

A subsidiary of Marathon Petroleum Corporation I-40 Exit 39 Jamestown, NM 87347

December 15, 2020

Mr. Kevin Pierard, Chief New Mexico Environmental Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505

RE: Response to Disapproval – Interim Measures Report Hydrocarbon Seep Area Response to Comment 12 Marathon Petroleum Company LP, Gallup Refinery (dba Western Refining Southwest, Inc.) EPA ID# NMD000333211 HWB-WRG-15-002

Dear Mr. Pierard:

Please find enclosed the discussed report from Comment 12 in the *Response to Disapproval, Interim Measures Report, Hydrocarbon Seep Area* regarding the anaerobic dechlorination pathway. If you have any questions or comments regarding the information contained herein, please do not hesitate to contact John Moore at 505-879-7643.

Certification

I certify under penalty of law that this document and all attachments were prepared under my direction of supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely, Marathon Petroleum Company LP, Gallup Refinery

Robert S. Hanks

Robert S. Hanks Refinery General Manager

Enclosure

cc: D. Cobrain, NMED HWB

A subsidiary of Marathon Petroleum Corporation

I-40 Exit 39 Jamestown, NM 87347

C. Chavez, OCD G. McCartney, Marathon Petroleum Company J. Moore, Marathon Gallup Refinery H. Jones, Trihydro Corporation

A subsidiary of Marathon Petroleum Corporation

I-40 Exit 39 Jamestown, NM 87347

December 15, 2020

Mr. Kevin Pierard, Chief New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505

RE: Natural Attenuation Assessment and Proposed Workplan for the Hydrocarbon Seep Area Marathon Petroleum Company, LP, Gallup Refinery (dba Western Refining Southwest, Inc.) EPA ID# NMD000333211

Dear Mr. Pierard,

Marathon Petroleum Company LP, Gallup Refinery (MPC) is submitting this letter in response to a request from the New Mexico Environment Department (NMED) Hazardous Waste Bureau for an assessment of natural attenuation in the hydrocarbon seep area at the Gallup refinery. This request was contained in a letter dated February 1, 2018, entitled *Disapproval, Interim Measures Report Hydrocarbon Seep Area, Western Refining Southwest Inc., Gallup Refinery, EPA ID*# *NMD000333211, HWB-WRG-15-002.* The area identified includes the Marketing Tank Farm area in the southwest portion of the refinery (Figure 1).

More specifically, the request is presented in NMED Comment 12, #2 - #5; relevant portions of which are excerpted as follows:

2. The field analytical parameters such as dissolved oxygen concentration and oxidationreduction potential (ORP) must be evaluated and presented to support the argument that reducing conditions and anaerobic degradation are occurring. Also, the ratio of total and dissolved iron concentrations must be examined to support the argument...

3. ...Revise the Report to propose submittal of a work plan to investigate the occurrence of anaerobic dichlorination.

4. The accumulation of vinyl chloride may be occurring based on the site's groundwater conditions. In the plan referenced in Item 3 above, propose to monitor and evaluate the groundwater for analytical parameters pertinent to the accumulation of degradation of vinyl chloride (e.g., concentrations of daughter products, dissolved oxygen, chloride, redox potential and pH)...

A subsidiary of Marathon Petroleum Corporation

I-40 Exit 39 Jamestown, NM 87347

5. The Permittee must evaluate for the occurrence of hydrocarbon and MTBE degradation (e.g. concentrations of the electron acceptors, degradation byproducts, redox potential, and pH). Include all findings and interpretation of the existing data in the revised Report.

Pursuant to the above request, this letter presents an evaluation of natural attenuation using existing monitoring well analytical data and proposes a workplan consisting of a similar evaluation of natural attenuation for future analyses, which would be included in annual reports, pending NMED approval.

Background

The Hydrocarbon Seep area is located in the western portion of the refinery to the southwest of the refinery tank farm. Historically, the Hydrocarbon Seep Area has been impacted by releases of petroleum hydrocarbons associated with refinery operation. Hydrocarbon seeps were discovered in 2013; subsequent Interim Measures activities identified the source, implemented source control measures, and characterized groundwater impacts.

Chlorinated hydrocarbons that have been detected above standards as part of routine quarterly sampling in the area include trichloroethene (TCE), 1,1-dichloroethane (1,1-DCA), and 1,2-dichloroethane (1,2-DCA), and vinyl chloride. Methyl tert-butyl alcohol (MTBE) has also been detected above standards. The TCE and 1,1-DCA may be associated with past degreasing operations at the refinery machine shop; 1,2-DCA is a lead scavenger compound that historically have been used in hydrocarbon fuels. MTBE was used as a fuel oxygenator. Figure 2 presents the most recent quarterly groundwater sampling results (3rd quarter 2020) for these constituents and benzene from the Hydrocarbon Seep Area, including detections of separate-phase hydrocarbon (SPH), also referred to as light non-aqueous phase liquid (LNAPL). Table 1 presents recent groundwater analytical data for monitoring wells in the Hydrocarbon Seep Area and nearby Marketing Tank Farm (MKTF) monitoring wells

Hydrogeology

Surface Conditions

Site topographic features include high ground in the southeast gradually decreasing to a lowland fluvial plain to the northwest. Elevations on the refinery property range from 7,040 feet to 6,860 feet. Surface soils within most of the area of investigation are primarily Rehobeth silty clay loam. Rehobeth soil properties include alkaline pH (ranging from 8 to 9 standard units) and salinity (naturally occurring and typically measuring up to approximately 8 mmhos/cm) (Marathon Petroleum Company 2019).

Local surface water features include the refinery evaporation ponds and a number of small ponds (one cattle water pond and two small unnamed spring fed ponds). The site is located in the

A subsidiary of Marathon Petroleum Corporation

I-40 Exit 39 Jamestown, NM 87347

Puerco River Valley, north of the Zuni Uplift with overland flows directed northward to the tributaries of the Puerco River. The Puerco River continues to the west to the confluence with the Little Colorado River. The South Fork of the Puerco River is intermittent and retains flow only during and immediately following precipitation events (Marathon Petroleum Company 2019).

Subsurface Conditions

The shallow subsurface soils consist of fluvial and alluvial deposits comprised of clay and silt with minor inter-bedded sand layers. Very low permeability bedrock (e.g., claystones and siltstones) underlie the surface soils and effectively form an aquitard. The Chinle Group, which is Upper Triassic, crops out over a large area on the southern margin of the San Juan Basin. The uppermost recognized local Formation is the Petrified Forest Formation and the Sonsela Sandstone Bed is the uppermost recognized regional aquifer (Marathon Petroleum Company 2019). Aquifer test of the Sonsela Bed northeast of Prewitt indicated a transmissivity of greater than 100 ft²/day (Stone and others, 1983). The Sonsela Sandstone's highest point occurs southeast of the site and slopes downward to the northwest as it passes under the refinery. The Sonsela Sandstone forms a water-bearing reservoir with artesian conditions throughout the central and western portions of the refinery property.

The diverse properties and complex, irregular stratigraphy of the surface soils across the site cause a wide range of hydraulic conductivity ranging from less than 10^{-2} cm/sec for gravel like sands immediately overlying the Petrified Forest Formation to 10^{-8} cm/sec in the clay soils located near the surface (Western, 2009). Generally, shallow groundwater at the refinery follows the upper contact of the Petrified Forest Formation with prevailing flow from the southeast to the northwest.

In the Hydrocarbon Seep Area, three-dimensional geological modeling using available boring log information strongly suggests that the swale in the area of the hydrocarbon seep area is underlain by a corresponding swale in the shallow alluvium that likely influences shallow groundwater flow in this area. This is shown in Figure 3.

Natural Attenuation

Dissolved organic compounds can be degraded naturally in groundwater, with the rate dependent on the redox state of the groundwater and the presence of suitable electron receptors for microbial degradation (NJDEP 2012). Biodegradation under aerobic (oxidizing) conditions is generally faster than under anaerobic (reducing) conditions, but degradation occurs under both redox regimes.

A subsidiary of Marathon Petroleum Corporation I-40 Exit 39

Jamestown, NM 87347

In general, reducing conditions are present in the subsurface where LNAPL and dissolved petroleum hydrocarbons are present in groundwater. This has been established by numerous studies (ITRC 2009, Lawrence 2006, and NJDEP 2012), and is generally recognized and accepted. This redox condition is caused by depletion of oxygen through aerobic biodegradation of the dissolved petroleum. A generalized diagram of typical hydrocarbon groundwater plume redox conditions is shown Figure 4. When a release of hydrocarbons occurs into groundwater, existing microbes catalyze reactions between the electron-donating carbon and the electron acceptors, in a sequence that is most favorable to the microbes (ITRC 2010). In general, the sequence of electron acceptor use is as follows:

 $O_2 > NO_3^- > Mn(III)$ or $Mn(IV) > Fe(III) > SO_4^{-2}$

The presence of the oxidized inorganic compounds shown above indicates the potential for biodegradation. Moreover, the presence of the reduced forms of these species generally indicates active biodegradation.

The strongest reducing conditions are generally present in the source area of the hydrocarbon plume where LNAPL is present. More oxidizing (less reducing) conditions are generally present in the downgradient direction of the dissolved hydrocarbon plume, as shown in Figure 4. Figure 4 also shows the areas of the plume where redox conditions are sufficient to allow reduction of the indicated species.

