

October 19, 2023

Mr. Carl Chavez New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505-4225

Re: Semiannual Groundwater Monitoring and O&M Report

January 1 through June 30, 2023

Salty Dog Brine Station, Lea County, New Mexico

Dear Mr. Chavez:

On behalf of PAB Services, Inc., Daniel B. Stephens & Associates, Inc. (DBS&A) is submitting the enclosed groundwater monitoring and operation and maintenance (O&M) report for the Salty Dog brine station located in Lea County, New Mexico. Semiannual groundwater monitoring activities were completed at the site on June 12 and 13, 2023.

Please call us at (505) 822-9400 if you have any questions or require additional information.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

John Ayarbe, P.G.

Senior Hydrogeologist

JA/rpf Enclosure

cc: Pieter Bergstein, PAB Services, Inc.

First Semiannual 2023 Groundwater Monitoring and Operation and Maintenance Report Salty Dog Brine Station Lea County, New Mexico

Prepared for

New Mexico Energy, Minerals and Natural Resources Department, Oil Conservation Division Santa Fe, New Mexico

Prepared by

6020 Academy NE, Suite 100 Albuquerque, New Mexico 87109 www.dbstephens.com DB19.1198

October 19, 2023

Table of Contents

1.	Introduction	1
2.	Scope of Work	2
3.	Monitoring Activities	2
4.	Analytical Results4.1 Former Brine Pond Area Wells4.2 Brine Well Area Wells	4
5.	Groundwater Extraction System O&M 5.1 Former Brine Pond Area 5.2 Brine Well Area 5.3 Facility and Extraction System Maintenance 5.4 Future Extraction System Operation	8 8 9
6.	Recommendations	9
Refe	erences	10

List of Figures

- 1 Site Location Map
- 2 Former Brine Pond Area Potentiometric Surface Elevations, June 2023
- 3 Playa Lake and Brine Well Area Potentiometric Surface Elevations, June 2023
- 4 Former Brine Pond Area Chloride Concentrations in Groundwater, June 2023
- 5 Playa Lake and Brine Well Area Chloride Concentrations in Groundwater, June 2023

List of Tables

1	Fluid Level Measurements, June 12 and 13, 2023	3
2	Chloride Groundwater Analytical Data	5
3	Groundwater Analytical Results, MW-3	7
4	Average Groundwater Extraction Rates	8

List of Appendices

- A Laboratory Analytical Report
- B Field Notes
- C Historical Data

1. Introduction

Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared this groundwater monitoring and operation and maintenance (O&M) report for submission to the New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division (OCD) Environmental Bureau on behalf of PAB Services, Inc. (PAB) for the Salty Dog brine station (the site) located in Lea County, New Mexico (Figure 1). The report summarizes activities conducted at the site during the reporting period of January 1 through June 30, 2023. Groundwater monitoring and O&M during the reporting period was conducted in accordance with discharge permit BW-8 (DP-BW-8), which was last renewed on May 17, 2019 (NMEMNRD OCD, 2019).

The site consists of a northern portion, where the brine pond was located prior to closure in October 2008, and a southern portion, where the brine well is located. The brine pond area and the brine well area are separated by approximately 2,500 feet, joined by a dirt road (Figure 1). Injection water for the brine well comes from two fresh water supply wells (FWS-1 and FWS-2) and from remedial pumping at a recovery well in the brine well area (RW-2). FWS-2 is an auxiliary supply well that is used when FWS-1 and RW-2 are being serviced or when additional fresh water is needed.

Brine that is produced for sale is stored at a tank battery on the southern boundary of the former brine pond area. The tank battery consists of six 750-barrel aboveground storage tanks (ASTs) surrounded by a berm (Figure 1). A concrete truck loading pad with two brine filling stations is located north of the tank battery. An operations shed is located adjacent to the loading pad to the west.

The former brine pond area has 6 monitor wells (PMW-1, DBS-1R, and DBS-2 through DBS-5), 1 nested well (NW-1), 1 fresh water supply well (FWS-1), and a former recovery well (RW-1). The brine well area has 10 monitor wells (MW-2 through MW-6, DBS-6 through DBS-10), 1 nested well (NW-2), 1 fresh water supply well (FWS-2), and 1 recovery well (RW-2) (Figure 1).

In April 2012, DBS&A installed groundwater extraction systems at the site to provide hydraulic containment and removal of chloride-impacted groundwater in the former brine pond and brine well areas (DBS&A, 2009a and 2009b). The extraction systems consist of wells, submersible pumps, conveyance lines, electrical power, and controls to extract impacted groundwater. Extracted groundwater is conveyed to the on-site ASTs for reinjection at the brine well. Although groundwater extraction at well RW-1 was stopped in 2015, pumping at well FWS-1

provides hydraulic containment and removal of chloride-impacted groundwater in the former brine pond area; well FWS-1 is located approximately 50 feet southeast of RW-1. Extraction at RW-1 was stopped because the water level at the well had declined and was near the bottom of the well. Pumping at RW-2 provides hydraulic containment and removal of chloride-impacted groundwater in the brine well area.

2. Scope of Work

The scope of work for semiannual groundwater monitoring conducted in June 2023 consisted of (1) measuring groundwater levels in and collecting groundwater samples from 12 monitor wells and (2) performing maintenance on the groundwater extraction systems, as necessary. Groundwater samples were submitted to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico for chloride analysis using U.S. Environmental Protection Agency (EPA) method 300.0. Section 2A.1 of DP-BW-8 requires that PAB collect one groundwater sample to be analyzed for general chemistry and other inorganic constituents, in addition to chloride. In consultation with Carl Chavez (OCD), DBS&A selected monitor well MW-3 for these additional analyses.

The monitor wells included in the sampling program were selected in October 2010 in consultation with Jim Griswold, the OCD Project Manager for the site at that time. The sampled monitor wells are shown in Figures 2 through 5.

