## C-144 Permit Package Dagger Lake 15 22 Ogopogo Pad, Temporary Pit Section 10 of T22S, R33E, Lea County

DL 15 22 Ogopogo Fed Com #422H DL 15 22 Ogopogo Fed Com #423H DL 15 22 Ogopogo Fed Com #424H

Chevron USA Incorporated 6301 Deauville Blvd. Midland, TX 79706 (432) 687-7524



February 5, 2021

New Mexico Oil Conservation Division 811 S. First St. Artesia, NM 88210

Via Electronic Submittal

#### **RE: Chevron USA Incorporated Temporary Pit Application**

Dagger Lake 15 22 Ogopogo Fed Com Pad Section 10 of T22S, R33E, Lea County

Ms. Victoria Venegas,

Enclosed is a complete C-144 permit application for a Temporary Pit with non-low chloride drilling fluid located at an existing Chevron USA Inc. O&G Business lease #NMNM 17440 located in Section 10, T22S R33E. This package includes the following documentation:

- C-144 for Non-Low Chloride Temporary Pit
- Siting Criteria Demonstration
- Siting Criteria Figures 1-11
- Variance Requests
- Appendix A USGS Groundwater Data
- Appendix B NMOSE Water Data
- Appendix C Hydrogeologic Data
- Appendix D Design Plan
- Appendix E Operating and Maintenance Plan
- Appendix F Closure Plan
- Appendix G Evaluation of Unstable Conditions
- Attachments 1 3

Please do not hesitate to contact us if you require any additional information or clarification supporting the approval of this application.

Sincerely,

Tony VallejoJonathon FisherRachel CruzSr. Workforce Safety &Wells EngineerProject Manager (Arcadis U.S., Inc.)Environmental Specialist – FactoryJonathonFisher@chevron.comrachel.cruz@arcadis.comjvallejo@chevron.comFactoryFactory

Chevron USA Incorporated Chevron USA Inc. 6301 Deauville Blvd Midland, TX 79706 Tel 432 687 7524

## C-144 Permit Package Dagger Lake 15 22 Ogopogo Pad, Temporary Pit Section 10 of T22S, R33E, Lea County

DL 15 22 Ogopogo Fed Com #422H DL 15 22 Ogopogo Fed Com #423H DL 15 22 Ogopogo Fed Com #424H

Chevron USA Incorporated 6301 Deauville Blvd. Midland, TX 79706 (432) 687-7524 District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Page 4 of 132

Form C-144 Revised April 3, 2017

For temporary pits, below-grade tanks, and multi-well fluid management pits, submit to the appropriate NMOCD District Office. For permanent pits submit to the Santa Fe Environmental Bureau office and provide a copy to the appropriate NMOCD District Office.

#### <u>Pit, Below-Grade Tank, or</u> <u>Proposed Alternative Method Permit or Closure Plan Application</u>

Type of action: Below grade tank registration

Permit of a pit or proposed alternative method

Closure of a pit, below-grade tank, or proposed alternative method

Modification to an existing permit/or registration

Closure plan only submitted for an existing permitted or non-permitted pit, below-grade tank,

or proposed alternative method

Instructions: Please submit one application (Form C-144) per individual pit, below-grade tank or alternative request

Please be advised that approval of this request does not relieve the operator of liability should operations result in pollution of surface water, ground water or the environment. Nor does approval relieve the operator of its responsibility to comply with any other applicable governmental authority's rules, regulations or ordinances.

| 1.                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operator:         Chevron USA Inc.         OGRID #:         4323                                                                                                                    |
| Address: 6301 Deauville Blvd., Midland, TX 79706                                                                                                                                    |
| Facility or well name: <u>DL 15 22 Ogopogo Fed Com</u>                                                                                                                              |
| API Number: OCD Permit Number:                                                                                                                                                      |
| U/L or Qtr/Qtr <u><b>I &amp; J</b></u> Section <u><b>10</b></u> Township <u><b>22S</b></u> Range <u><b>33E</b></u> County: <u><b>Lea</b></u>                                        |
| Center of Proposed Design: Latitude <u>32.405153</u> Longitude <u>-103.555794</u> NAD83                                                                                             |
| Surface Owner: 🗌 Federal 🔀 State 🗋 Private 🗋 Tribal Trust or Indian Allotment                                                                                                       |
|                                                                                                                                                                                     |
| Pit:       Subsection F, G or J of 19.15.17.11 NMAC                                                                                                                                 |
| Temporary: 🛛 Drilling 🗌 Workover                                                                                                                                                    |
| Permanent Emergency Cavitation P&A Multi-Well Fluid Management Low Chloride Drilling Fluid yes no                                                                                   |
| Lined Unlined Liner type: Thickness <u>40</u> mil LLDPE HDPE PVC Other                                                                                                              |
| String-Reinforced                                                                                                                                                                   |
| Liner Seams: 🛛 Welded 🗋 Factory 🗋 Other Volume: <u>2 x 25,000 bbl</u> Dimensions: L <u>313 ft x W 244 ft x D 10 ft</u>                                                              |
| 3.                                                                                                                                                                                  |
| Below-grade tank: Subsection I of 19.15.17.11 NMAC                                                                                                                                  |
| Volume:bbl Type of fluid:                                                                                                                                                           |
| Tank Construction material:                                                                                                                                                         |
| Secondary containment with leak detection 🗌 Visible sidewalls, liner, 6-inch lift and automatic overflow shut-off                                                                   |
| □ Visible sidewalls and liner □ Visible sidewalls only □ Other                                                                                                                      |
| Liner type: Thicknessmil HDPE PVC Other                                                                                                                                             |
|                                                                                                                                                                                     |
| 4.                                                                                                                                                                                  |
| Submittal of an exception request is required. Exceptions must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.                              |
| Submittar of an exception request is required. Exceptions must be submitted to the Santa re Environmental Bureau office for consideration of approval.                              |
|                                                                                                                                                                                     |
| Fencing: Subsection D of 19.15.17.11 NMAC (Applies to permanent pits, temporary pits, and below-grade tanks)                                                                        |
| Chain link, six feet in height, two strands of barbed wire at top ( <i>Required if located within 1000 feet of a permanent residence, school, hospital, institution or church</i> ) |
| Four foot height, four strands of barbed wire evenly spaced between one and four feet                                                                                               |
| Alternate. Please specify                                                                                                                                                           |

| Netting: | Subsection E of 19.15.17.11 | I NMAC | (Applies to permane | ent pits and permaner | <i>it open top tanks)</i> |
|----------|-----------------------------|--------|---------------------|-----------------------|---------------------------|

Screen Netting Other

Monthly inspections (If netting or screening is not physically feasible)

Signs: Subsection C of 19.15.17.11 NMAC

12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers

Signed in compliance with 19.15.16.8 NMAC

#### Variances and Exceptions:

Justifications and/or demonstrations of equivalency are required. Please refer to 19.15.17 NMAC for guidance.

Please check a box if one or more of the following is requested, if not leave blank:

Variance(s): Requests must be submitted to the appropriate division district for consideration of approval. See Variance Requests Exception(s): Requests must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.

Siting Criteria (regarding permitting): 19.15.17.10 NMAC Instructions: The applicant must demonstrate compliance for each siting criteria below in the application. Recommendations of acceptable source material are provided below. Siting criteria does not apply to drying pads or above-grade tanks.

| General siting                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Ground water is less than 25 feet below the bottom of a low chloride temporary pit or below-grade tank                                                                                                                                                                                                                                                                                            | ☐ Yes ☐ No<br>⊠ NA |
| Ground water is less than 50 feet below the bottom of a Temporary pit, permanent pit, or Multi-Well Fluid Management pit.         -       □       NM Office of the State Engineer - iWATERS database search; □       USGS; □       Data obtained from nearby wells See Appendices A, B, Figure 7                                                                                                  | ☐ Yes ⊠ No<br>☐ NA |
| <ul> <li>Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. (Does not apply to below grade tanks)</li> <li>Written confirmation or verification from the municipality; Written approval obtained from the municipality See Figures 2 &amp; 7</li> </ul> | 🗌 Yes 🛛 No         |
| <ul> <li>Within the area overlying a subsurface mine. (Does not apply to below grade tanks)</li> <li>Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division<br/>See Figure 4</li> </ul>                                                                                                                                                                        | 🗌 Yes 🛛 No         |
| <ul> <li>Within an unstable area. (Does not apply to below grade tanks)</li> <li>Engineering measures incorporated into the design; NM Bureau of Geology &amp; Mineral Resources; USGS; NM Geological Society; Topographic map</li> <li>See Figures 6, 8, 9, Appendix G</li> </ul>                                                                                                                | 🗌 Yes 🛛 No         |
| <ul> <li>Within a 100-year floodplain. (Does not apply to below grade tanks)</li> <li>FEMA map<br/>See Figure 3</li> </ul>                                                                                                                                                                                                                                                                        | 🗌 Yes 🛛 No         |
| Below Grade Tanks                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| <ul> <li>Within 100 feet of a continuously flowing watercourse, significant watercourse, lakebed, sinkhole, wetland or playa lake (measured from the ordinary high-water mark).</li> <li>Topographic map; Visual inspection (certification) of the proposed site</li> </ul>                                                                                                                       | 🗌 Yes 🗌 No         |
| <ul> <li>Within 200 horizontal feet of a spring or a fresh water well used for public or livestock consumption;.</li> <li>NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site</li> </ul>                                                                                                                                            | 🗌 Yes 🗌 No         |
| Temporary Pit using Low Chloride Drilling Fluid (maximum chloride content 15,000 mg/liter)                                                                                                                                                                                                                                                                                                        |                    |
| <ul> <li>Within 100 feet of a continuously flowing watercourse, or any other significant watercourse or within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). (Applies to low chloride temporary pits.)</li> <li>Topographic map; Visual inspection (certification) of the proposed site</li> </ul>                                               | 🗌 Yes 🗌 No         |
| Within 300 feet from a occupied permanent residence, school, hospital, institution, or church in existence at the time of initial application.                                                                                                                                                                                                                                                    | 🗌 Yes 🗌 No         |

Visual inspection (certification) of the proposed site; Aerial photo; Satellite image

| Within 200 horizontal feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 300feet of any other fresh water well or spring, in existence at the time of the initial application. NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 🗌 Yes 🗌 No |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
| <ul> <li>Within 100 feet of a wetland.</li> <li>US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 🗌 Yes 🗌 No |  |  |
| Temporary Pit Non-low chloride drilling fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |  |  |
| <ul> <li>Within 300 feet of a continuously flowing watercourse, or any other significant watercourse, or within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark).</li> <li>Topographic map; Visual inspection (certification) of the proposed site See Figure 6</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 🗌 Yes 🛛 No |  |  |
| <ul> <li>Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application.</li> <li>Visual inspection (certification) of the proposed site; Aerial photo; Satellite image<br/>See Figure 2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🗌 Yes 🛛 No |  |  |
| <ul> <li>Within 500 horizontal feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 1000 feet of any other fresh water well or spring, in the existence at the time of the initial application;</li> <li>NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site See Appendices A, B, and Figures 1 &amp; 2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 🗌 Yes 🛛 No |  |  |
| <ul> <li>Within 300 feet of a wetland.</li> <li>US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site See Figures 2, 5, &amp; 6</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 🗌 Yes 🛛 No |  |  |
| Permanent Pit or Multi-Well Fluid Management Pit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |  |  |
| <ul> <li>Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark).</li> <li>Topographic map; Visual inspection (certification) of the proposed site</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 🗌 Yes 🗌 No |  |  |
| <ul> <li>Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application.</li> <li>Visual inspection (certification) of the proposed site; Aerial photo; Satellite image</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🗌 Yes 🗌 No |  |  |
| <ul> <li>Within 500 horizontal feet of a spring or a fresh water well used for domestic or stock watering purposes, in existence at the time of initial application.</li> <li>NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 🗌 Yes 🗌 No |  |  |
| <ul> <li>Within 500 feet of a wetland.</li> <li>US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 🗌 Yes 🗌 No |  |  |
| <ul> <li>10.</li> <li><u>Temporary Pits, Emergency Pits, and Below-grade Tanks Permit Application Attachment Checklist</u>: Subsection B of 19.15.17.9 NMAC</li> <li><i>Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the documents are attached.</i></li> <li>☐ Hydrogeologic Report (Below-grade Tanks) - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC</li> <li>☑ Hydrogeologic Data (Temporary and Emergency Pits) - based upon the requirements of Paragraph (2) of Subsection B of 19.15.17.9 NMAC</li> <li>See Appendix C</li> <li>☑ Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Attached</li> <li>☑ Design Plan - based upon the appropriate requirements of 19.15.17.12 NMAC See Appendix D</li> <li>☑ Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.13 NMAC See Appendix F</li> </ul> |            |  |  |
| Previously Approved Design (attach copy of design) API Number: or Permit Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |  |  |
| II.         Multi-Well Fluid Management Pit Checklist:       Subsection B of 19.15.17.9 NMAC         Instructions:       Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the doc attached.         Design Plan - based upon the appropriate requirements of 19.15.17.11 NMAC         Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC         A List of wells with approved application for permit to drill associated with the pit.         Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19.         and 19.15.17.13 NMAC         Hydrogeologic Data - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.10 NMAC         Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC                                                               |            |  |  |

| Previously Approved Design (attach copy of design) API Number: or Permit Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|
| I2.         Permanent Pits Permit Application Checklist:       Subsection B of 19.15.17.9 NMAC         Instructions:       Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the a attached. <ul> <li>Hydrogeologic Report - based upon the requirements of Paragraph (1) of Subsection B of 19.15.17.9 NMAC</li> <li>Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC</li> <li>Climatological Factors Assessment</li> <li>Certified Engineering Design Plans - based upon the appropriate requirements of 19.15.17.11 NMAC</li> <li>Dike Protection and Structural Integrity Design - based upon the appropriate requirements of 19.15.17.11 NMAC</li> <li>Leak Detection Design - based upon the appropriate requirements of 19.15.17.11 NMAC</li> <li>Quality Control/Quality Assurance Construction and Installation Plan</li> <li>Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC</li> <li>Freeboard and Overtopping Prevention Plan - based upon the appropriate requirements of 19.15.17.11 NMAC</li> <li>Nuisance or Hazardous Odors, including H<sub>2</sub>S, Prevention Plan</li> <li>Emergency Response Plan</li> <li>Oil Field Waste Stream Characterization</li> <li>Monitoring and Inspection Plan</li> <li>Erosion Control Plan</li> <li>Closure Plan - based upon the appropriate requirements of 19.15.17.9 NMAC and 19.15.17.13 NMAC</li> </ul> | locuments are      |  |  |  |
| 13.       Proposed Closure:       19.15.17.13 NMAC See Appendix F         Instructions: Please complete the applicable boxes, Boxes 14 through 18, in regards to the proposed closure plan.         Type:       Drilling       Workover         Emergency       Cavitation       P&A         Permanent Pit       Below-grade Tank       Multi-well FI         Alternative       Proposed Closure Method:       Waste Excavation and Removal         Waste Removal       (Closed-loop systems only)         On-site Closure Method (Only for temporary pits and closed-loop systems)         In-place Burial       On-site Trench Burial         Alternative Closure Method       On-site Trench Burial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uid Management Pit |  |  |  |
| 14.         Waste Excavation and Removal Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be attached to the closure plan. Please indicate, by a check mark in the box, that the documents are attached.         Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC         Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection C of 19.15.17.13 NMAC         Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings)         Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC         Re-vegetation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC         Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |  |  |  |
| <sup>15.</sup><br>Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC<br>Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable source material are<br>provided below. Requests regarding changes to certain siting criteria require justifications and/or demonstrations of equivalency. Please refer to<br>19.15.17.10 NMAC for guidance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |  |  |
| <ul> <li>Ground water is less than 25 feet below the bottom of the buried waste.</li> <li>NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells</li> <li>See Appendices A &amp; B, and Figure 7</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | □ Yes ⊠ No<br>□ NA |  |  |  |
| <ul> <li>Ground water is between 25-50 feet below the bottom of the buried waste</li> <li>NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells</li> <li>See Appendices A &amp; B, and Figure 7</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ☐ Yes ⊠ No<br>☐ NA |  |  |  |
| <ul> <li>Ground water is more than 100 feet below the bottom of the buried waste.</li> <li>NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells</li> <li>See Appendices A &amp; B, and Figure 7</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ⊠ Yes □ No<br>□ NA |  |  |  |
| <ul> <li>Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark).</li> <li>Topographic map; Visual inspection (certification) of the proposed site See Figure 6</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🗌 Yes 🛛 No         |  |  |  |
| <ul> <li>Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application.</li> <li>Visual inspection (certification) of the proposed site; Aerial photo; Satellite image See Figure 2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 🗌 Yes 🛛 No         |  |  |  |
| Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 🗌 Yes 🔀 No         |  |  |  |

•

| Received by OCD: 3/9/2021 3:00:25 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page 8 of 1                           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
| <ul> <li>NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site<br/>See Appendices A &amp; B, and Figure 7</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |  |  |  |
| Written confirmation or verification from the municipality; Written approval obtained from the municipality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 🗌 Yes 🛛 No                            |  |  |  |
| <ul> <li>Within 300 feet of a wetland.</li> <li>US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site</li> <li>See Figures 2, 5 &amp; 6</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 🗌 Yes 🛛 No                            |  |  |  |
| <ul> <li>Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended.</li> <li>Written confirmation or verification from the municipality; Written approval obtained from the municipality See Figure 2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 🗌 Yes 🛛 No                            |  |  |  |
| <ul> <li>Within the area overlying a subsurface mine.</li> <li>Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division</li> <li>See Figure 4</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🗌 Yes 🛛 No                            |  |  |  |
| <ul> <li>Within an unstable area.</li> <li>Engineering measures incorporated into the design; NM Bureau of Geology &amp; Mineral Resources; USGS; NM Geological Society; Topographic map</li> <li>See Figures 6, 8, &amp; 9, Appendix G</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 🗌 Yes 🛛 No                            |  |  |  |
| Within a 100-year floodplain.<br>- FEMA map See Figure 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 🗌 Yes 🛛 No                            |  |  |  |
| <ul> <li>Construction/Design Plan of Burial Trench (if applicable) based upon the appropriate requirements of Subsection K of 19.15.17.13</li> <li>Construction/Design Plan of Temporary Pit (for in-place burial of a drying pad) - based upon the appropriate requirements of 19.52.17.13</li> <li>Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13</li> <li>NMAC See Appendix F</li> <li>Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of 19.15.17.13</li> <li>NMAC See Appendix F</li> <li>Waste Material Sampling Plan - based upon the appropriate requirements of 19.15.17.13</li> <li>NMAC See Appendix F</li> <li>Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings or in case on-site closure standards can See Appendix F</li> <li>Soil Cover Design - based upon the appropriate requirements of Subsection H of 19.15.17.13</li> <li>NMAC See Appendix F</li> <li>Soil Cover Design - based upon the appropriate requirements of Subsection H of 19.15.17.13</li> <li>NMAC See Appendix F</li> <li>Stite Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13</li> <li>NMAC See Appendix F</li> <li>Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13</li> <li>NMAC See Appendix F</li> <li>Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13</li> <li>NMAC See Appendix F</li> <li>Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13</li> <li>NMAC See Appendix F</li> <li>I hereby certify that the information submitted with this application is true, accurate and complete to the best of my knowledge and be</li> </ul> | 9.15.17.11 NMAC                       |  |  |  |
| Name (Print):       Tony Vallejo         Title:       Sr. Work Force Safety & Environmental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Specialist - Factory                  |  |  |  |
| Signature: Tony Vallejo Date: March 5, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · · |  |  |  |
| e-mail address: JVallejo@chevron.com Telephone: O: 432-687-7524 or C: 325-450-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1413                                  |  |  |  |
| 18.       OCD Approval:       Permit Application (including closure plan)       Closure Plan (only)       OCD Conditions (see attachment)         OCD Representative Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |  |  |  |
| 19. <u>Closure Report (required within 60 days of closure completion)</u> :       19.15.17.13 NMAC         Instructions: Operators are required to obtain an approved closure plan prior to implementing any closure activities and submitting the closure report.         The closure report is required to be submitted to the division within 60 days of the completion of the closure activities. Please do not complete this section of the form until an approved closure plan has been obtained and the closure activities have been completed.            Closure Completion Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |  |  |  |
| 20.     Closure Method:     Waste Excavation and Removal On-Site Closure Method Alternative Closure Method Waste Removal (Closed-     If different from approved plan, please explain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | loop systems only)                    |  |  |  |

Form C-144 Released to Imaging: 5/25/2021 11:14:28 AM

e-mail address:\_

| Clearne Demont Attachment Checkliste Instructioner Each of                                                                                                                          |                                           |                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|
| Closure Report Attachment Checklist: Instructions: Each of                                                                                                                          | f the following items must be attache     | d to the closure report. Please indicate, by a check |
| mark in the box, that the documents are attached.                                                                                                                                   |                                           |                                                      |
| Proof of Closure Notice (surface owner and division)                                                                                                                                |                                           |                                                      |
| Proof of Deed Notice (required for on-site closure for priv                                                                                                                         | ate land only)                            |                                                      |
| Plot Plan (for on-site closures and temporary pits)                                                                                                                                 |                                           |                                                      |
| Confirmation Sampling Analytical Results (if applicable)                                                                                                                            |                                           |                                                      |
| Waste Material Sampling Analytical Results (required for                                                                                                                            | on-site closure)                          |                                                      |
| Disposal Facility Name and Permit Number                                                                                                                                            |                                           |                                                      |
| Soil Backfilling and Cover Installation                                                                                                                                             |                                           |                                                      |
| Re-vegetation Application Rates and Seeding Technique                                                                                                                               |                                           |                                                      |
| Site Reclamation (Photo Documentation)                                                                                                                                              |                                           |                                                      |
|                                                                                                                                                                                     | · · ·                                     | NAD 01027 0 1092                                     |
| On-site Closure Location: Latitude                                                                                                                                                  | Longitude                                 | NAD: 1927 1983                                       |
| 22.                                                                                                                                                                                 | Longitude                                 | NAD: []1927 [] 1983                                  |
|                                                                                                                                                                                     | Longitude                                 | NAD: []1927 [] 1983                                  |
| 22.<br><u>Operator Closure Certification</u> :<br>I hereby certify that the information and attachments submitted w                                                                 | vith this closure report is true, accurat | e and complete to the best of my knowledge and       |
| 22.<br>Operator Closure Certification:                                                                                                                                              | vith this closure report is true, accurat | e and complete to the best of my knowledge and       |
| 22.<br>Operator Closure Certification:<br>I hereby certify that the information and attachments submitted w<br>belief. I also certify that the closure complies with all applicable | vith this closure report is true, accurat | e and complete to the best of my knowledge and       |
| 22.<br><u>Operator Closure Certification</u> :<br>I hereby certify that the information and attachments submitted w                                                                 | vith this closure report is true, accurat | e and complete to the best of my knowledge and       |
| 22.<br>Operator Closure Certification:<br>I hereby certify that the information and attachments submitted w<br>belief. I also certify that the closure complies with all applicable | vith this closure report is true, accurat | e and complete to the best of my knowledge and       |

Oil Conservation Division

Page 6 of 6

.

.....

Telephone: \_

## Siting Criteria Demonstration (19.15.17.10)

Temporary Pit containing non-low chloride fluids Dagger Lake 15 22 Ogopogo Pad Pit Section 10, T22S, R33E

## Depth to Groundwater, 19.15.17.10.3(a)

**Figure 7, Appendices A & B**, and the discussion presented below demonstrate that the groundwater within the broader area of the proposed site ranges from 35 to 508 feet near the Temporary Pit. The nearest water well to the proposed reserve pit is ~1.9 miles at a depth of 508 ft.

**Figure 7** depicts the location of the pit relative to the locations of water wells within 5 miles of the pit for which water level data are available. Depth to water for the most recent, reliable measurement and the well identification number are shown adjacent to each well on **Figure 7**. The approximate boundary of the Pecos River Basin alluvial aquifer is located ~24 miles to the southwest of the Temporary Pit. Water well data, including gauging dates, are detailed in **Appendix A** (USGS) and **Appendix B** (NMOSE).

All water wells located within 5 miles of the temporary pit were gauged by USGS at > 130 ft bgs.

- The nearest water well to the pit location is located approximately 2 miles to the southeast are completed in the Chinle Formation. Water level was measured at 290 ft bgs in 1996 (3,128 ft above NGVD29) within a USGS well. A second USGS well located near this well had a measured depth to water of 388 feet bgs in 1972 (3,118 ft above NGVD29). This well is also completed in the Chinle Formation.
- To the northeast, the nearest well is located 3.4 miles away and is completed in the Alluvium/Ogallala. Water level was measured at 56 ft bgs (3,604.3 ft above NAVD88) in 1986.
- To the east, the nearest well is located 3.5 miles away and is completed in the Alluvium. Water level was measured at 31 ft bgs (3,547.2 ft above NAVD88) in 1996.
- To the northwest, nearest water well to the pit location is located approximately 3.4 miles away is completed in the Chinle Formation. Water level was measured at 178 ft bgs in 1968 (3,501 ft above NGVD29) within a USGS well. A second USGS well located near this well had a measured depth to water of 179 feet bgs in 1997 (3,509 ft above NGVD29). This well is also completed in the Chinle Formation.

• No USGS water wells were found to the west and south of the proposed pit location.

A thin layer of Quaternary alluvium is present at surface in the vicinity of the proposed location and is composed of unconsolidated to partially consolidated sand, silt, clay and caliche. The alluvium thickness appears to be approximately 20 feet or less. The alluvium is underlain by the Ogallala formation which ranges up to approximately 205 feet thick in this area (Arcadis 2020<sup>1</sup>). The Quaternary deposits / Ogallala formation are underlain by the Triassic Dockum Group including the Chinle and Santa Rosa formations and deeper, Permian-age strata (**Figure 9**). The Chinle Formation outcrops several miles to the east of the proposed location and the Permian strata outcrop several miles to the west along the course of the Pecos River.

Geotechnical report and boring log were obtained for a proposed Dagger Lake Above-Ground Storage Tank (AST) in Section 4 located ~1.1 miles to the northwest of the proposed pit location (**Attachment 2**). The boring was installed to a depth of 70 feet. Groundwater was not encountered in the boring during drilling. The boring was backfilled with auger cuttings upon completion of the drilling.

<sup>&</sup>lt;sup>1</sup> Arcadis 2020. Dagger Lake Development Area Environmental Field Survey. Prepared for Chevron.

## Proximity to Surface Water, 19.15.17.10.3(b)

**Figure 6** visualizes USGS contour lines and the USGS National Hydrography Dataset. The map demonstrates that the location is not within 1,000 feet of a continuously flowing waterway course, any other significant watercourse or lakebed, sinkhole, or playa lake.

- The nearest feature (ephemeral drainage) is more than 500 feet northwest of the pit location.
- The nearest surface water feature (Pecos River) is in excess of 26 miles west-southwest of the pit location.

# Proximity to Occupied Residences, Schools, Hospitals, Institutions or Churches, 19.15.17.10.3(c)

The ESRI aerial imagery in **Figure 2** demonstrates that the location is not within 300 feet of occupied residences, schools, hospitals, institutions or churches.

• There are no structures within 1,000 feet of the pit location.

### Proximity to springs and/or Domestic Freshwater Wells 19.15.17.10.3(d)

No springs or domestic freshwater wells have been mapped within 300 ft of the pit locations.

## Proximity to Incorporated Municipal Boundaries and Fresh Water Well Fields 19.15.17.10.3(e)

**Figure 1** demonstrates that the location is not within incorporated municipal boundaries or defined municipal fresh water well fields covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended.

• The closest municipality is the city of Carlsbad, approximately 37 miles to the west.

## Proximity to Wetlands, 19.15.17.10.3(f)

Utilizing USFWS wetland data, **Figure 5** demonstrates that the proposed location is not located within 300 feet of a wetland.

Siting Criteria Demonstration

- A pond associated with oil and gas development is the nearest "freshwater pond" identified by USFWS and is located approximately 4,000 feet away.
- A riverine (ephemeral) is located over 2.5 miles east of the project location.

## Proximity to Subsurface Mines, 19.15.17.10.3(g)

Analysis of aerial imagery in the vicinity of the proposed temporary pit show that the nearest mines are all surficial caliche pits. There are no subsurface mines in the area as indicated in **Figure 4**.

## Proximity to Unstable Area, 19.15.17.10.3(h)

**Figure 8** identifies the location of the proposed temporary pit with respect to BLM Karst areas. The proposed Temporary Pit is mapped in a "Low Potential" karst area. The area lies near the northeast margin of the Delaware Basin. Bedrock occurring beneath the proposed project area consists of the Triassic-aged Dockum Group. Underlying the Dockum Group are the Dewey Lake redbeds. Both of these formations are composed chiefly of clastic (insoluble), non-karst-forming rocks. Beneath these formations are Permian-aged rocks of the Rustler and Salado Formations. These rocks contain significant beds of halite (i.e., rock salt) and anhydrite, making them susceptible to karst formation. The top of the Rustler Formation in the proposed project area is approximately 800 feet below the land surface (Crowl et al. 2011<sup>2</sup>). There are, however, no indications that voids or other karst features are present or are likely to form in the vicinity of the proposed location. Therefore, local karst potential is likely to be low. An Evaluation of Unstable Conditions is presented in Appendix G that details several lines of evidence in support of this position. In summary:

- 1. There are no dissolution features within ~10-miles of the proposed location (**Figure 11**),
- Karst forming strata are over ~1,000-feet deep beneath the proposed location (Appendix G – Figure G.1),

<sup>&</sup>lt;sup>2</sup> Crowl, W. J., D. E. Hulse, and G. Tucker, P.E., 2011. NI 43-101 Technical Report Prefeasibility Study for the Ochoa Project, Lea County, New Mexico. Prepared for IC Potash Corporation by Gustavsen and Associates, December 30, 2011.

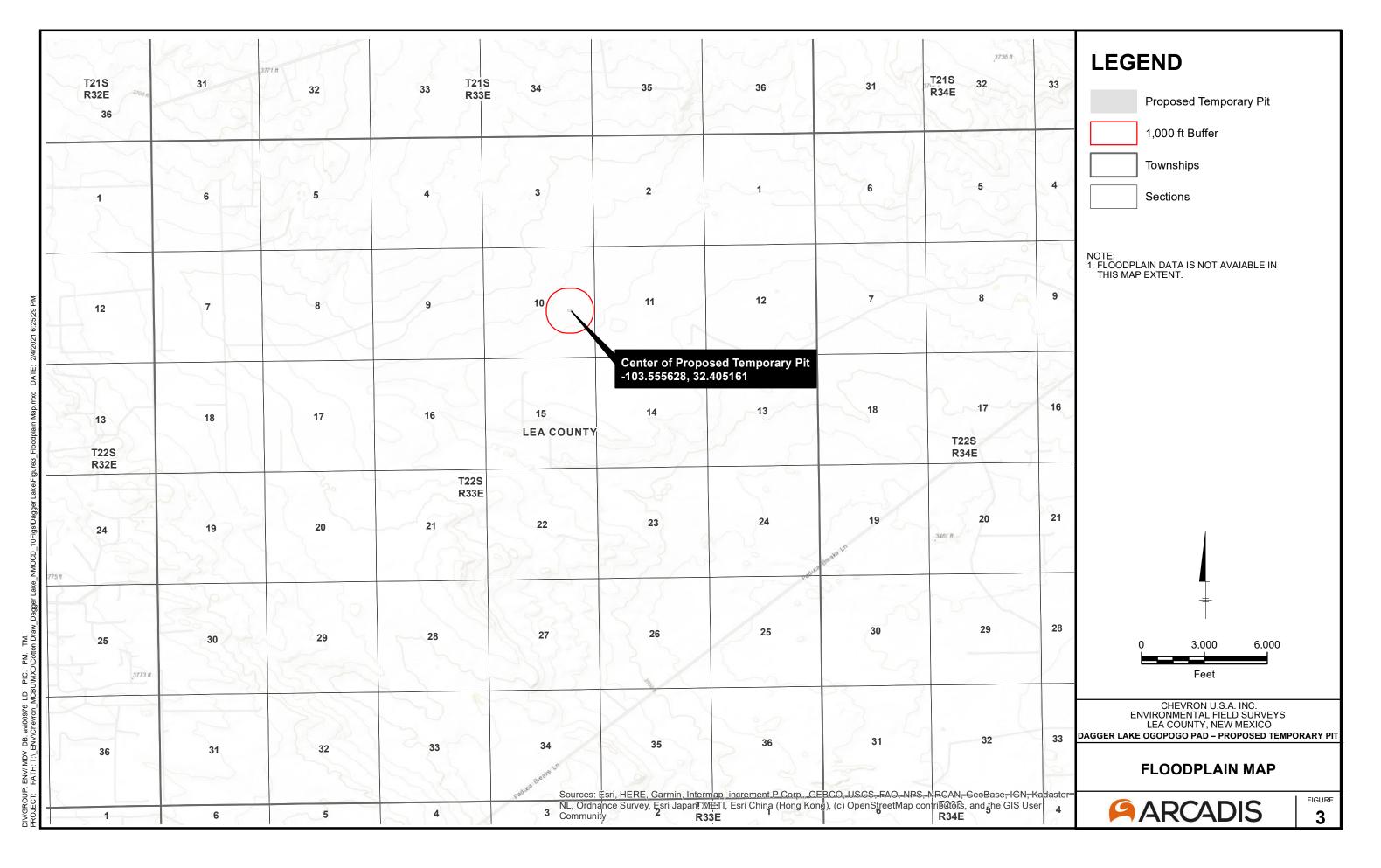
- An Arcadis field study of the area indicated no closed depressions, caves, or fissures in the immediate vicinity of the proposed pit (Attachment 1),
- 4. Tetra Tech geotechnical report and boring log from ~1.1. miles away indicated low karst potential (**Attachment 2**)
- 5. The Bureau of Land Management, Paul Murphy prepared the Environmental Assessment (EA), document number - DOI-BLM-P020-2020-0095-EA, evaluating DL 09 16 Loch Ness Pad 1. This EA analyses a pad near the proposed temporary pit location and karst was not analyzed in the EA and therefore was not identified an issue in the project area. (**Attachment 3**).