Chlorinated organic compounds generally require anaerobic conditions for biodegradation. Figure 5 presents a list of chlorinated organic compounds and the likelihood of biodegradation through various degradation mechanisms/pathways. As shown in this figure, the primary mechanisms for biodegradation is reductive dechlorination and dichlorination.

More recent studies of MTBE aerobic biodegradation indicate that it is less recalcitrant than previously thought (Lawrence 2006). Anaerobic biodegradation proceeds more slowly under reducing conditions ranging from methanogenic to nitrate-reducing.

Evaluation of Current MNA Conditions

Table 1 presents recent groundwater analytical data from MKTF wells, including key organic and inorganic analytes, and pH. Table 2 presents oxidation reduction potential (ORP) field data from quarterly sampling from quarters 1, 3 and 4 in 2016 (Western 2017). The second quarter data were not available. Field measurement of ORP can be an indicator of the redox regime of groundwater, with the method of field measurement important to the absolute value of the results. In general, for more accurate measurements of ORP, a groundwater sampling pump and a flow-through cell for well purging and measuring ORP is preferred because this configuration

A subsidiary of Marathon Petroleum Corporation

I-40 Exit 39 Jamestown, NM 87347

eliminates contact with air. For the ORP data presented in Table 2, measurements were conducted using bailed water from a well, which was then placed into a container for ORP measurement. This procedure introduces oxygen, and actual in situ groundwater conditions would be expected to have a lower, more reducing ORP. Nevertheless, the data in Table 1 can be evaluated in a relative sense for trends.

Current conditions and available geochemical data provide evidence that reducing conditions are present in the Hydrocarbon Seep Area. These reducing conditions create a geochemical environment for the anaerobic biodegradation of petroleum hydrocarbons and may also be conducive to the anaerobic biodegradation of chlorinated hydrocarbons TCE, 1,1-DCA and 1,2-DCA.

Evidence for conditions favorable for anaerobic biodegradation of chlorinated compounds includes:

- Elevated benzene concentrations, indicating that a high dissolved hydrocarbon load is present and anaerobic conditions are likely. LNAPL is also present in several areas (Figure 1) which represents a continuing source for dissolved phase hydrocarbons.
- Detection of vinyl chloride, which is typically a byproduct of TCE degradation.
- Presence of dissolved iron and total iron, indicating likely presence of ferrous iron in response to reducing conditions and anaerobic biodegradation
- Depleted sulfate in wells with elevated benzene (e.g. MKTF-10, MKTF-16, MKTF-17), indicating reducing condition and sulfate reduction to sulfite as part of anaerobic biodegradation.
- Presence of manganese, indicating availability as an electron receptor for anaerobic biodegradation.
- Occasional detection of nitrite above detection limits, indicating reducing conditions and probable use of nitrate as an electron receptor for anaerobic biodegradation.
- Given the evidence for reducing conditions presented above, anaerobic degradation of MTBE is more likely than aerobic degradation
- pH conditions appear favorable for biodegradation

A subsidiary of Marathon Petroleum Corporation

I-40 Exit 39 Jamestown, NM 87347

• ORP measurements indicate reducing conditions are present, particularly for MKTF wells located in the paved areas where LNAPL (separate phase hydrocarbon [SPH]) is present (see Figure 1). Wells located to the west in unpaved areas without LNAPL and elevated dissolved hydrocarbon such as benzene are generally oxidizing.

Chloride concentrations are generally elevated in the MKTF wells, as shown in Table 1, but do not correlate with areas of elevated chlorinated organic compounds. In the absence of high chloride from other sources, elevated chloride can be used as an indicator of the biodegradation of chlorinated compounds (NJDEP 2012).

To date, insufficient monitoring well analytical data is available to perform a statistical analysis of concentration trends. As more date become available, contaminant trend plots can be developed and statistical analysis can be performed.

Proposed Workplan for Natural Attenuation Evaluation for Future Annual Reports

The proposed workplan to evaluate natural attenuation is presented in this section for NMED review and approval. MPC proposes that a natural attenuation evaluation section be completed on an annual basis using the existing quarterly sampling analyte list as shown in Table 3 as lines of evidence. These lines of evidence will include:

- Benzene, MTBE, 1,1-DCA, 1,2-DCA, TCE, and vinyl chloride analytical results
- Inorganic analyses including dissolved/total analyses for iron and manganese, nitrate/nitrate, pH and sulfate to determine their availability as terminal electron receptors and the redox state. A table of the results will be prepared.
- Field measurements conducted during quarterly sampling and well purging (pH, ORP and dissolved oxygen)
- As more data become available, and trends become evident, a Mann-Kendall statistical analysis will be performed to quantify contaminant concentration trends.

Tables will be added to future annual reports with these analytes, and a new section will be added to present these key data and to summarize natural attenuation progress, including trends in contaminant concentrations and key MNA indicators. MPC expects to initiate this the year following NMED approval.

A subsidiary of Marathon Petroleum Corporation

I-40 Exit 39 Jamestown, NM 87347

References

- ITRC. 2009. Evaluating Natural Source Zone Depletion at Sites with LNAPL Prepared by The Interstate Technology & Regulatory Council LNAPLs Team, April 2009.
- ITRC. 2010. A Decision Framework for Applying Monitored Natural Attenuation Processes to Metals and Radionuclides in Groundwater Prepared by The Interstate Technology & Regulatory Council LNAPLs Team, December 2010.
- Lawrence, S.J.. 2006. Description, properties, and degradation of selected volatile organic compounds detected in ground water — A Review of Selected Literature: Atlanta, Georgia, U. S. Geological Survey, Open-File Report 2006-1338, 62 p., a Web-only publication at <u>http://pubs.usgs.gov/ofr/2006/1338/</u>.
- Marathon Petroleum Company. 2019. Investigation Work Plan, North Drainage Ditch Area. April 2019, Revised September 2019.
- NJDEP. 2012. Monitored Natural Attenuation Technical Guidance New Jersey Department of Environmental Protection Site Remediation Program Version: 1.0, March 1, 2012.
- Stone, W.J., Lyford, F.P., Frenzel, P.F., Mizel, N.H., and Padgett, E.T.. 1983. Hydrogeology and Water Resources of San Juan Basin, New Mexico. Hydrogeologic Report 6, New Mexico Bureau of Mines and Mineral Resources, p. 70.
- Truex, M. J., C, J, Newell, B. B. Looney, K.M. Vangelas. 2007. Scenarios Evaluation Tool for Chlorinated Solvent MNA. A Research Study of the Monitored Natural Attenuation/Enhanced Attenuation for Chlorinated Solvents Technology Alternative Project. Savannah River National Laboratory. WSRC-STI-2006-00096, Rev.2. February 2007. <u>http://www.osti.gov/bridge/purl.cover.jsp?purl=/899964-cuFtbW/</u>
- Western. 2017. Annual Groundwater Monitoring Report Gallup Refinery 2016 Western Refining, Gallup New Mexico, August 31, 2017.