3. Monitoring Activities

The following subsections describe the groundwater monitoring activities conducted in June 2023. The laboratory report and chain of custody documentation are provided in Appendix A. Field notes recorded during groundwater monitoring activities are provided in Appendix B. Historical groundwater monitoring data are provided in Appendix C.

3.1 Fluid Level Measurement

On June 12, 2023, DBS&A measured water levels in monitor wells DBS-1R, DBS-2 through DBS-5, and PMW-1 in the former brine pond area (Figure 2) and in wells DBS-6, DBS-8 through DBS-10, MW-3, and MW-5 in the brine well area (Figure 3) using a properly decontaminated

electronic water level meter. Table 1 reports the water level measurements and groundwater elevations. Appendix C provides historical groundwater level data.

Table 1. Fluid Level Measurements, June 12, 2023

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation (feet msl)	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-1R	58.0–78.0	3,817.00	73.62	3,743.38
DBS-2	58.0–78.0	3,820.50	Dry	NA
DBS-3	56.0–76.72	3,816.66	71.74	3,744.92
DBS-4	56.0–76.0	3,820.37	76.97	3,743.40
DBS-5	56.9–76.9	3,820.66	74.31	3,746.35
DBS-6	56.7–76.7	3,812.65	70.63	3,742.02
DBS-8	55.2–75.2	3,810.70	68.58	3,742.12
DBS-9	48.0–68.0	3,806.26	62.58	3,743.68
DBS-10	57.2–77.2	3,807.48	68.23	3,739.25
PMW-1	63–78	3,821.17	77.20	3,743.97
MW-3	NA	3,812.05	69.96	3,742.09
MW-5	112–132	3,808.96	68.06	3,740.90

bgs = Below ground surface btoc = Below top of casing msl = Above mean sea level NA = Not available

During this reporting period, the average depths to water beneath the former brine pond area and brine well area were 74.77 feet below top of casing (btoc) and 68.01 feet btoc, respectively. Water levels in the former brine pond area declined relative to those of the last monitoring event in December 2022, declining on average by 0.33 foot. Water levels in the brine well area also declined—by 0.16 foot on average.

Figures 2 and 3 present potentiometric surface maps for the former brine pond area and the brine well area, respectively. The direction of groundwater flow beneath the former brine pond area remains to the southeast; the hydraulic gradient was approximately 0.0041 foot per foot (ft/ft) this reporting period (Figure 2). The direction of groundwater flow beneath the brine well area also remains to the southeast; the hydraulic gradient in this area was approximately 0.0031 ft/ft during this reporting period (Figure 3).

3.2 Groundwater Sampling

On June 12 and 13, 2023, groundwater samples were collected from monitor wells DBS-1R, DBS-3, DBS-4, DBS-6, DBS-8 through DBS-10, MW-3, MW-5, and PMW-1. Samples were not collected from wells DBS-2, DBS-5 and PMW-1 because there was insufficient water to sample. The samples were collected following standard sampling procedures developed from EPA guidance. Before sampling, each well was purged of a minimum of three casing volumes of water using a dedicated bailer to ensure that a representative groundwater sample was collected. While purging, DBS&A measured water quality field parameters consisting of temperature, specific conductance, and pH. Sample containers were filled, labeled, and placed in an ice-filled cooler. Groundwater samples were submitted under chain of custody to HEAL for analysis.

Samples of the injection water and produced brine were also collected to meet requirements under DP-BW-8. Analytical results of this sample will be presented in the 2023 annual Class III well report.

4. Analytical Results

Table 2 reports the chloride analytical results for the groundwater samples. Figures 4 and 5 show the distribution of chloride in groundwater beneath the former brine pond area and the brine well area, respectively. The complete laboratory report and chain of custody documentation are provided in Appendix A. Field notes recorded during groundwater monitoring activities are provided in Appendix B. Historical groundwater quality data are provided in Appendix C.

4.1 Former Brine Pond Area Wells

Well PMW-1, located just upgradient of pumping well FWS-1, was nearly dry during the June 2023 sampling event, precluding collection of a water quality sample. The chloride concentration at PMW-1 has historically been above the New Mexico Water Quality Control Commission (NMWQCC) standard of 250 milligrams per liter (mg/L), and was 12,000 mg/L when it was last sampled in December 2022 (Appendix C).

Table 2. Chloride Groundwater Analytical Data

Monitor Well	Date	Chloride Concentration (mg/L)
NA	1WQCC Standard	250
DBS-1R	6/12/2023	970
DBS-2	NS	_
DBS-3	6/12/2023	65
DBS-4	6/12/2023	42
DBS-5	NS	_
DBS-6	6/13/2023	340
DBS-8	6/13/2023	42
DBS-9	6/13/2023	220
DBS-10	6/13/2023	520
PMW-1	NS	_
MW-3	6/13/2023	4,800
MW-5	6/13/2023	700

 \boldsymbol{Bold} indicates that value equals or exceeds the applicable standard.

All samples analyzed using EPA method 300.0.

NMWQCC = New Mexico Water Quality Control Commission

mg/L = Milligrams per liter

NS = Not sampled due to insufficient water

Well DBS-1R is located downgradient of well PMW-1 and pumping well FWS-1 (Figure 4). In November 2020, the chloride concentration at DBS-1R exceeded the NMWQCC standard for the first time since 2017 (Appendix C). The chloride concentration at DBS-1R remained elevated this reporting period and was 970 mg/L. This concentration is lower than the December 2022 concentration of 1,200 mg/L.

The chloride plume in the former brine pond area remains bounded by the existing monitor well network (Figure 4). The chloride concentration at downgradient monitor well DBS-4 remained stable and below the NMWQCC standard, as did the chloride concentration at cross-gradient monitor well DBS-3 (Appendix C).