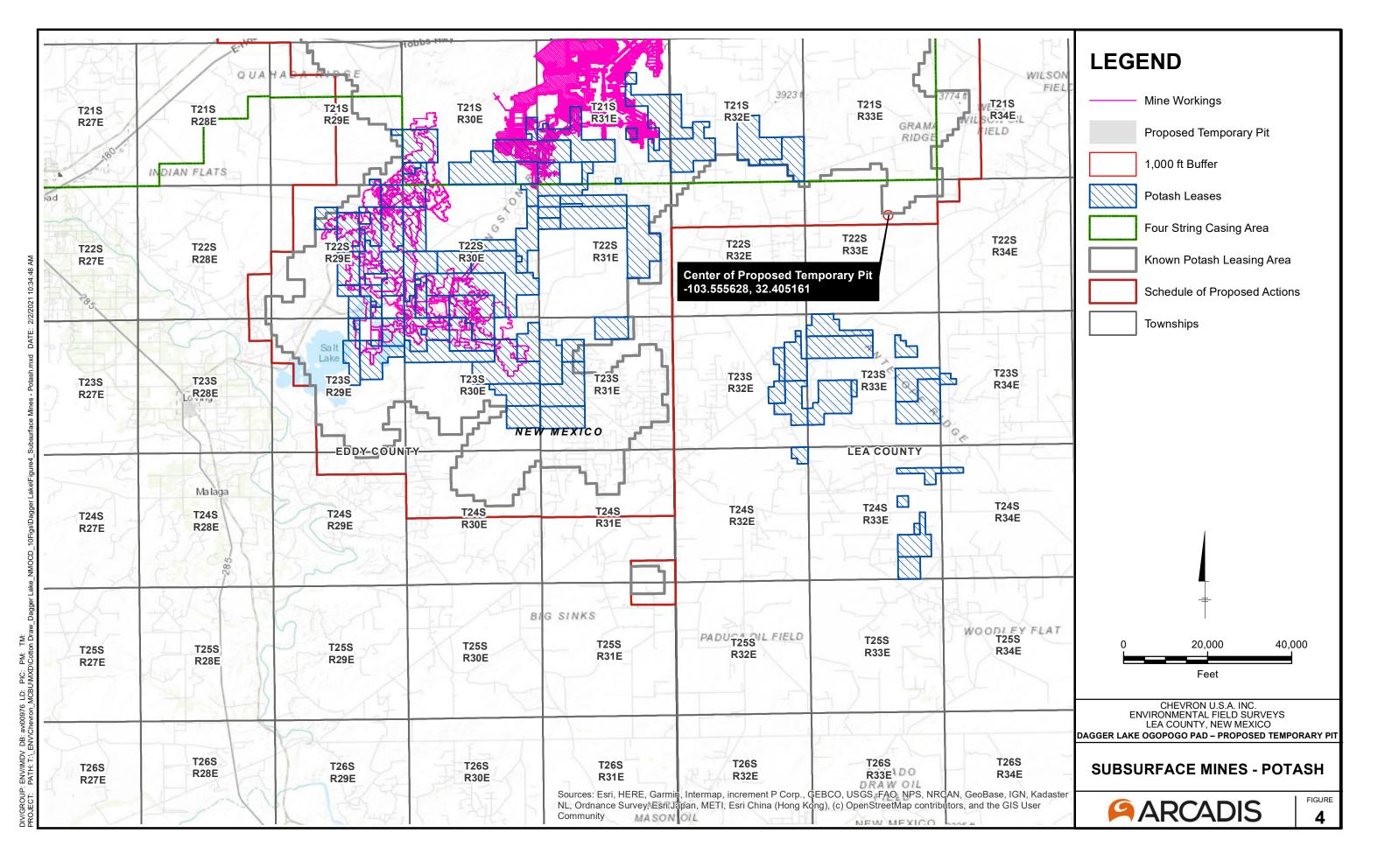
In the unlikely event that a void occurs during construction or operation activities, all activities must stop immediately, and the BLM should then be contacted within 24 hours to devise the best management plan to protect the environment and human safety.

## Proximity to Floodplains, 19.15.17.10.3(i)

The location is within an area that has not yet been mapped by the Federal Emergency Management Agency with respect to the Flood Insurance Rate 100-Year Floodplain (**Figure 3**). In lieu of FEMA data, **Figure 10** visualizes the USDA – SSURGO Soils data for dominant flooding frequency condition. The location is not located within an area with any indication of flooding. The nearest area determined to have "Rare" flooding frequency is in excess of 1 mile away. As defined by the USDA, "*Rare' means that flooding is unlikely but possible under unusual weather conditions. The chance of flooding is 1 to 5 percent in any year*".

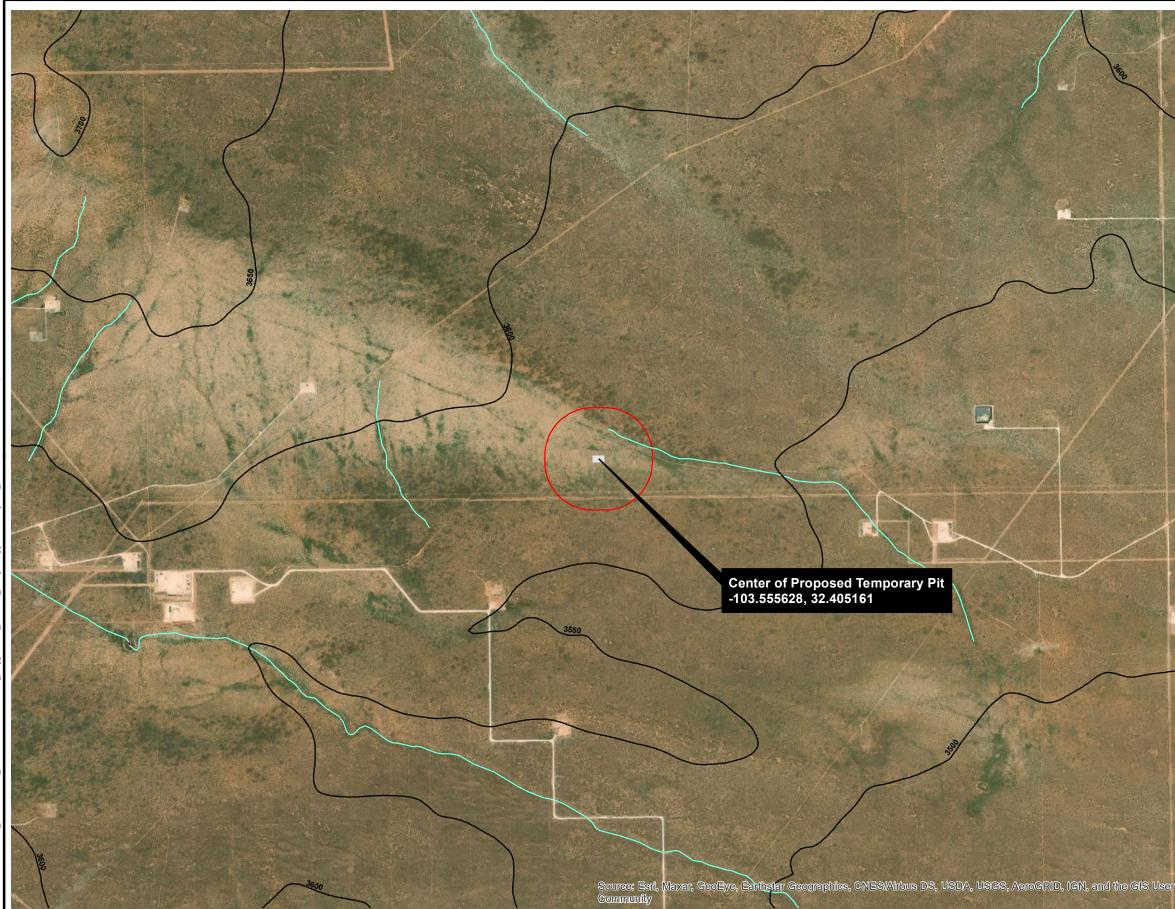
## Site Specific Information, Figures 1-11


Temporary Pit containing non-low chloride fluids Dagger Lake 15 22 Ogopogo Pad Pit Section 10, T22S, R33E

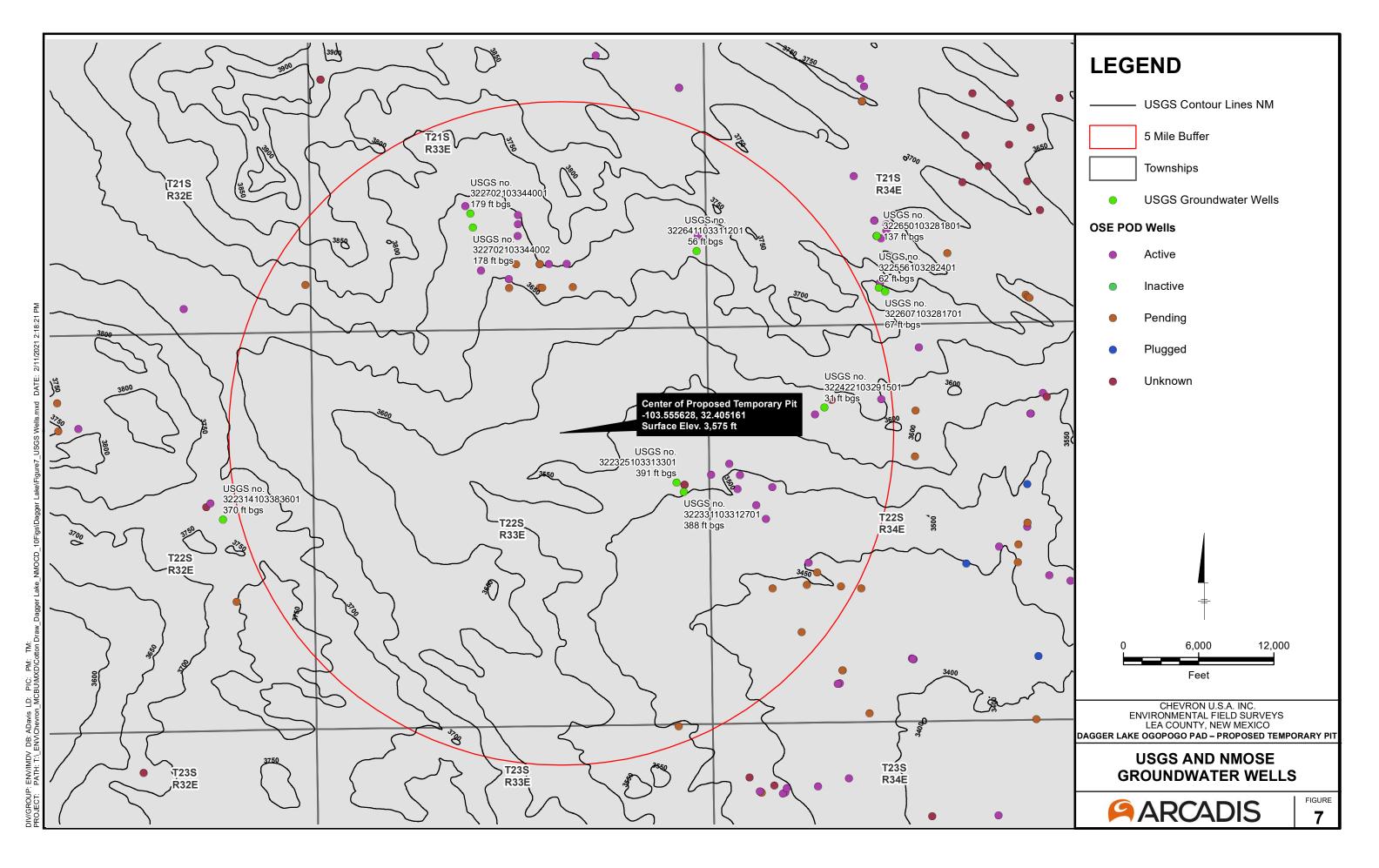


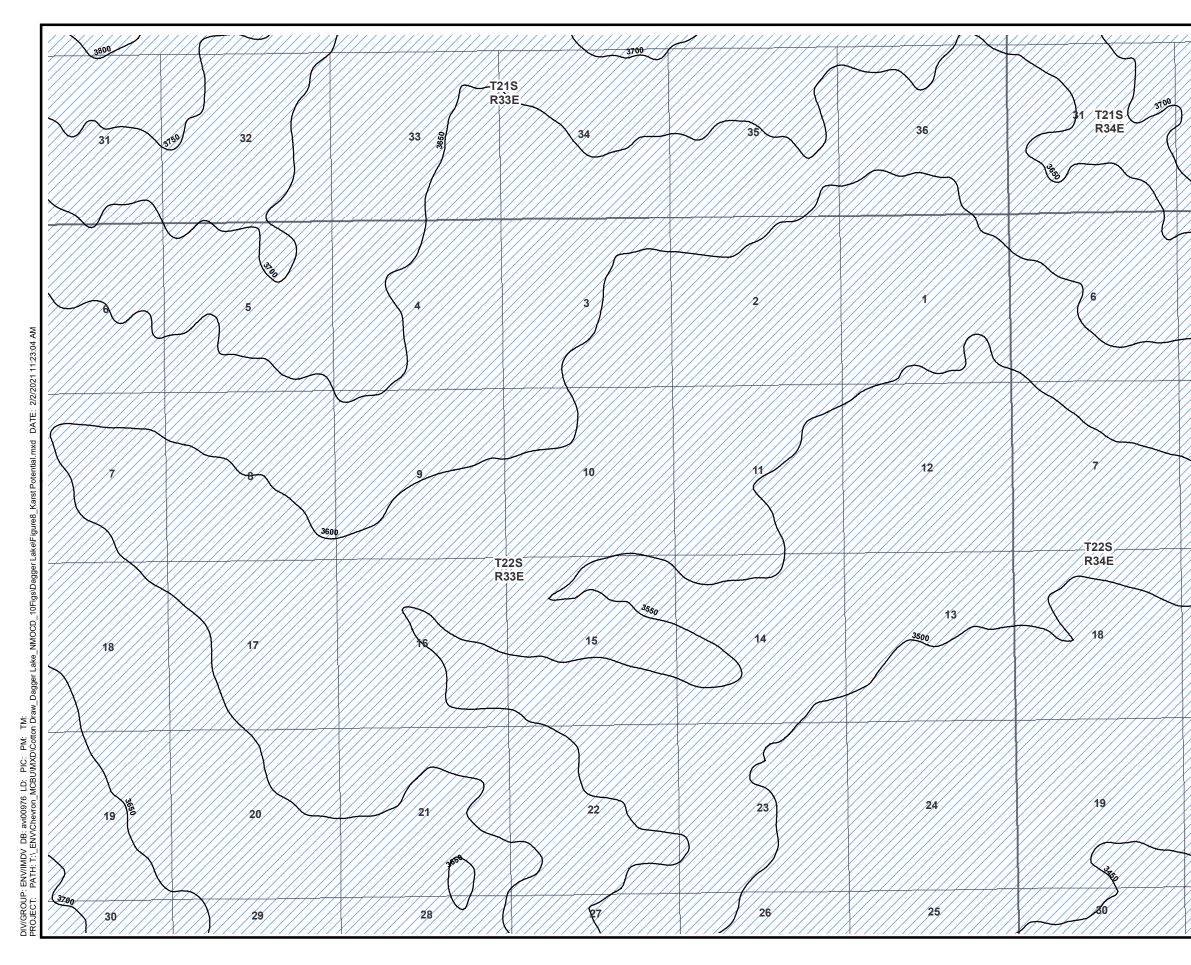

•

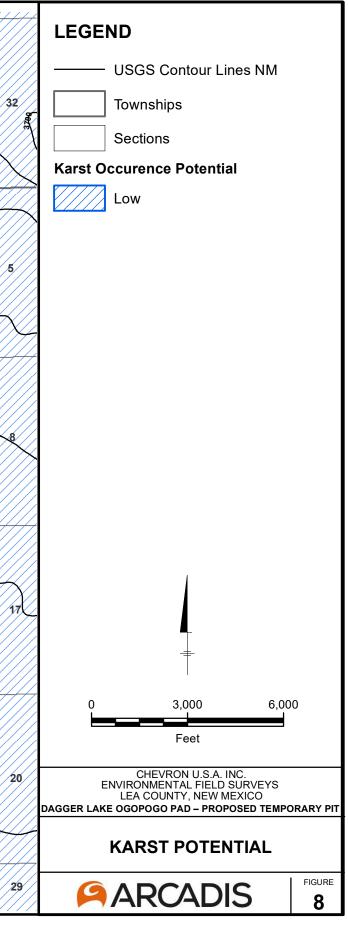


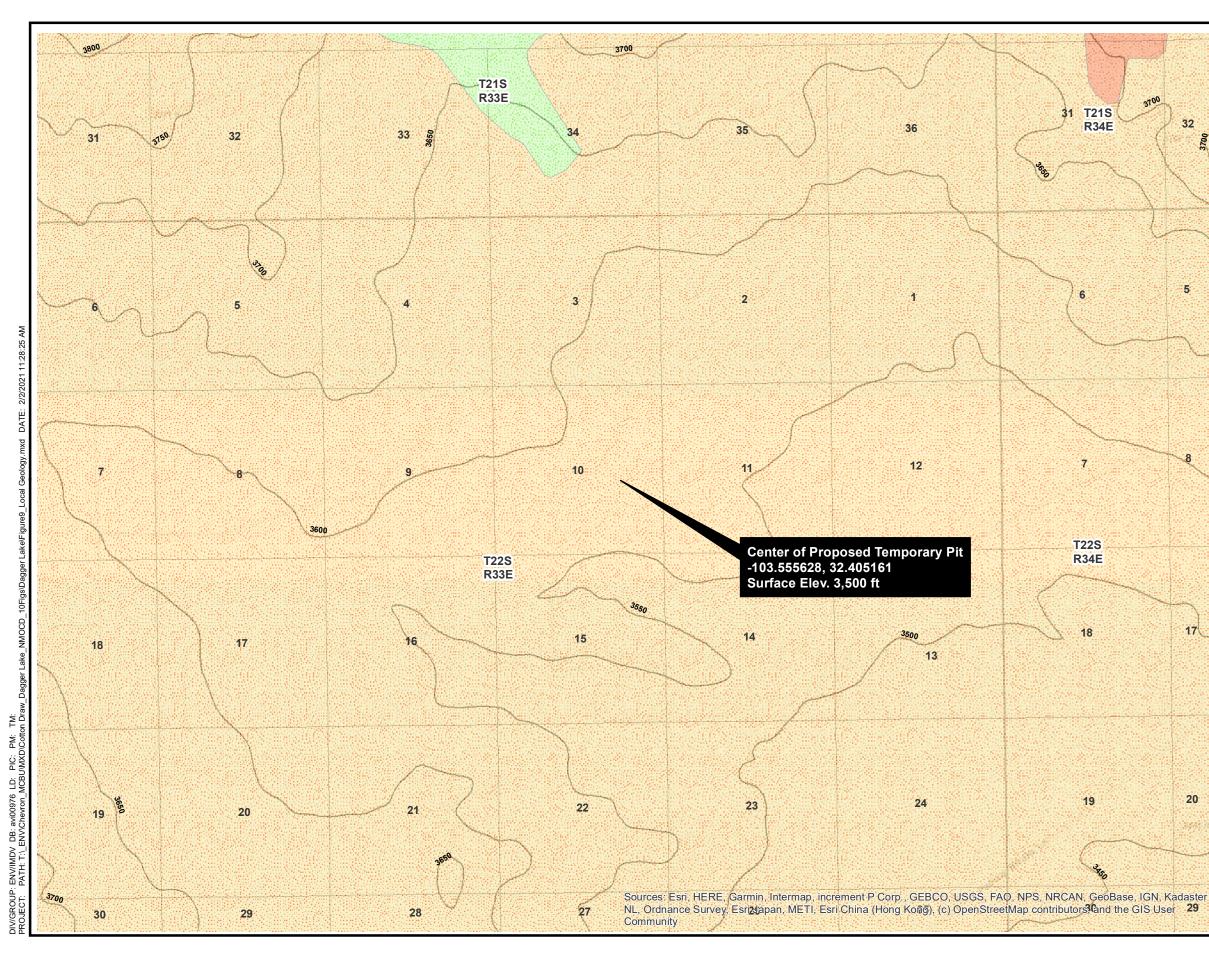


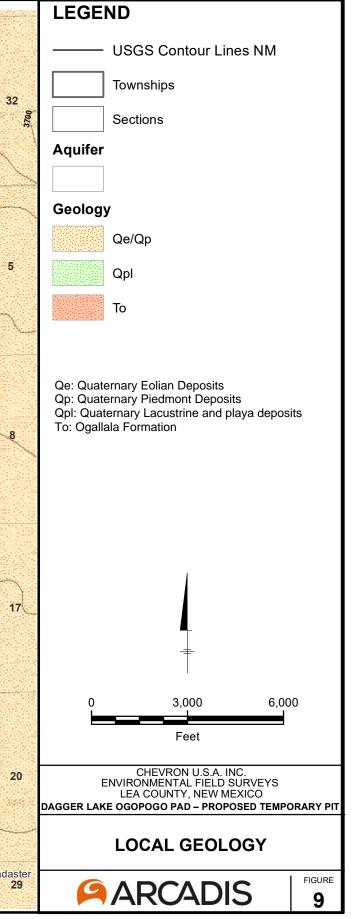


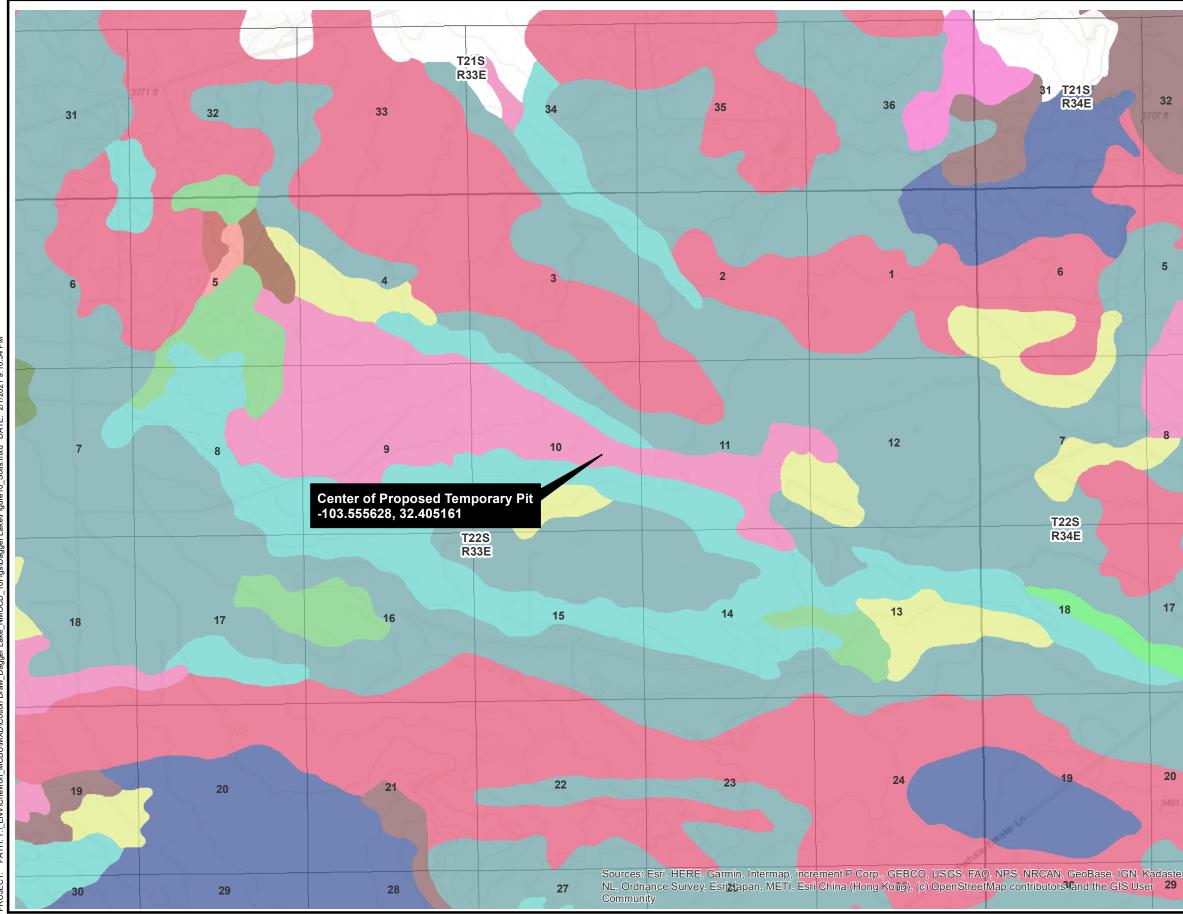



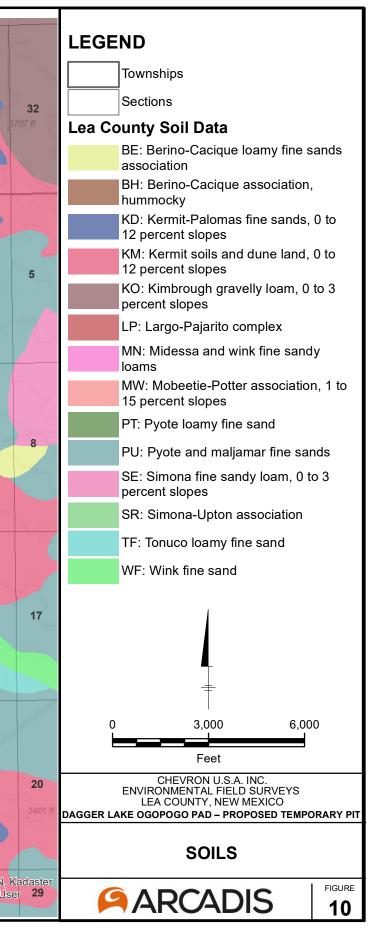



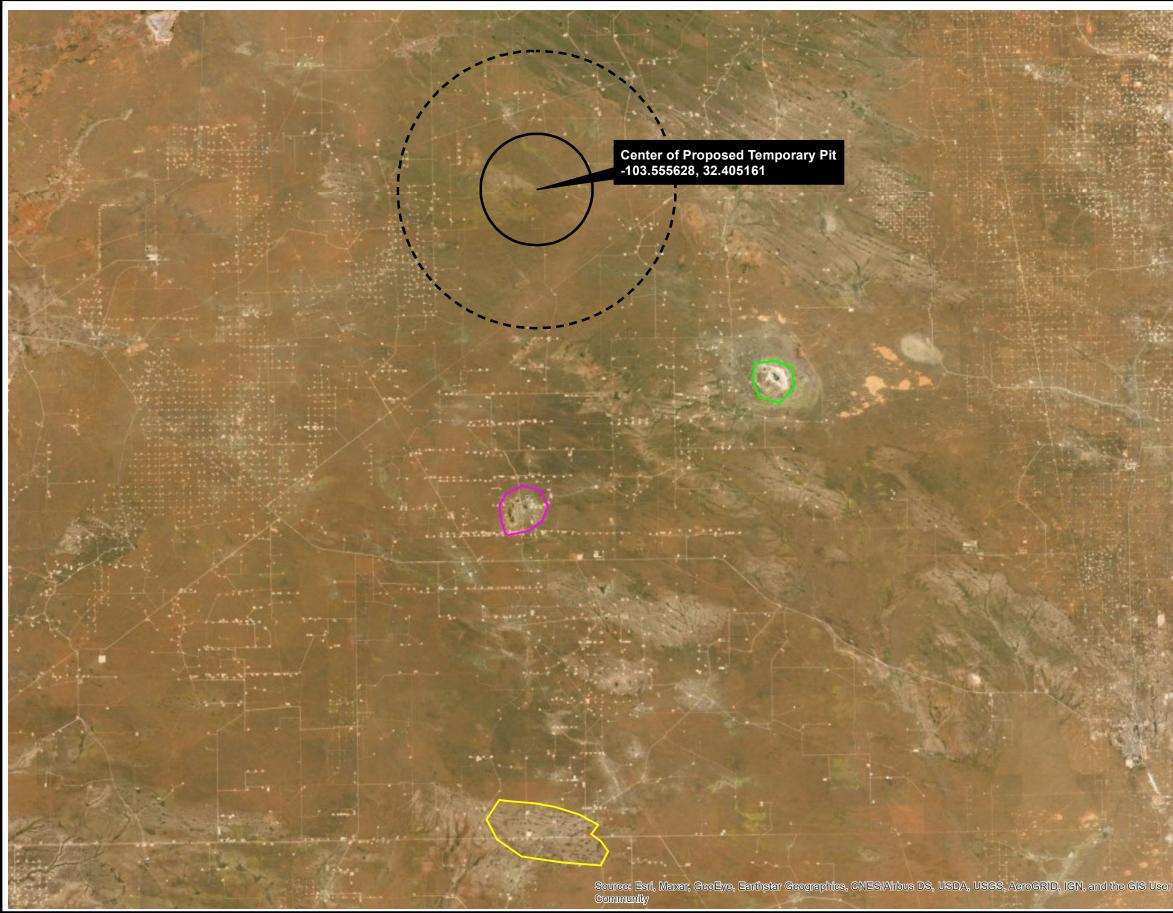



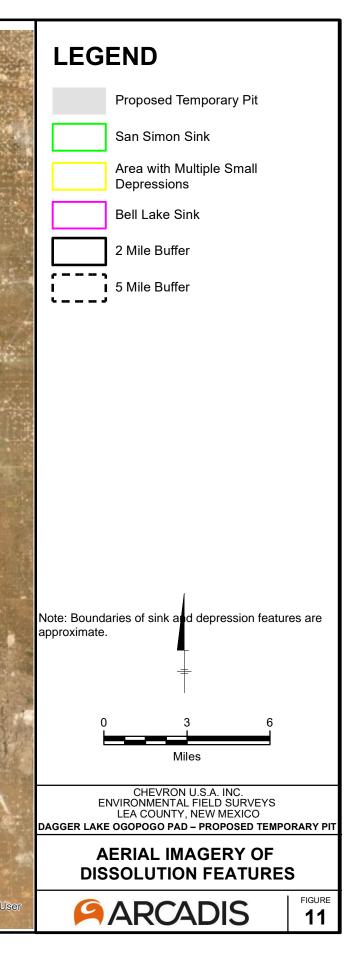














.

## Variance Requests

Temporary Pit containing non-low chloride fluids Dagger Lake 15 22 Ogopogo Pad Pit Section 10, T22S, R33E Variance Requests Dagger Lake 15 22 Ogopogo Pad Temporary Pit

#### Variance Request 1 of 2 – Extension of Closure Timeline for Temporary Pit

#### Reason for the requested variance

The Operator wishes to standardize closure practices and procedures across all active development areas where Temporary Pits are used. A closure timeline extension allows for improved flexibility in managing closure operations and would improve efficiency by allowing the closure of multiple pits during a single campaign.

The closure timeline is stated with the definition of a Temporary Pit, in that a pit *"must be closed within six months from the date the operator releases the drilling or workover rig from the first well using the pit"*.

For purposes of this variance, the Operator proposes a timeline based on the date of the first occurrence of Rig Down Move Out (RDMO). RDMO is defined as the activity when the drilling rig is moved off location. Typically, RDMO occurs after the completion of drilling the last well on the pad. On pads where the Operator plans to return to the pad, multiple RDMO dates occur. This variance does not consider subsequent RDMO affecting the closure timeline dates after the first RDMO. The Operator proposes dewatering the pit within 30 days of RDMO and proposes closing the pits within 1 year of RDMO.

The Operator uses a batch drilling process for drilling multiple wells on a single pad. The common procedure is to drill all the surface hole sections first followed by intermediate hole sections and finally production hole sections. The drilling rig skid moves to the next well without performing rig down activities when batch drilling. For the proposed four-well pad, the rig drills surfaces in the order of wells one to four, then intermediates in the order of wells four to one, and finally productions in the order of one to four. Note that specific orders may change based off well design and location specific factors, but the process of skidding and batch drilling is consistent throughout.

If the Operator ceases operations before drilling is complete and the rig is moved off the pad location, this constitutes a RDMO date and the 1-year closure criteria is based off the earliest RDMO date.

The Operator may utilize a smaller surface rig for the drilling of surface holes if permitted to do so. The rig down and move out of the surface rig does not constitute an RDMO date if the larger rig intending to drill production holes arrives within 3 months.

## Demonstration that the variance will provide equal or better protection of fresh water, public health and the environment.

In order to uphold the Operator's commitment to people and the environment, the following assurances will be provided in excess of the baseline requirements of 19.15.17 NMAC.

- The Operator will dewater the Temporary Pit within 30 days after RDMO.
- The Operator will utilize a 40-mil HDPE liner, as proposed in Variance 2.
- No fluid will be stored in the pit for any purpose after the completion of drilling activities other than in the event of emergency actions as described in 19.15.17.14 NMAC.
- The pits will be visually inspected on a monthly basis between RDMO and closure.
- If fluid is seen in the pit during inspection, then the Operator will mobilize equipment to have the pits drained within 7 days.
- The operator will maintain a fence around the perimeter of the pits and ensure it remains in good repair until closure.

#### Variance Request 2 of 2 – Proposed Use of High-Density Polyethylene (HDPE) Liner for Temporary Pit in lieu of Linear Low-Density Polyethylene (LLDPE) Liner

#### Memorandum

To: New Mexico Oil Conservation Division (NMOCD)

From: Chevron MCBU - Facilities Engineering Group

Subject: Variance Request for Use of HDPE Liner Material for Temporary Reserve Pits in New Mexico

Date: 7/23/2020

Chevron requests a variance to NMAC 19.15.17.11 (F) for use of high-density polyethylene (HDPE) geomembrane for the lining of temporary drilling reserve pits. HDPE is a preferred material which Chevron will install during drilling reserve pit construction. Chevron will utilize an HDPE geomembrane which offers equal or better performance than a typically available 20-mil string reinforced linear low-density polyethylene (LLDPE) material detailed in 19.15.17.11 (F), NMAC. An HDPE liner of equivalent thickness or greater than the 20-mil LLDPE will be installed. The following are considered in the design for implementation of the HDPE material to ensure the product is an equivalent, to the LLDPE material described, for temporary reserve drilling pits in New Mexico.

