold tool."

Now we are on page 4. Is there any special reason why Q subparagraph (a) there is outlined in quotation marks?

I don't think it is a quotation. I don't believe they ought to be there.

You wouldn't object to the deletion of the quotation Q marks?

DEARIVLEY-MEIER REPORTING SERVICE, Inc.

No, I wouldn't object at all. It's just one of those things you don't know how it got in there.

It is permissible in that paragraph to change the production valve and the choke setting if your production is overrunning your meter chart, or the location production equipment, so I presume that one type o' change only is permissible and that would be to curtail the rate of production, that would be a change downward only?

No, sir. We allow them, due to, well, it's mainly due to, now this was discussed among the staff to quite some degree. We allow them over on page 9, the last paragraph, to over-range the conditioning period by 10%. Now, we allowed that, as a matter of fact, we discussed not allowing any over-range at all. But if a tester has a well stabilized and a choke set for fourteen-day period and then something happens to the pipeline pressure where it goes down and causes the well to exceed that amount, we don't feel he ought to be caused to retest the well because it wouldn't be his fault. But if the pipeline pressure should go down to over-range him to more than 10%, then it would invalidate the test.

Supposing an operator got in a position, back on page 4, where his rate of production is under-ranging the chart, would he be permitted to open it up a little bit more?

Yes, I'm sure he would.

It would be a change in the flow rate for under-range and over-range of the chart as well as over-ranging the production equipment?

A This is the way the rule reads, Mr. Nutter: "Any test hereinabove provided for will be considered unacceptable if the average flow rate for the final 7-day deliverability test is more than 10 percent in excess of any consecutive 7-day average of the preceding two weeks."

In other words, for the seven days immediately preceding the flow period he cannot over-range. He has to have seven consecutive days of flow.

At a given rate?

Now, on page 5, well, that's the same question, up at the top of (B) there on the changing of the choke setting?

A Yes.

Now, down here on page 5, the third paragraph down, you refer to instantaneous pressures. Are the instantaneous pressures actually defined, and just exactly what pressures are those instantaneous pressures?

Well, we quibbled around over that wording too. As we know from a practical standpoint, you can't take three

DEARNLEY-MEIER REPORTING SERVICE,

instantaneous pressures with one deadweight gauge. We mean when you go on the lease or meter set to take pressures, that you shall take all three pressures as rapidly as it's possible to take them.

Now, that isn't spelled out in so many words here. would also apply to the instantaneous flowing pressures down on the last line on that page?

Yes.

Over on page 6, when we say here that if the shut-in pressure is determined by the Commission to be abnormally low, then one of these three alternate methods may be used?

À Yes.

When and by what procedure will the Commission determine the pressure to be abnormally low?

When a pressure in an area is lower than the contour pressure would show, or by experience he would know that it was substantially lower than the average pressures in the area.

How will the Commission notify the operators that the pressure there is abnormally low?

If the operator sends the test in to the district office, his notification will be either by letter or note on the test returned to the operator.

Or possible retest?

Yes, or use another pressure.

For the calculation of the test?

Yes. The chances are pretty good that he'll already have that other pressure to use and won't have to retest.

Now, on this first alternative, a Commission designated value, you mentioned that the Commission would have a pressure contour map?

It's our intention to contour the shut-in pressures on each pool. Not only for purposes of the testing, but for other information purposes.

When will that be available, do you have any idea at this time?

That will be available probably sometime in January or February at the latest when all the previous test information is in.

I see. Now, on page 7, in the third full paragraph down, the last sentence says "The volume used in this calculation shall be corrected to New Mexico Oil Conservation Commission standard conditions." Are the standard conditions actually innumerated anywhere in this order? Would they be the conditions in the definition of D deliverability on page 9? The 15.025 and the sixty degrees are the standard conditions, isn't that right?

Yes, they are. I believe they, that would include all necessary standard conditions. They're outlined in Back Pressure

Manual.

On page 8, the fourth paragraph, where it states that The use of tables for calculating rates of flow from integrator readings, which do not specifically conform to New Mexico Oil Conservation Commission Back Pressure Test Manual may be approved for determining the daily flow period rates of flow upon a showing that such tables are appropriate and necessary." Now, what procedure would be followed to show that the tables are appropriate and necessary?

Well, several years and I administratively approved, and I think that paragraph would give me the authority to administratively approve El Paso's tables, for example. The way I made a determination as to whether they were applicable or not, I used their tables and made some calculations and came out with the same answer as ours.

So. if the operator --

All the factors are in a little different form, but A they get the same answer.

So, by this we would presume that the operator would show you that the tables are appropriate and necessary?

Yes, sir. A

At their tables. Would the same apply also on page 9 in the second paragraph from the bottom where it says that "The

DEARNLEY-MEIER REPORTING SERVICE,

13

limiting value of multiplier may be exceeded only after the operator has conclusively shown to the Commission", and how would he show and who would he show?

Well, it was my intention that he show the district office those matters pertaining to the test, they're on the ground, they are in a better position to analyze them than I am. The chances are if it's somewhat of an exceptional situation I will be consulted before the decision is made.

MR. NUTTER: Does anyone else have any questions of Mr. Utz? You may be excused.

(Witness excused.)

MR. NUTTER: Do you have anything further, Mr. Durrett? MR. DURRETT: I have some statements I would like to read into the record at this time. The first statement is a statement I have been authorized to read on behalf of Pan American Petroleum Corporation reading as follows: "Pan American Petroleum Corporation concurs with the amendment as proposed by Mr. Utz and recommends it's adoption by the Commission."

I would like to read a portion of the letter from Continental Oil Company. This letter is quite lengthy, so I will only read pertinent parts of it and ask the Examiner to take administrative notice of its contents as it appears in the file, for what it's This reads "Case No. 2695. The use of the word "static" worth.

DEARNLEY-MEIER REPORTING SERVICE, Inc.

when describing the pressure obtained during a flow period, may better be described by substitution of the word "stabilized". Reading from another paragraph in the letter, "The definition of Deliverability Pressure as offered on the bottom of Page 8 is difficult to interpret and should be explained more clearly."

Another paragraph in the letter, a portion of it reads as follows: "Section "C" on Page 10 should be expanded to indicate that tests other than One-point Back Pressure Test may be run for information purposes at the option of the operator, eg. Fourpoint Back Pressure and Isochronal Tests." "The information obtained from a One-point Test is limited."

I'm skipping a portion of the letter now and reading down lower. "In these remote areas, some distance from existing gas production and gas sales facilities, where gas reserves or gas deliverabilities are questionable, provisions should be made for allowing testing by a method or methods selected by the operator. For this reason we recommend the Rule be modified to permit a seven day period in which the operator may run such tests as he deems necessary." This letter is signed by R. E. White, Division Superintendent, Production Department, and was received by the Commission on November 7.

I would like to state also for the record that I believe that the requirement or the suggestion in this letter as to

ALBIJOUE PHONE

DEARNLEY-MEIER REPORTING SERVICE, Inc.

*

optional test by the operator was covered by Mr. Utz.

MR. UTZ: May I make a comment on those suggestions? MR. NUTTER: Yes, sir.

MR. UTZ: In regard to the use of the word "static", I would object to eliminating it from the thing due to the fact that $\boldsymbol{P}_{\boldsymbol{w}}$ is actually a static pressure, and \boldsymbol{I} support that contention by the fact that better brains than I have promulgated the Interstate Gil Compact Manual and they describe $P_{\overline{W}}$ as static column wellhead pressure.

As to his other suggestion as to the information tests, I believe the paragraph that I added on page 10 would cover that.

MR. NUTTER: Do you have anything further, Mr. Durrett?

MR. DURRETT: No, sir, that's all I have.

MR. NUTTER: Does anyone have anything they wish to offer in the case?

MR. KEYES: Keyes speaking on behalf of Tidewater. Still on page 6, it says seven day on both the tubing and casing when communication exists between the two strings. "The high of such pressures shall be used as P_c in the deliverability calculation." We feel that there's a possibility by using this that a well could be hurt because of liquids, a well that is managed correctly, produced, looked after, and you will have to blow that thing manually or use an intermitter on it, and when you use

DEARNLEY-MEIER REPORTING

a higher pressure on your deliverability calculation, it's going to lower your calculated deliverability, and it could possibly lower that calculated deliverability quite a bit lower than what the well is capable of producing. There's some argument or discussion that where you do have a real low pressure well that is taken care of in the subsequent 1, 2 and 3. Where the Commission, if they feel that you are using the wrong pressure, they have the right to change that.

I can see where you are working taking care of wells and testing those wells that you will come up with a calculated deliverability quite a bit lower than what the well is capable of producing.

I have three letters I would like to read into the record. "For and on behalf of A. K. Barbour and Associates, would you please register our objection to the 4th paragraph on page 6 of your proposed revision of Orders R-333-C and D and R-333-E, relating to the seven day shut in pressure. It is our belief that the use of the highest shut-in pressure would result in a decrease of the calculated deliverability of the well. Yours very truly" by Fred Howser, Attorney.

I have another one here. "I have read your Oil Commission proposed revision of order R-333C and D and R-333E. The only revision that I am against appears in the fourth paragraph on

DEARNLEY-MEIER REPORTING SERVICE, Inc.

SANTA FE, N. B PHONE 983-39

PHONE 243.6691

page 6, where it states: 'The seven-day (7) shut-in pressure shall be measured on both the tubing and the casing when communication exists between the two strings. The high of such pressures shall be used as P_c in the deliverability calculation. Using the highest shut-in pressure would decrease the calculated deliverability of the well. Yours very truly, J. R. Abraham."

Third one, "We would like to be placed on record as opposing fourth paragraph of page 6 of proposed revision of orders R-333-C and D, and R-333-E; wherein the higher of shut-in casing and tubing pressure will be used in calculating $P_{\rm C}$ in deliverability." Tidewater Oil Company, R. N. Coe, District Production Manager.

MR. NUTTER: Does anyone have anything further?
We will take the case under advisement. Mr. Woodruff.

MR. WOODRUFF: Norman Woodruff, representing El Paso
Natural Gas Company. El Paso Natural Gas Company concurs in the
recemmendations of Mr. Utz considering that the tests that we will
receive will be more accurate and resulting in a more equitable
distribution of the allowable between wells in the pool, and urges
that the Commission adopt such recommendation.

MR. NUTTER: Thank you. Anybody else? we will take the case under advisement and the hearing is adjourned.

FARMINGTON, N. W. PHONE 325.1182 DEARNLEY-MEIER REPORTING SERVICE,

144 1.4

<u>. 1. 1</u> is 4

1745

STATE OF NEW MEXICO SS COUNTY OF BERNALILLO)

I, ADA DEARNLEY, Court Reporter, do hereby certify that the foregoing and attached transcript of proceedings before the New Mexico Oil Conservation Commission at Santa Fe, New Mexico, is a true and correct record to the best of my knowledge, skill and ability.

IN WITNESS WHEREOF I have affixed my hand and notarial seal this 12th day of December, 1962.

my commission expires: June 19, 1963.

> I do hereby certify that the foregoing is a complete record of the proceedings in rations of Sace N

and Skaminer Conscrivation Commission

BEFORE THE OIL CONSERVATION COMMISSION OF THE STATE OF NEW MEXICO

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION OF THE STATE OF NEW MEXICO FOR THE PURPOSE OF CONSIDERING:

CASE NO. 1378 Order No. R-333-E Amends R-333-C & D

APPLICATION OF EL PASO NATURAL GAS COMPANY FOR AN ORDER REVISING, AMENDING OR DELETING CERTAIN PORTIONS OF ORDER R-333-C & D PERTAINING TO GAS WELL TESTING PROCEDURE APPLICABLE TO GAS WELLS COMPLETED IN SAN JUAN, RIO ARRIBA AND MCKINLEY COUNTIES, NEW MEXICO.

ORDER OF THE COMMISSION

BY THE COMMISSION:

This cause came on for hearing at 9 o'clock a.m. on February 13, 1958, at Santa Fe, New Mexico, before the Oil Conservation Commission of New Mexico, hereinafter referred to as the "Commission."

NOW, on this <u>28th</u>. day of February, 1958, the Commission, a quorum being present, having considered the evidence adduced and being fully advised in the premises,

FINDS:

- (1) That due notice of the time and place of hearing and the purpose thereof having been given as required by law, the Commission has jurisdiction of this case and the subject matter thereof.
- (2) That there is need for a number of amendments to Order R-333-C & D, heretofore entered by the Commission, said order outlining the gas testing procedure of gas wells completed in San Juan. McKinley and Bic Arvilla Countles, New Mexico.
- (3) That the following amendments should be adopted, in the interests of conservation.

IT TS THEREFORE ORDERED:

- (1) That the gas well testing period of April 1 through October 31 as established by Order No. R-333-C & D be and the same is hereby amended to read. "February 1 through December 15."
- 12 The Sal-Sections II and III of Section A of Order R-333-C & D he and the same the bereby amended to read as follows:

-2-Case No. 1378 Order No. R-333-F (Amends R-333-C & D)

II. ANNUAL DELIVERABILITY AND SHUT-IN PRESSURE TESTS:

Annual Deliverability and Shut-In Pressure Tests of all producing gas wells are required to be made during the period from February 1 through December 15 of each year.

All wells making connection to a gas transportation facility between October 31 and December 21 of any calendar year shall be tested during the following annual testing period. All wells making connection to a gas transportation facility between January 1 and February 1 of any calendar year shall be tested during the testing period of that year.

An Initial Deliverability Test accomplished in accordance with Section B, Sub-paragraph 1, Paragraph (A), Subparagraph 1, may be used as an annual test when the initial connection to a gas transportation facility is made between February 1'and October 31 of the test year.

All Annual Deliverability and Shut-in Pressure Tests required by this order shall be filed with the Commission and with the gas transportation facility to which the well is connected within thirty (30) days after the end of the month during which the test is completed; provided however, that all tests completed during the period from December 1 through December 15 shall be reported not later than January 10 of the following year. Failure to file the required tests within the time prescribed above will subject the delinquent wells to cancellation of allowable.

III. SCHEDULE OF TESTS:

(A) ANNUAL DELIVERABILITY TESTS

At least thirty days (30) days prior to the beginning of the test period each gas transportation facility shall to the Commission's Aztec Office (1000 Rio Brazos Road) submit a complete list of wells connected to its system, said wells to be grouped according to the pools in which they are located. All undesignated wells shall be listed separately.

At least 30 days prior to the beginning of the test period the gas transportation facilities receiving gas from wells to be tested shall, in cooperation with respective operators, submit to the Commission's Aztec office a testing schedule for the Annual Deliverability and Shut-in Pressure Tests for all wells connected to their respective pipeline systems which are to be tested during the succeeding two months. Five copies of the schedule shall be furnished to the Commission and one copy shall be furnished to each operator concersed. A similar schedule shall be submitted at least 20 days prior to the beginning of each two-month testing interval. Such schedule shall indicate the pool, operator, lease, well number and least on of each well. The gas transportation facility making the schedule of tests shall be notified immediately by any operator unable to take such testing as scheduled.

When an Initial Deliveracility Test accomplished in accordance to Section 1, Sub-section 1, Paragraph (A), Sub-paragraph 1 is to be used to consected to a gas transportation facility

-3-Case No. 1378 Order No. R-333-E (Amends R-333-C & D)

during the period between February 1, and October 31, then the operator shall notify the Commission in writing during the fourteen day conditioning period for said test,

In the event a wall is not tested in accordance with the test schedule, the well shall be re-scheduled for testing, and the Commission shall be notified of such fact in writing during the fourteen day conditioning period for said test.

(3) That the sixth sub-paragraph of Paragraph (B) of Sub-Section I of Section B of Order No. R-333-C & D be and the same is hereby amended to read as follows:

Orifice meter charts shall be changed and so arranged as to reflect upon a single chart the flow data for the gas from each well for the full seven-day deliverability test period; except that no tests shall be voided if satisfactory explanation is made as to the necessity for using test volumes through two chart periods. Corrections shall be made for pressure base, measured flowing temperature, specific gravity, and supercompressibility, provided however, that if the specific gravity of the gas from any well under test is not available, then and in that event an estimated specific gravity may be assumed therefor, based upon that of gas from nearby wells, the specific gravity of which has been actually determined by measurement.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

STATE OF NEW MEXICO OIL CONSERVATION COMMISSION

EDWIN L. MECHEM, Chairman

MURRAY E. MORGAN, Member

A. L. PORTER, Jr., Member & Secretary

SEAL

170/6

TESTIMONY FOR CASE 2695 - REVISION OF ORDERS R-333-C, D & E

- Clarifies the Rule as to penalty for delinquent tests. One day allowable for each day the test is late on a well.
- 2. Clarifies responsibility of scheduling tests.
- 3. Rather than 45 days * 15 days extension for test or retest after workover or initial connection allow 60 days without an extension of time.
- 4. The proposal now recognizes the fact that some wells must be choked in order not to overrange the charts and/or production equipment. Dakota wells in particular.
- 5. Defines critical flow when well is restricted between W. H. and meter, and outlines procedure to calculate tests when critical flow exists.
- 6. Proposes that shut-in pressure on wells which cannot have both casing and tubing measured and pressures which appear to be low due to liquids in the well bore be by one of 3 methods cutlined.

5.I.

- 7. Also proposes that the higher pressure of the casing or tubing be used in the deliverability colculation.
- 8. Use a pool deliverability pressure instead of 50% of individual
- well 7 day Shut-in pressure. This pressure to be determined by Oil Conservation Commission by using the average pool shut-in pressure and average static wellhead pressure.
- 9. It is proposed that a limiting multiplier be used in order that wells which report a very low shut-in pressure or cannot achieve a 25% drawdown will not have an unrealistic deliverability number.
- 10. Lowered % of test period flow rate as compared to preflow period rate from 25% to 10%.
- 11. Incorporated the Initial Potential memo into order. 1-56
- 12. Deleted testing requirements in Barker Dome Dakota and Penn.

BEFORE THE OIL CONSERVATION COMMISSION OF THE STATE OF NEW MEXICO

IN THE MATTER OF THE HEARING CALLED BY THE OIL CONSERVATION COMMISSION OF THE STATE OF NEW MEXICO FOR THE PURPOSE OF CONSIDERING:

CASES NO. 882) Consolidated 941)
Order No. R-333-C and D
(Supersedes R-333-B)

THE APPLICATION OF THE OIL
CONSERVATION COMMISSION UPON
ITS OWN MOTION FOR AN ORDER
REVISING, AMENDING OR DELETING
CERTAIN PORTIONS OF ORDER R-333-B
PERTAINING TO GAS WELL TESTING
PROCEDURE APPLICABLE TO GAS WELLS
COMPLETED IN SAN JUAN, RIO ARRIBA
AND McKINLEY COUNTIES, NEW MEXICO.

ORDER OF THE COMMISSION

BY THE COMMISSION:

This cause having come on for hearing at 9 o'clock a. m. on August 17, 1955, at Santa Fe, New Mexico, before the Oil Conservation Commission of New Mexico, hereinafter referred to as the "Commission".

NOW, on this 13th., day of October, 1955, the Commission, a quorum being present, having considered the records and testimony adduced and being fully advised in the premises,

FINDS:

- (1) That due notice of the time and place of hearing and the purpose thereof having been given as required by law, the Commission has jurisdiction of this case and the subject matter thereof. $C_1D+\overline{F}$
- (2) That there is need for a number of additions to and revisions of Order R-333-8, heretofore entered by the Commission, said order outlining a gas testing procedure of gas wells completed in San Juan, McKinley and Rio Arriba Counties, New Mexico.
- (3) That the following rules and regulations should be adopted, and that said rules and regulations are in the interests of conservation.

IT IS THEREFORE ORDERED:

That the following Special Rules and Regulations governing gas well testing in the San Juan Basin (Counties of San Juan, Rio Arriba and McKinley, New Mexico,)

Order No. R-333-C and D

C, D+ E

superseding the rules and regulations contained in Order No. R-333-B, be and the same hereby are promulgated and adopted as an exception to the general statewide rules and regulations of this Commission relating to gas well testing procedures, Rules (401 et seq.):

GAS WELL TESTING RULES AND PROCEDURES FOR SAN JUAN BASIN AREA

SECTION A. TYPE OF GAS WELL TESTS REQUIRED:

I. THE INITIAL DELIVERABILITY AND SHUT-IN PRESSURE TESTS FOR NEWLY COMPLETED GAS WELLS.

- (A) Immediately upon completion of each gas well in San Juan Basin, a shut-in pressure test of at least 7-days duration shall be made.
- (B) Within 45 days after a well is connected to a gas transportation facility the well shall be tested in accordance with Section B, Subsection I, Paragraph (A) of this order, and the results of the test reported to the Commission. An operator may request an extension of time in which to accomplish this test provided such request is made in writing to the Commission's Aztec Office before the expiration of the 45 day period following connection of the well to a gas transportation facility. Such request for extension must be for substantial reason and approved by the Commission, or its duly authorized representative. Said extension shall not be for more than fifteen days.
 - (C) Any tests accomplished for information purposes prior to pipeline connection shall not be recognized as an official test for the establishment of allowables.

II. ANNUAL DELIVERABILITY AND SHUT-IN PRESSURE TESTS:

Annual deliverability and shut-in pressure tests of all producing gas wells are required to be made during the period from April 1 through October 31 of each year.

All wells connected to a pipeline system between November 1 and December 31, or any calendar year shall be tested during the following annual testing period. All wells connected to a pipeline system between January 1 and April 1 of any calendar year shall be tested during the testing period of that calendar year.

An Initial Deliverability Test accomplished in accordance with Section B, Subsection I, Paragraph (A), Subparagraph 1, may be used as an annual test when the test is taken on wells connected to a transportation facility during the regular annual testing season from April 1, to October 31.

III. SCHEDULE OF TESTS

change to place respond in Confeer

(A) ANNUAL DELIVERABILITY TESTS

On or before February 15 of each year, the pipeline companies receiving gas from wells to be tested shall, in cooperation with respective operators, submit a

testing schedule for the annual deliverability and shut-in pressure tests for all well's connected to their respective pipeline systems as of February 1 of the year for which the schedule is applicable; such test schedules shall be filed promptly with the Commission for approval, and if approved, the Commission shall furnish each operator, as identified by lists of names and addresses furnished by the respective pipeline companies, with a copy of such schedule as approved by the Commission, or a part thereof pertinent to such operator's wells, on or before March 15, of each year.

Such schedules shall be filed with the Commission for each Gas Pool as designated by the New Mexico Oil Conservation Commission listing under the heading of each pool the operator, lease, well number and location of each well. Should the pipeline company elect to file schedules by areas then the above listed information shall be listed under the heading of each area in the order listed above.

All we'lls connected to a pipeline system during the period of February 1 to October 31/both inclusive, of any year shall be scheduled for testing during the testing period for that particular year. Then and in that event the pipeline in cooperation with the operator shall notify the Commission in writing at least (10) ten days before the Commencement of the conditioning period for any tests.

Provided however, that when an Initial Deliverability Test accomplished in accordance with Section B, Subsection I, Paragraph (A), Subparagraph I is to be used as an annual test for weals connected to a gas transportation facility during the period between April 1 and October 31, then the operator shall notify the Commission in writing at any time during the fourteen day conditioning period.

In event charges for substantial reasons are necessary in the annual test schedule, the Commission shall be notified (10) ten days before tests are scheduled to commence. lity of all journators to delermine

(B) DÉLIVERABILITY RETESTS.

An operator may retest the deliverability of a well at any time for substantial reason by the notification to the Commission (10) ten days before the retest is scheduled to commence. Such notification shall consist of scheduling the well as required for the annual deliverability test in subsection III, Paragraph A, above. Such retest shall be subject to the approval of the Commission, and conducted in conformance with Section B. Subsection Fafagraph (B) of this order. The Commission may require the retesting of any well at its discretion by the notification of the operator to schedule such retest.

The requirements for Initial and Annual Deliverability Tests and the notification and scheduling of such tests which apply to newly completed wells shall also apply to reworked or recompleted wells.

IV. WHO MAY WITNESS TESTS:

Any initial or annual deliverability and shut-in pressure test may be witnessed by any or all of the following: an agent of the Commission, an offset operator, a representative of the pipeline company taking gas from an offset operator, or a representative of a pipeline company taking gas from the well under test.

Order No. R-333-C and D

Deliverability tests required hereinabove in Subsection I and II of this section shall determine the calculated deliverability of each gas well, which shall be reported to the Commission by converting actual deliverability against existing line pressures to the calculated deliverability at a pressure equal to fifty (50) percent of the shut-in pressure of each well in the manner hereinafter specified below. Such calculated deliverability so determined, and hereinafter so referred to, shall not be considered as the actual deliverability of any well into a gas transportation facility, but shall be used by the Commission as an index to determine the well's ability to produce at assumed static wellhead working pressures, as compared to other wells in the produce like conditions.

SECTION B. PROCEDURE FOR TESTS:

The several known gas producing formations of the San Juan Basin represent a variety of testing situations, and each is treated separately.

I. MESAVERDE FORMATION:

(A) INITIAL DELIVERABILITY AND SHUT-IN PRESSURE TEST.

- 1. Within (45) forty five days after a newly completed well is connected to a gas transportation facility the operator shall accomplish a deliverability and shut-in pressure test in conformance with Section E, sub-section I, paragraph (B) of this order and stop the much section I, paragraph (B) of this order and stop the much section I.
- 2. In the event that testing a newly completed well in accordance with paragraph 1 above, is impractical, the operator may accomplish a deliverability and shut-in pressure test in the following manner:
 - a. A seven or eight day production chart may be used as a basis for determining the wells deliverability providing the chart so used is preceded by at least (14) fourteen days continuous production. The well shall produce unrestricted through either the casing or tubing, but not both, into a pipeline during these periods.
 - b. A shut-in pressure of at least seven days duration shall be taken. This shall be the shut-in test required in Section A, subsection I, Paragraph (A).
 - c. The average daily static meter pressure shall be determined in accordance with Section B, subsection I, Paragraph (B). This pressure shall be used as P_t in calculating P_w for the Deliverability Calculation.

- d. The daily average rate of flow shall be determined in accordance with Section B, Subsection I, Paragraph (B), of this order.
- e. The static wellhead working pressure (Pw) shall be determined in accordance with Section B, subsection I, paragraph (B), of this order.
- f. The deliverability of the well shall be determined by using the data determined in paragraphs a through f, above, in the deliverability formula in accordance with Section B, subsection I, paragraph (B), of this order.
- g. The data and calculations for the above paragraphs a through f shall be reported to the Commission upon the blue colored Form C-122-A and filed in triplicate with the Commission within the forty-five day period after connection of the well. Form C-122-A shall be signed by the operator or an agent designated by the operator.

(B) THE ANNUAL DELIVERABILITY AND SHUT-IN PRESSURE TESTS.

These tests shall be taken by unrestrictedly producing the well into the pipeline through either the casing or tubing, but not both. The daily flowing rate shall be determined from an average of seven (7) consecutive producing days, following a minimum conditioning period of fourteen (14) consecutive days production. The first seven (7) days of said conditioning period shall have not more than one (1) interruption, which interruption shall be no longer than 36 hours continuous duration. The eighth to fourteenth days, inclusive, of said conditioning period shall have no interruptions whatsoever. All such production during the fourteen (14) day conditioning period plus the seven (7) day deliverability test period shall be a static wellhead working pressures not in excess of seventy-five (75) per cent of the previous annual seven (7) day shut-in pressure of such well if such previous annual shut-in pressure information is available; otherwise, the seven (7) day initial deliverability shut-in pressure of such well shall be used.

In the event that existing line pressure does not permit a drawdown as specified above, with the well producing unrestrictedly into the pipeline, the operator shall request an exception to this requirement on the Form C-122-A. The request shall state the reasons for the necessity for the exception.

The static wellhead working pressure (P_w) of any well under test shall be the calculated seven (7) day average static tubing pressure if the well is flowing through the casing; or the calculated seven (7) day average static casing pressure if the well is flowing through the tubing. The static wellhead working pressure (P_w) shall be calculated by applying the tables and procedures as set out in New Mexico Oil Conservation Commission manual entitled "Method of Calculating Pressure Loss Due to Friction in Gas Well Flow Strings". This manual is more specifically known as release 4-G-9-FLT-NW, a copy of which is attached hereto and made a part hereof.

-6-Order No. R-333-C and D

To obtain the shut-in pressure of a well under test the well shall be shut-in immediately after the seven (?) day deliverability test for the full period of seven (?) consecutive days. Such shut-in pressure shall be measured within the next succeeding twenty-four (24) hours following the seven (?) day shut-in period aforesaid. The seven (?) day shut-in pressure shall be measured on the string through which the well flowed during the conditioning and seven (?) day flow period.

All wellhead pressures as well as the flowing meter pressure tests which are to be taken during the seven (7) day deliverability test period, as required hereing there, shall be taken with a dead-weight gauge. The dead-weight readings taken shall be recorded on the flow chart in psia. The time and point on chart flowing pressure curve at which these readings are taken shall be indicated with an arrow.

Orifice meter charts shall be changed, and so arranged as to reflect upon a single chart the flow data for the gas from each well for the full seven day deliverability test period. Corrections shall be made for pressure base, measured flowing temperature, specific gravity and supercompressibility (superexpansibility), provided however, that if the specific gravity of gas from any well under test is not available, then and in that event an estimated specific gravity may be assumed therefor, based upon that of gas from nearby wells, the specific gravity of which has been actually determined by measurement.

The seven (7) day average flowing meter pressure shall be calculated by taking the average of all consecutive 2-hour flowing meter pressure readings as recorded on the seven (7) day flow period chart (test chart #3). The pressure so calculated shall be used in calculating the wellhead working pressure, determining supercompressibility factors and calculating flow volumes.

The seven (7) day flow period volume shall be calculated from the integrated readings as determined from the flow period orifice meter chart, (Chart #3). The volume so calculated shall be divided by the number of testing days on the chart to determine the average daily flow period rate of flow. The flow chart shall have legibly recorded a minimum of seven (7) days and a maximum of eight (8) flowing days to be acceptable for test purposes. The volume used in this calculation shall be corrected to New Mexico Oil Conservation Commission standard conditions.

The average flowing meter pressure for the seven (7) day or eight (8) day flow period and the corrected integrated volume shall be determined by the purchasing company that integrates the flow charts and furnished to the operator or testing agency when such operator or testing agency requests such information.

The daily average integrated flow period rate of flow shall be corrected for meter error by the multiplication by a correction factor determined by dividing

.1

Order No. R-333-C and D

the square root of the chart flowing meter pressure psia into the square root of the dead-weight flowing meter pressure psia,

The daily volume of flow as determined from the flow period chart (Test Chart #3) integrator readings shall be calculated by applying the Basic Orifice meter formula.

Where:

Metered volume of flow MCFD @ 15.025, 60°F. and

.60 specific gravity.

The 24 hour basic orifice meter flow factor as taken from New Mexico Oil Conservation Commission zelo 14C 12 13 and corrected for flowing temperature, gravity and supercompressibility.

Daily average differential meter pressure from flow period chart.

Daily average flowing meter pressure from flow period p_f

The basic orifice meter flow factors, flowing temperature factor and specific gravity factor shall be determined from New Mexico Oil Conservation Commission release No. "4G-12-BPT State". The four tables in said release are based on "gas measurement committee report No. 2" (Revised 1948) of the American Gas Association, New York 17, New York. A copy of said New Mexico Oil Conservation Commission release is attached hereto and made a part hereof.

The daily flow period average corrected flowing meter pressure, paig, shall be used to determine the supercompressibility factor. Correction shall be made for supercompressibility (deviation from Boyle's law) for flowing meter pressures in excess of 100 psig by the use of Simplified Supercompressibility Tables, compiled from C. N. G. A. Bulletins TS-402 and TS-461, published by John P. Squier Company, Dallas, Texas. These tables have been reproduced by specific permission from John P. Squier Company a copy of which is attached hereto and made a part hereof.

When supercompressibility (superexpansibility) correction is made for a gas containing either nitrogen or carbon dioxide in excess of 2 per cent, the supercompressibility factors of such gas shall be determined by the use of Table V of the above mentioned TS-402 for pressure 100-500 psig or Table II, TS-461 for pressures in excess of 500 psig.

Order No. R-333-C and D

The use of tables for calculating rates of flow from integrator readings, which do not specifically conform to New Mexico Oil Conservation Commission release "4-G-12-BPT-State", may be approved for determining the daily flow period rates of flow upon a showing that such tables are appropriate and necessary.

Deliverability pressure, as used herein for Mesaverde production, is a defined pressure applied to each well and used in the process of comparing the abilities of wells in this formation to produce at static wellhead working pressures equal to life (50) per cent, of the seven (7) day shut-in pressure of the respective individual wells.

The deliverability of gas at the "deliverability pressure" of any well under test shall be calculated from the test data derived from the tests hereinabove required by use of the following deliverability formula:

$$D = Q$$

$$\begin{pmatrix} p^2_c & p^2_d \\ p^2_c & p^2_w \end{pmatrix}$$

WHERE:

D = Deliverability at the deliverability pressure, (P_d) MCF/da, (at Standard Condition of 15.025 psia and 60 °F).

Q and Daily flow rate in MCF/da, at wellhead pressure (Pw)

Pc = 7-day shut-in seeing for subing) wellhead pressure,
psia, determined in accordance which recation B,
subsection I, Paragraph B).

Pd = Deliverability pressure, Palf of the individual well-7-day shut-in pressure, Pc, poia. as defined above.

Pw = Average static wellhead working pressure, as determined from 7-day flow period, psia and calculated from New Mexico Oil Conservation Commission Pressure Loss Due to Friction Tables.

(Casing pressure if flowing through the cubing, or tubing pressure if flowing through the casing).

Average pool slope of back pressure curve (.75) for Mesaverde wells).

Any test hereinabove provided for will be considered unacceptable if the average flow rate for the final 7 day deliverability test is 50 per cont in excess of any consecutive 7-day average of the preceding two weeks. "A deliverability test" not meeting this requirement shall be retested.

The annual deliverability and shut-in pressure tests as required hereinabove shall be reported upon Commission Form C-122-A and filed in triplicate, with the Commission within the month next after completion of such tests. Form C-123-A shall be signed by the operator or agent designated as the operator.

All charts relative to annual deliverability tests shall be identified by the words "Test Chart No. 1" (2, 3, 4, etc.), and any or all charts or photostats thereof shall be made available to the Commission upon its request.

II. PICTURED CLIFFS FORMATION:

(A) INITIAL DELIVERABILITY AND SHUT-IN PRESSURE TEST:

Same as prescribed for Mesaverde formation; see Section B, subsection I, Paragraph (A).

(B) ANNUAL DELIVERABILITY AND SHUT-IN PRESSURE TESTS:

In all respects the deliverability and shut-in pressure tests of wells in the Pictured Cliffs formation shall be made in conformity with the procedures set out in Section B, Subsection I, paragraph (B) of the Mesaverde formation procedures, except that in the back pressure formula, the exponent "n" shall have the value of point eighty-five (.85).

III. FRUITLAND FORMATION:

(A) All initial and annual deliverability and shut-in pressure tests of gas wells producing from the Fruitland formation shall be identical in all respects to those requirements and procedures hereinabove set out and required for the Pictured Cliffs formation in Section B, Subsection II, paragraphs (A) and (B).

IV THE DAKOTA FORMATION:

All tests of Dakota wells shall be in conformity with requirements and procedures provided hereinabove for the Mesaverde formation, except as follows:

(A) BARKER DOME - DAKOTA: (Storage Area)

1. ÎNITIAL OPEN FLOW POTENTIAL TEST:

An average "pool slope", based upon bottom-hole conditions, shall be established by the Commission after consideration of data to be provided by the operators; these data shall be based upon tests taken in conformity with the conventional back pressure method, indicated in Commission Rule 401. This "slope" shall be applied to each well in the Barker-Dome Dakota Area, as if such slope were the actual performance back pressure slope of each such well, in the following manner:

This back pressure slope so established shall be plotted through a point predetermined by one stabilized flow rate at a static wellhead working pressure not in excess of seventy-five (75) per cent of the seven (7) day shut-in pressure of such well.

The flowing rates (Q) shall be corrected for pressure base, measured flowing temperature, specific gravity and supercompressibility, by the use of methods of calculation and tables hereinabove referred to and approved in Section B, Subsection I, paragraph (B), of the Mesaverde procedures.

A seven (7) day shut-in pressure test shall be made for each well in the Barker Dome-Dakota Area, provided however, that where the shut-in period exceeds seven days such fact shall be reported to the Commission.

The values of the seven (7) day shut-in pressure (P_c) and the working wellhead pressure (P_w) shall be corrected to bottom hole conditions.

A schedule of tests shall be prepared by the transporter and approved by the Commission, and reports of such tests shall be signed by the operator or his designated agent and duly filed with the Commission, on Form C-122, the regular state—wide form.

2. ANNUAL OPEN FLOW POTENTIAL TEST:

This test shall be made of all wells producing from the Barker Dome-Dakota Storage Area by obtaining seven (7) day shut-in pressures of all Dakota wells, converting the same to bottom hole pressures (P_f) computing the squares of such bottom hole pressures, (P_f^2) and applying the same to the original average "pool slope" to obtain an adjusted open flow. If so desired as an alternate method an adjusted open flow may be computed from the following equation:

$$o_{f_2} = o_{f_1} \quad \left[\begin{array}{c} \left(P_{f_2}\right)^2 \\ P_{f_1} \end{array}\right]^n$$

WHERE:

Of Adjusted absolute open flow.

O₁₂ - Original absolute open flow.

Order No. R-333-C and D

P_f = New bottom hole shut-in (psia.)

Pf2 = Old bottom hole shut-in (psia.)

n = Slope of back pressure curve.

Tests of all wells in the Barker Dome-Dakota storage area shall be made during the period of April 1 through October 31 of each year and reports made to the Commission within the next succeeding month after test is made.

V. PENNSYLVANIAN FORMATION:

All tests of wells producing from the Pennsylvanian formation of the San Juan Basin Area shall be as follows:

(A) INITIAL OPEN FLOW POTENTIAL TEST:

Immediately after completion of each new well an absolute open flow shall be determined by the conventional back-pressure method indicated by Rule 401 of the Commission's Rules and Regulations.

Seven day shut-in pressures will be used in all cases, and, if for any reason the shut-in period exceeds seven days, then, the actual shut-in time shall be reported.

(B) \ ANNUAL OPEN FLOW POTENTIAL TEST:

This test shall be made of all wells producing from the Pennsylvanian formation of the San Juan Basin Area, and such tests shall conform in all respects with the procedure set out next above under initial open flow potential test or in the alternative, by obtaining a seven day shut-in pressure of each well and converting the same to bottom hole pressure (P_f) . The square of the bottom hole pressure (P_f) will be computed and applied to the original back ressure curve and an adjusted absolute open flow will be obtained.

If shut-in pressure time is in excess of seven (7) days, then the actual shut-in time shall be reported.

There is no objection to the use of an adjusted absolute open flow calculated from the equation as set out hereinabove under Dakota formation, Section B, Subsection IV, paragraph (A) - subparagraph 2.

-12-

Order No. R-333-C and D

All tests hereunder shall be made during the period from April I through October 31 of each year, and reported to the Commission upon requiar Form C-122 during the month succeeding the month in which the tests are made.

SECTION C. INFORMATION TEST FOR ALL FORMATIONS.

I. TYPE OF TEST:

(A) A pitot potential test may be taken on newly completed wells before their connection to a gas transportation facility. This test shall not be a required official test but may be taken for information purposes at the option of the operator. When taken, this test shall be made and reported as prescribed in paragraph (B) following.

(B) PITOT POTENTIAL TEST:

The pitot potential test shall be made after a minimum shut-in time of seven (7) days. The shut-in pressure shall be measured by the use of a dead-weight gauge. The rate of flow shall be determined by a pitot tube measurement after unrestricted flowing of gas to the air for a period of three (3) hours; the flow nipple shall be at least eight (8) diameters long. The pitot tube shall be constructed of one-eight (1/8) inch pipe (nominal diameter). Standard tables (Reids) will be provided by the Commission on request.

Any well completed with two-inch nominal size tubing (1.995 inside diameter) or larger shall be tested through the tubing. Any well completed with tubing smaller than two-inch nominal shall be tested through the casing.

(C) REPORTING OF TEST.

When the pitot potential test is taken the results shall be calculated as prescribed in the Commission's Manual of Tables and Procedure and reported to the Commission on Form C-122-B.

IT IS FURTHER ORDERED:

(1) That Form C-122-A entitled "Gas Well Test Data Sheet, San Juan Basin", a copy of which is attached hereto and made a part hereof, be, and the same hereby is approved in open form subject to minor modifications as experience may indicate and the same shall be used only for the area heretofore indicated, experience therefrom only the Burker Dome-Dakota storage area; and the Pennsylvanian formation, all within the said San Juan Basin.

(2) That this order shall modify Rule 1121 of the Rules and Regulations of the Commission only to the extent of requiring reports upon Form C-122, a copy of which is attached hereto and made a part hereof. Such Form C-122 is hereby approved in open form subject to minor changes and additions as experience may indicate necessary.

Order No. R-333-C and D

in the San Juan Basin Aream open form subject ment or me difficultion on experience, one of indicate.

(4) All testing agencies whether individuals, companies, pipeline companies or operators shall maintain a go of all tests accomplished by them individual testing. This log shall show the operator, lease, well never, section unit ferrantial field testing township, range and pool as defined by New Mexico Oil Conservation Commission, for each well tested. The log shall further show the date the flow period pressures (psia.) and shut-in pressures are measured and the values thereof. A copy of this log shall be made available to the Commission or a Commission representative at any time during any testing season. A copy of this log shall be filed with supervisor of District III, Box 697, Azicc, New Mexico, by the 10th of December following each testing season. A log form setting out the date required shall be furnished by the New Mexico Oil Conservation Commission to all testers, a copy of this form is attached hereto and made a part hereof.

LT IS FURTHER ORDERED:

That other formations in the San Juan Basin Area which may in the future be found to be productive will be provided with testing programs on the basis of formation characteristics.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

STATE OF NEW MEXICO
OIL CONSERVATION COMMISSION

JOHN F. SIMMS, Chairman

E. S. WADKER, Member

W.B. MACEY, Member and Secretary

SEAL

da/

Page 5A

Insert (1)

Instantaneous pressures shall be measured by deadweight gauge during the seven day flow period at the casing head, tubing head, and orifice meter and recorded along with the instantaneous meter chart static pressure reading.

When critical flow exists between the wellhead and orifice meter, the measured wellhead flowing pressure of the string thru which the well flowed during test shall be used as Pt when calculating the static wellhead working pressure (Pw) using the method established below.