Received by OCD: 3/2/2021 1:30:21 PM

Tables

			Trichloro-	1,1-Dichloro-	1,2- Dichloro-						Manganese,	Manganese,	Nitrogen,		
Location ID	Date Sampled	Benzene Ç * ĐŠD	ethene Ç*∰D	ethane Ç*ĐSD	ethane Ç*BSD	MTBE Ç≛BŠD	Vinyl Chloride Ç * ĐŠD	Chloride (mg/L)	Iron, Dissolved (mg/L)	Iron, Total (mg/L)	Dissolved (mg/L)	Total (mg/L)	Nitrate Ç*ĐSD	Nitrogen, Nitrite Ç * ∰D	Sulfate (mg/L)
MKTF-02	03/28/19	<u> </u>		<u>_</u>	<u> </u>	<u> </u>	<u>Ş & D</u> 13	1400	0.42	<u> </u>	1.6	1.5	<u> </u>	<u></u>	52
	05/06/19	950	ND(20)	19	6.4	49	19	1600	3	3.9	1.8	1.9	ND(500)	ND(500)	61
	08/23/19	990	ND(20)	27	12	51	28	2000	2.4	9.1	2	2.3	ND(500)	ND(2000)	150
	11/19/19	360	ND(5)	15	4.7	23	17		2. .	5.7		2.9			
	02/25/20	780	ND(5)	6.5	2	9.1	5	1300	0.34	2	3	3	ND(500)	ND(500)	160
	09/15/20														
	09/21/20	4000	ND(1)	21	ND(1)	61	27	1000	0.22	0.99	1.9	2	ND(500)	ND(500)	64
MKTF-04	05/13/19	770	0.87	5.4	1.6	1700	ND(5)	260	4.5	8	1.6	1.6	ND(500)	ND(500)	5.6
	08/21/19	530	0.83	13	1.5	1600	ND(1)	220	1.5	5.9	2	2.2	120	ND(500)	16
	10/30/19	930	ND(5)	5.5	ND(5)	1800	ND(5)	210	5.4	7.6	1.5	1.6	ND(500)	ND(500)	2.9
	03/03/20	800	ND(5)	9.1	2.3	2100	ND(5)	220	1.4	6	1.8	1.9	ND(500)	ND(500)	9.3
MKTF-09	05/13/19	3200	ND(10)	6.8	ND(10)	310	ND(10)	250	3.2	3.8	4.6	4.8	ND(500)	ND(500)	8.1
WIX11-03	08/28/19	3500	ND(20)	14	ND(20)	420	ND(20)	230	3.8	4.5	4.4	4.5	ND(500)	ND(500)	12
	11/18/19	3700	ND(20)	14	ND(10)	420	ND(20)	230	2.4	3.4	4.4	4.3	ND(500)	ND(500)	25
	03/03/20	3300	ND(20)	19	ND(20)	530	ND(10)	290	1.4	2.7	3.9	4.5	ND(500)	ND(500)	43
MKTF-10	05/13/19	5500	ND(50)	27	ND(50)	24	23	460	8.4	8.9	3.4		ND(500)	ND(500)	43 ND(2.5)
	08/22/19	4600	ND(30)	37	ND(10)		10	400 960	7.9	11	5.4 5.4	5.6	100	ND(500)	ND(2.5) ND(2.5)
						19 17			14	15					
	10/30/19	5500	ND(10)	31	ND(10)	17	10	1000			6.2	6.3	ND(500)	ND(500)	ND(2.5)
MKTF-11	03/03/20	4800	ND(10)	47	ND(10)	9.4	8.9	970 760	7.2	12	5.4	5.5	ND(500)	ND(500)	ND(2.5)
	05/13/19	6100	ND(50)	55	ND(50)	46	44	760	3.1	5	2.4	2.6	ND(500)	ND(500)	6.3
	08/21/19	9100	ND(10)	39	ND(10)	28	28	620	3.4	3.9	2	1.9	ND(500)	570	1.8
	10/30/19	13000	ND(20)	27	ND(20)	41	23	750	3.6	4.9	2.8	2.5	ND(500)	ND(500)	4.4
	03/03/20	6000	ND(20)	35	ND(20)	59	27	1500	5.2	8.5	4.8	4.6	ND(500)	ND(500)	19
MKTF-13	03/26/19	3500	ND(20)	ND(20)	ND(20)	440	ND(20)	390	24	25	5.1	4.7			0.75
	05/09/19	3200	ND(20)	ND(20)	ND(20)	480	ND(20)	400	25	35	5.3	6.1	ND(500)	ND(500)	1.1
	10/29/19	4700	ND(20)	ND(20)	ND(20)	330	ND(20)	290	15	20	4.6	4.7	ND(500)	ND(500)	0.59
MKTF-15	05/13/19	18000	ND(50)	25	ND(50)	68	26	3900	26	31	8.2	8.4	ND(500)	ND(2000)	0.44
MKTF-16	02/20/19	21000	ND(100)	53	ND(100)	610	ND(100)	590	2	5.8	1.7	1.7	ND(500)	ND(500)	0.41
	05/14/19	14000	ND(100)	ND(100)	ND(100)	620	ND(100)	960	5.8	5.8	2.6	3	ND(500)	ND(500)	0.68
	08/22/19	9800	ND(100)	64	ND(100)	550	ND(100)								
	08/30/19							1800	21	24	7.1	6.8	ND(500)	ND(2000)	ND(2.5)
	10/30/19	15000	ND(100)	69	ND(100)	620	ND(100)	1700	15	17	5.5	4.9	ND(500)	ND(500)	ND(2.5)
MKTF-17	05/09/19	2200	ND(5)	ND(5)	ND(5)	4300	ND(5)	100	0.27	5.4	3	3.1	ND(500)	ND(500)	15
	08/20/19	870	ND(5)	ND(5)	ND(5)	4300	ND(5)	140	0.37	3	2.8	3	ND(500)	ND(500)	14
	10/29/19	12000	ND(5)	ND(5)	ND(5)	2500	ND(5)	240	0.45	4.8	3.5	3.4	ND(500)	ND(500)	6.2
MKTF-18	05/16/19	140	ND(2)	ND(2)	ND(2)	130	ND(2)	190	2	3.8	2.1	2.2	ND(500)	ND(500)	ND(2.5)
	10/29/19	160	ND(2)	ND(2)	ND(2)	88	ND(2)	220	0.65	3.4	2.1	2	ND(500)	ND(500)	0.57
	02/06/20	190	ND(2)	0.51	ND(2)	110	ND(2)	200	2.7	9.8	2.9	3.7	ND(500)	ND(500)	ND(2.5)
MKTF-19	05/09/19	1800	ND(20)	ND(20)	ND(20)	7800	ND(20)	140	11	15	2.4	2.7	ND(500)	ND(500)	0.31
	08/19/19	1400	ND(20)	ND(20)	ND(20)	8300	ND(20)	140	11	19	2.3	2.7	ND(500)	ND(500)	ND(2.5)
	10/29/19	1600	ND(20)	ND(20)	ND(20)	7900	ND(20)	130	10	15	2.4	2.4	ND(500)	ND(500)	0.5
MKTF-20	02/20/19	2100	ND(10)	ND(10)	ND(10)	220	ND(10)	760	47	58	5.5	5.5	ND(500)	ND(500)	11
	05/14/19	2300	ND(10)	ND(10)	ND(10)	32	ND(10)	3400	22	25	9	8.5	ND(500)	ND(2000)	36
	08/21/19	4800	ND(10)	ND(10)	ND(10)	35	ND(10)	3300	20	19	8.1	7.5	ND(500)	3300	2.8
	11/05/19	2400	ND(10)	ND(10)	ND(10)	170	ND(10)	140	2.2	4.3	2.1	2	ND(500)	ND(500)	1.7
	02/05/20	620	ND(10)	ND(10)	ND(5)	5.7	ND(10)								
MKTF-21	02/20/19	2000	ND(20)	ND(20)	ND(20)	15	ND(20)	4600	57	63	14	15	ND(500)	1600	880
	05/14/19	2400	ND(20)	ND(20)	ND(20)	290	ND(20)	540	33	42	5.6	5.7	ND(500)	ND(500)	6.9
USEPA RSL T	Tap Water HQ 0.1	0.46	0.28	2.8	0.17	14	0.019	NA	NA	1.4	NA	0.043	3,200	200	NA

Notes: MNA - monitored natural attenuation ug/L - micrograms per liter mg/L - milligrams per liter Std Units - Standard Units

USEPA RSL Tap Water 0.1 - United States Environmental Protection Agency Regional Screening Levels for Tap Water, Hazard Quotient 0.1, May 2020 pH results only shown for 3rd Quarter 2020 sampling event

ProjectDirect: Analytical MNA Analytical - EDB 1,2-DCA PK:8111 RK:94087

Location ID	Date Sampled	pH, Field (Std Units)
MKTF-02	03/28/19	
	05/06/19	
	08/23/19	
	11/19/19	
	02/25/20	
	09/15/20	6.72
	09/21/20	
MKTF-04	05/13/19	
	08/21/19	
	10/30/19	
	03/03/20	
MKTF-09	05/13/19	
	08/28/19	
	11/18/19	
	03/03/20	
MKTF-10	05/13/19	
	08/22/19	
	10/30/19	
	03/03/20	
MKTF-11	05/13/19	
	08/21/19	
	10/30/19	
	03/03/20	
MKTF-13	03/26/19	
	05/09/19	
	10/29/19	
MKTF-15	05/13/19	
MKTF-16	02/20/19	
	05/14/19	
	08/22/19	
	08/30/19	
	10/30/19	
MKTF-17	05/09/19	
	08/20/19	
	10/29/19	
MKTF-18	05/16/19	
	10/29/19	
	02/06/20	
MKTF-19	05/09/19	
	08/19/19	
	10/29/19	
MKTF-20	02/20/19	
	05/14/19	
	08/21/19	
	11/05/19	
	02/05/20	
MKTF-21	02/20/19	
	05/14/19	

USEPA RSL Tap Water HQ 0.1 NA

Notes: MNA - monitored natural attenuation ug/L - micrograms per liter mg/L - milligrams per liter Std Units - Standard Units

USEPA RSL Tap Water 0.1 - United States Environmental Protection Agency Regional Screening Levels for Tap Water, Hazard Quotient 0.1, May 2020 pH results only shown for 3rd Quarter 2020 sampling event