- An HDPE liner that has a thickness of less than 30-mils will be installed in a reserve pit as a shop-fabricated, extruded liner, and will not be field welded. Only HDPE liners of 30-mils in thickness or greater will be field welded for use in the temporary reserve pits.
- HDPE has lower permeability compared to LLDPE. This provides high barrier protection for soils during drilling operations and usage of the pits.
- HDPE may be installed with an underlying geotextile or similar material to provide additional protection from puncture or stress cracking. The subgrade for the liner system will be screened of deleterious materials and rocks and will be suitable for the liner installation. The use of geotextile or similar material will be evaluated on a specific case-by-case basis by Chevron.
- The HDPE liner used in Chevron's temporary reserve pits will have an equivalent or higher tear resistance and puncture resistance than that of a typical 20-mil string reinforced liner.
- HDPE material properties and liner has improved UV resistance to degradation when compared to LLDPE. This allows for extended life and improved long-term durability in pit liner applications.

All requirements for temporary pits' design and construction will be met in accordance with NMAC 19.15.17.11 and liner compatibility will comply with EPA SW-846 Method 9090A. Any requirements that may not be able to be adequately addressed, will be addressed under a separate variance request on a case-by-case basis.

Disclaimer: Tetra Tech, Inc. has not evaluated the full design of temporary reserve pits for Chevron and is not involved in the construction or operation of Chevron's lined, temporary reserve pits. Chevron understands that they will ensure that specific pit designs meet the criteria and intent of the NMAC and applicable codes for each pit location and construction.





## TECHNICAL DATA SHEET

HDPE Series, 40 mils

Black, Smooth

2801 Boul. Marie-Victorin Varennes, Quebec Canada J3X 1P7 Tel: (450) 929-1234 Sales: (450) 929-2544 Toll free in North America:1-800-571-3904 www.Solmax.com www.solmax.com

| PROPERTY                                             | TEST METHOD | <b>UNIT</b><br>Imperial |          |                 |  |
|------------------------------------------------------|-------------|-------------------------|----------|-----------------|--|
| SPECIFICATIONS                                       |             |                         |          |                 |  |
| Thickness (min. avg.)                                | ASTM D5199  | Every roll              | mils     | 40.0            |  |
| Thickness (min.)                                     | ASTM D5199  | Every roll              | mils     | 36.0            |  |
| Melt Index - 190/2.16 (max.)                         | ASTM D1238  | I/Batch                 | g/10 min | 1.0             |  |
| Sheet Density (8)                                    | ASTM D792   | Every 10 rolls          | g/cc     | ≥ 0.940         |  |
| Carbon Black Content                                 | ASTM D4218  | Every 2 rolls           | %        | 2.0 - 3.0       |  |
| Carbon Black Dispersion                              | ASTM D5596  | Every 10 rolls          | Category | Cat. I & Cat. 2 |  |
| OIT - standard (avg.)                                | ASTM D3895  | I/Batch                 | min      | 100             |  |
| Tensile Properties (min. avg) (2)                    | ASTM D6693  | Every 2 rolls           |          |                 |  |
| Strength at Yield                                    |             |                         | ррі      | 88              |  |
| Elongation at Yield                                  |             |                         | %        | 13              |  |
| Strength at Break                                    |             |                         | ррі      | 162             |  |
| Elongation at Break                                  |             |                         | %        | 700             |  |
| Tear Resistance (min. avg.)                          | ASTM D1004  | Every 5 rolls           | lbf      | 28              |  |
| Pun ture Resis ance (min. avg.)                      | ASTM D4833  | Every 5 rolls           | lbf      | 80              |  |
| Dimensional Stability                                | ASTM D1204  | Certified               | %        | ± 2             |  |
| Stress Crack Resistance (SP-NCTL)                    | ASTM D5397  | I/Batch Per             | hr       | 500             |  |
| Oven Aging - % retained after 90 days                | ASTM D5721  | formulation             |          |                 |  |
| HP OIT (min. avg.)                                   | ASTM D5885  |                         | %        | 80              |  |
| UV Res % retained after 1600 hr                      | ASTM D7238  | Per formulation         |          |                 |  |
| HP-OIT (min. avg.)                                   | ASTM D5885  |                         | %        | 50              |  |
| Low Temperature Brittleness                          | ASTM D746   | Certified               | °F       | - 106           |  |
| SUPPLY SPECIFICATIONS (Roll dimensions may vary ±1%) |             |                         |          |                 |  |

#### NOTES

I. Testing frequency based on standard roll dimension and one batch is approximately 180,000 lbs (or one railcar).

- 2. Machine Direction (MD) and Cross Machine Direction (XMD or TD) average values should be on the basis of 5 specimens each direction. 8. Correlation table is available for ASTM D792 vs ASTM D1505. Both methods give the same results.
- \* All values are nominal test results, except when specified as minimum or maximum.

\* The information contained herein is provided for reference purposes only and is not intended as a warranty of guarantee. Final determination of suitability for use contemplated is the sole responsability of the user. SOLMAX assumes no liability in connection with the use of this information.

Solmax is not a design professional and has not performed any design services to determine if Solmax's goods comply with any project plans or specifications, or with the application or use of Solmax's goods to any particular system, project, purpose, installation or specification.



## **TECHNICAL DATA SHEET**

#### **HDPE Series, 40 mils**

Black, Top Side Single Textured

2801 Boul. Marie-Victorin Varennes, Quebec Canada J3X 1P7 Tel: (450) 929-1234 Sales: (450) 929-2544 Toll free in North America:1-800-571-3904 www.Solmax.com www.solmax.com

| PROPERTY                              | TEST METHOD FREQUENCY() UNIT |                 |          |                 |
|---------------------------------------|------------------------------|-----------------|----------|-----------------|
| SPECIFICATIONS                        |                              |                 |          |                 |
| Nominal Thickness                     |                              | -               | mils     | 40              |
| Thickness (min. avg.)                 | ASTM D5994                   | Every roll      | mils     | 38.0            |
| Lowest ind. for 8 out of 10 values    |                              |                 | mils     | 36.0            |
| Lowest ind. for 10 out of 10 values   |                              |                 | mils     | 34.0            |
| Asperity Height (min. avg.) (3)       | ASTM D7466                   | Every roll      | mils     | 16              |
| Textured side                         |                              | -               |          | Тор             |
| Melt Index - 190/2.16 (max.)          | ASTM D1238                   | I/Batch         | g/10 min | 1.0             |
| Sheet Density (8)                     | ASTM D792                    | Every 10 rolls  | g/cc     | ≥ 0.940         |
| Carbon Black Content                  | ASTM D4218                   | Every 2 rolls   | %        | 2.0 - 3.0       |
| Carbon Black Dispersion               | ASTM D5596                   | Every 10 rolls  | Category | Cat. I & Cat. 2 |
| OIT - standard (avg.)                 | ASTM D3895                   | I/Batch         | min      | 100             |
| Tensile Properties (min. avg) (2)     | ASTM D6693                   | Every 2 rolls   |          |                 |
| Strength at Yield                     |                              |                 | ррі      | 88              |
| Elongation at Yield                   |                              |                 | %        | 13              |
| Strength at Break                     |                              |                 | ррі      | 88              |
| Elongation at Break                   |                              |                 | %        | 150             |
| Tear Resistance (min. avg.)           | ASTM D1004                   | Every 5 rolls   | lbf      | 30              |
| Pun ture Resis ance (min. avg.)       | ASTM D4833                   | Every 5 rolls   | lbf      | 90              |
| Dimensional Stability                 | ASTM DI 204                  | Certified       | %        | ± 2             |
| Stress Crack Resistance (SP-NCTL)     | ASTM D5397                   | I/Batch Per     | hr       | 500             |
| Oven Aging - % retained after 90 days | s ASTM D5721                 | formulation     |          |                 |
| HP OIT (min. avg.)                    | ASTM D5885                   |                 | %        | 80              |
| UV Res % retained after 1600 hr       | ASTM D7238                   | Per formulation |          |                 |
| HP-OIT (min. avg.)                    | ASTM D5885                   |                 | %        | 50              |
| Low Temperature Brittleness           | ASTM D746                    | Certified       | °F       | - 106           |
|                                       | Roll dimensions may vary ±1  | %)              |          |                 |

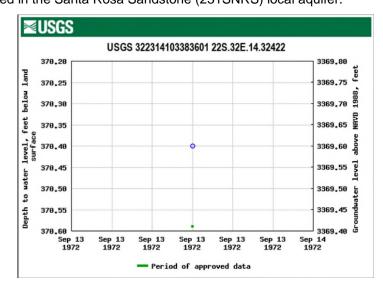
#### NOTES

1. Testing frequency based on standard roll dimension and one batch is approximately 180,000 lbs (or one railcar).

2. Machine Direction (MD) and Cross Machine Direction (XMD or TD) average values should be on the basis of 5 specimens each direction.

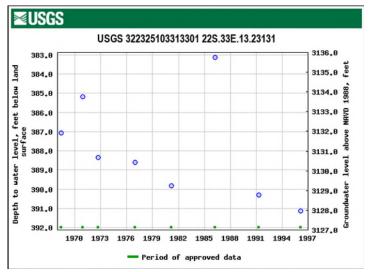
3. Lowest individual and 8 out of 10 readings as per GRI-GM13 / 17, latest version.

8. Correlation table is available for ASTM D792 vs ASTM D1505. Both methods give the same results.


## Appendix A

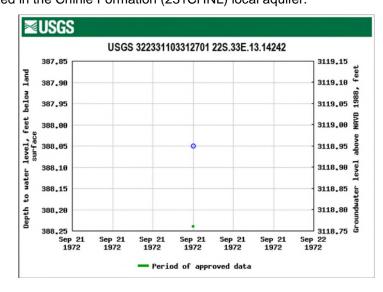
United States Geological Survey

Groundwater Data


#### USGS 322314103383601 22S.32E.14.32422

Lea County, New Mexico Hydrologic Unit Code 13070007 Latitude 32°23'14", Longitude 103°38'36" NAD27 Land-surface elevation 3,740 feet above NAVD88 The depth of the well is 380 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Santa Rosa Sandstone (231SNRS) local aquifer.




#### USGS 322325103313301 22S.33E.13.23131

Lea County, New Mexico Hydrologic Unit Code 13070007 Latitude 32°23'38.6", Longitude 103°31'33.6" NAD83 Land-surface elevation 3,519 feet above NAVD88 The depth of the well is 508 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Chinle Formation (231CHNL) local aquifer.



#### USGS 322331103312701 22S.33E.13.14242

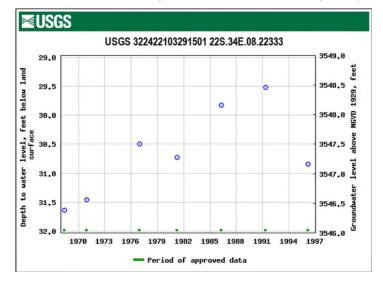
Lea County, New Mexico Hydrologic Unit Code 13070007 Latitude 32°23'31", Longitude 103°31'27" NAD27 Land-surface elevation 3,507 feet above NAVD88 The depth of the well is 490 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Chinle Formation (231CHNL) local aquifer.



#### USGS 322422103291501 22S.34E.08.22333

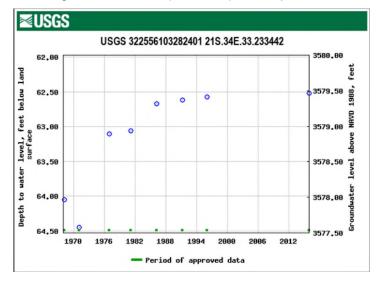
Lea County, New Mexico

Hydrologic Unit Code 13070007


Latitude 32°24'36", Longitude 103°29'15" NAD27

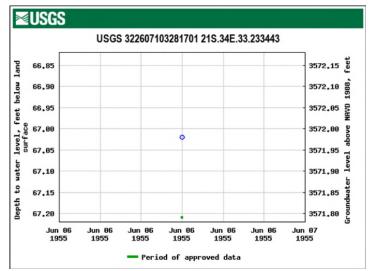
Land-surface elevation 3,578.00 feet above NGVD29

The depth of the well is 35 feet below land surface.


This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.




#### USGS 322556103282401 21S.34E.33.233442

Lea County, New Mexico Hydrologic Unit Code 13070007 Latitude 32°26'10.1", Longitude 103°28'22.7" NAD83 Land-surface elevation 3,642 feet above NAVD88 The depth of the well is 92 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Ogallala Formation (1210GLL) local aquifer.



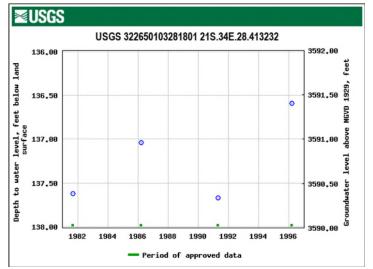
#### USGS 322607103281701 21S.34E.33.233443

Lea County, New Mexico Hydrologic Unit Code 13070007 Latitude 32°26'07", Longitude 103°28'17" NAD27 Land-surface elevation 3,639 feet above NAVD88 The depth of the well is 80 feet below land surface. This well is completed in the Other aquifers (N99990THER) national aquifer. This well is completed in the Ogallala Formation (1210GLL) local aquifer.



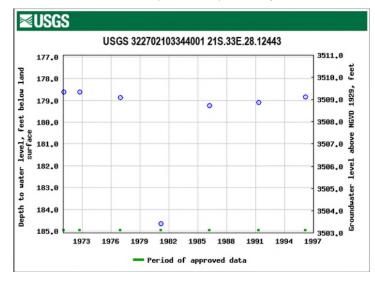
#### Appendix A – USGS Groundwater Data

#### USGS 322641103311201 21S.33E.25.42322


Lea County, New Mexico Hydrologic Unit Code 13060011 Latitude 32°26'41", Longitude 103°31'12" NAD27 Land-surface elevation 3,660 feet above NAVD88 The depth of the well is 68 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer.

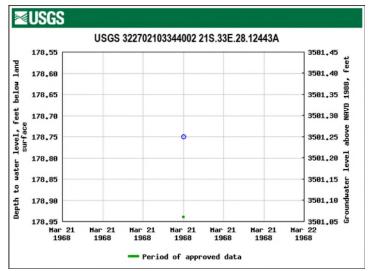
This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.




#### USGS 322650103281801 21S.34E.28.413232

Lea County, New Mexico Hydrologic Unit Code 13070007 Latitude 32°26'51", Longitude 103°28'24" NAD27 Land-surface elevation 3,728.00 feet above NGVD29 The depth of the well is 170 feet below land surface. This well is completed in the Other aquifers (N99990THER) national aquifer. This well is completed in the Ogallala Formation (1210GLL) local aquifer.




#### USGS 322702103344001 21S.33E.28.12443

Lea County, New Mexico Hydrologic Unit Code 13070007 Latitude 32°27'13", Longitude 103°34'42" NAD27 Land-surface elevation 3,688.00 feet above NGVD29 The depth of the well is 224 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Chinle Formation (231CHNL) local aquifer.



#### USGS 322702103344002 21S.33E.28.12443A

Lea County, New Mexico Hydrologic Unit Code 13070007 Latitude 32°27'02", Longitude 103°34'40" NAD27 Land-surface elevation 3,680 feet above NAVD88 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Chinle Formation (231CHNL) local aquifer.



# Appendix B

New Mexico Office of the State Engineer

Water Column/Average Depth to Water Data

# New Mexico Office of the State Engineer Water Column/Average Depth to Water

| (A CLW##### in the<br>POD suffix indicates the<br>POD has been replaced<br>& no longer serves a<br>water right file.) | (R=POD has<br>been replaced,<br>O=orphaned,<br>C=the file is<br>closed) | (* | -  |   |   |    |     | 2=NE 3 | 3=SW 4=S<br>gest) ( |   | D83 UTM in me | eters)   | (1   | n feet) |        |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----|----|---|---|----|-----|--------|---------------------|---|---------------|----------|------|---------|--------|
|                                                                                                                       | POD<br>Sub-                                                             |    | Q  | Q | Q |    |     |        |                     |   |               |          | -    | Depth   |        |
| POD Number                                                                                                            | Code basin C                                                            | -  | 64 |   |   |    |     | -      |                     | X | Y             | Distance |      | Water   | Column |
| CP 00592 POD1                                                                                                         | CP                                                                      | ED |    | 3 | 2 | 13 | 22S | 33E    | 63883               | 4 | 3585015* 🌍    | 3252     | 427  |         |        |
| CP 01724 POD1                                                                                                         | CP                                                                      | LE | 3  | 1 | 1 | 18 | 22S | 34E    | 63947               | 5 | 3585260 🌍     | 3779     | 1172 | 800     | 372    |
| CP 01356 POD1                                                                                                         | СР                                                                      | LE | 4  | 2 | 2 | 33 | 21S | 33E    | 63456               | 0 | 3590014 🌍     | 3959     | 1098 | 555     | 543    |
| CP 01411 POD1                                                                                                         | СР                                                                      | LE |    | 2 | 2 | 34 | 21S | 33E    | 63596               | 8 | 3590386 🌍     | 4124     | 1149 |         |        |
| CP 01411 POD2                                                                                                         | CP                                                                      | LE |    | 1 | 2 | 34 | 21S | 33E    | 63553               | 4 | 3590380 🌍     | 4127     | 1125 |         |        |
| CP 01725 POD1                                                                                                         | СР                                                                      | LE | 1  | 2 | 1 | 18 | 22S | 34E    | 63991               | 4 | 3585521 🌍     | 4149     | 1137 | 800     | 337    |
| CP 00854 POD1                                                                                                         | СР                                                                      | LE | 1  | 1 | 2 | 33 | 21S | 33E    | 63387               | 9 | 3590223 🌍     | 4414     | 950  | 600     | 350    |
| CP 01721 POD1                                                                                                         | СР                                                                      | LE | 4  | 2 | 1 | 18 | 22S | 34E    | 64018               | 1 | 3585244 🌍     | 4467     | 1108 | 820     | 288    |
| CP 01723 POD1                                                                                                         | СР                                                                      | LE | 4  | 4 | 1 | 18 | 22S | 34E    | 64011               | 7 | 3584905 🌍     | 4496     | 1140 | 785     | 355    |
| CP 01355 POD1                                                                                                         | СР                                                                      | LE | 2  | 1 | 3 | 27 | 21S | 33E    | 63477               | 3 | 3591061 🌍     | 4912     | 1192 | 582     | 610    |
| CP 01455 POD1                                                                                                         | СР                                                                      | LE | 4  | 1 | 4 | 18 | 22S | 34E    | 64057               | 4 | 3584515 🌍     | 5055     | 1033 | 615     | 418    |
| CP 01357 POD1                                                                                                         | СР                                                                      | LE | 4  | 3 | 1 | 27 | 21S | 33E    | 63478               | 2 | 3591347 🌍     | 5190     | 1286 | 578     | 708    |
| CP 01722 POD1                                                                                                         | СР                                                                      | LE | 4  | 4 | 2 | 18 | 22S | 34E    | 64096               | 4 | 3584949 🌍     | 5298     | 1122 | 785     | 337    |
| CP 01362 POD1                                                                                                         | СР                                                                      | LE | 3  | 4 | 4 | 18 | 22S | 34E    | 64080               | 9 | 3584182 🌍     | 5395     | 1032 | 613     | 419    |
| CP 01349 POD1                                                                                                         | СР                                                                      | LE | 2  | 3 | 1 | 27 | 21S | 33E    | 63478               | 2 | 3591569 🌍     | 5408     | 1188 | 572     | 616    |
| CP 00600 POD1                                                                                                         | СР                                                                      | LE |    | 2 | 4 | 25 | 21S | 33E    | 63915               | 2 | 3591054* 🌍    | 5828     | 65   |         |        |
| CP 00601 POD1                                                                                                         | СР                                                                      | LE |    | 2 | 1 | 28 | 21S | 33E    | 63350               | 2 | 3591791* 🌍    | 5997     | 223  |         |        |
| CP 01720 POD1                                                                                                         | CP                                                                      | LE | 1  | 3 | 2 | 08 | 22S | 34E    | 64200               | 3 | 3586723 🌍     | 6189     | 1190 | 824     | 366    |
| CP 00597 POD1                                                                                                         | CP                                                                      | LE |    | 2 | 2 | 08 | 22S | 34E    | 64241               | 0 | 3587074* 🌍    | 6628     | 35   |         |        |
| CP 00865 POD1                                                                                                         | CP                                                                      | LE | 2  | 2 | 3 | 20 | 22S | 34E    | 64184               | 5 | 3583118 🌍     | 6787     | 885  | 605     | 280    |
| CP 00744                                                                                                              | СР                                                                      | LE |    | 1 | 2 | 09 | 22S | 34E    | 64361               | 8 | 3587091* 🌍    | 7830     | 460  |         |        |

#### \*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/11/21 1:49 PM

Page 41 of 132

| Received by OCD: 3/9/2021 3:00:25 PM |                         | Page 42 of 132 |
|--------------------------------------|-------------------------|----------------|
|                                      | Average Depth to Water: | 681 feet       |
|                                      | Minimum Depth:          | 555 feet       |
|                                      | Maximum Depth:          | 824 feet       |
| Record Count: 21                     |                         |                |

#### Record Count: 21

# UTMNAD83 Radius Search (in meters):

Easting (X): 635831

Northing (Y): 3586264

Radius: 8047

# Appendix C – Hydrogeologic Data

Temporary Pit containing non-low chloride fluids Dagger Lake 15 22 Ogopogo Pad Pit Section 10, T22S, R33E

# Appendix C – Hydrogeologic Data Dagger Lake 15 22 Ogopogo Pad Pit Temporary Pit

### **Topography and Surface Hydrology**

The location of the proposed temporary pit is in southwestern Lea County, New Mexico between the Mescalero Ridge and the Pecos River in the Pecos Valley section of the Great Plains physiographic province. The pit lies at an elevation of 3,575 ft above sea level and the general area in the vicinity of the pit is characterized by relatively flat to gentle sloping terrain with many shallow depressions and occasional dunes, but no well-established drainages. The land surface slopes gently to the southeast at approximately 45 feet per mile.

Surface water in the vicinity of the proposed pit is affected naturally by the shallow geology, precipitation, and some water erosion. The area is located in the semi-arid southwest near the northern edge of the Chihuahuan Desert. The climate is characterized by low annual precipitation, low humidity, and high average annual temperature and ranges from dry subhumid to arid. Precipitation is variable both regionally and seasonally and averages about 12 inches or less annually with the greatest rainfall occurring as monsoonal storms during the summer months. The area is situated at the southwest edge of the Great Plains dust-bowl area and is sometimes subjected to severe windstorms (Nicholson and Clebsch 1961).

Southwestern Lea County, including the temporary pit area, lies within the Lower Pecos River Basin. The major stream in this Basin is the Pecos River, which is located approximately 26 miles to the west southwest of the proposed pit location in southeastern Eddy County. Surface water in the Lower Pecos River Basin comes from three main sources: inflow from the Upper Pecos River Basin, flood inflow from storm events, and groundwater base inflow. The Pecos River bisects Eddy County and runs through the center of the City of Carlsbad. The Pecos River is dammed by Brantley Dam and by Avalon Dam 10 miles northwest and five miles north of Carlsbad, respectively, and by Red Bluff Dam located just across the New Mexico – Texas state line and west-southwest of the proposed pit location.

The proposed pit location is not within 1,000 feet of a continuously flowing waterway course, any other significant watercourse or lakebed, sinkhole, or playa lake (**Figure 6**). The nearest feature (ephemeral drainage) is more than 500 feet northwest of the pit location. The nearest surface water feature (Pecos River) is in excess of 26 miles west-southwest of the pit location.

#### Soils

The most common soil map units within the survey area are the Kermit Soils & Dune Sand (KM) and the Simona Fine Sandy Loam (SE), which are composed primarily of loamy sand. Within Lea County, these soil types are summarized by the USDA as well-drained soils that have a fine sand or sandy clay loam subsoil. These soil map units are

Appendix C – Hydrogeologic Data

often used for range and wildlife within the SDDA (USDA 1974 and 2016a). The soil map units within the survey area are listed in the following table. A map depicting the distribution of the soil map units within the SDDA is provided in **Figure 10**. Ecological Site Descriptions (ESDs) are groups of soil map units that respond similarly to ecological processes. The survey area consists of one ESD, loamy sand, and the characteristics are further outlined below.

| Soil Abbreviation and Name                         | Slope        |
|----------------------------------------------------|--------------|
| PU – Pyote & Maljamar Fine Sand                    | 0-3 percent  |
| KM – Kermit Soils & Dune Sand                      | 0-12 percent |
| SE – Simona Fine Sandy Loam                        | 0-3 percent  |
| TF - Tonuco Loamy Fine Sand                        | 0-3 percent  |
| BE – Bernio – Cacique Loamy Fine Sands Association | 0-3 percent  |

Table 2. Soils Within the Survey Area

# Loamy Sand

The majority of the soils within the survey area are classified as loamy sand soils. These loamy sand soils consist of the Pyote & Maljamar, Kermit, Simona, and Tunuco soil series with additional minor soil types. These soils are typically moderately deep that consist of loamy sand underlain by sandy clay loam and cemented materials. Slopes range from 0 to 3 percent within these sandy soils, with some areas (Kermit soils) ranging from 0-12 percent slope. If these soils are unprotected by plant cover, they are easily wind blown into low hummocks. These soils have rapid permeability and are well drained. These soils support grassland vegetative communities dominated by species such as sand bluestem, yellow Indiangrass, black grama, dropseed species, and little bluestem. Dominant shrub species observed within these soils were creosote bush (Larrea tridentate), mesquite (Prosopis glandulosa), rubber rabbitbrush (Ericameria nauseosa), and yucca sp. (Yucca sp.). The annual grasses and forbs population will fluctuate with the variation of amount of rainfall annually and with the seasons. Without brush and graze control the vegetative communities within these soils will become shrub dominate, and there will be a loss of grass cover and increased surface soil erosion (USDA 2016b).

# Geology

The area in the vicinity of the proposed pit is underlain by recent eolian deposits consisting of drift sand a few feet in thickness, lacustrine and playa-lake deposits, and local occurrences of sand dunes. The eolian deposits are underlain by Pleistocene to recent alluvial deposits consisting of unconsolidated to partially consolidated sand, silt, clay and caliche (**Figure 9**). Alluvium thickness in this area appears to be approximately 20 feet or less. Ogallala Formation underlies the alluvium and consists of sand, silt, clay, gravel and caliche. Its thickness ranges up to approximately 205 feet in the survey area. Triassic Dockum strata underlie the Ogallala Formation and its thickness appears to be over 1,000 feet or more in some places. The Dockum Group has been divided into three

Appendix C – Hydrogeologic Data

formations: lower red shale, siltstone, and very fine-grained sandstone called the Tecovas Formation (or Pierce Canyon redbeds); middle reddish-brown and gray sandstone called the Santa Rosa sandstone; and upper brick-red to maroon and purple shale with thin beds of fine red or gray sandstone and siltstone called the Chinle Formation.

- The Tecovas or Pierce Canyon redbeds (considered Permian by some geologists and sometimes correlated with the Dewey Lake redbeds) overlie the Rustler Formation. The Tecovas consists of red sandy shale and fine-grained sandstones with greenish–gray inclusions and can be several hundred feet thick.
- The Santa Rosa sandstone consists of reddish-brown and gray, medium- to coarse-grained, micaceous, well-cemented sandstone and conglomerate. The sandstone is typically cross-bedded and is interbedded with red shale and siltstone. The thickness of the Santa Rosa sandstone can be several hundred feet in this area.
- The Chinle Formation consists of a series of red shales and thin interbedded sandstones and appears to be several hundred feet thick in this part of southern Lea County.

Permian strata consisting of the Dewey Lake redbeds (sometimes correlated with the Tecovas Formation) and the Rustler Formation underlie the Triassic Dockum. The Dewey Lake is a series of red beds consisting of micaceous red siltstone, shale, and sandstone with gypsum cementation

The Rustler Formation consists largely of anhydrite, gypsum, interbedded sandy clay and shale, and dolomitic limestone near the upper part of the formation. The Rustler overlies the Salado Formation and is approximately 400 feet thick in this area (Nicholson and Clebsch 1961). The Rustler typically consists of a lower clastic unit composed mainly of red and gray shale and some interbedded anhydrite and an upper anhydrite unit containing dolomitic limestone beds of varying thicknesses.

Geologic units in the general area of the proposed pit that contain potentially usable groundwater are the Ogallala Formation, the Dockum Group, and possibly the Rustler Formation.

# Groundwater

In the vicinity of the proposed pit, the Ogallala Formation, the Dockum Group and the Rustler Formation have the potential to provide small quantities of water to water supply wells. No water wells were found at or within approximately two miles of the proposed pit (**Figures 7**). Several water wells have been identified 2 to 5 miles of the proposed pit location which are used primarily to support domestic, livestock and / or oil and gas exploration water needs. The depths of the wells along with USGS data indicate that some are completed in the Alluvium/Ogallala and some completed in the Dockum formation.

Appendix C – Hydrogeologic Data

<u>Depth to Water</u>: An analysis of publicly available data from the MNOSE and USGS indicate that the depth to groundwater beneath the proposed location is in excess of 100 feet based on the closest wells which are located more than 2 miles to the east-southeast. Based on the USGS data, the depths to water within a 5-mile radius of the proposed pit range from 31 feet to (in an Alluvium/Ogallala wells located approximately 3.5 miles east of the site) to 391 feet in a Triassic Dockum (Chinle) well located over 2 miles east-southeast of the proposed site. The NMOSE data shows depths to water ranging from 555 feet to 824 feet across the general area and corresponding well depths ranging up to 1,286 feet. The NMOSE wells appear to be completed in the Triassic Dockum or possibly the Rustler.

This part of Lea County appears to be situated at or near the northern edge of the Pecos River Basin Alluvium aquifer. In this area, the alluvium present appears to be 20 feet in thickness or less and contains very limited to no water based on data from the USGS and NMOSE database and is underlain by the Ogallala aquifer. The Ogallala aquifer is a source of potable water in this general area. The Groundwater within 5 miles of the proposed location does not appear to be present in the Pecos River Basin Alluvial aquifer. The proposed location is not located above the mapped extent of the Pecos River Basin Alluvial aquifer. The Triassic Dockum formations which underlie the Alluvium/Ogallala are also sources of potable water. There are several water wells within 5 miles of the location based on the USGS and NMOSE data and zero water wells within 1 mile of the location. Reported well yields in the NMOSE database for the water wells in this area range up to 100 gallons per minute.

#### Recharge:

Recharge is by direct precipitation and infiltration from intermittent streamflow and subsurface groundwater flow from upgradient areas. The region is characterized by an annual precipitation of 10 to 20 inches and high average annual evaporation rates. Most recharge is episodic and associated with periods of heavy rainfall. Recharge is most likely to occur during long-duration rainfall events or periods of frequent, smaller rainfall events. Otherwise the water has a high likelihood of being lost to evapotranspiration. The average annual recharge rate for the Pecos River Basin aquifer in Lea Co., NM is between 0 and 0.5 inches/year (Hutchison et al., 2011).

# References

Hutchison, W. R., I. C. Jones and R. Anaya. 2011. Update of the groundwater availability model for the Edwards-Trinity (plateau) and Pecos Valley aquifers of Texas.

New Mexico Office of the State Engineer (NMOSE). 2010. New Mexico Water Rights Reporting System Water Column/Average Depth to Water Report. [Web page]. Located at http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html. Accessed: February 2021.

Nicholson, Alexander, Jr. and Clebsch, Alfred, Jr. 1961. Ground-Water Report 6 – Geology and Ground-Water Conditions in Southern Lea County, New Mexico. United States Geological Survey in cooperation with the New Mexico Institute of Mining and Technology, State Bureau of Mines and Mineral Resources Division and the New Mexico State Engineer.

U.S. Department of Agriculture (USDA). 2013. Natural Resources Conservation Service. Soil Surveys by State available at <u>www.nrcs.usda.gov</u>.

USDA. 2016. Sandy Ecological Site Characteristics. [Web page]. Located at <u>https://esis.sc.egov.usda.gov/ESDReport/fsReport.aspx?approved=yes&repType=regul</u> <u>ar&id=R042XA051NM</u>. Accessed: September 2017.

# Appendix D – Design Plan

Temporary Pit containing non-low chloride fluids Dagger Lake 15 22 Ogopogo Pad Pit Section 10, T22S, R33E

# Appendix D – Design Plan Dagger Lake 15 22 Ogopogo Pad Pit Temporary Pit

The Operator will design and construct the temporary pit to contain liquids and solids; prevent contamination of fresh water; and protect public health and the environment. The Design and Construction will follow the requirements listed below:

- The topsoil will be stripped and stockpiled prior to construction for use as the final cover during closure.
- A sign, consistent the requirements of 19.15.16.8 NMAC, will be utilized and made viewable at the location of the pit.
- Fencing will be in place around the perimeter of the pits and the Operator will ensure it remains in good repair until closure.
- Netting will not be installed on the temporary pit; however, the operator will inspect for and report any discovery of dead migratory birds or other wildlife while the pit contains fluid and is in use.
- The design of the pit, including the berms, geomembrane material, and construction notes below, is intended to ensure the confinement of liquids to prevent releases.
- The subgrade and interior slopes will be screened for deleterious materials and rocks and will be suitable for the liner installation. An underlying geotextile may be used to provide additional protection from puncture or stress cracking.
- The slopes of the pit will be constructed at a two horizontal to one vertical foot ratio.
- A 40-mil HDPE liner resistant to petroleum hydrocarbons, salts and acidic and alkaline solutions, and ultraviolet light will be installed in the pit. Liner compatibility will comply with EPA SW-846 Method 9090A. Technical data sheets for the liner material can be found in *Variance Request 2 of 2 Proposed Use of High-Density Polyethylene (HDPE) Liner for Temporary Pit in lieu of Linear Low-Density Polyethylene (LLDPE) Liner.*
- Liner seams will be minimized as is practical during construction and will only be oriented up and down a slope. When field welding the liner seams, the liner will overlap a minimum of 4 inches and a maximum of 6 inches. Welds will be minimized in corners and irregularly shaped area. Welds will only be performed by qualified personnel.
- Construction will avoid excessive stress-strain on the liner by screening the subgrade for deleterious materials and rock and using geotextile where needed, utilized experienced personnel for the installation of the liner, taking care when unrolling liner material and limitingthe use of any machinery that could damage the liner.
- The edged of the liner will be anchored in the bottom of a compacted earth field trench that is 18 inches deep.

- Impingement of liquids onto the liner will be prevented by use of a loose hose discharge method. The design ensures fluid enters a malleable section of hose laying on the pit berm prior to entering the pit preventing direct impingement.
- The design includes a 4 foot berm and bar ditch around the entirety of the pit to prevent run on of surface water. The berm will be maintained from construction to closure.
- The volume of the temporary pit is 6.6 acre-ft including freeboard.
- No venting or flaring of gas will take place during the construction, use, and closure of the pit and, as such, the entirety of the pit will be lined.