Memo

From

10 11.62

A. R. Kendrick Engineer

There is a capy of the proposed 322 - F which is to re hashed rehash?"

We have discussed this with "Bake" and kainey.

Rainey may send your other has had more time to look at the entire order.

Ithe will be ready to liseurs the "thing" when you have time to look it over.

Memo

 \mathcal{P}_{rom}

A. R. Kendrick Engineer

To Elvis:

The like your words for decree I'm!

A sentence similar to the one we added might help make the order of Bakir idea is walle.

Memo

Gram

E. A. UTZ

to the second

Live rewritters the attached paragraph.
A aver of they have their these this

of seventy-five (75) per cent of the previous annual seven (7) day shut-in pressure of such well if such previous annual shut-in pressure information is available; otherwise, the seven (7) day initial deliverability shut-in pressure of such well shall be used.

In the event that existing line pressure does not permit a drawdown as specified above, with the well producing unrestrictedly into the pipeline, the operator shall request an exception to this requirement on the Form C-122-A. The request shall state the reasons for the necessity for the exception.

Instantaneous pressures shall be measured by deadweight gauge during the seven-day flow period at the casing head, tubing head, and orifice meter and recorded along with the instantaneous meter chart static pressure reading.

When a restriction, or a series of restrictions, to the flow of gas occurs between the wellhead and the orifice meter of sufficient magnitude to cause the ratio of the orifice meter pressure to the flowing string wellhead pressure to be 0.57 or less, it is possible for critical flow conditions to exist. To prove whether or not critical flow conditions exists, intermediate pressures are to be measured between the wellhead and the orifice meter (i.e. at the heater, or production unit, or separator, or dehydrator, or at each) to determine if at ANY restriction of flow the rate of the downstream pressure to the upstream pressure at this point is 0.57 or less. Critical flow does exist if this ratio of pressures is 0.57 or less.

When critical flow conditions exist, the flowing pressures, as required hereinabove, shall be measured during the last forty-eight (48) hours of the seven (7) day flow period. Pressure measurements are to be made at a sufficient number of intermediate points to determine if critical flow does or does not exist and these pressures shall be entered on Form C-122-A, immediately above line (a) and identified as "Flowing Separator Pressure ______psia."

When critical flow conditions exist, the actual measured wellhead flowing string pressure (either line a or b) shall be used as P_t (line i) when calculating the static wellhead working pressure (P_W) .

When critical flow conditions do not exist, the average wellheed flowing pressure (Pt) shall be determined by adding the meter error and friction loss to the seven day average meter pressure (line g).

FROM S	NY
() For Approval	l
() For Signature	
() Note and Ad	
() Note and Ret	
() For Your File	
() For Your Har	idling
() For Your Rep	
Remarks:	

The static wellhead working pressure (Pw) of any well under test shall be the calculated seven (7) day average static tubing pressure if the well was flowing through the casing; or the calculated seven (7) day average static casing pressure if the well was flowing through the tubing. The static wellhead working pressure (Pw) shall be calculated by applying the tables and procedures as set out in the New Mexico Cil Conservation Commission manual entitled "Method of Calculating Pressure Loss Due to Friction in Gas Well Flowing Strings for San Juan Basin."

shut-in immediately after the seven (7) day deliverability test for a full period of seven (7) consecutive days. Such shut-in pressure shall be measured within the next succeeding twenty-four (24) hours following the seven (7) day shut-in period aforesaid. The seven day shut-in pressure shall be measured on both tubing and casing when available. The higher of such pressures shall be used as Pc in the deliverability calculation, provided communication between the casing and tubing is known to exist. When any such shut-in pressure has been determined by the Commission to be abnormally low, the shut-in pressure to be used shall be determined by one of the following methods:

- 1. A Commission designated value.
- 2. An average shut-in pressure of all offset wells completed in the same zone.
- 3. A calculated surface pressure based on a measured bottom hole pressure. Such calculation shall be made in accordance with New Mexico Oil Conservation Back Pressure Manual.

All wellhead pressures as well as the flowing meter pressure tests which are to be taken during the seven (7) day deliverability test period, as required hereinabove, shall be taken with a deadweight gauge. The deadweight reading, the date and time according to the chart shall be recorded and maintained in the company's records with the test information.

Orifice meter charts shall be changed and so arranged as to reflect upon a single chart the flow data for the gas from each well for the full seven day deliverability test period; except that no tests shall be voided if satisfactory explanation is made as to the necessity for using test volumes through two chart periods. Corrections shall be made for prescure base, measured flowing temperature,

(6) Continued:

specific gravity, and supercompressibility provided however, that if the specific gravity of the gas from any well under test is not available, an estimated specific gravity may be assumed therefore, based upon that of gas from near-by wells, the specific gravity of which

STATE OF NEW MEXICO OIL CONSERVATION COMMISSION

Compiled by E.A. Utz, Gas Engineer

SAN JUAN BASIN

METHOD OF CALCULATING PRESSURE LOSS DUE TO FRICTION IN GAS WELL STRINGS

ACKNOWLEDGMENT

The Commission and its Engineering staff wish to express their appreciation to Mr. M. H. Cullender, Phillips Petroleum Company, for compiling the Basic Tables and offering invaluable counsel and advise regarding the following tables.

Like appreciation is also expressed to Mr. Norman Woodruff, El Paso Natural Gas Company, Chairman of the Industry Committee appointed by the Commission to study gas well testing in Southeast New Mexico, and to the following committee members for their willing and effective work in analyzing the various methods of calculating pressure loss due to friction.

W. G. Abbott Amerada Petroleum Corporation

J. W. Cole, Jr., Gulf Oil Corporation

M. H. Cullender
Phillips Petroleum Company

M. N. Purkaple Shell Oil Company

C. L. Quast Sinclair Oil & Gas Company

Max Curry Buffalo Oil Company

Dave Nichols Southern Union Gas Company D. L. Henry Gulf Oil Corporation

William Randolph
Continental Oil Company

G. L. Tribble
Permian Basin Pipeline Company

A.M. Wiederkehr Southern Union Gas Company

Fred Bernard
El Paso Natural Gas Company

W. L. Smith
Gulf Oil Corporation

USE OF THE TABLES

Nomenclature

- Q = M^2 cfd @ 15.025 and 60° F. (Measured Flow)
- P_C = Shut-in wellhead pressure, psia. (7 day)
- Pw = Static wellhead working pressure, psia.
- Fig. 2 Plowing wellhead working pressure, psia (7 day average meter pressure plus measured friction loss between meter and wellhead.
- Factor dependent upon size of flow string, pressure base, temperature and compressibility factor.

 See Table 1 of F values.
- (1-e^{-s}) = Factor dependent upon GL, temperature and compressibility factor. See Table II of (1-e^{-s}) values.
- G = Specific gravity of gas. (Air = 1.00)
- L = Length of flowing column, ft.

Tables

- I. Values of F_c for various sizes of flow strings.
- II. Values of (1 e^{-s}) for various values of GL.

Procedure

- 1. From Table I, obtain the value of F_c corresponding to the internal diameter of the pipe.
- 2. From Table II, obtain the value of (1-e^{-s}) corresponding to the value of GL.
- From the test data, obtain the rate of flow (Q) and the corresponding Working Pressure. (P₊)
- 4. Multiply F (Table I value) times Q.
- 5. Square the term F_{cQ}.
- 6. Multiply $(F_cQ)^2$ by $(1-e^{-s})$. Table II value.
- 7. Add the value of $(F_cQ)^2$ (1-e^{-s}) to P_t^2 to obtain P_w^2 .
- 8. Extract square root of P_w^2 to obtain P_w .

EXAMPLE FOR CALCULATING STATIC WELLHEAD WORKING PRESSURE (P,) FOR GAS WELLS IN SAN JUAN BASIN NORTHWEST NEW MEXICO.

Test Data from Form C-122-A (Revised 8-1-54) necessary for P calculation.

- 1. 1.995" = Size of Flow String I.D. (if not known I.D. may be determined from Table I by referring to O.D. and #/ft. columns.)
- 2. L 5000' = Length of Flow String (If lower sections of tubing is perforated, the top of perforations shall determine L. Where flow is through the casing and casing is set above producing formation the casing shoe shall determine L. For casing flow where casing is set through producing formation and slotted or perforated the top of the perforations shall determine L.)
- 3. G = .861 = Specific gravity of flowing gas. (Air = 1.0)
- 4. Pt = 565 = 7 day average wellhead flowing pressure. (Column j Form C-122-A)
- 5. Q = 2.500 a 7 day average volume of flow M²CFD. (Volume shown under flow rate calculation in millions cu. ft. per day.)

Begin calculation as follows:

- 6. Determine Table I value (Fc) for 1.995' I.D. Tubing. This is 9.402.
- 7. Multiply G x L. GL = 3405. Show this value in GL column at bottom of C-122-A.
- 8. Determine Table II value (1-e⁻⁸) for GL of 3405. This is .219. Show this value in (1-e⁻⁸) column at bottom of C-122-A.

- 9. Multiply Table I value of 9.402 (F_c) by Q (2.500) and square the product. $(9.402 \times 2.500)^2 = 552.5$. Show this value in $(F_cQ)^2$ column at bottom of C-122-A.
- 10. Multiply 552.5 by Table II value of .219 (1-e-8). 552.5 x .219

 = 120.9 (thousands). Show this value in R² column at bottom of C-122-A.
- 11. Square 565 (P_t , item 4 above, column j on C-122-A). $(565)^2$ = 319.2 (thousands). Show 319.2 in P_t^2 column C-122-A.
- 12. Add 319.2 (P_t^2) to 120.9 (R^2) and extract the square root of the sum. 319.2 \neq 120.9 = 440.1 (thousands).
 - $\sqrt{440.1}$ = 663.4 = P_W (Calculated static wellhead working pressure). Show 663.4 in P_W column C-122-A. Note that 140.1 is in thousands and therefore is an even number for square root extraction.
- 13. This is the P_{w} value to be used in the deliverability calculation on Form C-122-A.

TABLE I

Values of $\mathbf{F_c}$ for Various Tubing Sizes

(Use only for internal diameters less than 4, 277 in.)

Note:
$$F_c = \left(\frac{0.10797}{d^2.612}\right) \left(\frac{P_b}{14.65}\right) (T) (Z)$$

Nominal	O.D.		I.D.	
Size, ln.	In.	#/Ft.	<u>In.</u>	Fc
1	1.315	1.80	1.049	50.40
1.1/4	1.660	2.40	1.380	24.62
1 1/2	1.990	2, 75	1.610	16.46
2	2.375	4.70	1.995	9.402
2 1/2	2.875	6.50	2,441	5.551
	3,500	9.30	2.992	3.262
	4,000	11.00	3.476	2.205
	4.500	1 2,70	3.958	1.571
	4.750	16,25	4.082	1.450
	4.750	18,00	4.000	1.528
	5.000	18.00	4.276	1.284
•	5.000	21.00	4.154	1.384

d₂ = O.D. of tubing - in.

TABLE I (Continued)

Values of F_c for Various Casing Sizes

(Use only for Internal Diameters greater than 4, 277 in.)

Note:
$$F_c = \begin{pmatrix} 0.10337 \\ d^2.582 \end{pmatrix}$$
 $\begin{pmatrix} P_b \\ 14.65 \end{pmatrix}$ (T) (Z)

Values shown based on $P_b = 15.025$ T = 573Z = 0.90

O. D.		I.D.	
In.	#/Ft.	In.	Fc
5.00 0	13.00	4.494	1.129
5.000	15.00	4.408	1.187
5. 500	14.00	5.012	0.8518
5.500	15.00	4.976	0.8678
5.500	17.00	4.892	0.9068
5.500	20.00	4.778	0.9633
5.500	23.00	4.670	1.022
5.500	25.00	4.580	1.075
6.000	15.00	5.524	0.6627
6.000	17.00	5.450	0.6861
6.000	20.00	5.352	0.7190
6.000	23.00	5.240	0.7594
6.000	26.00	5.140	0.7982
6.625	20.00	6.049	0.5241
6.625	22.00	5.989	0.5378
6.625	24.00	5.921	0.5539
6.625	26.00	5.855	0.5702
6.625	28.00	5.791	0.5866
6.625	31.80	5.675	0.6181
6.625	34.00	5.595	0.6412
7.000	20.00	6.456	0.4430
7.000	22.00	6.398	0.4534
7.000	24.00	6.336	0.4651
7.000	26.00	6.276	0.4766
7. 0 00	28.00	6.214	0.4890
7.00 C	30.00	6.154	0.5014

TABLE I
(Continued)

Values of F_c for Various Cauing Sizes

O, D,		I.D.	*
In.	#/Ft.	In.	F _c
7.000	40.00	5, 836	0.5749
7.625	26.40	6, 969	0.3636
7.625	29.70	6.875	0,3756
7,625	33,70	6.765	0.3927
7.625	38,70	6.625	0,4145
7.625	45.00	6.445	0.4450
8.000	25.00	7.386	0.3130
8.125	28.00	7.485	0.3024
8.125	32.00	7.385	0.3131
8.125	35.50	7.285	€ , 3243
8, 125	39.50	7.185	9,3361
8.625	17.50	8,249	୍ନ 3353
8.625	20.00	8.191	🖖 2396
8.625	24.00	8.097	ಿ. 2469
8.625	28.00	8.003	0.2544
8.625	32,00	7.907	0.2625
8.625	36.00	7.825	0.2697
8.625	38.00	7.775	0.2741
8.625	43.00	7,651	0,2858
9.000	34.00	8,290	0,2323
9.000	38.00	8.196	0.2392
9.000	40.00	8.150	0.2427
9.000	45.00	8,032	0.2521
9.625	36.00	8,921	0,1922
9.625	40.00	8.835	0.1971
9.625	43.50	8,755	6.2017
9.625	47.00	8,681	9, 2063
9.625	53.50	8,535	0,2155
9.625	58,00	8.435	0, 2222
10.000	33,00	9.384	0.2204
10.000	55,50	8,908	0.1929
10.000	61,20	8,790	0, 1998
10.750	32.75	10.192	0.1363
10.750	35.75	10, 136	0.1382
10 750	40.00	10,050	0.1413
10,750 /	45.50	9, 950	0.1450
10,750	48,00	9.902	0.1469
10,750	54,00	9,784	0.1514

TABLE I (Continued)

Values of F_c for various casing-tubing combinations. (Annular Flow).

	CASING			TUBING		
O.D. In.	I.D. In.	#/Ft.	O.D. In.	I.D. In.	#/Ft.	Fc
7.625 7.000 7.000 7.000 6.625 7.000 6.625 6.625 5.500 5.500 7.750 6.155	6.625 6.366 6.276 6.366 6.049 6.276 6.049 5.921 4.892 4.892 6.456 4.976	39 23 26 23 20 26 20 24 17 17 20 15	2.375 2.375 2.375 2.875 2.875 2.875 2.875 3.500 2.375 3.000 1.315 1.315	1.995 1.995 1.995 2.441 1.995 2.441 2.441 2.992 1.995 1.049 1.049	4.7 4.7 4.7 6.5 4.7 6.5 6.5 9.3 4.7	.651 .740 .744 .865 .875 .910 i.041 i.540 i.812 2.735 .527

$$F_c$$
 (for Annulus) $=$ 0.10337 $(d_1 \neq d_2)$ $(d_1 - d_2)$ $(d_1 = 1.582)$ $(d_1 \neq d_2)$ $(d_1 = 1.582)$ $(d_1 = 1.582)$

TABLE II

Values of (1 - exf) for Various Values of GL

Note: S $\eta = \left(\frac{0.0375 \text{ GL}}{TZ} \right)$

Values shown based on T = 573 Z = 0.90

From	To	(1 - e ^{-s})	From	To	(1 - e ⁻³)
		12 - 0	2 2011		<u></u>
947	960	0.067	1549	1564	0.107
961	976	0.068	1565	1579	0.108
977	990	0.069	1580	1594	0.109
991	1005	0.070	1595	1609	0.110
1006	1020	0.071	1610	1624	0.111
1021	1034	0.072	1425	1641	0.112
1035	1049	0.073	1642	1657	0.113
1050	1065	0.074	1658	1672	0.114
1065	1080	0. 075	1673	i 687	0.115
1081	1094	0.076	1688	1703	0,116
1095	1109	0.077	1704	1718	0.117
1110	1124	0.078	1719	,1734	0.118
1125	1138	0.079	1735	1750	0.119
1139	1153	0.080	1751	1766	0.120
1154	1169	0.081	1767	1781	0.121
1170	1184	0.082	1782	1797	0.122
1185	1199	0.083	1798	1812	0.123
1200	1214	0.084	1813	1828	0.124
1215	1228	0.085	1829	1844	0.125
1229	1243	0.086	1845	1859	0.126
1244	1258	0,087	1860	1875	0.127
1259	1274	0.088	1876	1891	0,128
1275	1289	9,089	1892	1907	0.129
1290	1304	0,099	1908	1923	0.130
1305	1319	9,091	1924	1939	0.131
1320	1334	9.092	1940	1954	0.132
1335	1349	0,093	1955	1970	0,133
1350	1364	0.094	2971	1986	0.134
1365	1380	0.095	1987	2002	0.135
1381	1395	0.096	2003	2017	0.136
1396	1410	0,097	2018	2033	0.137
1411	1426	0.098	2034	2050	0.138
1427	1441	0.099	2050	2066	0.139
1442	1456	0.100	2067	2082	0.140
1457	1474	0.101	2083	2098	0.141
1475	1487	0.102	2099	2114	0.142
1488	1502	0.103	2115	2130	0.143
1503	1518	0.104	2131	2146	0.144
1519	1533	0.105	2147	2162	0.145
1534	1548	0.106	2163	2178	0.146

TABLE II (Continued)

Values of $(1 - e^{-s})$ for Various Values of GL

From To (1 - e - s) From To (1 - e - s) 2199 2199 2210 0.147 3026 3042 0.198 2211 2227 0.149 3041 3077 0.199 2217 2227 2243 0.150 3078 3094 0.201 2244 2259 0.151 3095 3111 0.202 2276 2292 0.152 3112 3128 0.203 2276 2292 0.153 3095 3111 0.202 2276 2292 0.154 3147 3163 0.205 2233 2308 0.154 3147 3163 0.205 2325 2340 0.155 3164 3180 0.206 2341 2356 0.157 3198 3215 0.207 2257 2257 2257 2373 0.158 3216 3232 0.209 2344 2356 0.157 3198 3215 0.207 2257 2273 0.158 3216 3232 0.209 2344 2356 0.157 3198 3215 0.207 2357 2373 0.158 3216 3232 0.209 2374 2386 0.159 3223 3250 0.210 2443 2438 0.162 3251 3267 0.211 2443 2438 0.162 3251 3267 0.211 2443 2438 2455 0.163 33504 3318 0.214 2443 2438 2455 0.164 3139 3336 0.215 2472 2488 0.164 3319 3336 0.215 2472 2488 0.164 3319 3336 0.215 2472 2488 0.164 3319 3336 0.216 2555 2521 0.167 3373 3389 0.216 2555 2521 0.167 3373 3389 0.216 2555 2521 0.167 3373 3389 0.217 2522 2537 0.168 3390 3408 3425 0.220 2588 2554 0.166 3355 3372 0.217 2571 2587 0.170 3426 3442 0.221 2588 2564 0.168 3390 3407 0.217 2571 2587 0.170 3426 3442 0.221 2588 2653 0.172 3443 3450 0.226 2588 2653 0.172 3446 3479 3476 0.226 2588 2564 0.169 3408 3425 0.220 2217 2571 2587 0.170 3426 3442 0.221 2587 0.170 3426 3442 0.221 2588 2564 0.168 3390 3407 0.217 2571 2587 0.170 3426 3448 0.223 2588 2564 0.170 3426 3442 0.221 2588 2565 0.174 3497 3497 3496 0.226 2588 2563 0.175 3554 3693 3600 0.231 2775 2771 2788 0.186 3771 3443 3460 0.226 2588 2663 0.175 3554 3693 3690 0.226 2588		GL			GL	
2195 2210 0.148 3043 3060 0.198 2211 2227 0.149 3061 3077 0.200 2244 2259 0.151 3095 3111 3077 0.200 2260 2275 0.152 3112 3128 0.203 2261 2292 0.153 3129 3146 0.204 2293 2308 0.154 3129 3146 0.204 2309 2324 0.155 3164 3180 0.205 2335 2340 0.156 3181 3197 0.202 2341 2356 0.157 3198 3215 0.206 2337 2373 0.158 3216 3232 0.209 2374 2389 0.159 3233 3250 0.209 2374 2389 0.161 3251 3267 0.211 2406 2422 0.161 3251 3267 0.211 2443 2435 2438 0.162 3258 3303 0.213 2443 2455 0.163 3304 3318 0.214 2443 2455 0.163 3304 3318 0.214 2472 2488 0.165 3337 3354 0.215 2478 2488 0.166 3355 3372 0.216 2537 2522 2537 0.168 3373 3373 3374 0.216 2468 2490 0.166 3355 3372 0.217 2522 2537 0.168 3373 3373 0.215 2538 2554 0.169 3408 3425 0.221 2588 2603 0.171 34426 3442 0.221 2588 2603 0.172 34461 3478 0.223 2604 2627 0.170 3426 3442 0.221 2588 2603 0.171 34426 3442 0.221 2588 2603 0.172 3466 3590 3600 0.224 2604 2627 0.170 3426 3443 3460 0.222 2588 2700 0.170 3426 3459 0.226 2671 2687 0.171 3443 3460 0.224 2688 2703 0.174 3497 3513 0.225 2688 2703 0.174 3497 3513 0.226 2778 2788 0.180 3603 3620 0.231 2778 2788 0.180 3603 3620 0.231 2798 2797 0.180 3693 3695 0.223 2798 2790 2906 0.189 3766 3783 0.244 2792 2906 0.190 3784 3801 0.244 2944 2957 0.193 3838 3855 0.244 2945 0.196 3893 3990 0.248 3009 3025 0.196 3893 3991 0.244 3009 3025 0.196 3893 3991 0.244	From	To				$(1 - e^{-5})$
2211 2227 0.148 3043 3060 0.149 2227 2227 0.149 3061 3077 0.260 2244 2259 0.150 3078 3094 0.201 2260 2275 0.152 3112 3128 0.203 2276 2292 0.153 3129 3146 0.204 2309 2324 0.155 3164 3180 0.205 2325 2340 0.156 3181 3180 0.206 2341 2356 0.157 3198 3215 0.208 2374 2389 0.158 3216 3232 0.209 2374 2389 0.159 3233 3250 0.29 2390 2405 0.160 321 3267 0.211 2443 2438 0.162 3285 3303 0.250 2443 2438 0.162 3285 3303 0.212 2439 2455			0.147	3026	3042	·
2227 2243 0.150 3078 3094 0.201 2244 2259 0.151 3078 3094 0.201 2260 2275 0.152 3112 3128 0.203 2276 2292 0.153 3129 3146 0.204 2309 2324 0.155 3147 3163 0.205 2325 2340 0.156 3181 3180 0.206 2337 2356 0.157 3198 3215 0.208 2337 2373 0.158 3216 3232 0.209 2374 2389 0.159 3233 3250 0.210 2406 2422 0.161 3268 3284 0.212 2443 2438 0.162 3285 3303 0.211 24439 2455 0.163 3251 3267 0.211 24439 2455 0.163 3303 0.213 2455 2471 0.164	2175					0.196
2244 2259 0.150 3078 3094 0.201				3061		
2260 2275 0.151 3095 3111 0.202 2276 2292 0.153 3112 3128 0.203 2293 2308 0.154 3147 3163 0.205 2309 2324 0.155 3164 3180 0.206 2341 2356 0.156 3181 3197 0.207 2357 2373 0.158 3216 3232 0.209 2374 2389 0.159 3233 3250 0.210 2406 2405 0.160 3251 3267 0.211 2403 2495 0.161 3268 3284 0.212 2443 2455 0.163 3285 3303 0.213 2443 2455 0.163 3285 3303 0.213 2443 2455 0.163 3304 3318 0.214 2443 2455 0.163 3337 3356 0.215 2439 2455			0.150	3078		
2200 2275 0.152 3112 3128 0.203 2293 2308 0.154 3147 3163 0.204 2309 2324 0.155 3164 3180 0.206 2341 2356 0.157 3198 3215 0.206 2374 2357 2373 0.158 3216 3232 0.209 2374 2389 0.159 3233 3250 0.210 2406 2405 0.160 3251 3267 0.211 2406 2422 0.161 3268 3264 0.212 2443 2438 0.162 3285 3303 0.213 2443 2438 0.164 3319 3316 0.215 2443 2488 0.165 3337 3354 0.216 2489 2504 0.166 3355 3372 0.216 2505 2521 0.167 3373 3349 0.216 2538			0.151	3095		
2216 2292 0.153 3129 3146 0.204 2309 2324 0.155 3164 3180 0.205 2341 2356 0.156 3181 3197 0.207 2357 2373 0.158 3216 3232 0.209 2374 2389 0.159 3233 3250 0.207 2390 2405 0.160 3251 3267 0.211 2406 2422 0.161 3268 3284 0.212 2443 2438 0.162 3285 3303 0.713 24439 2455 0.163 3304 3318 0.214 2472 2488 0.165 3337 3356 0.215 2489 2504 0.166 3355 3372 0.216 2489 2504 0.166 3355 3372 0.217 2522 2537 0.168 3393 3407 0.218 2558 2521			0.152			
2309 2324 0.155 3164 3180 0.205 2325 2340 0.156 3181 3197 0.207 2357 2373 0.158 3216 3232 0.209 2357 2373 0.158 3216 3232 0.209 2374 2389 0.159 3233 3250 0.210 2406 2422 0.161 3268 3285 3267 0.211 2423 2438 0.162 3285 3303 0.713 2455 2471 0.164 3394 3318 0.713 2455 2471 0.164 3219 3336 0.214 2422 2.488 0.165 3337 3354 0.215 2489 2504 0.166 33304 3318 0.214 2472 2488 0.165 3337 3354 0.216 2505 2521 0.167 3373 3379 0.216 2505 2521 0.167 3373 3379 0.216 2522 2537 0.168 3390 3407 0.216 2525 2521 0.167 3373 3389 0.218 2538 2554 0.169 3408 3425 0.220 2571 2587 0.171 3443 3460 0.222 2571 2587 0.170 3426 3442 0.221 2588 2603 0.172 3461 3469 0.222 2588 2603 0.172 3461 3478 0.222 2604 2620 0.173 3479 3496 0.222 2604 2620 0.173 3479 3496 0.222 2608 2620 0.174 3497 3513 0.226 2671 2687 0.176 3522 3549 0.226 2672 2738 2754 0.180 3603 3603 3600 0.222 2688 2703 0.176 3532 3549 0.222 2738 2754 0.180 3603 3603 3600 0.222 2738 2754 0.181 3621 3638 3585 0.229 2721 2737 0.180 3603 3603 3600 0.221 2688 2693 0.172 3461 3531 0.226 2671 2687 0.177 3550 3514 3531 0.226 2721 2737 0.180 3603 3602 0.230 2728 2721 2737 0.180 3603 3600 0.227 2688 2703 0.178 3568 3585 0.229 2721 2737 0.180 3603 3602 0.230 2738 2754 0.181 3621 3638 0.232 2772 2788 0.187 3508 3674 0.234 2772 2788 0.183 3657 3674 0.234 2838 2855 0.187 3729 3749 0.226 2823 2838 0.186 3711 3728 0.235 2838 2855 0.187 3729 3747 0.238 2890 2906 0.181 3657 3674 0.234 2890 2906 0.189 3766 3783 0.240 2907 2923 0.191 3802 3819 0.241 2924 2940 0.192 3820 3819 0.242 2944 2940 0.192 3820 3819 0.241 2944 2940 0.192 3820 3819 0.242 2944 2940 0.192 3820 3819 0.244 2945 2991 0.195 3856 3893 3910 0.247 2992 3008 0.196 3893 3910 0.247 2992 3008 0.197 3891 3992 0.246			0.153			
2325 2340 0.155 3164 3180 0.206						
2341						
2357 2373 0.158 3216 3232 0.208 2374 2389 0.159 3233 3250 0.210 2405 0.160 3251 3267 0.211 2406 2402 0.161 3268 3284 0.212 2438 2438 0.162 3285 3303 0.211 2423 2438 2455 0.163 3504 3318 0.214 32472 2488 0.165 3337 3336 0.215 2472 2488 0.165 3337 3354 0.216 2505 2521 0.167 3373 3389 0.216 2505 2521 0.167 3373 3389 0.216 2505 2521 0.167 3373 3389 0.217 2522 2537 0.168 3390 3407 0.219 2555 2570 0.170 3426 3442 0.221 2588 2603 0.172 3461 3443 3460 0.222 2604 2620 0.173 3443 3460 0.222 2604 2620 0.173 3479 3496 0.224 2638 2653 0.175 3514 3531 0.226 2654 2670 0.176 3532 3549 0.226 2654 2670 0.176 3532 3549 0.227 2688 2703 0.176 3532 3549 0.227 2688 2703 0.176 3532 3549 0.227 2688 2703 0.176 3532 3549 0.227 2688 2703 0.176 3532 3549 0.227 2688 2703 0.176 3532 3549 0.227 2688 2703 0.178 3568 3585 0.229 2721 2737 0.180 3603 3620 0.231 2738 2754 0.181 3621 3638 0.232 2772 2788 0.181 3621 3638 0.232 2772 2788 0.181 3621 3639 3656 0.232 2772 2788 0.187 3786 3567 0.228 2772 2788 0.187 3749 3656 3602 0.233 2789 2805 0.184 3657 3674 0.234 2789 2805 0.184 3657 3674 0.235 2823 2838 0.186 3711 3728 0.237 2855 2872 0.188 3748 3765 0.232 2772 2788 0.187 3729 3747 0.236 2823 2838 2855 0.187 3729 3747 0.236 2823 2838 2855 0.187 3729 3747 0.236 2823 2838 2855 0.187 3729 3747 0.236 2823 2838 2855 0.187 3729 3747 0.236 2823 2838 2855 0.187 3729 3747 0.236 2823 2838 2855 0.187 3729 3747 0.236 2823 2838 2855 0.187 3729 3747 0.235 2875 2872 0.188 3748 3765 0.237 2855 2872 0.188 3748 3801 0						
2374				3198		
2390 2405 0.160 3251 3267 0.210 2406 2422 0.161 3268 3284 0.211 2423 2438 0.162 3285 3303 0.713 2455 0.163 3304 3318 0.214 2472 2488 0.165 3337 336 0.215 2489 2504 0.166 3355 3372 0.216 2505 2521 0.167 3373 3389 0.218 2538 2554 0.169 3408 3425 0.217 2522 2537 0.168 3390 3407 0.219 2555 2570 0.170 3426 3425 0.260 2571 2587 0.171 3443 3460 0.222 2521 2587 0.171 3443 3460 0.222 2521 2587 0.172 3461 3478 0.223 2604 2620 0.172 3461 3478 0.223 2604 2620 0.173 3479 3496 0.224 2638 2653 0.175 3514 3531 0.225 2661 2687 0.176 3532 3549 0.226 2671 2687 0.176 3532 3549 0.226 2671 2687 0.177 3550 3567 0.226 2671 2687 0.178 3568 3585 0.226 2671 2687 0.179 3586 3602 0.227 2588 2703 0.178 3568 3585 0.226 2671 2687 0.179 3586 3602 0.231 2738 2754 0.180 3603 3620 0.231 2738 2754 0.180 3603 3620 0.231 2738 2754 0.181 3621 3638 0.225 2774 2720 0.179 3586 3602 0.231 2738 2754 0.181 3621 3638 0.225 2772 2788 0.183 3657 3674 0.232 2789 2805 0.184 3675 3692 0.235 2789 2805 0.184 3675 3692 0.235 2823 2838 0.186 3711 3728 0.237 2855 2872 0.188 3748 3765 0.239 2873 2889 0.189 3766 3783 0.246 2990 2906 0.190 3784 3801 0.241 2991 0.195 3884 0.245 2992 3008 0.196 3893 3910 0.247 2992 3008 0.196 3893 3910 0.247 2992 3008 0.196 3893 3910 0.247 2480 0.248				3216	3232	
2406				3233		
2420 0.161 3268 3284 0.212 2439 2455 0.163 3285 3303 0.213 2455 2471 0.164 3319 3336 0.215 2472 2488 0.165 3337 3354 0.215 2489 2504 0.166 3355 3372 0.217 2505 2521 0.167 3373 3349 0.218 2505 2521 0.167 3373 3349 0.218 2538 2554 0.169 3408 3425 0.220 2571 2587 0.170 3426 3442 0.221 2588 2603 0.172 3443 3460 0.222 2571 2587 0.171 3443 3460 0.222 2588 2603 0.172 3461 3478 0.223 2621 2637 0.174 3497 3513 0.225 2654 2670 0.175				3251		
2439				3268		
2455 2471 0.164 3319 3336 0.214 2472 2488 0.165 3337 3354 0.216 2489 2504 0.166 3355 3372 0.217 2505 2521 0.167 3373 3389 0.218 2538 2537 0.168 3390 3407 0.219 2555 2570 0.170 3426 3442 0.220 2571 2587 0.171 3443 3460 0.222 2571 2587 0.171 3443 3460 0.221 2588 2603 0.172 3461 3478 0.221 2588 2603 0.172 3461 3478 0.222 2604 2620 0.173 3479 3496 0.224 2638 2653 0.175 351 3513 0.225 2654 2670 0.176 3532 3549 0.227 2688 2703				3285		-
2472 2488 0.165 3337 3354 0.215 2489 2504 0.166 3355 3372 0.217 2505 2521 0.167 3373 3389 0.218 2522 2537 0.168 3390 3407 0.219 2538 2554 0.169 3408 3425 0.20 2571 2587 0.170 3426 3442 0.221 2555 2570 0.170 3426 3442 0.221 2588 2603 0.171 3443 3460 0.222 2604 2620 0.173 3479 3496 0.224 2638 2653 0.174 3497 3513 0.225 2654 2670 0.173 3479 3496 0.224 2638 2653 0.175 3514 3531 0.225 2654 2670 0.176 3532 3549 0.227 2688 2703				3304		
2489 2504 0.166 3355 3372 0.216 2505 2521 0.167 3373 3389 0.218 2522 2537 0.168 3390 3407 0.219 2538 2554 0.169 3408 3425 0.220 2571 2587 0.170 3426 3442 0.221 2571 2587 0.171 3443 3460 0.222 2564 2603 0.172 3461 3478 0.223 2604 2620 0.173 3479 3496 0.224 2638 2653 0.175 3514 3531 0.225 2654 2670 0.176 3532 3549 0.227 2654 2670 0.176 3532 3549 0.227 2654 2670 0.177 3550 3567 0.228 2704 2720 0.179 3586 3602 0.230 2721 2737				3319		
2505 2521 0.167 3373 3372 0.217 2522 2537 0.168 3390 3407 0.218 2538 2554 0.169 3408 3425 0.20 2571 2587 0.171 3426 3442 0.221 2588 2603 0.172 3461 3478 0.223 2604 2620 0.173 3479 3496 0.224 2638 2653 0.175 3514 3513 0.225 2654 2670 0.176 3532 3549 0.227 2654 2670 0.176 3532 3549 0.227 2688 2653 0.177 3550 3567 0.228 2701 2687 0.177 3550 3567 0.228 2704 2720 0.178 3586 3585 0.229 2721 2737 0.180 3603 3602 0.230 2738 2754					3354	
2522 2537 0.168 3390 3407 0.218 2538 2554 0.169 3408 3425 0.220 2571 2587 0.170 3426 3442 0.221 2588 2603 0.171 3443 3460 0.222 2604 2620 0.173 3441 3478 0.223 2621 2637 0.174 3497 3513 0.225 2638 2653 0.175 3514 3531 0.225 2654 2670 0.176 3532 3549 0.227 2688 2703 0.177 3550 3567 0.228 2704 2720 0.179 3586 3585 0.229 2721 2737 0.180 3603 3620 0.231 2772 2788 0.181 3621 3638 0.232 2772 2788 0.183 3657 3674 0.234 2772 2788			0.166		3372	
2538 2554 0.169 3408 3425 0.220 2555 2570 0.170 3426 3442 0.221 2571 2587 0.171 3443 3460 0.222 2604 2620 0.172 3461 3478 0.223 2621 2537 0.174 3497 3496 0.224 2638 2653 0.175 3514 3531 0.226 2671 2687 0.176 3532 3549 0.226 2671 2687 0.177 3550 3567 0.228 2654 2670 0.176 3532 3549 0.227 2688 2703 0.178 3568 3585 0.229 2721 2737 0.180 3603 3620 0.230 2738 2754 0.181 3603 3620 0.231 2755 2771 0.182 3639 3656 0.232 2772 2788						
2555 2570 0.170 3426 3442 0.220 2571 2587 0.171 3426 3442 0.221 2588 2603 0.172 3441 3478 0.223 2604 2620 0.173 3447 3478 0.223 2621 2637 0.174 3497 3513 0.225 2638 2653 0.175 3514 3531 0.226 2671 2687 0.176 3532 3549 0.227 2688 2703 0.178 3550 3567 0.228 2704 2720 0.179 3586 3682 0.230 2738 2754 0.180 3603 3620 0.231 2755 2771 0.182 3639 3656 0.232 2772 2788 0.183 3657 3674 0.231 2755 2771 0.182 3639 3656 0.233 2789 2805						
2571 2587 0.171 3420 3442 0.221 2588 2603 0.172 3461 3478 0.222 2604 2629 0.173 3479 3496 0.224 2638 2653 0.175 3514 3531 0.225 2654 2670 0.176 3532 3549 0.227 2688 2703 0.177 3550 3567 0.228 2704 2720 0.179 3586 3585 0.229 2721 2737 0.180 3603 3620 0.231 2738 2754 0.181 3621 3638 0.232 2772 2788 0.183 3657 3674 0.231 2772 2788 0.183 3657 3674 0.232 2772 2788 0.183 3657 3674 0.233 2789 2805 0.184 3675 3674 0.235 2823 2838						0.220
2588 2603 0.172 3461 3478 0.222 2604 2620 0.173 3479 3496 0.224 2638 2653 0.174 3497 3513 0.225 2654 2670 0.176 3532 3549 0.226 2671 2687 0.177 3550 3567 0.228 2704 2720 0.179 3586 3585 0.229 2721 2737 0.180 3603 3620 0.231 2738 2754 0.181 3621 3638 0.232 2772 2788 0.181 3621 3638 0.232 2772 2788 0.183 3657 3674 0.234 2806 2822 0.184 3657 3674 0.234 2806 2822 0.184 3657 3674 0.234 2838 2838 0.186 3711 3728 0.237 2843 2838						
2604 2620 0.173 3479 3496 0.224 2638 2653 0.174 3497 3513 0.225 2654 2670 0.176 3532 3549 0.226 2671 2687 0.177 3550 3567 0.228 2674 2688 2703 0.178 3568 3585 0.229 2721 2737 0.180 3603 3620 0.231 2738 2754 0.181 3621 3638 0.232 2772 2788 0.182 3639 3656 0.231 2772 2788 0.183 3657 3674 0.234 2806 2822 0.184 3675 3674 0.234 2806 2822 0.185 3693 3710 0.236 2838 2838 0.186 3711 3728 0.237 2855 2872 0.188 3748 3765 0.239 2883			0.172			
2621 2537 0.174 3497 3513 0.224 2638 2653 0.175 3514 3531 0.226 2671 2687 0.176 3532 3549 0.227 2688 2703 0.177 3550 3567 0.228 2704 2720 0.179 3586 3602 0.230 2721 2737 0.180 3603 3620 0.231 2738 2754 0.181 3621 3638 0.232 2772 2788 0.182 3639 3656 0.233 2772 2788 0.182 3639 3656 0.233 2772 2788 0.183 3657 3674 0.234 2806 2822 0.184 3675 3692 0.235 2823 2838 0.186 3711 3728 0.237 2855 2872 0.187 3729 3747 0.238 2873 2889						
2658 2653 0.175 3514 3531 0.226 2671 2687 0.177 3532 3549 0.227 2688 2703 0.178 3550 3567 0.228 2704 2720 0.179 3568 3585 0.229 2721 2737 0.180 3603 3620 0.230 2738 2754 0.181 3621 3638 0.232 2772 2788 0.183 3657 3674 0.231 2755 2771 0.182 3639 3656 0.233 2789 2805 0.184 3675 3674 0.234 2806 2822 0.185 3693 3710 0.236 2838 2838 0.186 3711 3728 0.237 2855 2872 0.187 3729 3747 0.238 2873 2889 0.187 3729 3747 0.238 2873 2889						
2671 2687 0.176 3532 3549 0.227 2688 2703 0.178 3550 3567 0.228 2704 2720 0.179 3586 3682 0.229 2721 2737 0.180 3603 3620 0.231 2738 2754 0.181 3621 3638 0.232 2772 2788 0.182 3639 3656 0.232 2772 2788 0.183 3657 3674 0.234 2806 2822 0.184 3675 3692 0.235 2823 2838 0.186 3711 3728 0.237 2855 0.187 3729 3747 0.238 2838 2855 0.187 3729 3747 0.238 2873 2889 0.189 3766 3783 0.240 2907 2923 0.191 3802 3819 0.240 2941 2957 0.193			0.175			
2688 2703 0.177 3550 3567 0.228 2704 2720 0.179 3568 3585 0.229 2721 2737 0.180 3603 3602 0.230 2738 2754 0.181 3621 3638 0.232 2775 2771 0.182 3639 3656 0.233 2772 2788 0.183 3657 3674 0.234 2806 2822 0.185 3692 0.235 2823 2838 0.186 3711 3728 0.237 2838 2855 0.187 3729 3747 0.238 2873 2889 0.188 3748 3765 0.239 2890 2906 0.190 3784 3801 0.240 2907 2923 0.191 3802 3819 0.242 2941 2957 0.193 3820 3837 0.243 2976 2991 0.195			0.176			
2704 2720 0.178 3568 3585 0.229 2721 2737 0.180 3603 3602 0.230 2738 2754 0.181 3621 3638 0.232 2755 2771 0.182 3639 3656 0.233 2772 2788 0.183 3657 3674 0.234 2806 2822 0.185 3693 3710 0.235 2823 2838 0.186 3711 3728 0.237 2855 2872 0.187 3729 3747 0.238 2873 2889 0.189 3766 3783 0.240 2890 2906 0.190 3784 3801 0.241 2924 2940 0.192 3820 3837 0.242 2941 2957 0.193 3838 3855 0.244 2976 2991 0.195 3875 3892 0.2445 2976 2991						
2721 2737 0.180 3603 3620 0.230 2738 2754 0.181 3621 3638 0.232 2755 2771 0.182 3639 3656 0.233 2772 2788 0.183 3657 3674 0.234 2806 2822 0.184 3675 3692 0.235 2823 2838 0.186 3711 3728 0.236 2838 2855 0.187 3729 3747 0.238 2873 2889 0.189 3766 3783 0.240 2890 2906 0.190 3784 3801 0.241 2907 2923 0.191 3802 3819 0.242 2941 2957 0.193 3838 3855 0.244 2976 2991 0.195 3856 3874 0.242 2941 2957 0.193 3838 3855 0.244 2976 2991				3568		
2738 2754 0.180 3603 3620 0.231 2755 2771 0.182 3639 3656 0.232 2772 2788 0.183 3657 3674 0.234 2809 2805 0.184 3675 3692 0.235 2823 2838 0.186 3711 3728 0.236 2838 2855 0.187 3729 3747 0.238 2873 2889 0.189 3766 3783 0.240 2907 2906 0.190 3784 3801 0.241 2924 2940 0.192 3820 3837 0.242 2941 2957 0.193 3838 3855 0.244 2976 2991 0.195 3875 3892 0.244 2976 2991 0.195 3875 3892 0.246 2992 3008 0.196 3893 3910 0.247 2992 3008 0.196 3893 3910 0.247 3009 3025 0				3586		
2755 2771 0.182 3621 3638 0.232 2772 2788 0.183 3656 0.233 2789 2805 0.184 3675 3674 0.234 2806 2822 0.185 3693 3710 0.236 2823 2838 0.186 3711 3728 0.237 2838 2855 0.187 3729 3747 0.238 2873 2889 0.188 3748 3765 0.239 2890 2906 0.190 3784 3801 0.240 2907 2923 0.191 3802 3819 0.242 2941 2957 0.193 3820 3837 0.243 2958 2975 0.194 3856 3874 0.245 2992 3008 0.196 3893 3910 0.246 2992 3008 0.196 3893 3910 0.247 3009 3025 0.197						
2772 2788 0.183 3657 3674 0.234 2789 2805 0.184 3675 3674 0.234 2806 2822 0.185 3693 3710 0.235 2823 2838 0.186 3711 3728 0.237 2838 2855 0.187 3729 3747 0.238 2873 2889 0.188 3748 3765 0.239 2890 2906 0.199 3766 3783 0.240 2907 2923 0.191 3802 3819 0.241 2924 2940 0.192 3820 3837 0.242 2941 2957 0.193 3838 3855 0.244 2976 2991 0.194 3856 3874 0.245 2992 3008 0.196 3893 3910 0.247 3009 3025 0.197 3911 3928 0.248	2755				3638	
2789 2805 0. 184 3675 3692 0. 234 2806 2822 0. 185 3693 3710 0. 236 2823 2838 0. 186 3711 3728 0. 237 2838 2855 0. 187 3729 3747 0. 238 2873 2889 0. 189 3766 3783 0. 239 2890 2906 0. 190 3784 3801 0. 240 2907 2923 0. 191 3802 3819 0. 242 2941 2957 0. 192 3820 3837 0. 243 2958 2975 0. 194 3856 3874 0. 245 2992 3008 0. 196 3893 3910 0. 247 2992 3008 0. 196 3893 3910 0. 247 3009 3025 0. 197 3911 3928 0. 248	2772					
2806 2822 0.185 3693 3710 0.236 2823 2838 0.186 3711 3728 0.237 2838 2855 0.187 3729 3747 0.238 2873 2889 0.189 3748 3765 0.239 2890 2906 0.190 3784 3801 0.240 2907 2923 0.191 3802 3819 0.241 2924 2940 0.192 3820 3837 0.242 2941 2957 0.193 3838 3855 0.244 2976 2991 0.195 3875 3892 0.245 2992 3008 0.196 3893 3910 0.247 3009 3025 0.197 3911 3928 0.248						
2823 2838 0.186 3711 3728 0.237 2838 2855 0.187 3729 3747 0.238 2855 2872 0.188 3748 3765 0.239 2873 2889 0.189 3766 3783 0.240 2907 2906 0.190 3784 3801 0.241 2907 2923 0.191 3802 3819 0.242 2941 2940 0.192 3820 3837 0.243 2958 2975 0.193 3838 3855 0.244 2976 2991 0.195 3875 3874 0.245 2992 3008 0.196 3893 3910 0.247 3009 3025 0.197 3911 3928 0.248		2822				
2838 2855 0.187 3729 3747 0.238 2873 2889 0.189 3748 3765 0.239 2890 2906 0.190 3784 3801 0.240 2907 2923 0.191 3802 3819 0.241 2924 2940 0.192 3820 3837 0.242 2941 2957 0.193 3838 3855 0.244 2976 2991 0.194 3856 3874 0.245 2992 3008 0.196 3893 3910 0.247 3009 3025 0.197 3911 3928 0.248						
2875 2872 0.188 3748 3765 0.239 2873 2889 0.189 3766 3783 0.240 2890 2906 0.190 3784 3801 0.240 2907 2923 0.191 3802 3819 0.241 2924 2940 0.192 3820 3837 0.242 2941 2957 0.193 3838 3855 0.244 2978 2975 0.194 3856 3874 0.245 2976 2991 0.195 3875 3892 0.246 2992 3008 0.196 3893 3910 0.247 3009 3025 0.197 3911 3928 0.248			0.187	3729		
2890 2906 0.189 3766 3783 0.240 2907 2923 0.191 3802 3801 0.241 2924 2940 0.192 3820 3819 0.242 2941 2957 0.193 3838 3855 0.243 2958 2975 0.194 3856 3874 0.245 2976 2991 0.195 3875 3892 0.246 2992 3008 0.196 3893 3910 0.247 3009 3025 0.197 3911 3928 0.248						
2907 2923 0.191 3784 3801 0.241 2924 2940 0.192 3820 3819 0.242 2941 2957 0.193 3838 3855 0.244 2976 2991 0.194 3856 3874 0.245 2992 3008 0.196 3893 3910 0.247 3009 3025 0.197 3911 3928 0.248						
2924 2940 0.192 3802 3819 0.242 2941 2957 0.193 3820 3837 0.243 2958 2975 0.194 3856 3874 0.244 2976 2991 0.195 3875 3892 0.246 2992 3008 0.196 3893 3910 0.247 3009 3025 0.197 3911 3928 0.248				3784		
2941 2957 0.192 3820 3837 0.243 2958 2975 0.194 3838 3855 0.244 2976 2991 0.195 3874 0.245 2992 3008 0.196 3893 3910 0.247 3009 3025 0.197 3911 3928 0.248						
2958 2975 0.194 3838 3855 0.244 2976 2991 0.195 3875 3874 0.245 2992 3008 0.196 3893 3910 0.247 3009 3025 0.197 3911 3928 0.248						
2976 2991 0.194 3856 3874 0.245 2992 3008 0.196 3893 3910 0.247 3009 3025 0.197 3911 3928 0.248					3855	
2992 3008 0.196 3893 3910 0.246 3009 3025 0.197 3911 3928 0.248					3874	
3009 3025 0.197 3893 3910 0.247 3911 3928 0.248						
3911 3928 0.248						
					3928	0.248