4.2 Brine Well Area Wells

Monitor well MW-3 (the well closest to extraction well RW-2) and downgradient monitor wells MW-5 and DBS-10 continue to exhibit chloride concentrations above the NMWQCC standard (Figure 5). The highest chloride concentration is observed at MW-3, where the chloride concentration was 4,800 mg/L this reporting period, decreasing from 5,700 mg/L in December 2022. The chloride concentrations at MW-5 and DBS-10 also decreased. The chloride concentration at MW-5 decreased from 710 mg/L (December 2022) to 700 mg/L (June 2023). The chloride concentration at DBS-10 decreased from 570 mg/L (December 2023) to 520 mg/L (June 2023) (Appendix C).

The chloride concentration at cross-gradient monitor well DBS-6 (340 mg/L), which met the NMWQCC standard between June 2017 and November 2020 (Appendix C), exceeded the NMWQCC standard during this reporting period (Table 2). The chloride concentration at the other cross-gradient monitor well DBS-8 (42 mg/L) was below the NMWQCC standard.

The chloride concentration at upgradient monitor well DBS-9 was 220 mg/L during this reporting period, just below the NMWQCC standard. Chloride concentrations at DBS-9 fluctuate around the standard (Appendix C).

Section 2A.1 of DP-BW-8 requires that PAB collect one groundwater sample to be analyzed for general chemistry and several other groundwater constituents. Monitor well MW-3 was selected for this additional analysis because it is located downgradient of the location of the brine well. Groundwater at MW-3 has historically shown chloride impacts. Analytical results for the MW-3 sample are provided in Table 3.

Table 3. Groundwater Analytical Results, MW-3

	Concentration (mg/L ^a)			
	NMWQCC	MW-3		
Constituent	Standard	(6/13/2023)		
Alkalinity, total	NS	233.4		
Bicarbonate	NS	233.4		
Calcium, total	NS	100		
Carbonate	NS	ND		
Bromide	NS	1.9		
Chloride	250	4,800		
Fluoride	1.6	0.83		
Magnesium, total	NS	12		
Nitrate + nitrite (as N)	10.0	2.9		
Orthophosphate (as P)	NS	<2.5 H		
pH (s.u.)	6–9	7.36 H		
Potassium, total	NS	3.5		
Sodium, total	NS	260		
Sulfate	600	290		
Total dissolved solids	1,000	10,100 D		

Bold indicates that value exceeds New Mexico Water Quality Control Commission (NMWQCC) standard.

5. Groundwater Extraction System O&M

Groundwater extraction from fresh water supply well FWS-1 and recovery well RW-2 is intended to provide hydraulic containment and removal of chloride-impacted groundwater in the former brine pond area and the brine well area, respectively. PAB began remedial groundwater extraction in April 2012 (Appendix C). Extracted groundwater is used as injection water at the brine well or is sold as fresh water.

Table 4 shows the average groundwater extraction rates for the two wells during this reporting period. The rates were determined using totalizer flow meter readings.

^a Unless otherwise noted

NS = No standard

s.u. = Standard units

H = Holding time for preparation or analysis exceeded

D = Sample diluted due to matrix

Table 4. Average Groundwater Extraction Rates

Recovery Well	Date	Average Extraction Rate (gpm)
FWS-1	6/12/2023	2.9 ª
RW-2	6/12/2023	NM

^a Average extraction rate at FWS-1 based on totalizer flow meter readings on 12/22/2022 and 6/12/2023. qpm = Gallons per minute

NM = Not measured; cattle damaged meter

5.1 Former Brine Pond Area

The average pumping rate at well FWS-1 during this reporting period was 2.9 gallons per minute (gpm) (Table 4). The average pumping rate during the previous reporting period was 6.1 gpm (Appendix C).

In the former brine pond area, monitor well DBS-1R was the only well to exhibit a chloride concentration above the NMWQCC standard this reporting period; however, PMW-1, which has historically exhibited the greatest chloride concentration, contained insufficient water for sampling (Figure 4). The chloride concentration at downgradient monitor well DBS-1R decreased this reporting period, from 1,200 mg/L (December 2022) to 970 mg/L (June 2023). Further downgradient, the chloride concentration at well DBS-4 remained stable and below the NMWQCC standard (Figure 4).

DBS&A recommends that PAB increase the pumping rate at FWS-1 in response to the elevated chloride concentration at DBS-1R.

5.2 Brine Well Area

During this reporting period, the totalizer flow meter at extraction well RW-2 was damaged, precluding determination of the well's average pumping rate (Table 4). PAB is aware of the damage to the meter, and is planning to repair it. The average pumping rate in June 2022 was 5.8 gpm (Appendix C).

In the brine well area, monitor wells DBS-6, DBS-10, MW-3, and MW-5 exhibit chloride concentrations above the NMWQCC standard (Figure 5). Groundwater elevation contours of the June 2023 potentiometric surface map show little inflection at extraction well RW-2, suggesting that the well was not pumping during measurement of water levels or that the pumping rate is

too low for effective containment (Figure 3). Nonetheless, the chloride plume remained stable with decreasing chloride concentrations at the four monitor wells this reporting period (Appendix C). For example, the chloride concentration at MW-3 decreased from 5,700 mg/L (December 2022) to 4,800 mg/L (June 2023).

DBS&A recommends that PAB repair the flow meter at extraction well RW-2 and then confirm that it is pumping at a rate comparable to historical levels (e.g., 5 to 10 gpm).

5.3 Facility and Extraction System Maintenance

As noted in Section 5.2, the totalizer flow meter at RW-2 was damaged during this reporting period. PAB is planning to repair it.

On June 13, 2023, Atkins Engineering Associates Inc. surveyed the five surface subsidence monitoring points that were installed at the site in March 2018 (DBS&A, 2018). The survey was conducted in accordance with Condition 2.B.1 of DP-BW-8 (NMEMNRD OCD, 2019). Results of the survey were reported to Carl Chavez on June 23, 2023, and will be included in the 2023 annual Class III well report.