# DL 15 22 Ogopogo Well Pad

**Construction Work Package** 



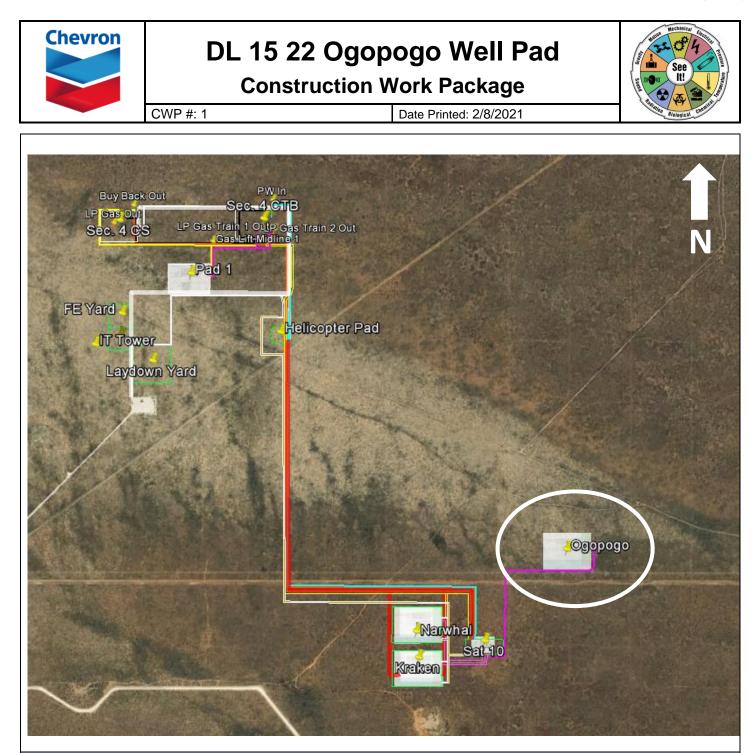
### CWP #: 1

Date Printed: 2/8/2021

# 1.0 Scope

Construction of required access roads, 3-well BGWH well pad, and standard drilling reserve pit for the first three Ogopogo wells in Dagger Lake, NM. All required drawings are in appendix 5.

- Well pad dimensions: 680'x480'
  - Complete compaction of strong back and sand silo areas per the provided geotechnical report
- 20' wide access roads: 2,800' long
- Construction two cells of drilling reserve pit


All checksheets in appendix 6 shall be filled out and verified by Chevron construction rep

As Built will be required on all pads

| Contracting Plan                   |            |                     |  |  |  |  |  |
|------------------------------------|------------|---------------------|--|--|--|--|--|
| Contract Type                      | Contractor | Contact Information |  |  |  |  |  |
| Unit Rates                         | Sweatt     |                     |  |  |  |  |  |
| T&M (if not defined in unit rates) |            |                     |  |  |  |  |  |

| 2.0 Location |           |                         |      |              |  |  |  |  |
|--------------|-----------|-------------------------|------|--------------|--|--|--|--|
| Facility     | Dagger La | Dagger Lake Ogopogo Pad |      |              |  |  |  |  |
|              | LAT       | 32.403926°              | LONG | -103.556787° |  |  |  |  |
| SITE LAYOUT  |           |                         |      |              |  |  |  |  |

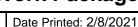
Received by OCD: 3/9/2021 3:00:25 PM



# 3.0 Execution Plan

#### GENERAL

- CONTRACTOR will complete work per Service Order agreements
- CONTRACTOR will contact One Call and appropriate local agencies to locate buried utilities within the proposed construction area. On-site Chevron personnel will be responsible for locating underground utilities owned by Chevron that are not located by One Call or affiliated contractors.


**Well Pad Construction** 

CWP #: 1



# DL 15 22 Ogopogo Well Pad

# **Construction Work Package**

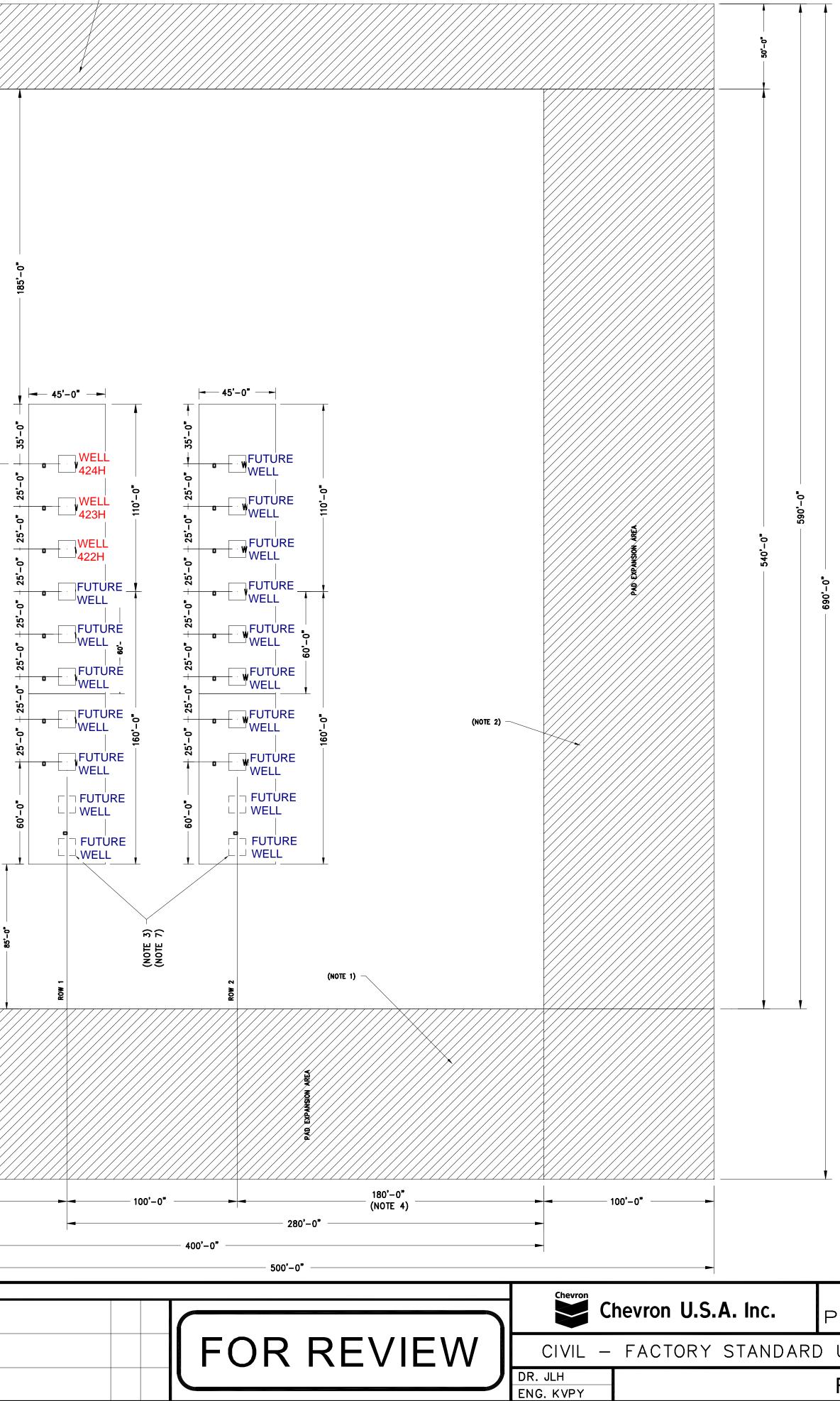




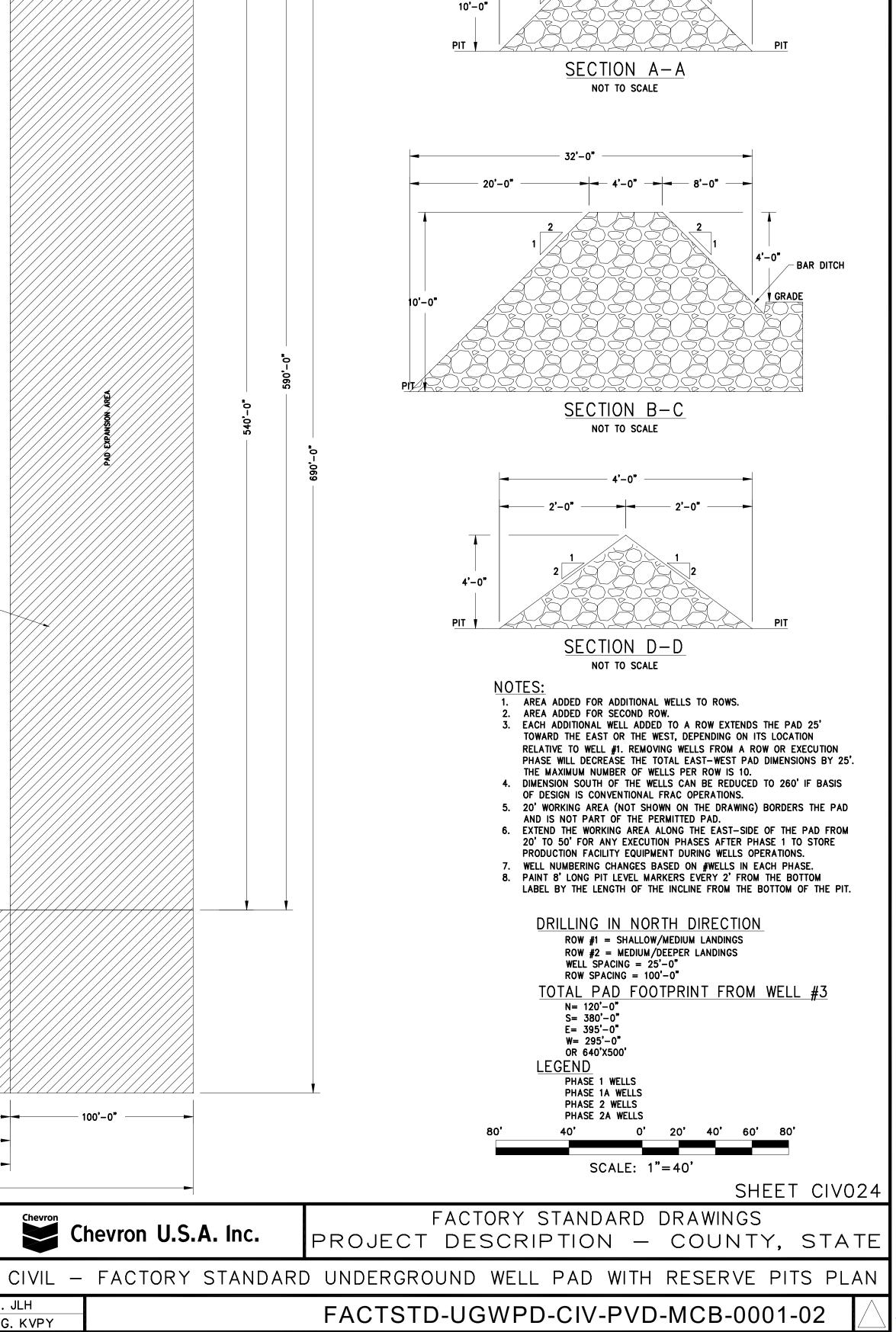
- CONTRACTOR shall construct a three well below-grade well head (BGWH) pad with drilling reserve pit per drawing dimensions provided in appendix 5.
  - a. Entire pad shall be cleared and grubbed to ensure removal of topsoil. If maximum 6" of grubbing is not sufficient, CONTRACTOR is to submit and RFI on how to proceed.
  - b. When leveling the pad, fill material shall not be placed in lifts greater than 8" thick. Each lift shall be moisture treated, compacted, and proof rolled.
  - c. The subgrade surface shall be scarified and rolled to prevent ponding and allow the strongback area to be clear of collecting water.
- CONTRACTOR shall excavate and compact walking area and shaker area per the Geotechnical Report provided in appendix 5.
  - a. Caliche shall be sourced from CHEVRON approved pits in the project area.
  - b. The entire cleared pad area shall have a caliche cap of at least 6 inches after compaction.
- CONTRACTOR shall excavate and contour reserve pit per standard drawing and cut/fill requirements.

# Roads

- The road construction shall be built in accordance with local and state laws, BLM requirements, and drawings provided. Some other considerations to follow:
  - a. Leveling This work consists of cutting and compact filling the natural soils where necessary to obtain a smooth longitudinal grade along the road and a sub-grade to accept the caliche top course. Maximum slope of the roads to the pad shall be 4°.
  - b. Caliche top course shall be placed and compacted in 8" lifts. Road shall be graded to create the proper crown (2%) to drain water.
  - c. Roads/Ramps shall be twenty (20) feet wide with five (5) feet of right of way (ROW) clearing on each side of the road.


# Line Crossings

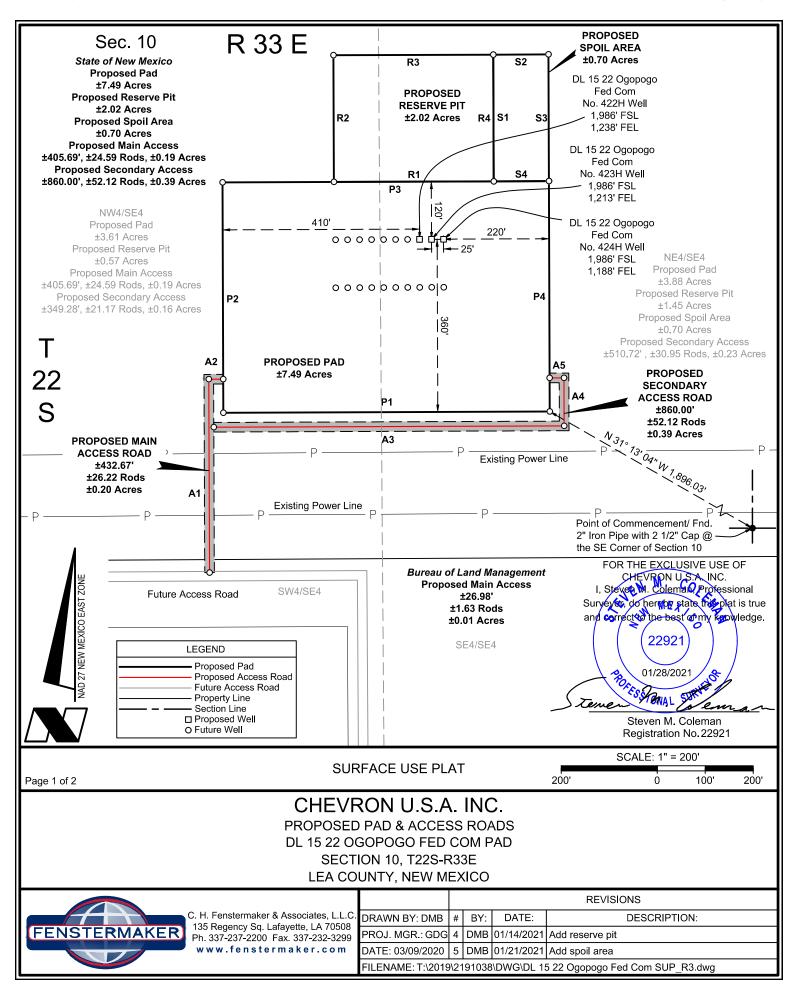
• CONTRACTOR shall abide by MCBU Excavation Dig Procedure and any MCBU or Carlsbad Line Crossing requirements.


| 4.0 Materials                                                           |  |
|-------------------------------------------------------------------------|--|
| 4.1 Chevron Order                                                       |  |
| None                                                                    |  |
| 4.2 Contractor Order                                                    |  |
| All civil material and equipment required to complete the project scope |  |

| 5.0 Pro | 5.0 Project Details / Drawings                    |  |  |  |  |  |  |  |
|---------|---------------------------------------------------|--|--|--|--|--|--|--|
| 5.1     | Factory Standard BGWH Open Loop Pad               |  |  |  |  |  |  |  |
| 5.2     | Dimension Plat – New Disturbance with Reserve Pit |  |  |  |  |  |  |  |

| FOR PADS WITH IN-PIT BIOREMEDIATION: -<br>ADD A 15' WIDE FLATTENED AND COMPACTED<br>AREA SURROUNDING THE EAST RESERVE PIT<br>AND DOWN THE CENTER OF THE HORSESHOE | ⊢ 32'-0" –                    |                                                                                              | ► 32'-0" -         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------|--------------------|
| 32'-0"                                                                                                                                                            |                               | 5:                                                                                           |                    |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                             |                               | 10'-0" DEEP<br>(8'-0" WATER, 2'-0" FREEBOARD)                                                |                    |
|                                                                                                                                                                   | 20, SPULWAY<br>20, -0<br>D -0 | (8'-0" WATER, 2'-0" FREEBOAR))<br>25,000 BBL MINIMUM CAPACITY<br>160'-0" A ◄                 | - 220'-0"          |
|                                                                                                                                                                   |                               | 180'-0"                                                                                      |                    |
| <del>313</del> , -0-<br>313, -0-<br>-0-<br>-0-                                                                                                                    |                               | 160'−0" A ◄━                                                                                 | B C                |
| *<br>*                                                                                                                                                            |                               | 180'-0" ▲<br>10'-0" DEEP ▲<br>(8'-0" WATER, 2'-0" FREEBOARD)<br>25,000 BBL MINIMUKN CAPACITY |                    |
| 313'<br>- 0°<br>- 0°0'                                                                                                                                            |                               |                                                                                              |                    |
| 5 <mark>80</mark><br>                                                                                                                                             |                               | 10'-0" DEEP<br>(8'-0" WATER, 2'-0" FREEBOARD)<br>25,000 BBL MINIMUM CAPACITY                 |                    |
|                                                                                                                                                                   |                               | 160'-0" <u>A</u> 🚝                                                                           | B C                |
| •" 43 <u>"</u> 030'-                                                                                                                                              |                               | 180'-0"                                                                                      |                    |
|                                                                                                                                                                   | 20'-0"<br>                    |                                                                                              | (NOTE 8)           |
| , i<br>                                                                                                                                                           |                               | 180'-0"                                                                                      |                    |
| 32'-0"                                                                                                                                                            |                               |                                                                                              | • (NOTE 8)         |
|                                                                                                                                                                   |                               |                                                                                              |                    |
|                                                                                                                                                                   |                               |                                                                                              | G                  |
|                                                                                                                                                                   |                               |                                                                                              |                    |
|                                                                                                                                                                   |                               |                                                                                              |                    |
|                                                                                                                                                                   |                               |                                                                                              |                    |
|                                                                                                                                                                   |                               |                                                                                              |                    |
|                                                                                                                                                                   |                               |                                                                                              |                    |
|                                                                                                                                                                   |                               |                                                                                              |                    |
|                                                                                                                                                                   |                               |                                                                                              |                    |
|                                                                                                                                                                   |                               |                                                                                              |                    |
|                                                                                                                                                                   |                               |                                                                                              |                    |
|                                                                                                                                                                   |                               |                                                                                              |                    |
|                                                                                                                                                                   |                               |                                                                                              | <b>—</b> 120'–0" — |
|                                                                                                                                                                   |                               |                                                                                              | -                  |
|                                                                                                                                                                   |                               |                                                                                              | REVISIONS          |
| 2020 DESIGN<br>BASIN DESIGN, DRF 20333 EV 12,                                                                                                                     | /23/20 · 8 <sup>18th</sup>    |                                                                                              |                    |
|                                                                                                                                                                   |                               |                                                                                              |                    |
| eleased to Imaging: 5/25/2021 11:14:28 AM                                                                                                                         |                               |                                                                                              |                    |




- WORKING AREA (NOTE 6)



MAGNETIC NORTH

43'-0"

Received by OCD: 3/9/2021 3:00:25 PM



Released to Imaging: 5/25/2021 11:14:28 AM

|                |                                 |        |                |                           |          |             |                | DI 15.20      |         | OGO FEI     |          | DI 15             | 22 0000   | GO FED COM         | DI 15.22  | OCOBOC     | O FED COM   |
|----------------|---------------------------------|--------|----------------|---------------------------|----------|-------------|----------------|---------------|---------|-------------|----------|-------------------|-----------|--------------------|-----------|------------|-------------|
|                |                                 |        |                |                           |          | 1           |                |               |         | H WELL      | DCOM     | DL 15             | NO. 423H  |                    |           | 10. 424H V |             |
|                | NW PAD CORNER                   |        |                | NE PAD CORNER             | ۲        |             | X              | (=            |         | 40,131'     |          | X=                |           | ),156'             | X=        | 740,       |             |
| X=<br>Y=       | 739,720'<br>511,812'            |        | X=<br>Y=       | 740,400'<br>511,815'      |          |             | Y              | ′=            |         | 11,694'     | NAD 27   | Y=                |           | 1,694' NAD 27      | Y=        | 511,       |             |
| Y=<br>LAT.     | 32.404693° N                    | D 27   | Y=<br>LAT.     | 32.404686° N              | NAD 27   |             | -              | AT.           |         | 358° N      | NAD 21   | LAT.              | 32.4043   | 58° N              | LAT.      | 32.40435   | B° N        |
| LAT<br>LONG    | 103.556609° W                   |        | LAT.           | 103.554406° W             |          |             | _              |               | 103.555 |             |          |                   | 103.55520 |                    |           | 03.555119  |             |
| X=             | 780,903'                        |        | X=             | 781,583'                  |          |             |                | (=            |         | 81,313'     |          | X=                |           | 1,338'             | X=        | 781,       |             |
| Y=             | 511,873'                        |        | Λ-<br>Y=       | 511,876'                  |          |             |                | ′=            |         | 11,754'     | NAD83/86 | Y=                |           | 1,755'<br>NAD83/86 | Y=        | 511,       |             |
| LAT.           | 32.404816° N                    | 83/86  | LAT.           | 32.404810° N              | NAD83/86 |             | -              | AT.           |         | 482° N      |          | LAT.              | 32.4044   | 82° N              | LAT.      | 32.40448   | 1°N         |
| LONG.          | 103.557093° W                   |        | LONG.          | 103.554890° W             |          |             |                |               | 103.555 |             | 141/200  | LONG.             | 103 55568 |                    |           | 03.555604  |             |
| ELEV.          |                                 |        | ELEV.          | +3565'                    | NAVD88   |             | Ŀ              | LEV.          |         | +3563'      | NAVD88   | ELEV.             | +         | 3563' NAVD88       | ELEV.     | +3         | 563' NAVD88 |
|                | SW PAD CORNER                   |        |                | SE PAD CORNER             | र        |             |                |               | F       | PROPOS      | SED PAD  |                   |           | PR                 | OPOSED R  | ESERVE     | PIT         |
| X=             | 739,722'                        |        | X=             | 740,402'                  |          | 1           | 0              | COURSI        | E       | BEAR        | RING     | DIS               | TANCE     | COURSE             | BEAR      | ING        | DISTANCE    |
| Y=<br>LAT.     | 511,332'<br>32.403373° N        | D 27   | Y=<br>LAT.     | 511,335'<br>32.403367° N  | NAD 27   |             |                | P1            | 5       | 5 89° 47    | ' 07" W  |                   | 680.00'   | R1                 | S 89° 47' | 07" W      | 333.00'     |
| LAT<br>LONG    | 103.556614° W                   |        | LAT.           | 103.554411° W             |          |             |                | P2            | N       | 100° 12     | ' 53" W  |                   | 480.00'   | R2                 | N 00° 12' | 53" W      | 264.00'     |
| X=             | 780,904'                        |        | X=             | 781,584'                  |          |             | -              | P3            |         | N 89° 47    | " 07" F  |                   | 680.00'   | R3                 | N 89° 47' | '07" E     | 333.00'     |
| Y=             | 511,393' <sub>NAD</sub>         | 183/86 | Y=             | 511,396'                  | NAD83/86 |             | -              |               |         |             |          | -                 |           |                    |           |            |             |
| LAT.           | 32.403497° N                    |        | LAT.           | 32.403490° N              | NAD00/00 |             |                | P4            | 5       | S 00° 12    | 2' 53" E |                   | 480.00'   | R4                 | S 00° 12' | 53" E      | 264.00'     |
| LONG.<br>ELEV. | 103.557099° W<br>+3560' NAV     |        | LONG.<br>ELEV. | 103.554895° W<br>+3556'   | NAVD88   |             |                |               |         |             |          |                   |           | PF                 | ROPOSED S | SPOIL AF   | REA         |
|                |                                 |        |                | RESERVE PIT CO            |          | NW          | CORNER S       |               | FΔ      | NE          | CORNER   | SPOIL A           | RFA       | COURSE             | BEAR      | ING        | DISTANCE    |
| X=             | 739.951'                        |        | X=             | 740,284'                  |          | X=          |                | ,284'         | L/1     | X=          |          | 10.399'           |           | S1                 | N 00° 12' | 53" W      | 264.00'     |
| Y=             | 512,077'                        | D 27   | Y=             | 512,079'                  | NAD 27   | Y=          | 512            | ,079'         | AD 27   | Y=          |          | 12,079'           | NAD 27    | S2                 | N 89° 47' |            | 115.00'     |
| LAT.           | 32.405416° N                    |        | LAT.           | 32.405413° N              | NAD 21   | LAT.        | 32.40541       | I3° N         | NAD ZI  | LAT.        | 32.4054  |                   | NAD 27    |                    |           |            |             |
| LONG.<br>X=    | 103.555854° W<br>781.134'       |        | LONG.<br>X=    | 103.554775° W<br>781.467' |          | LONG.<br>X= | 103.55477      | 5° W<br>,467' |         | LONG.<br>X= | 103.5544 | 03° W<br>31,582'  |           | S3                 | S 00° 12' | 53" E      | 264.00'     |
| ∧-<br>Y=       | 512 138'                        |        | Λ-<br>Y=       | 512,139'                  |          | Λ=<br>Y=    |                | 139           |         | Υ=<br>Y=    |          | 12,140'           |           | S4                 | S 89° 47' | 07" W      | 115.00'     |
| LAT.           | 32.405540° N                    | 83/86  | LAT.           | 32.405537° N              | NAD83/86 | LAT.        | 32.40553       | · NIA         | AD83/86 | LAT.        | 32.405   | '                 | NAD83/86  | PROPO              | DSED EAST | ACCES      | S ROAD      |
| LONG.          | 103.556338° W                   |        | LONG.          | 103.555260° W             |          | LONG.       | 103 55526      |               |         | LONG.       | 103.5548 |                   | N/N/200   | COURSE             | BEAR      |            | DISTANCE    |
| ELEV.          | +3570' NAV<br>RESERVE PIT CORNE |        | ELEV.          | +3569'<br>RESERVE PIT CO  | NAVD88   | ELEV.       | +:<br>CORNER S |               |         | ELEV.       | CORNER   | +3567'<br>SPOLL A | NAVD88    | A3                 | N 89° 47' |            | 730.00'     |
| X=             | 739,952'                        |        | X=             | 740.285'                  |          | X=          |                | ,285'         |         | X=          |          | 40,400'           |           | A4                 | N 00° 12' |            | 100.00'     |
| Y=             | 511 813'                        |        | Y=             | 511,815'                  |          | Y=          |                | 815'          |         | Y=          |          | 11.815            |           |                    |           |            |             |
| LAT.           | 32.404691° N                    | D 27   | LAT.           | 32.404687° N              | NAD 27   | LAT.        | 32.40468       | ' N           | AD 27   | LAT.        | 32.4046  | ,                 | NAD 27    | A5                 | S 89° 47' | 07" W      | 30.00'      |
| LONG.<br>X=    | 103.555857° W<br>781,135'       |        | LONG.          | 103.554778° W<br>781,468' |          | LONG.       | 103.55477      | 8° W<br>,468' |         | LONG.       | 103.5544 | 06° W<br>31,583'  |           | PROPO              | SED WEST  | T ACCES    | S ROAD      |
| X=<br>Y=       | 511 874'                        |        | X=<br>Y=       | 781,468<br>511,875'       |          | X=<br>Y=    |                | 875'          |         | X=<br>Y=    |          | 11,876            |           | COURSE             | BEAR      | ING        | DISTANCE    |
| LAT.           | 32.404814° N                    | 083/86 | LAT.           | 32.404811° N              | NAD83/86 | LAT.        | 32.40481       |               | AD83/86 | LAT.        | 32.4048  | ,                 | NAD83/86  | A1                 | N 00° 12' |            | 402.67'     |
| LONG.          | 103.556341° W                   |        | LONG.          | 103.555263° W             |          | LONG.       | 103.55526      |               |         | LONG.       | 103.5548 |                   |           |                    |           |            |             |
| ELEV.          | +3566' NAV                      | VD88   | ELEV.          | +3565'                    | NAVD88   | ELEV.       | +(             | 3565' N       | IAVD88  | ELEV.       |          | +3565'            | NAVD88    | A2                 | N 89° 47' | 0/"E       | 30.00'      |

#### FOR THE EXCLUSIVE USE OF CHEVRIN U.S.A. INC. I, Steven M. Coleman, Rratessional Surveyor, do hereby state this plat is true

and correct to the best of my knowledge.

22921

01/28/2021

Steven M. Coleman

Registration No. 22921

PENAL

DISCLAIMER: At this time, C. H. Fenstermaker & Associates, L.L.C. has not performed nor was asked to perform any type of engineering, hydrological modeling, flood plain, or "No Rise" certification analyses, including but not limited to determining whether the project will impact flood hazards in connection with federal/FEMA, state, and/or local laws, ordinances and regulations. Accordingly, Fenstermaker makes no warranty or representation of any kind as to the foregoing issues, and persons or entities using this information shall do so at their own risk.

NOTE:

Please be advised, that while reasonable efforts are made to locate and verify pipelines and anomalies using our standard pipeline locating equipment, it is impossible to be 100 % effective. As such, we advise using caution when performing work as there is a possibility that pipelines and other hazards, such as fiber optic cables, PVC pipelines, etc. may exist undetected on site.

#### NOTE:

Many states maintain information centers that establish links between those who dig (excavators) and those who own and operate underground facilities (operators). It is advisable and in most states, law, for the contractor to contact the center for assistance in locating and marking underground utilities. For guidance, New Mexico One Call www.nm811.org.

FILENAME: T:\2019\2191038\DWG\DL 15 22 Ogopogo Fed Com SUP\_R3.dwg

Page 2 of 2

Teme

#### SURFACE USE PLAT

#### CHEVRON U.S.A. INC. **PROPOSED PAD & ACCESS ROADS**

DL 15 22 OGOPOGO FED COM PAD

SECTION 10, T22S-R33E

#### LEA COUNTY, NEW MEXICO



135 Regency Sq. Lafayette, LA 7050 Ph. 337-237-2200 Fax. 337-232-329 www.fenstermaker.com

|                                                                                |                  |   |     |            | REVISIO         | ONS |
|--------------------------------------------------------------------------------|------------------|---|-----|------------|-----------------|-----|
| C. H. Fenstermaker & Associates, L.L.C.<br>135 Regency Sq. Lafayette, LA 70508 | DRAWN BY: DMB    | # | BY: | DATE:      |                 | DES |
| Ph. 337-237-2200 Fax. 337-232-3299                                             | PROJ. MGR.: GDG  | 4 | DMB | 01/14/2021 | Add reserve pit |     |
| www.fenstermaker.com                                                           | DATE: 03/09/2020 | 5 | DMB | 01/21/2021 | Add spoil area  |     |

DESCRIPTION:

#### Dagger Lake Driving Directions



#### Head West out of Jal, NM

- Continue west on Hwy 128 for ~34.5 miles, then turn right (north) on Red Rd
- Continue north on Red Rd for ~7.3 miles, before turning right (east) into the lease road that leads to the Dagger Lake development entrance.
- Continue east on main lease road for ~5.1 miles, at the cross intersection continue driving where the road makes a left (northeast)
- Continue east on main lease road for ~2.9 miles, turn right (south)
- Continue south for ~0.4 miles, turn left (east)
- Continue east for ~0.5 miles, turn left (north) at the T intersection
- Continue north for ~0.18 miles, turn right (east) and drive through cattleguard
- Continue east for ~0.64 miles, turn left (north)
- Continue north for ~1.1 miles, turn right (east)
- Continue east for ~2.1 miles, turn slightly left (north) at the well pad/tank battery location
- Continue north for ~0.3 miles, make a sharp right
- Continue east for ~0.4 miles, make a right turn (south)
- Continue south for ~0.7 miles, turn left (east)
- Continue driving (east) on lease road for ~0.7 miles, where you will reach the Grizzly Pad reserve pit location.

GPS: 32.166933, -103.659297

# **Delivery Contacts:**

Patrick McMahon – 432-266-8681 Tom Donaghe – 575-779-9776

# Appendix E – Operating and Maintenance Plan

Temporary Pit containing non-low chloride fluids Dagger Lake 15 22 Ogopogo Pad Pit Section 10, T22S, R33E

# Appendix E – Operating and Maintenance Plan Dagger Lake 15 22 Ogopogo Pad Pit Temporary Pit

The Operator and Rig Contractor will operate and maintain the Temporary Pit to contain liquids and solids, maintain the integrity of the liner system in a manner that prevents contamination of fresh water and protects public health and the environment as described below.

The operation of the Temporary Pit is summarized below.

Prior to arrival of the drilling rig, the separate pit sections are filled with the fluid required for drilling operations of the wells on the well pad. Typically, these fluids are a low chloride brackish water and a high chloride saturated brine.

During open loop drilling operations, fluid is pulled from one end of the Temporary Pit and sent to the rig pumps to be transferred downhole as the drilling fluid. Upon returning to the surface, the fluid and associated drilled solids flow to the opposite end of the Temporary Pit.

When conducting Closed Loop drilling activities, the Temporary Pit may be utilized for cuttings disposal for purposes of maintaining mud weight, mitigating downhole hazards, and managing other unforeseen circumstances. The Temporary Pit is only to be utilized in conjunction with Closed Loop drilling when drilling activities are done using Water Based Drilling Fluids. In this circumstance, drilled solids are separated from the drilling fluid with solids control equipment and then moved to the Temporary Pit.

During well cementing operations, if the low chloride fluid in the Temporary Pit meets specifications set by the Operator and Cementing Contractor, that fluid will be used as mix water for the blending of the cement slurry. During cementing operations, excess cement returns may be placed in the Temporary Pit.