TABLE II
(Continued)

Values of (1 - e⁻⁸) for Various Values of GL

	GL			~ •	·
From	То	(1 - e ⁻⁸)	From	GL TA	
3749	3947	0.249			$(1 - e^{-s})$
3948	3965	0.250	4896	4915	0.300
3966	3984	0.251	4916	4934	0.301
3985	4002	0. 252	4935	4954	0.302
4003	4021	0.253	4955 4974	4973	0.303
4022	4039	0, 254	4994	4993	0.304
4040	4057	0, 255	5014	5013 5033	0.305
4058	4075	0.256	5034	5053	0.306
4076	4094	0.257	5054	5073	0.307
4095 4113	4112	0.258	5074	5073	0.308
4132	4131	0.259	5094	5113	0.309
4151	4150 4168	0.260	5114	5132	0.310 0:311
4169	4187	0.261	5133	5152	0.311
4188	4205	0.262	5153	5172	0.312
4206	4224	0.263	5173	5193	0.314
4225	4243	0.264 0.265	5194	5213	0.315
4244	4262	0.266	5214	5233	0.316
4263	4281	0.267	5234	5253	0.317
4282	4300	0.268	5254. 5274	5273	0.318
4301	4318	0.269	5294	5293	0.319
4319	4337	0.270	5314	5313	0.320
4338	4356	0,271	5325	5334	0.321
4357	4374	0.272	5355	5354	0.322
4375	4393	0.273	537 5	5374	0.323
4394	4412	0.274	5396	5395	0.324
4413	4431	0,275	5416	5415 5435	0.325
4432	4450	0.276	5436		0.326
4451	4469	0.277	5457	5456	0.327
4470 4489	4488	0.278	5 4 77	5476 5497	0.328
4509	4508	0.279	5498	5518	0.329
4528	4527	0.280	5519	5537	0.330
4547	4546	0.281	5538	5553	0.331
4566	4565	0.2 82	5559	55?9	0.332
4586	4585	0,283	5580	5600	0.333
4604	4603 4622	0.284	5601	5621	0.334
4623	4642	0.285	5622	5641	0.335 0.336
4643	4661	0,286	5642	5662	0.337
4662	4680	0.287	5663	5682	0.338
4681	4700	0.288	., 56 83	5704	0.339
4701	4719	0.289	5705	5724	0.340
4720	4739	0.290	5725	5745	0.341
4740	4758	0.291	5746	5765	0.342
4759	4778	0.292	5766	5787	0.343
4779	4797	0.293	5788	5808	0.344
4798	4816	0.294	5809	5829	0.345
4817	4836	0.295	5830	5850	0.346
4837	4855	0.296	5851	5871	0.347
4856	4875	0.297	5872	5892	0.348
4876	4895	0.298	5893	5913	0.349
		0.299	5914	5935	0.350
		•			-,

SOURCE OF THE TERM F, USED IN THE CALCULATION OF

EQUIVALENT STATIC COLUMN WELLHEAD PRESSURES

The calculation of the equivalent static column wellnead pressure corresponding to a flowing wellhead pressure is carried out through use of the following equation:

where:

and,

$$F^2 = \frac{2.6665 \text{ f } Q^2}{d^5}$$

$$S = \underbrace{0.0375 \text{ GL}}_{\text{TZ}}$$

specific gravity (air = 1.00)

length of flow string, ft.

pressure, psia (P2 in thousands)

rate of flow, M²cfd @ 14.65 psia, and 60°F.

 \mathbf{T} effective absolute temperature, oR.

effective compressibility factor.

internal diameter of flow string, in.

coefficient of friction, dimensionless.

Through use of the complete turbulence portion of the curves published by Lewis F. Moody in November 1944, Transactions of the A.S.M.E., it is possible to determine the value of (f) for various sizes of pipe at a constant absolute roughness of 0.0006 in., which value is considered valid for clean pipe.

Using the values of (f) so determined, it is possible to arrive at a correlation of friction coefficient (f) vs. internal diameter (d) which is reasonably correct. It was found for an absolute roughness of 0.0006 in. that the value of (f) could be expressed as follows:

f =
$$\frac{4.372 \times 10^{-3}}{d^{0.224}}$$
 for diameters less than 4.277 in.
f = $\frac{4.007 \times 10^{-3}}{d^{0.164}}$ for diameters greater than 4.277 in.

If the expression $(F_cQ)^2$ is allowed to represent the expression $(F^2T^2Z^2)$ in Equation (1), then the value of F_c can be shown to be those given in Talle I.

HE PASO NATERAL GAS COMPANY

Membershire

Γo

Mr. L. D. Galloway

Dec August 30, 1962 ///

0.3

From

Gas Engineering

Place Farmington, New Mexico

enduit

A meeting was held in Fermington on August 1, 1962 to discuss possible changes in the mode of calculation of the deliverability tests for wells in the San Juan Basin. At this meeting I was asked to compile certain data regarding "Multipliers" used in converting from the actual flow rates (Q) to the deliverability (D) for wells in certain pools. The 1960 Annual Deliverability Test for 3859 wells was used in this study. The multiplier for each well was converted from a basis of Pd = 50% Pc to a value of Pd = 75% Pc. Then a count was made of the number of wells in brackets as: Under 1.0, 1.0 to 1.5, 1.5 to 2.0, etc. A tabulation was made for the South Blanco Pictured Cliff Pool using Pd = 65% Pc.

The results of these converted multipliers are attached hereto.

H. L. Kendrick

Sr. Gas Engineer

HLK:slm

ce: Mr. E. C. Arnold

Mr. A. R. Kendrick

Mr. W. B. Smith

Mr. Elvis Utz

Mr. Gerald Hickson

Mr. R. F. Lemon

Mr. J. B. Magruder

Mr. D. H. Rainey

Mr. G. C. Whitworth

Mr. F. N. Woodruff

Mr. W. G. Cutler

File (2)

SOUTH BLANCO PICTURED CLIFF POOL Using 0.75 Pc for Pd

LOCATION TOWNSHIP	NUMBER OF WELLS	MULTIPLIER UNDER 1.0	MULTIPLIER 1.0 - 1.5	MULTIPLIER 1.5 - 2.0	MULTIPLIM 2.0 - 2.5	MULT. 2.5 & OVER
24-2	21	19	1	1		
24-3	46	35	4		1	6
24-4	2 2	8	9	1	2	2
2 5- 3	40	31 44	2	1	2	4
25-4	61	44	10	3	5	2
25-5	58	35	16	5		2
2 5- 6	30	26	11	-		
26-4	11		5	6	S	1
26-5	76	5 8	7	6	1	<u> 1</u> 5
26-6	78		21	5		
26-7	65	55 58	3	5		5
26-8	6	3	3			
27-5	10	7	2	1		
27-6	57	51	6			•
2 7-7	92	91	1.			
2 7- 8	96	90	չ,	1	1	
27-9	63	49	13	1		
28-6	5	1	ĺ			
28-7	10	6	3			ı
28-8	15	$\mathcal{T}_{I}^{\dagger}$	ì	2	1	
28-9	14	J.1t				
TOTALS:	373	692	113	32	12	24
PER-CENTS:		79.3	12.9	3 .7	1.4	(2.7).

30 wells with multipliers greater than 1.5 are classified as exempt marginal.

2472

Pe-Ps

TAPACINO PICTURED CLIFF POOL
Using 0.75 Pc for Pd

LOCATION TOWNSHIP	ITAMBER OF WELLS	MULTIPLIER UNDER 1.0	MULTIPLIER	MULTIPLIER	MULTIPLIER 2.0 - 2.5	MULT. 2.5 & OVER
25-3	22	14	6		1	ı
26-3	20	9	7	3	1	
26-4	27	3	9	9	5	4
26-5	<u>)</u>	·	·	•		1
27-4	11	5	8	l		
27-5	17	5	6	6	3	
TOTALS:	98	30	36	19	7	6
PER-CENTS:		30.6	36.7	19.4	7.1	6.1

⁶ wells with multipliers greater than 1.5 are classified as exempt marginal.

UNDESIGNATED PICTURED CLIFF POOL Using 0.75 Pc for Pd

LOCATION TOWNSHIP	NUMBER OF WELLS	MULTIPLIER UNDER 1.0	MULTIPLIER 1.0 - 1.5	MULTIPLIER 1.5 - 2.0	MULTIPLIER	MULT. 2.5 & OVER
25-10	1	1				
26-9	1	1				
26-10	1	1				
27-4	1		ì			
28 - 3	1	1				
29 - 8] .	1				
3 0 - 9	3 ·	3				
		-				
TOTALS:	9	8	1	**************************************		
DED CENTRY		88 0	11 1			

PER-CENTS:

88.9

11.1

WEST KUIZ PICTURED CLIFF POOL Using 0.75 Pc for Pd

LOCATION TOWNSHIP	NUMBER OF WELLS	MULTIPLIER UIDER 1.0	MULTIPLER 1.0 - 1.5	MULTIPLIER 1.5 - 2.0	MULTIPLIER 2.0 - 2.5	MULT. 2.5 & OVER
26-10	14	1	12	1		
26-11	2	2				
27-10	12	6	5			1
27-11	4 0	26	6	7		1
27-12	3 0	16	3	4	3	4
28-11	2	1		1	·	
28-12	33	1	6	13	5	8
28-13	<u>1</u> +				1	3
39-1 2	6	5	l			
29-13	6			5	1	
CLANUM CLANUM	149	58	5 5	<u>31</u>	ĹŌ	17
PER-CENTS:	:	38. 9	22.1	20.8	6.7	11.4

³⁸ wells with multipliers greater than 1.5 are classified as exempt marginal.

BLANCO MESA VERDE POOL Using 0.75 Pc for Pa

	LOCATION TOWNSHIP	NUMBER OF WELLS	MULTIPLIER UNDER 1.0	MULTIPLIER 1.0 - 1.5	MULTIPLIER 1.5 - 2.0	MULTIPLIER 2.0 - 2.5	MULT. 2.5 & OVER	
	26-2	3	3		,			-
	26 - 3	21	18	2 6	1			
	26-4	10	3	0	1			
•	26 -5 26 - 6	6	5	1				
		5	<u> </u>	1		3		
	26-7	5	1	i.		1		
	27 - 3	80 80	19 රි	1	,	1	3	
	27-4	16 44		26 5	1	1	Ĩ	
1	2 7- 5	44 48	13 17	20 18	5	3	,	
a S	27-6 2 7- 7		30 11	11	11	5 J	1	
	2 7- 8	29 36	21		5 2	2	1	
E ⁻¹ -≪	2 7- 9	36 მ	7	13 1	۵			
15 15	28.3	5	2	1				
ŧ.	28-k	14	6	5	5	1		
	28-5	44 T-4	16	23	2. 4	1		
è	28-6	43	15	23	4	1		. :
i. F	28-7	サフ 47	16	25	4	τ.	2	
	58-8	45	· · · · · · · · · · · · · · · · · · ·	10		1	c.,	
,5	28-9	3 9	15	23		-	1	
*	29-4	6	1	2. 2.	J	2	7	
	29-5	3 8	17	19	ĩ	1		
	29-6	54	30	23	1	4		
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	29-7	65	27	34	4			
1 . 12	29-8	64	52	ĺl			1	N.
	2 9- 9	63	52 38	21	3	1		į.
	29-10	$\overline{7}$	4	1	í		1	
	30-4	2	1	1			~	
	30-5	23	9	11	1	2		
2.3 8. 4	30-6	60	37	1 9	3		1	
À	30-7	6 8	<u>1; 1;</u>	19 13	3 6			
	50-8	62	42	19	1			
	3 0 - 9	64	36	26	1	1 .		
	30-1 0	-55	3 4 3 2	13 6	5 2	1	2	
	30-11	12	3	6	5	1		
800	30-12	55 12 2 7	5	1				*
3	31-5 31-6	7		14 8 8 17 15 7 10 15	1 5 9 5 5	2		
19	31-6	28 48 48	3 6	8	5	3 2	1	
٢.	31-7 31-8	28	. 6	ර - =	9	2	1 3 1 2	
\$ 1	31-8	48	21	17	5	4	1	
1 6	31-9 31-10	65 5 3	3 9 64	15	5	14	2	
Š.	31-10	17	64 5.0	7	, ,	_		
3.	31-11	50	40	7.0	jt	2		
	31-12 31-13	71 56 45 4	24 4	12	<u>}</u>	1	1	
	20 € 21-T2	4	1)	^				
	32-5 32-6 52-7	11	s	2 3 4				
45 3 1	92 - 0	17	C	خ ا،	ז	3	^	
	32 - 8	17	ソ).),	1	2	
<u></u> 21.	72-U	9 25 49	9 2 9 23	1 8	4 8 5		2	
	32-9 32-10	io	ン クス	14	5	6	7	
)~~1.0	77.7	د.)	, L =7	-'	J	1	

BLANCO MESA VERDE POOL Using 0.75 P_{c} for P_{d}

Page 2

	LOCATION TOWNSHIP	NUMBER OF WELLS	MULTIPLIER UNDER 1.0	MULTIPLIER 1.0 - 1.5	MULTIPLIER 1.5 - 2.0	MULTIFLIER 2.0 - 2.5	1017 2.5 & OVER
	32-11 32-12 32-13	5 1 35	26 24 և	21 10 2	3	ı	1
TOT.	TAIS:		7	,	J.		
-		1675	913	568	125	44	25
	Per Cents:		54.51	33.91	7.46	2.63	1.49

107 wells with multipliers greater than 1.5 are NOT classified as exempt marginal.

87 wells that are classified as exempt marginal had a shut-in pressure of 600 psia or less.

AZTEC PICTURED CLIFF POOL Using 0.75 Pc for Pd

LOCATION TOWNSHIP	NUMBER OF	MULTIPLIER UNDER 1.0	MULTIPLIER 1.0 - 1.5	MULTIPLIER 1.5 - 2.0	MULTIPLIER 2.0 - 2.5	MULT. 2.5 &
						OVER
28-8	5	3		1	1	
28-9	53	50	1	ī	ī	
28-10	í 8	1 6	S			
29~8	1	1				
29-9	8 -	4	1	2	1	
29-10	81	75	5	3.		
29-11	18	14	5	. 1		ì
30-10	42	3 9	5		1	
30-11	85	78	5		1	1
31-11	12	10	1		1	
31-12	1				1	
TOTALS:	<i>3</i> 24	290	19	6	7	2.
PER-CEIPIS:		89.5	5. 9	1.9	2.2	0.6

⁶ wells with multipliers greater than 1.5 are classified as exempt marginal.

BALLAND PICTURED CLIFF POOL Using 0.75 Pc for Pd

	LOCATION TOWNSHIP	NUMBER OF WELLS	MULTIPLIER UNDER 1.0	MULTIPLIER 1.0 - 1.5	MULTIPLIER 1.5 - 2.0	MULTIPLIER 2.0 - 2.5	MULT. 2.5 & OVER
	2 3- 3	8	8				
#*;	23-4	3	3				
* 	2 3- 5	1.6	15	1			
Į.	23 - 6	3	2	1	•		
	24-H	2	2				
4	24-5	1414	. 32	11		1	
	24-6	42	33	8	1		
	24-7	7	7				
*; 	25-6	14	10	4			
- 1 2	25 - 7	40	3 6	ì 4			
e. L	2 5- 8	33	12	13	8	1	
	26-7	16	15	1			
-	26-8	58	53	5			
	2 6- 9	68	65	6			
	27-8	4	14				
	27-9	23	15		5		
) ===	TOTALS:	<i>3</i> 81	349	59	13.	2	
- Sel	PER-CENTS:		81.1	15.5	2.9	0.5	

⁵ wells with multipliers greater than 1.5 are classified as exempt marginal.

Using 0.75 Pc for Pd

	LOCATION TOWNSHIP	NUMBER OF WELLS	MULTIPLIER UNDER 1.0	MULTIPLIER 1.0 - 1.5	MULTIPLIER 1.5 - 2.0	MULTIC LIER 2.0 - 2.5	MULT. 2.5 & , OVER
	29-8	2	5				
	29-9	80	20				
	30-9	13	13				
	30-10	1.	Ţ				
-	TOTALS:	36	36				
4	PER-CENT:	•	100				

CHOZA MESA PICTURED CLIFF POOL Using 0.75 Pc for Pd

 LOCATION TOWNSHIP	NUMBER OF WELLS	MULTIPLIER UNDER 1.0	MULTIPLIER 1.0 - 1.5	MULTIPLIER 1.5 - 2.0	2.0 - 2.5	2.5 & OVER
28-4 29-3 29-4	2 1 4	2 1 3	1			
 TOTALS:	7	6	1			
PER-CENTS		65.7	14.3			

EAST BLANCO PICTURED CLIFF POOL Using 0.75 Pc for Pd

4	LOCATION TOWNSHIP	MUMBLER OF WELLS	MULTIPLIER UNDER 1.0	MULTIPLIER 1.0 - 1.5	MULTIPLIER 1.5 - 2.0	MULTIPLIER 2.0 - 2.5	MULT. 2.5 & OVER
4	30-4	21	18	1	1		1
	TOTALS:	21	18	1	1		1
1	Per-cents		85.7	4.8	4.8		4.8

FULCHER KUTZ PICTURED CLIFF POOL

Using 0.75 Pc for Pd

			Using O.	75 Pc 101 14		MULTIPLIER	MULT.
	LOCATION	NUMBER OF	MULTIPLIER UNDER 1.0	NULTIPLIER 1.0 - 1.5	1.5 - 2.0	2.0 - 2.5	OVER .
	TOWNSHIP	Sg MEIT??	18	10	. 2	. 2	
	27-9 27-10	83 62	72 59 13	3 1			
	28-10 28-11 29-10	14	. 12 12	4 7	1 2		
	29-11 29-12	17 17 1	8 1 2	· · · · · · · · · · · · · · · · · · ·		2	
	29-13 30-12	225	186	322	2.2	0.9	
	TOTALS:		82.7	14.2			
د د	PER-CENTS:			12551	fied as exempt m	nerginal	

7 wells with multipliers greater than 1.5 are classified as exempt marginal

11-11-11

GAVILAN PICTURED CLIFF POOL

Uning 0.75 Pa for Pa

LOCATION TOWNSHIP	NUMBER OF WELLS	MULTIPLIER UNDER 1.0	MULTIPLIER 1.0 - 1.5	MULTIPLIER 1.5 - 2.0	MULTIPLIER 2.0 - 2.5	MULT. 2.5 & OVER
24-1	2	5				
25-1	5 ·	5				
25-2	20	20				
26-2	9	9				
26-3	13	10	3			
27-3	12	15	-			
TOUALS:	61	58	<u>ველი გე</u>			
PER-CENTS:		95.1	4-5			

SOUTH BLANCO PICTURED CLIFF POOL

Using 0.65 Pc for Pd

LOCATION TOWNSHIP	NUMBER OF WELLS	MULTIPLIER UNDER 1.0	MULTIPLIER 1,0 - 1,5	MULTIPLIER 1.5 = 2.0	MULTIPLIER 2.0 - 2.5	MULT. 2.5 & OVER
2h-2	21	18	1	1	ı	0
24- 3	46	31	6	2	0	7
21։–	ŞŞ	4	9	<u>L</u>	1	Ĺ
25- 3	40	23	8	3	0	6
25-4	61	35	17	2	2	5
25-5	58	25	17	11	3	2
25-6	30	21	7	2	Ó	0
26-4	11	Û	ì	2	5	3
26-5	76	46	12	10	2	5
26-6	78	կև	21	12	1	0
267	65	1.1.	14	3	2	2
26 - €	6	2	2	2	0	0
27- 5	10	6	2	1	1	0
27 - 6	57	47	9	1	0	0
27 - 7	92	82	9	1	0	0
27-8	96	71	20	. 3	1	1
27-9	63	33	26	3	1	0
28 ~ €	2	0	2	0	0	0
28 - 7	10	1	6	2	0	1
28 - 8	15	9	3	l	1	1
26 - 9	$\mathfrak{1}l_i$	3	6	0	0	0
TOTALS:	873	550	198	66	21	38
PER-CENTS:		63.0	22.7	7.6	2.4	4.3

II. PASO NATERAL GAS COMPANA

Mean receives

Mr. L. D. Galloway

From:

Gas & Production Engineering

Farmington, New Mexico 40

PAN STRICE GOO

A conference was held in Farmington on March 8, 1962, to discuss possible changes to be made in the manner of conducting, calculating and reporting of Annual Deliverability and Shut-in Pressure tests in the San Juan Basin Area. The names of persons in attendance from the New Mexico Oil Conservation Commission and El Paso Natural Gas Company are listed at the end of this memorandum.

The conclusions reached at this time were:

- No shortening of flow or pre-flow periods should be made at this time.
- Use either easing or tubing shut-in pressure, whichever is higher, provided the well is not bridged, for Pc. (The present rules stipulate that the shut-in pressure of the flowing string be used for Pc);
- Bridged wells and the lower zone of dually completed wells are to use a value of Pc as determined from:
 - Actual wellhead pressure, if the Deliverability Multiplier Factor is below a yet to be determined value. (i.e. figures of 1.50 and 2.00 were discussed), or
 - Average pressure of off-set wells, or
 - Correct wellhead pressure determined by calculations from bottom hole pressure bomb data eliminating effects of liquid accumulation in the wellbore;
- To recommend the changing of the deliverability pressure (Pd) from the presently stipulated 50% Pc = Pd in each pool to the ratio that the calculated working pressure (Pw) bears to the shut-in pressure (Pc) based on a summation of the previous years actual values of shut-in and working pressures as taken from the Annual Deliverability Tests.

This would raise the deliverability pressure from 50% of shut-in pressure to approximately 70% of shut-in pressure, thus eliminating the large multipliers now occurring where the seven day shat-in pressure is approaching the working pressure. (See attached Table)

It was felt that the data presented may not be completely adequate in all respects. El Paso, therefore, plans to conduct more bottom hole pressure surveys in areas where low wellhead shut-in pressures have been measured. This survey is needed to help evaluate the above recommendations.

Thirteen bottom hole pressure surveys were conducted just prior to this meeting. A copy of these surveys are included with this memorandum.

Mr. L. D. Galloway Page 2 March 23, 1962

A table of "Deliverability Multiplier Factors" has been calculated and a copy is attached hereto.

Those in attendance at this meeting were:

New Mexico Oil Conservation Commission, Santa Fe, New Mexico Mr. Elvis Utz

New Mexico Oil Conservation Commission, Aztac, New Mexico

Mr. Emery C. Arnold Mr. A. R. Kendrick Mr. W. B. Smith

El Paso Natural Gas Company, El Paso, Texas

Gerald Hickson

R. F. Lemon

J. B. Magruder

D. H. Rainey

G. C. Whitworth

T. N. Woodruff

El Paso Natural Gas Company, Farmington, New Mexico

L. D. Galloway

H. L. Kendrick

H. L. Kendrick Sr. Gas Engineer

шк: bjo

cc: Above Names (1) W. G. Cutler File - 2

HILEST PRESENCE MULIETPLES FACTORS

Q = Average Daily Volume, MCF/D
Pe = Vellhead Shat-in Pressure, PSIA
Pd = Deliverability Pressure, PSIA
Pv = Verking Pressure, PSIA
n = Slope (0.75 or 0.85)

Multiplier (CHI = D)

	M	whip let be the
\$1 - 02 23 50 50 50 50 50 50 50 50 50 50	20 50 50 55 70 70 70 85 65 70 70 85 65 70 85 65 70 70 85 85 70 85 85 70 85 85 70 70 85 70 70 85 70 70 70 70 70 70 70 70 70 70 70 70 70	n = 0.72 n = 0.05 1.0000
55 55 55 55 55 55 55 55 55 55 55	55 60 55 76 75 35 35 35 35 35 35 35 35 60 65	1.0000 1.0000 1.0666 1.0750 1.1520 1.1740 1.2646 1.3049 1.4138 1.4865 1.6422 1.7545 1.0962 2.1000 2.0501 5.3055 2.5000 1.5000 1.0000 1.0000 1.0000 1.0000 1.0000
ර ග ර ර ර ර ර ර ර ර ර ර ර ර ර ර ර ර ර ර	70 75 80 85 90 95 26.38 79.20 34.67	1.1857 1.3301 1.5396 1.6715 2.4664 4.1009 2.0000 1.5000 1.5000 1.5000

DELIVEABILITY MULTIPLIER FACTORS

PAGE 2

	1 2502.	(J	
		Multiplier	$(Q \times M = D)$
Pa , of Pa	Fu p of Pc	n=0.75	n = 0.85
66	65	1.0006	1.0000
65	ζŞ	1.0977	1.1114
69	75	1.2315	1.2662
⊴5 <u>5</u>	<u>ී</u>	1.4554	1.4943
65 65 65 65 65 65 65 65 65 65 65 65	<u>ී</u> 5	1.7326	1.8644
65	90	2.3019	2 .57 26
65	្ស	3.7967	4.5359
65	8 7. 80	2.0000	
65	01.47	1.5000	~~~~
65	86.28		2.0000
65	eo.rc	40 W T 10 M 10	1.5000
7 0	70	1.0000	1.0000
70	75	1.1219	1.1392
ήŏ	80	1.2985	1.3445
$7\tilde{\epsilon}$	Er	1.5704	1.6775
$\hat{\gamma}_{\circ}$	(i)	2.0971	2.3147
70		3.4533	4.0311
$\dot{\gamma}_{0}$	(9.31	2.0000	
76 70	37.35	1.5000	
70	€Ź.Ô§ €6.06	April American	2.0000
$\dot{7}$	62.67	مد هد مد سه سه د	1.5000
75	75	7.000Ö	1.0000
75	80	1.1574	1.18%
70	85	1.4369	1.4724
12 20	90	1.3692	2.0318
	95	3.0830	3.5824
75 76 75 75 75	90.51	2.0000	***
() 20	(16.93	1.5000	###### O 0000
75	89,83 86,86	to the de de de	2.0000
75	85,35	68 46 WA PV 10 54	1.5000
3 0	60	1.0000	1.0000
63	35	1.2155	1.2475
&c	50	1.6149	1.7215
(X)	95	2.6636	3.0353
<u> </u>	92.59	2.0000	
80	8 3. 90	1.5000	
80 0	91 .7 0 88.33		2.0000
68	68 .13	ph ter our use and up	1.5000

DELIVERABILITY MULTIPLEER FACTORS

PAGE	3
	_

85 85 85 85 85 85 85 85 85	P _{07 / Of} P ₀ 05 90 95 94.33 91.56 93.66 90.98	Multiplier n = 0.75 1.0000 1.3265 2.1912 2.0000 1.5000	$\frac{n = 0.35}{1.0000}$ 1.3798 2.4328 2.0000 1.5900
90 90 90 90 90 90	90 95 96.16 94.31 95.71 93.90	1.0000 1.6493 2.0000 1.5000	1.7631 1.7631 2.0000 1.5000
95 95 95 95 95	95 98.05 97.12 97.32 96.93	1.0000 0.0000 1.5000	1.0000 2.0000 1.5000

F. CALLMATORAL LAS COMMANS

TITEM HOLE THESE RE HEFORT

() ()	PNG		$H_{\alpha}(O_{\alpha}(X))$							
f 10	Blanco		NE Sec. 24-31-10							
1	Atlantic			W. 11 No.	2					
Date .	2-27-62	· Line ·	Stanis	of note Shut-in	ll days					
Dath	MV Fee	5119 :: Batta :	5760 ft. 1.0.	576 0 ft. Da	tan					
1	2.375 Depth	5734 San.C.	jā. P ⊻or P	inPa	ckerft.					
Casing,	. 7 Dece	5075 A. Perfs.	open 11. I inter		nnection					
	n in description to the property of the second section	formulation of the second of t	aradiord		acousticate and occasion of the second of th					
	Lube 1000 2000 3000 5500 5550 5600 5650 5712	835 867 892 917 972 975 975 977 985	.032 .025 .025 .022 .060 	Casar Press. Larry Press. Call Case Call Case Case Case Lass Fest day Press. Lass Test LBCC Cheer Size Cheer Size And Bals. or And Bals. or And Bals. or And Bals. or And Bals. or	1000 1000					
		tatota CHNIA IXta	C BBIS, QVY EBS, U	ROP						
Parada Cay		Prosent Caronells Organisms		Production Between Profs						
in the sept	Humble	No. Sec 1222	 }	Brigging Land						
No All Services	T. B. Grant	Coloration V. 30	362	Cal States 6 negotiousum discreptions	annika an mmaaaa wa wa mili					

Calculated BHP = 984 psia

10 25-818 N.+16

REPRASE NATIONAL GAS DEMPANY

FOTION HOLE FREISHRE REFORT

Company RPRG			$\mathbb{L}^{-1}(G_{1}, X_{G_{2}}) = \mathbb{E}^{-1}(G_{1}, X_{G_{2}})$		
Field Blenco	Ne Sec. 26-31-10				
Lease Atlantic				6-A	· · · · · · · · · · · · · · · · · · ·
Date 2-27-62	Time Company of the Company	Status	of Well Shut-in	8 days	
Pav , NV Lope	4798 ft. Bottom	5492 ft. 1.D.,	54,92 fu. D	alum	ft.
Urbing 2.375 Depti	5487 1 ft. Ballo.		Pin P		
		. ACC Pring of E	in	acker	(t.
Casing7 Depth :	4700 ft. Perfs	open ft. f.iaer	Tree (lonnection _	
Depth:	Pressure Pressure	Fratient Los. ft.	- 27 - Angle Angle (17) - Angle (18) - Angle		THE STATE OF THE S
Lube	865	070	Casing Press. Public Press.	833 867	0.W.T.
1000 2000	89 7 <i>9</i> 8 5	.032 .028	East to a		ft.
3 000	9 5 1	.026	Name 1 co. 5385	(Mud)	ft.
52 00	1007	.025	5436	171	Υ.
5300 5400	1009 1021	.020 .120	Llevator N	ft. Grand	ft.
5438	1043	·579	Lest lest Date		
		•217	Press, Last Fest		Psig
			N.H.P. Change	2 ~ 25:	Davis ≥s dav
			Land Size		
			41, 13 kgs. 1 av		
			Sate: 11. No. 14.		
•			(storately, tak		
			-1-f-1-2-	1.	:0.
				Differential	
			·695	. 11	
			The state of the same and		i. ft. Bbl.
			The second		on a state
	Pitont (.11V) [4 (Np).	1 BDI S DAY 1 DS 1	1970 P		
		A CONTROL OF A PARTY S	· · · · · · · · · · · · · · · · · · ·		
Production	Prosent Carriebases Production		Betanite bists		
justia cest Homble	Number 1222		His overs Earth. His a possible to the		
Bosto T. B. Grant	Colo Indiana No.	30862			
Calculations are Berlins in	IP = 1016 psia				

EL PAT NATUANT M. MUNIS

COTTOM HOLE THE SERVICET

Tarbing 2.375 pept 5405 model. Casing 7 pept 4637 entrance. Lube 863 1000 893 2000 921 3000 948				#.+), N.,		
Field _	Blanco		NE Sec	. 34-31-10		
Tease,	Atlentic				7-в	
Date	2-27-62	Ticle		States of West	Shut-in 8 days	
Pav	MV _{max} loss	4672	Harris 5398	1.0 . 5455	ti. Diras	• !
Tubing	2.375 Depte	5465 ::. ·,	.1.0.	n. P e Pa	Passi	::
Casing		4637	open	(t. 1 (see	Time Committee	
		· •	•	en de la companya de La companya de la companya de		
	1000 2000	893 921	.030 .028 .027 .022 .061		854 865 none 5298 165	11, 3 , 3 3, 3 31, 3 31, 31
					to variable	

.694

Exposit CatALLY TVIDE V CatALLY THE CATALL

Calculated BHP = 1011 psia

•

Company EPIG 2.00 Field Blanco SW Sec. 28-30-6 Tease Barron Kidd 2-27-62 Date Shut-in 16 days 5074 1 4 190 1999 K. **5540** 5667 Labing 2.375 5555 er Barrer 5074 - 5540 5-1/2 5667 913 903 Lube 907

932 957 984 1000 2000 .029 .025 3000 .027 5480 1041 .025 1043 5500 .100 .050 5540 1044 5555 1053 .600

5555 172

none

5550

ج بنک

Company **EPNG** NE Sec. 29-29-8 Field Blanco Lease Hughas Shut-in 10 days 2-26-62 Date Harry H. 1.11. 5365 5342 4608 100 MV p_{av} 5348 m. Hisco Tabing 2.375 Bept open hole 11. 15.16s. 4575 196, 5% 35 - 68 D. A. L. 914 Lube 949 none 1000 983 2000 .030 1013 **3**000 .029 5000 .030 5100 .010 5200 .040 5250 .105 1080 5279

Calculated BHP = 1078

```
SW Sec. 22-27-6
hield Blanco
Lease Rincon
                                                                  33
Date 3-2-62
                                                                  Shut-in 176 days
       МĀ
               1.07
                       1,793
                                 -4. State 5485
                                                    jin i nj. 5520
Tabang 2.375
              D_{\ell,j,t_{\mathcal{I}}}
                       5495
Casing 7
                      L7L5
                             W. Burg
               Depty
                                           open
                       82.842.35
                       551
       Lube
       1000
                       572
                                           .021
                                                                          556
                       588
        2000
                                           .016
                                                                         4120
        3000
                       610
                                           .022
                                                                         5450
        4202
                                                               5495
                                           .033
       5000
                                           .261
                                                                            153
        5200
                       905
                                            .235
        5400
                       962
                                           .285
        51,50
                       982
                                           .400
       5495
                                           .378
```

<u>Norman</u> 1222

T. B. Crant (30862

Calculated BHP = 1001 psis

 $A_{i_1} \colon I_1 \to I_2$

Company EPNO

Humble

Calculations and Researches

HOLD MODELLE SEREKORT

Company	EPNG								$\chi_{i,j}(z) = \zeta$	•	
Field_	Blanco				NE Se	c. 30-	28-5				
Lease	San Juan	Unit	28-5							32	
Date	3-2-62		Line				1.:15		Shu	t-in 43 days	3
Pav	M V	Гэр	5546	::. T	5718		. 10.	5810	.1	. Data	••
Tubing .	2.375	Dogstr	5711	· 11.11.	C.	•: !		5-1/2	R	Perto	:1
Casing	7.625	Depti	3634	e. P. e.,	5546 - 5	718	;	3569-		er to the transfer of	
	Dispersion Break		are in the second of the secon		Transport						* 1
	Lube 1000 2000 3000		841 874 902		.033 .028					855 846 None	14, A , 1 14, A , 1
	5200 5400 5600		935 1000 1004 1007		.033 .030 .020 .015				5 628	158	
	5628		1007								¥
										u .	
				Emphilical Color	13 (Note No. 4)	H 5, DA	Y Fris D	40-41			-
Last Cum Productio				The second second							
instrumen	" Humble			No. Took	1222			Herman :: Hels. :	(9 dimen a par 211
Rom by	T. B. Gr	ant		Contract to the	30862			4 .3			
Calculate	Calculat	TK >:			(Piston)			-			

RESTRICTED FROM FROM FREE REFEORT

Company EPN	G	•			W.O. X.		
Field Bla	nco		NE Sec	. 31-28-5			
Lease Sen	Juan Unit	28-5			$ _{C_{k}} \leq _{C_{k}} H$	51	
Date 3=2	-62	line,		Status of W	Shu t-	in li2 days	
Pay MV	$\Gamma_{\rm eff}$	5026	H. Hatton 5502	ft. 1.0. 5	5 80 ii.	Dates	í:.
Tobing 2.3	75 Depti.	5460	n. 3.0.0. (Li n er)	ft. Ping a Ping	7 /o#	Parker	ft.
Casing7	Depth	3 <u>h</u> 30	t. Peris 5026 - 5502	ft. Tract 328		er Cospirer Derry	
Depth Foot		Fressure this square	Pressup	<u> </u>	. 44 55, 51 111 65 .		·
Int 100 200 300 520 521	10 10 10 10	902 935 968 990 1051 1056	.033 .033 .022 .028 .125	1 1 1 1 1 1 1 1 1 1	10 Press. 10 Pre		D. W. 1. D.
		[2]	RODUC (INTEXTNOLX BRI	s, pay 1 Bs, Drop			
Last Cumulative Production			The Sour Considerate (the fact of		de tos		
Instrument	Humble		1222		secopy Lactor So resided Loss		
Bun by	T. B. Gr	ant	California N . 30862	€.4.	e and re-		

Calculated RHP = 1065 pais

.....