ProjectDirect: Analytical MNA Analytical - EDB 1,2-DCA PK:8111 RK:94087

Page 12 of 28

Location ID	Date Sampled	Benzene Ç*⊞ŠD	Trichloro- ethene Ç* BD	1,1-Dichloro- ethane Ç*∰D	1,2- Dichloro- ethane Ç*tSD	MTBE Ç*ĐŠD	Vinyl Chloride Ç*∰D	Chloride (mg/L)	Iron, Dissolved (mg/L)	Iron, Total (mg/L)	Manganese, Dissolved (mg/L)	Manganese, Total (mg/L)	Nitrogen, Nitrate Ç* BSD	Nitrogen, Nitrite Ç * tŠD	Sulfate (mg/L)
MKTF-21	08/22/19	5400	ND(20)	ND(20)	ND(20)	290	ND(20)	230	16	21	3.4	3.3	ND(500)	ND(500)	6.2
	11/05/19	5600	ND(20)	ND(20)	ND(20)	29	ND(20)	2300	8.3	9	6.2	5.8	ND(500)	ND(500)	19
	02/05/20	58	ND(5)	ND(5)	ND(5)	50	ND(5)								
MKTF-22	05/09/19	3500	ND(20)	11	ND(20)	3300	ND(20)	170	7.3	11	2.6	3.1	ND(500)	ND(500)	13
	08/20/19	3200	ND(20)	13	ND(20)	2700	ND(20)	200	6.8	8.5	2.6	2.9	ND(500)	ND(500)	4.7
	10/24/19	3400	ND(20)	13	ND(20)	2600	ND(20)	190	6.8	12	2.9	2.9	ND(500)	ND(500)	2.9
MKTF-23	10/29/19	4800	ND(100)	61	ND(100)	330	53	440	0.16	0.51	2	1.9	ND(500)	ND(500)	1.7
MKTF-24	05/06/19	3000	ND(20)	47	6.6	110	22	1000	5.7	8.3	2.3	2.6	ND(500)	ND(500)	42
	08/23/19	4100	ND(20)	53	ND(20)	110	38	800	1.6	5.3	2.2	2.1	ND(500)	800	34
	10/23/19	5000	ND(20)	33	9.3	110	37	660	0.59	0.9	2.4	2.3	ND(500)	ND(500)	20
	11/19/19												ND(500)	ND(500)	
	02/25/20	2900	ND(20)	38	10	110	28	940	0.08	1.9	1.9	2.2	120	ND(500)	27
	09/15/20														
	09/19/20	6100	ND(20)	41	ND(20)	120	37	950	0.26	32	1.9	4.4			35
MKTF-25	05/06/19	370	12	140	6.1	290	7	860	0.21	4.7	1.8	2.2	ND(500)	ND(500)	52
	08/27/19	130	13	130	10	850	ND(5)	1100	0.25	1.8	3.6	3.9	ND(500)	880	68
	10/23/19	370	11	110	9.1	880	3.3	1400	0.28	10	5.4	5.8	ND(500)	ND(500)	73
	11/18/19												14	ND(2000)	
	02/27/20	420	12	100	8.8	620	4.2	980	0.13	5.6	3.2	3.4		/	76
MKTF-27	03/28/19	ND(1)	ND(1)	ND(1)	ND(1)	1.8	ND(1)	3500	0.12	1.1	0.011	0.077			1200
	05/06/19	ND(1)	ND(1)	0.83	0.33	19	ND(1)	4000	0.023	2.2	0.17	0.7	5500	ND(2000)	980
	08/21/19	9.7	ND(1)	1.6	ND(1)	24	ND(1)	3400	0.0089	1.1	0.32	0.58	2800	3200	770
	10/23/19	ND(1)	ND(1)	1.1	0.53	14	ND(1)	2900	0.017	0.19	0.048	0.13	1200	ND(500)	570
	02/25/20	ND(1)	ND(1)	0.43	ND(1)	6	ND(1)	7000	0.029	1.3	0.065	0.32	5700	ND(2000)	1100
	09/15/20														
	09/20/20	0.86	ND(1)	1.3	0.39	29	ND(1)	2700	0.015	0.21	0.23	0.45	560	ND(2000)	520
MKTF-28	03/28/19	ND(1)	ND(1)	ND(1)	ND(1)	0.82	ND(1)	420	0.022	1.4	0.0036	0.094			180
	05/06/19	ND(1)	ND(1)	ND(1)	ND(1)	0.74	ND(1)	470	0.029	3.9	0.004	0.26	1100	ND(500)	200
	08/21/19	ND(1)	ND(1)	ND(1)	ND(1)	4.5	ND(1)	470	ND(0.02)	0.79	0.023	0.074	910	490 ´	180
	10/22/19	ND(1)	ND(1)	ND(1)	ND(1)	4.9	ND(1)	460	0.023 (1.6	0.037	0.12	560	ND(500)	190
	02/25/20	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	570	ND(0.02)	2	0.00042	0.11	260	ND(500)	160
	09/15/20								/						
	09/20/20	ND(1)	ND(1)	ND(1)	ND(1)	2.3	ND(1)	630	0.012	0.51	0.015	0.088	250	ND(500)	130
MKTF-29	03/28/19	ND(1)	ND(1)	ND(1)	ND(1)	4.1	ND(1)	190	0.02	0.57	0.59	0.6			540
	05/06/19	ND(1)	ND(1)	ND(1)	ND(1)	4.8	ND(1)	260	0.016	1.2	0.66	0.71	ND(500)	ND(500)	540
	08/23/19	ND(1)	ND(1)	ND(1)	ND(1)	8.6	ND(1)	610	0.0092	0.27	1.1	1.1	97 ´	460	440
	10/22/19	ND(1)	ND(1)	0.56	ND(1)	12	ND(1)	1000	ND(0.02)	0.66	2	2.1	ND(500)	ND(500)	320
	11/18/19												72	ND(2000)	
	02/25/20	ND(1)	ND(1)	0.45	ND(1)	15	ND(1)	1500	ND(0.02)	0.04	2.5	2.4	ND(500)	ND(500)	230
	09/15/20														
	09/20/20	ND(1)	ND(1)	0.29	ND(1)	19	ND(1)	18000	0.012	0.033	4.2	4.5	140	ND(2000)	160
MKTF-30	03/28/19	ND(1)	1.6	27	1.1	1.3	ND(1)	410	0.043	9.5	0.0065	0.41			510
	05/06/19	ND(1)	2.1	36	1.2	1.8	ND(1)	410	0.012	5.3	0.0099	0.21	ND(500)	ND(500)	540
	08/23/19	ND(1)	2.6	39	1.7	1	ND(1)	480	ND(0.02)	7	0.0014	0.95	220	370	570
	10/23/19	ND(1)	3	47	2.1	1.5	ND(1)	480	0.013	4.9	0.0013	0.5	ND(500)	ND(500)	480
	11/18/19												160	ND(2000)	
	02/27/20	ND(1)	2.6	35	1.6	2	ND(1)	520	ND(0.02)	1.9	0.0011	0.27	140	ND(500)	530
	09/15/20														
USEPA RSL T	Tap Water HQ 0.1	0.46	0.28	2.8	0.17	14	0.019	NA	NA	1.4	NA	0.043	3,200	200	NA

Notes: MNA - monitored natural attenuation ug/L - micrograms per liter mg/L - milligrams per liter Std Units - Standard Units

USEPA RSL Tap Water 0.1 - United States Environmental Protection Agency Regional Screening Levels for Tap Water, Hazard Quotient 0.1, May 2020 pH results only shown for 3rd Quarter 2020 sampling event

ProjectDirect: Analytical MNA Analytical - EDB 1,2-DCA PK:8111 RK:94087

Location ID	Date Sampled	pH, Field (Std Units)
MKTF-21	08/22/19	
	11/05/19	
	02/05/20	
MKTF-22	05/09/19	
	08/20/19	
	10/24/19	
MKTF-23	10/29/19	
MKTF-24	05/06/19	
	08/23/19	
	10/23/19	
	11/19/19	
	02/25/20	
	09/15/20	7.55
	09/19/20	
MKTF-25	05/06/19	
	08/27/19	
	10/23/19	
	11/18/19	
	02/27/20	
MKTF-27	03/28/19	
	05/06/19	
	08/21/19	
	10/23/19	
	02/25/20	
	09/15/20	6.81
	09/20/20	
MKTF-28	03/28/19	
	05/06/19	
	08/21/19	
	10/22/19	
	02/25/20	
	09/15/20	7.35
	09/20/20	
MKTF-29	03/28/19	
	05/06/19	
	08/23/19	
	10/22/19	
	11/18/19	
	02/25/20	
	09/15/20	7.07
	09/20/20	
MKTF-30	03/28/19	
	05/06/19	
	08/23/19	
	10/23/19	
	11/18/19	
	02/27/20	
	09/15/20	7.52

USEPA RSL Tap Water HQ 0.1

Notes: MNA - monitored natural attenuation ug/L - micrograms per liter mg/L - milligrams per liter Std Units - Standard Units

USEPA RSL Tap Water 0.1 - United States Environmental Protection Agency Regional Screening Levels for Tap Water, Hazard Quotient 0.1, May 2020 pH results only shown for 3rd Quarter 2020 sampling event

NA

ProjectDirect: Analytical MNA Analytical - EDB 1,2-DCA PK:8111 RK:94087

Page 14 of 28

.