5.4 Future Extraction System Operation

PAB will continue groundwater extraction from the fresh water supply well FWS-1 and recovery well RW-2 to provide hydraulic containment and removal of chloride impacted groundwater.

PAB will continue semiannual groundwater monitoring at the selected wells to collect data used to assess the effectiveness of the remedial groundwater extraction measures.

6. Recommendations

Based on the current groundwater monitoring results and site O&M activities, DBS&A offers the following recommendations:

• Continue groundwater extraction at FWS-1 to provide hydraulic containment and removal of the chloride plume in the former brine pond area, increasing the pumping rate slightly to address the elevated chloride concentration at downgradient monitor well DBS-1R.

- Continue groundwater extraction at RW-2 to provide hydraulic containment and removal of the chloride plume in the brine well area. Repair the flow meter at the extraction well and confirm that it is pumping at a rate comparable to historical levels (e.g., 5 to 10 gpm).
- To the extent practical, attempt to balance groundwater extraction between FWS-1 and RW-2.

In addition, DBS&A and PAB will complete the following activities at the site in 2023 to meet the requirements of DP-BW-8:

- Continue to conduct semiannual groundwater monitoring and O&M of the extraction systems at the site.
- Conduct semiannual surveys of the surface subsidence survey monitoring points.
- Recalibrate or replace totalizer meters as needed.

References

Daniel B. Stephens & Associates (DBS&A). 2009a. *Recovery well installation and pump test report, Salty Dog Brine Station, Lea County, New Mexico*. Prepared for New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, Environmental Bureau. November 20, 2009.

DBS&A. 2009b. *Preliminary conceptual remedial design report, Salty Dog Brine Station, Lea County, New Mexico*. Prepared for New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, Environmental Bureau. December 31, 2009.

DBS&A. 2018. Letter report from John Ayarbe and Michael D. McVey to Carl Chavez, New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, Environmental Bureau, regarding Installation of a monitor well and subsidence survey monitoring points at the Salty Dog Brine Station (API No. 30-025-26307). June 25, 2018.

New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Department (NMEMNRD OCD). 2019. *Discharge Permit (BW-8), Standard Energy, UIC Class III Brine Well Brine Supply Well No.1 API No. 30-025-26307 UL: J Section 5 Township 19 South, Range 36 East, Lea County, New Mexico.* May 17, 2019.