RE PARE HAT IDAI DAS IL MOANV

EOTIOM HOLE FRE SORE REPORT

Company Reserve							\$.O. No.					
Field	Blanco				SW Sec.	2-29-6				-		
Lease	Sen Juan	Unit 29	-6				1	%.Н √.15				
Date	3-1-62		Frme			Status.		Shut-i	n 3 days			
Pay	M V	T_{2p}	5213	a. House	5730	rr. 1.10.	5730	ft.	Datum	ft.		
Tubing	2.375	Depth	5663	и. В.н.С.		n. Postal	in		Packer	ft.		
Casing	7	Depth	5214 1	. Perts. 5 2	213 - 5730) ft. Limit		Tree	· · Cammer tran	- .		
	—————————————————————————————————————		ressure	a valadam seatti wali Per		Teaduration	÷			1214 EDF1.		
	Lube 1000 2000 3000 5300 5500 5610 5650 5663	1 1 1 1	874 900 929 955 010 017 018 019 021		.026 .029 .026 .024 .035 .009 .050 .100		Process 10 Process 11 Process 12 Process 12 Process 13 Process 13 Process 13 Process 13 Process 14 Process 14	5663 6 k. d. st than set than set the st than set the st than set the st than set the set the set than set the set than set the set than set the set th	ta 166 ta tarea substitute and tarea subs	ite Saine I I I I I I I I I I I I I I I I I I I		
			PR	ODECTIVITY	NDIX DBL	s, DAY 188, t) H(+) i '		The same of the same			
Last Cumu Production				Prosent Carrell Prosent time	dive		Problem Herane					
Instrument	Humble			Variate 1222	2			ry Factor ound Loss				
Run by	T. B. Gr	ent		Califoration No.	30862		والمراجعة			ie vala etoku u upauraja		

Calculated BHP = 1031 pain

the progress it care

BY FAST MAT THAT MAS TO MORNY

FOUTON HOLE FEETS RE REPORT

Company	EPNC	•				#.0	. No.	
Field	Blanco			NE Sec	31-29-6	5		
Lease	San Juan Unit	29-6				1111	\ 55-51	
Date	2-26-62	Line			Status .	SENATE SE	ut-in 31 days	
Pav	My Top.	5034	ft. Bottom	56 00	, it. T.D.	5649	it. Datim	fi.
Tabing	2.375 Depth	5567	6 MAZ.	fı	. Plug or P	ir	Packer	ſı.
Casing_	5-1/2 Depth	5645 ft	, perfs. , 5034 -	5600	ft. Liner		Time Councition	
	Depair Foot	Pressure Bis. sq. in.	n i kan nya <u>nza ikao</u> ana i Pressa a	taren izan	on best	Second Salaman in Second		2 - 1 - 2 - 2 - 3
anni da servicia e del se menge matema m	Lube 1000	8 <i>5</i> 7 867		.030		Lusing Press	858 8 44	9.3.1. 0.3.1.
	2000 5450	89 8 988		.031 .026		Amerikan Hari Shari	550BC	in die de la company de la com
	5500 5584	99 1 99 3		.060 .024	•	1879 5	584 1: 152 1	
						Press. Last 1	#S!	I sign
						1> • January > 100		
	•					Water 14		
				•		1. day (3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	is Deference	;t1;
			,			Land St. Ser.	.649	
						* -		
		[*1:	000 (11/11 / 180)	\ HHS.	DW 168.1	жөр		
Last Cum Productio			Prosent Copeniations Prostorions			Production Retween Le	</td <td></td>	
Instrumen	n Humble		Name 1222			Recover, F. Blds, pourse		e de la compansión de l
Run by	T. B. Gra	ent	Cadimor Va.	0862		Constitute of	ri. Liberaulian kalangan sa	. E sta Limbo

Calculated BHP - 999 psia

The restricts of

EL PASCINATIONAL MAD INDANA

ECHOM HOLE ISE'S RESELORE

Corapeas EPNG					$W_iO_i \setminus V_{ij}$		
r d Blanco	v		SW Sec	21-21-9)		
Lease Surrey					$R_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_{\alpha_$	1-G	
Date <u>2-28-6</u> 2	Lime	•		Status	West-	in 21 days	ı
Pay NV 191	4800	H. Botton	5330	(i. 1.D.	11.	Paren	!1.
Tubing _2.375 Dept	5356	n. 3.11.0.	ft	. Play a P	in	Parker	it.
Casing 7 Depth	4751	Et. Peris.	open	ft. Lines	. 1 <i>cee</i>	Connection	
Ougav. Foet	Pressure Ds. Sq. it.	and the statement of the source		i <u>a la la compania de la compania del compania de la compania de la compania del compani</u>	:		
Late 1000 2000 5200 5300 5320 5340 5349	932 970 993 1043 1045 1046 1049		.380 .025 .016 .020 .050 .150 .889		Fast Test Day Press, Fast Test OH.P. Change Fask Size On Blist Tay Weigh Blist Tay Fact West, Inc. Size.	a. Inc.	1 to 1 to 2 to 2 to 2 to 2 to 2 to 2 to
	1	PRODUCTIVITY EXD	X 1991 S.	DW (185, 1))ROP		-
Last Cumulative Production		Production Production	والمنابث والمستانين والوسانين الت	iller kroniko, iller kapitagapa produce illeri (1841)	Production Between 16888		
Instrument Humble		Vandier 122	2		Resovers Faster Bols, poind Loss		ar 1886 - No 1880 - Vindolino della collina
Run by T. B. Grant		Calibration No. 36	1960		Calculated to		

Calculated BHP = 1066 psia

the cases the

E. PASO NATURAL BAS CMEANY

FOLLOW HOLE HEES HE REPORT

Company EPEC					1	∪, O, No.		
Field Blanco	4 . r r . a		SW Se	c. 32-31-	9		: .	
Lease Walker					li	eli Xo.	2, , ,	
Date 2-28-62	Fime	·		Status	of World	Shut-	in 21 day	18
Pav _ XV	Гор. 4780	fr. Batton	5435	ii. 1.0.	5435	i ft.	Datas	ñ.
Tabing 2.375 D	_{ерай} 5380	· - fr. 3.H.C.	ş	n. Pag or P	'in		Packer	ft.
Casing 7 Dep	pth 4755	ft. Peris.	open	fi. Linei		lie	· Connection	1
Nepat. Feet	Pressure Pressure Pressure,	aumilionorus (1922-1922) Pro-Astro		its diept		سيعقبالمساند الأداد	i i i i i i i i i i i i i i i i i i i	
Lube 1000 2000 5000 5200 5250 5280 5300 5340 5360 5380	893 924 952 979 1035 1036 1038 1038 1038 1039 1043		.031 .028 .027 .025 .020 .067		Losses Described Bress, Losses	5380 5380 638 038 638 638 638		
	},	RODECTIVITY INDEX	BBI >.	DAY 138, D	H: 1)*			
Last Comulative Production		Present Canalarise			Production Hereiner			
Instrument Brabl	e	Number 1222			Bres. par			
from by T. B. G	rent	Cardinario No.	0862	a sala sa sala salah sa salah salah salah sa	Could whate		rama a Martina assa a sa a sa	
Calculations and Remarks:		•	/	The second secon				

15 mm - 2.63 mm 15 m 5 m

こし ったい ロムキリはム こけれら じじがけみいゃ

FOUTOM HOLE PRESSURE REPORT

Company EPEG				$R_{s}O_{s}/N_{O_{s}}$	
Field Blanco		ME Sec. 9-30-8	3		
Lease Woodriver				Nell No. 2	
Date 2 -28-6 2	Lime		Status of Holy	Shut-in 21 days	3
Pav KV Fop	4865	ft. Harris 5424	it. 1.0. 5482	te. Datas	[: .
Tibing 2.375 Depth	5 398 ft.	346.0	fit. Play of Pacif	Packer	ít.
Casing 5.500 Depth	5482 · H. P	_{eris.} 4865 - 5421	ti. Leet	free Commontes.	
Depth Ever	Pressur Pressure Pressure	Pressure	the specific	and the second of the second o	
Lube 1000 2000 3000 5200 5300 5320 5340 5360 5409	803 830 852 875 918 920 921 921 921	.027 .022 .023 .020 .020 .050	25 (25) 1. H. U. (25) 2. S. 25 (25) 2. S. 25 (25) 2. S. 25 (25) A. 10 (15)	805 2000 2001 2000 2001 2001 2001 2001 20	Ps.g
	(१८)	CHARLY INDEX - BBI	s, DAY TRS, DROP		
Last Cumulative Production		sent Caralanye, Loti a	Produc Berne	tions in Tuests	and the second s
Instrument Humble	Nation	iar 1222		t. Factor ound Loss	
Run by T. B. Grant	f(x)	thration Vo. 30862	tiki ej.		

Calculated BHP = 934 pula

*

NEW MEXICO OIL CONSERVATION COMMISSION

MANUAL FOR

BACK PRESSURE TEST FOR NATURAL GAS WELLS
STATE OF NEW MEXICO

MANUAL FOR BACK PRESSURE TEST FOR NATURAL GAS WELLS STATE OF NEW MEXICO

Compiled

by

Elvis A. Utz

Gas Engineer

February 1, 1956

<u>I</u> <u>N</u> <u>D</u> <u>E</u> <u>X</u>

Acknowledgement
Introduction
Rules of Procedure
Calculation Example No. 1 Single Completion with Working Pressure Available
Single Completion with Working Pressure Available
High Pressure well where $G_{mi,X}$ and working pressures are calculated
completed other than those considered
Example No. 3 Volume calculations for orifice meter critical flow prover and positive choke
Example No. 4 Procedure for determining gravity of flowing wet gas in flow string
Example No. 5 Method of determining pressure loss due to friction in flow strings
Example No. 6 Determining static column pressures in Gas Wells
Example No. 7 Determining the adjusted wellhead shut-in pressure on gas wells with liquid columns in wellbore under static conditions
Table I, coefficient fo rlange taps
Table II, coefficients for Pipe Taps
Table III, coefficients for

Table IV, coefficients for positive chokes
Table V, Flowing temperature factors
Table VI, Specific gravity factors
Table VI. A, F _c factors for various tubing sizes
Table VII B, F _c factors for various casing sizes
Table VII C, F _c factors for various casing-tubing combinations
Table VIII, values of (1-e-s) for various values of GL
Table IX, conversion of OAPI to specific gravity
Table X, meter factors for L-10 charts
Table of Squar. Roots54
Appendix A
Appendix B60
Appendix C
Appendix D

ACKNOWLEDGEMENT

We wish to express our appreciation to Mr. M. H. Cullender and Mr. C. W. Binkley, Phillips Petroleum Company, for contributing the basic data and tables for calculating pressure loss due to friction and the method of calculating Static Column Pressures as well as their invaluable counsel and advice.

We also express appreciation to Mr. F. Norman Woodruff, Chairman of the Industry Committee appointed by the Commission to study gas well testing in Southeastern New Mexico, and the following committee members for their invaluable counsel and advice, as well as their willing and effective work in making special well tests and analyzing various material used in this manual:

Mr. W. G. Abott Amerada Petroleum Corporation Mr. J. W. Gole, Jr., Gulf Oil Corporation

Mr. H. M. Purkaple, Shell Oil Company Mr. M. H. Cullender, Phillips Petroleum Company

Mr. C. L. Quast, Sinclair Oil and Gas Company

Mr. Dave Nichols, Southern Union Gas Company

Mr. Max Curry, Buffalo Oil Company

Mr. D. L. Henry, Gulf Oil Corporation

Mr. William Randolph, Continental Oil Company

Mr. Robert E. Cook, Continental Oil Company
Mr. G. L. Tribble, Permian Basin Pipeline Company

Mr. A. M. Wiederkehr, Southern Union Gas Company

Mr. Charlie Cole, El Paso Natural Gas Company

Mr. Fred G. Bernard, El Paso Natural Cas Company

Mr. W. L. Smith, Gulf Oil Corporation

Mr. L S. Muennink, Southern Union Gas Company

Mr. L. E. Mabe, El Paso Natural Gas Company

Mr. C. W. Binkley, Phillips Petroleum Company

Mr. H. E. Barrett, Permian Basin Pipeline Company

Mr. J. A. Moore, Continental Oil Company

W. B. MACEY, Secretary-Director

ELVIS A. UTZ, Gas Engineer

FOREWORD

The staff of the New Mexico Oil Conservation Commission has prepared this manual as a result of considerable study in cooperation with a committee composed of engineers from the industry,

The purpose of this manual is to assist the gas operators of the State to comply with the Commission's Rules and Regulations, and to standardize gas testing procedure.

W. B. MACEY Secretary-Director

INTRODUCTION

This manual is written in compliance with Rule 401 of the Commission's Rules and Regulations of January 1, 1953 and Orders R-368-A through R-376-A, inclusive. Rule 401 requires back pressure tests on all gas wells in the State to be filed once each year. Orders R-368-A through R-376-A, inclusive, are proration orders for the designated dry gas pools of Southeast New Mexico. Reference is made to Paragraph (7) of the findings of each of the above-mentioned orders which states:

* should be adopted as soon as possible so that operators, purchasers and the Commission can determine the fairness and feasibility of an allocation factor for the pool which employs the factors of deliverability, pressure, or any other factor relating to gas well productivity.

RULES OF PROCEDURES MULTI-POINT BACK PRESSURE TEST FOR NATURAL GAS WELLS IN STATE OF NEW MEXICO

The New Mexico Oil Conservation Commission has adopted the following procedure for taking of Back Pressure Tests on gas wells in the State, except those wells in pools where special testing orders are applicable. This procedure has been adopted to standardize back pressure testing and should be followed closely so that the test be acceptable to the Commission's engineering department.

 If the well being tested has a pipeline connection it should be flowed for at least 24 hours prior to the shut-in period at a rate high enough to clear the well of liquids.

If the well cannot be cleared of liquids by producing into the pipeline or if the well has no pipeline connection an attempt shall be made to clear the well by blowing to the atmosphere prior to the shut-in period.

2. The well shall be shut-in for 72 hours plus or minus 6 hours. This shut-in pressure shall be considered stabilized unless deadweight readings taken at a lessor period are higher, in which event the highest recorded pressure shall be used as the shut-in pressure.

In the event liquid accumulation in the wellbore during the shut-in period appreciably effects the surface pressure, appropriate correction of the surface pressure shall be made in order to account for the pressure due to the liquid column. This correction shall be made in the manner shown in examples No. 6 and No. 7 pages 28 and 34.

- 3. All shut-in and flowing pressure readings shall be taken with a deadweight gauge. The use of spring gauges is not acceptable because of their inaccuracy.
- 4. The lowest rate of flow on the test shall be at a rate high enough to keep the well clear of liquids.
- 5. The test shall be run in the increasing flow rate sequence except in the case of high liquid ratio wells where a decreasing flow rate sequence may be used after the increasing sequence method will not give point alignment. When the decreasing sequence method is used, a statement giving the reasons why the use of such method is necessary shall be furnished with the Form C-122.

- 6. If possible the working wellhead pressure on the low rate of flow should be drawn down at least 5% of the well's shut-in pressure and at least 30% of the well's shut-in pressure on the highest rate of flow. One criterian as to the acceptability of the test shall be a good spread of data points. If data cannot be obtained in accordance with the above provisions an explanation shall be furnished with Form C-122.
- 7. An orifice meter, critical flow prover, or a positive choke are the only acceptable metering devices. Gas shall not be vented however, except where absolutely necessary.
- 8. The diameter of the orifice plate in the meter run and the inside diameter of the run should be checked.
- 9. The meter pens should be checked and verified correct.
- 10. a. The absolute potential herein referred to shall be the potential as determined from the 24-hour back pressure curve. The 24-hour back pressure curve shall be determined by either of the following means.
 - (1) The data obtained from at least four flow rates of 20 to 28-hour duration each or;
 - (2) By the application of the slope of the back pressure curve, as determined from data obtained from at least four flow rates of lesser duration, to the data obtained from a one-point test of 20 to 28 hours duration. Each flow rate of a test taken for the purpose of establishing only the slope of the back pressure curve shall be of approximately the same duration and not less than three hours unless stabilization is obtained in a lesser time. A constant working pressure for a period of one hour shall constitute stabilization. The one-point test referred to above may be a separate one-point test after shut-in or a continuation after the fourth rate of flow of the multipoint test.

This later procedure shall be used when gas is being vented to the atmosphere except that in the case of information tests taken in the process of completing the well, the operator may utilize such method as is necessary to evaluate the well.

b. The slope herein referred to is the exponent (n) in the back pressure equation $Q = C (P_c^2 - P_w^2)^n$ and shall be determined as outlined in example No. 1 page 7

- c. When the tack pressure curve cannot be drawn through at least three of the plotted points, the well shall be re-tested. If upon retest a curve cannot be drawn through at least three of the plotted points, an average curve shall be drawn through the points of such test provided, however, that the slope of said curve will not be more than 1.0 nor less than 0.5.
- d. If the curve drawn through at least 3 points of the back pressure test has a slope greater than 1.0 or less than 0.5, the well should be retested.
 - (1) If upon retest the slope of the curve is greater than 1.0, a curve with a slope of 1.0 shall be drawn through the data point corresponding to the highest rate of flow.
 - (2) If upon retest the slope of the curve is less than 0.5, a curve with a slope of 0.5 shall be drawn through the data point corresponding to the lowest rate of flow.
- 11. Correction for the compressibility of flowing gas shall be made in accordance with the Simplified Supercompressibility (\mathbf{F}_{pv}) tables published by the Commission.

In the event the gas contains carbon dioxide or nitrogen in excess of 2% by volume, the Fpv factor shall be determined through use of the appropriate California Natural Casoline Association (510 W. Sixth Street, Los Angeles 14, California) bulletins TS402 or TS461.

- 12. Where the static wellhead working pressure reading cannot be obtained due to packer or dual completion said pressure shall be calculated by using the tables in this manual and as shown in example No. 5 page 25.
- 13. The average Berometric Pressure shall be assumed to be 13.2 psia in Southeastern New Mexico and 12.0 psia in Northwestern New Mexico.
- 14. Upon completion of the test, all the calculations shall be shown on New Mexico Oil Conservation Commission Form No. C-122 and shall be accompanied by a back pressure curve neatly plotted on equal scale log-log paper of at least 3 inch cycles. Three copies of both the data sheet and back pressure curve shall be mailed to the Commission office in Santa Fe, New Mexico.

CALCULATION EXAMPLE NO. 1

BACK PRESSURE TEST ON A GAS WELL PRODUCING THROUGH THE TUBING WITH CASING PRESSURES AVAILABLE.

- Step (1) After filling in the General Data at the top of Form C-122 and Observed Data for each rate of flow on Form C-122, the calculation may begin.
- Step (2) Flow Rate Calculations

Formula for calculating orifice meter flow:

$$Q = C \sqrt{(h_W) (p_f)} \times F_t \times F_g \times F_{pV}$$

Where:

 $Q = \text{rate of flow, MCFD @ 15.025 psia. } 60^{\circ}\text{F.}$

C = basic orifice factor (Flange Taps)

 $h_w = Differential meter pressure. (inches of water)$

pf = static meter pressure. psia

Ft = flowing temperature factor

 F_g = specific gravity factor

 F_{pv} = supercompressibility factor

Calculating first rate of flow:

General and observed data.

Barometric Fressure	_	13.2 psia
Gas Gravity	-	.675
Testing Device		Meter Run
Type Taps		Flange
Meter Run	-	4 ¹¹
Orifice size	-	1.500"

Observed Field Data and Table Factors

C = 13.99 (Table I Page 38)

hw = 12.00 in wtr. (Field Data)

p = 767.2 psia (Field Data)

 $F_+ = .9868$ (Table V Page 42)

 $F_g = .9427$ (Table VI Page 43)

F_{pv} = 1.084 (NMOCC Simplified Supercompressibility Tables)

Substituting above data into formula

$$Q = 13.99 \sqrt{(12.0) (767.2)} \times .9868 \times .9427 \times 1.084$$

 $Q_1 = 1353 MCFD$

In like manner the other three flow rates are found to be: (see Form C-122, page 13)

2nd rate $-Q_2 = 1838$ MCFD

 $3rd rate - Q_3 = 2031 MCFI$

4th rate $-Q_{\lambda} = 2421$ MCFD

Step (3)

PRESSURE CALCULATIONS

Since this is a dry gas well and the static wellhead working pressures are measured the liquid column or pressure loss due to friction calculations $(P_{\rm W})$ are not necessary.

Data for plotting back pressure curve.

$$Q \text{ vs. } (P_c^2 - P_w^2)$$

Where:

Q = rate of flow, MCFD @ 15.025 psia 60°F.

P_c = wellhead shut-in pressure, casing or tubing whichever is higher.

P_w = static wellhead working pressure at the termination of each flow period. (casing if flowing through tubing, tubing if flowing through casing)

<u>All squared pressures in thousands.</u>

Then:

	Q MCFD	P _C (Psia)	P _c ² (Thands)	P _w (Psia)	P _w ² (Thends)	$P_c^2 - P_w^2$ (Thends)
(1)	1353	999.2	998.4	855.2	731.4	267.0
(2)	1838	999.2	998.4	795.2	632.3	366.1
(3)	2031	999.2	998.4	767.2	588.6	409.8
(4)	2421	999.2	998.4	711.2	505.8	492.6

The above data shall then be plotted on log log paper of at least three inch cycles in accordance with item 10 of the Rules of Procedures. Q shall be plotted on the horizontal axis and $(P_c^2 - P_w^2)$ on the vertical axis as shown in the example on page 13.

Enter values of P_c , P_c^2 , P_w , P_w^2 and $(P_c^2 - P_w^2)$ on Form C-122.

Step (5)

Determining the value of slope n of the back pressure curve.

The numerical value of the slope n is the cotangent of the angle formed by the back pressure curve and the horizontal axis of the log log plot.

However, a more convenient and securate method shall be used to determine the value of n. The difference of the logarithm of two values of Q which are exactly one vertical cycle apart shall be determined in the following manner. (see example on page 13)

Value of Q where curve intersects the $(P_c^2 - P_w^2)$ scale exactly one cycle higher than the $(P_c^2 - P_w^2)$ value used for Q_1 . In this example this value is 2000 (thousands)

 $Q_2 = 8910$; Log $Q_2 = 3.949878$

Value of Q where curve intersects the lowest convenient value of $(P_c^2 - P_w^2)$. In this example this value is 200 (thousands)

 $Q_1 = 1045$; $Log Q_1 = 3.019116$ Slope n .930762

Rounded off to two decimals the slope n is then .93. This value shall be entered on Form C-122.

The absolute potential is defined as the calculated rate of flow at the wellhead after flowing for a 24 hour flow period against atmospheric pressure if there were no pressure loss due to friction in the flow string. The rate of flow shall be expressed at New Mexico Oil Conservation Commission base conditions of 15.025 psia and 60° Farenheit. This is sometimes called a wellhead absolute potential.

The error caused in the value of the absolute potential, when atmospheric pressure is ignored in the determination of absolute potential, is insignificant when shut-in pressure is below 100 psia. Because of this fact, atmospheric pressure will not be considered in the following explanations.

The absolute potential shall be determined by plotting the value of $(P_c^2 - P_w^2)$ on the back pressure curve when P_w equals 0 absolute. The absolute potential is read on the Q or horizontal scale of the log log plot directly under the plotted point where the $(P_c^2 - P_w^2)$ value intersects the back pressure curve.

In this example P_c^2 equals 998.4 (thousands). When plotted on the back pressure curve, the value of (AP) the absolute potential is 4670 MCFD. Record this value on Form C-122.

The values of AP and slope n should be checked by substituting test data in the following formula. If a data point does not fall on the curve as drawn, then any convenient value of Q and $(P_c^2 - P_w^2)$ from the curve should be used in the following formula.

$$AP = Q \left[\frac{P_c^2}{(P_c^2 - P_w^2)} \right]^n$$

where:

AP = absolute potential

Q = rate of flow from test data point, or from B. P. curve.

 $P_c =$ shut-in pressure psia.

Pw = static wellhead working pressure psia.

Note: Where data is taken from curve $(P_c^2 - P_w^2)$ is read from the Back Pressure Plot.

Substituting values in equation:

AP = 4669.6

The Calculation checks the value of 4670 as read from the Back Pressure Curve and is correct.

Form C-122 should be checked for accuracy and to be sure that all necessary data has been filled in. The Form should then be signed and filed in triplicate with the Commission Office, Box 871, Senta Fe, New Mexico.

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q T Actual rate of flow at end of flow period at W. H. working pressure (Pw). MCF/da. @ 15.C35 psia and 60° F.
- PcI 72 hour wellhead shut-in casing (or tubing) pressure thickever is greater. psia
- Pw Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- Pf Meter pressure, psia.
- hw Differential meter pressure, inches water.
- Fg Gravity correction factor.
- Ft Flowing temperature correction factor.
- Fpv Supercompressability factor.
- n I Slope of back pressure curve.

Note: If $P_{\mathbf{w}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{w}}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\mathbf{t}}$.

NEW MEXICO OIL CONSERVATION COMMISSION

Form C-122 Revised 12-1-55

MULTI-POINT BACK PRESSURE TEST FOR GAS WELLS

Pool	Eumont			Po	rmation	Que	en		_County	Lea		
Init	ial X	e	_Annu	al		Spec	ial		_Date of	Test	12-1	-55
Comp	any Blowe	Gas Co	ompany	,]	Lease	Н.І. То	st	Wel	1 No	6	
Unit	. <u>A</u> S	ec3	6Tw ₁	. <u>228</u>	Rge	35E	Purcl	naser Ble	owe Gas C	ompany		
Casi	ing 5.5 W	t. 15.	5 I	.D. 4.	950 Se t	t at_ 35'	73 Per	r f. 355	0	To 35	60	
	ing 2.375 W											
	Pay: From_		- -									13.2
		_										•
Proc	lucing Thru:	UAS	ing		Iu	o).ng,	Sin	Iype we gle-Brade	nhead-G.	G. or G	.0. I	rual
Date	of Complet	ion:	6-4-	-50	Packe:	r None	···	Reservo	ir Temp.	130 F	· 	
						OBSERV	ED DATA					
Test	ted Through	(PXXX	**) (I	(4336A2)	(Meter)				Type Tap	os	Flang	ge
			low D		······································		Tubing		Casing I	ata	<u> </u>	Donation
No.	(Line)	(Orlf	ice)]	1 1		Ĭ]	1)	Duration of Flow
	Size	}		psig	hw	o _F .	psig		psig			
SI 1.	4 in.	1.5	in.	754	12.0	74	754	75 74	984 842	75	24	r. S. I
2.	rf .	- 11		652	26.0	$\frac{74}{71}$	652	72	782	75		
3.	11	11	·	598	35.0	71	598	71	754	75	24	
4.	н	11		401	77.0	73.	401	71	698	75	24_	4
5. [ţŧ.	11							<u></u>	<u> </u>		
	Coeffici	ent		D			CULATION		Compre	500. I	Rate	of Flow
No.	/ol	one		' '	essure	Fac	tor	Factor	Factor F _{pv}	or	Q-M	CFPD
	(24-Hou	r)	√ h _w	r lq	psia	F	t	Fg_	Fpv			.025 psia
1.	13.99		95.9	4 7	767.2	.9868		.9427	1,08/	4	13	
2.	11		131.4		65.2	.9896		11	1.07		18	
3.	11		146.2 177.8		11.2	.9896 .9896		<u>''</u>	1.06		20° 24°	
4. 5.		~ ~	21100		114.6	• 5/170			1.04		241	5.1
PRESSURE CALCULATIONS Gas Liquid Hydrocarbon Ratio Dry Gas cf/bbl. Specific Gravity Separator Gas Gravity of Liquid Hydrocarbons deg. Specific Gravity Flowing Fluid Fc Pw measured (1-e-8) Pc 999.2 Pc 998.4												
No.	P _w Pt (psia)	P	E F	cQ.	$(F_cQ)^2$? (I	(cQ) ² (-e-s)	P _w 2	P _c ² -P _w ²	C	al. Pw	Pw Pc
Ţ.	855.2							731.4	267,0			85.6 70.6
2.	795.2	ļ	\Box					632.3	366.1			
7.	767.2							588.6	409.8		<u></u>	76.6
3. 4. 5.	711.2	 						505.8	492.6	- 		71.2
Abs COM ADD AGE WIT	RESS	Blowe 4600 B Jo I.	Gas Co roadwa hn Doa M. Go	y, Jal . Cas oode		exico	; n	93				
UUM	PANY	NO.	run Ga	as Comp	any							

COMPANY	Blowe Gas Company
WELL	H. I. Test No. 6
LOCATION	A 36-22S-35E
COUNTY	Lea
DATE	12-1-55

CALCULATION EXAMPLE NO. 2

BACK PRESSURE TEST ON A HIGH PRESSURE DUALLY COMPLETED GAS WELL I RODUCING THROUGH THE ANNULUS.

This Example will show the method of calculating G_{\min} and static wellhead working pressure when they cannot be measured.

Step (1) After filling in the General Data at the top of Form C-122 and the Observed Data on same Form, the calculations may begin.

Step (2) Flow Rate Calculations

Since this well was tested through an Orifice Meter refer to the procedure for calculating the flow rates in Example 1.

The rates of flow are calculated to be:

Step (3) <u>Pressure Calculations</u>

Since this well is a dual completion the static wellhead working pressure must be calculated. In order to accurately calculate this pressure it is first necessary to determine the gravity of the flowing fluid or the Gmix:

 G_{mix} calculation.

Formula:

$$G_{mix} = \frac{G_1}{1} + \frac{4591 (G_2)}{R}$$

Where:

$$G_1$$
 = specific gravity of separator gas (Air = 1.0)

Then:

 $G_{3} = .680$ from data on Form C-122

 $G_2 = .6988$ from Table IX page 52.

R = 76,859 from data on Form C-122

Substituting data into formula:

$$e_{\text{mix}} = \frac{.680 + \frac{(4591) (.6988)}{76,859}}{1 + \frac{1123}{76,859}}$$

$$G_{\text{mix}} = .712$$

Static Wellhead Working Pressure Calculation: *

Formula:

$$P_w^2 = P_t^2 + (F_c^Q)^2 (1-e^{-s})$$

Where:

P_W² = Static wellhead working pressure. psia squared, expressed in thousands.

P_t² = flowing wellhead pressure psia. squared, expressed in thousands.

 F_c = Flow string factor Table VII C page <u>50</u>.

Q = Rate of flow $\underline{M^2CFD}$ from Form C-122

(1-e^{-s}) = GL factor. Table VIII page 48.

In order to determine the value of $F_{\rm C}$ and $(1-e^{-S})$ we must first determine:

O.D. of Tubing = 2.375 in.
T.D. of Casing = 2.392 in.
GL = Cmix gravity x longth of flow string from top of perforations = 3831 ft.

Tables VII A (Southeast), VII B (Southeast), VII C (Southeast) and VIII (Southeast) are based on average conditions existing in Southeastern New Mexico. For friction loss calculations in San Juan Basin (Northwestern New Mexico) the appropriate tables for that area should be obtained from the Commission.

Taken from Data on Form C-122 for 1st. rate of flow:

$$Q_1 = 2.584 \text{ M}^2\text{CFD}$$

$$(1-e^{-5})$$
 = .232 (GL of 3831 from Table VIII page 48.)

Substituting in formula:

$$P_{Wl}^2 = (1691.2)^2 + [(1.812 \times 2.584)^2 (.232)]$$

$$P_{wl}^2 = 2865.08$$

$$P_{wl} = 1692.6$$

Second rate of flow:

$$P_{t2} = 1610.2$$

$$Q_2 = 3.570 \text{ M}^2\text{CFD}$$

$$P_{w2}^2 = (1610.2)^2 + [(1.812 \times 3.570)^2 (.232)]$$

$$P_{w2}^2 = 2602.4$$

$$P_{W} = 1613.2$$

Third rate of flow:

$$P_{t3} = 1.509.2$$

$$Q_3 = 4.859 \text{ M}^2 \text{CFD}$$

$$P_{w3}^2 = (1509.2)^2 + [(1.812 \times 4.859)^2 (.232)]$$

$$P_{w3}^2 = 2296$$

$$P_{w3} = 1515$$

Fourth rate of flow:

$$\vec{P}_{t4} = 1340.2$$

$$Q_4 = 6.493 \text{ M}^2 \text{CFD}$$

$$P_{w4}^2 = (1340.2)^2 + [(1.812 \times 6.493)^2 (.232)]$$

$$P_{w4}^2 = 1828.2$$

$$P_{W4} = 1352.1$$

Step (4)	Data for Plotting Pack Pressure Curve
----------	---------------------------------------

	Q (MCFD)	P _c (psia)	P _c ² (Thands)	P _W (psia)	P _W ² (Thends)	$P_c^2 - P_v^2$ (Thends)
1	2584	1.876	3519.0	1692.6	2865.0	654.0
2 3	3570	1876 1876	3519.0 3519.0	1613.2 1515.1	2602.4 2295.6	916.6 1223 . 4
4	4859 6493	1876	3519.0	1352.1	1828.2	1690.8

The above plotting data should be plotted on log log paper, then the slope of the back pressure curve and the absolute potential determined as explained in Example No. 1 under "Determining the value of slope n" and "Determining absolute potential" respectively.

The slope "n" is determined to be .97.

The absolute potential is read from the log log plot as 13,200 MCFD.

When checking the accuracy of the absolute potential of 13,200 MCFD, as determined from the plot, we calculate this to be 13,219 when using data for the first plotting point and 13,225 when using data for the fourth plotting point. The absolute potential of 13,200 MCFD is therefore considered correct.

The above data should be recorded on Form C-122 under "Pressure Calculations".

The Form C-122 should be checked carefully for accuracy, signed and filed in triplicate with the Commission Office, Box 871; Santa Fe.

INSTRUCTIONS

This form is to be used for reporting multi-point back pressure tests on gas wells in the State, except those on which special orders are applicable. Three copies of this form and the back pressure curve shall be filed with the Commission at Box 871, Santa Fe.

The log log paper used for plotting the back pressure curve shall be of at least three inch cycles.

NOMENCLATURE

- Q Tactual rate of flow at end of flow period at W. H. working pressure (P_w) . MCF/da. @ 15.025 psia and 60° F.
- Pc2 72 hour wellhead shut-in casing (or tubing) pressure whichever is greater. psia
- Pw Static wellhead working pressure as determined at the end of flow period. (Casing if flowing thru tubing, tubing if flowing thru casing.) psia
- Pt Flowing wellhead pressure (tubing if flowing through tubing, casing if flowing through casing.) psia
- Pr Meter pressure, psia.
- hw Differential méter pressure, inches water.
- F_g : Gravity correction factor.
- Ft Flowing temperature correction factor.
- F_{nv} Supercompressability factor.
- n I Slope of back pressure curve.
- Note: If $P_{\mathbf{w}}$ cannot be taken because of manner of completion or condition of well, then $P_{\mathbf{w}}$ must be calculated by adding the pressure drop due to friction within the flow string to $P_{\mathbf{t}}$.

EXAMPLE NO. 2

NEW MEXICO OIL CONSERVATION COMMISSION

Form C-122.

				MULT	I-POINT E	BACK PRES	SURE TE	ST FOR GAS	WELLS	I	Revised 12-1-55	
Pool Undesignated Formation Blinebry County Lea												
Ini	tial X	~~	Annu	al		Special			Date of	Test 1	1-31-56	
Company Doe Gas Company Lease Deer Well No. 1												
Unit C Sec. 10 Twp. 24S Rge. 36E Purchaser American Pipeline Company												
Casing O.D. 55 Wt. 17# I.D. 4.892 Set at 6484 Perf. 5388 To 5494												
Tubing 2 3/8 Wt. 4.7# I.D. 1.995 Set at 6469 Perf. 6460 To 6463												
Ges Pay: From 5388 To 5494 L 5388 xG mix .711 -GL 3831 Bar. Press. 13.2												
Producing Thru: Casing X Tubing Type Well G. O. Dual Single-Bradenhead-G. G. or G.O. Dual												
Date of Completion: 12-15-55 Packer 6410 Reservoir Temp. 110°F												
OBSERVED DATA												
Tested Through (PANNE) (CANNE) (Meter) Type Taps Pipe Taps												
Flow Data								bing Data Casing Data				
No.	(Prover) (Line)	(Cho	oke) rice)	Pres	s. Diff.	Temp.	Press	· Temp.			Duration of Flow	
*	Size	S	ize	psi	g h _w	c _F .	psig	°F.		·	Hr.	
SI 1.	4"	2,50		459 5.0		70			1863 1678	60 72	72 hrs.	
2. 3.	11	11		464.8 9.2		63			1597	65	24	
3.	11	11		461.	4 17.3	66			1496	56	24	
<u>4.</u> 5.	tt.	11		473	29.5	58			1327	60	24	
<u> </u>		L		ļ <u></u>			L		L,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	L		
	0 - 00' - 1					FLOW CAL					2 23	
īo.	Coefficient (24-Hour)				Pressure	Flow Temp. Factor		Gravity Factor	Compress. Factor		Rate of Flow Q-MCFPD	
			$\sqrt{h_{WF}}$		psia	Ft		F _g	Fpv		15.025 psia	
1.	54.44		48.			•9905		•9393	1.050		2584	
1. 2.	11			31		.9971		II	1.056		3570	
3. 4. 5.	11 It 1		90.6			•9943			1.054		4859	
4.	11	" 119		/8		1.0019			1.058		6493	
Gas Liquid Hydrocarbon Ratio 76,859 cf/bbl. Specific Gravity Separator Gas 680 Cravity of Liquid Hydrocarbons 710 deg. Specific Gravity Flowing Fluid 711 Pc 1.812 (1-e-8) .232 Pc 1876 Pc 3519												
	P _w				<u> </u>					1		
No.	Pt (psia)	₽ŧ		Q	(F _c Q) ²	(T	cQ) ² -e ^{-s})	P _w 2	$P_c^2-P_w^2$	Ca.	y F _C	
1. 2.	1691.2	2860 4.		82 21.92 68 41.83		5.09 9.71		2865 2602.4	654 916.6	1.1692	6190.2	
3.	1610.2 1509.2	2593 2277		04	77.51	17.0		2295.6	1223.4	1515		
4.	1340.2	1796			138.53	32.		1828,2	1690.8	_		
Absolute Potential: 13,200 MCFPD; n .97 COMPANY Doe Cas Company ADDRESS 9670 Main Street, Hobbs, New Mexico AGENT and TITLE I. M. Lowe, Cas Engineer WITNESSED J. R. Neal COMPANY Best Oil Company												

REMARKS

COMPANY_	Doe Gas Company
WELL	Deer No. 1
LOCATION	C-10-24S-36E
COUNTY	Lea
DATE	1-31-56

Q-MCFD-15.025 psia

PROCEDURES TO FOLLOW FOR WELLS COMPLETED IN MANNERS OTHER THAN THOSE CONSIDERED IN EXAMPLE NO. 1 AND 2.

I. A single completion producing through the tubing but where P. cannot be measured due to packer, no pressure connection on casing, etc.

Follow the procedures of Example No. 1, steps 1, 2, 5 and 6.

Since $P_{\rm W}$ cannot be measured we will use the procedure of step 3, Example No. 2 to complete the calculation. The value of $F_{\rm C}$ used will be for the proper size tubing from Table <u>VII A page 44</u>.

If the well produced dry gas the $G_{\mbox{mix}}$ calculation shown in this example shall be eliminated and the actual measured gravity of the flowing gas used in its place.

II. A single Completion with no tubing in well.

Follow the procedures of Example 2, steps 1 through 4. The procedure of step 4 is changed only in that the $F_{\rm c}$ factor is determined for the proper size casing from Table VII B.

If the well produces dry gas the G_{mix} calculation shown in step 3 of this Example shall be eliminated and the actual measured gravity of the flowing gas used in its place.

III. Bradenhead well (a well producing gas from exposed zones in the annular area between the outside of the production casing and the well-bore or outside of the production string and inside the intermediate or surface casing.)

The wells where flow is for the most part between the outside of the production casing and the well bore (i.e., no intermediate casing in well), no attempt shall be made to calculate the pressure drop due to friction. The value of $P_{\mathbf{t}}$ shall be used in place of $P_{\mathbf{w}}$ in plotting the Back Pressure curve.

The wells where flow is mostly from the annular area between the outside of the production string and the inside of the intermediate string, the procedure shall be the same as used in Example No. 2, step 3. The friction loss shall be calculated only for flow between the two strings of casing and any loss due to flow between the production casing and the well bore shall be ignored.

- IV. Dual Completions with two paralled tubing strings.
 - (a) Where P_{w} can be measured use procedures in Example No. 1.
 - (b) Where $P_{\rm W}$ cannot be measured use the procedures outlined in I above for that particular tubing size.

EXAMPLE NO. 3

VOLUME CALCULATIONS FOR FLOW THROUGH ORIFICE METER, CRITICAL FLOW PROVER AND POSITIVE CHOKES.

Orifice Mater

Refer to flow calculations in Example No. 1, Page __7__

CRITICAL FLOW PROVER (Two and Four Inch)

Formula:

 $Q = C \times P_{h} \times F_{h} \times F_{g} \times F_{pv}$

where;

Q = Pate of flow MCFD, 15.025 psia 60° F,

C = Coefficient of orifice plate.

pt = Flowing gas pressure on prover psia.

Ft = Flowing gas temperature factor.

 F_{σ} = Flowing gas gravity factor

Observed data:

2" critical flow prover -1/2" plate Pressure of flowing gas on prover -915 psig Temperature of flowing gas -70° F Gravity of flowing gas -.675Barometric pressure -13.2 psia

Determining values of factors for formula:

0 = 5.523 Table III, page_40.