Throughout well construction, if the fluid in the Temporary Pit meets the specifications set by the Operator and Rig Contractor, that fluid may be used as rig water for component cleaning and engine cooling.

If downhole problems occur during drilling operations, such as fluid losses or waterflows, the Temporary Pit is used to assist with fluid management into and out of the well. Transfer pumps and hoses are used to move these fluids.

After the drilling rig is mobilized off the well pad, any remaining fluids in the Temporary Pit will be removed and reused, recycled, or disposed of in a manner consistent with Division rules.

Appendix E – Operating & Maintenance Plan

The operation of the Temporary Pit will follow the requirements listed below:

- All cuttings placed into the Temporary Pit will be produced and disposed of within the boundaries of one single lease, pursuant to the Pit Rule definition of "Onsite".
- The Operator will not discharge into or store any hazardous waste (as defined by 40 CFR 261 and NMAC 19.15.2.7.H.3) in the pits.
- If the pit liner's integrity is compromised above the water line, then the Operator will repair the damage within 48 hours of discovery.
- If the pit develops a leak, or if any penetration of the pit liner occurs below the liquid's surface, then the Operator shall notify the appropriate division office pursuant to the requirements of 19.15.29 NMAC, remove all liquid above the damage or leak within 48 hours of discovery, and repair the damage or replace the pit liner as applicable.
- The injection or withdrawal of liquids from a pit is accomplished through a header, diverter or other hardware that prevents damage to the liner by erosion, fluid jets or impact from installation and removal of hoses or pipes.
- Engineering drawings demonstrate that the elevation and slopes of the pit prevent the collection of surface water run-on.
- The Operator will maintain on site an oil absorbent boom to contain and remove oil from the pit's surface.
- The Operator will maintain the pit free of miscellaneous solid waste or debris.
- The Operator will maintain at least two feet of freeboard for the Temporary Pit. If, during extenuating circumstances, a freeboard of less than two feet is required, then a log will be maintained describing such circumstances.
- The Operator will remove all free liquids from the surface of a temporary pit within 30 days from the date the Operator releases the last drilling or workover rig associated with the relevant pit permit. The Operator will note the date of the drilling or workover rig's release on form C-105 or C-103 upon well or workover completion.

# Appendix F – Closure Plan

Temporary Pit containing non-low chloride fluids Dagger Lake 15 22 Ogopogo Pad Pit Section 10, T22S, R33E

# Appendix F – Closure Plan Dagger Lake 15 22 Ogopogo Pit Temporary Pit

### **Discussion of Onsite Cuttings Disposal**

The proposed Temporary Pit will contain drill cuttings from the vertical sections of wells 422H, 423H, and 424H. All cutting from vertical drilling will be produced and disposed of within the boundaries of one single lease, pursuant to the Pit Rule definition of "Onsite". The disposal and closure activities will take place within the design footprint of the Temporary Pit. Proposed closure operations will be conducted in accordance with the Closure and Site Reclamation Requirements detailed in 19.15.17.13 NMAC.

# **Closure Notice**

If planned activities deviate from this Closure Plan, an updated Closure Plan will be submitted to the Division for approval prior to initiating any closure activities.

The Operator will notify the State Land Office at least 72 hours, but not more than one week, prior to any closure activities as per approved Conditions of Approval. This notice will include the project name and location description.

The Operator shall additionally notify the district office verbally and in writing at least 72 hours, but not more than one week, prior to any closure operation. This noticed will include the Operator's name and the location to be closed by unit letter, section, township, and range.

# **Protocols and Procedures**

- 1. The Operator will remove all liquids from the Temporary Pit and either:
  - a. Dispose of the liquids in a division-approved facility, or
  - b. Recycle, reuse or reclaim the water for reuse in drilling and stimulation.
- 2. A five-point (minimum) composite sample will be collected from the contents of the Temporary Pit and sent to an accredited laboratory for analysis of the constituents listed in Table 2 of 19.15.17.13 NMAC.
  - a. If any concentration is higher than limits listed in Table 2, blending calculations will be used to determine the amount of soil or non-waste material needed to blend with the pit contents to achieve the Table 2 limit. The mixing ratio of soil or non-waste material to pit contents shall not exceed 3:1.
  - b. If all constituent concentrations are less than or equal to the parameters listed in Table 2 of 19.15.17.13 NMAC, no mixing shall occur.

- 3. The Operator will conduct blending operations, as required, and conduct a paint filter liquids test to ensure that the contents of the former pit are sufficiently stabilized to support the cover materials.
- 4. Cover materials will be installed as described in 'Cover Design' (below).
- 5. Following the implementation of the cover design, the Operator will revegetate the area as outlined in 'Reclamation and Revegetation' (below).

# Cover Design

After blending with non-waste containing, uncontaminated, earthen material, the Operator will cover the former Temporary Pit according to the following procedure.

- 1. The contents of the former pit will be positively contoured ('turtle-backed') to promote drainage away from the former pit contents and reduce infiltration. Compaction of pit materials over time and as a result of placement of overburden will be taken into consideration.
- 2. A 20-mil string reinforced LLDPE geomembrane liner will be installed above the pit materials.
- 3. At least 4-feet of compacted, uncontaminated, non-waste containing earthen fill with chloride concentrations less than 600 mg/kg will be placed above the liner.
- 4. Either the background thickness of topsoil or 1-foot of suitable material to establish vegetation at the site, whichever is greater, will be placed over the earthen fill.
- 5. The location will be recontoured to match the pre-disturbance topography and prevent surface erosion and ponding.
- 6. The Operator will revegetate the area as described below in 'Reclamation and Revegetation'.

# **Closure Report**

- 1. Within 60 days of closure completion, the Operator will submit a closure report on form C-144, with necessary attachments to document all closure activities including sampling results, information required by 19.15.17 NMAC, a plot plan including the exact location of the former pit, details of the cover design, and photographs.
- 2. In the closure report, the Operator will certify that all information in the report and attachments is correct and that the Operator has complied with all applicable closure requirements and conditions specified in the approved closure plan.
- 3. A steel marker will be placed at the location per the requirements in Subsection F of 19.15.17.13 NMAC.

# **Closure Timing**

As discussed in **Variance 1**, the Operator proposes closure activities will be completed within a timeline not to exceed 1 year from the rig down move out (RDMO) date. This date will be noted on form C-105 or C-103, filed with the Division upon the well's completion.

# **Reclamation and Revegetation**

The Operator will reclaim the disturbed area to a safe and stable condition that existed prior to oil and gas operations and that blends with the surrounding undisturbed area. Areas with ongoing production or drilling operations will not be reclaimed as described herein, but will be stabilized and maintained to minimize dust and erosion

For all areas relevant to the closure process that will not be used for production operations or future drilling, the Operator will:

- 1. Replace topsoils and subsoils to their original relative positions and regrade the area to achieve erosion control, long-term stability, preservation of surface water flow patterns, and prevent ponding.
- 2. Notify the Division when the surface grading work is complete.
- 3. Reseed the area with an appropriate seed mix in the first favorable growing season following closure. Reseeding and weed control measures will be taken, if necessary.
- 4. Notify the Division when reclamation is complete: vegetative cover has been established that reflects a life-form ratio of plus or minus 50 % of pre-disturbance levels and a total percent plant cover of at least 70 % of pre-disturbance levels, excluding noxious weeds.

# Alternative to Closure in Place

In the event the concentration of any contaminant in the contents, after mixing with soil or non-waste material, is higher than constituent concentrations shown in 19.15.17.13 NMAC, then the waste shall be removed from the Temporary Pit and disposed of at one of the following Division approved off-site facilities.

Sundance Services (Parabo, Inc.) M-29-21S-38E Permit No. NM-01-003 R360 Permian Basin, LLC 4507 W. Carlsbad Hwy, Hobbs, NM 88240 Permit No. NM-01-0006

# Appendix G – Evaluation of Unstable Conditions

Temporary Pit containing non-low chloride fluids Dagger Lake 15 22 Ogopogo Pad Pit Section 10, T22S, R33E

# Appendix G – Evaluation of Unstable Conditions Dagger Lake 15 22 Ogopogo Pad Temporary Pit

# Summary

**Figure 8** identifies the location of the proposed temporary pit with respect to BLM Karst areas. The BLM categorizes all areas within the Carlsbad Field Office (CFO) as having either low, medium, high or critical cave potential based on geology, occurrence of known caves, density of karst features, and potential impacts to fresh water aquifers. The proposed Temporary Pit is mapped by BLM CFO in a "Low Potential" karst area.

The proposed temporary pit lies near the northeast margin of the Delaware Basin. Bedrock ocurring beneath the proposed temporary pit consists of the Triassic-aged Dockum Group. Underlying the Dockum Group are the Dewey Lake redbeds. Both of these formations are composed chiefly of clastic (insoluble), non-karst-forming rocks. Beneath these formations are Permian-aged rocks of the Rustler and Salado Formations. These rocks contain significant beds of halite (i.e., rock salt) and anhydrite, making them susceptible to karst formation. The top of the Rustler Formation in the proposed temporary pit is approximately 800 feet below the land surface (Crowl et al. 2011).

Despite the great depth to karst-forming rocks, a number of large depressions and "sinks" are noted in the region. Bell Lake Sink and three other unnamed sinks, each about two miles in diameter, occur approximately 10 miles south of the proposed temporary pit (Berg 2012, Figure 11). San Simon Sink is located approximately 10 miles southeast of the proposed temporary pit (Bachman 1973, Berg 2012, **Figure 11**).

In summary, evidence of karst in the region consists predominantly of large depressions that likely formed over millions of years; although there is evidence that subsidence is ongoing, at least at San Simon Sink. These depressions were most-likely created by the dissolution of salt beds in the upper part of the Salado Formation and in the Rustler Formation, even though these are overlain by approximately 800 feet of insoluble rocks.

There are no indications that voids or other karst features are present or are likely to found in the area of the proposed temporary pit. The following lines of evidence, detailed in the sections below, support this position:

- 1. There are no dissolution features within `10-miles of the proposed location (**Figure 11)**,
- An Arcadis field study of the area indicated no closed depressions, caves, or fissures in the immediate vicinity and general area of the proposed pit (Attachment 1),
- 3. Tetra Tech geotechnical report and boring log from ~1.1 miles away indicated low karst potential (**Attachment 2**).

The Bureau of Land Management, Paul Murphy prepared the Environmental Assessment (EA), document number - DOI-BLM-P020-2020-0095-EA, evaluating DL 09 16 Loch Ness Pad 1. This EA analyses a pad near the proposed temporary pit location and karst was not analyzed in the EA and therefore was not identified an issue in the project area. (Attachment 3).

Structurally, the region surrounding the proposed pit location is relatively undeformed, with a 0 to 3 percent slope, and the nearest mapped fault is 30-miles to the southwest (USGS 2021).

# **Dissolution Features Evident on Aerial Imagery**

The nearest apparent dissolution features to the proposed location are (Figure 11):

- Bell Lake Sink and three other unnamed sinks, each ~2-miles in diameter, are present approximately 10-miles south of the proposed location.
- San Ramon Sink is present ~10-miles southeast of the proposed location.

# Depth to Karst-Forming rocks

**Figure G.1** shows a stratigraphic section of the formations beneath the proposed pit. The upper 1,000-feet of subsurface consists of insoluble, clastic material. These deposits are underlain by soluble, karst-forming strata.

Surface to ~1,000-feet: Based on a review of available literature for the region, no significant intervals of soluble rocks are present in the Quaternary and Triassic deposits that constitute the upper ~1,000-feet of subsurface. Because this material is largely insoluble, the potential for karst features to form within this interval is very low (Lucas and Anderson, 1993).Deeper formations at >1,000-feet: The top of the Rustler Formation is approximately 400 feet thick beneath the surface at the location of the proposed pit (Nicholson and Clebsch 1961). The Rustler Formation overlies the Salado Formation. These formations both contain thick, highly soluble beds of anhydrite and halite. The Bell Lake Sink, San Simon Swale, and San Simon Sink formed by the dissolution of salt from these deep formations. The resulting surface subsidence (as a result of deep dissolution) is a very slow process that has been ongoing for millions of years to form these large depressions (Bachman, 1973 and Berg, 2012).

| Period        | Formation                     | Thickness<br>(ft) | Description                                                                                   |
|---------------|-------------------------------|-------------------|-----------------------------------------------------------------------------------------------|
| Quaternary    |                               | 100               | Unconsolidated eolian and<br>unconsolidated to partially<br>consolidated alluvial<br>deposits |
|               | Chinle                        | 200 - 300         | Red shales and thinly<br>interbedded sandstone                                                |
| Triassic      | Santa Rosa                    | 200 - 300         | Sandstone and<br>interbedded siltstone and<br>red shale                                       |
| Permotriassic | Quartermaster<br>(Dewey Lake) | 560               | Mudstone, siltstone,<br>claystone, and interbedded<br>standstone                              |
| Permian       | Rustler                       | 400               | Anydrite, halite, dolomite,<br>sandy siltstone, and<br>polyhalite                             |

*Figure G.1: Stratigraphic section beneath the location of the proposed temporary pit* (Nicholson and Clebsch 1961 as cited in Arcadis 2020)

# Arcadis Environmental Field Survey

An environmental field survey was conducted by Arcadis in February 2020 in the area surrounding the location of the proposed pit (**Figure 8 and Attachment 1**). The on-site survey did not identify any closed depressions, caves, or fissures. The survey determined that the occurrence of voids in the surveyed area was "unlikely" based on a review of the literature, aerial photography, and an assessment of on-site conditions.

Tetra Tech Geotechnical Report and Boring Log

Geotechnical report and boring log from 2020 for the proposed Dagger Lake Above-Ground Storage Tank (AST) in Section 4 located ~1.1 miles to the northwest of the proposed pit location was reviewed (Attachment 2). The boring was installed to a depth of 70 feet. Groundwater was not encountered in the boring during drilling. The boring was backfilled with auger cuttings upon completion of the drilling.

- Proposed Dagger Lake Section 4 AST Containment
  - ~1.1. miles northwest of proposed pit location
  - Boring B1 (center) was drilled to 70 ft
  - 0 ft 8.5 ft
    - Loose, Reddish Brown, Silty Sand, Weakly Cemented, Dry
  - 8.5 ft 18.5 ft
    - Very Dense, Pink to Reddish, Sand, Non-Plastic, Uncemented, Trace Subangular Gravel, Dry
    - Switch Drilling Method to Air Rotary at 10 ft

- 18.5 ft 62 ft
  - Very Dense, Reddish Brown, Silty Sand, Low-Plasticity, Weakly Cemented, Trace Subangular Gravel, Dry
- 62 ft 70 ft
  - Limestone, Slightly Weathered, Hard, Reddish Yellow, Fine Grained, Broken, Dry
- Groundwater was not encountered in the boring during drilling. The boring was backfilled with auger cuttings upon completion of the drilling.

# **Mitigation of Karst Potential**

While the BLM did not identify any karst mitigation requirements in the EA near the temporary pit location, the following commitments will be applied as a best practice in development of the proposed pit.

General Construction:

No blasting

• The BLM, Carlsbad Field Office, will be informed immediately if any subsurface drainage channels, cave passages, or voids are penetrated during construction, and no additional construction shall occur until clearance has been issued by the Authorized Officer.

• All linear surface disturbance activities will avoid sinkholes and other karst features, if they are identified during construction, to lessen the possibility of encountering near surface voids during construction, minimize changes to runoff, and prevent untimely leaks and spills from entering the karst drainage system.

• All spills or leaks will be reported to the BLM immediately for their immediate and proper treatment.

#### Pad Construction:

•The pad will be constructed and leveled by adding the necessary fill and caliche –no blasting.

• The entire perimeter of the well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad.

• The compacted berm shall be constructed at a minimum of 12 inches high with impermeable mineral material (e.g., caliche).

• No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad.

• The topsoil stockpile shall be located outside the bermed well pad.

• Topsoil, either from the well pad or surrounding area, shall not be used to construct the berm.

• No storm drains, tubing or openings shall be placed in the berm.

• If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.

• The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim

reclamation has been completed.

- Any access road entering the well pad shall be constructed so that the integrity of the berm height surrounding the well pad is not compromised (i.e. an access road crossing the berm cannot be lower than the berm height).
- Following a rain event, all fluids will be vacuumed off of the pad and hauled offsite and disposed at a proper disposal facility.

#### References

Arcadis 2020. Dagger Lake Final Environmental Field Survey Report. Prepared for Chevron.

Hill, C.A. 1996. Geology of the Delaware Basin, Guadalupe, Apache and Glass Mountains: New Mexico and West Texas: Permian Basin Section: Midland, Texas, SEPM, 480 pp.

Land, Lewis and George Veni. 2014. Electrical resistivity surveys, Johnson Estate drill site, Loving County, Texas. National Cave and Karst Research Institute Report of Investigation 5, Carlsbad, NM. March 2014.

Nicholson, Alexander, Jr. and Clebsch, Alfred, Jr. 1961. Ground-Water Report 6 -Geology and Ground-Water Conditions in Southern Lea County, New Mexico, United States Geological Survey in cooperation with the New Mexico Institute of Mining and Technology, State Bureau of Mines and Mineral Resources Division and the New Mexico State Engineer.

Stafford, Kevin W., Laura Rosales-Lagarde, and Penelope J. Boston. 2008. Castile evaporite karst potential map of the Gypsum Plain, Eddy County, New Mexico and Culberson County, Texas: A GIS methodological comparison. Journal of Cave and Karst Studies 70 (1): 35-46.

Tetra Tech 2020. Baseline Sampling Results and Boring log for Dagger Lake AST Pad located in Lea County, New Mexico.

U.S. Geological Survey (USGS) 2021. New Mexico Faults, from the USGS Geologic Map Database. Available online at https://my.usgs.gov/eerma/data/index/4f4e496ee4b07f02db5a354e

## Attachments 1 - 3

Temporary Pit containing non-low chloride fluids

Dagger Lake 15 22 Ogopogo Pad Pit

Section 10, T22S, R33E

Attachment 1

Arcadis Environmental Field Survey, Section 10, Karst Evaluation, Dagger Lake (2020)

<u>Attachment 2</u> Tetra Tech Baseline Sampling Results and Boring Log, Dagger Lake Above-Ground Storage Tank (AST), Section 4 (2020)

<u>Attachment 3</u> DOI-BLM-NM-P020-2020-0095-EA, Section 1.6, Scoping, Public Involvement, and Issues (2019)

•

## Attachments 1 – Arcadis Environmental Field Survey for Dagger Lake, Abbreviated to Karst Section (2020)

Temporary Pit containing non-low chloride fluids

Dagger Lake 15 22 Ogopogo Pad Pit

Section 10, T22S, R33E



Chevron U.S.A. Inc.

# **ENVIRONMENTAL FIELD SURVEY**

Dagger Lake Development Area

February 2020

Released to Imaging: 5/25/2021 11:14:28 AM

#### ENVIRONMENTAL FIELD SURVEY

## ENVIRONMENTAL FIELD SURVEY

Dagger Lake Development Area

Prepared for: Tony Vallejo HES Specialist Chevron MCBU 6301 Deauville Blvd Midland, TX 79706

Prepared by: Arcadis U.S., Inc. Midland Texas 79701 Tel 432 687 5400 Fax 432 687 5401

Our Ref.: 30006265 Date: February 2020

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

#### ENVIRONMENTAL FIELD SURVEY

distinguishable unit. This classification system recognizes that although significant fossil localities may occasionally occur in a geologic unit, a few widely spaced localities do not necessarily indicate a higher class. The primary purpose of the PFYC System is to assess the possible impacts from surface disturbing activities and help determine the need for pre-disturbance surveys and monitoring during construction.

All bedrock geologic deposits within the survey area are considered PFYC 2 (**Figure 11**). Bedrock in the area is from Holocene to middle Pleistocene in age (about 781 to 12 thousand years ago). Previous geologic mapping and field observations indicate that deposits include the Eolian and Piedmont deposits (NMBGMR 2003). The Eolian and Piedmont deposits consist of interlayed eolian sands and piedmont slope deposits (NMBGMR 2003).

### 9.1 Survey Findings and Mitigation

A specific paleontological survey of the proposed project area was not conducted; however, no fossils were incidentally observed during the environmental field survey. The survey area is classified as a PFYC 2; therefore, if at any time fossils are discovered, all activities must stop and the BLM must be contacted within 24 hours.

## **10 KARST**

The term karst describes distinct terranes that are attributable to high solubility of underlying bedrock. Common features of such terranes include sinkholes and caves, which are formed as the bedrock is dissolved by groundwater. Karst aquifers represent saturated bedrock where its permeability has been enhanced by dissolution processes. Such aquifers can be important sources of potable groundwater.

The proposed project area lies near the northeast margin of the Delaware Basin. As discussed in further detail in Section 11.2, bedrock ocurring beneath the proposed project area consists of the Triassic-aged Dockum Group. Underlying the Dockum Group are the Dewey Lake redbeds. Both of these formations are composed chiefly of clastic (insoluble), non-karst-forming rocks. Beneath these formations are Permian-aged rocks of the Rustler and Salado Formations. These rocks contain significant beds of halite (i.e., rock salt) and anhydrite, making them susceptible to karst formation. The top of the Rustler Formation in the proposed project area is approximately 800 feet below the land surface (Crowl et al. 2011).

Despite the great depth to karst-forming rocks, a number of large depressions and "sinks" are noted in the region. Bell Lake Sink and three other unnamed sinks, each about two miles in diameter, occur approximately 10 miles south of the project area (Berg 2012). A portion of San Simon Swale, an approximately 18-mile long by 6-mile wide closed depression that terminates at San Simon Sink traverses the southern portion of the site. San Simon Sink is located approximately 10 miles southeast of the project area (Bachman 1973, Berg 2012). Using Google Earth Imagery (dated 11/20/2015), the dimensions of San Simon Sink are approximately one mile long by one-half mile wide by 75 feet deep. These depressions formed by the dissolution of salt from the upper part of the Salado Formation as well as from the overlying Rustler Formation (Bachman 1973). Solution subsidence in San Simon Sink has

#### ENVIRONMENTAL FIELD SURVEY

been active within the past century; however, solution and subsidence in this area of southeastern New Mexico has been ongoing for millions of years (Bachman 1973).

In summary, evidence of karst in the region consists predominantly of large depressions that likely formed over millions of years; although there is evidence that subsidence is ongoing, at least at San Simon Sink. These depressions were most-likely created by the dissolution of salt beds in the upper part of the Salado Formation and in the Rustler Formation, even though these are overlain by approximately 800 feet of insoluble rocks. Except for the San Simon Swale, no evidence of depressions in the survey area were identified on available topographic mapping or by examining recent Google Earth imagery.

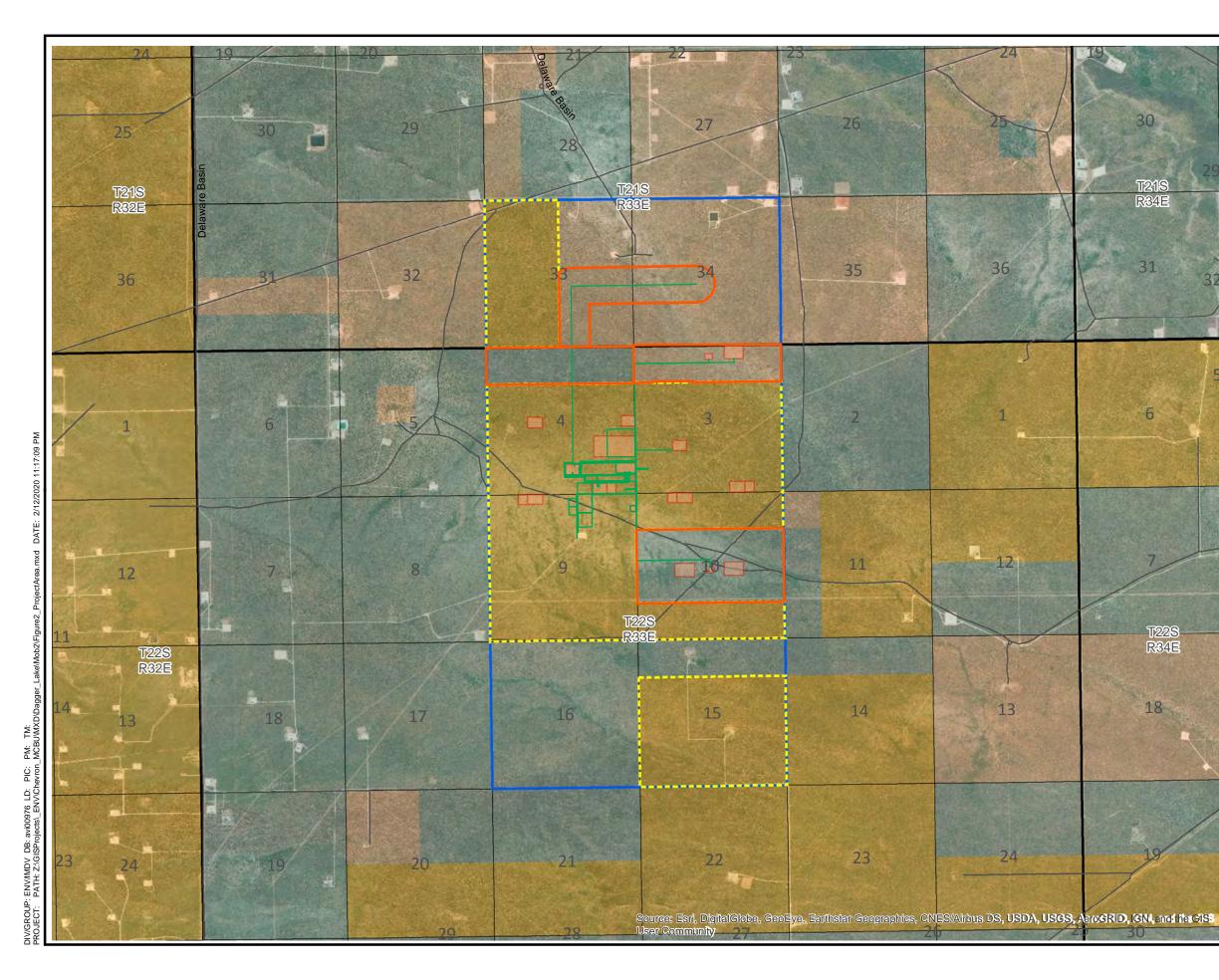
## **10.1 Survey Findings and Mitigation**

Karst potential is mapped by the BLM as "low" in the survey area (**Figure 12**). There was no evidence of subsidence in the area (for example, concentric cracks in the soil surrounding the opening or other evidence of slumping).

## **11 HYDROLOGY**

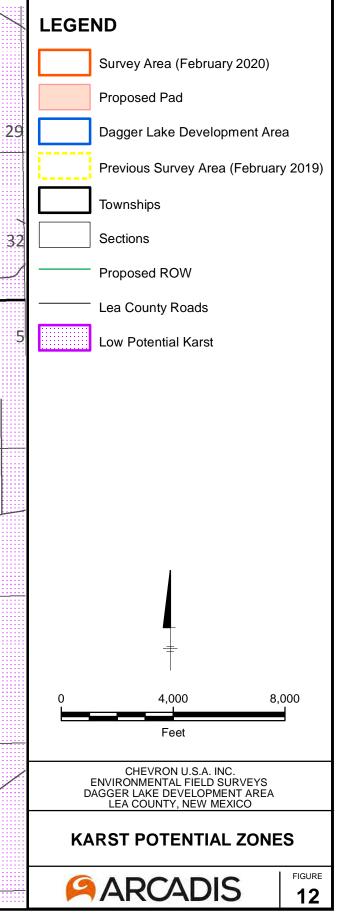
Potential impacts to water resources in the survey area due the construction and operation of Chevron's proposed project were evaluated by comparing the location of these features (ponds, streams, wetlands, etc.) to the proposed surface disturbance. This analysis is based on the examination of the 1988 Carlsbad BLM RMP and evaluation of data compared to the environmental field survey.

## 11.1 Surface Hydrology


The survey area is situated approximately 37 miles east of the City of Carlsbad and south of State Highway 176 in southwestern Lea County, New Mexico. This area is characterized by relatively flat to gentle sloping terrain with many shallow depressions and occasional dunes, but no well-established drainages. National Wetlands Inventory (NWI) Online Data Mapper show three intermittent streambeds that are seasonally flooded within the survey area (**Figure 13**).

Surface water within the proposed project area is affected naturally by the shallow geology, precipitation, and some water erosion. The area is located in the semi-arid southwest near the northern edge of the Chihuahuan Desert. The climate is characterized by low annual precipitation, low humidity, and high average annual temperature and ranges from dry subhumid to arid. Precipitation is quite variable both regionally and seasonally and averages about 12 inches or less annually with the greatest rainfall occurring as monsoonal storms during the summer months. The area is situated at the southwest edge of the Great Plains dust-bowl area and is sometimes subjected to severe windstorms (Nicholson and Clebsch 1961).

Southwestern Lea County, including the survey area, lies within the Lower Pecos River Basin. The major stream in this Basin is the Pecos River, which is located approximately 26 miles to the west southwest of the survey area in southeastern Eddy County. Surface water in the Lower Pecos River Basin comes from three main sources: inflow from the Upper Pecos River Basin, flood inflow from storm events, and groundwater base inflow. The Pecos River bisects Eddy County and runs through the center of the City of


# **FIGURES**

Released to Imaging: 5/25/2021 11:14:28 AM









# **APPENDIX A**

Resumes

PERSONNEL RESUME



Design & Consultancy for natural and

## CHARLES G. HOLDER BIOLOGIST

#### **EDUCATION**

BS Wildlife & Fisheries Science 2014 Texas A&M University

#### YEARS OF EXPERIENCE

Total – 4 With Arcadis - 1

#### **CORE SKILLS**

- 1. Wildlife ID and Trapping
- 2. Plant ID
- 3. Optical Gas Imaging Certified
- 4. ACOE Wetland Delineation Training

Mr Holder is a wildlife biologist with experience in university research, wind energy, and nuisance wildlife removal. As a university researcher, he has experience with trapping, banding, and radio collaring birds, as well as using radio telemetry to track birds. He has experience in pre-construction projects, surveying potential turbine sites for nests and raptor activity, and mortality monitoring on post construction wind farms, as well as acting as the bias corrections coordinator on the project. He also has experience trapping wildlife in residential settings.

### Project Experience

#### Field Surveys for Oil and Gas Development **Production Expansion**

#### Confidential Client, Lea and Eddy County, New Mexico

Conducted multiple field surveys for proposed oil and gas development projects in Lea and Eddy County New Mexico. Documented wildlife, vegetation, hydrology, and multiple other applicable resources to assist in identification of potential design constraints and to support the National Environmental Policy Act documentation.

#### **Barn Owl Nest Monitoring**

#### Confidential Client, Eddy County, New Mexico

Monitored an active barn owl nest during construction. Worked with the construction crew to modify working practices in an effort to prevent the female from abandoning the nest. Construction occurred extremely close to the nest but the project was ultimately successful.

#### Scheer's Beehive Cactus Survey

#### **Confidential Client, Eddy County, New Mexico**

Assisted with four surveys for the Bureau of Land Management special status plant, Scheer's Beehive Cactus. During the surveys, one Scheer's Beehive Cactus was documented and observed multiple look alike species.

#### Gypsum Milkvetch Survey

#### **Confidential Client, Eddy County, New Mexico**

Assisted with one survey for the Bureau of Land Management special status plant, Gypsum Milkvetch. No Gypsum Milkvetch was found during the survey.

PERSONNEL RESUME - Charles G. Holder

## **Project Experience Continued**

#### **Pre-construction Nest Clearance** Confidential Client 2019.

Conducted pre-construction nest clearing surveys for oil and gas development in Eddy and Lea counties NM. Nests were found systematically walking transects, the nests were identified as active or inactive, and all inactive nests were removed to discourage nesting activity prior to construction. Active nests and all raptor's nests were monitored on a weekly basis until construction was complete.

#### Hayhusrt Geophysical Investigation

#### Confidential Client 2019.

Assisted in geophysical surveys by helping set up Electrical Resistivity Imaging (ERI) lines in order to determine the location of bedrock fracture zones and/or delineating tunnels and cavernous zones.

### Attwater's Prairie Chicken Nutrition Study

#### Texas A&M University.

Conducted a study on radioactive isotopes in the Attwater's Prairie Chicken diet. Gathered plan and insect samples in the field, and processed samples for isotope analysis using a ball-and-cup grinder.

#### **Pre-construction Pad Surveys**

#### Tetra Tech Inc. 2017.

Conducted pre-construction transmission line and turbine pad surveys for a windfarm project. Assisted biologist in identifying bird nests in the path of construction equipment, as well as monitor raptor nests when construction equipment is in vicinity.

## **Post-construction Mortality Surveys**

#### Tetra Tech Inc. 2016-2017.

As Field Crew leader, conducted post construction bird and bat mortality monitoring surveys on a newly constructed wind farm in Texas. Also acted as "Bias-corrections Coordinator" and conducted searcher efficiency trials as well as carcass persistence trials. Multiple Studies on the Decline of Quail Populations

#### **Multiple Studies**

#### Texas Tech University, Wildlife Toxicology Laboratory. 2015.

Conducted field research for multiple studies on the decline of quail populations. Responsible for animal-friendly trapping, handling, and tracking of birds. Performed sage and accurate dissections both in the field and lab.

#### **Multiple Studies**

#### Texas Tech University, Wildlife Toxicology Laboratory. 2015.

- Study of Survival Rates and Female Nest Success using Radio Telemetry
- Study of Eye Worms and Caecal Worms in Hunter-harvested Quail
  - Study of Eye Worms and Caecal Worms in Grasshoppers



## CHARLESTON SHIRLEY ENVIRONMENTAL SCIENTIST I, BIOLOGIST



#### EDUCATION

BS Natural Resource Management Louisiana State University and Agricultural & Mechanical College 2013

#### YEARS OF EXPERIENCE

Total – 4 years With Arcadis – <1 year Mr. Shirley has more than two years of experience in the consulting field. He specializes in conducting surveys and monitoring of flora and fauna with an emphasis on threatened species, endangered species and species of concern. Previously he has worked with the military, public agencies and private landowners. He is an authorized biologist with the desert tortoise, Gopherus agassizii.