Figures

- Fresh water supply well
- Monitor well
- Recovery well
- Well destroyed

gic Company DB19.1198 7/25/2023

SALTY DOG BRINE STATION **Site Location Map**

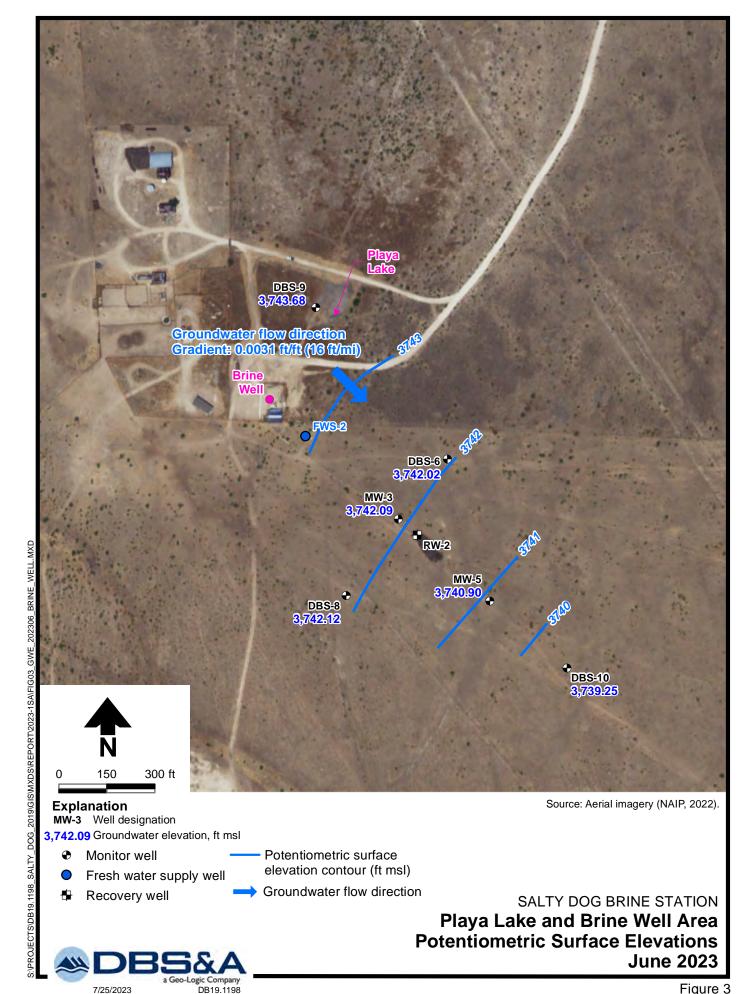


Figure 2

June 2023

Potentiometric Surface Elevations

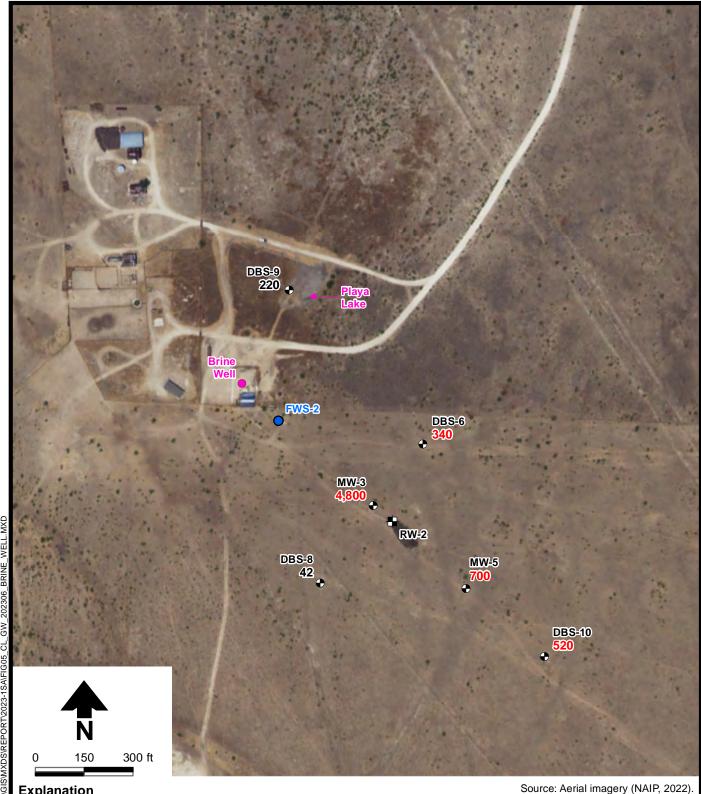
gic Company DB19.1198

Explanation

DBS-3 Well designation

- 65 Chloride concentration (mg/L)
- Monitor well
- Fresh water supply well
- Recovery well

Red indicates a concentration greater than or equal to the NMWQCC standard.


Note: * Insufficient water to sample.

Source: Aerial imagery (NAIP, 2022).

SALTY DOG BRINE STATION

Former Brine Pond Area Chloride Concentrations in Groundwater June 2023

Figure 4

Explanation

DBS-8 Well designation

- Chloride concentration (mg/L)
- Monitor well
- Fresh water supply well
- Recovery well

Red indicates a concentration greater than or equal to the NMWQCC standard.

SALTY DOG BRINE STATION

Playa Lake and Brine Well Area Chloride Concentrations in Groundwater **June 2023**

Appendix A

Laboratory Analytical Report

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

July 14, 2023

John Ayarbe
Daniel B. Stephens & Assoc.
6020 Academy NE Suite 100
Albuquerque, NM 87109
TEL:
FAX:

RE: Salty Dog OrderNo.: 2306902

Dear John Ayarbe:

Hall Environmental Analysis Laboratory received 11 sample(s) on 6/16/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 7/14/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: DBS-1R

Project: Salty Dog Collection Date: 6/12/2023 3:55:00 PM Lab ID: 2306902-001 Matrix: GROUNDWA Received Date: 6/16/2023 9:15:00 AM

Analyses	Result	RL Qual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS			Analy	st: CAS
Chloride	970	50 * mg/L	100 6/30/2023 5:37:03 PM	R97869

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 1 of 20

Date Reported: 7/14/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: DBS-3

 Project:
 Salty Dog
 Collection Date: 6/12/2023 6:14:00 PM

 Lab ID:
 2306902-002
 Matrix: GROUNDWA
 Received Date: 6/16/2023 9:15:00 AM

Analyses	Result	RL Qu	ual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	st: CAS
Chloride	65	5.0	mg/L	10 6/30/2023 5:49:23 PM	R97869

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 20

Date Reported: 7/14/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. **Client Sample ID:** DBS-4

Project: Salty Dog Collection Date: 6/12/2023 3:20:00 PM Lab ID: 2306902-003 Matrix: GROUNDWA Received Date: 6/16/2023 9:15:00 AM

Analyses	Result	RL Qu	ual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analys	st: CAS
Chloride	42	5.0	mg/L	10 6/30/2023 6:14:05 PM	R97869

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 3 of 20

Date Reported: 7/14/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: DBS-6

 Project:
 Salty Dog
 Collection Date: 6/13/2023 4:08:00 PM

 Lab ID:
 2306902-004
 Matrix: GROUNDWA
 Received Date: 6/16/2023 9:15:00 AM

Analyses	Result	RL Qual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS			Analy	st: CAS
Chloride	340	50 * mg/L	100 6/30/2023 6:51:07 PM	R97869

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 20

Date Reported: 7/14/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: DBS-8

 Project:
 Salty Dog
 Collection Date: 6/13/2023 3:07:00 PM

 Lab ID:
 2306902-005
 Matrix: GROUNDWA
 Received Date: 6/16/2023 9:15:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: CAS
Chloride	42	5.0	mg/L	10	6/30/2023 7:03:27 PM	R97869

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 20

Date Reported: 7/14/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: DBS-9

 Project:
 Salty Dog
 Collection Date: 6/13/2023 8:54:00 AM

 Lab ID:
 2306902-006
 Matrix: GROUNDWA
 Received Date: 6/16/2023 9:15:00 AM

Analyses	Result	RL Q	ual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	st: CAS
Chloride	220	50	mg/L	100 6/30/2023 8:05:11 PM	R97869

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ple pH Not In Range
Page 6 of 20

Date Reported: 7/14/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: DBS-10

 Project:
 Salty Dog
 Collection Date: 6/13/2023 2:17:00 PM

 Lab ID:
 2306902-007
 Matrix: GROUNDWA
 Received Date: 6/16/2023 9:15:00 AM

Analyses	Result	RL Qual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS			Analy	st: CAS
Chloride	520	50 * mg/L	100 6/30/2023 8:29:54 PM	R97869