 $p_{t_i} = 928.2 \text{ psin from observed data.}$

T_t = ,9905 Table V, page 42.

 $F_g = .9427$ Table VI, page 43.

Fpv = 3.104 New Mexico Oil Conservation Commission, Simplified Supercompressibility Tables, (915 psig, 1675 gravity and 700F,) Bottom Pressure psia

Adjusted wellnead pressure psia

Specific gravity of gas column (air = 1.00)

= Length of gas column to datum point.

= Value of I where H = 6000 ft.

= Value of I where H = 3000 ft.

 I_3 = Value of I where H = 0

Then:

$$P_{c} = 1955 - \frac{3(163.122)}{.241227 + 4(.237020) + .234578}$$
 $P_{c} = 1955 - 3/3.7$

 $P_{c} = 1955 - 343.7$

 $P_c = 1611.3$ or 1611 psia

14. Since this value is more than .5 psia different than the first trial value of M we must enter this value on Line 6, Column 10 and repeat steps 8, the $\frac{TZ}{P_n}$ part of 10, 11, 12 and 13.

then:

$$P_n = 1784.4$$
 $\frac{TZ}{P_n} = .237020$
 $N = .478247$
 $(M \times N) = 81.589$
 $\sum (M \times N) = 81.533$

and:

Check value of M = 170.5

Since the check value of M is different than the trial value of M by only .1 psia the second trial value of M (170.5) and the second trial value of P_n (1784.4) is considered correct.

- 15. Enter depth at which next pressure is to be calculated (zero wellhead) on Line 7, Column 1.
- 16. The value of .0375 GH is now 0. Enter on Line 7, Column 14.
- 17. Determine the first trial value of the pressure due to the weight of the gas column from 3000 to wellhead (0).

 $\Sigma(M \times N)$ @ 3000 ft. - 0375 GH @ 0 ft = First Trial M @ 0 ft. N @ 3000 ft.

$$81.533 - 0 = 170.5 \text{ psia}$$

Enter on Line 7, Column 10.

18. Determine first trial value of pressure at wellhead.

$$P_n$$
 @ 3000 ft. - M @ 0 ft. = P_n @ 0 ft. 1784.4 - 170.5 = 1613.9 psia

- 19. Enter wellhead absolute temperature on Line 7, Column 4.
- 20. Determine P_r , T_r , F_{pv} , Z, TZ, and TZ for 0 ft. $P_r = 2.42$; $T_r = 1.36$; $F_{pv} = 1.195$; Z = .700; TZ = 378.00; TZ = .234215

Enter on Line 7, Column 3, 5, 6, 7, 8 and 9 respectively.

21. Determine value of N @ 0 ft.

I @ 3000 ft. + trial I @ 0 ft. = trial N @ 0 ft.

.237020 + .234215 = .471235

Enter on Line 7, Column 11.

22. Determine M x N @ O ft.

Trial M @ O ft. x Trial N @ O ft. = Trial M x N @ O ft.

 $170.5 \times .471235 = 80.346$

Enter on Line 7, Column 12.

23. Determine $\Sigma(M \times N) @ 0$ ft.

 $\sum (M \times N) \otimes 3000 \text{ ft.} - \text{trial } M \times N \otimes 0 \text{ ft.} = \text{Trial } \sum (M \times N) \otimes 0 \text{ ft.}$

81,533 - 80,346 = 1.187

Column 13 is not equal to Column 14 so a check must be made to determine how close we are to the proper value of M @ 0 ft. The check is made as in step 13 above.

$$81.533 - 0$$
 = Check value of M = 173.0 .471235

24. Since the check value of M is different than the first trial value of M by 2.5 psia we must enter this value on Line 8, Column 10 and repeat steps 18, the TZ part of 20, 21, 22, and 23 until Column 13 is as close to Column 14 as possible.

 $\frac{TZ}{P} = (234)^{78}$

N = .471598

 $M \times N = 81.586$

 $\Sigma(M \times N) = .053$

Check value of M = 172.8

Since the check value of M is different from the second trial value by only .2 psia the second trial value of M (173.0) and the second trial value of $P_{\rm n}$ (1611.4) is considered correct.

25. Now that the proper values of P_n for 6000, 3000 and 0 ft. have been determined we can calculate the adjusted wellhead pressure by using the following formula:

$$P_c = P_f - 2\Delta P$$

where:

$$2 \Delta P = \underbrace{3 (.0375 \text{ CH}) @ 6000 \text{ ft.}}_{I_1} + 4I_2 + I_3$$

8. Determine first trial value of pressure at mid-point of gas column.

$$P_n$$
 @ 6000 ft - Trial M = Trial P_n @ 3000 ft.
1955 - 169 = 1786 psia.

Enter on Line 5, Column 2.

9. Determine the average absolute temperature at mid-column.

$$\frac{540 + 600}{2} = 570$$
 R

Enter on Line 5, Column 4.

10. Determine values of P_r , T_r , F_{pv} , Z, TZ and TZ for 3000 ft. and enter on line 5, Columns 3, 5, 6, 7, 8 and 9 as shown in step 3 above.

$$P_r = 2.67$$
; $T_r = 1.43$; $F_{pv} = 1.161$; $Z = .742$; $TZ = 422.94$; $\frac{TZ}{P_n} = .236808$

11. Determine value of N@ 3000 ft.

I @ 6000 ft + trial I @ 3000 ft. = trial N @ 3000 ft.

$$.241227 + .236808 = .478035$$

Enter on Line 5, Column 11.

12. Determine trial value of M x N @ 3000 ft.

$$169.0 \times .478035 = 80.788$$

Enter on Line 5, Column 12.

13. Determine trial value of ∑(M x N) @ 3000 ft.

$$\sum$$
 (M x N) @ 6000 ft. - Trial (M x N) @ 3000 ft. =

Trial (M x N) @ 3000 ft.

Enter on Line 5, Column 13.

When column 13 is equal to Column 14 the proper value of P_n @ 3000 has been determined. A check must be made by determining the value of the pressure due to the weight of the column of gas from 3000 ft. to 6000 ft. as follows:

 \sum (M x N) @ 6000 ft. - .0375 GH @ 3000 ft. = Check value of M @ 3000 ft.

Using "Calculation Sheet for static column pressures" shown with Example of Appendix C, Case II.

- 1. The values of G, P_{cr} , and T_{cr} will be the same as shown for Case I, (Appendix C).
- 2. Enter length of column (H), Formation Pressure (P_n) and absolute formation temperature T on Line 4, Columns 1, 2 and 4, respectively.
- 3. Determine P_r , T_r , F_{pv} , Z,TZ and \underline{TZ} or I and enter on line 4, Columns 3, 5, 6, 7, 8 and 9 respectively. P_n

$$P_r = \frac{P_n}{P_{cr}} = \frac{1955}{668} = 2.93$$

$$T_{r} = \frac{T}{T_{cr}} = \frac{600}{398} = 1.51$$

$$F_{pv}$$
 = 1.128 CNGA TS - 461, Table V.

$$Z = \frac{1}{(\mathbf{F}_{pv})^2} = \frac{1}{1.272} = .786$$

$$TZ = 600 \times .786 = 471.600$$

$$\frac{TZ}{P_{\rm in}} = \frac{471.600}{1955} = .241227$$

4. Determine value of .0375 CH. for 6000 ft.

$$.0375 \times .725 \times 6000 = 163.122$$

Enter on Line 4, Columns 13 and 14.

5. Enter H (1/2 of total depth) on Line 5, Column 1.

$$\frac{6000}{2}$$
 = 3000 ft. = H

6. Determine value of .0375 GH @ 3000 ft.

.0375 GH
$$\times$$
 .725 \times 3000 = 81.561

Enter on Line 5, Column 14.

7. Determine first trial value of the weight of the lower half of the gas column (from 3000 to 6000 ft.)

Enter on Line 5, Column 10.

APPENDIX D

COLUMNS IN WELLBORE UNDER STATIC CONDITIONS.

In some cases, the observed wellhead shut-in pressure of a gas well is effected by accumulated liquids in the wellbore and will not reflect the true conditions of the well. When the height of the liquid column and the specific gravity of the liquids are known, the formation (Bottom Hole) pressure may be determined by calculating the pressure at the gas-liquid interface as explained in Example No. 6 and adding to this figure the weight of the liquid column above the desired datum plane.

When it is necessary to determine the wellhead pressure which would exist if the liquid column were not present, the formation pressure determined as explained above may be used to calculate an adjusted wellhead pressure based on the assumption that no liquid column exists. The following example explains the same method and procedure as shown in Appendix C, except that it is used to determine wellhead pressure from a known bottom hole pressure while Appendix C shows the procedure for determining bottom hole pressure when the wellhead pressure is known.

Observed data:

H = 6000 ft. (Length of wellbore to datum point. Datum Point used shall be that determined by the Commission)

 $G_{i} = .725$ (Cravity of Gas, Air = 1.00)

 $G_2 = .7389$ (Specific gravity (water = 1.00)60° API, Table IX, Page 52.)

h = 1200 ft. (Length of Liquid Column in wellbore above Datum)

Wellhead Temperature = 540 °R

Formation Temperature = 600 °R

l ft. of water = .4333 psia.

Weight of liquid column expressed as psia.

psia = $h \times G_2 \times .4333$

 $psia = 1200 \times .7389 \times .4333 = 384.2$

Pressure at gas-liquid interface as determined in Appendix C = 1571 psia Pressure of liquid column = $\frac{384}{1955}$ psia Formation Pressure (Pf @ 6000 ft.) 1955 psia Since we desire the adjusted wellhead pressure and we have the Formation pressure at the well detum point we must calculate the pressure due to the weight of the column of gas by beginning with datum point conditions.

CALCULATION SHEET FOR STATIC COLUMN PRESSURES

	COMPA	NYY				LE/	ASE			WELL	NO,		DATE	
	G= .	725	€00 <u>5</u> 0	%n <u>=</u>	0	_ Cr. Pre	ssure (Pcr	.)=_668	Cr. Tem	Cr. Temp. (T _{cr})= 398 .03750			= .027187	
 -	1	2	3	4	5	66	7 1 Z	88	9 I	10 M	11 N	12	13	14
	н	P_n	Pr Pn Pcr	Т	T _r T _{cr}	F _{pv}	$(F_{pq})^2$	TZ	TZ Pn	PnPn-1	$I_{n}-I_{n-1}$	MxN	Z(MxN)	.0375G
							C	CASE I (We	llhead to	Gas-Liqu	d Interfa	ce)		
1	0	1350	2.02	540	1.36	1,165	.737	397.98	.294800				0	0
2	2400	1460.7	2,18	564	1.42	1.143	.765	431.46	.295318	110.7	.590118	65.348	65.348	65.249
3	4800	1571.1	2.35	588	1.48	1.124	.791	465.11	.296040	110.4	.591358	65.285	130.633	130.497
						·		CASE II (De	tum Point	to Wellh	ad)			
4	6000	1955	2.93	600	1.51	1,128	.786	471.60	.241227				163.122	163.122
5	3000	1786	2.67	570	1.43	1.161	.742	422.93	.236808	169.0	.478035	80.788	82.334	81.561
6	3000	1784.4	н	tt	n	. 11	п	II	.237020	170.6	.478247	41.589	81.533	#
7	0-	1613.9	2.42	540	1.36	1.195	.700	378.00	.234215	170.5	.471235	80.346	1,187	0
8	0	1611.4	11	. 11	19	i)	n	11	.234578	173.0	.471598	81.586	.053	

CASE I

CASE II

$$2 \text{ AP} = \frac{3 \text{ (.0375 GH)}}{1_1 + 41_2 + 1_3} = \frac{3 \text{ (.0375 GH)}}{.294800 + 4 \text{ (.295318)}} + .296040$$

$$2 \text{ AP} = \frac{3 \text{ (.0375 GH)}}{1_1 + 41_2 + 1_3} = \frac{3 \text{ (.0375 GH)}}{.241227 + 4 \text{ (.237020)}} + .234578$$

$$= 220.9$$

$$= 343.7$$

$$P_c = 1955 - 343.7 = 1611.3$$

until Column 13 is as near equal to Column 14 as possible.

29. Determine Pressure at Total Depth (4800 ft.)

Now that the proper values of P_n for 2400 and 4800 ft. have been determined we can calculate the pressure at 4800 ft. by the following formula.

$$P_f = P_c + 2 \Delta P$$

where: $2 \Delta P = 3 (.0375 \text{ GH}) @ 4800 \text{ ft}.$ $I_1 + 4I_2 + I_3$

Pf = Bottom Hole Pressure psia.

 P_c = Wellhead shut-in pressure. psia.

G = Specific gravity of gas. (Air = 1.0)

H = Length of gas column to gas liquid inter-face.

 I_1 = Value of I where H = 0 ft.

 I_2 = Value of I where H = 2400 ft.

 I_3 = Value of I where H = 4800 ft.

then:

$$P_f = \frac{3(130.497)}{.294800 + 4(.295318) + .296040}$$

 $P_{f} = 1350 + 220.92$

 $P_{f} = 1570.92 \text{ or } 1571 \text{ psia}$

1460.7 + 110.4 = 1571.1 psia

Enter on Line 3, Column 2.

24. Enter absolute bottom hole temporature at 4800 ft.

 $128 + 460 R^{\circ} = 588 R^{\circ}$

Enter on Line 3, Column 4.

25. Determine values of P_r , T_r , F_{pv} , Z, TZ and TZ at 4800 ft. as shown in steps 5, 7, 8, 9, 10 and 11.

 $P_r = 2.35$, $T_r = 1.48$, $F_{pv} = 1.124$, Z = .791, TZ -465.11, $\frac{TZ}{P_n}$ or I = .296040.

Enter on Line 3, Columns 3, 5, 6, 7, 8 and 9, respectively.

26. Determine trial value of N for 4800 ft.

I @ 2400 + trial I @ 4800 ft. = trial N @ 4800 ft.

.295318 + .296040 = .591358

Enter on Line 3, Column 11.

27. Determine Trial M x N @ 4800 ft.

Trial M @ 4800 ft. x trial N @ 4800 = trial M x N @ 4800 ft.

 $110.4 \times .591358 = 65.285$

28. Determine trial value of ≤(M x N) 4800 ft.

 \sum (M x N) @ 2400 ft. + Trial M x N @ 4800 ft. =Trial \sum (M x N)

at 4800 ft. 65.348 + 65.285 = 130.633

Enter on Line 3, Column 13.

When column 13 is equal to column 14 the proper value of P_n @ 4800 ft. has been determined. A check must be made by determining again the value of the weight of the column of gas @ 4800 ft. as in step 22, except that the value of N is the trial value @ 4800 ft.

.0375 GH @ 4800 ft. - Σ (M x N) @ 2400 ft. = 110.16 Trial N @ 4800 ft.

Since this value is only .24 psi less than the trial M @ 4800 ft. of 110.4 we shall consider 110.4 as correct and the value of P_{n1} (1571.1) on line 3, column 2, as correct. If the value of M in this check had been different than 110.4 by more than .5 psi., then we would have entered this value on line 4, column 10 and repeat steps 22, 23, the $\frac{TZ}{P}$ of 25, 26, 27, and 28

$$P_r = 2.18$$
, $T_r = 1.42$, $F_{pv} = 1.143$, $Z = .765$.
 $TZ = 431.46$ and $TZ = .295318$

Enter on Line 2, Columns 3, 5, 6, 7, 8 and 9, respectively.

18. Determine value of N.

.29480 + .295318 = .590118

Enter on Line 2, Column 11.

19. Determine value of M x N.

$$M \times N = MN$$

$$110.7 \times .590118 = 65.348$$

Enter on Line 2, Column 12 and 13.

When Column 13 is equal to Column 14 then the proper value of P_n @ 2400 ft. has been determined. A check should be made by dividing column 14 by column 11, as follows:

$$0.0375 \text{ GH}$$
 = $0.57 \text{ } 0.590118$ = 110.57

Since this value is only .13 psi less 110.7 we shall consider 110.7 as correct. If the value of M in this check had been different than 110.7 by more than .5 psi. then we would have entered this value on line 3, column 10 and repeated steps 15 through 19 until column 13 was as close to column 14 as possible.

- 20. Enter total depth for which pressure is being calculated on line 3, column 1.
- 21. Determine value of .0375 GH as in step 13.

$$.0375 \text{ GH } = 130,497$$

22. Determine trial value of the weight of the gas column (M) at this depth. (4800 ft.)

Enter on Line 3, Column 10.

400 高。

23. Determine trial value of pressure at desired depth of 4800 ft. $(P_n) \text{ at 2400 ft.} + \text{trial (M) @ 4800 ft.} = \text{trial (P}_n)$ @ 4800 ft. -68-

9. From F_{pv} determine Z factor.

$$(\overline{F_{pv}})^2 = (\overline{1.165})^2 = .737$$

Enter on Line 1, Column 7.

10. Determine value of TZ.

$$540 \times .737 = 397.98$$

Enter on Line 1, Column 8.

11. Determine value of TZ.

$$\frac{\text{TZ}}{P_{\text{n}}} = \frac{397.98}{1350} = .29480$$

Enter on Line 1, Column 9.

12. His the length of the static gas column being evaluated in each step of the calculation (see page 71).

Enter H (1/2 of total depth) for which the pressure is being determined on Line 2, Column 1.

13. Determine value of .0375 GH.

$$.0375 \times .725 \times 2400 = 65.249$$

Enter on Line 2, Column 14.

14. Determine first trial value of weight of gas column at midpoint of gas column.

$$\frac{.03750H}{\frac{2}{P_n}} = \frac{65.249}{\frac{2}{.29480}} = 110.66 \text{ or } 110.7$$

Enter on Line 2, Column 10.

15. Determine first trial value of pressure at midpoint of gas column.

Enter on Line 2, Column 2.

16. Determine the average absolute temperature between the wellhead and Bottom Hole.

$$\frac{80 + 128}{2}$$
 + 460 R⁰ = 564 °R (Rankine)

Enter on Line 2, Column 4.

17. Determine values of P_r , T_r , F_{pv} , Z, TZ and \underline{TZ} as shown in steps 5, 7, 8, 9, 10 and 11.

APPENDIX C

DETERMINING STATIC COLUMN PRESSURES IN GAS WELLS

The determination of subsurface static column pressures by the "Two Step" Simpson's Rule may be accomplished through the use of the following procedure and the "Calculation Sheet for Static Column Pressures".

Observed data:

Specific Gravity of Gas	.725 (Air= 1.00)
Measured Wellhead Pressure	1350 psia
% CO ₂	0
% CO ₂ % N	0
Wellhead Temperature	80°F
Reservoir Temperature	128 ⁰ F

Using "Calculation Sheet for Static Column Pressures", Case I.

- 1. Enter specific gravity (G) and composition of gas at top of calculation sheet.
- 2. Determine critical pressure $(P_{
 m cr})$ and critical temperature $(T_{
 m cr})$.

$$P_{cr} = 668$$
 CNGA TS-461, Table I.
 $T_{cr} = 398$ CNGA T3-461, Table I.

If gas contains carbon dioxide or nitrogen $P_{\rm cr}$ and $T_{\rm cr}$ should be corrected at this time by using Table II of CNGA TS 461. Enter these values at top of Calculation Sheet.

- 3. Enter initial depth (zero wellhead) on Line 1, Column 1.
- 4. Enter wellhead pressure (Pn) on Line 1, Column 2. (1350 psia)
- 5. Determine reduced pressure. (Pr)

$$\frac{P_n}{P_{cr}} = \frac{1350}{668} = 2.02 = P_r$$

Enter on Line 1, Column 3.

- 6. Enter Wellhead Temperature (absolute) on Line 1, Column 4.
- 7. Determine reduced temperature. (T_r)

$$\frac{T}{T_{cr}} = \frac{540}{398} = 1.36$$

Enter on Line 1, Column 5.

8. Using P_r and T_r determined supercompressibility factor (F_{pv})

-66-

$$F_{pv}$$
 = 1.165 (AGA-TS-461 Table V)

Enter on Line 1, Column 6.

CALCULATION SHEET FOR STATIC COLUMN PRESSURES

COMPANY	MPANYLEASE						WELL NO.			DATE		
G 0,85	0 5	£00 <u>28</u>	%N				Cr. Pre	ess78	8	Cr. Te	np. <u>39</u>	3
		~					Ī	М	N	Ţ		
Н	P _n	Pr	T	Tr	Z	TZ	TZ/P	P _n -P _{n-1}		MxN	(MxN)	0.0375 x GH
0	4465	5.67	564	1.44	0.821	463.044	.103705		<u> </u>		0	0
6574	5478	6.95	608	1.55	0.930	565.44	.103220	1013	.206925	209.615	209.615	209.546
13148	6495	8.24	652	1.66	1,024	667.648	.102794	1017	.206014	209.516	419.131	419.093
												
 		 	 	 	 	†	+	 	 		 	
	<u> </u>	By S	Simpson's	Rule						<u> </u>		
		27	>1:upson o	MULC								ļ
		2 1	P (0.10370	5 & 4(0.1	03220) +	0.102794)	= 419.0	93				
		3	(0010)) · 4(012	,, ,							
						2 P	= 2030 $= P_{w} +$					
						$P_{\mathbf{S}}$	$= P_{\mathbf{W}} +$	2 P				
ļ						$\mathtt{P}_{\mathbf{s}}$	= 6495					
		Note	. Altho	ugh in th	de nombi	ດນໄລກຸດລອດ	thoma is	no differe	200			
ļ		NOCE	in th	e values	determin	ed for P.	before and	after the	nce ·			<u> </u>
			a ppli	cation of	'Simpson	's Rule; t	her e is us	ually some				-
								final valu	e is			
			consi	dered to	be more	nearly cor	rect.					
												<u> </u>
				T	1	†	1	T	 	 		+

Numerical Evaluation of the Definite Integral by Two Equal $\frac{TZ}{P_c}$ (P)

Intervals and Simpson's Rule

Then:

 $Q = 5.523 \times 928.2 \times .9905 \times .9427 \times 1,104$

Q = 5285, MCFD

Positive Chokes

(Including Thornhill-Craver positive flow-beans)

Formula:

 $Q = C \times P_t \times F_t \times F_g \times F_{pv}$

where:

Q = Rate of flow MCFD, 15.025 psia, 60° F.

C = Positive choke coefficient.

pt = Pressure of flowing gas on choke, psia.

Ft = Flowing gas temperature factor.

 F_g = Mowing gas gravity factor.

 F_{py} = Supercompressibility factor of flowing gas.

Observed data:

Positive choke size - 13/64 in.

Pressure of flowing gas on prover - 915 psig.

Temperature of flowing gas - 70°F

Gravity of flowing gas - ,675 (Air = 1.0)

Barometric Pressure - 13.2 psia

Determining factors for formula:

C = .8731 Table IV page 41.
Column (1) for Thornhill-Craver chokes.

pt = 928.2 psia from observed data.

 $F_{\uparrow \uparrow}$ = .9905 Table V page 42....

 $F_g = .9427$ Table VI, page 43.

F_{pv} = 1.104 New Mexico Oil Conservation Commission Simplified Prpencompressibility Vables, .675 gravity, 915 paig, 70°7.

Thoma

 $Q = ... 8731 \times 928.2 \times .9905 \times .9427 \times 1.104$

Q = 835 MOTO

EXAMPLE NO. 4

PROCEDURE FOR DETERMINING THE GRAVITY OF FLOWING WET GAS IN THE FLOW STRING.

In cases where the gravity of flowing wet gas is not known this procedure may be used to determine the gravity.

When this method is used we must know the

- (1) Specific gravity of the separator gas,
- (2) The specific, or A.P.I. gravity of the separator Hydrocarbon Liquids, and
- (3) The Gas-Liquid ratio.

If only the A.P.I. gravity of the separator liquids is known we must determine the specific gravity by referring to Table IX, Page 52, or by calculating using the following equation:

The specific gravity may then be calculated as follows:

Formula:

Flowing wet gas gravity =
$$\frac{G_1 + 4591 G_2}{R}$$

$$\frac{1 + 1123}{R}$$

Where:

G₁ = Separator gas specific gravity. (Air = 1.00)

G₂ = Separator Hydrocarbon Liquid Specific gravity. (Water = 1.0)

R = Gas - Liquid Ratio. (cu. ft./bbl.)

and

 $G_{3} = .680$

 $G_{2} = ,6988 \text{ for } 71^{\circ} \text{ A.P.I.}$

R = 76,859 cu. ft./bbl.

Substituting values in formula:

Flowing Gravity of wet gas
$$(G_{mix}) = \frac{.680 + (4591)(.6988)}{.76,859}$$

 $\frac{1}{.76,859}$

EXAMPLE NO. 5

METHOD OF DETERMINING PRESSURE LOSS DUE TO FRICTION IN FLOW STRINGS FOR GAS WELLS.

Nomenclature

 $Q = M^2 \text{cfd} @ 15.025 \text{ psia and } 60^3 \text{F},$

P_c = Shut-in wellhead pressure, psia.

P., = Static wellhead working pressure, psia

 P_{+} = Flowing wellhead pressure, psia

F_c = Factor dependent upon size of flow string, pressure base, temperature and compressibility factor. (See Tables VII A, B and C of F_c values)

(1-e^{-s}) = Factor Expendent upon GL, temperature and compressibility factor. (See Table VIII of (1-e^{-s}). values)

G = Specific gravity (Air = 1,00)

L = Length of flowing gas column, ft.

Procedure

- 1. From the Table VII A, B or C, obtain the value of $F_{\rm c}$ corresponding to the internal diameter of the pipe.
- 2. From the Table VIII, obtain the value of (l-e^{-s}) corresponding to the value of GL,
- 3. From the test data, obtain the rate of flow (Q) and the corresponding flowing pressure. (P_t)
- 4. Multiply F_c (Table VII A, B or C value) times Q.
- 5. Square the term FoQ.
- 6. Multiply $(F_cQ)^2$ by $(1-e^{-S})$ (Table VIII value)
- 7. Add the value of $(F_cQ)^2$ (1-e^{-s}) to P_t^2 to obtain P_w^2 .
- 8. Extract square root of P_w^2 to obtain P_w .

Calculations

Test data from Form C-122 (revised 12-1-55) necessary for P-calculation.

- 1. 1.995" = Size of Flow String I.D. (If not known I. D. may be determined from Table VII A by referring to 0.D. and #/ft. columns.)
- 2. L = 4000'= Length of Flowing String (If lower sections of tubing is perforated, the top of the perforations shall determine L. Where the flow is through the casing and casing is set above the producing formation the casing shoe shall determine L. Where flow is through casing and casing is set through the producing formation and slotted or perforated the top of the perforations shall determine L.)
- 3. G = .651 = Specific Gravity of Flowing Gas. (Air = 1.0.)
- 4. P: = 835 psia = Wellhead flowing tubing or casing pressure.
- 5. Q = 2.500 M²CF = Rate of Flow (Volume shown under "Flow Calculations" expressed in million cu, ft. per day.)

Begin calculation as follows:

- 6. Determine Table VII A Value (F_c) for 1.995 Tubing. This is 9.936. Show this value in space provided for friction calculations on Form C-122.
- 7. Multiply G x L; GL = 2604, shown at top of Form C-122.
- 8. Determine Table VIII value (1-e⁻⁵) for GL of 2604. This is .164. Show this value in space provided for "Pressure Calculations" Form C-122.
- 9. Multiply Table VII A value 9.936 (F by 2.500 (Q) and square the product. $(9.936 \times 2.500)^2 = 617.0$ (thousands).
- 10. Multiply 617.0 by Table VIII value of .164 (1-e^{-s}), $617.0 \times .164 = 101.2$ (thousands).
- 11. Square 835 (P_t); $(835)^2 = 697.2$ (thousands). Item 4 above from Form C-122.
- 12. Add 697.2 $(P_t)^2$ to 101.2 (F_cQ^2) $(1-e^{-S})$ and extract the square root of the sum. 697.2 + 101.2 = 798.4 (thousands).

 $(798.4)^{.5}$ = 893.5 = P_W (Calculated static wellhead working pressure).

- 13. This is the P_W to be used in the $(P_C^2 P_W^2)$ calculation when P_W cannot be measured accurately because of dual completion, liquids in well-bore and etc.
- 14. The above data should be entered in the space provided under Pressure Calculations on Form C-122.
- 15. The simplified formula for the above calculation is:

$$P_{w} = \left(P_{t}^{2} + \left[(F_{c}Q)^{2} - (1-e^{-s})\right]\right)^{.5}$$

EXAMPLE NO. 6

DETERMINING STATIC COLUMN PRESSURES IN GAS WELLS

The determination of subsurface static column pressures shall be accomplished through the use of the following procedure and the "Calculation Sheet for Static Column Pressures". *

Observed data:

Specific gravity of gas	.725 (Air = 1.0)
Measured Wellhead Fressure	1350 Psia
% co ₂	0
% N	0
Wellhead temperature	80° F (540° Rankine)
Reservoir Temperature	128° F (588° Rankine)

Using the "Calculation Sheet for Static Column Fressures", Case I.

- 1. Enter specific gravity of gas (G) and the composition of gas at top of calculation sheet.
- 2. Determine critical pressure and temperature of gas from CNGA Bulletin No. TS 461.

$$P_{cr} = 688; T_{cr} = 398$$

If the gas contains carbon dioxide or Nitrogen the $P_{\rm cr}$ and $T_{\rm cr}$ should be corrected at this time by using Table II of CNGA TS 461.

Enter values of Ter and Fer at top of calculation sheet.

* In cases where extremely accurate calculated pressures are required the Procedures outlined on page 66 of appendix C should be used.

- 3. Enter initial depth (zero wellhead) on line 1, column 1.
- 4. Enter wellhead pressure (P_n) on Line 1, Column 2. (1350 psia)
- 5. Determine reduced pressure. (Pr)

$$\frac{P_n}{P_{cr}} = \frac{1350}{668} = 2.02 = P_r$$

Enter on Line 1, Column 3.

- 6. Enter wellhead temperature (absolute) on Line 1, Column 4. (540° R.)
- 7. Determine reduced temperature (Tr)

$$\frac{T}{T_{cr}} = \frac{540}{398} = 1.36 = T_{r}$$

Enter on Line 1, Column 5,

8. Using P_r and T_r determine supercompressibility factor (F_{pv}) from Table V, CNGA Bulletin TS 461,

$$F_{pv} = 1.165$$

Enter on Line 1, Column 6.

9. From F_{pv} determine Z factor.

$$\frac{1}{(F_{pv})^2} = \frac{1}{(1.165)^2} = .737 = Z$$

Enter on Line 1, Column 7.

10. Determine value of TZ.

$$540 \times .737 = 397.98 = TZ$$

Enter on Line 1: Column 8,

11. Determine value of $\frac{TZ}{D}$

$$\frac{397.98}{1350} = .29480 = \frac{TZ}{P_n}$$

Enter on Line 1, Column 9.

12. H is the length of the static gas column being evaluated in each step of the calculation (see page 33.)

Enter H (Total Depth) for which pressure is being determined on Line 2, Column 1.

H = 4800 ft

13. Determine value of .0375 GH

.0375 x .725 x
$$4800 = 130.497$$

Enter on Line 2, Column 14.

14. Determine first trial value of weight of gas column (0-4800 ft.)

$$\frac{1}{2}$$
 (.0375 GH) = $\frac{1}{2}$ (130.479) = 221.3
 $\frac{TZ}{P_n}$

where:

$$H = 4800 \text{ ft.}$$

$$\frac{TZ}{P_n} = \frac{TZ}{P_n}$$
 where $H = 0$ ft.

Enter on Line 2, Column 10.

15. Determine first trial value P_n of pressure at total depth. (4800 ft.)

$$1350 + 221.3 = 1571.3 \text{ psia} = P_n$$

Enter on Line 2, Column 2.

16. Determine absolute bottom hole temperature (T)

$$128^{\circ}F + 460^{\circ}R = 598^{\circ}R_{\circ} = T$$

Enter on Line 2, Column 4.

17. Determine values of P_r , T_r , F_{pv} , Z, TZ, and $\frac{TZ}{P_n}$ as shown in steps 5, 7, 8, 9, 10 and 11.

$$P_r = 2.35$$
; $T_r = 1.48$; $F_{pv} = 1.124$; $Z = .792$; $TZ = 465.696$; and $TZ = .296376$

Enter on Line 2, Columns 3, 5, 6, 7, 8, and 9 respectively.

18. Determine value of N.

I where H = 0 ft. + Trial I where H = 4800 ft. =

Trial N where H = 4800 ft.

.294800 + .296376 = .591176 = N

Enter on Line 2, Column 11.

19. Determine value of M x N where H = 4800 ft.

 $221.3 \times .591176 = 130.827$

Enter on Line 2, Column 12 and 13.

When Column 13 is equal to Column 14 then the proper value of M, where H = 4800 ft., has been determined. A check should be made by dividing Column 14 by Column 11 as follows:

$$0.0375 \text{ GH} = 130.497 = 220.7$$
N .591176

Since the check value of M (220.7) is only .4 psia more than the first trial value of M (21.3 psia) we shall consider the check value of 220.7 to be correct.

Since the check value of M is considered correct it follows that the value of $P_{\mbox{\bf f}}$ is:

$$P_f = P_c + \frac{.0375 \text{ CH}}{N}$$

where:

 P_{r} = Bottom Hole Pressure psia

 P_c = Wellhead shut-in pressure, psia

G = Specific gravity of the gas (Air = 1.0)

H = Total length of gas column

and

$$P_{\mathbf{f}} = 1350 + \underline{130.497}_{.591176}$$

$$P_f = 1350 + 220.7$$

P_f = 1571 psia

If the check value of M had been different than trial value of M by more than 1 psia we would have entered this value on Line 3, Column 10 and repeated steps 15 through 19 until Column 13 was as close to column 14 as possible.

CALCULATION SHEET FOR STATIC COLUMN PRESSURES

	COMPANY LEASE									WELL NO. DATE							
	G <u>=</u>	.725	%C0 <u>2</u>	0 %n=	0	_ Cr. Pre	ssure (P _{cr})= 668	Cr. Ter	np. (T _{cr})	=32	8 .0375G	= .027187	.027187 13 14 \(\times(MxN)\) .0375GH			
	1	2	3	4	5	66	7 1 Z	8	9 I	10 M	11 N	12	13	14.			
	Н	Pn	P _r P _n P _{cr}	T	$rac{ extstyle T_{ extstyle r}}{ extstyle T_{ extstyle cr}}$	Fpv	$(\mathbf{F}_{\mathbf{pv}}^{1})^{2}$	TZ	TZ Pn	 	I _n -I _{n-1}	MxN	Σ(MxN)	.0375СН			
							CASE	I									
1	0	1350	2.02	540	1.36	1.165	.737	397.98	.294800				0	0			
2	4800	1571.3	2.35	588	1.48	1.124	₂ 792	465.696	.296376	221.3	.591176	130.827	130,827	130.497			
		1671	-							221							
							CASE	II									
3	6000	1955	2.93	600	1.51	1.128	.'786	471.600	.241227				163.122	163.122			
4	0	1616.9	2.42	540	1.36	1.195	.700	378.0	.233780	338.1	.475007	160.509	2.523	0			
5	0	1611.6	11	11	. 11	11	11	11	.234570	343.4	.475707	163.388	1 .266	0			
6		1612								343							
Ŀ																	
											<u> </u>						

EXAMPLE NO. 7

DETERMINING THE ADJUSTED WELLHEAD SHUT_IN PRESSURE ON GAS WELLS, WITH LIQUID COLUMNS IN WELLBORE, UNDER STATIC CONDITIONS.

In some cases the observed wellhead shut-in pressures of a gas well is effected by accumulated liquids in the wellbore and will not reflect the true conditions of the well. When the height of liquid column and specific gravity of the liquids are known, the formation (Bottom Hole) pressure may be determined by calculating the pressure at the gas-liquid interface as explained in Example No. 6 and adding to this figure the weight of the liquid column above the desired datum plane.

When it is necessary to determine the wellhead pressure which would exist if the liquid column were not present, the formation pressure determined as explained above may be used to calculate an adjusted wellhead pressure based on the assumption that no liquid column exists.

Observed data:

H = 6000 ft. (Length of wellbore to datum
point. Datum point used shall be that
determined by the Commission).

 $G_1 = .725$ (Gravity of Gas, Air = 1.00)

G₂ = .7389 (Specific gravity of liquids, water = 1.00, 60°API, Table IX, page 52 ...)

h 1200 ft. (Length of the liquid column above the datum)

Wellhead Temperature = 540°R.

Formation Temperature = 600°R.

1 ft. column of water = .4333 psia

Weight of liquid column above datum expressed as psia.

psia = $h \times G_2 \times .4333$

 $psia = 1200 \times .7389 \times .4333 = 384.2$

Pressure at Gas-Liquic Interface as determined in Example No. 6 = 1571 psia

Pressure of Liquid Column = 384 psia Formation pressure ($P_f @ 6000 \text{ ft.}$) 1955 "

Since we desire the adjusted wellhead pressure and we now have the formation pressure at the well's datum point we must calculate the pressure due to the weight of column of gas by beginning with datum point conditions.

Using the "Calculation sheet for Static Column Pressures" shown with Example No. 6, Case II.

- 1. The values of G, P and T_{cr} will be the same as shown for Case I, Example No. 6.
- 2. Enter length of column (H), formation pressure (P_n) and absolute formation temperature (T) on Line 3, Columns 1, 2 and 4, respectively.
- 3. Determine $P_{\textbf{r}},~T_{\textbf{r}},~F_{pv},~Z,~TZ$ and \underline{TZ} or I $\underline{P_{n}}$

and enter on Line 3, Columns 3, 5, 6, 7, 8 and 9 respectively.

$$P_r = \frac{P_n}{P_{cr}} = \frac{1955}{668} = 2.93$$

$$T_r = \frac{T}{T_{cr}} = \frac{600}{398} = 1.51$$

$$F_{\rm DV}$$
 = 1.128 (CNGA TS-461, Table V)

$$Z = \frac{1}{(F_{pv})^2} = \frac{1}{1.272} = .786$$

$$TZ = 600 \times .786 = 471.600$$

$$TZ = 471,600 = .241227$$

4. Determine value of .0375 GH where H = 6000 ft.

$$.0375 \times .725 \times 6000 = 163,122$$

Enter on Line 3, Column 13 and 14,

- 5. Enter (H) where H = 0 (wellhead) on Line 4, Column 1.
- 6. Enter value of .0375 GH where H = 0 on Line 4, Column 14.

$$.0375 \text{ GH} = 0$$

7. Determine the first trial value of the weight of the column from 6000 to wellhead.

$$\frac{1}{2}$$
 (.0375 GH) = $\frac{1}{2}$ (163.122) = 338.1
 $\frac{TZ}{P}$
n

Where:

H = 6000 ft. and $\frac{TZ}{P_n}$ = $\frac{TZ}{P_n}$ where H = 6000 ft.

Enter on Line 4, Column 10.

8. Determine first trial value of the pressure at the wellhead.

 P_n (where H = 6000 ft.) - Trial M (where H = 0) =

Trial P_n (where H = 0)

1955 - 338,1 = 1616,9 psia.

Enter on Line 4, Column 2.

9. Enter absolute wellhead temperature (T) on Line 4, Column 4.

 $T = 540^{\circ}R.$

10. Determine values of P_r , T_r , F_{pv} , Z, TZ and $\frac{TZ}{P_n}$ and enter on Line 4, Columns 3, 5, 6, 7, 8 and 9.

 $P_r = 2.42; T_r = 1.36; F_{pv} = 1.195; Z = .700;$

TZ = 378.0; $\frac{TZ}{P_n}$ or I = .233780

11. Determine Trial N where H = O.

I where H = 6000 ft, + I where H = 0

Trial N where H = 0 ft.

.241227 + .233780 = .475007

Enter on Line 4, Column 11.

12. Determine trial value of $M \times N$ where H = 0 ft.

 $M \times N = 338.1 \times .475007 = 160.599$

Enter on Line 4, Column 12.

13. Determine trial value of $\sum (M \times N)$ where H = 0

Trial \sum (M x N) where H = 6000 - Trial M x N where H = 0 = Trial \sum (M x N) where H = 0.

163,122 - 160.599 = 2.523

Enter on Line 4, Column 13.

When Column 13 is equal to Column 14 the proper value of M. where $H = \bar{U}$, has been determined. A check should be made by determining again the weight of the column of gas as follows:

$$\frac{\text{(M x N) where H} = 6000}{\text{Trial (N) where H} = 0} = \text{check value of M}$$
where H = 0.

Since this check value is 5.3 psia higher than the first trial value of M we must enter this value on Line 5, Column 10 and repeat steps 8, 9, $\frac{72}{P_n}$ part of 10, 11, 12 and 13.

then:

$$P_n = 1611.6; \frac{TZ}{P_n} = .234570; N = .475797;$$
 $M \times N = 163.388; \sum (M \times N) = -.266$

and

Check value of M = 342.8

Since the check value of M is only .6 psia lower than the second trial value of 343.4 the check value of 343 psia is considered correct. Also the adjusted wellhead pressure is:

1955 - 343 = 1612 psia

TABLE I

NEW MEXICO OIL CONSERVATION COMMISSION

BASIC ORIFICE FACTORS - MCF 24/ HOURS F_b

FLANGE TAPS

Base Temperature Base Pressure 60°F 15.025 Psia Base Flowing Temp. 60°F. Specific Gravity .600

	Pine Sizes_	Nominal and	Actual Diamet	ers
Orifice Diameter Inches	2" Std. 2.067	3" Std, 3,068	4" Std. 4.026	6" Std. 6,065
.250 .375 .500 .625 .750 .875	.3860 .8634 1.535 2.409 3.497 4.814	.3858 ,8618 1.528 2.388 3.449 4.713	.3852 .8607 1.525 2.382 3.435 4.686	1.524 2.378 3.424 4.664
1.000 1.125 1.250 1.375 1.500 1.625 1.750 1.875	6.386 8.253 10.48 13.16 16.47	6.182 7.868 9.781 11.94 14.36 - 17.08 - 20.15 - 23.60	6.135 7.786 9.643 11.71 13.99 16.51 19.27 22.28	6.100 7.732 9.559 11.58 13.80 16.23 18.86 21.69
2.000- = - 2.125 2.250 2.375 2.500 2.625 2.875 3.000 3.125 3.250 3.375 3.500 3.625 3.750 3.875		- 27.52 - 31.97 - 37.15 	25.58 29.17 33.10 - 37.41 - 42.13 - 47.33 - 53.05 - 59.39 - 66.67	24.74 27.99 31.47 35.18 39.13 43.31 47.75 52.47 57.46

TABLE II

NEW MEXICO OIL CONSERVATION COMMISSION

BASIC ORIFICE FACTORS - MCF 24/HOURS - Fb

PIPE TAPS

Base Temperature Base Pressure

60°F 15.025 psia

Base Flowing Temp. 60°F Specific Gravity ,600

Orifice	Pipe Sizes	- Nominal and	Actual Diame	tere
Diameter Inches	2" Std. 2,067	3" Std. 3,068	4" Std. 4.026	
.250 .375 .500 .625 .750 .875	.3887 .8810 1.594 2.554 3.797 5.379	.3872 .8712 1.557 2.455 3.584 4.961	.3864 .8682 1.546 2.425 3.515 4.828	1.538 2.405 3.469 4.735
2.625		6 607 8,556 10.85 13.54 - 16.70 - 20.44 - 24.88 - 30.19 - 36.62 - 44.50	6,375 8,174 10,24 12,59 15,26 18,28 21,69 25,55 29,92 34,88 40,53 47,00 54,44 63,05 73,11	6.209 7.897 9.807 11.94 14.32 16.95 19.84 23.00 26.45 30.21 34.29 38.72 43.52 48.73 54.38 - 60.51 - 67.17 - 74.42 - 82.31 - 90.92 100.33 - 110.63 - 121.95

TABLE III

CRITICAL FLOW COEFFICIENTS FOR TWO AND FOUR INCH CRITICAL FLOW PROVERS

MCF Per day; Pressure Base: 15.025 psia; Specific Gravity: 0.60; Base and Flowing Temperature: 60 Degrees Fahrenheit.