### **Project Experience**

# Ongoing Maintenance Activities on Pipeline System in the Southern California Deserts

#### SoCal Gas Company, Southern California Desert Areas

As an authorized biologist, monitored sites for wildlife and environmental compliance as excavation, pipe removal and replacement occurred. Performed pre-construction clearance surveys for flora and fauna.

#### **Development Project** Confidential Client, Coyote Springs, Nevada

As an authorized biologist, conducted radio telemetry tracking of transmittered tortoises. Handled tortoises and collected body metrics and replaced transmitters on all tortoises. Monitored sites as crews worked in sensitive wildlife areas.

#### Water Treatment Installation

#### Tetra Tech, Henderson, Nevada

Performed inspection on all tortoise prevention devices. Checked site for compliance.

#### **Range-wide Monitoring Program**

#### U.S. Fish and Wildlife Service, Nevada, California and Utah

As an authorized biologist, tracked all transmittered tortoises, removed transmitters from all individuals being removed from project study, and managed data entry for submission to USFWS.

#### **Community Solar Project**

Valley Electric Association, Pahrump, Nevada

PERSONNEL RESUME – Charleston Shirley



Monitored areas of construction for flora and fauna in ecologically sensitive areas during transmission line maintenance.

#### Monitoring Avian Productivity and Survivorship (MAPS) Banding

## Louisiana Department of Wildlife and Fisheries and Institute for Bird Populations, Louisiana

Safely and quickly extracted birds from mist nets. Determined age and sex of passerine and non-passerine birds. Tooke body metrics including mass, wing cord and reproductive status.

#### **Gopher Tortoise Health Assessment**

#### Louisiana Department of Wildlife and Fisheries, Louisiana

Assisted with collection and processing of bodily fluids of gopher tortoise. Managed live traps and handling of tortoises.

#### **Inventory of Recently Purchased Lands**

#### U.S. Department of Defense, Fort Polk, Louisiana

Conducted an inventory of wildlife and habitat types on lands recently acquired by the military. Worked closely with representatives of the client during active military training to assess health and condition of the endangered red-cockaded woodpecker. Marked areas of clearcutting and suggested other forms of habitat management. Completed indices for diatoms found in flowing water bodies.

#### Wildlife Mortality Study

#### Invenergy, Bishop Hill, Illinois

Served as acting assistant field crew supervisor. Managed establishment and maintenance of transect plots on private lands. Worked with the client and private land owners to conduct a wildlife mortality study. Conducted placement trials and carcass removal trials.

## Attachments 2 – Tetra Tech Baseline Sampling Results and Boring Log, Dagger Lake Above-Ground Storage Tank (AST), Section 4 (2020)

Temporary Pit containing non-low chloride fluids

Dagger Lake 15 22 Ogopogo Pad Pit

Section 10, T22S, R33E



September 3, 2020

Ms. Anna Deily Facilities Infrastructure Engineer Chevron North America – MCBU Exploration and Production Company 6301 Deauville Blvd. Midland, Texas 79706

## RE: Baseline Sampling Results and Boring Log for Dagger Lake AST Pad located in Lea County, New Mexico

Dear Ms. Deily:

Tetra Tech Inc. (Tetra Tech) was retained by Chevron to conduct baseline environmental sampling and drill a deep boring for purposes of identifying groundwater at the proposed Dagger Lake produced water above-ground storage tank (AST) pad. The pad is located in Lea County, New Mexico. The GPS coordinates for the proposed tank pad are N 32.417858° and W 103.569555°. The site location is shown on a topographic map, Figure 1, and an aerial map, Figure 2.

Chevron requested that Tetra Tech drill a deep boring at the produced water AST pad and perform baseline environmental sampling. The purpose of the deep boring is for observation of the presence of groundwater at the tank site. The purpose of the environmental baseline sampling is to establish a baseline of existing soil conditions at this site prior to the installation of the produced water tank and start of operations. As part of the baseline sampling program, Chevron requested that Tetra Tech collect soil samples at 8-inches in depth below the surface with a hand-auger and the samples be analyzed by a qualified laboratory for BTEX, TPH, and Chlorides.

#### Boring

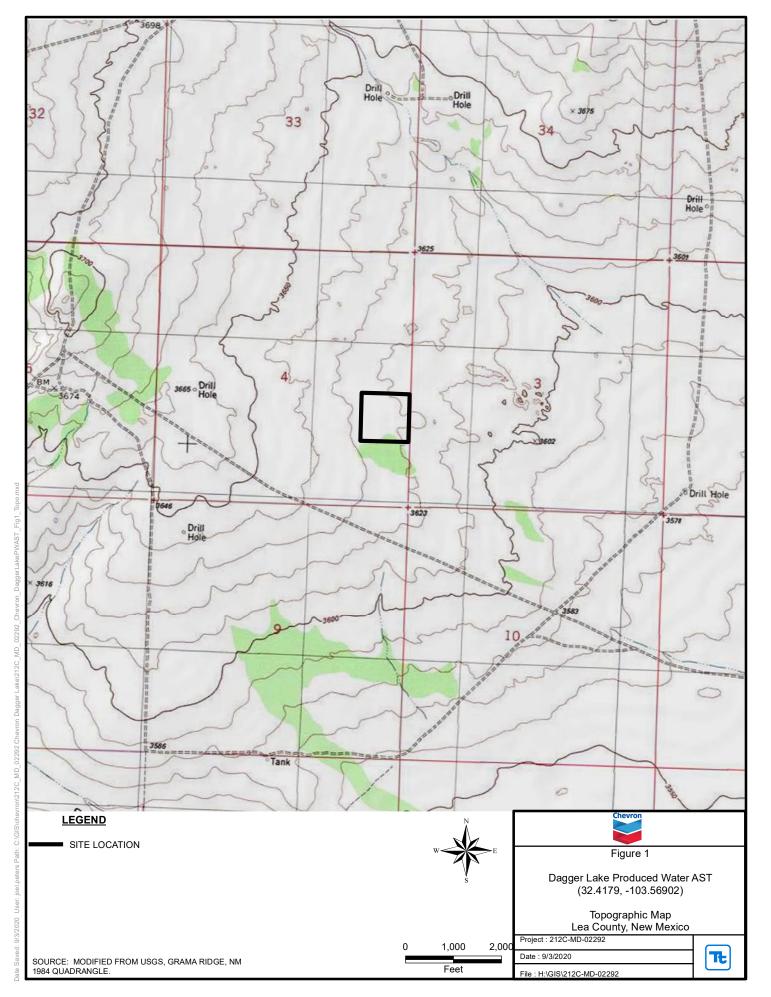
On August 25<sup>th</sup> and 26<sup>th</sup>, one (1) boring, B-1, was installed to a depth of 70 feet. Groundwater was not encountered in the boring during drilling. The boring was backfilled with auger cuttings upon completion of the drilling. Standard Penetration Tests SPTs were performed at five to ten foot intervals in the upper 40 feet for understanding the relative density of the soils. A copy of the boring log is included in Appendix A. The boring location for B-1 is shown in Figure 2.

#### Environmental Baseline Sampling and Laboratory Analyses

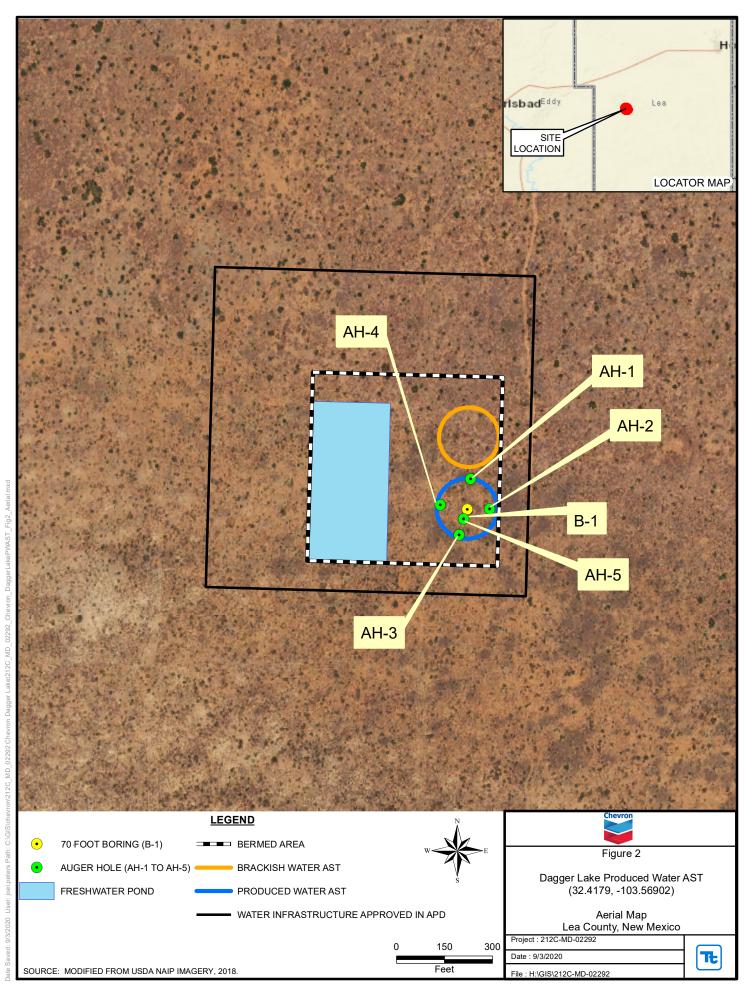
Tetra Tech personnel conducted the baseline environmental soil sampling on August 25<sup>th</sup>, 2020 and a total of five (5) sample points (AH-1 through AH-5) were collected using a hand-auger with sampling bucket. Four (4) of the five sample locations were at the perimeter of the proposed 190'-diameter, produced water tank; and one (1) sample was located in the middle area of the AST. All soil samples were collected at 8-12" below ground surface (bgs). The sample locations are shown in Figure 2.

Each of the five (5) samples (AH-1 through AH-5) were collected and placed into laboratoryprovided containers and delivered to the laboratory under chain of custody. The samples from the site were delivered to Xenco Laboratories in Midland, Texas, for chloride analysis by Method SM 4500 CI B, TPH analysis by method SW8015 (Mod) Extended, and BTEX by method EPA 8021B. The laboratory results are summarized in Table 1. Copies of the laboratory reports and results are included in Appendix B.

If Chevron should require additional support with this project, please contact Nathan Langford at 432-250-0652 or if we can be of further assistance.


Sincerely,

TETRATECH, INC


Nathan Langford, PE Project Manager

# Figures

Released to Imaging: 5/25/2021 11:14:28 AM



Released to Imaging: 5/25/2021 11:14:28 AM



Released to Imaging: 5/25/2021 11:14:28 AM

# Tables

Released to Imaging: 5/25/2021 11:14:28 AM

#### Table 1 Summary of Analytical Results Chevron N.A. E1, MCBU Dagger Lake AST Pad Lea County, New Mexico

|           |             |              |           |          |          | BTEX <sup>2</sup> |               |              |                                  | TPH <sup>3</sup>                    |           |
|-----------|-------------|--------------|-----------|----------|----------|-------------------|---------------|--------------|----------------------------------|-------------------------------------|-----------|
| Sample ID | Sample Date | Sample Depth | Chloride1 | Benzene  | Toluene  | Ethylbenzene      | Total Xylenes | Total BTEX — | GRO                              | DRO                                 | Total TPH |
| Sample iD | Sample Date |              |           | Benzene  | Toldelle | Ethylbenzene      | Total Aylenes |              | C <sub>6</sub> - C <sub>10</sub> | > C <sub>10</sub> - C <sub>28</sub> | (GRO+DRO) |
|           |             | ft. bgs      | mg/kg     | mg/kg    | mg/kg    | mg/kg             | mg/kg         | mg/kg        | mg/kg                            | mg/kg                               | mg/kg     |
| AH-1      | 8/25/2020   | '0.5-1       | 11.2      | <0.00200 | <0.00200 | <0.00200          | <0.00200      | <0.00200     | <49.8                            | <49.8                               | <49.8     |
|           |             |              |           |          |          |                   |               |              |                                  |                                     |           |
| AH-2      | 8/25/2020   | '0.5-1       | 9.36      | <0.00198 | <0.00198 | <0.00198          | <0.00198      | <0.00198     | <50.0                            | <50.0                               | <50.0     |
|           |             |              |           |          |          |                   |               |              |                                  |                                     |           |
| AH-3      | 8/25/2020   | '0.5-1       | 8.53      | <0.00199 | <0.00199 | <0.00199          | <0.00199      | <0.00199     | <50.0                            | <50.0                               | <50.0     |
|           |             |              |           |          |          |                   |               |              |                                  |                                     |           |
| AH-4      | 8/25/2020   | '0.5-1       | 9.66      | <0.00199 | <0.00199 | <0.00199          | <0.00199      | <0.00199     | <49.9                            | <49.9                               | <49.9     |
|           |             |              |           |          |          |                   |               |              |                                  |                                     |           |
| AH-5      | 8/25/2020   | '0.5-1       | 8.67      | <0.00200 | <0.00200 | <0.00200          | <0.00200      | <0.00200     | <50.0                            | <50.0                               | <50.0     |

NOTES:

ft. Feet

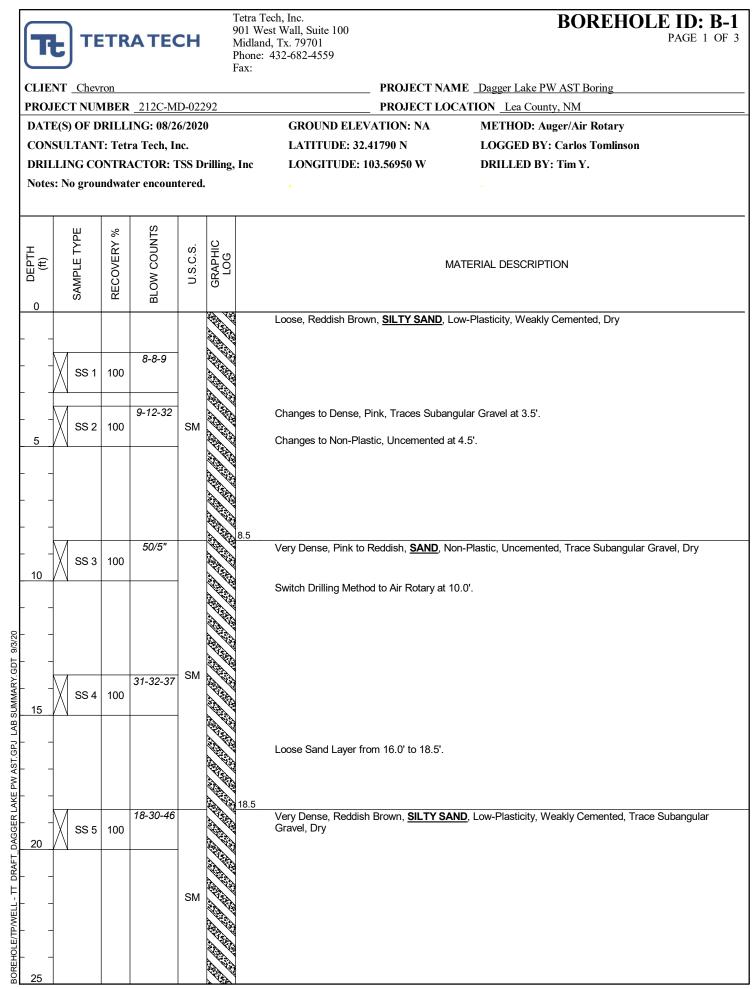
bgs Below ground surface

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics


1 SM4500Cl-B

2 EPA 8021B

3 SW8015 (Mod) Extended

# Appendix A

Released to Imaging: 5/25/2021 11:14:28 AM



| T                                  |                             |            | ΑΤΕ             | СН       | 901<br>Mid     |                                                                                                                                    |
|------------------------------------|-----------------------------|------------|-----------------|----------|----------------|------------------------------------------------------------------------------------------------------------------------------------|
|                                    | NT <u>Chevr</u><br>IECT NUM |            | _212C-M         | D-022    | 292            | PROJECT NAME         Dagger Lake PW AST Boring           PROJECT LOCATION         Lea County, NM                                   |
| DEPTH<br>(ft)                      | SAMPLE TYPE                 | RECOVERY % | BLOW COUNTS     | U.S.C.S. | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                                               |
| 25<br><br><br>30<br><br><br>35<br> | SS 6                        | 100        | 24-40-43        |          |                | Very Dense, Reddish Brown, <u>SILTY SAND</u> , Low-Plasticity, Weakly Cemented, Trace Subangular<br>Gravel, Dry <i>(continued)</i> |
|                                    | SS 7                        | 100        | 26-45-<br>50/4" |          |                |                                                                                                                                    |
|                                    |                             |            |                 |          |                |                                                                                                                                    |
|                                    |                             |            |                 |          |                |                                                                                                                                    |

Tetra Tech, Inc. **BOREHOLE ID: B-1** 901 West Wall, Suite 100 **TETRA TECH** PAGE 3 OF 3 Midland, Tx. 79701 Phone: 432-682-4559 Fax: CLIENT Chevron PROJECT NAME Dagger Lake PW AST Boring PROJECT NUMBER 212C-MD-02292 PROJECT LOCATION Lea County, NM **BLOW COUNTS** SAMPLE TYPE % GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION Very Dense, Reddish Brown, SILTY SAND, Low-Plasticity, Weakly Cemented, Trace Subangular and the second second Gravel, Dry (continued) 55 ALand the second ALC AL Carlos Contraction SM ALC: NO 60 62.0 LIMESTONE, Slightly Weathered, Hard, Reddish Yellow, Fine Grained, Broken, Dry 65 BOREHOLE/TP/WELL - TT\_DRAFT\_DAGGER LAKE PW AST.GPJ\_LAB SUMMARY.GDT\_9/3/20 70 70.0 Borehole terminated at 70.0 ft.

# Appendix B

**Released to Imaging: 5/25/2021 11:14:28 AM** 

**Project Id:** 

Ethylbenzene

m,p-Xylenes o-Xylene

Total Xylenes Total BTEX

Chloride

Total TPH

BRL - Below Reporting Limit

Inorganic Anions by EPA 300/300.1

TPH By SW8015 Mod

Gasoline Range Hydrocarbons (GRO)

Motor Oil Range Hydrocarbons (MRO)

Diesel Range Organics (DRO)

🔅 eurofins **Environment Testing** Xenco

212C-MD-02292

## Certificate of Analysis Summary 671100

Page 101 of 132

Tetra Tech- Midland, Midland, TX

Project Name: DL AST

| Contact:          | Nathan Langford |            |            |         |            |         |            |         |            | Repo     | rt Date: 08. | 31.2020  |
|-------------------|-----------------|------------|------------|---------|------------|---------|------------|---------|------------|----------|--------------|----------|
| Project Location: | New Mexico      |            |            |         |            |         |            |         | P          | roject M | anager: Jes  | sica Kra |
|                   |                 | Lab Id:    | 671100-0   | 001     | 671100-0   | 002     | 671100-    | 003     | 671100-    | 004      | 671100-0     | 005      |
| Analysi           | s Requested     | Field Id:  | AH-1       |         | AH-2       | 2       | AH-3       |         | AH-4       |          | AH-5         |          |
| Anaiysi           | s Requesteu     | Depth:     | 5-1 ft     |         | 5-1 ft     |         | 5-1 f      | t       | 5-1 ft     |          | 5-1 ft       |          |
|                   |                 | Matrix:    | SOIL       |         | SOIL       | ,       | SOII       | _       | SOIL       |          | SOIL         | ,        |
|                   |                 | Sampled:   | 08.25.2020 | 00:00   | 08.25.2020 | 00:00   | 08.25.2020 | 00:00   | 08.25.2020 | 00:00    | 08.25.2020   | 00:00    |
| втех              | K by EPA 8021B  | Extracted: | 08.28.2020 | 10:30   | 08.28.2020 | 10:30   | 08.28.2020 | 0 10:30 | 08.28.2020 | 10:30    | 08.28.2020   | 10:30    |
|                   |                 | Analyzed:  | 08.28.2020 | 18:18   | 08.28.2020 | 18:39   | 08.28.2020 | ) 18:59 | 08.28.2020 | 19:20    | 08.28.2020   | 19:42    |
|                   |                 | Units/RL:  | mg/kg      | RL      | mg/kg      | RL      | mg/kg      | RL      | mg/kg      | RL       | mg/kg        | RL       |
| Benzene           |                 |            | < 0.00200  | 0.00200 | < 0.00198  | 0.00198 | < 0.00199  | 0.00199 | < 0.00199  | 0.00199  | <0.00200     | 0.0020   |
| Toluene           |                 |            | < 0.00200  | 0.00200 | < 0.00198  | 0.00198 | < 0.00199  | 0.00199 | < 0.00199  | 0.00199  | < 0.00200    | 0.0020   |

0.00200

0.00399

0.00200

0.00200

0.00200

RL

5.04

RL

49.8

49.8

49.8

49.8

< 0.00198

< 0.00397

< 0.00198

< 0.00198

< 0.00198

mg/kg

mg/kg

08.26.2020 18:00

08.27.2020 00:50

9.36

08.26.2020 17:00

08.27.2020 04:24

< 50.0

< 50.0

< 50.0

< 50.0

0.00198

0.00397

0.00198

0.00198

0.00198

RL

5.03

RL

50.0

50.0

50.0

50.0

< 0.00199

< 0.00398

< 0.00199

< 0.00199

< 0.00199

mg/kg

mg/kg

<50.0

< 50.0

< 50.0

< 50.0

08.26.2020 18:00

08.27.2020 00:56

8.53

08.26.2020 17:00

08.27.2020 04:46

0.00199

0.00398

0.00199

0.00199

0.00199

RL

5.04

RL

50.0

50.0

50.0

50.0

< 0.00199

< 0.00398

< 0.00199

< 0.00199

< 0.00199

mg/kg

mg/kg

<49.9

<49.9

<49.9

<49.9

08.26.2020 18:00

08.27.2020 01:01

9.66

08.26.2020 17:00

08.27.2020 05:09

0.00199

0.00398

0.00199

0.00199

0.00199

RL

4.99

RL

49.9

49.9

49.9

49.9

< 0.00200

< 0.00399

< 0.00200

< 0.00200

< 0.00200

mg/kg

mg/kg

<49.8

<49.8

<49.8

<49.8

08.26.2020 18:00

08.27.2020 00:34

11.2

08.26.2020 17:00

08.27.2020 04:01

Extracted:

Analyzed:

Units/RL:

Extracted:

Analyzed:

Units/RL:

Jession VRAMER

Date Received in Lab: Wed 08.26.2020 16:10

< 0.00200

< 0.00399

< 0.00200

< 0.00200

< 0.00200

mg/kg

mg/kg

< 50.0

< 50.0

< 50.0

< 50.0

8.67

08.26.2020 18:00

08.27.2020 01:06

08.26.2020 17:00

08.27.2020 05:32

08.31.2020 16:30 Jessica Kramer

0.00200

0.00200

0.00200

0.00399

0.00200

0.00200

0.00200

RL

5.05

RL

50.0

50.0

50.0

50.0

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Page 1 of 20

Received by OCD: 3/9/2021 3:00:25 PM



## **Analytical Report 671100**

for

**Tetra Tech- Midland** 

**Project Manager: Nathan Langford** 

#### DL AST

#### 212C-MD-02292

#### 08.31.2020

Collected By: Client



#### 1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-37), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-23) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-21) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8) Xenco-Tampa: Florida (E87429), North Carolina (483) eurofins Environment Testing

08.31.2020

Project Manager: **Nathan Langford Tetra Tech- Midland** 901 West Wall ST Midland, TX 79701

Reference: Eurofins Xenco, LLC Report No(s): 671100 DL AST Project Address: New Mexico

#### Nathan Langford:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 671100. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 671100 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession kenner

Jessica Kramer Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Page 3 of 20

eurofins Environment Testing Xenco

## Sample Cross Reference 671100

DL AST

| Sample Id | Matrix | Date Collected   | Sample Depth | Lab Sample Id |
|-----------|--------|------------------|--------------|---------------|
| AH-1      | S      | 08.25.2020 00:00 | 5 - 1 ft     | 671100-001    |
| AH-2      | S      | 08.25.2020 00:00 | 5 - 1 ft     | 671100-002    |
| AH-3      | S      | 08.25.2020 00:00 | 5 - 1 ft     | 671100-003    |
| AH-4      | S      | 08.25.2020 00:00 | 5 - 1 ft     | 671100-004    |
| AH-5      | S      | 08.25.2020 00:00 | 5 - 1 ft     | 671100-005    |

Received by OCD: 3/9/2021 3:00:25 PM

eurofins Environment Testing Xenco

#### **CASE NARRATIVE**

Client Name: Tetra Tech- Midland Project Name: DL AST

Project ID: 212C-MD-02292 Work Order Number(s): 671100 Report Date: 08.31.2020 Date Received: 08.26.2020

#### Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3135707 TPH By SW8015 Mod Surrogate o-Terphenyl recovered below QC limits. Matrix interferences is suspected; data confirmed by re-analysis. Samples affected are: 671100-002,671100-004.

## **Certificate of Analytical Results 671100**

#### Tetra Tech- Midland, Midland, TX

DL AST

| Sample Id: <b>AH-1</b><br>Lab Sample Id: 671100-001                                                                                                                                  |                                                         | Matrix:<br>Date Colle                       | Soil<br>cted: 08.25                | .2020 00:00          |                                           | Date Received:08.2<br>Sample Depth: 5 - 1                                                                                                      |                                         | :10         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|------------------------------------|----------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|
| Analytical Method: Inorganic Anic                                                                                                                                                    | ons by EPA 300/300.1                                    |                                             |                                    |                      |                                           | Prep Method: E30                                                                                                                               | OP                                      |             |
| Tech: SPC                                                                                                                                                                            |                                                         |                                             |                                    |                      |                                           | % Moisture:                                                                                                                                    |                                         |             |
| Analyst: SPC                                                                                                                                                                         |                                                         | Date Prep:                                  | 08.26                              | .2020 18:00          |                                           | Basis: Wet                                                                                                                                     | Weight                                  |             |
| Seq Number: 3135641                                                                                                                                                                  |                                                         | •                                           |                                    |                      |                                           |                                                                                                                                                |                                         |             |
| Parameter                                                                                                                                                                            | Cas Number                                              | Result                                      | RL                                 |                      | Units                                     | Analysis Date                                                                                                                                  | Flag                                    | Dil         |
| Chloride                                                                                                                                                                             | 16887-00-6                                              | 11.2                                        | 5.04                               |                      | mg/kg                                     | 08.27.2020 00:34                                                                                                                               |                                         | 1           |
| Analytical Method: TPH By SW80                                                                                                                                                       | 115 Mod                                                 |                                             |                                    |                      |                                           | Prep Method: SW8                                                                                                                               | 3015P                                   |             |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707                                                                                                                                     |                                                         | Date Prep:                                  |                                    | .2020 17:00          |                                           | % Moisture:<br>Basis: Wet                                                                                                                      | Weight                                  | Dil         |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter                                                                                                                        | Cas Number                                              | Result                                      | RL                                 | .2020 17:00          | Units                                     | Moisture:<br>Basis: Wet<br>Analysis Date                                                                                                       | Weight<br>Flag                          | Dil         |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)                                                                                   | Cas Number<br>PHC610                                    | <b>Result</b> <49.8                         | <b>RL</b><br>49.8                  | .2020 17:00          | Units<br>mg/kg                            | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 04:01                                                                                 | Weight<br>Flag<br>U                     | 1           |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)<br>Diesel Range Organics (DRO)                                                    | Cas Number<br>PHC610<br>C10C28DRO                       | <b>Result</b> <49.8 <49.8                   | <b>RL</b><br>49.8<br>49.8          | .2020 17:00          | Units<br>mg/kg<br>mg/kg                   | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 04:01<br>08.27.2020 04:01                                                             | Weight<br>Flag<br>U<br>U                | 1           |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)                                                                                   | Cas Number<br>PHC610                                    | <b>Result</b> <49.8                         | <b>RL</b><br>49.8                  | .2020 17:00          | Units<br>mg/kg                            | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 04:01                                                                                 | Weight<br>Flag<br>U                     | 1           |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)<br>Diesel Range Organics (DRO)<br>Motor Oil Range Hydrocarbons (MRO)              | Cas Number<br>PHC610<br>C10C28DRO<br>PHCG2835<br>PHC635 | <b>Result</b> <49.8 <49.8 <49.8 <49.8 <49.8 | <b>RL</b><br>49.8<br>49.8<br>49.8  | .2020 17:00<br>Units | Units<br>mg/kg<br>mg/kg<br>mg/kg          | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 04:01<br>08.27.2020 04:01<br>08.27.2020 04:01<br>08.27.2020 04:01                     | Weight<br>Flag<br>U<br>U<br>U           | 1<br>1<br>1 |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)<br>Diesel Range Organics (DRO)<br>Motor Oil Range Hydrocarbons (MRO)<br>Total TPH | Cas Number<br>PHC610<br>C10C28DRO<br>PHCG2835<br>PHC635 | Result           <49.8                      | <b>RL</b> 49.8 49.8 49.8 49.8 49.8 |                      | Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 04:01<br>08.27.2020 04:01<br>08.27.2020 04:01<br>08.27.2020 04:01<br>08.27.2020 04:01 | Weight<br>Flag<br>U<br>U<br>U<br>U<br>U | 1<br>1<br>1 |

Xenco

Environment Testing

🔅 eurofins

## **Certificate of Analytical Results 671100**

## Tetra Tech- Midland, Midland, TX

DL AST

| Sample Id:<br>Lab Sample I | <b>AH-1</b><br>d: 671100-001 |            | Matrix:<br>Date Collecte | Soil<br>d: 08.25.2020 00:00 | Date Receive<br>Sample Dept | d:08.26.2020 16<br>h: 5 - 1 ft | :10 |
|----------------------------|------------------------------|------------|--------------------------|-----------------------------|-----------------------------|--------------------------------|-----|
| Analytical M               | ethod: BTEX by EPA 80        | )21B       |                          |                             | Prep Method                 | SW5035A                        |     |
| Tech:                      | AMF                          |            |                          |                             | % Moisture:                 |                                |     |
| Analyst:                   | AMF                          |            | Date Prep:               | 08.28.2020 10:30            | Basis:                      | Wet Weight                     |     |
| Seq Number:                | 3135896                      |            |                          |                             |                             |                                |     |
| Parameter                  |                              | Cas Number | Result RI                | . I'n                       | ite Anglycie F              | ato Flag                       | Dil |

| Parameter            | Cas Numbe   | r Result   | RL         |       | Units  | Analysis Date    | Flag | Dil |
|----------------------|-------------|------------|------------|-------|--------|------------------|------|-----|
| Benzene              | 71-43-2     | < 0.00200  | 0.00200    |       | mg/kg  | 08.28.2020 18:18 | U    | 1   |
| Toluene              | 108-88-3    | < 0.00200  | 0.00200    |       | mg/kg  | 08.28.2020 18:18 | U    | 1   |
| Ethylbenzene         | 100-41-4    | < 0.00200  | 0.00200    |       | mg/kg  | 08.28.2020 18:18 | U    | 1   |
| m,p-Xylenes          | 179601-23-1 | < 0.00399  | 0.00399    |       | mg/kg  | 08.28.2020 18:18 | U    | 1   |
| o-Xylene             | 95-47-6     | < 0.00200  | 0.00200    |       | mg/kg  | 08.28.2020 18:18 | U    | 1   |
| Total Xylenes        | 1330-20-7   | < 0.00200  | 0.00200    |       | mg/kg  | 08.28.2020 18:18 | U    | 1   |
| Total BTEX           |             | < 0.00200  | 0.00200    |       | mg/kg  | 08.28.2020 18:18 | U    | 1   |
| Surrogate            |             | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 102        | %     | 70-130 | 08.28.2020 18:18 |      |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 102        | %     | 70-130 | 08.28.2020 18:18 |      |     |

## **Certificate of Analytical Results 671100**

#### Tetra Tech- Midland, Midland, TX

DL AST

| Sample Id: AH-2<br>Lab Sample Id: 671100-002                                                                                                                                         |                                                         | Matrix:<br>Date Colle                       | Soil<br>ected: 08.25                      | .2020 00:00          |                                           | Date Received:08.20<br>Sample Depth: 5 - 1                                                                                                     |                                         | :10         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|-------------------------------------------|----------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|
| Analytical Method: Inorganic Anio                                                                                                                                                    | ns by EPA 300/300.1                                     |                                             |                                           |                      |                                           | Prep Method: E300                                                                                                                              | )P                                      |             |
| Tech: SPC                                                                                                                                                                            |                                                         |                                             |                                           |                      |                                           | % Moisture:                                                                                                                                    |                                         |             |
| Analyst: SPC                                                                                                                                                                         |                                                         | Date Prep                                   | : 08.26                                   | .2020 18:00          |                                           | Basis: Wet                                                                                                                                     | Weight                                  |             |
| Seq Number: 3135641                                                                                                                                                                  |                                                         |                                             |                                           |                      |                                           |                                                                                                                                                |                                         |             |
| Parameter                                                                                                                                                                            | Cas Number                                              | Result                                      | RL                                        |                      | Units                                     | Analysis Date                                                                                                                                  | Flag                                    | Dil         |
| Chloride                                                                                                                                                                             | 16887-00-6                                              | 9.36                                        | 5.03                                      |                      | mg/kg                                     | 08.27.2020 00:50                                                                                                                               |                                         | 1           |
| Analytical Method: TPH By SW80                                                                                                                                                       | 15 Mod                                                  |                                             |                                           |                      |                                           | Prep Method: SW8                                                                                                                               | 015P                                    |             |
| Analytical Method: TPH By SW80<br>Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter                                                                                      | 15 Mod<br>Cas Number                                    | Date Prep<br>Result                         | c 08.26.                                  | .2020 17:00          | Units                                     | % Moisture:                                                                                                                                    | 015P<br>Weight<br>Flag                  | Dil         |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter                                                                                                                        | Cas Number                                              | Result                                      |                                           | .2020 17:00          | Units                                     | <ul> <li>Moisture:</li> <li>Basis: Wet</li> <li>Analysis Date</li> </ul>                                                                       | Weight<br>Flag                          | Dil         |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707                                                                                                                                     |                                                         |                                             | RL                                        | .2020 17:00          | Units<br>mg/kg                            | % Moisture:<br>Basis: Wet                                                                                                                      | Weight                                  |             |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)                                                                                   | Cas Number<br>PHC610                                    | Result <50.0                                | RL<br>50.0                                | .2020 17:00          | Units                                     | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 04:24                                                                                 | Weight<br>Flag<br>U                     | 1           |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)<br>Diesel Range Organics (DRO)                                                    | Cas Number<br>PHC610<br>C10C28DRO                       | <b>Result</b> <50.0 <50.0                   | <b>RL</b><br>50.0<br>50.0                 | .2020 17:00          | Units<br>mg/kg<br>mg/kg                   | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 04:24<br>08.27.2020 04:24                                                             | Weight<br>Flag<br>U<br>U                | 1           |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)<br>Diesel Range Organics (DRO)<br>Motor Oil Range Hydrocarbons (MRO)              | Cas Number<br>PHC610<br>C10C28DRO<br>PHCG2835<br>PHC635 | <b>Result</b> <50.0 <50.0 <50.0 <50.0 <50.0 | <b>RL</b><br>50.0<br>50.0<br>50.0         | .2020 17:00<br>Units | Units<br>mg/kg<br>mg/kg<br>mg/kg          | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 04:24<br>08.27.2020 04:24<br>08.27.2020 04:24<br>08.27.2020 04:24                     | Weight<br>Flag<br>U<br>U<br>U           | 1<br>1<br>1 |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)<br>Diesel Range Organics (DRO)<br>Motor Oil Range Hydrocarbons (MRO)<br>Total TPH | Cas Number<br>PHC610<br>C10C28DRO<br>PHCG2835<br>PHC635 | Result<br><50.0<br><50.0<br><50.0<br><50.0  | <b>RL</b><br>50.0<br>50.0<br>50.0<br>50.0 |                      | Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 04:24<br>08.27.2020 04:24<br>08.27.2020 04:24<br>08.27.2020 04:24<br>08.27.2020 04:24 | Weight<br>Flag<br>U<br>U<br>U<br>U<br>U | 1<br>1<br>1 |