Location ID											Azananaku	Mandahasa	NITTOAAN		
	Date Sampled	Benzene Ç*⊞ŠD	Trichloro- ethene Ç * BD	1,1-Dichloro- ethane Ç*∰D	1,2- Dichloro- ethane Ç*∰D	MTBE Ç*ĐŠD	Vinyl Chloride Ç * ∰D	Chloride (mg/L)	Iron, Dissolved (mg/L)	Iron, Total (mg/L)	Manganese, Dissolved (mg/L)	Manganese, Total (mg/L)	Nitrogen, Nitrate Ç*55D	Nitrogen, Nitrite Ç * ∰D	Sulfate (mg/L)
MKTF-30	09/20/20	ND(1)	1.6	36	1.6	3.5	ND(1)	510	ND(0.02)	3.3	0.0016	0.44	110	ND(500)	520
MKTF-31	02/20/19	1	6.1	52	30	120	ND(1)	760	ND(0.02)	1.7	0.017	0.06	ND(500)	ND(500)	65
	05/06/19	0.45	4.1	35	19	90	ND(1)	1200	ND(0.02)	2.1	0.011	0.052	250	ND(500)	110
	08/23/19	0.72	4.8	39	23	110	ND(1)	820	0.027	2	0.021	0.074	ND(500)	9 ` 10 ´	82
	10/22/19	0.6	4.4	36	21	100	0.46	770	ND(0.02)	3.8	0.015	0.17	95 ´	ND(500)	72
	11/18/19								/				52	ND(200Ó)	
	02/25/20	0.92	5.7	39	28	180	ND(1)	820	ND(0.02)	1	0.016	0.059	ND(500)	ND(500)	68
	09/15/20														
	09/19/20	0.66	5.8	48	24	190	ND(1)	550	0.05	3.3	0.061	0.14			59
MKTF-32	02/13/19	ND(2)	ND(2)	13	15	840	ND(2)	420	ND(0.02)	0.17	0.059	0.079	ND(500)	ND(500)	89
02	05/07/19	ND(2)	0.34	13	14	740	ND(2)	450	0.023	1.5	0.071	0.12	ND(500)	300	93
	08/20/19	0.31	0.28	14	15	610	ND(1)	400	ND(0.02)	1.2	0.11	0.12	410	ND(500)	92
	10/23/19	0.36	ND(2)	12	14	670	ND(2)	400	0.059	5.5	0.043	0.16	ND(500)	ND(500)	90
	02/27/20					900				0.44	0.074				
		ND(2)	ND(2)	10	13		ND(2)	400	ND(0.02)			0.1	ND(500)	ND(500)	91
	09/14/20	 ND(0)	 ND(0)				 ND(2)							 ND(500)	
	09/21/20	ND(2)	ND(2)	15	13	1100	ND(2)	370	ND(0.02)	ND(0.05)	0.16	0.065	ND(500)	ND(500)	84
MKTF-33	05/09/19	ND(1)	ND(1)	ND(1)	ND(1)	300	ND(1)	110	0.016	4.4	0.081	0.32	160	ND(500)	240
	08/20/19	ND(1)	ND(1)	ND(1)	ND(1)	730	ND(1)	110	0.12	2.6	0.44	0.57	140	ND(500)	170
	10/24/19	ND(2)	ND(2)	ND(2)	ND(2)	670	ND(2)	110	0.052	4.5	0.38	0.48	ND(500)	ND(500)	190
	02/28/20	82	ND(2)	ND(2)	ND(2)	800	ND(2)	130	0.032	0.93	0.31	0.34	310	ND(500)	170
MKTF-34	05/09/19	ND(1)	0.49	ND(1)	ND(1)	ND(1)	ND(1)	890	0.021	0.94	0.00082	0.024	9700	ND(500)	60
	08/19/19	ND(1)	0.89	ND(1)	ND(1)	ND(1)	ND(1)	740	ND(0.02)	2	ND(0.002)	0.045	9700	ND(500)	110
	10/29/19	ND(1)	1	ND(1)	ND(1)	0.58	ND(1)	450	ND(0.02)	1.3	0.00044	0.033	14000	ND(500)	200
	02/05/20	ND(1)	0.4	ND(1)	ND(1)	ND(1)	ND(1)	560	ND(0.02)	0.92	0.001	0.03	16000	ND(500)	82
	02/28/20	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	860	ND(0.02)	1.1	0.00059	0.037	12000	ND(500)	57
	09/14/20														
	09/16/20	ND(1)	0.89	ND(1)	ND(1)	ND(1)	ND(1)	490	1.9	21	0.078	0.41	8400	ND(500)	120
MKTF-35	05/16/19	14	ND(1)	ND(1)	ND(1)	42 ′	ND(1)	250	3.6	4.5	3.3	3.7	ND(500)	ND(500)	80
	08/19/19	22	ND(1)	ND(1)	ND(1)	26	ND(1)	190	3.1	9.8	2.8	4	ND(500)	ND(500)	79
	10/29/19	56	ND(1)	0.68	ND(1)	120	ND(1)	220	3.4	8.3	2.9	3.5	ND(500)	ND(500)	36
	02/06/20	6100	ND(10)	ND(10)	ND(10)	320	ND(10)	240	0.065	2.1	2	2	ND(500)	ND(500)	ND(2.5)
	09/14/20														
	09/16/20	4000	ND(10)	ND(10)	ND(10)	160	ND(10)	360	4.2	13	3.1	5	ND(500)	ND(500)	ND(2.5)
MKTF-36	09/14/20														
	09/18/20	9700	ND(20)	ND(20)	ND(20)	940	ND(20)	240	11	12	1.6	1.8	110	ND(500)	ND(2.5)
MKTF-37	05/14/19	ND(1)	ND(20)		ND(20)	ND(1)	ND(20)	240	ND(0.02)	1.6	2.2	2	3700	ND(500)	600
WIX11-57				ND(1)	ND(1)				ND(0.02)		2.2			ND(300)	000
	09/14/20				 E A										
	09/17/20	1300	96	8.1	5.4	33	ND(5)	190	11 ND(0.02)	24	1.2	1.6	ND(500)	ND(500)	2.1
MKTF-38	06/27/19	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	330	ND(0.02)	4.1	2.3	2.5	4800	ND(500)	600
	08/20/19	ND(1)	0.25	ND(1)	ND(1)	0.56	ND(1)	360	ND(0.02)	0.83	2.4	2.6	5500	ND(500)	560
	03/05/20	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	290	ND(0.02)	3.8	0.72	1.4	12000	150	420
	09/14/20														
	09/19/20	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	630	0.17	4.4	0.32	1.3			450
MKTF-39	06/05/19	9.1	ND(1)	0.41	ND(1)	ND(1)	0.44	9000	27	27	10	10	ND(500)	ND(2000)	140
	08/20/19	8.3	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	8900	25	28	9.6	9.5			4.5
	11/05/19	10	ND(1)	0.49	ND(1)	ND(1)	ND(1)	7500	29	32	6.8	6.7			1.2
	02/05/20	9.4	ND(2)	0.45	ND(2)	ND(2)	ND(2)	7500	23	33	6	6.7			1.3
	09/15/20														
USEPA RSL T	ap Water HQ 0.1	0.46	0.28	2.8	0.17	14	0.019	NA	NA	1.4	NA	0.043	3,200	200	NA

Notes: MNA - monitored natural attenuation ug/L - micrograms per liter mg/L - milligrams per liter Std Units - Standard Units

USEPA RSL Tap Water 0.1 - United States Environmental Protection Agency Regional Screening Levels for Tap Water, Hazard Quotient 0.1, May 2020 pH results only shown for 3rd Quarter 2020 sampling event

ProjectDirect: Analytical MNA Analytical - EDB 1,2-DCA PK:8111 RK:94087

Location ID	Date Sampled	pH, Field (Std Units)
MKTF-30	09/20/20	
MKTF-31	02/20/19	
	05/06/19	
	08/23/19	
	10/22/19	
	11/18/19	
	02/25/20	
	09/15/20	6.43
	09/19/20	
MKTF-32	02/13/19	
	05/07/19	
	08/20/19	
	10/23/19	
	02/27/20	
	09/14/20	7.91
	09/21/20	
MKTF-33	05/09/19	
	08/20/19	
	10/24/19	
	02/28/20	
MKTF-34	05/09/19	
	08/19/19	
	10/29/19	
	02/05/20	
	02/28/20	
	09/14/20	7.42
	09/16/20	
MKTF-35	05/16/19	
	08/19/19	
	10/29/19	
	02/06/20	
	09/14/20	6.72
	09/16/20	
MKTF-36	09/14/20	6.87
	09/18/20	
MKTF-37	05/14/19	
	09/14/20	7.04
	09/17/20	
MKTF-38	06/27/19	
	08/20/19	
	03/05/20	
	09/14/20	7.8
	09/19/20	
MKTF-39	06/05/19	
	08/20/19	
	11/05/19	
	02/05/20	
	09/15/20	6.74

USEPA RSL Tap Water HQ 0.1

Notes: MNA - monitored natural attenuation ug/L - micrograms per liter mg/L - milligrams per liter Std Units - Standard Units

USEPA RSL Tap Water 0.1 - United States Environmental Protection Agency Regional Screening Levels for Tap Water, Hazard Quotient 0.1, May 2020 pH results only shown for 3rd Quarter 2020 sampling event