TWO INCH PRO	OVER	FOUR INCH PROVER				
Orifice Dia., Inch	Coefficient	Orifice Dia, Inches	Coefficients			
1/16 3/32 1/8 3/16 7/32 1/4 3/16 3/8 7/16 1/2 5/8 3/4 7/8 1 1 1/8 1 1/4 1 3/8 1 1/2	.0827 .1820 .3418 .7851 1.0834 1.4030 2.1577 3.0691 4.3997 5.5233 8.3555 12.2023 16.7816 22.0662 28.2569 35.6738 43.8286 54.3653	1/4 3/8 1/2 5/8 3/4 7/8 1 1 1/8 1 1/4 1 3/8 1 1/2 1 3/4 2 2 1/4 2 1/2 2 3/4 3	1.352 3.039 5.436 8.469 12.137 16.504 21.501 27.085 33.444 40.264 47.979 65.542 86.594 111.009 139.223 172.374 211.818			

TABLE IV
SIX INCH POSITIVE CHOKE MIPPLE COEFFICIENTS

MCF/da./ Psis: Pressure Base: 15.025; Specific Gravity: .60; Base and Flowing Temperature: 60° Fahrenhiet.

Nominal Choke Size. Inches	Inside Diam	meter	C 201
	inches	(1)	Coefficient
1/8		(1)	(2)
9/64	.1250		(~)
5/32	-1406	. 326I	•3393
11/64	,1563	.4140	
3/16		•5133	.4329
2/ 10	.1719	.6224	• 5392
20//	.1875	.7425	.6572
13/64		· · · · · · ·	7839ء
7/32	• .2031	.8731	•
15/64	. 2138		.9321
1/4	•2344	1.0155	1.0881
17/64	, 2500	1.1678	1.2558
,	.2656	1.3309	
9/32	1.00,0	15049	1.4382
19/64	2012	•	1,6254
5/16	. 2813	1,6907	•
	•2969	1.8865	1,8379
21/64	.3125	2.0930	2.0573
11/32	.3281	2.3105	2,3674
	₄ 3438		2.5361
23/64		2.5404	2.7945
3/8	، 3594	0 884	7.745
25/64	.3750	2,7796	3.0655
13/32	£3906	3.0300	3,3210
27/64	•4063	3,2911	2 (1/2 2 (2/2)
~1704		3.5650	3.6467
7/16	.4219	3.8481	3.9616
		,	4.2843
29/64	•4531	4.1423	
15/32	•4531	4.4476	4.6188
31/64	_* 4638		4.9737
1/2	,4844	4.7659	5.3374
	5000	5.0931	5.7157
9/16	. , , , ,	5.4315	6,1155
5/8	,5625		0,11,00
11/16		6.8979	N 4-
3//	.625C	8.5417	7.8101
3/4	#687 <i>5</i>	10.3640	9.7524
70	.7500	12.3650	11.8721
For standard six inch	Th.	17070	14.1605

- (1) For standard six inch Thornhill-Craver positive flow-beans. Calculated from test data of Texas College of Arts and Industries.
- (2) Calculated from data appearing in United States Bureau of Mines Monograph 7, for choke nipples as illustrated below.

TABLE V
FLOWING TEMPERATURE FACTORS

Factor = $\frac{520}{460^{\circ} + T}$

°F	Factor	$\circ_{\mathbf{F}}$	Factor	°F	Factor	$\circ_{\mathbf{F}}$	Factor	°F	Factor	o _F	Factor
0 1 2 3 4	1.0632	35	1,0249	70	0.9905	105	0.9592	140	0.9309	175	0.9048
	1.0620	36	1,0239	71	0.9896	106	0.9585	141	0.9301	176	0.9042
	1.0609	37	1,0229	72	0.9887	107	0.9576	142	0.9293	177	0.9035
	1.0598	38	1,0219	73	0.9877	108	0.9568	143	0.9284	178	0.9028
	1.0586	39	1,0208	74	0.9868	109	0.9559	144	0.9279	179	0.9020
56789	1.0574	40	1.0198	75	0.9859	110	0.9551	145	0.9271	180	0.9014
	1.0563	41	1,0188	76	0.9850	111	0.9543	146	0.9263	181	0,9007
	1.0552	42	1.0178	77	0.9840	112	0.9534	147	0.9255	182	0.9000
	1.0540	43	1.0168	78	0.9831	113	0.9526	148	0.9247	183	0.8992
	1.0529	44	1.0157	79	0.9822	114	0.9518	149	0.9240	184	0.8985
10	1.0518	45	1.0147	80	0.9813	115	0.9510	150	0,9233	185	0.8979
11	1.0507	46	1.0137	81	0.9804	116	0.9501	151	0,9225	186	0.8972
12	1.0496	47	1.0127	82	0.9795	117	0.9493	152	0,9217	187	0.8965
13	1.0485	48	1.0117	83	0.9786	118	0.9485	153	0,9210	188	0.8958
14	1.0474	49	1.0107	84	0.9777	119	0.9477	154	0,9202	189	0.8951
15	1.0463	50	1.0098	85	0.9768	120	0.9469	155	0.9195	190	0.8944
16	1.0452	51	1.0088	86	0.9759	121	0.9460	156	0.9187	191	0.8937
17	1.0441	52	1.0078	87	0.9750	122	0.9452	157	0.9180	192	0.8931
18	1.0430	53	1.0068	88	0.9741	123	0.9444	158	0.9173	193	0.8923
19	1.0419	54	1.0058	89	0.9732	124	0.9436	159	0.9165	194	0.8916
20	1.0408	55	1.0048	90	0.9723	125	0.9428	160	0.9158	195	0.8910
21	1.0398	56	1.0039	91	0.9715	126	0.9420	161	0.9150	196	0.8903
22	1.0387	57	1.0029	92	0.9706	127	0.9412	162	0.9143	197	0.8896
23	1.0376	58	1.0019	93	0.9697	128	0.9404	163	0.9135	198	0.8889
24	1.0365	59	1.0010	94	0.9688	129	0.9396	164	0.9128	199	0.8882
25 26 27 28 29	1.0355 1.0344 1.0333 1.0323 1.0312	60 61 62 63 64	1.0000 0.9990 0.9981 0.9971 0.9962	95 96 97 98 99	0,9680 0,9671 0,9662 0,9653 0,9645	130 131 132 133 134	0.9388 0.9380 0.9372 0.9364 0.9356	165 166 167 168 169	0.9121 0.9112 0.9106 0.9099 0.9092		
30 31 32 33 34	1.0302 1.0291 1.0281 1.0270 1.0260	65 66 67 68 69	0.9952 9.9943 0.9933 0.9924 0.9915	100 101 102 103 104	0.9636 0.9627 0.9618 0.9610 0.9602	135 136 137 138 139	0.9348 0.9341 0.9333 0.9325 0.9317	170 171 172 173 174	0.9085 0.9077 0.9069 0,9063 0.9055		

TABLE VI SPECIFIC GRAVITY FACTORS

Factor = $\frac{0.60}{\text{Sp. Gr.}}$

Sp. Gr.	Factor	Sn O-			
		Sp. Gr.	Factor	Sp. Gr.	Factor
0.500	3.00**				Tactor
0.505	1.0954	0.650	0.0/21		
0.510	1.0900	0.655	0.9608	0.800	
-	1.0847	0.660	0.9571	0.805	0.8660
0.515	1.0794		0.9535	0.810	0.8635
0.520	1.0742	0.665	0.9498		0.8607
	2.0142	0.670	0.9463	0.815	0.8580
0.525	1 0/00		98 7403	0.820	0.8554
.530	1.0690	0.675	0.010-		0.0774
.535	1.0640	0.680	0.9427	0.825	0.4=.
	1.0590	0.685	0.9393	0.830	0.8528
.540	1.0541		0.9359	0.835	0.8502
.545	1.0492	0.690	0.9325		0.8476
	-:04/2	0.695	0.9292	0.840	0.8452
•550	1 0//-		V 6 / L / L	0.860	0.8353
.555	1.0445	0.700	0.0044		4.0777
•560	1.0398	0.705	0,9258	0.880	0 40==
565	1.0351	0.710	0.9225	0.900	0.8257
	1.0304		0.9193	0.920	0.8165
570	1.0260	0.715	0.9161		0.8076
	-00200	0.720	0.9129	0.940	0.7989
575	1.0215		-0/12/	0.960	0.7906
580		0.725	0.9097		40,700
585	1.0171	0.730		0.980	0.7825
590	1.0127	0.735	0.9066	1.000	
595	1.0084	0.740	0.9035	1.020	0.7746
777	1.0041		0.9005	1.040	0.7669
	•	0.745	0.8974		0.7595
500	1.0000		• • •	1.060	0.7523
605	0.9958	0.750	0.8944	_	
510		0.755	0,8914	1.080	0.7453
15	0.9918	0.760		1,100	0.7385
20	0.9877	0.765	0.8885	1.120	
~0	0.9837	0.770	0.8856	1.140	0.7319
0.5		0.110	0.8827	1.160	0.7255
25	0.9798	() m		1,100	0.7192
30	0.9759	0.775	0.8793	• • •	
35	0.9721	0.780	0.8771	1.180	0.7131
40		0.785		1.200	0.7071
15	0.9682	0.790	0.8743	1.220	
*/	0.9645	0.795	0.8715	1.240	0.7013
		マキャンプ	û . 8687	1.260	0.6956
				11200	0.6901

TABLE VII A (SOUTHEASTERN NEW MEXICO)

Values of F_c for Various Tubing Sizes

(Use only for internal diameters less than 4.277 in.)

Note:
$$F_c = \frac{0.10797}{d^2.612}$$
 $\frac{P_b}{14.65}$ (T) (2)

Values shown based on $P_b = 15.025$
 $T = 545$
 $Z = 1.00$

Nominal Size, In.	0.D, <u>In.</u>	#/Ft.	I.D. In.	F _C
1 1 1/4 1 1/2 2 2 1/2	1.315 1.660 1.990 2.375 2.875 3.500 4.000 4.500 4.750 4.750 5.000	1.80 2.40 2.75 4.70 6.50 9.30 11.00 12.70 16.25 18.00 18.00	1.049 1.380 1.610 1.995 2.441 2.992 3.476 3.958 4.082 4.000 4.276	53.26 26.02 17.40 9.936 5.866 3.447 2.330 1.660 1.532 1.615 1.357
	5.000	21.00	4.276 4.154	1.4

TABLE VII B (SOUT DASTERN NEW MEXICO)

Values of $F_{\rm c}$ for Various Casing Sizes (Use only for interval diameters greater than 4.277 in.)

Note:
$$F_c = \left(\frac{0.10337}{d^2.582}\right) \left(\frac{P_b}{14.65}\right)$$
 (T) (Z)

Values shown based on P_b = 15.025 T = 545 Z = 1.00

O.D.		I.D.	
In.	#/Ft.	În.	$\mathbf{F_c}$
5.000	13,00	1 101	
5.000	15,60	4.494	1,193
5.500	14.00	4.408 5.012	1.254
5.500	15.00	4.976	0.9002
5.500	17.00	4.892	0.9171
5.500	20.00	4.778	0.9583
5.500	23,00	4.778	1.018
5.500	25.00	4.580	1,080
6,000	15.00	5.524	1.136
6.000	17,00	5,450	0,7003
6,000	20,00	5,352	0,7251
6.000	23.00	5.240	0.7599
6,000	26,00	5.140	0,8025
6,625	20,00	6.049	0.8435
6,625	22,00	5,989	0.5539
6.625	24.00	5,921	0.5684
6,625	26.00	5.855	0.5854
6.625	28,00	5.791	0,6026
6,625	31.80	5.675	0.6199 0.6532
6,625	34°00	5.595	0.6776
7,000	20,00	6.456	0.4682
7.000	22.00	6,398	0.4792
7.000	24.00	6.336	0.4915
7,000	26,00	6,276	0.5037
7.000	28,00	6,214	0.5168
7.000	30,00	6.154	0,5299
7.000	40,00	5.836	0.6076
7.625	26.40	6.969	0,3843
7.625	29.70	6.875	0,3980
7.625	33 ₄ 7 0	6.765	0,4150
7.625	38.70	6,625	0,4130
7.625	45.00	6,44.5	0,4703
8.000	26.00	7.336	0,3308
8.125	2 8. 00	7.485	0.3196
8.125	32.00	7.3-5	0,3309
•			0,7707

TABLE VII B (continued) (SOUTHEASTERN NEW MEXICO)

Values of to for Various Casing Sizes

o.b.		I.D.		
IN.	#/FT.	In.	$_{ m F_e}$	
8,125	35,50	7.285	0,3427	
8.125	39.50	7.185	0。3552	
8.625	17,50	8.249	0.2487	
8,625	20.00	8.191	0.2532	
8.625	24.00	8,097	0.2609	
8.625	28.00	8,003	0.2689	
8.625	32,00	7.907	0.2774	
8.625	36.00	7.825	0.2850	
8,625	, 38 . 00	7.775	0.2897	
8.625	43.00	7.651	0.3020	
9.000	34.00	8.290	0.2455	
9.000	38.00	8.196	0.2528	
9.000	40.00	8.150	0,2565	
9.000	45.00	8.032	0.2664	
9.625	36.00	8.921	0,2031	
9.625	40.00	8.835	0.2083	
9.625	43.50	8 .7 55	0.2132	
9.625	47 .00	8.681	0.2180	
9.625	53.50	8.535	0.2277	
9.625	58.00	8,435	0.2348	
10.000	33,00	9,384	0.2329	
10,000	55 . 50	8.908	0,2039	
10,000	61,20	8.790	0.2111	
10.750	32 ,7 5	10.192	0.14.0	
10.750	35 .7 5	10.136	0.1461	
10.750	40.00	10,2050	0.1493	
10.750	45.50	9.950	0.1532	
10.750	48.00	9.902	0.1552	
10.750	54.00	9.784	0.1600	

TABLE VII C (SOUTHEASTERN NEW MEXICO)

Values of F_c for various casing-tubing combinations. (Annular Flow)

CASING			TUBING			
O.D. In.	I.D. In.	#/Ft.	0.D. In.	I.D. In.	#/Ft.	Fe
7.625	6.625	39	2.375	1.995	4.7	.651
7.000	6.366	23	2.375	1.995	4.7	.740
7.000	6.276	26	2.375	1.995	4.7	.744
7.000	6,366	23	2.875	2.441	6.5	.865
6.625	6.049	20	2.375	1.995	4.7	.875
7.000	6.276	26	2.875	2.441	6.5	.910
6.625	6.049	20	2.875	2.441	6.5	1.041
6.625	5.921	24	3.500	2.992	9.3	1.540
5.500	4.892	17	2.375	1.995	4.7	1.812
5.500	4.892	17	3.000			2.735
5.500	4.976	15.5	2.375	1.995	4.7	1.758
5.500	5.012	14.0	2.375	1.995	4.7	1,712
6.625	6,049	20.0	4.000	3.476	11.0	1.889
6.625	6.049	20.0	3.500	2.992	9.3	1.399
5.500	4.950	15.5	2.375	1.995	4.7	1.793
7.000	6.456	20.0	2.375	1.995	4.7	0.707
5.5	4.892	17.0	2.875	2.441	6.5	2.507
5.0	4.408	15.0	2.375	1.995	4.7	2.834
5.50	4.892	17.0	3.500	2.992	9.3	4.220
4.50	4.090	9.5	2.375	1.995	4.7	3.912

Formula 1.

$$F_c$$
 (for Annulus) = $(d_1 + d_2)$ $(d_1 - d_2)$ (T) (Z)

 $d_1 = I.D.$ or casing-in. $d_2 = O.D.$ of tubing-in.

Formula 2.

$$F_{c} \text{ (for Annulus)} = \underbrace{\frac{0.10337}{1.582}}_{\begin{array}{c} (d_{1} + d_{2}) \\ d_{2} = 0.D. \text{ of tubing-in.} \end{array}} \underbrace{\frac{P_{b}}{14.65}}_{\begin{array}{c} (d_{1} + d_{2}) \\ d_{2} = 0.D. \text{ of tubing-in.} \end{array}} (T) (Z)$$

NOTE: When calculating F_c factors for d_1 , d_2 , d_3 , d_4 , d_5 , or Z values not listed in these tables use above formula 1, for annular flow. If the answer is less than 1.357 then the above formula 2 for annular flow is the proper formula to use to calculate F_c .

TABLE VIII (SOUTHEASTERN NEW MEXICO)

Values of (1-e-s) for Various Vaules of GL

Note: S = 0.0375 CL

Values shown based on T = 545Z = 1.00

From	<u>To</u>	(1-e ^{-s})	From	m -	
1000	1015		<u> </u>	<u>To</u>	<u>(l-e^{-s})</u>
1016	1031	0.067	1559	3.003	
1032	1046	0.068	1572	1571	0.102
1047		0.069	1588	1587	0.103
1063	1062	0.070	1605	1604	0.104
1079	1078	0.071	1621	1620	0.105
1094	1093	0.072	1637	1636	0.106
1110	1109	0.073	1654	1653	0.107
1125	1124	0.074	1670	1669	0.108
1142	1141	0.075	1685	1684	0.109
1157	1156	0.076		1700	0.110
1173	1172	0.077	1701	1716	0.111
11/3	1188	0.078	1717	1734	0.112
	1203	0.079	1735	1751	0.112
1204	1218	0.080	1752	1767	0.114
1219	1235	0.081	1768	1783	0.115
1236	1251	0.082	1784	1800	0.116
1252	1267	0.083	1801	1816	0.117
1268	1283	0.084	1817	1832	0.118
1284	1298	0.085	1833	1849	0.119
1299	1314	0.086	1850	1876	0.120
1315	1329	0.087	1877	1882	0.120 0.121
1330	1346	0.088	1883	1899	_
1347	1362	0.089	1900	1915	0.122
1363	1378	0.090	1916	1932	0.123
1379	1394	0.091	1933	1949	0.124
1395	1410	0.092	1950	1965	0.125
1411	1426	0.093	1966	1982	0.126
1427	1441	0.094	1983	1998	0.127
1442	1458	0.095	1999	2015	0.128
1459	1474	0.096	2016	2032	0.129
1475	1490	0.097	2033	2049	0.130
1491	1507	0.098	2050	2065	0.131
1508	1523	0.099	20 6 6	2082	0.132
1524	1539		2083	2099	0.133
1540	1558	0.100	2100	2116	0.134
•		0.101	2117	2132	0.135

Values of (1-e-s) for Various Values of GL

	GL				
From	To	(1-e ^{-s})	-	GL	
23.55		<u>(17-6</u>	From	To	(1-e ^{-s})
2133 2150	2149	0.137	000/		<u>(1-e</u>)
2167	2166	0.138	2876	2893	0.180
2184	2183	0.139	2894	2910	0.180
2201	2200	0.140	2911	2928	0,182
2218	2217	0.141	2929	2946	0,183
2235	2234	0.142	2947 2965	2964	0.184
2252	2251	0.143	2983	2982	0.185
2269	2268	0.144	3000	2999	0.186
2286	2285	0.145	3018	3017	0.187
2303	2302	0.146	3036	3035	0.188
2320	2 3 19 2 3 36	0.147	3054	3053	0.189
2337	2353	0.148	3072	3071	0.190
2354	2370	0.149	3090	3089	0.191
2371	2387	0.150	3108	3107	0.192
2388	2404	0.151	3126	3125	0.193
2405	2422	0.152	3145	31 <i>47</i> . 316 <u>1</u>	0.194
2423	2439	0 <u>.153</u> 0.154	3162	3179	0.195
2440	2456	0.155	3180	37.97	0,196
2457	2473	0.156	3198	3215	0.197
2474	2490	0,157	3216	3234	0.198
2491 2509	2508	0.158	3235	3252	0.199 0.200
2526	2525	0.159	3253	3270	0.201
2543	2542	0.160	3271 3289	3288	0.202
25().	2560	0.161	3307	3306	0.203
2578	2577 2594	0.163	3326	3325	0.204
2595	26 <u>11</u>	0.163	3344	3343	0.205
2612	2629	0.164	3362	3361	0.206
2630	2646	0.165	3380	3379 3398	0.207
2647	2664	0.166	339 9	3416	0.208
2665	268]	0.167 0.168	3417	3435	0.209
2682	26 9 9	0.169	3436	3453	0.210
2700 2717	2716	0.170	3454	3471	0.211
2735	2734	0.171	3472	3490	0.212
2752	2751	0.172	3491 3503	3507	0.213 0.214
2770	2769	0.173	3508	3526	0,215
2788	2787	0.174	3527 354	3545	0.216
2805	2804	0.175	3546 3565	3564	0.217
2823	2822	0.176	3583	3582	0.218
2841	2840 2857	0.177	3602	3601	0.219
2858	2875	0.178	3621	3620 3620	0.220
	~~!)	0.179	3639	3638 3650	0,221
			- •	3657	0.222

Values of (1-e-s) for Various Values of GL

E man	CT				** - * * * * * * * * * * * * * * * * *
T.O.M	To	(7-0-51	•	GL ·	
From 3658 3677 3696 3714 3733 3752 3771 3790 3808 3827 3846 3865 3884 3903 3992 3941 3961 3980 3999 4018 4037 4056 4075 4018 4133 4152 4172 4191 4211 4230 4250 4269 4289 4308 4328 4347 4367 4367 4367 4367 4406		(1-e-s) 0.223 0.224 0.225 0.226 0.227 0.228 0.229 0.230 0.231 0.232 0.233 0.234 0.235 0.236 0.237 0.238 0.239 0.240 0.241 0.242 0.243 0.242 0.243 0.244 0.245 0.246 0.247 0.248 0.247 0.248 0.247 0.248 0.247 0.250 0.251 0.252 0.253 0.253 0.254 0.255 0.256 0.257 0.258 0.259 0.260 0.261	From 4505 4525 4545 4564 4584 4604 4664 4684 4704 4724 4744 4765 4866 4886 4907 4927 4947 4968 4988 5009 5029 5050 5071 5091 5112 5132 5132 5153 5174 5195 5236 5257 5278	GL 4524 4544 4563 4583 4603 4623 4663 4663 4703 4723 4743 4764 4784 4804 4824 4845 4865 4967 4987 5008 5028 5049 5070 5011 5131 5152 5173 5194 5214 5235 5256 5277	(1-e ^{-s}) 0.267 0.268 0.269 0.270 0.271 0.272 0.273 0.274 0.275 0.276 0.277 0.278 0.279 0.280 0.281 0.2 12 0.283 0.284 0.285 0.286 0.287 0.288 0.289 0.290 0.291 0.292 0.293 0.294 0.295 0.296 0.297 0.298 0.299 0.300 0.301 0.302 0.303

Values of (1-e-s) for Various Values of GL

GL			GL				
From	To	$(1-e^{-S})$	From	To	$(1-e^{-S})$		
5404	5424	0,311	5832	5852	0.331		
5425	5445	0.312	5853	5874	0.331		
5446	5466	0.313	5875	5896	0.333		
5467	5488	0.314	5897	5918	0.334		
5489	5509	0.315	5919	5940	0.335		
5510	5530	0.316	5941	5962	0.336		
5531	5551	0,317	5963	5984	0.337		
5552	5573	0.318	5985	6005	0.338		
5574	5594	0,319	6006	6028	0.339		
5595	5615	0.320	6029	6049	0.340		
5616	5637	0,321	6050	6071	0.341		
5638	5658	0.322	6072	6093	0.342		
5659	5679	0.323	6094	6116	0.343		
5680	5701	0.324	6117	6138	0.344		
5702	5723	0.325	6139	6160	0.345		
5724	5744	0.326	6161	6182	0.346		
5745	5766	0.327	6183	6205	0.347		
5767	5787	0.328	6206	6227	0.348		
5788	5809	0.329	6228	6249	0.349		
5810	5831	0.330	6250	6272	0.350		

TABLE IX

CONVERSION OF OA, P, I. TO SPECIFIC GRAVITY

Degrees API at 60°F	Specific Gravity	Degrees API at 60°F	Specific Gravity	Degrees API at 60°F	Specific Gravity
	2 00/		arta.	7.0	7000
0	1.076	34	,8550	68	.7093
1	1.068	35	.8498	69	.7057
1 2 3 4	1.060	36	.8448	70	.7022
3	1.052	37	.8398	71	.6988
4	1.044	38	.8348	72	6953ء
5	1.037	39	.8299	73	.6919
6	1.029	40	.8251	74	.6886
7	1.022	41	.8203	7Ŝ	.6852
8	1.014	42	.8155	75	.6819
9	1.007	43	.8109	77	.6787
10	1.000	44	.8063	78	.6754
3.5		1	402.5	80	
11	،9930	45	.8017	79	.6722
12	.9861	46	.7972	80	.6690
13	.9792	47	.7927	81	.6659
14	.9725	48	.7883	82	,6628
15	.9659	49	.7839	83	.6597
16	.9593	50	.7796	84	.6566
17	•9529	51	.7753	85	.6536
18	.9465	52	.7711	86	,6506
19	.9402	53	.7669	87	.6476
20	.9340	54	.7628	88	.6446
21	.9279	55	.7587	89	.6417
22	.9218	56		. 90	
			.7547		.6388
23	.9159	57	.7507	91	.6360
24	.9100	58	.7467	92	.6331
25	.9042	59	.7428	93	, 6303
26	. 8984	60	.7389	94	.6275
27	.8927	61	.7351	95	.6247
28	.8871	62	.7313	96	.6220
29	.8816	63	,7275	97	.6193
30	.8762	64	.7238	98	.6166
31	.8708	65	.7201	99	.6139
32	.8654	66	.7165	100	,6112
32 33	.8602	67		100	°011¢
))	•00UZ	07	.7128		

SP. GR. = $\frac{141.5}{131.5}$ + OA. P. I.

TABLE X.

METER FACTORS, M, FOR L_10 CHARTS

Defferential Range of (R _h)			Range of as or air a			(_s)	
Meter, Inches	24.7	50	1.00	250	500	1,000	1500
2 1/2	0,0786						
10	0.1572	0.2236					
20	0,2223	0,3162	0.4472	0.7071	1.0000		
50	0.3514	0.5000	0.7071	1,1180	1,5810	2,2367	2.7390
100		0.7071	1.0000	1.5810	2,2360	3,1620	3.8730

 $M = 0.01 (R_h \times R_s)^{-1/2}$

 $R_{\mbox{\scriptsize h}}$ = is maximum differential range, inches

 $R_{\rm S} =$ is maximum static range, pounds

		TABLE O	F SQUAR	E ROOTS			,	
N √N	N	\sqrt{N}	N	\sqrt{N}	N	\sqrt{N}	N	\sqrt{N}
l	50	7.071	100	10.000	150	12.247	200	14.142
1 1.000	51	7.141	101	10.050	151	12,298	201	14.177
2 1.414	52	-7.211	וווֹג	10.100	152	12.329	202	14.213
3 1.732	53	7,280	103	10.149	153	12.369	203	14.248
4 2.000	54	7.348	104	10.198	154	12.410	204	14.283
5 2,236	55	7.416	105	10.247	155	12.450	205	14.318
6 2.449	56	7.483	106	10.296	156	12.490	206	14.353
7 2.646	57	7.550	107	10.344	157	12.530	207	14.387
8 2.828	58 50	7.616	108	10.392	158	12.570 12.610	208 209	14.422
9 3.000	59	7.681	109	10.440	159	12.010	209	14.457
10 3.162	60	7.746	3.10	10.488	160	12.649	210	14.491
11 3.317	61	7.810	111	10,536	161	12.689	211	14.526
12 3.464	62	7.874	112	10.583	162	12.728	212	14.560
13 3.606	63	7.937	113	10.630	163	12.767	213	14.595
14 3.742	64	8.000	114	10.677	164	12.806	214	14.629
15 3.873	65 66	8.062	115	10.724	165 166	12.845	215	14.663 14.697
16 4.000		8.124	116	10.770	167	12.384	217	14.731
17 4.123 18 4.243	67 68	8.185 8.246	117 118	10.817 10.863	168	12.923 12.961	218	14.765
18 4.243 19 4.359	69	8.307	119	10.909	169	13.000	219	14.799
17 4.777	0,	0,001	117	10.707	10,	17.000	~=/	
20 4.472	70	8.367	120	10.954	170	13.038	220	14.832
21 4.583	71	8.426	121	11.000	171	13.077	221	14.866
22 4.690	72	8.485	122	11.045	172	13.115	222	14.900
23 4.796	73	8.54/	123	11.091	173	13.153	223	14.022
24 4.399	74 75	8.602 8.660	124 125	11.136 11.180	174 175	13.191 13.229	224	14.967 15.000
25 5.000 26 5.099	76	8.718	126	11.180	176	13.266	226	15.033
27 5.196	77	8.775	127	11.269	177	13.304	227	15.067
28 5.292	78	8.832	128	11.314	178	13.342	228	15.100
29 5.385	79	8.888	129	11.358	179	13.379	229	15.133
30 5.477	80	8.944	130	11.402	180	13.416	230	15.166
31 5.568	81	9.000.	131	11.446	181	13,454	231	15.199
32 5.657	82	9.055	132	11.489	182	13.491	232	15.232
33 5.745	83	9.110	133	11.533	183	13.528	233	15.264
34 5.831	84	9.165	134	11.576	184	13.565	234	15.297
35 5.916	85	9.220	135	11.619	185	13.601	235	15.330
36 6,000	86	9.274	136	11.662	186	13.638	236	15.362
37 6.083	87	9.327	137	11.705	187	13.675	237	15.395
38 6.164	88	9.381	138	11.747	188	13.711	238	15.427
39 6.245	89	9.434	139	11.790	189	13.748	239	15.460
40 6.325	90	9.487	140	11.832	190	13.784	240	15.492
41 6.403	91	9.539	141	11.87/	191	13.320	241	15.524
42 6.481	92	9.592	142	11.916	192	13.856	242	15.556
43 6.557	93	9.644	143	11.958	193	13.892	243	15.588
44 6.633	94	9.695	144	12.000	194	1.3.928	244	15.620
45 6.708	95	9.747	145	12.042	195	13.964	245	15.652
46 6.782	96	9.798	146	12.083	196	14.000	246	15.684
47 6.856 48 6.928	97 98	9.849 9.899	147 148	12.124 12.166	197 198	14.036	247	1.5.716 15.748
49 7.000	99	9.950	149	12.207	199	14.071 14.107	248	15.740 15.780
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	L	7.770			1 -//			١٠٠١٥٥ عربي