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 20

Date Reported: 7/14/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: MW-3

 Project:
 Salty Dog
 Collection Date: 6/13/2023 11:20:00 AM

 Lab ID:
 2306902-008
 Matrix: GROUNDWA
 Received Date: 6/16/2023 9:15:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
SPECIFIC GRAVITY						Analyst	: CAS
Specific Gravity	1.001	0			1	6/26/2023 12:03:00 PM	R97708
EPA METHOD 300.0: ANIONS						Analyst	: CAS
Fluoride	0.83	0.50		mg/L	5	6/30/2023 8:42:13 PM	R97869
Chloride	4800	1000	*	mg/L	2E-	+ 7/3/2023 4:17:54 PM	R97897
Bromide	1.9	0.50		mg/L	5	6/30/2023 8:42:13 PM	R97869
Phosphorus, Orthophosphate (As P)	ND	2.5	Н	mg/L	5	7/6/2023 7:45:02 PM	R98006
Sulfate	290	10	*	mg/L	20	6/30/2023 8:54:34 PM	R97869
Nitrate+Nitrite as N	2.9	2.0		mg/L	10	7/11/2023 10:38:35 AM	R98110
SM2510B: SPECIFIC CONDUCTANCE						Analyst	: RBC
Conductivity	19000	100		µmhos/c	10	6/21/2023 12:00:51 PM	R97618
SM2320B: ALKALINITY						Analyst	: RBC
Bicarbonate (As CaCO3)	233.4	20.00		mg/L Ca	1	6/19/2023 12:48:15 PM	R97557
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	6/19/2023 12:48:15 PM	R97557
Total Alkalinity (as CaCO3)	233.4	20.00		mg/L Ca	1	6/19/2023 12:48:15 PM	R97557
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: JAG
Total Dissolved Solids	10100	500	*D	mg/L	1	6/21/2023 2:50:00 PM	75719
SM4500-H+B / 9040C: PH						Analyst	: RBC
рН	7.36		Н	pH units	1	6/19/2023 12:48:15 PM	R97557
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst	: VP
Calcium	100	5.0		mg/L	5	6/29/2023 3:01:46 PM	75704
Magnesium	12	1.0		mg/L	1	6/20/2023 12:00:06 PM	75704
Potassium	3.5	1.0		mg/L	1	6/20/2023 12:00:06 PM	75704
Sodium	260	5.0		mg/L	5	6/29/2023 3:01:46 PM	75704

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 20

Date Reported: 7/14/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: MW-5

 Project:
 Salty Dog
 Collection Date: 6/13/2023 1:22:00 PM

 Lab ID:
 2306902-009
 Matrix: GROUNDWA
 Received Date: 6/16/2023 9:15:00 AM

Analyses	Result	RL Qual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS			Analy	st: CAS
Chloride	700	50 * mg/L	100 6/30/2023 9:19:15 PM	l R97869

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 20

Date Reported: 7/14/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: Brine

Project: Salty Dog Collection Date: 6/12/2023 5:25:00 PM Lab ID: 2306902-010 Matrix: GROUNDWA Received Date: 6/16/2023 9:15:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
SPECIFIC GRAVITY						Analyst	: CAS
Specific Gravity	1.199	0			1	6/26/2023 12:03:00 PM	R97708
EPA METHOD 300.0: ANIONS						Analyst	: CAS
Chloride	190000	5000	*	mg/L	1E+	6/30/2023 10:33:21 PM	A97869
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: JAG
Total Dissolved Solids	339000	5000	*H	mg/L	1	6/23/2023 2:15:00 PM	75777
SM4500-H+B / 9040C: PH						Analyst	: RBC
рН	7.08		Н	pH units	1	6/19/2023 12:40:18 PM	R97557
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst	: VP
Sodium	49000	500		mg/L	500	6/20/2023 12:55:38 PM	75704

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 10 of 20

Date Reported: 7/14/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: Injection

Project: Salty Dog Collection Date: 6/12/2023 4:18:00 PM Lab ID: 2306902-011 Matrix: GROUNDWA Received Date: 6/16/2023 9:15:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
SPECIFIC GRAVITY						Analyst	: CAS
Specific Gravity	1.000	0			1	6/26/2023 12:03:00 PM	R97708
EPA METHOD 300.0: ANIONS						Analyst	: CAS
Chloride	380	50	*	mg/L	100	6/30/2023 10:58:02 PM	A97869
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: JAG
Total Dissolved Solids	1010	50.0	*H	mg/L	1	6/21/2023 2:50:00 PM	75719
SM4500-H+B / 9040C: PH						Analyst	: RBC
рН	7.78		Н	pH units	1	6/19/2023 12:44:15 PM	R97557
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst	: VP
Sodium	260	5.0		mg/L	5	6/20/2023 12:23:31 PM	75704

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 11 of 20

Pace Analytical® ANALYTICAL REPORT

Ss

Hall Environmental Analysis Laboratory

Sample Delivery Group:

L1627784

Samples Received:

06/20/2023

Project Number:

Description:

Report To:

Andy Freeman

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By: Jah V Houkins

John Hawkins

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
2306902-008C MW-3 L1627784-01	5
Qc: Quality Control Summary	6
Wet Chemistry by Method 2580	6
GI: Glossary of Terms	7
Al: Accreditations & Locations	8
Sc: Sample Chain of Custody	9

Collected date/time Received date/time

SAMPLE SUMMARY

Collected by

06/20/23 09:15 06/13/23 11:20 2306902-008C MW-3 L1627784-01 GW Method Batch Dilution Preparation Analysis Analyst Location date/time date/time Wet Chemistry by Method 2580 WG2083531 06/24/23 15:30 06/24/23 15:30 NTG Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

L1627784

Page 38 of 101

SAMPLE RESULTS - 01

Collected date/time: 06/13/23 11:20

Wet Chemistry by Method 2580

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	mV			date / time		
ORP	145	T8	1	06/24/2023 15:30	WG2083531	

QUALITY CONTROL SUMMARY

Page 39 of 101

L1627784-01

Wet Chemistry by Method 2580

L1627784-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1627784-01	06/24/23 15:3	30 •	(DUP)	R39420	16-3	06/24/23	15:30	
			n	D11D D		D.1	D11D D	