NA

ProjectDirect: Analytical MNA Analytical - EDB 1,2-DCA PK:8111 RK:94087

Page 16 of 28

Location ID	Date Sampled	Benzene	Trichloro-	1,1-Dichloro- ethane	1,2- Dichloro- ethane	MTBE	Vinyl Chloride	Chloride	Iron, Dissolved	Iron, Total	Manganese, Dissolved	Manganese, Total	Nitrogen, Nitrate	Nitrogen, Nitrite	Sulfate
		Ç*EŠD	ethene Ç*₿D	Ç*ĐŠD	Ç*ĐSD	Ç*EŠĎ	Ç*ЊD	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Nitrate Ç* E SD	Ç*EŠD	(mg/L)
MKTF-39	09/19/20	18	ND(2)	0.63	ND(2)	ND(2)	0.44	6200	25	29	4.1	4.5			2.6
MKTF-40	02/20/19	ND(1)	ND(1)	1	0.28	ND(1)	ND(1)	3100	0.035	2.7	0.0029	0.053	ND(500)	ND(2000)	550
	05/06/19	ND(1)	ND(1)	0.66	ND(1)	ND(1)	ND(1)	3200	0.034	3.7	0.0019	0.063	ND(500)	3300	560
	08/22/19	ND(1)	ND(1)	0.78	ND(1)	ND(1)	ND(1)	3500	0.098	6.9	0.0068	0.25	81	ND(2000)	500
	10/22/19	ND(1)	ND(1)	0.76	0.44	0.72	ND(1)	2800	0.032	2.3	0.021	0.056	170	ND(2000)	540
	11/19/19												ND(500)	ND(2000)	
	02/28/20	ND(1)	ND(1)	0.64	0.37	0.76	ND(1)	2900	0.01	7.7	0.00047	0.38	140	ND(2000)	530
	09/15/20														
	09/19/20	ND(1)	ND(1)	0.79	ND(1)	0.58	ND(1)	3000	0.013	7.2	0.00091	0.33			450
MKTF-41	02/13/19	ND(1)	ND(1)	4.3	3.7	0.99	ND(1)	840	ND(0.02)	0.16	0.0085	0.014	5600	ND(500)	61
	05/07/19	ND(1)	ND(1)	3	2.5	0.87	ND(1)	910	ND(0.02)	0.73	0.0023	0.028	4800	780	62
	08/22/19	ND(1)	ND(1)	3.9	3.3	1.2	ND(1)	840	0.022	7.3	0.0024	0.45	4800	ND(500)	59
	10/23/19	ND(1)	ND(1)	3.1	3	1.3	ND(1)	800	0.0091	2.2	0.0013	0.067	4800	ND(500)	58
	02/27/20	ND(1)	ND(1)	3.3	3.1	1.2	ND(1)	880	ND(0.02)	0.039	0.0051	0.008	5300	190	61
	09/14/20														
	09/21/20	ND(1)	ND(1)	5.2	4.1	1	ND(1)	770	ND(0.02)	0.02	0.006	0.0064	5400	250	60
MKTF-42	02/13/19	17	ND(1)	0.69	2.3	4.4	ND(1)	1100	ND(0.02)	0.17	0.044	0.055	150	ND(500)	87
	05/07/19	7	ND(2)	ND(2)	1.6	4	ND(2)	1100	0.037	0.15	0.11	0.12	70	910	89
	08/22/19	9.6	ND(2)	ND(2)	1.9	4.1	ND(2)	1000	0.049	0.16	0.11	0.11	ND(500)	850	89
	10/23/19	11	ND(2)	1.1	2.3	4.4	ND(2)	940	0.03	0.19	0.1	0.11	ND(500)	ND(500)	83
	02/27/20	22	ND(1)	0.74	2.4	4.2	ND(1)	1100	ND(0.1)	0.069	0.05	0.051	ND(500)	ND(500)	84
	09/14/20														
	09/21/20	29	ND(1)	1.2	4.3	3.5	ND(1)	880	ND(0.02)	0.031	0.041	0.042	120	ND(500)	100
MKTF-43	02/13/19	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	4300	0.011	1.7	0.3	1.1	22000	ND(2000)	410
	05/08/19	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	3600	ND(0.02)	1.4	0.53	0.71	19000	ND(2000)	340
	08/22/19	0.35	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	5100	ND(0.02)	3.3	0.77	1.1	18000	ND(2000)	560
	10/24/19	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	5100	0.014	3	0.45	1.1	12000	ND(2000)	540
	02/27/20	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	5600	0.0097	1.7	0.0079	0.47	11000	ND(2000)	640
	09/14/20													/	
	09/21/20	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	6900	ND(0.02)	0.3	1.7	1.4	3500	ND(2000)	790
MKTF-44	02/13/19	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	1500	0.025	6.7	0.0027	0.14	9900	350	89
	05/08/19	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	2400	ND(0.02)	0.82	0.00049	0.024	14000	ND(2000)	72
	08/22/19	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	1500	/	0.082		0.0031	9000	ND(500)	84
	10/24/19	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	810	0.017	4	0.0015	0.11	4900	ND(500)	91
	03/05/20	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	830	ND(0.02)	14	0.00032	0.32	4600	ND(500)	100
	09/14/20														
	09/21/20	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	780	1.8	17	0.08	0.32	5500	ND(500)	96
MKTF-46	03/06/20	0.4	ND(1)	0.67	ND(1)	ND(1)	ND(1)	560	ND(0.02)	1.9	0.15	0.34	9400	ND(500)	250
	09/14/20														
	09/17/20	ND(1)	ND(1)	0.51	ND(1)	ND(1)	ND(1)	610	0.023	17	0.19	3.4	7700	ND(500)	250
MKTF-47	03/06/20	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	380	ND(0.02)	1.6	0.00059	0.075	11000	ND(500)	320
MKTF-49	03/05/20	20000	ND(5)	ND(5)	ND(5)	11	ND(5)	1000	5	18	5.3	6.8	130	ND(500)	ND(2.5)
	09/15/20														
	09/20/20	23000	ND(50)	ND(50)	ND(50)	ND(50)	ND(50)	1100	9	16	6	6.1	130	ND(500)	ND(2.5)
MKTF-50	03/05/20	12000	ND(5)	ND(5)	ND(5)	4.5	ND(5)	360	1.6	5.3	1.3	1.5	ND(500)	ND(500)	ND(2.5)
USEPA RSL T	Tap Water HQ 0.1	0.46	0.28	2.8	0.17	14	0.019	NA	NA	1.4	NA	0.043	3,200	200	NA

MNA - monitored natural attenuation

ug/L - micrograms per liter mg/L - milligrams per liter Std Units - Standard Units

USEPA RSL Tap Water 0.1 - United States Environmental Protection Agency Regional Screening Levels for Tap Water, Hazard Quotient 0.1, May 2020 pH results only shown for 3rd Quarter 2020 sampling event

ProjectDirect: Analytical MNA Analytical - EDB 1,2-DCA PK:8111 RK:94087

.

Location ID	Date Sampled	pH, Field (Std Units)
		(Sid Units)
MKTF-39	09/19/20	
MKTF-40	02/20/19	
	05/06/19	
	08/22/19	
	10/22/19	
	11/19/19	
	02/28/20	
	09/15/20	7.01
	09/19/20	
MKTF-41	02/13/19	
	05/07/19	
	08/22/19	
	10/23/19	
	02/27/20	
	09/14/20	8.23
	09/21/20	
MKTF-42	02/13/19	
	05/07/19	
	08/22/19	
	10/23/19	
	02/27/20	
	09/14/20	8.27
	09/21/20	
MKTF-43	02/13/19	
	05/08/19	
	08/22/19	
	10/24/19	
	02/27/20	
	09/14/20	6.86
	09/21/20	
MKTF-44	02/13/19	
	05/08/19	
	08/22/19	
	10/24/19	
	03/05/20	
	09/14/20	7.91
	09/21/20	
MKTF-46	03/06/20	
	09/14/20	7.15
	09/17/20	
MKTF-47	03/06/20	
MKTF-49	03/05/20	
	09/15/20	6.91
	09/20/20	
MKTF-50	03/05/20	

USEPA RSL Tap Water HQ 0.1 NA	
Notes: MNA - monitored natural attenuation ug/L - micrograms per liter mg/L - milligrams per liter Std Units - Standard Units USEPA RSL Tap Water 0.1 - United States Environmental Protection Agency Regional Screening Levels for Tap Water, Hazard Quotient 0.1, May 2020 pH results only shown for 3rd Quarter 2020 sampling event	
ProjectDirect: Analytical MNA Analytical - EDB 1,2-DCA PK:8111 RK:94087	

Released to Imaging: 3/2/2021 1:34:48 PM

Page 18 of 28

•

TABLE 2. 2016 ORP FIELD DATAMARATHON GALLUP REFINERY, GALLUP, NEW MEXICO

Well	Q1 2016, mV	Q3 2016, mV	Q4 2016, mV
MKTF- 1	-99.7	NM	NM
MKTF-2	-79.7	-63.2	0.9
MKTF-4	-109.7	-116.7	-85.1
MKTF-9	-112.6	-117.2	-77.5
MKTF- 10	-59.6	-104.1	-86.6
MKTF- 11	-116.1	115.9	-82.4
MKTF- 15	NM	-106.5	-79.7
MKTF- 16	-112.3	-122.7	-89.2
MKTF- 17	-73.9	NM	-9.5
MKTF- 18	-123.6	-143.3	-20.1
MKTF- 19	-104.3	NM	-93.8
MKTF-20	-96.9	-138.0	-92.0
MKTF-21	-89.4	-95.2	-81.9
MKTF- 22	-100.7	-96.7	-46.7
MKTF-23	-93.9	NM	NM
MKTF- 24	-14.1	48.2	75.5
MKTF- 25	5.0	3.3	60.6
MKTF-26	-12.1	NM	NM
MKTF- 27	61.4	82.6	128.1
MKTF-28	55.3	88.6	110.2
MKTF- 29	6.5	-1.8	44.2
MKTF- 30	54.7	21.5	40.4
MKTF- 31	41.0	66.5	114.7
MKTF- 32	36.2	88.0	158.4
MKTF- 33	19.5	70.2	27.7
MKTF- 34	42.0	18.3	51.3
MKTF- 35	-106.1	-132.1	-102.3
MKTF- 37	NM	-159.2	NM
MKTF- 38	-54.0	-30.2	50.0
MKTF- 39	-109.5	-121.1	-78.6
MKTF-40	58.5	103.0	224.1
MKTF- 41	44.9	79.4	174.8
MKTF- 42	-1.8	60.2	129.6
MKTF-43	82.6	164.9	179.7
MKTF- 44	11.2	80.7	199.1
Notes:			

Notes:

NM - Not measured

Second quarter data not available in 2016 Annual Report

TABLE 3. EXISTING GROUNDWATER QUARTERLY SAMPLING ANALYSES AND MNA APPLICABILITY MARATHON GALLUP REFINERY, GALLUP, NEW MEXICO