N N N N N N N N N N				TABLE	OF SQUA	RE ROOTS		•		
251 15.849 301 17.349 351 18.735 401 20.025 451 21.237 252 15.875 302 17.378 352 18.762 402 20.056 452 21.260 253 15.906 303 17.407 353 18.788 403 20.075 453 21.284 254 15.937 304 17.436 354 18.815 404 20.100 454 21.307 255 15.969 305 17.464 355 18.841 405 20.125 455 21.331 256 16.000 306 17.493 356 18.868 406 20.149 456 21.354 257 16.031 307 17.521 357 18.894 407 20.174 457 21.378 258 16.062 303 17.550 358 18.921 408 20.199 458 21.401 259 16.093 309 17.578 359 18.947 409 20.224 459 21.424 260 16.125 310 17.607 360 18.974 410 20.248 460 21.448 261 16.155 311 17.635 361 19.000 411 20.273 461 21.471 262 16.186 312 17.664 362 19.026 412 20.298 462 21.517 263 16.217 313 17.692 363 19.053 413 20.322 463 21.517 264 16.248 314 17.720 364 19.079 414 20.347 464 21.471 265 16.279 315 17.748 365 19.105 415 20.372 465 21.516 266 16.310 316 17.766 366 19.131 416 20.396 466 21.547 267 16.340 317 17.804 367 19.157 417 20.421 467 21.610 268 16.371 318 17.833 368 19.183 418 20.465 468 21.632 269 16.401 319 17.861 369 19.295 420 20.494 470 21.679 271 16.469 321 17.916 371 19.261 421 20.518 471 21.703 272 16.492 322 17.944 372 19.287 422 20.53 472 21.766 270 16.432 320 17.889 370 19.235 420 20.494 470 21.679 271 16.469 321 17.916 371 19.261 421 20.518 471 21.703 272 16.492 322 17.944 372 19.397 422 20.53 472 21.726 273 16.533 325 18.283 375 19.391 426 20.640 477 21.640 280 16.733 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330 330	N			¥ ~ '	ŧ				N	VN
252 15.875 302 17.378 352 18.762 402 20.050 452 21.260 253 15.906 303 17.407 353 18.788 403 20.075 453 21.284 254 15.937 304 17.436 354 18.815 404 20.100 454 21.307 255 15.969 305 17.464 355 18.841 405 20.125 455 21.354 256 16.000 306 17.493 356 18.868 406 20.149 456 21.354 257 16.031 307 17.521 357 18.894 407 20.174 457 21.378 258 16.062 303 17.550 358 18.921 408 20.199 458 21.401 259 16.093 309 17.578 359 18.947 409 20.224 459 21.424 260 16.125 310 17.667 360 18.974 410 20.248 460 21.448 261 16.155 311 17.692 363 19.053 413 20.322 463 21.517 262 16.186 312 17.664 362 19.053 413 20.322 463 21.517 263 16.217 313 17.692 363 19.053 413 20.322 465 21.546 264 16.186 312 17.448 365 19.105 415 20.372 465 21.546 265 16.279 315 17.748 365 19.105 415 20.372 465 21.546 266 16.310 316 17.776 366 19.131 416 20.396 465 21.564 267 16.340 317 17.804 367 19.157 417 20.421 467 21.613 268 16.371 318 17.833 368 19.183 418 20.445 468 21.633 269 16.401 319 17.861 369 19.295 420 20.494 470 21.679 271 16.463 321 17.916 371 19.261 421 20.518 471 21.703 272 16.633 322 17.944 372 19.287 422 20.550 473 21.776 273 16.523 323 17.972 373 19.313 423 20.567 473 21.772 275 16.633 325 18.028 375 19.365 425 20.616 475 21.772 276 16.403 331 18.193 381 19.519 431 20.761 481 21.932 281 16.763 332 18.241 383 399 19.468 429 20.761 481 21.932 282 16.793 332 18.243 383 19.570 433 20.064 466 21.679 283 16.823 333 18.248 383 19.596 434 20.095 488 21.994 284 16.852 334 18.265 376				17.321	350					21.213
253 15,906 303 17,407 353 18,788 403 20,075 453 21,284 254 15,969 305 17,464 355 18,815 404 20,100 454 21,307 255 15,969 305 17,464 355 18,841 405 20,125 455 21,331 256 16,003 306 17,493 356 18,868 406 20,149 456 21,354 257 16,031 307 17,521 357 18,894 407 20,174 457 21,378 258 16,062 303 17,550 358 18,921 408 20,199 458 21,401 259 16,093 309 17,578 359 18,947 409 20,224 459 21,424 260 16,125 311 17,635 361 19,000 411 20,273 461 21,471 262 16,186 312 17,664 362 19,026 412 20,228 462 21,494 263 16,27 313 17,692 363 19,053 413 20,322 463 21,517 264 16,248 314 17,720 364 19,079 414 20,377 464 21,541 265 16,279 315 17,748 365 19,105 415 20,372 466 21,587 267 16,340 317 17,804 367 19,157 417 20,421 467 21,164 268 16,371 318 17,833 368 19,183 418 20,455 468 21,364 268 16,371 318 17,833 368 19,183 418 20,455 468 21,367 271 16,462 321 17,946 371 19,261 421 20,518 471 21,726 273 16,523 321 17,972 373 19,235 420 20,494 470 21,679 271 16,462 321 17,946 371 19,261 421 20,518 471 21,726 273 16,523 323 17,972 373 19,313 423 20,567 473 21,726 273 16,523 323 17,972 373 19,313 423 20,567 473 21,726 274 16,643 327 18,083 377 19,416 427 20,644 477 21,840 277 16,643 327 18,083 377 19,416 427 20,644 477 21,840 277 16,643 328 18,113 388 19,494 430 20,736 488 21,999 281 16,763 331 18,193 381 19,494 430 20,736 488 21,999 281 16,763 332 18,138 379 19,468 429 20,712 477 21,886 279 16,643 327 18,083 377 19,466 427 20,644 477 21,840 22,172 278 16,623 333 18,248 333 19,570 433 20,898 483 21,979 281 16,79										
254 15,937 304 17,436 354 18,815 404 20,100 454 21,307 255 15,569 305 17,464 355 18,841 405 20,125 455 21,331 256 16,000 306 17,493 356 18,868 406 20,149 456 21,354 257 16,031 307 17,521 357 18,894 407 20,174 457 21,378 258 16,062 303 17,550 358 18,921 408 20,199 458 21,401 259 16,093 309 17,578 359 18,947 409 20,224 459 21,424 260 16,125 310 17,607 360 18,974 400 20,248 460 21,448 261 16,155 311 17,635 361 19,000 411 20,273 461 21,471 262 16,186 312 17,664 362 19,064 412 20,298 462 21,494 263 16,217 313 17,692 363 19,053 413 20,322 463 21,514 264 16,248 314 17,720 364 19,079 414 20,347 464 21,541 265 16,279 315 17,748 365 19,105 415 20,372 465 21,564 266 16,310 316 17,776 366 19,131 416 20,396 466 21,587 267 16,340 317 17,804 367 19,157 417 20,421 467 21,619 268 16,371 318 17,833 368 19,183 418 20,445 468 21,633 269 16,401 319 17,861 369 19,209 419 20,469 469 21,656 270 16,432 320 17,889 370 19,235 420 20,494 470 21,679 271 16,469 321 17,916 371 19,261 421 20,518 471 21,703 272 16,492 322 17,944 372 19,337 423 20,567 473 21,726 273 16,523 323 17,972 373 19,133 423 20,567 473 21,726 274 16,643 327 18,083 375 19,365 425 20,616 475 21,734 275 16,583 325 18,003 375 19,365 425 20,640 476 21,810 276 16,613 326 18,605 376 19,391 426 20,690 474 21,772 275 16,583 325 18,003 377 19,466 427 20,664 477 21,840 276 16,613 326 18,605 376 19,391 426 20,690 488 21,992 281 16,763 331 18,248 383 19,596 434 20,073 488 21,962 282 16,793 332 18,248 383 19,596								· ·		
255 15.969 305 17.464 355 18.841 405 20.125 455 21.331 256 16.000 306 17.493 356 18.884 406 20.149 456 21.331 257 16.031 307 17.521 357 18.894 407 20.174 457 21.782 258 16.093 309 17.578 359 18.921 408 20.199 458 21.401 260 16.125 310 17.607 360 18.974 410 20.248 460 21.448 261 16.186 312 17.664 362 19.026 412 20.298 462 21.494 263 16.217 313 17.692 363 19.036 412 20.248 460 21.448 261 16.248 314 17.720 364 19.079 414 20.347 462 21.541 265 16.279 15 17.748										
256 16.000 306 17.493 356 18.868 406 20.149 456 21.354 257 16.031 307 17.521 357 18.894 407 20.174 457 21.378 258 16.062 303 17.550 358 18.921 408 20.199 458 21.401 259 16.093 309 17.578 359 18.947 409 20.224 459 21.424 260 16.125 310 17.607 360 18.974 410 20.248 460 21.448 261 16.155 311 17.635 361 19.000 411 20.248 462 21.471 262 16.186 312 17.664 362 19.026 412 20.298 462 21.471 263 16.217 313 17.692 363 19.053 413 20.332 463 21.517 264 16.28 314 17.720 364 19.079 414 20.347 464 21.547 265 16.279 315 17.748 365 19.105 415 20.372 465 21.564 266 16.310 316 17.776 366 19.131 416 20.96 466 21.587 267 16.340 317 17.804 367 19.157 417 20.421 467 21.610 268 16.371 318 17.833 368 19.183 418 20.445 468 21.633 269 16.401 319 17.861 369 19.209 419 20.469 469 21.657 270 16.432 320 17.889 370 19.235 420 20.494 470 21.679 271 16.462 321 17.916 371 19.261 421 20.518 471 21.703 272 16.492 322 17.944 372 19.287 422 20.543 472 21.726 273 16.523 323 17.972 373 19.313 423 20.567 473 21.749 274 16.553 324 18.000 374 19.339 424 20.591 474 21.772 275 16.633 325 18.028 375 19.365 425 20.644 477 21.479 276 16.613 326 18.055 376 19.991 426 20.640 476 21.817 277 16.643 327 18.083 377 19.416 427 20.664 477 21.340 278 16.673 328 18.111 378 19.442 428 20.698 478 21.363 279 16.703 329 18.138 379 19.468 429 20.712 479 21.886 280 16.733 331 18.193 381 19.519 431 20.761 481 21.932 281 16.793 331 18.193 381 19.519 431 20.761 481 21.932 282 16.941 337 18.358 387 19.672						-				
257 16.031 307 17,521 357 18.894 407 20.174 457 21.378 258 16.062 303 17.550 358 18.921 408 20.199 458 21.401 259 16.093 309 17.578 359 18.947 409 20.224 459 21.421 260 16.125 310 17.667 360 18.974 410 20.248 460 21.448 261 16.186 312 17.664 362 19.026 411 20.243 460 21.471 262 16.186 312 17.664 362 19.053 413 20.224 462 21.471 264 16.217 313 17.692 363 19.053 413 20.322 463 21.471 265 16.217 315 17.748 365 19.131 416 20.347 462 21.541 266 16.310 316 17.76										
258 16.062 308 17.550 358 18.921 408 20.199 458 21.401 259 16.093 309 17.578 359 18.947 409 20.224 459 21.424 260 16.125 310 17.607 361 19.000 411 20.273 461 21.471 261 16.155 311 17.635 361 19.000 411 20.273 461 21.471 262 16.186 312 17.664 362 19.026 412 20.298 462 21.494 263 16.217 313 17.692 363 19.053 413 20.322 463 21.517 264 16.248 314 17.720 364 19.079 414 20.347 464 21.541 265 16.279 315 17.748 365 19.105 415 20.372 465 21.587 266 16.310 316 17.776 366 19.131 416 20.396 466 21.587 267 16.340 317 17.804 367 19.157 417 20.421 467 21.610 268 16.371 318 17.833 368 19.183 418 20.445 468 21.633 269 16.401 319 17.861 369 19.209 419 20.469 469 21.656 270 16.432 320 17.889 370 19.235 420 20.494 470 21.679 271 16.469 322 17.916 371 19.261 421 20.518 471 21.703 272 16.492 322 17.914 372 19.287 422 20.513 471 21.703 273 16.523 323 17.972 373 19.313 423 20.567 473 21.749 274 16.553 324 18.003 374 19.339 424 20.591 474 21.772 275 16.543 325 18.028 375 19.365 425 20.664 477 21.810 276 16.613 326 18.055 376 19.391 426 20.640 476 21.817 277 16.643 372 18.083 377 19.416 427 20.668 478 21.863 279 16.703 329 18.138 379 19.468 429 20.776 480 21.999 281 16.763 331 18.193 381 19.519 431 20.766 481 21.992 282 16.793 332 18.221 382 19.545 432 20.796 482 21.954 288 16.971 338 18.385 387 19.667 437 20.905 487 21.862 289 17.000 339 18.412 389 19.770 442 20.905 487 21.932 290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 291 17.059 341 18.466 391 19.774										
259 16.093 309 17.578 359 18.947 409 20.224 459 21.424										
260 16.125 310 17.607 360 18.974 410 20.248 460 21.448 261 16.155 311 17.635 361 19.000 411 20.273 461 21.471 262 16.186 312 17.664 362 19.026 412 20.298 462 21.494 263 16.217 313 17.692 363 19.053 413 20.332 463 21.517 264 16.248 314 17.720 364 19.079 414 20.347 464 21.517 265 16.279 315 17.748 365 19.105 415 20.372 465 21.587 266 16.310 316 17.776 366 19.131 416 20.394 466 21.587 267 16.340 317 17.804 367 19.157 417 20.421 467 21.610 288 16.371 318 17.833 368 19.183 418 20.445 468 21.633 269 16.401 319 17.861 369 19.209 419 20.469 469 21.656 270 16.432 320 17.889 370 19.235 420 20.494 470 21.679 271 16.462 321 17.916 371 19.261 421 20.518 471 21.703 272 16.492 322 17.944 372 19.287 422 20.533 472 21.726 273 16.523 323 17.972 373 19.313 423 20.567 473 21.726 274 16.553 325 18.028 375 19.391 426 20.640 476 21.817 276 16.543 325 18.028 375 19.391 426 20.640 476 21.817 277 16.643 327 18.083 377 19.416 427 20.664 477 21.840 278 16.573 328 18.111 378 19.442 428 20.694 470 21.817 278 16.573 328 18.111 378 19.442 428 20.694 476 21.817 278 16.673 328 18.113 389 19.494 430 20.776 480 21.999 18.138 379 19.468 429 20.712 479 21.860 281 16.763 331 18.193 381 19.519 426 20.640 477 21.840 281 16.763 331 18.193 381 19.519 431 20.761 481 21.992 282 16.793 332 18.211 388 19.559 431 20.761 481 21.992 282 16.793 332 18.221 382 19.545 432 20.785 482 21.954 283 16.823 331 18.248 381 19.559 431 20.761 481 21.992 282 16.793 332 18.221 382 19.545 432 20.785 482 21.954 283 16.833 331 18.248 381 19.590 434 20.833 484 22.000 285 16.882 335 18.330 386 19.647 436 20.881 486 22.045 287 16.941 337 18.388 387 19.672 437 20.905 488 22.093 285 16.832 335 18.221 382 19.545 432 20.785 482 21.954 283 16.833 333 18.248 381 19.599 434 20.833 484 22.000 285 16.832 335 18.330 386 19.647 436 20.881 486 22.045 285 16.973 332 18.221 382 19.590 433 20.905 488 22.032 286 16.971 338 18.248 381 19.599 432 20.785 482 21.954 22.023 286 16.971 338 18.248 388 19.698 438 20.928 488 20.928 488 22.091 290 17.009 340 18.439 390 19.748 440 20.976 490 22.136 291 17.0										
261 16.155 311 17.635 361 19.000 411 20.273 461 21.471 262 16.186 312 17.664 362 19.026 412 20.298 462 21.494 263 16.217 313 17.692 363 19.053 413 20.322 463 21.517 265 16.288 314 17.720 364 19.079 414 20.347 464 21.541 265 16.279 315 17.778 366 19.131 416 20.396 466 21.564 266 16.340 317 17.804 367 19.157 417 20.421 467 21.610 268 16.371 318 17.833 368 19.183 418 20.445 468 21.637 270 16.432 320 17.889 370 19.235 420 20.494 470 21.650 270 16.432 321 17.91					į					
262 16,186 312 17,664 362 19,026 412 20,298 462 21,694 263 16,217 313 17,692 363 19,053 413 20,322 463 21,591 264 16,248 314 17,720 364 19,079 414 20,347 464 21,541 265 16,279 315 17,748 365 19,105 415 20,372 465 21,564 266 16,310 316 17,776 366 19,131 416 20,396 466 21,584 267 16,340 317 17,804 367 19,157 417 20,221 467 21,610 268 16,371 318 17,883 368 19,183 418 20,445 468 21,639 270 16,492 322 17,846 371 19,261 421 20,518 470 21,679 271 16,462 321 17,94										
263 16,217 313 17,692 363 19,053 413 20,322 463 21,517 264 16,248 314 17,720 364 19,079 414 20,347 464 21,541 265 16,279 315 17,748 365 19,105 415 20,372 465 21,564 266 16,310 316 17,776 366 19,131 416 20,396 466 21,564 268 16,371 318 17,833 368 19,183 418 20,445 467 21,610 269 16,401 319 17,861 369 19,209 419 20,469 469 21,656 270 16,432 320 17,889 370 19,235 420 20,494 470 21,679 271 16,462 321 17,914 372 19,239 422 20,543 471 21,702 273 16,523 322 17,94										
264 16.248 314 17.720 364 19.079 414 20.347 464 21.541 265 16.279 315 17.748 365 19.105 415 20.372 465 21.564 266 16.310 316 17.776 366 19.157 417 20.421 467 21.510 268 16.371 318 17.833 368 19.183 418 20.425 468 21.633 269 16.401 319 17.861 369 19.209 419 20.449 469 21.656 270 16.432 320 17.889 370 19.235 420 20.444 470 21.656 271 16.462 321 17.916 371 19.261 421 20.518 471 21.762 273 16.492 322 17.944 372 19.237 422 20.543 472 21.762 273 16.523 323 17.92										
265 16.279 315 17.748 365 19.105 415 20.372 465 21.564 266 16.310 316 17.776 366 19.131 416 20.396 466 21.587 267 16.340 317 17.804 367 19.157 417 20.421 467 21.610 268 16.371 318 17.833 368 19.183 418 20.445 468 21.633 269 16.401 319 17.861 369 19.209 419 20.469 469 21.656 270 16.432 320 17.889 370 19.235 420 20.494 470 21.679 271 16.462 321 17.916 371 19.261 421 20.518 471 21.703 271 16.4523 322 17.944 372 19.287 422 20.543 472 21.792 273 16.553 324 18.0										
266 16,340 316 17,776 366 19,131 416 20,396 466 21,587 267 16,340 317 17,804 367 19,187 417 20,421 467 21,610 268 16,371 318 17,833 368 19,183 418 20,445 468 21,610 269 16,401 319 17,861 369 19,209 419 20,494 470 21,656 270 16,432 320 17,889 370 19,235 420 20,494 470 21,679 271 16,462 321 17,916 371 19,261 421 20,518 471 21,703 272 16,492 322 17,944 372 19,337 422 20,543 472 21,726 273 16,523 324 18,000 374 19,339 424 20,591 474 21,772 275 16,583 325 18,02										
267 16.340 317 17.804 367 19.157 417 20.421 467 21.610 268 16.371 318 17.833 368 19.183 418 20.445 468 21.633 269 16.401 319 17.861 369 19.209 419 20.469 469 21.656 270 16.432 320 17.889 370 19.235 420 20.494 470 21.679 271 16.462 321 17.916 371 19.261 421 20.518 471 21.703 272 16.492 322 17.944 372 19.287 422 20.543 472 21.726 273 16.523 323 17.972 373 19.313 423 20.567 473 21.749 274 16.553 324 18.000 374 19.339 424 20.591 474 21.772 275 16.583 325 18.028 375 19.365 425 20.616 475 21.774 277 16.643 326 18.055 376 19.391 426 20.640 476 21.817 277 16.643 327 18.083 377 19.416 427 20.664 477 21.860 278 16.673 328 18.111 378 19.442 428 20.688 478 21.863 279 16.703 329 18.138 379 19.468 429 20.712 479 21.886 280 16.733 330 380 19.494 430 20.736 480 21.999 281 16.863 331 18.193 381 19.519 431 20.761 481 21.932 282 16.793 332 18.221 382 19.545 432 20.785 482 21.954 283 16.823 333 18.248 383 19.570 433 20.809 483 21.977 284 16.882 335 18.303 386 19.621 435 20.621 485 22.023 285 16.882 335 18.303 386 19.621 435 20.621 485 22.023 285 16.882 335 18.303 386 19.6647 436 20.881 486 22.005 287 16.941 337 18.385 387 19.672 437 20.905 487 22.068 288 16.971 338 18.385 388 19.698 438 20.928 488 22.091 22.159 229 17.029 340 18.439 390 19.748 440 20.976 490 22.136 290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 294 17.146 345 18.574 395 19.875 445 21.005 497 22.226 295 17.176 345 18.574 395 19.875 447 21.142 497 22.226 17.263 348 18.665 398 19.950 448 21.166 498 22.316 22.316 22.316 22.316										
268 16.371 318 17.833 368 19.183 418 20.445 468 21.633 269 16.401 319 17.861 369 19.209 419 20.469 469 21.656 270 16.432 320 17.889 370 19.235 420 20.494 470 21.679 271 16.462 321 17.916 371 19.267 422 20.543 471 21.703 272 16.492 322 17.944 372 19.287 422 20.543 472 21.703 273 16.523 323 17.972 373 19.313 423 20.567 473 21.749 275 16.583 325 18.028 375 19.365 425 20.616 475 21.772 275 16.633 327 18.083 377 19.416 427 20.664 477 21.840 278 16.703 328 18.11										-
269 16.401 319 17.861 369 19.209 419 20.469 469 21.656										
270 16.432 320 17.889 370 19.235 420 20.494 470 21.679 271 16.462 321 17.916 371 19.261 421 20.518 471 21.703 272 16.492 322 17.944 372 19.287 422 20.543 472 21.726 273 16.523 323 17.972 373 19.313 423 20.567 473 21.729 274 16.553 324 18.000 374 19.339 424 20.591 474 21.772 275 16.583 325 18.028 375 19.365 425 20.616 475 21.794 276 16.613 326 18.055 376 19.391 426 20.640 476 21.817 277 16.643 327 18.083 377 19.416 427 20.664 477 21.840 278 16.673 328 18.111 378 19.442 428 20.698 478 21.863 279 16.703 329 18.138 379 19.468 429 20.712 479 21.886 280 16.733 330 380 19.494 430 20.736 480 21.909 281 16.763 331 18.193 381 19.519 431 20.761 481 21.932 282 16.793 332 18.221 382 19.545 432 20.785 482 21.954 283 16.823 333 18.248 383 19.570 433 20.809 483 21.977 284 16.852 334 18.276 384 19.596 434 20.831 484 22.002 285 16.882 335 18.303 385 19.621 435 20.621 485 22.023 286 16.912 336 18.330 386 19.647 436 20.881 486 22.045 287 16.941 337 18.358 387 19.672 437 20.905 489 22.113 290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 291 17.059 341 18.466 391 19.774 441 21.000 491 22.159 292 17.088 342 18.98 392 19.799 442 21.024 492 22.181 293 17.117 343 18.520 393 19.824 443 21.004 493 22.264 294 17.146 344 18.547 394 19.849 444 21.071 494 22.265 295 17.176 345 18.574 395 19.875 445 21.095 495 22.249 296 17.205 346 18.601 396 19.900 446 21.119 496 22.271 298 17.263 348 18.655 398 19.950 448 21.166 498 22.316										
271 16.46? 321 17.916 371 19.261 421 20.518 471 21.703 272 16.492 322 17.944 372 19.287 422 20.543 472 21.726 273 16.523 323 17.972 373 19.313 423 20.567 473 21.749 274 16.553 324 18.000 374 19.339 424 20.591 474 21.772 275 16.583 325 18.028 375 19.365 425 20.616 475 21.794 276 16.613 326 18.055 376 19.391 426 20.640 476 21.817 277 16.643 327 18.083 377 19.416 427 20.664 477 21.840 278 16.673 328 18.111 378 19.442 428 20.688 478 21.863 279 16.703 329 18.138 379 19.468 429 20.712 479 21.886 280 16.733 330 380 19.494 430 20.736 480 21.909 281 16.763 331 18.193 381 19.519 431 20.761 481 21.932 282 16.793 332 18.221 382 19.545 432 20.785 482 21.954 283 16.823 333 18.248 383 19.570 433 20.809 483 21.977 284 16.852 334 18.276 384 19.596 434 20.831 486 22.003 285 16.942 336 18.330 385 19.621 435 20.621 485 22.023 286 16.912 336 18.330 386 19.647 437 20.905 487 22.068 288 16.971 338 18.385 388 19.698 438 20.928 488 22.091 289 17.000 339 18.412 389 19.723 439 20.952 489 22.113 290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 291 17.059 341 18.466 391 19.774 441 21.000 491 22.159 292 17.088 342 18.498 392 19.799 442 21.024 492 22.181 293 17.117 343 18.500 393 19.824 443 21.095 493 22.126 294 17.146 344 18.547 394 19.849 444 21.001 494 22.226 295 17.176 345 18.574 395 19.875 445 21.095 495 22.249 294 17.146 344 18.547 394 19.849 444 21.005 499 22.136 296 17.205 346 18.601 396 19.900 448 21.166 498 22.316 298 17.263 348 18.655 398 19.950 448 21.166 498 22.316 22.316 22.316 22.316 2	207	10.401	717	17.001	1 709	17.209	417	20.409	409	21.000
272 16.492 322 17.944 372 19.287 422 20.543 472 21.726 273 16.523 323 17.972 373 19.313 423 20.567 473 21.749 274 16.553 324 18.000 375 19.339 424 20.566 475 21.772 275 16.583 325 18.028 375 19.365 425 20.616 475 21.772 276 16.613 326 18.055 376 19.391 426 20.640 476 21.817 277 16.643 327 18.083 377 19.416 427 20.664 477 21.840 278 16.673 328 18.111 378 19.442 428 20.688 478 21.863 279 16.703 329 18.138 379 19.468 429 20.712 479 21.886 280 16.733 330 380 19.494 430 20.736 480 21.992 281 16.763 331 18.193 331 19.519 431 20.761 481 21.932 282 16.793 332 18.221 382 19.545 432 20.785 482 21.954 283 16.823 333 18.248 383 19.570 433 20.809 483 21.977 284 16.852 334 18.276 384 19.596 434 20.833 484 22.000 285 16.882 335 18.303 385 19.621 435 20.621 485 22.023 286 16.912 336 18.330 386 19.647 436 20.881 486 22.045 287 16.941 337 18.358 387 19.672 437 20.905 487 22.068 288 16.971 338 18.385 388 19.698 438 20.928 488 22.091 292 17.059 341 18.466 391 19.774 441 21.000 491 22.159 292 17.088 342 18.498 392 19.799 442 21.024 492 22.181 290 17.029 340 18.498 392 19.799 442 21.024 492 22.181 292 17.088 342 18.498 392 19.799 442 21.004 492 22.186 294 17.146 344 18.547 394 19.849 444 21.071 494 22.226 17.176 345 18.574 395 19.875 445 21.005 495 22.249 296 17.205 346 18.601 396 19.900 448 21.166 498 22.316 298 17.263 348 18.665 398 19.950 448 21.166 498 22.316 22.3			l .					20.494	470	21.679
273 16.523 323 17.972 373 19.313 423 20.567 473 21.749 274 16.553 324 18.000 374 19.339 424 20.591 474 21.772 275 16.583 325 18.028 375 19.365 425 20.616 475 21.7792 276 16.613 326 18.055 376 19.391 426 20.640 476 21.817 277 16.643 327 18.083 377 19.416 427 20.664 477 21.840 278 16.673 328 18.111 378 19.442 428 20.688 478 21.863 279 16.703 329 18.138 379 19.468 429 20.712 479 21.886 428 16.763 331 18.193 381 19.519 431 20.761 481 21.932 282 16.793 332 18.221 382 19.545 432 20.785 482 21.954 283 16.823 333 18.248 383 19.570 433 20.809 483 21.977 284 16.852 334 18.276 384 19.596 434 20.833 484 22.000 285 16.882 335 18.303 385 19.621 435 20.621 485 22.023 286 16.912 336 18.330 386 19.647 436 20.881 486 22.045 287 16.941 337 18.358 387 19.672 437 20.905 487 22.068 288 16.971 338 18.385 388 19.698 438 20.928 488 22.091 22.159 22.113 290 17.029 340 18.430 390 19.748 440 20.976 490 22.136 291 17.059 341 18.466 391 19.774 441 21.000 491 22.159 292 17.088 342 18.498 392 19.799 442 21.024 492 22.181 293 17.117 343 18.520 393 19.824 443 21.004 492 22.181 293 17.117 343 18.520 393 19.824 443 21.004 492 22.181 293 17.117 343 18.520 393 19.824 443 21.004 492 22.181 293 17.117 343 18.520 393 19.824 443 21.005 495 22.266 295 17.166 344 18.547 394 19.849 444 21.071 494 22.226 295 17.166 344 18.547 394 19.849 444 21.071 494 22.226 295 17.166 344 18.547 394 19.849 444 21.071 494 22.226 295 17.166 344 18.547 394 19.849 444 21.071 496 22.271 297 17.234 347 18.628 397 19.950 448 21.166 498 22.316								20.518		
274 16.553 324 18.000 374 19.339 424 20.591 474 21.772 275 16.583 325 18.028 375 19.365 425 20.616 475 21.794 276 16.613 326 18.055 376 19.391 426 20.640 476 21.817 277 16.643 327 18.083 377 19.416 427 20.664 477 21.840 278 16.673 328 18.111 378 19.442 428 20.688 478 21.863 279 16.703 329 18.138 379 19.468 429 20.712 479 21.886 280 16.733 330 380 19.494 430 20.736 480 21.909 281 16.763 331 18.193 381 19.519 431 20.761 481 21.932 282 16.793 332 18.221 382 19.545 432 20.785 482 21.954 283 16.823 333 18.248 383 19.579 433 20.809 483 21.977 284 16.852 334 18.276 384 19.596 434 20.833 484 22.000 285 16.882 335 18.330 386 19.691 435 20.621 485 22.023 286 16.912 336 18.330 386 19.697 437 20.905 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>										1
275 16.583 325 18.028 375 19.365 425 20.616 475 21.794 276 16.613 326 18.055 376 19.391 426 20.640 476 21.817 277 16.643 327 18.083 377 19.416 427 20.664 477 21.840 278 16.673 328 18.111 378 19.442 428 20.638 478 21.863 279 16.703 329 18.138 379 19.468 429 20.712 479 21.886 280 16.733 330 380 19.494 430 20.736 480 21.909 281 16.763 331 18.193 381 19.519 431 20.761 481 21.932 282 16.793 332 18.221 382 19.545 432 20.785 482 21.954 283 16.823 333 18.248 383 19.570 433 20.809 483 21.977 284 16.852 334 18.276 384 19.596 434 20.833 484 22.000 285 16.882 335 18.303 385 19.621 435 20.621 485 22.023 286 16.912 336 18.330 386 19.647 436 20.881 486 22.045 287 16.941 337 18.358 387 19.672 437 20.905 487 22.068 288 16.971 338 18.385 388 19.698 438 20.928 488 22.091 289 17.000 339 18.412 389 19.723 439 20.952 489 22.113 290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 291 17.059 341 18.466 391 19.774 441 21.000 491 22.159 292 17.088 342 18.498 392 19.799 442 21.024 492 22.181 293 17.117 343 18.520 393 19.824 443 21.048 493 22.266 295 17.176 345 18.574 395 19.875 445 21.095 495 22.246 295 17.176 345 18.574 395 19.875 445 21.095 495 22.246 295 17.176 345 18.574 395 19.875 445 21.095 496 22.271 297 17.234 347 18.628 397 19.925 447 21.166 498 22.316 23.16									1	
276 16.613 326 18.055 376 19.391 426 20.640 476 21.817 277 16.643 327 18.083 377 19.416 427 20.664 477 21.840 278 16.673 328 18.111 378 19.442 428 20.688 478 21.863 279 16.703 329 18.138 379 19.468 429 20.712 479 21.886 280 16.733 330 380 19.494 430 20.736 480 21.909 281 16.763 331 18.193 381 19.519 431 20.761 481 21.932 282 16.793 332 18.221 382 19.545 432 20.785 482 21.994 283 16.823 333 18.248 383 19.570 433 20.809 483 21.977 284 16.852 334 18.276 384 </td <td></td>										
277 16.643 327 18.083 377 19.416 427 20.664 477 21.840 278 16.673 328 18.111 378 19.442 428 20.638 478 21.863 279 16.703 329 18.138 379 19.468 429 20.712 479 21.886 280 16.733 330 380 19.494 430 20.736 480 21.909 281 16.763 331 18.193 381 19.519 431 20.761 481 21.932 282 16.793 332 18.221 382 19.545 432 20.785 482 21.954 283 16.823 333 18.248 383 19.570 433 20.809 483 21.977 284 16.852 334 18.276 384 19.596 434 20.833 484 22.000 285 16.882 335 18.303 385 19.621 435 20.621 485 22.023 286 16.912 336 18.330 386 19.647 436 20.881 486 22.045 287 16.941 337 18.358 387 19.672 437 20.905 487 22.068 288 16.971 338 18.385 388 19.698 438 20.928 488 22.091 289 17.000 339 18.412 389 19.723 439 20.952 489 22.113 290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 291 17.059 341 18.466 391 19.774 441 21.000 491 22.159 292 17.088 342 18.498 392 19.799 442 21.024 492 22.181 293 17.117 343 18.520 393 19.824 443 21.048 493 22.22.249 22.17146 344 18.547 394 19.849 444 21.071 494 22.226 295 17.164 345 18.601 396 19.900 446 21.119 496 22.271 297 17.234 347 18.628 397 19.925 448 21.166 498 22.316 298 17.263 348 18.655 398 19.950 448 21.166 498 22.316 22.249 22.316 22.249 22.316 22.249 22.316 22.249 22.249 22.263 22.249 22.249 22.246 22										
278 16.673 328 18.111 378 19.442 428 20.638 478 21.863 279 16.703 329 18.138 379 19.468 429 20.712 479 21.863 280 16.733 330 380 19.494 430 20.736 480 21.909 281 16.763 331 18.193 381 19.519 431 20.761 481 21.932 282 16.793 332 18.221 382 19.545 432 20.785 482 21.954 283 16.823 333 18.248 383 19.570 433 20.809 483 21.977 284 16.852 334 18.276 384 19.596 434 20.833 484 22.000 285 16.882 335 18.303 386 19.621 435 20.621 485 22.023 286 16.912 336 18.330 386 </td <td></td>										
279 16.703 329 18.138 379 19.468 429 20.712 479 21.886 280 16.733 330 380 19.494 430 20.736 480 21.909 281 16.763 331 18.193 381 19.519 431 20.761 481 21.932 282 16.793 332 18.221 382 19.545 432 20.785 482 21.952 283 16.823 333 18.248 383 19.570 433 20.809 483 21.977 284 16.852 334 18.276 384 19.596 434 20.833 484 22.000 285 16.882 335 18.303 385 19.621 435 20.621 485 22.023 286 16.912 336 18.330 386 19.647 436 20.881 486 22.045 287 16.941 337 18.358 387 </td <td></td>										
280 16.733 330 380 19.494 430 20.736 480 21.909 281 16.763 331 18.193 381 19.519 431 20.761 481 21.932 282 16.793 332 18.221 382 19.545 432 20.785 482 21.954 283 16.823 333 18.248 383 19.570 433 20.809 483 21.977 284 16.852 334 18.276 384 19.596 434 20.833 484 22.000 285 16.882 335 18.303 385 19.691 435 20.621 485 22.023 286 16.912 336 18.330 386 19.647 436 20.881 486 22.045 287 16.941 337 18.358 387 19.672 437 20.905 487 22.068 288 16.971 338 18.385 388 19.698 438 20.928 488 22.91 289 17.	,									
281 16.763 331 18.193 381 19.519 431 20.761 481 21.932 282 16.793 332 18.221 382 19.545 432 20.785 482 21.954 283 16.823 333 18.248 383 19.570 433 20.809 483 21.977 284 16.852 334 18.276 384 19.596 434 20.833 484 22.000 285 16.882 335 18.303 385 19.621 435 20.621 485 22.023 286 16.912 336 18.330 386 19.647 436 20.881 486 22.045 287 16.941 337 18.358 387 19.672 437 20.905 487 22.068 288 16.971 338 18.385 388 19.698 438 20.928 488 22.091 289 17.000 339 18.412 389 19.723 439 20.956 490 22.136 <td< td=""><td>219</td><td>10.705</td><td>369</td><td>10,130</td><td>319</td><td>19,408</td><td>429</td><td>20.712</td><td>479</td><td>21.880</td></td<>	219	10.705	369	10,130	319	19,408	429	20.712	479	21.880
282 16.793 332 18.221 382 19.545 432 20.785 482 21.954 283 16.823 333 18.248 383 19.570 433 20.809 483 21.977 284 16.852 334 18.276 384 19.596 434 20.833 484 22.000 285 16.882 335 18.303 385 19.621 435 20.621 485 22.023 286 16.912 336 18.330 386 19.647 436 20.881 486 22.045 287 16.941 337 18.358 387 19.672 437 20.905 487 22.068 288 16.971 338 18.385 388 19.698 438 20.928 488 22.091 289 17.000 339 18.412 389 19.723 439 20.952 489 22.113 290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 <td< td=""><td></td><td></td><td></td><td></td><td>380</td><td>19.494</td><td>430</td><td>20.736</td><td>480</td><td>21,909</td></td<>					380	19.494	430	20.736	480	21,909
283 16.823 333 18.248 383 19.570 433 20.809 483 21.977 284 16.852 334 18.276 384 19.596 434 20.833 484 22.000 285 16.882 335 18.303 385 19.621 435 20.621 485 22.023 286 16.912 336 18.330 386 19.647 436 20.881 486 22.045 287 16.941 337 18.358 387 19.672 437 20.905 487 22.068 288 16.971 338 18.385 388 19.698 438 20.928 488 22.091 289 17.000 339 18.412 389 19.723 439 20.952 489 22.113 290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 291 17.059 341 18.466 391 19.774 441 21.000 491 22.159 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>21.932</td></td<>										21.932
284 16.852 334 18.276 384 19.596 434 20.833 484 22.000 285 16.882 335 18.303 385 19.621 435 20.621 485 22.023 286 16.912 336 18.330 386 19.647 436 20.881 486 22.045 287 16.941 337 18.358 387 19.672 437 20.905 487 22.068 288 16.971 338 18.385 388 19.698 438 20.928 488 22.091 289 17.000 339 18.412 389 19.723 439 20.952 489 22.113 290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 291 17.059 341 18.466 391 19.774 441 21.000 491 22.159 292 17.088 342 18.498 392 19.799 442 21.024 492 22.181 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
285 16.882 335 18.303 385 19.621 435 20.621 485 22.023 286 16.912 336 18.330 386 19.647 436 20.881 486 22.045 287 16.941 337 18.358 387 19.672 437 20.905 487 22.068 288 16.971 338 18.385 388 19.698 438 20.928 488 22.091 289 17.000 339 18.412 389 19.723 439 20.952 489 22.113 290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 291 17.059 341 18.466 391 19.774 441 21.000 491 22.159 292 17.088 342 18.498 392 19.799 442 21.024 492 22.181 293 17.117 343 18.520 393 19.824 443 21.048 493 22.26					1					
286 16.912 336 18.330 386 19.647 436 20.881 486 22.045 287 16.941 337 18.358 387 19.672 437 20.905 487 22.068 288 16.971 338 18.385 388 19.698 438 20.928 488 22.091 289 17.000 339 18.412 389 19.723 439 20.952 489 22.113 290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 291 17.059 341 18.466 391 19.774 441 21.000 491 22.159 292 17.088 342 18.498 392 19.799 442 21.024 492 22.181 293 17.117 343 18.520 393 19.824 443 21.048 493 22.26 295 17.16 344 18.547 394 19.849 444 21.071 494 22.26 29	1 .									
287 16.941 337 18.358 387 19.672 437 20.905 487 22.068 288 16.971 338 18.385 388 19.698 438 20.928 488 22.091 289 17.000 339 18.412 389 19.723 439 20.952 489 22.113 290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 291 17.059 341 18.466 391 19.774 441 21.000 491 22.159 292 17.088 342 18.498 392 19.799 442 21.024 492 22.181 293 17.117 343 18.520 393 19.824 443 21.048 493 22.26 294 17.146 344 18.547 394 19.849 444 21.071 494 22.226 295 17.176 345 18.574 395 19.875 445 21.095 495 22.249										
288 16.971 338 18.385 388 19.698 438 20.928 488 22.091 289 17.000 339 18.412 389 19.723 439 20.952 489 22.113 290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 291 17.059 341 18.466 391 19.774 441 21.000 491 22.159 292 17.088 342 18.498 392 19.799 442 21.024 492 22.181 293 17.117 343 18.520 393 19.824 443 21.048 493 22.204 294 17.146 344 18.547 394 19.849 444 21.071 494 22.226 295 17.176 345 18.574 395 19.875 445 21.095 495 22.249 296 17.205 346 18.601 396 19.900 446 21.119 496 22.271 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
289 17.000 339 18.412 389 19.723 439 20.952 489 22.113 290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 291 17.059 341 18.466 391 19.774 441 21.000 491 22.159 292 17.088 342 18.498 392 19.799 442 21.024 492 22.181 293 17.117 343 18.520 393 19.824 443 21.048 493 22.204 294 17.146 344 18.547 394 19.849 444 21.071 494 22.226 295 17.176 345 18.574 395 19.875 445 21.095 495 22.249 296 17.205 346 18.601 396 19.900 446 21.119 496 22.271 297 17.234 347 18.628 397 19.925 447 21.142 497 22.293 298 17.263 348 18.655 398 19.950 448 21.166 498 22.316										
290 17.029 340 18.439 390 19.748 440 20.976 490 22.136 291 17.059 341 18.466 391 19.774 441 21.000 491 22.159 292 17.088 342 18.498 392 19.799 442 21.024 492 22.181 293 17.117 343 18.520 393 19.824 443 21.048 493 22.264 294 17.146 344 18.547 394 19.849 444 21.071 494 22.226 295 17.176 345 18.574 395 19.875 445 21.095 495 22.249 296 17.205 346 18.601 396 19.900 446 21.119 496 22.271 297 17.234 347 18.628 397 19.925 447 21.142 497 22.293 298 17.263 348 18.655 398 19.950 448 21.166 498 22.316 <td></td>										
291 17.059 341 18.466 391 19.774 441 21.000 491 22.159 292 17.088 342 18.498 392 19.799 442 21.024 492 22.181 293 17.117 343 18.520 393 19.824 443 21.048 493 22.26 294 17.146 344 18.547 394 19.849 444 21.071 494 22.226 295 17.176 345 18.574 395 19.875 445 21.095 495 22.249 296 17.205 346 18.601 396 19.900 446 21.119 496 22.271 297 17.234 347 18.628 397 19.925 447 21.142 497 22.293 298 17.263 348 18.655 398 19.950 448 21.166 498 22.316	209	17.000	9:50	10.412	309	19.723	439	20.952	489	22.113
292 17.088 342 18.498 392 19.799 442 21.024 492 22.181 293 17.117 343 18.520 393 19.824 443 21.048 493 22.26 294 17.146 344 18.547 394 19.849 444 21.071 494 22.226 295 17.176 345 18.574 395 19.875 445 21.095 495 22.249 296 17.205 346 18.601 396 19.900 446 21.119 496 22.271 297 17.234 347 18.628 397 19.925 447 21.142 497 22.293 298 17.263 348 18.655 398 19.950 448 21.166 498 22.316									490	22.136
293 17.117 343 18.520 393 19.824 443 21.048 493 22.204 294 17.146 344 18.547 394 19.849 444 21.071 494 22.226 295 17.176 345 18.574 395 19.875 445 21.095 495 22.249 296 17.205 346 18.601 396 19.900 446 21.119 496 22.271 297 17.234 347 18.628 397 19.925 447 21.142 497 22.293 298 17.263 348 18.655 398 19.950 448 21.166 498 22.316										22,159
294 17.146 344 18.547 394 19.849 444 21.071 494 22.226 295 17.176 345 18.574 395 19.875 445 21.095 495 22.249 296 17.205 346 18.601 396 19.900 446 21.119 496 22.271 297 17.234 347 18.628 397 19.925 447 21.142 497 22.293 298 17.263 348 18.655 398 19.950 448 21.166 498 22.316										
295 17.176 345 18.574 395 19.875 445 21.095 495 22.249 296 17.205 346 18.601 396 19.900 446 21.119 496 22.271 297 17.234 347 18.628 397 19.925 447 21.142 497 22.293 298 17.263 348 18.655 398 19.950 448 21.166 498 22.316										
296 17.205 346 18.601 396 19.900 446 21.119 496 22.271 297 17.234 347 18.628 397 19.925 447 21.142 497 22.293 298 17.263 348 18.655 398 19.950 448 21.166 498 22.316										
297 17.234 347 18.628 397 19.925 447 21.142 497 22.293 298 17.263 348 18.655 398 19.950 448 21.166 498 22.316										
298 17.263 348 18.655 398 19.950 448 21.166 498 22.316										
[611 11.676] 347 10.006 377 17.717 447 21.170 479 22.338										
	277	11.676	747	10,002	777	17.7/7	447	۲1.17U	477	<i>دد. ۱</i> ۶۵

			TABLE O	F SQUAP	E ROOTS	·	· · · · · · · · · · · · · · · · · · ·		
N	\sqrt{N}	N	\sqrt{N}	N	\sqrt{N}	И	$-\sqrt{N}$	N	\sqrt{N}
500	22.361	550	23,452	600	24.495	650	25.495	700	26.458
501	22,383	551	23.473	601	24.515	651	25.515	701	26.476
502	22.405	552	23.495	602	24.536	652	25.534	702	26.495
503	22.428 22.450	553 554	23.516 23.537	603 604	24.556 24.576	653 654	25.554 25.573	703 704	26.514
505	22.472	555	23.558	605	24.597	655	25.593	705	26.552
506	22.494	556	23.580	606	24.617	656	25.612	706	26.571
507	22.517	557	23.601	607	24.637	657	25.632	707	26.589
508	22.539	558	23.622	608	24.658	658	25.652	708	26.608
509	22.561	559	23.643	609	24.678	659	25.671	709	26.627
510	22,583	560	23.664	610	24.698	660	25.690	710	26.646
511	22.605	561	23.685	611	24.718	66.1	25.710	711	26.665
512	22,627	562	23.707	612	24.739	662	25.729	712	26.683
513	22,650	563	23.728	613	24.759	663	25.749	713	26.702
514	22.672	564	23.749	614	24.779	664	25.768	714	26.721
515	22.694	565	23.770	615	24.799	665	25.788	715	26.739
516	22.716	566	23.791	616	24.819	666	25.807	716	26.758
517 518	22 .7 38 22 . 760	567 568	23,812 23,833	617 618	24.839	667	25.826	717	26.777
519	22.782	569	23.854	619	24.800 24.880	669	25.846 25.865	718	26.796 26.814
1500	00 404	570		:	·			-	
520 521	22.804 22.825	570 571	23.875 23.896	620 621	24.900 24.920	670	25.384	720	26.833
522	22.847	572	23.917	622	24.940	672	25.904 25.923	721 722	26.851 26.870
523	22.869	573	23.937	623	24.960	673	25.942	723	26.889
524	22,891	574	23.958	624	24.980	674	25 . 962	724	26.907
525	22,913	575	23.979	625	25.000	675	25.981	725	26.926
526	22.935	576	24.000	626	25.020	676	26.000	726	26.944
527	22.956	577	24.021	627	25.040	677	26,019	727	26.963
	22.978	578	23.042	628	25.060	678	26.038	278	26.981
529	23,000	579	24.062	629	25.080	679	26.058	729	27.000
530	23.022	580	24.083	630	25.100	680	26.077	730	27.619
531	23.043	581	24.104	631	25.120	681	26.096	731	27.037
532	23.065	582	24.125	632	25.140	682	26.115	732	27.055
533	23.087	583	24.145	633	25.159	683	26.134	733	27.074
534	23.108	584	24.166	634	25.179	684	26.153	734	27.092
535 536	23.130 23.152	585 586	24.187 24.207	635 636	25.199 25.219	685	26.173 26.192	735	27.111
537	23.173	587	24.228	637	25.239	687	26.211	737	27.129 27.148
538	23.195	588	23.249	638	25.259	688	26.230	738	27.146
539	23.216	589	23.269	639	25.278	689	26.249	739	27.185
540	23.238	590	24.290	640	25.298	690	26.268	740	27.203
541	23.259	591	24.310	641	25.318	691	26.287	741	27,221
542	23.281	592	24.331	642	25.338	692	26.306	742	27.240
543	23.302	593	24.352	643	25.357	693	26.325	743	27.258
544	23.324	594	24.372	644	25.377	694	26.344	744	27.276
545	23.345	595	24.393	645	25.397	695	26.363	745	27.295
546	23.367	596	24.413	646	25.417	696	26.382	746	27.313
548	23.388 23.409	597 598	24.434 24.454	648	25.436 25.456	697 698	26.401 26.420	747	27.331 27.350
549	23.431	599	24.474	649	25.475	699	26.439	749	27.368
		<u></u>	- +	<u> </u>	>>			1	~,,,,,,,

Ŋ.	-√ N	N	\sqrt{N}	N	\sqrt{N}	n	\sqrt{N}	N	\sqrt{N}
750	27,386	800	28,284	850	29,155	900	30,000	950	30,822
751	27.404	801	28,302	851	29.172	901	30.017	951	30.838
752	27.423	302	28,320	852	29,189	902	30.033	952	30,854
753	27.441	803	28.337	853	29,206	903	30,050	953	30,871
754	27,459	804	28.355	854	29,223	904	30.067	954	30.887
755	27.477	805	28.373	855	29.240	905	30.083	955	30,903
756	27.495	806	28,390	856	29.257	906	30,100	956	30,919
757	27.514	807	28.408	857	29.275	907	30.116	957	30.935
758	27,532 27,550	808 809	28,425 28,443	858 859	29,292 29,309	908 909	30.133 30.150	953 959	30.952 30.968
فرزرا	474200	807	20,443	929	29.309	909	30.T30	959	JU. 900
760	27.568	810	28,460	860	29.326	910	30.166	960	30,984
761	27.586	811	28,478	861.	29.343	911	30,183	961	31.000
762	27.604	812	28,496	862	29.360	912	30.199	962	31.016
763	27,622	813	28,513	863	29.377	913	30.216	963	31.032
764	27,641	814	28.537	864	29.394	914	30,232	964	31,048
765	27,659	815	28.548	865	29.411	915	30,249	965	31.064
766	27.677	81.6	28.566	866	29.428	916	30.265	966	31,081
767	27.695	817	28.583	867	29.445	917	30.282	967	31.097
768	27.713 27.731	818 819	28.601 28.618	868 869	29,462	918 919	30,299	968 969	31,113
1,09	21.171	01.9	20,010	1 009	29.479	377	30.315	707	71.14.7
770	27,749	820	28,636	870	29.496	920	30,332	970	31,145
771	27,767	821	28.653	871	29.513	92].	30.348	971	31,161
772	27.785	822	28.671	872	29,530	922	30.364	972	31.177
773	27,803	823	28,688	873	29.547	923	30.381	973	31.193
774	27,821	824	28,705	874	29,563	924	30. 397	974	31.209
775	27.839	825	28.723	875	29.580	925	30,414	975	31,225
776	27,857 27,875	826 827	28,740	876	29.597	926	30.430	976	31,241
778	27,893	828	28.758 28.775	877 878	29.614 29.631	927 928	30,447 30,463	977 978	31,257
779	27,911	829	28.792	879	29,548	929	30,480	979	31,289
1	7.1	٧~/	2011/2	0,7	~),040	/~/	J0 1450	,,,	720207
780	27.928	830	28,810	880	29.665	930	30.496	980	31.305
781	27.946	831	28.827	883	29,682	931.	30.512	981	31.321
782	27.964	832	28.844	882	29.698	932	30.529	982	31.337
783	27.982	833	28,862	883	29.715	933	30,545	983	31.353
784 785	28,000 28,018	834 835	28,879 28,896	884	29.732	934	30.561	984	31.369
786	28,036	836	28.914	885 886	29.749 29.766	935 936	30,578 30,594	985 986	31.385
787	28,054	837	28,931	887	29.783	937	30,610	937	31.417
788	28.071	838	28,948	888	29.799	938	30,327	988	31,432
789	28,089	839	28,965	289	29.816	939	30.643	989	31.448
790	28 107	840	28,983	890	29.833	940	30.659	990	31.464
791	28.125	841	29,000	893.	29,850	941	30,676	991	31,480
792	28,142	842	29,017	892	29,866	942	30,692	992	31.496
793	28.160 28.178	843 844	29.034	893	29.883	943	30.708	993	31,512
795	28.396	844 845	29,052 29,069	894 895	29.900 29.917	944 945	30.725 30.741	994 995	31.528 31.544
796	28,213	846	29,086	896	29.917	945	30.757	996	31.559
797	28,231	847	29.103	897	29,950	947	30.773	997	31.575
798	28,249	878	29,120	898	29.967	948	30.790	998	31.591
799	28.267	849	29,138	899	29.983	949	30,806	999	31.607
				·					

TABLE OF SQUARE ROOTS

APPENDICES

APPENDIX A

SOURCE OF THE TERM F_C USED IN THE CALCULATION OF EQUIVALENT STATIC COLUMN WELLHEAD PRESSURES

The calculation of the equivalent static column wellhead pressure corresponding to a flowing wellhead pressure is carried out through use of the following equation:

$$P_{v}^{2} = P_{t}^{2} + F^{2}T^{2}Z^{2}$$
 (1-e^{-s})----(1)

where:

$$F^2 = 2.6665 \text{ f } \text{ g}^2$$

$$S = \underbrace{0.0375 \text{ GL}}_{\text{TZ}}$$

G = Specific gravity (air = 1.00)

L = Length of flow string. ft.