	Original Result	DUP Result	Dilution	DUP Diff	DUP Qualifier	DUP Diff Limits
Analyte	mV	mV		mV		mV
ORP	145	143	1	1.90		20

L1628671-01 Original Sample (OS) • Duplicate (DUP)

100	11629671.01	06/24/23 15:30 •	חוום)	D30/12016 /	06/24/23 15:30
(US) L10200/1-U1	00/24/23 13.30 •	(DUP)	1 K394ZU10-4	06/24/23 15.30

	Original Result	DUP Result	Dilution	DUP Diff	DUP Qualifier	DUP Diff Limits
Analyte	mV	mV		mV		mV
ORP	114	112	1	1.40		20

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3942016-1_06/24/23 15:30 • (LCSD) R3942016-2_06/24/23 15:30

(200) 1.00 12010 1 00/2 1/	20 .0.00 (200	2,	- 00/2 //20 /0.							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	Diff	Diff Limits
Analyte	mV	mV	mV	%	%	%			mV	mV
ORP	98.0	92.6	92.2	94.5	94.1	90.0-110			0.400	20

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbic viations and	2 Deminions
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Qualifier

Description

T8

Sample(s) received past/too close to holding time expiration.

¹Cp

СР

²Tc

Pace Analytical National	12065 Lebanon Rd Mount Juliet,	TN 37122
race Analytical National	12005 Lebanon Ru Mount Junet,	111 3/122

, , , , , , , , , , , , , , , , , , , ,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

ANALYSIS

LABORATORY

Hall Environmental Analysis Laboratory Page 42 of 101 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

SUB CO	NTRATOR: Pace	TN COMPANY:	PACE TN		PHONE:	(800) 767-5859	FAX:	(615) 758-5859
ADDRES	12065	5 Lebanon Rd			ACCOUNT #:		EMAIL:	
CITY, ST	ATE, ZIP: Mt. J	uliet, TN 37122						
			BOTTLE		COLLECTION	# CONTAINERS	ANALYTIC	LIG 27784 AL COMMENTS
ITEM	SAMPLE	CLIENT SAMPLE ID	TYPE	MATRIX	DATE	RS	ANALYTICA	AL COMMENTS
1	2306902-008C	MW-3	125HDP	Groundw	6/13/2023 11:20:00 AM	1 ORP- Oxidation Red	duction Potential	-01

H137

Sample Re	cerpt Checklist
COC Seal Present/Intact: Y COC Signed/Accurate: Y Bottles arrive intact: Correct bottles used: Sufficient volume sent: Y RAD Screen <0.5 mR/hr: Y	VN If Applicable N VOA Zero Headspace: YN N Pres.Correct/Check: YN N N S

Relinquished By:	Date: 6/16/2023	Time: 11:09 AM	Received By: Ci Joseph	2-20-23	Time:915		TTRANSMITTAL DESIRED:	Flournin
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	HARDCOPY (extra cost)	FAX EMAIL	ONLINE
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	Temp of samples	FOR LAB USE ONLY C Attempt to Cool?	

Hall Environmental Analysis Laboratory, Inc.

WO#: **2306902**

14-Jul-23

Client: Daniel B. Stephens & Assoc.

Project: Salty Dog

Troject.		Salty Dog										
Sample ID:	МВ		SampT	ype: m b	olk	Tes	tCode: El	PA Method	300.0: Anions			
Client ID:	PBW		Batch	1D: R9	7869	F	RunNo: 9	7869				
Prep Date:			Analysis D	ate: 6/	30/2023	;	SeqNo: 3	560123	Units: mg/L			
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride			ND	0.10								
Chloride			ND	0.50								
Bromide			ND	0.10								
Sulfate			ND	0.50								
Sample ID:	LCS		SampT	ype: Ics	ì	Tes	tCode: El	PA Method	300.0: Anions			
Client ID:	LCSW		Batch	1D: R9	7869	F	RunNo: 9	7869				
Prep Date:			Analysis D	ate: 6/	30/2023	;	SeqNo: 3	560124	Units: mg/L			
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride			0.48	0.10	0.5000	0	96.6	90	110			
Chloride			4.6	0.50	5.000	0	92.7	90	110			
Bromide			2.4	0.10	2.500	0	94.7	90	110			
Sulfate			9.4	0.50	10.00	0	94.5	90	110			
Sample ID:	МВ		SampT	ype: m b	olk	Tes	tCode: El	PA Method	300.0: Anions			
Client ID:	PBW		Batch	1D: A9	7869	F	RunNo: 9	7869				
Prep Date:			Analysis D	ate: 6/	30/2023	;	SeqNo: 3	560177	Units: mg/L			
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride			ND	0.50								
Sample ID:	LCS		SampT	ype: Ics	i	Tes	tCode: El	PA Method	300.0: Anions			
Client ID:	LCSW		Batch	1D: A9	7869	F	RunNo: 9	7869				
Prep Date:			Analysis D	ate: 6/	30/2023	;	SeqNo: 3	560178	Units: mg/L			
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride			4.7	0.50	5.000	0	93.2	90	110			
Sample ID:	МВ		SampT	ype: m b	olk	Tes	tCode: El	PA Method	300.0: Anions			

Qualifiers:

Client ID:

Prep Date:

Analyte

Chloride

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix

PBW

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

Batch ID: R97897

PQL

0.50

Analysis Date: 7/3/2023

Result

ND

B Analyte detected in the associated Method Blank

RunNo: 97897

SeqNo: 3561706

LowLimit

Units: mg/L

HighLimit

%RPD

- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

SPK value SPK Ref Val %REC

Page 12 of 20

RPDLimit

Qual

Hall Environmental Analysis Laboratory, Inc.

WO#: **2306902**

14-Jul-23

Client: Daniel B. Stephens & Assoc.