	Method of		
Analyte	Analysis	Significance for MNA	Utility for MNA Analyses
BTEX	Laboratory	Decreasing trends indicate natural attenuation	Monitor trends
1,1-DCA, 1,2-DCA	Laboratory	Decreasing trends indicate natural attenuation	Monitor trends
TCE	Laboratory	Decreasing trends indicate natural attenuation	Monitor trends
Chloride	Laboratory	End product of 1,1-DCA and 1,2-DCA degradation	Monitor trends, but dissolved salts may mask trends
Nitrate	Laboratory	Potential electron receptor for biodegradation	Presence indicates potential for biodegradation
Nitrite	Laboratory	Form of nitrate reduced by biodegradation	Presence indicates possible biodegradation
Sulfate	Laboratory	Potential electron receptor for biodegradation	Monitor trends
Iron	Laboratory	Potential electron receptor for biodegradation	Monitor trends
Manganese	Laboratory	Potential electron receptor for biodegradation	Monitor trends
Vinyl chloride	Laboratory	Biodegradation product of TCE	Monitor trends
pН	Field	Neutral range 6-8 required for biodegradation	Monitor level and trends
DO	Field	Presence required for aerobic biodegradation	Monitor level and trends
ORP	Field	Indicates redox state for biodegradation	Monitor level and trends

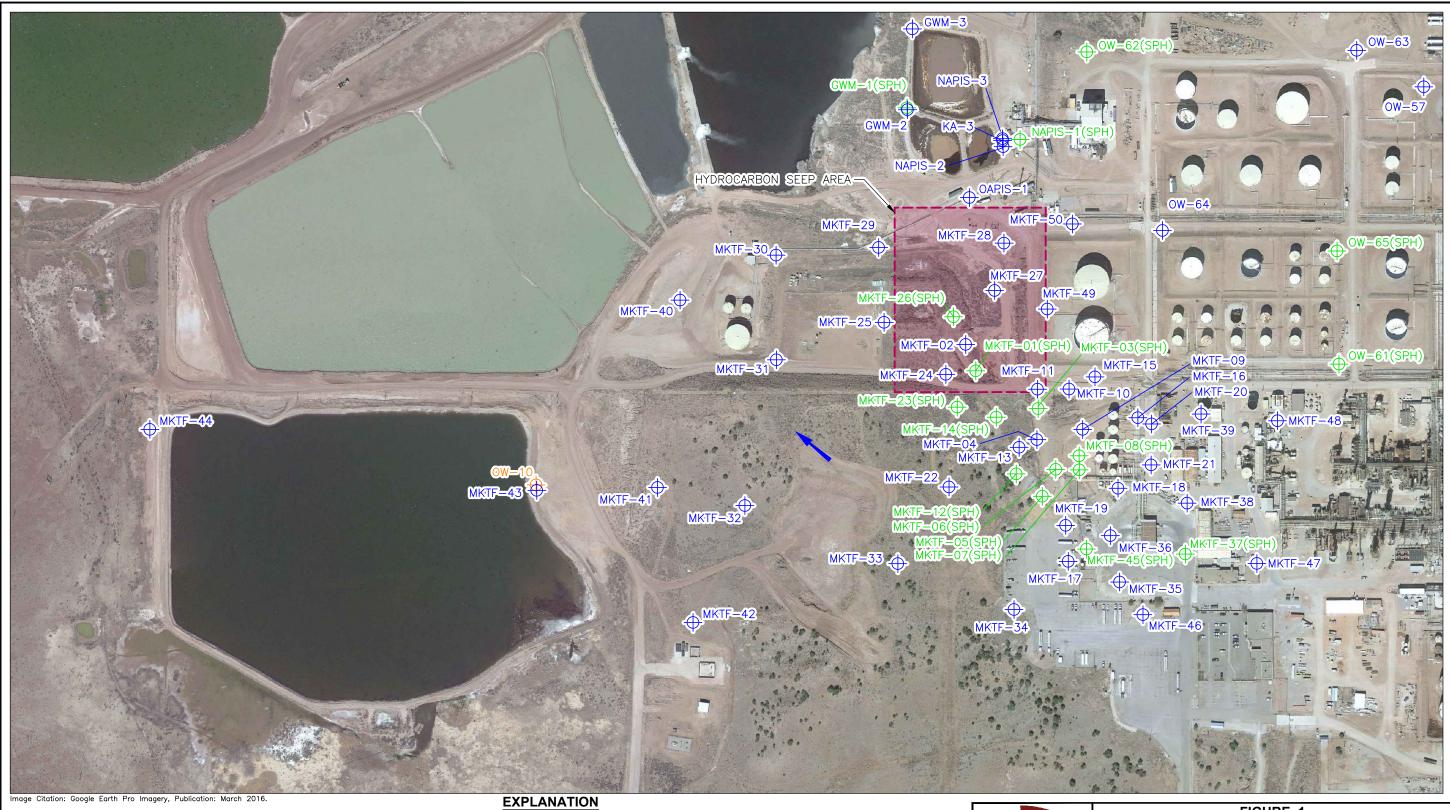
Notes:

MNA - Monitored Natural Attenuation

BTEX - benzene, toluene, ethylbenzene, xylenes

DO - dissolved oxygen

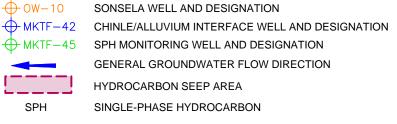
ORP - oxidation reduction potential

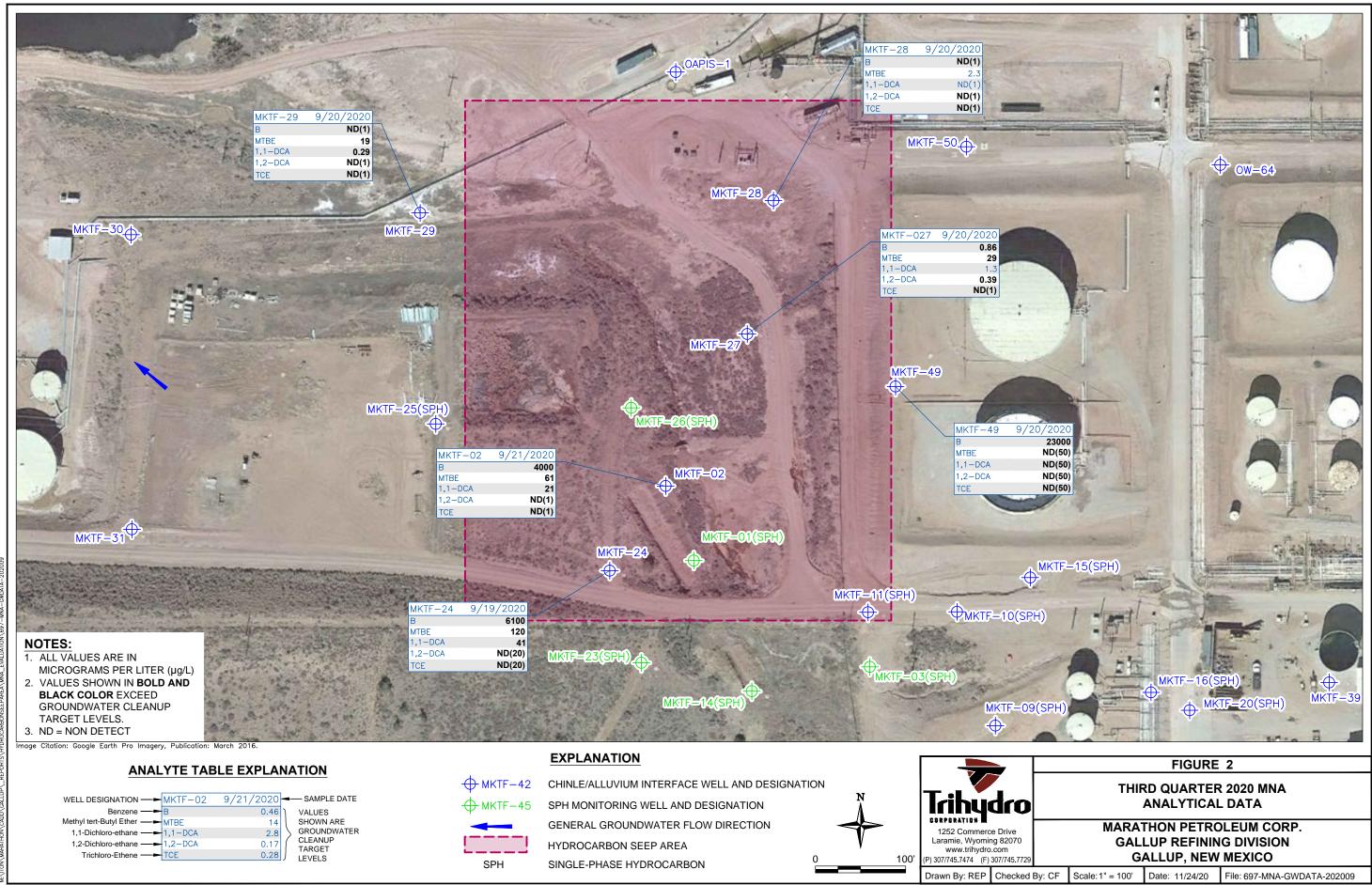

1,1-DCA - 1,1-dichloroethane 1,2-DCA - 1,2-dichloroethane

TCE - trichloroethylene

202012_MNAAnalytical-TBL-3.xlsx

Received by OCD: 3/2/2021 1:30:21 PM


Figures


⊕ 0W-10

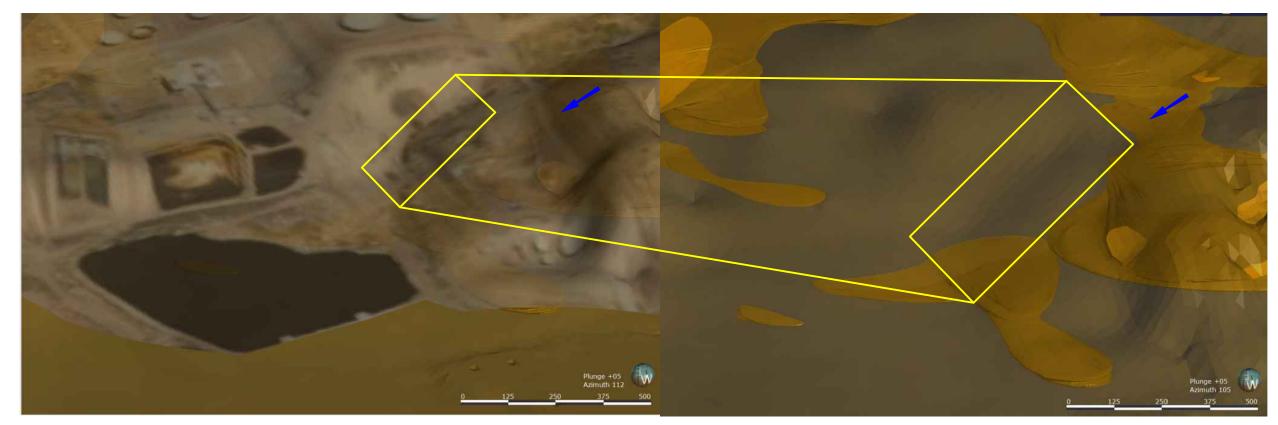
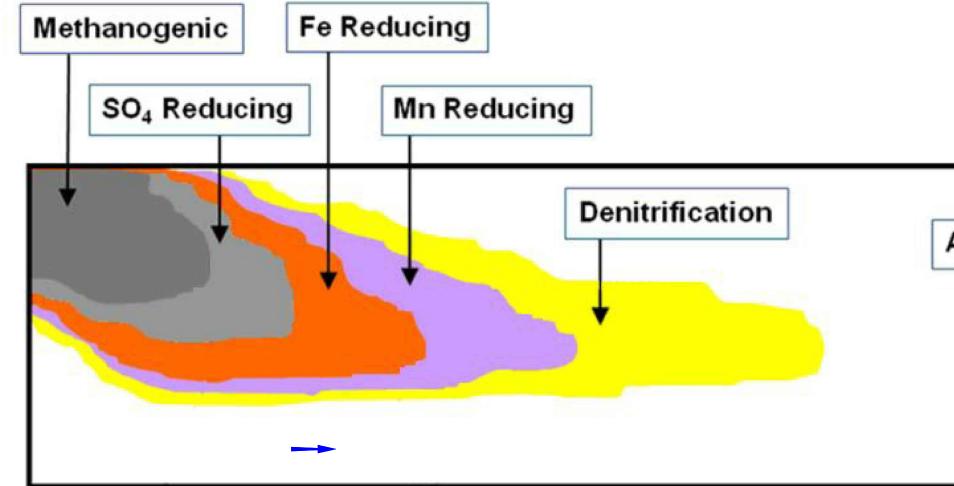

SPH

	FIGURE 1											
	MKTF AREA											
D		SITE MAP										
	MARATHON PETROLEUM CORP.											
C		GAL	LUP REFININ	IG DIVISION								
729	GALLUP, NEW MEXICO											
ked l	By: CF Scale: 1" = 300' Date: 11/23/20 File: 697-MNA-SITE-202011											

LOCAL SURFACE TOPOGRAPHY SHOWING SWALE IN THE HYDROCARBON SEEP AREA EAST VIEW, X5 VERTICAL EXAGGERATION

GEOLOGICAL MODEL SHOWING SWALE IN SHALLOW ALLUVIAL DEPOSITS (FINE - DARK, COARSE - LIGHT) IN THE HYDROCARBON SEEP AREA EAST VIEW, X5 VERTICAL EXAGGERATION


EXPLANATION

GENERAL GROUNDWATER FLOW DIRECTION

Received by OCD: 3/2/2021 1:30:21 PM

	FIGURE 3								
	3D MODELING OF LOCAL GEOLOGY IN THE								
D	HYDROCARBON SEEP AREA								
	MARATHON PETROLEUM CORP.								
0	GALLUP REFINING DIVISION								
7729	GALLUP, NEW MEXICO								
ked l	ed By: CF Scale: 1" = ~250' Date: 11/23/20 File: 697-MNA-3DMODEL-202011								

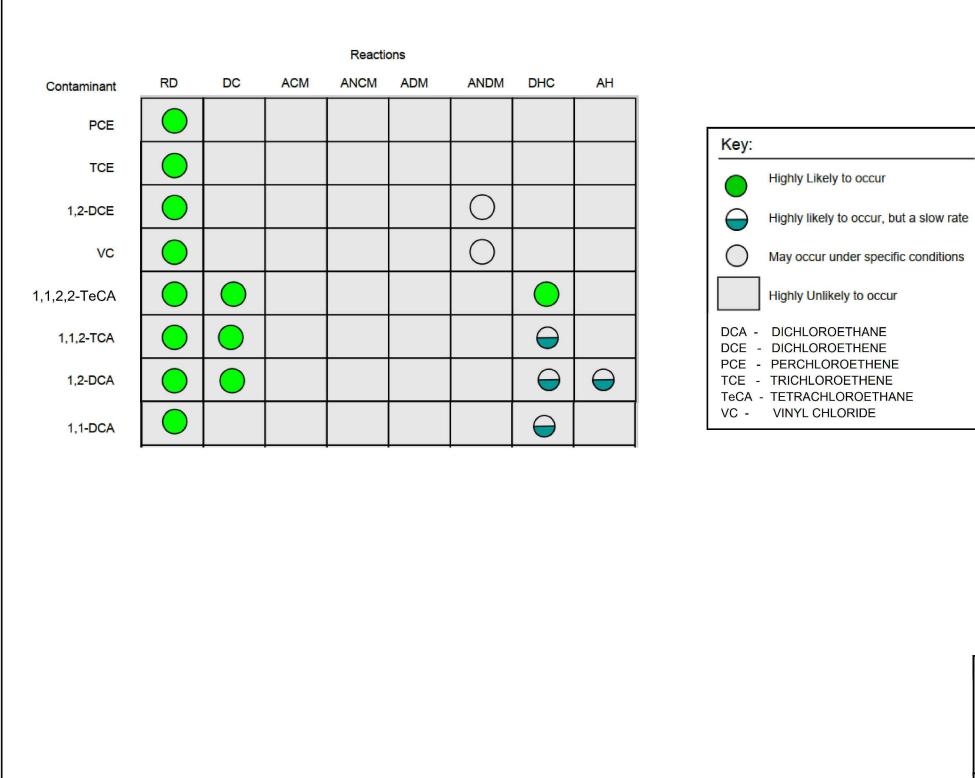
EXPLANATION	
-------------	--

FE

MN

SO4

GENERAL GROUNDWATER FLOW DIRECTION
IRON
MANGANESE
SULFATE



ource: After ITRC 2010

	Aero	obic		
			FIGURE	4
CORPORATION	0	HYDROC		S IN A TYPICAL NDWATER PLUME
1252 Commerce Drive Laramie, Wyoming 8207 www.trihydro.com (P) 307/745.7474 (F) 307/745.	0	GA	LLUP REFININ GALLUP, NEW	G DIVISION
Drawn By: REP Chec	ked By: CF	Scale:NONE	Date: 11/23/20	File: 697-MNA-REDREGIME-202011

Released to Imaging: 3/2/2021 1:34:48 PM

Page 26 of 28

Source: Adapted from TRUEX, ET AL 2007

REACTIONS

ACM	Aerobic Co-Metabolism
NCM	Anaerobic Co-Metabolism
ADM	Aerobic Direct Metabolism
NDM	Anaerobic Direct Metabolism
OHC	Dehydrochlorination (abiotic)
AH	Abiotic Hydrolysis
DC	Dichloroelimination (biotic)
RD	Reductive Dechlorination (hydrogenolysis)

		FIGURE 5					
Trihydr	ro	DEGRADATION REACTIONS IN ANAEROBIC CONDITIONS					
1252 Commerce Driv Laramie, Wyoming 820 www.trihydro.com (P) 307/745.7474 (F) 307/74	070	GAL	THON PETRC LUP REFININ ALLUP, NEW				
Drawn By: REP Che	ecked By: CF	Scale:NONE	Date: 11/23/20	File: 697-MNA-DEGRADATION-202011			

District II

District IV

District I 1625 N. French Dr., Hobbs, NM 88240

Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

District III 1000 Rio Brazos Rd., Aztec, NM 87410 COMMENTS

Action 19482

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CO	MN	1EN	ITS

Operator: WESTERN REFINING NM87109	SOUTHWEST, IN	6700 Jefferson NE, Suite A-1	Albuquerque,	OGRID: 705	ion Number: 19482	Action Type: DISCHARGE PERMIT
					1	
Created By	Comment				Comment Da	ite
cchavez Permittee Hydrocarbon Seep 12-15-2020.				03/02/2021		

District II

District IV

District I 1625 N. French Dr., Hobbs, NM 88240

Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

District III 1000 Rio Brazos Rd., Aztec, NM 87410 CONDITIONS

Action 19482

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS OF APPROVAL

Operator: WESTERN REFINING SOUTHWEST, IN NM87109	6700 Jefferson NE, Suite A-1	Albuquerque,	OGRID: 705791	Action Type: DISCHARGE PERMIT
OCD Reviewer		Condition		
cchavez		None		