P = Pressure, psia (P^2 in thousands)

Q = Rate of flow, M^2 cfd @ 14.65 psia, and 60° F.

T = Effective absolute temperature, OR.

Z = Effective compressibility factor.

d = Internal diameter of flow string, in.

f = Coefficient of friction, dimensionless.

Through use of the complete turbulence portion of the curves published by Lewis F. Moody in November 1944. Transactions of the A.S.M.E., it is possible to determine the value of (f) for various sizes of pipe at a constant absolute roughness of 0.0006 in., which value is considered valid for clean pipe.

Using the values of (f) so determined, it is possible to arrive at a correlation of friction coefficient (f) vs. internal diameter (d) which is reasonably correct. It was found for an absolute roughness of 0.0006 in. that the value of (f) could be expressed as follows:

f =
$$4.372 \times 10^{-3}$$
 for diameters less than 4.277 in.

and

for diameters greater than 4 277 in.
$$\frac{4.007 \times 10^{-3}}{d^{0.164}}$$

If the expression $(F_cQ)^2$ is allowed to represent the expression $(F^2T^2Z^2)$ in equation (1), then the value of F_c can be shown to be those given in Table VII, A, B and C.

APPENDIX B

THE GENERAL FLOW EQUATION AND THE DEVELOPMENT OF VARIOUS FORMULAS FOR THE FLOW OF GAS IN PIPES

If it is assumed that the change in kinetic energy due to the flow of gas is negligable, the general equation for the flow of gas in pipes may be expressed as follows:

General Flow Equation

$$\frac{1000 \text{ GL}}{53.33} = \int_{P_2}^{P_1} \frac{P/TZ}{\frac{2.6665 \text{ fQ}^2}{\text{d}^5} + \frac{H}{L} (\overline{P}/TZ)^2}$$
(1).

G = Specific gravity (Air = 1.00)

H = Difference in elevation, ft.

L = Length, ft.

P = Pressure, psia $(\bar{p}^2 \text{ in thousands})$

Q = Rate of flow, M^2 cfd @ 14.65 psia and 60° F.

T = Absolute temperature, OR.

Z = Compressability factor, dimensionless.

d = Internal diameter, inches.

f = Coefficient of friction, dimensionless.

If we let

$$\mathbf{F}^2 = 2.6665 \, \mathbf{f} \, \mathbf{Q}^2$$
 (2).

then

$$\frac{2000 \text{ GL}}{55 \text{ f}^{33}} = \int_{P_{2}}^{P_{1}} \frac{P/TZ \text{ d} (P)}{F^{2} + \frac{H}{L} (P/TZ)^{2}}$$
(3).

INCLINED STATIC COLUMN

In a static column of gas Q = 0, consequently $F^2 = 0$, then EQ. (3) may be expressed as follows:

$$\frac{GH}{53.33} = \int_{P}^{P_f} d (P) ----(4)$$

where,

P_c = Shut-in wellhead pressure, psia.

 P_{f} = Formation pressure, psia

Without making certain assumptions with respect to T and Z, EQ. (4) does not lend itself to mathmatical integration; however, an evaluation of the integral over definite limits can be accomplished by numerical means.

In order to evaluate the expression

$$\int_{P_{0}}^{\bar{P}_{n}} \frac{TZ}{P} d (P) ----(5)$$

it is necessary to calculate the value of $\frac{TZ}{P}$ for P_0 and appropriate values of P_i where i = (0, 1, 2, 3 -----n)

If we let,

$$I = \frac{TZ}{P} - \dots$$
 (6)

then

$$P_n$$
 $\frac{TZ}{P}$ d (P) = 1/2 (P₁-P₀) (I₁-I₀) + (P₂-P₁) (I₂ + I₁) +----------+ (P_n-P_{n-1}) (I_n+I_{n-1}) ------(7)

Where the variation of temperature with depth is known, it is necessary to assume appropriate values for the depth; determine the temperature (T) and determine $P_{\mathbf{i}}$ by trial and error so that

$$\frac{2 \text{ GH}_1}{53.33} = \left[(P_1 - P_0) (I_1 + I_0) + (P_2 - P_1) (I_2 + I_1) \right],$$

$$\frac{2 \text{ GII}_{2}}{53.33} = \left[(P_{1}-P_{0}) (I_{1}+I_{0}) + (P_{2}+I_{1}) + (P_{3}-P_{2}) (I_{3}+I_{2}) \right],$$

and

$$\frac{2GH}{53.33} = \left[(P_1 - P_0)(I_1 + I_0) + (P_2 - P_1)(I_2 + I_1) + \dots + (P_n - P_{n-1})(I_n + I_{n-1}) \right]$$

The method is rather tedious if a large number of increments are chosen for (H); however, in many cases the total depth may be considered in one increment without causing appreciable error.

A two increment calculation may also be made with Simpson's Rule being applied to the result obtained to minimize the error in the final result.

An example of each method is shown in the attached tables.

CALCULATION SHEET FOR STATIC COLUMN PRESSURES

COMPANY			····	_LEASE				WELL NO	·		DATE_	
G 0.850	%	28	· <u></u>	% N		77.10° - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cr.	Press.	788	Cr. 1	Temp	393
							I	M	RT IN	L		
Н	$P_{\mathbf{n}}$	$P_{\mathbf{r}}$	T	$\mathtt{T_r}$	Z·	TZ	TZ/P	Pn-Pn-1	$I_{n}-I_{n-1}$	MxN	∑(MxN)	0.0375 x GH
O	4465	5.67	564	1,44	0,821	463.044	-103705					
1000	4619	5.86	571	1.45	0.837	477.927	.103470	154	.207175	31.905	31.905	31.875
2000	4773	6.06	577	1.47	0.856	493.912	.103480	154	.206950	31.870	63.775	63.750
3000	4927	6.25	584	1.49	0.873	509.832	.103477	154	.206957	31,871	95.646	95.625
7,000	5081	6.45	591	1.50	0.889	525.399	.103405	154	.206882	31.860	127.506	127.500
5000	5236	6.64	597	1.52	0.897	535.509	.102274	155	,205679	31.880	159.386	159.375
6000	5391	6,84	604	1.54	0.921	556.284	.103188	155	.205462	31.847	191.233	191.250
7000	5546	7.04	611	1.55	0.935	571.285	.103008	155	.206196	31.960	223.193	223.125
8000	5700	7.23	618	1.57	0.952	588.336	.103217	154	.206225	31.759	254.952	255,000
9000	5855	7.43	624	1.59	0.967	603.408	.103058	155	.206275	31.973	286.925	286.875
10000	6010	7.63	631	1.60	0.980	618,380	.102892	155	.205950	31.922	318.847	318.750
11000	6164	7.82	638	1.62	0.994	634.172	.102883	154	.205775	31.689	350.536	350.625
12000	6319	8.02	644	1.64	1.009	649.796	.102832	155	.205715	31.886	382,422	382.500
13148	6497	8,24	652	1.66	1.024	667.648	.102762	178	.205594	36.596	419.018	419.093
		<u> </u>	I	L	1		<u> </u>	٠			نسسي بسياسيا	

Numerical Evaluation of the Definite Integral $\frac{\text{CASE I}}{\text{P}}$ f $\frac{\text{TZ}}{\text{P}}$ d (P) using 1000 ft. intervals

CALCULATION SHEET FOR STATIC COLUMN PRESSURES

0 4465 5.67 564 1.44 0.821 463.044 .103705	OMPANY			** ********	LEASE				_WELL NO		DA	TE	
H P _n P _r T T _r Z TZ TZ/P P _n -P _{n-1} I _n +I _{n-1} MxN (MxN) $\frac{C}{x}$ O 4465 5.67 564 1.44 0.821 463.044 .103705	0.850	%	co ₂	28	An_	···		Cr.	Press.	788	Cr.Tem	p	393
0 4465 5.67 564 1.44 0.821 463.044 .103705					· · · · · · · · · · · · · · · · · · ·	-	·						114 11-11-11
	Н	Pn	$P_{\mathbf{r}}$	T	T _r	2	TZ	TZ/P	P _n -P _n -1	I_{n+1}	MxN	(MxN)	10.0375 xGH
13148 6494 8.24 652 1.66 1.024 667.648 .102810 2029 .205515 419.019 419.019	0	4465	5.67	564	1.44	0.821	463.044	.103705				0	0
	13148	6494	8.24	652	1,66	1.024	667.648	.102810	2029	.206515	419,019	419.019	419.0
				+									
									 				
												 	

PROPOSED REVISION OF ORDERS R-333-C&D AND R+333-E

The following is a copy of the proposed Special Rules and Regulations governing gas well testing in the San Juan Basin which will be considered at a hearing to be held in the Oil Conservation Commission Conference Room, State Land Office Building, Santa Fe, New Mexico, at 9:00 a.m., November 8, 1962.

These rules would supersede Commission Orders R-333-C and D and R-333-E and would govern gas well testing in the Counties of San Juan, Rio Arriba, McKinley, and Sandoval.

GAS WELL TESTING RULES AND PROCEDURES FOR SAN JUAN BASIN AREA

SECTION A. TYPE OF GAS WELL TESTS REQUIRED:

- I. THE INITIAL DELIVERABILITY AND SHUT-IN PRESSURE TESTS FOR NEWLY COMPLETED GAS WELLS.
 - (A) Immediately upon completion of each gas well in San Juan Basin, a shut-in pressure test of at least 7 days duration shall be made.
 - (B) Within 60 days after a well is connected to a gas transportation facility the well shall be tested in accordance with Section B, Subsection I, Paragraph (A) of this order, and the results of the test reported to the Commission, and to the gas transportation facility to which the well is connected. Failure to file the required test within the time prescribed above will subject the delinquent well to the loss of one day's allowable for each day the test is late.

Any tests accomplished for information purposes prior to pipeline connection shall not be recognized as an official test for the establishment of allowables.

II. ANNUAL DELIVERABILITY AND SHUT-IN PRESSURE TESTS:

Annual Deliverability and Shut-In Pressure Tests of all producing

BEFORE EXAMINER NUTTER
OIL CONSERVATION COMMISSION
OCC EXHIBIT NO. /
CASE NO. 2695

gas wells are required to be made during the period from January 1, through December 31, of each year.

- 1. Annual Deliverability and Shut-In Pressure tests shall not be required during the current annual test period for wells connected after October 31 to a gas transportation facility but such tests may be taken at the option of operator.
- 2. An initial deliverability test accomplished in accordance with annual testing procedures set out in this order shall be used as the annual test of the well for the year in which the test was accomplished.

All Annual Deliverability and Shut-In Pressure Tests required by this order shall be filed with the Commission and with the gas transportation facility to which the wells are connected within thirty (30) days after the end of the month during which the test is completed; provided however, that all tests completed during the period from December 1 through December 31, shall be reported not later than January 10 of the following year. Failure to file the required tests within the time prescribed above may subject the delinquent wells to the loss of one day's allowable for each day the test is late. No extension of time will be allowed after January 10, except after notice and hearing.

III. SCHEDULE OF TESTS:

(A) ANNUAL DELIVERABILITY TESTS

At least 30 days prior to the beginning of the tests the gas transportation facilities receiving gas from wells to be tested shall, in cooperation with respective operators, submit to the Commission's Aztec office a testing schedule for the Annual Deliverability and Shut-in Pressure Tests. Three copies of the schedule shall be furnished to the Commission and one copy shall be furnished to each operator concerned. Such schedule shall indicate the dates of tests, pool, operator, lease, well number and location of each well. The gas transportation facility making the schedule of tests shall be notified immediately by any operator unable to take such tests as scheduled.

When an Initial Deliverability Test accomplished in accordance with annual testing procedures is to be used as an annual test the operator shall notify the Commission, and the gas transportation facility to which the well is connected, in writing during the fourteen day conditioning period for said test.

-3-CASE NO. 2695

In the event a well is not tested in accordance with the test schedule, the well shall be re-scheduled for testing, and the Commission shall be notified of such fact in writing not later than the fourteen day conditioning period for said test.

It shall be the responsibility of each operator to determine that its wells are properly scheduled by the transportation facility to which its wells are connected, in order that said wells can be tested within the testing season.

(B) <u>DELIVERABILITY RETESTS</u>

An operator may, in cooperation with the transportation facility, schedule a well for a deliverability retest by notification to the Commission ten (10) days before the retest is to commence. Such notification shall consist of scheduling the well as required for the annual deliverability test in subsection III, Paragraph A, above. Such retest shall be for good and substantial reason and shall be subject to the approval of the Commission, and conducted in conformance with the Annual Deliverability Test procedures of this order. The Commission may at its discretion require the retesting of any well by notification to the operator to schedule such retest.

The requirements for Initial and Annual Deliverability Tests and the notification and scheduling of such tests which apply to newly completed wells shall also apply to reworked or recompleted wells.

IV. WHO MAY WITNESS TESTS:

Any initial or annual deliverability and shut-in pressure test may be witnessed by any or all of the following: an agent of the Commission, an offset operator, a representative of the pipeline company taking gas from an offset operator, or a representative of a pipeline company taking gas from the well under test.

SECTION B. PROCEDURE FOR TESTS:

I. MESAVERDE FORMATION:

(A) INITIAL DELIVERABILITY AND SHUT-IN PRESSURE TEST

1. Within sixty days (60) after a newly completed well is connected to a gas transportation facility the operator shall accomplish a deliverability and shut-in pressure test in conformance with annual test procedures

of this order and results reported as required in Section A, Subsection: I, or:

- 2. In the event that it is impractical to test a newly completed well in accordance with paragraph 1 above, the operator may accomplish a deliverability and shut-in pressure test in the following manner:
 - (a) WA seven or eight day production chart may be used as a basis for determining the well's deliverability, providing the chart so used is preceded by at least fourteen (14) days continuous production. The well shall produce through either the casing or tubing, but not both, into a pipeline during these periods. The production valve and the choke settings shall not be changed during either the conditioning or flow period with the exception of the first week of the conditioning period when maximum production would over-range the meter chart are or location production aguipment.

(b)

- b) A shut-in pressure of at least seven days duration shall be taken. This shall be the shut-in test required in Section A, Subsection I, Paragraph (A).
- (c) The average daily static meter pressure shall be determined in accordance with Section B, subsection I, Paragraph (B). This pressure shall be used as P_t in calculating P_w for the Deliverability Calculation.
- (d) The daily average rate of flow shall be determined in accordance with Section B, Subsection I, Paragraph (B) of this order.
- (e) The static wellhead working pressure (P_w) shall be determined in accordance with Section B, Subsection I, Paragraph (B) of this order.
- (f) The deliverability of the well shall be determined by using the data determined in Paragraphs (a) through (e) above, in the deliverability formula in accordance with Section B, Subsection I, Paragraph (B) of this order.
- (g) The data and calculations for the above Paragraphs (a) through (f) shall be reported as required in Section A, Subsection I, upon the blue colored Form C-122-A.

(B) THE ANNUAL DELIVERABILITY AND SHUT-IN PRESSURE TESTS

This test shall be taken by producing a well into the pipeline through either the casing or tubing, but not both. The production valve and choke settings shall not be changed during either the conditioning or flow periods except during the first seven (7) days of the conditioning period when maximum production would overrange the meter chart maken the location production equipment. The daily flowing rate shall be determined from an average of seven (7) consecutive producing days, following a minimum conditioning period of fourteen (14) consecutive days production. The first seven (7) days of said conditioning period shall have not more than one (1) interruption, which interruption shall be no longer than 36 continuous hours in duration. The eighth to fourteenth days, inclusive, of said conditioning period shall have no interruptions whatsoever. All such production during the fourteen (14) days conditioning period plus the seven (7) day deliverability test period shall be at static wellhead working pressures not in excess of seventy-five (75) percent of the previous annual seven (7) day shut-in pressure of such well if such previous annual shut-in pressure information is available; otherwise, the seven (7) day initial deliverability shut-in pressure of such well shall be used.

In the event that the existing line pressure does not permit a drawdown as specified above, with the well producing unrestrictedly into the pipeline, the operator shall request an exception to this requirement on the Form C-122-A. The request shall state the reasons for the necessity for the exception.

Instantaneous pressures shall be measured by deadweight gauge during the seven day flow period at the casinghead, tubinghead, and orifice meter and recorded along with the instantaneous meter chart static pressure reading.

When it is necessary to restrict the flow of gas between the wellhead and orifice meter the ratio of the downstream pressure to the upstream pressure shall be determined. When this ratio is 0.57, or less, critical flow conditions shall be considered to exist acrosss the restriction.

When more than one restriction between the wellhead and orifice meter causes the pressures to reflect critical flow between the wellhead and orifice meter the pressures across each of these restrictions shall be measured to determine whether critical flow exists at any restriction. When critical flow does not exist at any restriction the pressures taken to disprove critical flow shall be reported to the Commission on Form C-122-A in the "remarks" section of the form. When critical flow conditions exist, the instantaneous flowing pressures required hereinabove shall be

measured during the last forty-eight (48) hours of the seven (7) day flow period.

When critical flow exists between the wellhead and orifice meter, the measured wellhead flowing pressure of the string through which the well flowed during test shall be used as P_t when calculating the static wellhead working pressure (P_w) using the method established below.

When critical flow does not exist at any restriction, P_t shall be the corrected average static pressure from the meter chart plus friction loss from the wellhead to the orifice meter.

The static wellhead working pressure (P_W) of any well under test shall be the calculated seven (7) day average static tubing pressure if the well is flowing through the casing; on the calculated seven (7) day average static casing pressure if the well is flowing through the tubing. The static wellhead working pressure (P_W) shall be calculated by applying the tables and procedures as set out in New Mexico Oil Conservation Commission Manual entitled "Method of Calculating Pressure Loss Due to Friction in Gas Well Flow Strings" for San Juan Basin.

To obtain the shut-in pressure of a well under test the well shall be shut-in immediately after the seven (7) day deliverability test for the full period of seven (7) consecutive days. Such shut-in pressure shall be measured within the next succeeding twenty-four (24) hours following the seven (7) day shut-in period aforesaid. The seven-day (7) shut-in pressure shall be measured on both the tubing and the casing when communication exists between the two strings. The high of such pressures shall be used as P in the deliverability calculation. When any such shut-in pressure has been determined by the Commission to be abnormally low, or when only one pressure is available, the shut-in pressure to be used shall be determined by one of the following methods:

- 1. A Commission designated value.
- 2. An average shut in pressure of all offset wells completed in the same zone.
- 3. A calculated surface pressure based on a measured bottom hole pressure. Such calculation shall be made in accordance with New Mexico Oil Conservation Commission Back Pressure Manual, Example No. 7.

All wellhead pressures as well as the flowing meter pressure tests which are to be taken during the seven (7) day deliverability test period, as required here nabove, shall be taken with a deadweight gauge. The

deadweight reading, the date and time according to the chart shall be recorded and maintained in the companies records with the test information.

Orifice meter charts shall be changed and so arranged as to reflect upon a single chart the flow data for the gas from each well for the full seven-day deliverability test period; except that no tests shall be voided if satisfactory explanation is made as to the necessity for using test volumes through two chart periods. Corrections shall be made for pressure base, measured flowing temperature, specific gravity, and supercompressibility provided however, that if the specific gravity of the gas from any well under test is not available, an estimated specific gravity may be assumed therefor, based upon that of gas from near-by wells, the specific gravity of which has been actually determined by measurement.

The seven (7) day average flowing meter pressure shall be calculated by taking the average of all consecutive 2-hour flowing meter pressure readings as recorded on the seven (7) day flow period chart (test chart #3). The pressure so calculated shall be used in calculating the wellhead working pressure, determining supercompressibility factors and calculating flow volumes.

The seven (7) day flow period volume shall be calculated from the integrated readings as determined from the flow period orifice meter chart, (chart #3). The volume so calculated shall be divided by the number of testing days on the chart to determine the average daily flow period rate of flow. The flow chart shall have legibly recorded a minimum of seven (7) days and a maximum of eight (8) flowing days to be acceptable for test purposes. The volume used in this calculation shall be corrected to New Mexico Oil Conservation Commission standard conditions.

The average flowing meter pressure for the seven (7) day or eight (8) day flow period and the corrected integrated volume shall be determined by the purchasing company that integrates the flow charts and furnished to the operator or testing agency when such operator or testing agency requests such information.

The daily volume of flow as determined from the flow period chart (Test Chart #3) integrator readings shall be calculated by applying the Basic Orifice meter formula.

$$Q = c' \sqrt{h_W} p_f$$

Where:

Q = Metered volume of flow MCFD @ 15.025, 60° F. and .60 specific gravity.

- C' = The 24-hour basic orifice meter flow factor corrected for flowing temperature, gravity and supercompressibility.
- h = Daily average differential meter pressure from flow period chart.

The basic orifice meter flow factors, flowing temperature factor and specific gravity factor shall be determined from New Mexico Oil Conservation Commission Back Pressure Test Manual.

The daily flow period average corrected flowing meter pressure, psig, shall be used to determine the supercompressibility factor. Supercompressibility Tables may be obtained from the New Mexico Oil Conservation Commission.

When supercompressibility correction is made for a gas containing either nitrogen or carbon dioxide in excess of 2 percent, the supercompressibility factors of such gas shall be determined by the use of Table V of the C.N.G.A. Bulletins TS-402 for pressure 100-500 psig or Table II, TS-461 for pressures in excess of 500 psig.

The use of tables for calculating rates of flow from integrator readings, which do not specifically conform to New Mexico Oil Conservation Commission Back Pressure Test Manual may be approved for determining the daily flow period rates of flow upon a showing that such tables are appropriate and necessary.

The daily average integrated rate of flow for the seven-day flow period shall be corrected for meter error by the multiplication by a correction factor determined by dividing the square root of the chart flowing meter pressure psia into the square root of the deadweight flowing meter pressure psia.

Deliverability pressure, as used herein for the Mesaverde formation, is a defined pressure applied to each well and used in the process of comparing the abilities of wells in this formation to produce at static wellhead working pressures equal in a percentage of the seven (7) day shut-in pressure of the respective individual wells. Such percentage shall be determined periodically by the Commission based on the relationship of the average static wellhead working pressures (P_W) divided by the average (P_C) seven-day shut-in pressure of the pool.

The deliverability of gas at the "deliverability pressure" of any well under test shall be calculated from the test data derived from the tests hereinabove required by use of the following deliverability formula:

$$D = Q = \begin{pmatrix} p^2 & - & p^2 \\ c & - & d \end{pmatrix} n$$

$$\begin{pmatrix} p^2 & - & p^2 \\ c & - & w \end{pmatrix}$$

WHERE:

D = Deliverability at the deliverability pressure, (Pd) Mcfd, (at Standard Condition of 15.025 psia and 60° F).

Q = Daily flow rate in Mcfd, at wellhead pressure (P_w) .

P_C = 7-day shut-in wellhead pressure, psia, determined in accordance with Section B, Subsection I, Paragraph (B).

p = Deliverability pressure; psia, as defined above.

Pw = Average static wellhead working pressure, as determined from 7-day flow period, psia, and calculated from New Mexico Oil Conservation Commission "Pressure Loss Due to Friction" Tables.

n = Average pool slope of back pressure curve (.75) for Mesaverde wells).

The value of the multiplier in the above formula (ratio factor after the application of the pool slope) by which Q is multiplied shall not exceed a limiting value to be determined periodically by the Commission. Such determination shall be made after a study of the test data of the pool obtained during the previous testing season. The limiting value of multiplier may be exceeded only after the operator has conclusively shown to the Commission that the shut-in pressure (P_C) is accurate or that the static wellhead pressure (P_W) cannot be lowered due to existing producing conditions.

Any test hereinabove provided for will be considered unacceptable if the average flow rate for the final 7-day deliverability test is more than 10 percent in excess of any consecutive 7-day average of the preceding two weeks. A deliverability test not meeting this requirement shall be invalid and the well shall be retested.

-10-CASE NO. 2695

All charts relative to/annual/deliverability tests enais section if fied by the words "Test Chart No. 1" (2,3,4, etc.), and any or all charts or photostats thereof shall be made available to the Commission upon its request.

Ash on

ALL FORMATIONS OTHER THAN MESAVERDE

(A) Initial and or annual deliverability and shut-in Pressure Tests:

Except as provided in Special Pool Rules these tests shall be made and reported in accordance with the procedure set out in this order for the Mesaverde formation, provided however, that the exponent for the Pictured Cliffs and Fruitland formations shall be point eight five (0.85).

SECTION C. INFORMATION TEST FOR ALL FORMATIONS

I. TYPE OF TEST:

(A) A one-point back pressure test may be taken on newly completed wells before their connection or reconnection to a gas transportation facility. This test shall not be a required official test but may be taken for information purposes at the option of the operator. When taken, this test must be taken and reported as prescribed below:

(B) ONE-POINT BACK PRESSURE POTENTIAL TEST PROCEDURE

- 1. This test shall be accomplished after a minimum shut-in of seven days. The shut-in pressure shall be measured with a deadweight gauge.
- 2. The flow rate shall be measured by flowing the well 3 hours through a positive choke, which has a 3/4 inch orifice.
- 3. A 2-inch nipple which provides a mechanical means of accurately measuring the pressure and temperature of the flowing gas shall be installed immediately upstream from the positive choke.
- 4. The absolute open flow shall be calculated using the conventional back pressure formula as shown in New Mexico Oil Conservation Commission Back Pressure Test Manual.

/

-11-CASE NO. 2695

- 5. The observed data and flow calculations shall be reported in duplicate on Form C-122, "Multi-Point Back Pressure Test for Gas Wells."
- 6. Non-critical flow exists when the choke pressure is 13 psig of less. When this condition exists the flow rate shall be measured with a pitot tube and nipple as specified in the Commission's manual of "Tables and Procedure for Pitot Tests." The pitot test nipple shall be installed immediately downstream from the 3/4 inch positive choke.
- 7. Any well completed with two-inch nominal size (1.995 inside diameter) or larger shall be tested through the tubing.

IT IS FURTHER ORDERED:

CONTROL OF A TRANSPORT OF STATE OF THE SAME OF THE SAM

SAULIDE A. THE OF HAS WILL PASSE RUCULUDI.

- THE THIRTAL DELIVERACIONAY AND SULF-IN PRESSURE PERCY FOR HEMLY COMPLETED ONE WILLS.
- (A) basediately upon completion of such gas well in San Juan Basin, a shut-in pressure test of at least 7 days duration shall be used.
- (B) Within 50 days after a well in connected to a gas transportation

 Cacility the well shall be tested in accordance with Section B,

 Subsection I, Paragraph (A) of this order, and the results of

 the test reported to the Commission, and to the gas transportation

 facility to which the well is connected. Failure to file the required

 test within the time prescribed above will subject the delinquent well

 to the loss of one day's allowable for each day the test is late.
- (C) Any test accomplished for information purposes prior to pipeline connection shall not be recognized as an official test for the establishment of allowables.

II. AMUAL DULIVERABILITY AND SHUT-IN PRESSURE TESTS:

Annual Deliverability and Shut-in Pressure Tests of all producing gas wells are required to be made during the period from January 1 through December 31 of an year.

- 2. An Initial Deliverability Test accomplished in accordance with Annual testing procedures set out in this order shall be used as an Annual Test for that year.

All Annual Deliverability and Shut-in Pressure Tests required by this order shall be filed with the Commission and with the gas transportation facility to which the wells are connected within thirty (30) days after the end of the month during which the tests are completed; provided however, that all tests completed during the period from December 1 through December 31 shall be reported

not later than January 10 of the following year. Failure to file the required tests within the time prescribed above may subject the delinquent wells to the loss of I days allowable for each day the test is late. No extension of time will be allowed after January 10 except after notice and hearing.

III. SCHEDULE OF TESTS.

(A) ANHUAL DELIVERABILITY TESTS

At least 30 days prior to the beginning of the tests the gas transportation facilities receiving gas from wells to be tested shall, in cooperation with respective operators, submit to the Commission's Aztec office a testing schedule for the Annual Deliverability and Shut-in Pressure Tests. Three copies of the schedule shall be furnished to the Commission and one copy shall be furnished to each operator concerned. Such schedule shall indicate the dates of test, pool, operator, lease, well number and location of each well. The gas transportation facility making the schedule of tests shall be notified immediately by any operator unable to take such tests as scheduled.

When an Initial Deliverability Test accomplished in accordance with annual testing procedures is to be used as an annual test, the operator shall notify the Commission and the gas transportation facility to which the well is connected, in writing prior to or during the fourteen day conditioning period for said test.

In the event a well is not tested in accordance with the test schedule, the well shall be re-scheduled for testing, and the Commission shall be notified of such fact in writing prior to or during the fourteen days conditioning period for said test.

It shall be the responsibility of each operator to determine that its wells are properly scheduled by the transportation facility to which its wells are connected in order to be tested within the testing scason.

(B) DELIVERABILITY RETESTS

in cooperation with the transportation facility,
An operator may #/#/#/#/ schedule a well for deliverability retest
for substantial reason by notification to the Commission ton (10) days before
the retest is to commence. Such notification shall consist of scheduling the

well as required for the amunal deliverability test in subsection III, Paragraph A, above. Such retest chall be subject to the approval of the Commission, and conducted in conformance with the Annual Deliverability Test procedures of this order. She Commission may at its discretion, require the retesting of any well by notification to the operator to schodule suen retest.

The requirements for Initial and Annual Deliverability Tests and the notification and schoduling of such tests which apply to newly completed wells shall also apply to reworked or recompleted wells.

IV. WHO HAY WITHESS TESTS:

Any Initial or Annual Deliverability and Shut-in Pressure test may be vitnessed by any or all of the following: an agent of the Commission, an offset operator, a representative of the pipeline company taking gas from an offset operator, or a representative of a pipeline company taking gas from the well under test.

SECTION B. PROCEDURE FOR TESTS:

I. MESA VERDE FORMATION:

- (A) INITIAL DELIVERABILITY AND SHUT-IN PRESSURE TEST.
- Within sixty (60) days after a newly completed well is connected to a gas transportation facility the operator shall accomplish a deliverability and shut-in pressure test in conformance with annual test procedures of this order and results reported as required in Section A, Subsection I, or:
- 2. In the event that it is impractical to test a newly completed well in accordance with paragraph 1. above, the operator may accomplish a deliverability and shut-in pressure test in the following manner:
 - (a) A seven or eight day production chart may be used as a basis for determining the well's deliverability providing the chart so used is preceded by at least fourteen (14) days continuous production. The well shall produce unrestrictedly through either the casing or tubing, but not both, into a pipeline during these periods. The production valve and choke settings shall not be changed during the conditioning or flow periods. except during the first week of conditioning period when maximum production would over-range the meter chart.

- (c) The average daily static meter pressure shall be determined in accordance with Section B, Subsection I, Paragraph (B).

 This pressure shall be used as Pt in calculating Py for the Deliverability Calculation.
- (d) The daily average rate of flow shall be determined in accordance with Section B, Subsection I, Paragraph (B) of this order.
- (e) The static wellhead working pressure (Pw) shall be determined in accordance with Section B, Subsection I, Paragraph (B) of this order.
- (f) The deliverability of the well shall be determined by using the data determined in Paragraphs (a) through (e) above, in the deliverability formula in accordance with Section B, Subsection I, Paragraph (B) of this order.
 - (g) The data and calculations for the above paragraphs (a) through (f) shall be reported as required in Section A, Subsection I, upon the blue colored Form C-122-A.

(B) THE ANNUAL DELIVERABILITY AND SHUT-IN PRESSURE TESTS. This test a well //pu/// //py// shall be taken by producing the //p//// into the pipeline through either the casing or tubing, but not both. The production

valve and choke settings shall not be changed during either the conditioning except during the first week of the conditioning period when maximum or flow periods. The daily flowing rate shall be determined from an average seven (7) consecutive producing days, following a minimum conditioning period of fourteen (14) consecutive days production. The first seven (7) days of said conditioning period shall have not more than one (1) interruption, which interruption shall be no longer than 36 hours continuous duration. The eighth to fourteenth days, inclusive, of said conditioning period shall have no interruptions whatsoever. All such production during the fourteen (14) days conditioning period plus the seven (7) days deliverability test period shall be at static wellhead working pressures not in excess

production would over-range the meter chart.

of seventy-five (75) per cent of the previous annual seven (7) day shut-in pressure of such well if such previous annual shut-in pressure information is available; otherwise, the seven (7) day initial deliverability shut-in pressure of such well shall be used.

In the event that existing line pressure does not permit a drawdown as

specified above, with the well producing unrestrictedly into the pipeline, the operator shall request an exception to this requirement on the Form C-122-A. The request shall state the reasons for the necessity for the exception. Insert No. 1 The static wellhead working pressure (Pv) of any well under test shall be the calculated seven (7) day average static tubing pressure if the well is flowing through the casing; or the calculated seven (7) day average static casing pressure if the well is flowing through the tubing. The static wellhead working pressure (Pw) shall be calculated by applying the tables and procedures as set out in New Mexico Vil Conservation Commission manual entitled "Method of Calculating Pressure Loss Due to Friction in Gas Well Flow Strings for San Juan Basin."

To obtain the shut-in pressure of a well under test, the well shall be shut-in immediately after the seven (7) day deliverability test for a full period of seven (7) consecutive days. Such shut-in pressure shall be measured within the next succeeding twenty-four (24) hours following the seven (7) day shut-in period aforesaid. The seven day shut-in pressure covided communication exists. shall be measured on both tubing and casing/ The higher of such pressures shall be used as Pc in the deliverability calculation. When any such shut-in pressure has been determined by the Commission to be abnormally low, or whenonly one pressure is available, the shut-in pressure to be used shall be determined by one of the following methods:

- l. A Commission designated value.
- 2. An average shut-in pressure of all offset wells completed in the same zone.
- 3. A calculated surface pressure based on a measured bottom hole pressure. Such calculation shall be made in accordance with New Mexico Oil Conservation Commission Back Pressure Manual.

All wellhead pressures as well as the flowing meter prissure tests which tre

to be taken during the seven (7) day deliverability test period, as required hereinabove, shall be taken with a dead-weight gauge. The dead-weight reading, the date and time according to the chart shall be recorded and maintained in the company's records with the test information.

upon a single chart the flow data for the gas from each well for the full seven day deliverability test period; except that no tests shall be voided if satisfactory explanation is made as to the necessity for using test volumes through two chart periods. Corrections shall be made for pressure base, measured flowing temperature, specific gravity, and supercompressibility provided however, that if the specific gravity of the gas from any well under test is not available, an estimated specific gravity may be assumed therefore, based upon that of gas from near-by wells, the specific gravity of which

has been actually determined by measurement.

The seven (7) day average flowing meter pressure shall be calculated by taking the average of all consecutive 2-hour flowing meter pressure readings as recorded on the seven (2) day flow period chart (test chart No. 3.) The pressure so calculated shall be used in calculating the wellhead working pressure, determining supercompressibility factors and calculating flow volumes.

The seven (7) day flow period volume shall be calculated from the integrated readings as determined from the flow period orifice meter chart, (Chart No. 3.) The volume so calculated shall be divided by the number of testing days on the chart to determine the average daily flow period rate of flow. The flow chart shall have legibly recorded a minimum of seven (7) days and a maximum of eight (8) flowing days to be acceptable for test purposes. The volume used in this calculation shall be corrected to New Mexico Oil Conservation Commission Standard conditions.

The average flowing meter pressure for the seven (7) day or eight (8) day flow period and the corrected integrated volume shall be determined by the purchasing company that integrates the flow charts and furnished to the operator or testing agency when such operator or testing agency requests such information.

The daily volume of flow as determined from the flow period chart (Test Chart No. 3) integrator readings shall be calculated by applying the Basic Orifice meter formula.

Where:

- Metered volume of flow MCFD at 15.025, 60° F. and .60 specific gravity.
- C' The 24-hour basic orifice meter flow factor corrected for flowing temperature, gravity and supercompressibility.
- h_w * Daily average differential meter pressure from flow period chart.
- Daily average flowing meter pressure form flow period chart.

The basic orifice meter flow factors, flowing temperature factor and specific gravity factor shall be determined from New Mexico Oil Conservation Commission Pack Pressure Test Manual.

The daily flow period average corrected flowing meter pressure, pair, shall be used to determine the supercompressibility factor.

Supercompressibility Tables may be obtained from the New Mexico Oil Conservation Commission.

When supercompressibility correction is made for a gas containing either nitrogen or carbon dioxide in excess of 2 per cent, the supercompressibility factors of such gas shall be determined by the use of Table C.M.S.A.

V of the above-mentioned TS-hO2 for pressure 100-500 psig or Table II,

TS-h61 for pressures in excess of 500 psig.

The use of tables for calculating rates of flow from integrator readings, which do not specifically conform to New Mexico Oil Conservation Commission Pack Pressure Test Manual, may be approved for determining the daily flow period rates of flow upon a showing that such tables are appropriate and necessary.

The daily average integrated rate of flow for the seven-day flow period shall be corrected for meter error by the multiplication by a correction factor determined by dividing the square root of the chart flowing meter pressure psia into the square root of the dead-weight flowing meter pressure psia.

Deliverability pressure, as used herein for Mesa Verde production, is a defined pressure applied to each well and used in the process of comparing the abilities of wells in this formation to produce at static wellhead working pressures equal to a percentage of the seven (7) day shut-in pressure of the respective individual wells. Such percentage shall be determined periodically by the Commission based on the relationship of the average static wellhead working pressure $(P_{\rm W})$ divided by the average seven-day shut-in pressure $(P_{\rm C})$ of the pool.

The deliverability of gas at the "deliverability pressure" of any well under test shall be calculated from the test data derived from the tests hereinabove required by use of the following deliverability formula:

$$D = C \qquad (P^2_c - P^2_d)$$

WHERE:

- D * Deliverability at the deliverability pressure,

 (Pd) MCF/D, (at Standard Condition of 15.025

 psis and 60°F.)
- Q = Daily flow rate in MCF/D, at wellhead pressure (P_W) .
- P_c = 7-day shut-in wellhead pressure, psia, determined in accordance with Section B, Subsection I, Paragraph (B).
- Po a Deliverability pressure, psia, as defined above.
- P_W = Average static wellhead working pressure, as determined from 7-day flow period, psia, and calculated from New Mexico Oil Conservation

 Commission Pressure Loss Due to Friction Tables for San Juan Pasin.
- n = Average pool slope of back pressure curve (.75)

 for Mesa Verde wells.)

The value of the multiplier (ratio factor after the application of the pool slope) by which Q is multiplied shall not exceed a limiting value to be determined periodically by the Commission. Such determination shall be made after a study of the test data of the pool obtained during the previous testing season. The limiting value of the multiplier may be exceeded only after the operator has conclusively shown to the Commission that the shut-in pressure (P_C) is accurate or that the static wellhead pressure (P_W) cannot be lowered due to existing producing conditions.

Any test hereinabove provided for will be considered unacceptable more that 10% if the average flow rate for the final 7 day deliverability test is in excess of any consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank many consecutive 7-day average of the preceding two weeks . Lank m

requirement shall be retested, invalid and the well shall be retested.

initial or

All charts relative to annual deliverability tests abaddocomponentes and thereof shall be made available to the Commission upon its request.

II. ALL FORMATIONS OTHER THAN MESA VERDE

(a) Initial and/or Annual Deliverability and Shut-In
Pressure Tests:

Except as provided in Special Pool Rules these tests shall be made and reported in accordance with the procedure set out in this order for the Mesa Verde formation, provided however, that the exponent "n" for the Pictured Cliffs, Fruitland and Farmington formations shall be zero point eight five (0.85.)

SECTION C. INFORMATION TEST FOR ALL FORMATIONS.

I. TYPE OF TEST:

(A) A one-point back pressure test may be taken on newly completed wells before their connection or reconnection to a gas transportation facility. This test shall not be a required official test but may be taken for information purposes at the option of the operator. When taken, this test must be taken and reported as prescribed below:

(B) ONE-POINT BACK PRESSURE POTENTIAL TEST PROCEDURE.

- This test shall be accomplished after a minimum shut-in of seven days. The shut-in pressure shall be measured with a dead weight guage.
- 2. The flow rate shall be measured by flowing the well 3 hours through a positive choke, which has a 3/4 inch orifice.
- 3. A 2-inch nipple which provides a mechanical means of accurately measuring the pressure and temperature of the flowing gas shall be installed immediately upstream from the positive choke.

- In. The absolute open flow shall be calculated using the conventional back pressure formula as shown in New MexicoOil Conservation Commission Back Pressure Test Manual.
- 5. The observed data and flow calculations shall be reported in duplicate on Form C-122, "Multi-Point Back Pressure Test for Gas Wells."
- 7. Any well completed with two-inch nominal size (1.995 inside diameter) or larger shall be tested through the tubing. Any well-completed-with-attributes-markles attributes-doctor-doct

IT IS FURTHER ORDERED:

All forms heretofore mentioned, are hereby adopted for the use in the San Juan Basin Area in open form subject to such modification as experience may indicate.

All testing agencies whether individuals, companies, pipeline companies or operators shall maintain a log of all tests accomplished by them including all field test data.

DONE at Santa Fe, New Mexico, on the day and year hereinabove designated.

STATE OF HEW MEXICO

OIL CONSERVATION COMMISSION

DENNIS ROSE

CASE RECORD FILF

KEVISION Order-R-333-C, D&E This File has no Papers inside