Xenco

Environment Testing

🔅 eurofins

# **Certificate of Analytical Results 671100**

## Tetra Tech- Midland, Midland, TX

DL AST

| Sample Id:<br>Lab Sample I | <b>AH-2</b><br>d: 671100-002 |            | Matrix:<br>Date Collecte | Soil<br>d: 08.25.2020 00:00 | Date Receive<br>Sample Dept | d:08.26.2020 16<br>h: 5 - 1 ft | :10 |
|----------------------------|------------------------------|------------|--------------------------|-----------------------------|-----------------------------|--------------------------------|-----|
| Analytical M               | ethod: BTEX by EPA 80        | 21B        |                          |                             | Prep Method                 | SW5035A                        |     |
| Tech:                      | AMF                          |            |                          |                             | % Moisture:                 |                                |     |
| Analyst:                   | AMF                          |            | Date Prep:               | 08.28.2020 10:30            | Basis:                      | Wet Weight                     |     |
| Seq Number:                | 3135896                      |            |                          |                             |                             |                                |     |
| Parameter                  |                              | Cas Number | Result RI                |                             | Unite Analysis F            | ato Flan                       | Dil |

| Parameter            | Cas Numbe   | r Result   | RL         |       | Units  | Analysis Date    | Flag | Dil |
|----------------------|-------------|------------|------------|-------|--------|------------------|------|-----|
| Benzene              | 71-43-2     | < 0.00198  | 0.00198    |       | mg/kg  | 08.28.2020 18:39 | U    | 1   |
| Toluene              | 108-88-3    | < 0.00198  | 0.00198    |       | mg/kg  | 08.28.2020 18:39 | U    | 1   |
| Ethylbenzene         | 100-41-4    | < 0.00198  | 0.00198    |       | mg/kg  | 08.28.2020 18:39 | U    | 1   |
| m,p-Xylenes          | 179601-23-1 | < 0.00397  | 0.00397    |       | mg/kg  | 08.28.2020 18:39 | U    | 1   |
| o-Xylene             | 95-47-6     | < 0.00198  | 0.00198    |       | mg/kg  | 08.28.2020 18:39 | U    | 1   |
| Total Xylenes        | 1330-20-7   | < 0.00198  | 0.00198    |       | mg/kg  | 08.28.2020 18:39 | U    | 1   |
| Total BTEX           |             | < 0.00198  | 0.00198    |       | mg/kg  | 08.28.2020 18:39 | U    | 1   |
| Surrogate            |             | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 103        | %     | 70-130 | 08.28.2020 18:39 |      |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 104        | %     | 70-130 | 08.28.2020 18:39 |      |     |

#### Environment Testing Xenco

# **Certificate of Analytical Results 671100**

#### Tetra Tech- Midland, Midland, TX

DL AST

| Sample Id: AH-3<br>Lab Sample Id: 671100-003                                                                                                                                         |                                                         | Matrix:<br>Date Colle                       | Soil<br>cted: 08.25.2020           | ) 00:00                                                 | Date Received:08.2<br>Sample Depth: 5 - 1                                                                                                                                                                                           |                                            | :10             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------|
| Analytical Method: Inorganic Anio<br>Tech: SPC                                                                                                                                       | ns by EPA 300/300.1                                     |                                             |                                    |                                                         | Prep Method: E300<br>% Moisture:                                                                                                                                                                                                    | )P                                         |                 |
| Analyst: SPC                                                                                                                                                                         |                                                         | Date Prep:                                  | 08.26.2020                         | 0 18:00                                                 | Basis: Wet                                                                                                                                                                                                                          | Weight                                     |                 |
| Seq Number: 3135641                                                                                                                                                                  |                                                         |                                             |                                    |                                                         |                                                                                                                                                                                                                                     |                                            |                 |
| Parameter                                                                                                                                                                            | Cas Number                                              | Result                                      | RL                                 | Units                                                   | Analysis Date                                                                                                                                                                                                                       | Flag                                       | Dil             |
| Chloride                                                                                                                                                                             | 16887-00-6                                              | 8.53                                        | 5.04                               | mg/kg                                                   | 08.27.2020 00:56                                                                                                                                                                                                                    |                                            | 1               |
| Analytical Method: TPH By SW80                                                                                                                                                       | 15 Mod                                                  |                                             |                                    |                                                         | Prep Method: SW8                                                                                                                                                                                                                    | 8015P                                      |                 |
| Analytical Method: TPH By SW80<br>Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter                                                                                      | 15 Mod<br>Cas Number                                    | Date Prep:<br>Result                        |                                    |                                                         | % Moisture:<br>Basis: Wet                                                                                                                                                                                                           | Weight                                     | Dil             |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter                                                                                                                        | Cas Number                                              | Result                                      | RL                                 | Units                                                   | % Moisture:<br>Basis: Wet<br>Analysis Date                                                                                                                                                                                          | Weight<br>Flag                             | Dil             |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)                                                                                   |                                                         |                                             |                                    | Units<br>mg/kg                                          | % Moisture:<br>Basis: Wet                                                                                                                                                                                                           | Weight                                     | <b>Dil</b><br>1 |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)<br>Diesel Range Organics (DRO)                                                    | Cas Number<br>PHC610                                    | <b>Result</b> <50.0                         | <b>RL</b><br>50.0                  | Units                                                   | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 04:46                                                                                                                                                                      | Weight<br>Flag<br>U                        | 1               |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707                                                                                                                                     | Cas Number<br>PHC610<br>C10C28DRO                       | <b>Result</b> <50.0 <50.0                   | <b>RL</b><br>50.0<br>50.0          | <b>Units</b><br>mg/kg<br>mg/kg                          | Moisture:           Basis:         Wet           Analysis Date           08.27.2020 04:46           08.27.2020 04:46                                                                                                                | Weight<br>Flag<br>U<br>U                   | 1<br>1          |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)<br>Diesel Range Organics (DRO)<br>Motor Oil Range Hydrocarbons (MRO)              | Cas Number<br>PHC610<br>C10C28DRO<br>PHCG2835<br>PHC635 | <b>Result</b> <50.0 <50.0 <50.0 <50.0 <50.0 | <b>RL</b> 50.0 50.0 50.0 50.0 50.0 | Units<br>mg/kg<br>mg/kg<br>mg/kg                        | % Moisture:         Basis:       Wet         Analysis Date         08.27.2020 04:46         08.27.2020 04:46         08.27.2020 04:46         08.27.2020 04:46         08.27.2020 04:46         08.27.2020 04:46                    | Weight<br>Flag<br>U<br>U<br>U              | 1<br>1<br>1     |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)<br>Diesel Range Organics (DRO)<br>Motor Oil Range Hydrocarbons (MRO)<br>Total TPH | Cas Number<br>PHC610<br>C10C28DRO<br>PHCG2835<br>PHC635 | Result           <50.0                      | <b>RL</b> 50.0 50.0 50.0 50.0 50.0 | Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>nits Limit | <ul> <li>Moisture:</li> <li>Basis: Wet</li> <li>Analysis Date</li> <li>08.27.2020 04:46</li> <li>08.27.2020 04:46</li> <li>08.27.2020 04:46</li> <li>08.27.2020 04:46</li> <li>08.27.2020 04:46</li> <li>s Analysis Date</li> </ul> | Weight<br>Flag<br>U<br>U<br>U<br>U<br>Flag | 1<br>1<br>1     |

# **Certificate of Analytical Results 671100**

## Tetra Tech- Midland, Midland, TX

DL AST

| Sample Id:<br>Lab Sample Id | <b>AH-3</b><br>d: 671100-003 |            | Matrix:<br>Date Collecte | Soil<br>d: 08.25.2020 00:00 | Date Receive<br>Sample Dept | d:08.26.2020 16<br>h: 5 - 1 ft | :10 |
|-----------------------------|------------------------------|------------|--------------------------|-----------------------------|-----------------------------|--------------------------------|-----|
| 5                           | thod: BTEX by EPA 80         | 21B        |                          |                             | Prep Method:<br>% Moisture: | : SW5035A                      |     |
| Tech:<br>Analyst:           | AMF<br>AMF                   |            | Date Prep:               | 08.28.2020 10:30            | Basis:                      | Wet Weight                     |     |
| Seq Number:                 | 3135896                      |            |                          |                             |                             |                                |     |
| Parameter                   |                              | Cas Number | Result RI                | T                           | Inite Analysis F            | ato Flan                       | Dil |

| Parameter            | Cas Numbe   | r Result   | RL         |       | Units  | Analysis Date    | Flag | Dil |
|----------------------|-------------|------------|------------|-------|--------|------------------|------|-----|
| Benzene              | 71-43-2     | < 0.00199  | 0.00199    |       | mg/kg  | 08.28.2020 18:59 | U    | 1   |
| Toluene              | 108-88-3    | < 0.00199  | 0.00199    |       | mg/kg  | 08.28.2020 18:59 | U    | 1   |
| Ethylbenzene         | 100-41-4    | < 0.00199  | 0.00199    |       | mg/kg  | 08.28.2020 18:59 | U    | 1   |
| m,p-Xylenes          | 179601-23-1 | < 0.00398  | 0.00398    |       | mg/kg  | 08.28.2020 18:59 | U    | 1   |
| o-Xylene             | 95-47-6     | < 0.00199  | 0.00199    |       | mg/kg  | 08.28.2020 18:59 | U    | 1   |
| Total Xylenes        | 1330-20-7   | < 0.00199  | 0.00199    |       | mg/kg  | 08.28.2020 18:59 | U    | 1   |
| Total BTEX           |             | < 0.00199  | 0.00199    |       | mg/kg  | 08.28.2020 18:59 | U    | 1   |
| Surrogate            |             | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 103        | %     | 70-130 | 08.28.2020 18:59 |      |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 101        | %     | 70-130 | 08.28.2020 18:59 |      |     |
|                      |             |            |            |       |        |                  |      |     |

# **Certificate of Analytical Results 671100**

#### Tetra Tech- Midland, Midland, TX

DL AST

| Sample Id: AH-4<br>Lab Sample Id: 671100-004                                                                                                                                                                        |                                                                | Matrix:<br>Date Colle     | Soil<br>ected: 08.25                              | .2020 00:00          |                                  | Date Received:08.2<br>Sample Depth: 5 - 1                                                                                     |                                             | :10         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------|---------------------------------------------------|----------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------|
| Analytical Method: Inorganic Anio<br>Tech: SPC                                                                                                                                                                      | ns by EPA 300/300.1                                            | l                         |                                                   |                      |                                  | Prep Method: E30 % Moisture:                                                                                                  | 0P                                          |             |
| Analyst: SPC                                                                                                                                                                                                        |                                                                | Date Prep                 | : 08.26                                           | .2020 18:00          |                                  | Basis: Wet                                                                                                                    | Weight                                      |             |
| Seq Number: 3135641                                                                                                                                                                                                 |                                                                |                           |                                                   |                      |                                  |                                                                                                                               |                                             |             |
| Parameter                                                                                                                                                                                                           | Cas Number                                                     | Result                    | RL                                                |                      | Units                            | Analysis Date                                                                                                                 | Flag                                        | Dil         |
| Chloride                                                                                                                                                                                                            | 16887-00-6                                                     | 9.66                      | 4.99                                              |                      | mg/kg                            | 08.27.2020 01:01                                                                                                              |                                             | 1           |
| Analytical Method: TPH By SW80<br>Tech: DVM                                                                                                                                                                         | 15 Mod                                                         |                           |                                                   |                      |                                  | Prep Method: SW3<br>% Moisture:                                                                                               | 8015P                                       |             |
| Tech:DVMAnalyst:ARMSeq Number:3135707                                                                                                                                                                               |                                                                | Date Prep                 | -                                                 | .2020 17:00          | Units                            | % Moisture:<br>Basis: Wet                                                                                                     | Weight                                      | Dil         |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter                                                                                                                                                       | Cas Number                                                     | Result                    | RL                                                | .2020 17:00          | Units                            | <ul> <li>Moisture:</li> <li>Basis: Wet</li> <li>Analysis Date</li> </ul>                                                      | Weight<br>Flag                              | Dil         |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)                                                                                                                  | Cas Number<br>PHC610                                           | Result<br><49.9           | <b>RL</b><br>49.9                                 | .2020 17:00          | mg/kg                            | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 05:09                                                                | Weight<br>Flag<br>U                         | 1           |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)<br>Diesel Range Organics (DRO)                                                                                   | Cas Number                                                     | Result                    | RL                                                | .2020 17:00          | mg/kg<br>mg/kg                   | <ul> <li>Moisture:</li> <li>Basis: Wet</li> <li>Analysis Date</li> </ul>                                                      | Weight<br>Flag                              |             |
| Tech:       DVM         Analyst:       ARM         Seq Number:       3135707         Parameter       Sasoline Range Hydrocarbons (GRO)         Diesel Range Organics (DRO)       Motor Oil Range Hydrocarbons (MRO) | Cas Number<br>PHC610<br>C10C28DRO                              | <b>Result</b> <49.9 <49.9 | <b>RL</b><br>49.9<br>49.9                         | .2020 17:00          | mg/kg                            | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 05:09<br>08.27.2020 05:09                                            | Weight<br>Flag<br>U<br>U                    | 1           |
| Tech: DVM<br>Analyst: ARM                                                                                                                                                                                           | <b>Cas Number</b><br>PHC610<br>C10C28DRO<br>PHCG2835<br>PHC635 | Result           <49.9    | <b>RL</b><br>49.9<br>49.9<br>49.9                 | .2020 17:00<br>Units | mg/kg<br>mg/kg<br>mg/kg          | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 05:09<br>08.27.2020 05:09<br>08.27.2020 05:09<br>08.27.2020 05:09    | Weight<br>Flag<br>U<br>U<br>U               | 1<br>1<br>1 |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)<br>Diesel Range Organics (DRO)<br>Motor Oil Range Hydrocarbons (MRO)<br>Fotal TPH                                | Cas Number<br>PHC610<br>C10C28DRO<br>PHCG2835<br>PHC635<br>Cas | Result           <49.9    | <b>RL</b><br>49.9<br>49.9<br>49.9<br>49.9<br>49.9 |                      | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | % Moisture:<br>Basis: Wet<br>08.27.2020 05:09<br>08.27.2020 05:09<br>08.27.2020 05:09<br>08.27.2020 05:09<br>08.27.2020 05:09 | EWeight<br>Flag<br>U<br>U<br>U<br>U<br>Flag | 1<br>1<br>1 |

Xenco

Environment Testing

🔅 eurofins

# **Certificate of Analytical Results 671100**

## Tetra Tech- Midland, Midland, TX

DL AST

| Sample Id:<br>Lab Sample I | <b>AH-4</b><br>d: 671100-004 |            | Matrix:<br>Date Collecte | Soil<br>d: 08.25.2020 00:00 | Date Receive<br>Sample Deptl | d:08.26.2020 16<br>n: 5 - 1 ft | i:10 |
|----------------------------|------------------------------|------------|--------------------------|-----------------------------|------------------------------|--------------------------------|------|
| Analytical Me              | ethod: BTEX by EPA 802       | 21B        |                          |                             | Prep Method:                 | SW5035A                        |      |
| Tech:                      | AMF                          |            |                          |                             | % Moisture:                  |                                |      |
| Analyst:                   | AMF                          |            | Date Prep:               | 08.28.2020 10:30            | Basis:                       | Wet Weight                     |      |
| Seq Number:                | 3135896                      |            |                          |                             |                              |                                |      |
| Parameter                  |                              | Cas Number | Result RI                | . т                         | Inite Analysis D             | lata Flan                      | ы    |

| Parameter            | Cas Numbe   | r Result   | RL         |       | Units  | Analysis Date    | Flag | Dil |
|----------------------|-------------|------------|------------|-------|--------|------------------|------|-----|
| Benzene              | 71-43-2     | < 0.00199  | 0.00199    |       | mg/kg  | 08.28.2020 19:20 | U    | 1   |
| Toluene              | 108-88-3    | < 0.00199  | 0.00199    |       | mg/kg  | 08.28.2020 19:20 | U    | 1   |
| Ethylbenzene         | 100-41-4    | < 0.00199  | 0.00199    |       | mg/kg  | 08.28.2020 19:20 | U    | 1   |
| m,p-Xylenes          | 179601-23-1 | < 0.00398  | 0.00398    |       | mg/kg  | 08.28.2020 19:20 | U    | 1   |
| o-Xylene             | 95-47-6     | < 0.00199  | 0.00199    |       | mg/kg  | 08.28.2020 19:20 | U    | 1   |
| Total Xylenes        | 1330-20-7   | < 0.00199  | 0.00199    |       | mg/kg  | 08.28.2020 19:20 | U    | 1   |
| Total BTEX           |             | < 0.00199  | 0.00199    |       | mg/kg  | 08.28.2020 19:20 | U    | 1   |
| Surrogate            |             | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 95         | %     | 70-130 | 08.28.2020 19:20 |      |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 102        | %     | 70-130 | 08.28.2020 19:20 |      |     |

# **Certificate of Analytical Results 671100**

#### Tetra Tech- Midland, Midland, TX

DL AST

| Sample Id: AH-5<br>Lab Sample Id: 671100-005                                                                                                                                         |                                                                | Matrix:<br>Date Colle                 | Soil<br>ected: 08.25.202                                                                                                                                                                              | 0 00:00                                   | Date Received:08.20<br>Sample Depth: 5 - 1                                                                                                                                                                                                                                                                           |                                         | 10              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------|
| Analytical Method: Inorganic Anio                                                                                                                                                    | ns by EPA 300/300.1                                            |                                       |                                                                                                                                                                                                       |                                           | Prep Method: E300                                                                                                                                                                                                                                                                                                    | )P                                      |                 |
| Tech: SPC                                                                                                                                                                            |                                                                |                                       |                                                                                                                                                                                                       |                                           | % Moisture:                                                                                                                                                                                                                                                                                                          |                                         |                 |
| Analyst: SPC                                                                                                                                                                         |                                                                | Date Prep                             | 08.26.202                                                                                                                                                                                             | 0 18:00                                   | Basis: Wet                                                                                                                                                                                                                                                                                                           | Weight                                  |                 |
| Seq Number: 3135641                                                                                                                                                                  |                                                                | -                                     |                                                                                                                                                                                                       |                                           |                                                                                                                                                                                                                                                                                                                      |                                         |                 |
| Parameter                                                                                                                                                                            | Cas Number                                                     | Result                                | RL                                                                                                                                                                                                    | Units                                     | Analysis Date                                                                                                                                                                                                                                                                                                        | Flag                                    | Dil             |
| Chloride                                                                                                                                                                             | 16887-00-6                                                     | 8.67                                  | 5.05                                                                                                                                                                                                  | mg/kg                                     | 08.27.2020 01:06                                                                                                                                                                                                                                                                                                     |                                         | 1               |
| Analytical Method: TPH By SW80                                                                                                                                                       | 15 Mod                                                         |                                       |                                                                                                                                                                                                       |                                           | Prep Method: SW8                                                                                                                                                                                                                                                                                                     | 3015P                                   |                 |
| Analytical Method: TPH By SW80<br>Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter                                                                                      | 15 Mod<br>Cas Number                                           | Date Prep<br>Result                   | : 08.26.202<br>RL                                                                                                                                                                                     |                                           | % Moisture:<br>Basis: Wet                                                                                                                                                                                                                                                                                            | Weight                                  | Dil             |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter                                                                                                                        | Cas Number                                                     | Result                                | RL                                                                                                                                                                                                    | Units                                     | % Moisture:<br>Basis: Wet<br>Analysis Date                                                                                                                                                                                                                                                                           | Weight<br>Flag                          |                 |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)                                                                                   | Cas Number<br>PHC610                                           | Result <50.0                          | <b>RL</b> 50.0                                                                                                                                                                                        | Units<br>mg/kg                            | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 05:32                                                                                                                                                                                                                                                       | Weight<br>Flag<br>U                     | <b>Dil</b><br>1 |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter                                                                                                                        | Cas Number                                                     | Result                                | RL                                                                                                                                                                                                    | Units<br>mg/kg<br>mg/kg                   | % Moisture:<br>Basis: Wet<br>Analysis Date                                                                                                                                                                                                                                                                           | Weight<br>Flag                          | 1               |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)<br>Diesel Range Organics (DRO)                                                    | Cas Number<br>PHC610<br>C10C28DRO                              | Result<br><50.0<br><50.0              | <b>RL</b><br>50.0<br>50.0                                                                                                                                                                             | Units<br>mg/kg                            | Moisture:           Basis:         Wet           Analysis Date           08.27.2020 05:32           08.27.2020 05:32                                                                                                                                                                                                 | Weight<br>Flag<br>U<br>U                | 1<br>1          |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)<br>Diesel Range Organics (DRO)<br>Motor Oil Range Hydrocarbons (MRO)              | <b>Cas Number</b><br>PHC610<br>C10C28DRO<br>PHCG2835<br>PHC635 | <b>Result</b> <50.0 <50.0 <50.0 <50.0 | <b>RL</b> 50.0 50.0 50.0 50.0 50.0                                                                                                                                                                    | Units<br>mg/kg<br>mg/kg<br>mg/kg          | % Moisture:<br>Basis: Wet<br>Analysis Date<br>08.27.2020 05:32<br>08.27.2020 05:32<br>08.27.2020 05:32<br>08.27.2020 05:32                                                                                                                                                                                           | Weight<br>Flag<br>U<br>U<br>U           | 1<br>1<br>1     |
| Tech: DVM<br>Analyst: ARM<br>Seq Number: 3135707<br>Parameter<br>Gasoline Range Hydrocarbons (GRO)<br>Diesel Range Organics (DRO)<br>Motor Oil Range Hydrocarbons (MRO)<br>Total TPH | Cas Number<br>PHC610<br>C10C28DRO<br>PHCG2835<br>PHC635<br>Cas | <b>Result</b> <50.0 <50.0 <50.0 <50.0 | RL           50.0           50.0           50.0           50.0           50.0           50.0           50.0           50.0           50.0           50.0           50.0           50.0           50.0 | Units<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | % Moisture:         Basis:       Wet         Analysis Date         08.27.2020 05:32         08.27.2020 05:32         08.27.2020 05:32         08.27.2020 05:32         08.27.2020 05:32         08.27.2020 05:32         08.27.2020 05:32         08.27.2020 05:32         08.27.2020 05:32         08.27.2020 05:32 | Weight<br>Flag<br>U<br>U<br>U<br>U<br>U | 1<br>1<br>1     |

Xenco

Environment Testing

🔅 eurofins

# **Certificate of Analytical Results 671100**

### Tetra Tech- Midland, Midland, TX

DL AST

| Sample Id:<br>Lab Sample I | Sample Id: AH-5<br>Lab Sample Id: 671100-005 |            |            | Soil<br>d: 08.25.2020 00:00 | Date Received:08.26.2020 16:<br>Sample Depth: 5 - 1 ft |            |     |
|----------------------------|----------------------------------------------|------------|------------|-----------------------------|--------------------------------------------------------|------------|-----|
| Analytical M               | ethod: BTEX by EPA 80                        | 21B        |            |                             | Prep Method                                            | : SW5035A  |     |
| Tech:                      | AMF                                          |            |            |                             | % Moisture:                                            |            |     |
| Analyst:                   | AMF                                          |            | Date Prep: | 08.28.2020 10:30            | Basis:                                                 | Wet Weight |     |
| Seq Number:                | 3135896                                      |            |            |                             |                                                        |            |     |
| Parameter                  |                                              | Cas Number | Result RI  | . II                        | nits Analysis F                                        | )sto Flag  | Dil |

| Parameter            | Cas Numbe   | r Result   | RL         |       | Units  | Analysis Date    | Flag | Dil |
|----------------------|-------------|------------|------------|-------|--------|------------------|------|-----|
| Benzene              | 71-43-2     | < 0.00200  | 0.00200    |       | mg/kg  | 08.28.2020 19:42 | U    | 1   |
| Toluene              | 108-88-3    | < 0.00200  | 0.00200    |       | mg/kg  | 08.28.2020 19:42 | U    | 1   |
| Ethylbenzene         | 100-41-4    | < 0.00200  | 0.00200    |       | mg/kg  | 08.28.2020 19:42 | U    | 1   |
| m,p-Xylenes          | 179601-23-1 | < 0.00399  | 0.00399    |       | mg/kg  | 08.28.2020 19:42 | U    | 1   |
| o-Xylene             | 95-47-6     | < 0.00200  | 0.00200    |       | mg/kg  | 08.28.2020 19:42 | U    | 1   |
| Total Xylenes        | 1330-20-7   | < 0.00200  | 0.00200    |       | mg/kg  | 08.28.2020 19:42 | U    | 1   |
| Total BTEX           |             | < 0.00200  | 0.00200    |       | mg/kg  | 08.28.2020 19:42 | U    | 1   |
| Surrogate            |             | Cas Number | % Recovery | Units | Limits | Analysis Date    | Flag |     |
| 4-Bromofluorobenzene |             | 460-00-4   | 103        | %     | 70-130 | 08.28.2020 19:42 |      |     |
| 1,4-Difluorobenzene  |             | 540-36-3   | 103        | %     | 70-130 | 08.28.2020 19:42 |      |     |

Xenco

**Environment Testing** 

🔅 eurofins

# **Flagging Criteria**

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

\*\* Surrogate recovered outside laboratory control limit.

| BRL Below Reporting Limit.        | ND Not Detected      |                  |                            |                                 |
|-----------------------------------|----------------------|------------------|----------------------------|---------------------------------|
| RL Reporting Limit                |                      |                  |                            |                                 |
| MDL Method Detection Limit        | SDL Sample De        | tection Limit    | LOD Limit of Detection     |                                 |
| PQL Practical Quantitation Limit  | MQL Method Qu        | antitation Limit | LOQ Limit of Quantitatio   | n                               |
| DL Method Detection Limit         |                      |                  |                            |                                 |
| NC Non-Calculable                 |                      |                  |                            |                                 |
| SMP Client Sample                 |                      | BLK              | Method Blank               |                                 |
| BKS/LCS Blank Spike/Laboratory    | Control Sample       | BKSD/LCSD        | Blank Spike Duplicate/Labo | ratory Control Sample Duplicate |
| MD/SD Method Duplicate/Sam        | ple Duplicate        | MS               | Matrix Spike               | MSD: Matrix Spike Duplicate     |
| + NELAC certification not offered | l for this compound. |                  |                            |                                 |

\* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

#### Received by OCD: 3/9/2021 3:00:25 PM

Xenco

**Environment Testing** 

🔅 eurofins

QC Summary 671100

# Tetra Tech- Midland

DL AST

| <b>Analytical Method:</b><br>Seq Number:<br>MB Sample Id: | <b>Inorganic Anions</b><br>3135641<br>7710234-1-BLK | by EPA 300 |               | Matrix:<br>nple Id: | Solid<br>7710234- | 1-BKS             |        |      | rep Methe<br>Date Pr<br>D Sample | ep: 08.2 | 0P<br>26.2020<br>0234-1-BSD |      |
|-----------------------------------------------------------|-----------------------------------------------------|------------|---------------|---------------------|-------------------|-------------------|--------|------|----------------------------------|----------|-----------------------------|------|
| Parameter                                                 | MB                                                  | -          | LCS           | LCS                 | LCSD              | LCSD              | Limits | %RPD | RPD                              | Units    | Analysis                    | Flag |
| Chloride                                                  | <b>Resul</b><br><5.0                                |            | Result<br>247 | <b>%Rec</b><br>99   | Result<br>247     | <b>%Rec</b><br>99 | 90-110 | 0    | Limit<br>20                      | mg/kg    | Date<br>08.26.2020 22:49    |      |
|                                                           |                                                     |            |               |                     |                   |                   |        |      |                                  |          |                             |      |
| Analytical Method:                                        | -                                                   | by EPA 300 |               |                     | <b>a</b>          |                   |        | Pı   | rep Meth                         |          |                             |      |
| Seq Number:<br>Parent Sample Id:                          | 3135641<br>671059-009                               |            |               | Matrix:<br>nple Id: | Soil<br>671059-00 | 09 S              |        | MS   | Date Pr<br>D Sample              | -        | 26.2020<br>059-009 SD       |      |
| Parameter                                                 | Parent                                              | -          | MS<br>Result  | MS<br>%Rec          | MSD<br>Result     | MSD<br>%Rec       | Limits | %RPD | RPD<br>Limit                     | Units    | Analysis<br>Date            | Flag |
| Chloride                                                  | 14.0                                                | 248        | 277           | 106                 | 277               | 106               | 90-110 | 0    | 20                               | mg/kg    | 08.27.2020 00:19            |      |
| Analytical Method:                                        | Inorganic Anions                                    | by EPA 300 | /300.1        |                     |                   |                   |        | Pı   | rep Meth                         | od: E30  | 0P                          |      |
| Seq Number:                                               | 3135641                                             |            |               | Matrix:             |                   | . <b>.</b> .      |        |      | Date Pr                          | -        | 26.2020                     |      |
| Parent Sample Id:                                         | 671079-007                                          |            |               |                     | 671079-00         |                   |        |      | -                                |          | 079-007 SD                  |      |
| Parameter                                                 | Parent<br>Result                                    | -          | MS<br>Result  | MS<br>%Rec          | MSD<br>Result     | MSD<br>%Rec       | Limits | %RPD | RPD<br>Limit                     | Units    | Analysis<br>Date            | Flag |
| Chloride                                                  | 12.0                                                | ) 249      | 271           | 104                 | 270               | 104               | 90-110 | 0    | 20                               | mg/kg    | 08.26.2020 23:05            |      |
|                                                           |                                                     |            |               |                     |                   |                   |        |      |                                  |          |                             |      |
| Analytical Method:<br>Seq Number:                         | <b>TPH By SW8015</b> 3135707                        | Mod        |               | Matrix:             | Solid             |                   |        | Pi   | rep Meth<br>Date Pr              |          | 8015P<br>26.2020            |      |
| MB Sample Id:                                             | 7710243-1-BLK                                       |            |               |                     | 7710243-1         | 1-BKS             |        | LCS  |                                  | -        | 0243-1-BSD                  |      |
| Parameter                                                 | ME<br>Result                                        | -          | LCS<br>Result | LCS<br>%Rec         | LCSD<br>Result    | LCSD<br>%Rec      | Limits | %RPD | RPD<br>Limit                     | Units    | Analysis<br>Date            | Flag |
| Gasoline Range Hydrocarb                                  |                                                     |            | 1050          | 105                 | 1010              | 101               | 70-130 | 4    | 20                               | mg/kg    | 08.27.2020 08:01            |      |
| Diesel Range Organics                                     | (DRO) <50.0                                         | 0 1000     | 1170          | 117                 | 1050              | 105               | 70-130 | 11   | 20                               | mg/kg    | 08.27.2020 08:01            |      |
| Surrogate                                                 | MB<br>%Re                                           |            |               | CS<br>Rec           | LCS<br>Flag       | LCSI<br>%Re       |        |      | imits                            | Units    | Analysis<br>Date            |      |
| 1-Chlorooctane                                            | 105                                                 |            |               | 06                  | -                 | 98                |        |      | -130                             | %        | 08.27.2020 08:01            |      |
| o-Terphenyl                                               | 122                                                 |            | 1             | 20                  |                   | 105               | 5      | 70   | -130                             | %        | 08.27.2020 08:01            |      |
| Analytical Method:                                        | TPH By SW8015                                       | Mod        |               |                     |                   |                   |        | Pi   | rep Meth                         | od: SW   | 8015P                       |      |
| Seq Number:                                               | 3135707                                             |            |               | Matrix:             |                   |                   |        |      | Date Pr                          |          | 26.2020                     |      |
|                                                           |                                                     |            |               | nple Id:            | 7710243-3         | I-BLK             |        |      |                                  |          |                             |      |
| Parameter                                                 |                                                     |            | MB<br>Result  |                     |                   |                   |        |      |                                  | Units    | Analysis<br>Date            | Flag |
| Motor Oil Range Hydrocar                                  | bons (MRO)                                          |            | <50.0         |                     |                   |                   |        |      |                                  | mg/kg    | 08.27.2020 09:55            |      |

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference  $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$ 

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Released to Imaging: 5/25/2021 11:14:28 AM

Page 17 of 20

```
Final 1.000
```

#### Received by OCD: 3/9/2021 3:00:25 PM

#### **QC Summary** 671100

🔅 eurofins **Environment Testing** Xenco

#### **Tetra Tech- Midland** DL AST

| <b>Analytical Method:</b><br>Seq Number: | <b>TPH By Sy</b><br>3135707<br>671100-000 |                  | lod             |                        | Matrix:    | Soil<br>671100-00 | 11 5        |        |      | ep Meth<br>Date Pr | ep: 08.2 | 8015P<br>26.2020<br>100-001 SD |      |
|------------------------------------------|-------------------------------------------|------------------|-----------------|------------------------|------------|-------------------|-------------|--------|------|--------------------|----------|--------------------------------|------|
| Parent Sample Id:<br><b>Parameter</b>    | 671100-00                                 | Parent<br>Result | Spike<br>Amount | MS San<br>MS<br>Result | MS<br>%Rec | MSD<br>Result     | MSD<br>%Rec | Limits | %RPD | RPD<br>Limit       | Units    | Analysis<br>Date               | Flag |
| Gasoline Range Hydrocarb                 | ons (GRO)                                 | < 50.0           | 999             | 1080                   | 108        | 1040              | 104         | 70-130 | 4    | 20                 | mg/kg    | 08.27.2020 09:08               |      |
| Diesel Range Organics                    | (DRO)                                     | < 50.0           | 999             | 1150                   | 115        | 1080              | 108         | 70-130 | 6    | 20                 | mg/kg    | 08.27.2020 09:08               |      |
| Surrogate                                |                                           |                  |                 |                        | IS<br>Rec  | MS<br>Flag        | MSD<br>%Re  |        |      | mits               | Units    | Analysis<br>Date               |      |
| 1-Chlorooctane                           |                                           |                  |                 | 1                      | 07         |                   | 105         |        | 70   | -130               | %        | 08.27.2020 09:08               |      |
| o-Terphenyl                              |                                           |                  |                 | 1                      | 16         |                   | 95          |        | 70   | -130               | %        | 08.27.2020 09:08               |      |

| Analytical Method:   | BTEX by EPA 8021 | B               |               |             |                |              |        | P    | rep Metho    | od: SW    | 5035A            |      |
|----------------------|------------------|-----------------|---------------|-------------|----------------|--------------|--------|------|--------------|-----------|------------------|------|
| Seq Number:          | 3135896          |                 | ]             | Matrix:     | Solid          |              |        |      | Date Pr      | ep: 08.2  | 28.2020          |      |
| MB Sample Id:        | 7710430-1-BLK    |                 | LCS San       | nple Id:    | 7710430-1      | I-BKS        |        | LCS  | D Sample     | e Id: 771 | 0430-1-BSD       |      |
| Parameter            | MB<br>Result     | Spike<br>Amount | LCS<br>Result | LCS<br>%Rec | LCSD<br>Result | LCSD<br>%Rec | Limits | %RPD | RPD<br>Limit | Units     | Analysis<br>Date | Flag |
| Benzene              | < 0.00200        | 0.100           | 0.0976        | 98          | 0.0929         | 93           | 70-130 | 5    | 35           | mg/kg     | 08.28.2020 14:10 |      |
| Toluene              | < 0.00200        | 0.100           | 0.0862        | 86          | 0.0819         | 82           | 70-130 | 5    | 35           | mg/kg     | 08.28.2020 14:10 |      |
| Ethylbenzene         | < 0.00200        | 0.100           | 0.0869        | 87          | 0.0824         | 82           | 70-130 | 5    | 35           | mg/kg     | 08.28.2020 14:10 |      |
| m,p-Xylenes          | < 0.00400        | 0.200           | 0.170         | 85          | 0.161          | 81           | 70-130 | 5    | 35           | mg/kg     | 08.28.2020 14:10 |      |
| o-Xylene             | < 0.00200        | 0.100           | 0.0847        | 85          | 0.0808         | 81           | 70-130 | 5    | 35           | mg/kg     | 08.28.2020 14:10 |      |
| Surrogate            | MB<br>%Rec       | MB<br>Flag      |               | CS<br>Rec   | LCS<br>Flag    | LCSI<br>%Re  |        |      | imits        | Units     | Analysis<br>Date |      |
| 1,4-Difluorobenzene  | 97               |                 | 10            | 01          |                | 101          |        | 70   | -130         | %         | 08.28.2020 14:10 |      |
| 4-Bromofluorobenzene | 86               |                 | 9             | 6           |                | 94           |        | 70   | -130         | %         | 08.28.2020 14:10 |      |

| <b>Analytical Method:</b><br>Seq Number:<br>Parent Sample Id: | <b>BTEX by EPA 8021</b><br>3135896<br>671103-003 | 1B              | ]<br>MS San  | Matrix:<br>nple Id: |            |        | Prep Meth<br>Date Pr |       | 5035A<br>28.2020 |      |
|---------------------------------------------------------------|--------------------------------------------------|-----------------|--------------|---------------------|------------|--------|----------------------|-------|------------------|------|
| Parameter                                                     | Parent<br>Result                                 | Spike<br>Amount | MS<br>Result | MS<br>%Rec          |            | Limits |                      | Units | Analysis<br>Date | Flag |
| Benzene                                                       | < 0.00200                                        | 0.0998          | 0.0733       | 73                  |            | 70-130 |                      | mg/kg | 08.28.2020 14:52 |      |
| Toluene                                                       | < 0.00200                                        | 0.0998          | 0.0531       | 53                  |            | 70-130 |                      | mg/kg | 08.28.2020 14:52 | Х    |
| Ethylbenzene                                                  | < 0.00200                                        | 0.0998          | 0.0405       | 41                  |            | 70-130 |                      | mg/kg | 08.28.2020 14:52 | Х    |
| m,p-Xylenes                                                   | < 0.00399                                        | 0.200           | 0.0778       | 39                  |            | 70-130 |                      | mg/kg | 08.28.2020 14:52 | Х    |
| o-Xylene                                                      | < 0.00200                                        | 0.0998          | 0.0400       | 40                  |            | 70-130 |                      | mg/kg | 08.28.2020 14:52 | Х    |
| Surrogate                                                     |                                                  |                 |              | IS<br>Rec           | MS<br>Flag |        | Limits               | Units | Analysis<br>Date |      |
| 1,4-Difluorobenzene                                           |                                                  |                 | 1            | 05                  |            |        | 70-130               | %     | 08.28.2020 14:52 |      |
| 4-Bromofluorobenzene                                          |                                                  |                 | 9            | 8                   |            |        | 70-130               | %     | 08.28.2020 14:52 |      |

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100\*(C-A) / B $\begin{array}{l} \text{[D]} & = 100^{+} \left[ (\text{C-E}) / (\text{C+E}) \right] \\ \text{[D]} & = 100^{+} (\text{C}) / [\text{B}] \\ \text{Log Diff.} & = \text{Log(Sample Duplicate)} - \text{Log(Original Sample)} \end{array}$ 

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 18 of 20

| Received by OCD: 3/9/2021 3           Image: Annow Will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.           Relinguished by:         Signature)         Received by:         Signature)         Date/Time         Relinquished by:         Signature)         Received by:         Signature)         Date/Time         Relinquished by:         Signature)         Received by:         Signature)         Received by:         Signature)         Received by:         Received by:         Signature)         Received by:         Signature)         Received by:         Signature)         Received by:         Received by:         Signature)         Received by:         Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total 200.7 / 6010       200.8 / 6020:       8RCRA 13PPM 1         Circle Method(s) and Metal(s) to be analyzed       TCLP / SPLP 6010:       8         Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from other samples constitutes a valid purchase order from the last of the last | Lab     Sample Custody Seals:     Yes     No     Correction       Sample Custody Seals:     Yes     No     Total Containers:     Total Containers:       ID     Sample Identification     Matrix     Sampled     Time     Depth       ID     AIH-3     Sampled     Sampled     Sampled     Date     Time       ID     AIH-3     Sampled     Sampled     Sampled     Depth       ID     AIH-3     Sampled     Sampled     Interview       ID     AIH-3     Sampled     Sampled     Depth       ID     AIH-3     Sampled     Sampled     Interview       ID     AIH-3     Sampled     Interview     Interview       ID     AIH-3     Sampled     Interview     Interview       ID     Interview     Interview     Interview     Interview       ID     Interview     Interview     Interview     < | Id     C - MD - O 12 %     Turn Around     Pres       Id     C - MD - O 12 %     Routine     Id     code       V     LUS     FormI/ASS     Due Date:     code       V     ID     Due Date:     No     Id       Temp Blank:     Yes (No)     Wet Ice:     Yes No     Id       Thermonater ID     No     Id     Id     Id | Project Manager:         Nort In C.n. Long Fo1 d         Bill to: (rt attriseen)           Project Manager:         Nort In C.n. Long Fo1 d         Bill to: (rt attriseen)           Company Name:         TO T                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signature) Received by: (Signature) Date/Time Date/Time Revised Date 022019 Rev. 2019.1 Date/Time Revised Revised Date 022019 Rev. 2019.1 Date/Time Revised Revise | Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V Zn<br>Pb Mn Mo Ni Se Ag TI U<br>1631/245.1/7470 /7471 : Hg<br>1011:14:28 AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANALYSIS REQUEST Preservative Codes       Image: None: No       Image: None: No       HNO3: HN       HNO3: H2       HO1: HL       NaOH: Na                                                                                                                                                                              | Y       Work Order No:       Work Order No:         0, TX (210) 509-3334       Work Order No:       Work Order No:         1296 Crasibad, NM (432) 704-5440       Mork Order Com       Page of         West Paim Beach, FL (561) 689-6701       Work Order Comments       of         Program: UST/PST    PRP   Brownfields    RRC    Superfund          State of Project:       State of Project:         Reporting:Level II       Level III    PST/UST    TRRP    Level IV          Deliverables: EDD          ADaPT          Other: |

Final 1.000

## **Eurofins Xenco, LLC**

### Prelogin/Nonconformance Report- Sample Log-In

| Client: Tetra Tech- Midland                             | Acceptable Temperature F | Range: 0 - 6 degC          |
|---------------------------------------------------------|--------------------------|----------------------------|
| Date/ Time Received: 08.26.2020 04.10.00 PM             | Air and Metal samples Ac |                            |
| Work Order #: 671100                                    | Temperature Measuring d  | evice used : IR-8          |
| Sample Reco                                             | eipt Checklist           | Comments                   |
| #1 *Temperature of cooler(s)?                           | 2.3                      |                            |
| #2 *Shipping container in good condition?               | Yes                      |                            |
| #3 *Samples received on ice?                            | Yes                      |                            |
| #4 *Custody Seals intact on shipping container/ cooler? | N/A                      |                            |
| #5 Custody Seals intact on sample bottles?              | N/A                      |                            |
| #6*Custody Seals Signed and dated?                      | Yes                      |                            |
| #7 *Chain of Custody present?                           | Yes                      |                            |
| #8 Any missing/extra samples?                           | No                       |                            |
| #9 Chain of Custody signed when relinquished/ received? | Yes                      |                            |
| #10 Chain of Custody agrees with sample labels/matrix?  | Yes                      |                            |
| #11 Container label(s) legible and intact?              | Yes                      |                            |
| #12 Samples in proper container/ bottle?                | Yes                      | BTEX was in bulk container |
| #13 Samples properly preserved?                         | Yes                      |                            |
| #14 Sample container(s) intact?                         | Yes                      |                            |
| #15 Sufficient sample amount for indicated test(s)?     | Yes                      |                            |
| #16 All samples received within hold time?              | Yes                      |                            |
| #17 Subcontract of sample(s)?                           | N/A                      |                            |
| #18 Water VOC samples have zero headspace?              | N/A                      |                            |

#### \* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

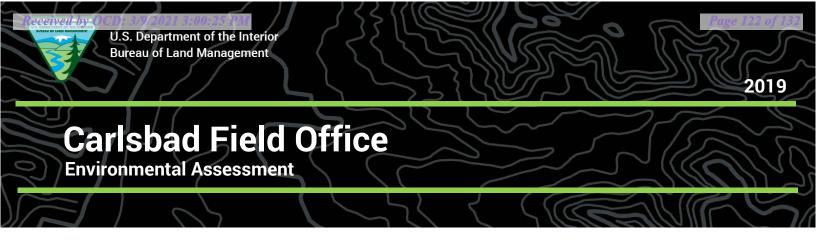
Analyst:

PH Device/Lot#:

Checklist completed by: Billion Tall Brianna Teel

Date: 08.26.2020

Checklist reviewed by: Jession Veamer


Jessica Kramer

Date: 08.31.2020

# Attachments 3 – DOI-BLM-NM-P020-2020-0095-EA, Section 1.6, Scoping, Public Involvement, and Issues (2019)

Temporary Pit containing non-low chloride fluids Dagger Lake 15 22 Ogopogo Pad Pit

Section 10, T22S, R33E



### Environmental Assessment DOI-BLM-NM-P020-2020-0095-EA

## **CHEVRON U.S.A. INC**

#### Lease No. NMNM 96244

DL 09 16 LOCH NESS FED COM P1 16H DL 09 16 LOCH NESS FED COM P1 17H DL 09 16 LOCH NESS FED COM P1 18H DL 04 33 LOCH NESS FED COM P1 4H DL 04 33 LOCH NESS FED COM P1 5H DL 04 33 LOCH NESS FED COM P1 6H

> Department of the Interior Bureau of Land Management Pecos District Carlsbad Field Office 620 E Greene Street Carlsbad, NM 88220 Phone: (575) 234-5972

#### **Confidentiality Policy**

Any comments, including names and street addresses of respondents, you submit may be made available for public review. Individual respondents may request confidentiality. If you wish to withhold your name or street address from public review or from disclosure under the Freedom of Information Act, you must state this prominently at the beginning of your written comment. Such requests will be honored to the extent allowed by law. All submissions from organizations or businesses, and from individuals identifying themselves as representatives or officials of organizations or businesses, will be made available for public inspection in their entirety.

.

# TABLE OF CONTENTS

| 1.   | Purpose and Need for Action                                  |
|------|--------------------------------------------------------------|
| 1.1. | Background3                                                  |
| 1.2. | Purpose and Need for Action3                                 |
| 1.3. | Decision to be Made4                                         |
| 1.4. | Conformance with Applicable Land Use Plan(s)4                |
| 1.5. | Relationship to Statutes, Regulations or Other Plans4        |
| 1.6. | Scoping, Public Involvement, and Issues5                     |
| 2.   | Proposed Action and Alternative(s)6                          |
| 2.1. | Proposed Action6                                             |
| 2.2. | No Action17                                                  |
| 2.3. | Alternatives Considered but Eliminated from Detailed Study17 |
| 3.   | Affected Environment and Environmental Consequences17        |
| 3.1. | Air Resources18                                              |
| 3.2. | Water Resources                                              |
| 3.3. | Watershed43                                                  |
| 3.4. | Soils44                                                      |
| 3.5. | Potash Resources45                                           |
| 3.6. | Wildlife                                                     |
| 3.7. | Vegetation                                                   |
| 3.8. | Noxious Weeds and Invasive Plants49                          |
| 3.9. | Range                                                        |
| 3.10 | Visual Resource Management51                                 |
| 3.11 |                                                              |
| 3.12 | Paleontology                                                 |
| 3.13 | Impacts from the No Action Alternative53                     |
| 3.14 | Cumulative Impacts                                           |
| 4.   | Supporting Information54                                     |
| 4.1. | List of Preparers54                                          |
| 4.2. | References                                                   |
|      |                                                              |

- Clean Water Act of 1977, as amended (30 USC 1251) Establishes the basic structure for regulating discharges of pollutants into the waters of the United States and regulating quality standards for surface waters.
- Endangered Species Act of 1973 (16 USC 1531 et seq.) Protects critically imperiled species from extinction as a consequence of economic growth and development untempered by adequate concern and conservation.
- Federal Cave Resources Protection Act of 1988 (16 USC 4301 et seq.) Protects significant caves on federal lands by identifying their location, regulating their use, requiring permits for removal of their resources, and prohibiting destructive acts
- Lechuguilla Cave Protection Act of 1993 Protects Lechuguilla Cave and other resources and values in and adjacent to Carlsbad Caverns National Park
- Migratory Bird Treaty Act of 1918 (16 USC 703-712) Implements the convention for the protection of migratory birds.
- Mining and Mineral Policy Act of 1970, as amended (30 USC 21) Fosters and encourages private enterprise in the development of economically sound and stable industries, and in the orderly and economic development of domestic resources to help assure satisfaction of industrial, security, and environmental needs
- National American Graves Protection and Repatriation Act of 1990 (25 USC 301) Provides a process for museums and Federal agencies to return certain Native American cultural items such as human remains, funerary objects, sacred objects, or objects of cultural patrimony to lineal descendants, and culturally affiliated Indian tribes and Native Hawaiian organizations and includes provisions for unclaimed and culturally unidentifiable Native American cultural items, intentional and inadvertent discovery of Native American cultural items on Federal and tribal lands, and penalties for noncompliance and illegal trafficking
- National Historic Preservation Act of 1966, as amended (16 USC 470) Preserves historical and archaeological sites.
- Wild and Scenic Rivers Act of 1968, as amended (16 USC 1271 et seq.) Preserves certain rivers with outstanding natural, cultural, and recreational values in a free-flowing condition for the enjoyment of present and future generations
- Wilderness Act of 1964 (16 USC 1131 et seq.) Secures for the American people of present and future generations the benefits of an enduring resource of wilderness

Air quality standards in New Mexico are under the jurisdiction of the New Mexico Environment Department/Air Quality Bureau (NMED/NMAQB). The Environmental Improvement Act, NMSA 1978, and the Air Quality Control Act, NMSA 1978, dictate state air quality standards. Also, 40 CFR § 60 "Standards of Performance for New Stationary Sources" is administered by the NMED/NMAQB.

Additionally, Chevron would comply with all applicable federal, state, and local laws and regulations; obtain the necessary permits for drilling, construction, completion, and operation; and certify that Surface Use Agreements have been reached with the private landowners, where required.

### 1.6. Scoping, Public Involvement, and Issues

The Carlsbad Field Office (CFO) publishes Land Use Planning (LUP) and National Environmental Policy Act (NEPA) documents to the national register known as ePlanning. The register allows you to review and comment online on BLM NEPA and planning projects. A hard copy of this NEPA project has been made available in the Carlsbad Field Office as well as in electronic format on ePlanning at <a href="https://eplanning.blm.gov">https://eplanning.blm.gov</a>

The CFO uses Geographic Information Systems (GIS) in order to identify resources that may be affected by the proposed action. A map of the project area is prepared to display the resources in the area and to identify potential issues. The proposed action was circulated among CFO resource specialists in order to identify any issues associated with the project. The issues that were raised include:

How would air quality, including GHG emissions, be impacted by the proposed action?

- How would climate change be impacted by the proposed action?
- How would water resources be impacted by the propose action?
- How would watershed resources be impacted by the proposed action?
- How would soils be impacted by the proposed action?
- How would potash resources be impacted by the proposed action?
- How would wildlife/habitat be impacted by the proposed action?
- How would special status species be impacted by the proposed action?
- How would vegetation be impacted by the proposed action?
- Could noxious weeds be introduced to the project area as a result of the proposed action?
- How would range management be impacted by the proposed action?
- How would visual resources be impacted by the proposed action?
- How would cultural resources be impacted by the proposed action?
- How would paleontological resources be impacted by the proposed action?

# 2. PROPOSED ACTION AND ALTERNATIVE(S)

#### 2.1. Proposed Action

The BLM Carlsbad Field Office is proposing to allow Chevron to drill six horizontal oil wells and associated infrastructure. Chevron would strip the available topsoil from the well pad area and stockpile on where interim reclamation is planned be completed upon completion of the wells. The well sites would then be leveled and surfaced with mineral material. Chevron would take approximately 30 days to drill each proposed well. After the proposed well is drilled and completed, the proposed well location would be downsized to approximately a 2.95 acre surfaced pad. All areas not needed for production would be reclaimed by removing the caliche, recontouring the area, spreading the stockpiled topsoil over the area, and seeding the area. It is likely that the proposed wells would be drilled within four years from approval.

#### 3.12.1. Affected Environment

Paleontological resources are any fossilized remains, traces, or imprints of organisms, preserved in or on the earth's crust, that are of paleontological interest and that provide information about the history of life on earth. Fossil remains may include bones, teeth, tracks, shells, leaves, imprints, and wood. Paleontological resources include not only the actual fossils but also the geological deposits that contain them and are recognized as nonrenewable scientific resources protected by federal statutes and policies.

The primary federal legislation for the protection and conservation of paleontological resources occurring on federally administered lands are the Paleontological Resources Preservation Act of 2009 (PRPA), the Federal Land Policy and Management Act of 1976 (FLPMA), and the National Environmental Policy Act of 1970 (NEPA). BLM has also developed policy guidelines for addressing potential impacts to paleontological resources (BLM, 1998a, b; 2008, 2009). In addition, paleontological resources on state trust lands are protected by state policy from unauthorized appropriation, damage, removal, or use.

The Potential Fossil Yield Classification (PFYC) is a tool that allows the BLM to predict the likelihood of a geologic unit to contain paleontological resources. The PFYC is based on a numeric system of 1-5, with PFYC 1 having little likelihood of containing paleontological resources, whereas a PFYC 5 value is a geologic unit that is known to contain abundant scientifically significant paleontological resources. The fossil resources of concern in this area are the remains of vertebrates, which include species of fish, amphibians, and mammals.

#### 3.12.2. Impacts from the Proposed Action

#### **Direct and Indirect Impacts**

Direct impacts would result in the immediate physical loss of scientifically significant fossils and their contextual data. Impacts indirectly associated with ground disturbance could subject fossils to damage or destruction from erosion, as well as creating improved access to the public and increased visibility, potentially resulting in unauthorized collection or vandalism. However, not all impacts of construction are detrimental to paleontology. Ground disturbance can reveal significant fossils that would otherwise remain buried and unavailable for scientific study. In this manner, ground disturbance can result in beneficial impacts. Such fossils can be collected properly and curated into the museum collection of a qualified repository making them available for scientific study and education.

The location of the proposed project is within a PFYC 2, where management concern in negligible. A pedestrian survey for paleontological resources was not necessary and there should be no impacts to paleontological resources.

#### **Mitigation Measures**

There are no mitigation measures for this project, as currently proposed.

## 3.13. Impacts from the No Action Alternative

The No Action Alternative is used as the baseline for comparison of environmental effects of the analyzed alternatives. Under the No Action Alternative, the proposed project would not be drilled, built or constructed and there would be no new direct or indirect impacts to natural or cultural resources from oil and gas production. The natural and cultural resources in the project area would continue to be managed under the current land and resource uses.

### 3.14. Cumulative Impacts

Cumulative impacts are the combined effect of past projects, specific planned projects, and other reasonably foreseeable future actions within the project study area to which oil and gas exploration and development may add incremental impacts. This includes all actions, not just oil and gas actions that may occur in the area including foreseeable non-federal actions.

The combination of all land use practices across a landscape has the potential to change the visual character, disrupt natural water flow and infiltration, disturb cultural sites, cause increases in greenhouse gas emissions, fragment wildlife habitat and contaminate groundwater. Cumulative impacts analysis to air quality, GHG emissions, water use and quality is included in Chapter 3, under sections 3.1 and 3.2. The likelihood of these impacts occurring is minimized through standard mitigation measures, special Conditions of Approval and ongoing monitoring studies.

All resources are expected to sustain some level of cumulative impacts over time, however these impacts fluctuate with the gradual abandonment and reclamation of wells. As new wells are being drilled, there are others being abandoned and reclaimed. As the oil field plays out, the cumulative impacts will lessen as more areas are reclaimed and less are developed.

# 4. SUPPORTING INFORMATION

## 4.1. List of Preparers

Prepared by: Project Lead Paul Murphy, Natural Resource Specialist, BLM-CFO

Date: 10/23/2019

The following individuals aided in the preparation of this document: Aaron Whaley, Archaeologist, BLM-CFO Cassandra Brooks, Wildlife Biologist, BLM-CFO James S. Rutley, Geologist (Potash), BLM-CFO Sharay Dixon, Air Resource Specialist, BLM-NMSO David Herrell, Hydrologist, BLM-NMSO

# 4.2. References

Applied Enviro Solutions (AES). 2011. Southeast New Mexico Inventory of Air Pollutant Emissions and Cumulative Air Impact Analysis 2007. BLM. Carlsbad Field Office.

- Bohannon, Paul 2009. The RCRA Exploration & Production Exemption. http://bohannonlegal.com/pauls-oil-gas-manual-the-rcra-ep-exemption/
- Bureau of Land Management (BLM). (2018). Air Resources Technical Report for Oil and Gas Development, New Mexico, Oklahoma, Texas and Kansas.
- Bureau of Land Management (BLM). (2019). *Cumulative BLM New Mexico Greenhouse Gas Emissions, A Supplemental White Paper*.
- Bureau of Land Management (BLM). (2019). Personal communication between David Herrell, BLM and Julie Valdez, NMOSE regarding water use associated with the Navajo Power Plant.
- Dieter, C.A., Maupin, M.A., Caldwell, R.R., Harris, M.A., Ivahnenko, T.I., Lovelace, J.K., Barber, N.L., and Linsey, K.S., 2018, Estimated use of water in the United States in 2015: U.S. Geological Survey Circular 1441, 65 p. Report and dataset available at. <u>https://pubs.er.usgs.gov/publication/cir1441</u>. Downloaded April 1. 2019.
- Engler, T. 2013. Response to comments on the DEIS for the Ocho Mine Project. Socorro, NM, USA. November 16.
- Engler, T.W., and M. Cather. 2012. Reasonable Foreseeable Development (RFD) Scenario for the BLM. New Mexico Pecos District. Final Report. New Mexico Institute of Mining and Technology. Available at: https://eplanning.blm.gov/epl-frontoffice/projects/lup/64444/77502/86228/Final\_Report-BLM-NMT-RFD.pdf. January 2019.

- Environmental Protection Agency. 2013. The Green Book Non Attainment Areas for Criteria Pollutants. http://www.epa.gov/airquality/greenbk/ (Accessed 3/15/2013).
- Environmental Protection Agency. 2013. 2005 National-Scale Air Toxics Assessment. Summary of Results. http://www.epa.gov/ttn/atw/nata2005.
- Environmental Protection Agency. 2013. Air Trends: Design Values. http://www.epa.gov/airtrends/values.html.
- Environmental Protection Agency. 2018. *National Ambient Air Quality Standards (NAAQS)*. Retrieved from U.S. Environmental Protection Agency: <u>https://www.epa.gov/criteria-air-pollutants/naaqs-table</u>
- Fletcher, S. M. 2012. Risk Assessment of Groundwater Contamination from Hydraulic Fracturing Fluid Spills in Pennsylvania. Thesis (S.M. in Technology and Policy)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program. http://hdl.handle.net/1721.1/72885.
- Fitzgerald LA, Painter CW, Sias DS, Snell HL (1997) The range, distribution, and habitat of Sceloporus arenicolus in New Mexico: final report submitted to the New Mexico Department of Game and Fish (Contract #80-516.6-01).
- FracFocus. 2017.. Retrieved from FracFocus Data Download. Dataset available for download at the following: <u>http://fracfocus.org/data-download</u>. Downloaded December 13, 2018.
- FracFocus. 2018.. Retrieved from FracFocus Data Download. Dataset available for download at the following: <u>http://fracfocus.org/data-download</u>. Downloaded January 28, 2019.
- Gallegos, T.J., and Varela, B.A. 2015. Trends in hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010—Data analysis and comparison to the literature: U.S. Geological Survey Scientific Investigations Report 2014–5131, 15 p., http://dx.doi.org/10.3133/sir20145131. Accessed February 2019.
- Groundwater Protection Council (GWPC). 2009. Modern Shale Gas Development in the United States: A Primer. Prepared for the U.S. Department of Energy, Office of Fossil Energy, and National Energy Technology Laboratory (NETL). DE-FG26-04NT15455. Oklahoma City, OK. http://www.netl.doe.gov/technologies/oilgas/publications/epreports/shale\_gas\_primer\_2009.pdf.
- Mire, K., and Moomaw, J. (2017) Delaware Basin: Seven Year Review of Activity and Performance. Unconventional Resources Technology Conference, Austin, Texas, pp 24-26. Available at: <u>https://library.seg.org/doi/abs/10.15530/urtec-2017-2697549#.XRYtE\_cvHC0.email</u>
- NOAA. 2011. NOAA's 1981-2010 Climate Normals. National Climatic Center. http://www.ncdc.noaa.gov/oa/climate/normals/usnormals.html. (Accessed July 1, 2011).
- Railey, J. A. 2016 Permian Basin Research Design 2

Permian Basin Research Design 2016-2026 Volume I: Archaeology and Native American Cultural Resources. SWCA Environmental Consultants, Albuquerque, New Mexico.

SENM. 2014. Update to the Reasonable Foreseeable Development (RFD) for the BLM Pecos District, SENM. Final Report. New Mexico Institute of Mining and Technology. Available at: https://eplanning.blm.gov/epl-front-office/projects/lup/64444/80056/93025/Final\_Report-SENM-DEC2014\_updated\_RFD.pdf

- USDI. BLM. 2013. Air Resources Technical Report for Oil and Gas Development in New Mexico, Kansas, Oklahoma, and Texas. New Mexico State Office.
- Wenzel, C. 2012. A Case Study—Hydraulic Fracturing Geography: The Case of the Eagle Ford Shale, TX, USA. Thesis (M.S.)--Texas State University-San Marcos, Department of Geography. <u>https://digital.library.txstate.edu/handle/10877/4247</u>.

# Appendices

#### Appendix A. Emissions Estimates for Oil and Gas Wells

Emissions for a one-well horizontal and oil gas well on federal lands are included in Tables 4-1 and 4-2. Emissions for vertical wells were omitted from this analysis due to current predominant technological drilling methods being horizontal. Additionally, presenting horizontal oil and gas wells emissions estimates represent a more conservative summary of emissions when compared to emissions from a vertical well with the exception SO<sub>2</sub> which could be 4-5x greater in a vertical well scenario however sulfur dioxide emissions are still estimated to be within the same magnitude and less <1 ton per year of SO<sub>2</sub> emissions per well.

| Activity/ Phase |                   |                   |                 | Annual E        | Emissions ( | Γons)* |      |                   |
|-----------------|-------------------|-------------------|-----------------|-----------------|-------------|--------|------|-------------------|
|                 | PM₁0 <sup>†</sup> | PM <sub>2.5</sub> | NO <sub>x</sub> | SO <sub>2</sub> | CO          | VOC**  | HAPs | CO <sub>2</sub> e |
| Construction    | 2.41              | 0.49              | 5.21            | 0.11            | 1.44        | 0.42   | 0.42 | 578.89            |
| Operations      | 2.90              | 0.33              | 0.80            | 0.00            | 1.11        | 0.75   | 0.75 | 126.81            |
| Maintenance     | 0.00              | 0.00              | 0.00            | 0.00            | 0.00        | 0.00   | 0.00 | 0.089             |
| Reclamation**   | 0.00              | 0.00              | 0.18            | 0.00            | 0.08        | 0.00   | 0.00 | 0.00              |
| Total           | 5.31              | 0.81              | 6.19            | 0.11            | 2.63        | 1.17   | 1.17 | 705.79            |

|--|

\* Values where a "0.00" appear may be too small and not appear due to rounding.

† Reclamation PM<sub>10</sub> emissions were estimated to be twice the value of Maintenance PM<sub>10</sub> values.

\*\*VOC emissions at the operational phase represent a 95% control efficiency and estimates potential emissions representing the contribution for "one oil well" from the emissions at storage tanks, gathering facilities, etc.

| Activity/Phase           |                               | Annual Emissions (Tons)* |                 |                 |      |      |      |                   |  |  |  |
|--------------------------|-------------------------------|--------------------------|-----------------|-----------------|------|------|------|-------------------|--|--|--|
|                          | PM <sub>10</sub> <sup>†</sup> | PM <sub>2.5</sub>        | NO <sub>x</sub> | SO <sub>2</sub> | СО   | VOC  | HAPs | CO <sub>2</sub> e |  |  |  |
| Construction             | 0.64                          | 0.31                     | 5.18            | 0.11            | 1.41 | 0.61 | 0.41 | 1125.79           |  |  |  |
| Operations               | 0.28                          | 0.18                     | 0.34            | 0.00            | 0.46 | 0.16 | 0.18 | 126.81            |  |  |  |
| Maintenance              | 0.00                          | 0.00                     | 0.00            | 0.00            | 0.00 | 0.00 | 0.00 | 0.089             |  |  |  |
| Reclamation <sup>†</sup> | 0.00                          | 0.00                     | 0.18            | 0.00            | 0.08 | 0.00 | 0.00 | 0.00              |  |  |  |
| Total                    | 0.92                          | 0.49                     | 5.71            | 0.11            | 1.95 | 0.77 | 0.59 | 1252.69           |  |  |  |

#### Table A-2 Emission Estimates for One Horizontal Gas Well

\* Values where a "0.00" appear may be too small and not appear due to rounding.

† Reclamation PM<sub>10</sub> emissions were estimated to be twice the value of Maintenance PM<sub>10</sub> values.

Emission estimates for a construction, operations, maintenance and reclamation are included. Construction emissions for both an oil and gas well include well pad construction (fugitive dust), heavy equipment combustive emissions, commuting vehicles and wind erosion. Operations emissions for an oil well include well workover operations (exhaust and fugitive dust), well site visits for inspection and repair, recompletion traffic, water and oil tank traffic, venting, compression and well pumps, dehydrators and compression station fugitives. Operations emissions for a gas well include well workover operations (exhaust and fugitive dust), wellhead and compressor station fugitives, well site visits for inspection and repair, recompletions, compression, dehydrators and compression station fugitives. Maintenance emissions for both oil and gas wells are for road travel and reclamation emission activities are for interim and final activities and include truck traffic, a dozer, blade and track hoe equipment.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

## **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

| Operator:           | OGRID:                           |
|---------------------|----------------------------------|
| CHEVRON U S A INC   | 4323                             |
| 6301 Deauville Blvd | Action Number:                   |
| Midland, TX 79706   | 20288                            |
|                     | Action Type:                     |
|                     | [C-144] PIT Generic Plan (C-144) |

CONDITIONS

| Created<br>By | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Condition<br>Date |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|               | NMOCD has reviewed [4323] CHEVRON USA INC, Application and Form C-144 received on March 9, 2021, for the proposed DAGGER LAKE 15 22 OGOPOGO FED COM [fVV2112641752]<br>Reserve Pit, in Unit Letter I, Section 10, Township 22S, Range 33E, Lea County, New Mexico. This application has been approved with conditions. The Conditions of Approval and signed C-<br>144 will be emailed and also can be found in the facility file [fVV2112641752] at OCD Imaging. | 5/25/2021         |



Page 132 of 132

Action 20288