Project: Salty Dog

Sample ID: LCS

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R97897 RunNo: 97897 Prep Date: Analysis Date: 7/3/2023 SeqNo: 3561712 Units: mg/L SPK Ref Val %REC %RPD **RPDLimit** Analyte Result **PQL** SPK value LowLimit HighLimit Qual

Chloride 4.8 0.50 5.000 0 96.2 90 110

Sample ID: MB SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: **R98006** RunNo: 98006 Prep Date: Analysis Date: 7/6/2023 SeqNo: 3565980 Units: mg/L SPK value SPK Ref Val **RPDLimit** Analyte Result PQL %REC LowLimit HighLimit %RPD Qual

Phosphorus, Orthophosphate (As P) ND 0.50

Client ID: LCSW Batch ID: **R98006** RunNo: 98006 Prep Date: Analysis Date: 7/6/2023 SeqNo: 3565981 Units: mg/L SPK value SPK Ref Val Result POI %REC HighLimit %RPD **RPDLimit** Qual Analyte I owl imit Phosphorus, Orthophosphate (As P) 0.50 5.000

TestCode: EPA Method 300.0: Anions

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R98110 RunNo: 98110 Prep Date: Analysis Date: 7/11/2023 SeqNo: 3570137 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Nitrate+Nitrite as N ND 0.20

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R98110 RunNo: 98110

SampType: LCS

Prep Date: Analysis Date: 7/11/2023 SeqNo: 3570138 Units: mg/L

%RPD **RPDLimit** Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit Qual 0.20 3.500 Nitrate+Nitrite as N 3.5 99.1 110

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: **2306902**

14-Jul-23

Client: Daniel B. Stephens & Assoc.

Project: Salty Dog

Sample ID: Ics-1 99.3uS eC SampType: LCS TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R97618 RunNo: 97618

Prep Date: Analysis Date: 6/21/2023 SeqNo: 3549517 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 10 99.30 0 105 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 14 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: **2306902**

14-Jul-23

Client: Daniel B. Stephens & Assoc.

Project: Salty Dog

Sample ID: MB-75704	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA 6010B: 1	Total Recover	able Meta	ls	
Client ID: PBW	Batch	n ID: 75 7	704	F	RunNo: 97	7575				
Prep Date: 6/19/2023	Analysis D	Date: 6/ 2	20/2023	;	SeqNo: 3	547301	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND	1.0								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Sodium	ND	1.0								
Sample ID: LCS-75704	SampT	ype: LC	s	Tes	tCode: EF	PA 6010B: 1	Total Recover	able Meta	ls	
Client ID: LCCW	Potok	. ID: 75	70.4	r	DunNo: 0	7575				

Sample ID: LCS-75704	SampT	SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals											
Client ID: LCSW Batch ID: 75704 RunNo: 97575													
Prep Date: 6/19/2023	Analysis D	ate: 6/ 2	20/2023	5	SeqNo: 3	547303	Units: mg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Calcium	50	1.0	50.00	0	99.7	80	120						
Magnesium	49	1.0	50.00	0	98.4	80	120						
Potassium	48	1.0	50.00	0	96.3	80	120						
Sodium	49	1.0	50.00	0	98.0	80	120						

Sample ID:	2306902-008BMS	SampT	ype: MS	5	Tes	tCode: EF	PA 6010B: 1	Total Recover	able Meta	ls	
Client ID:	MW-3	Batch	1D: 757	704	F	RunNo: 97	7575				
Prep Date:	6/19/2023	Analysis D	ate: 6/ 2	20/2023	9	SeqNo: 3	547309	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Magnesium	_	61	1.0	50.00	12.01	97.8	75	125	-	_	
Potassium		52	1.0	50.00	3.485	96.9	75	125			

Sample ID:	2306902-008BMSD	SampT	SampType: MSD TestCode: EPA 6010B: Total Recoverable Metals										
Client ID:	MW-3	Batch ID: 75704 RunNo: 97575											
Prep Date:	6/19/2023	Analysis D	ate: 6/2	20/2023	9	SeqNo: 3	547310	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Magnesium		61	1.0	50.00	12.01	98.3	75	125	0.387	20			
Potassium		52	1.0	50.00	3.485	97.1	75	125	0.158	20			

Sample ID:	2306902-008BMS	SampT	ype: MS	;	TestCode: EPA 6010B: Total Recoverable Metals									
Client ID: MW-3 Batch ID: 75704 RunNo: 97824														
Prep Date:	6/19/2023	Analysis D	ate: 6/2	29/2023	9	SeqNo: 3	558208	Units: mg/L						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Calcium		150	5.0	50.00	103.5	95.5	75	125						
Sodium		300	5.0	50.00	255.7	78.9	75	125						

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: **2306902**

Qual

14-Jul-23

Client: Daniel B. Stephens & Assoc.

Project: Salty Dog

Sample ID: 2306902-008BMSD SampType: MSD TestCode: EPA 6010B: Total Recoverable Metals

Client ID: MW-3 Batch ID: 75704 RunNo: 97824

Prep Date: 6/19/2023 Analysis Date: 6/29/2023 SeqNo: 3558209 Units: mg/L

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	
Calcium	160	5.0	50.00	103.5	113	75	125	5.66	20	
Sodium	310	5.0	50.00	255.7	118	75	125	6.36	20	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 16 of 20

Hall Environmental Analysis Laboratory, Inc.

7.35

WO#: **2306902**

Н

14-Jul-23

Client: Daniel B. Stephens & Assoc.

Project: Salty Dog

рΗ

Sample ID: 2306902-008ADUP SampType: DUP TestCode: SM4500-H+B / 9040C: pH

Client ID: MW-3 Batch ID: R97557 RunNo: 97557

Prep Date: Analysis Date: 6/19/2023 SeqNo: 3545950 Units: pH units

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 17 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: **2306902**

14-Jul-23

Client: Daniel B. Stephens & Assoc.

Project: Salty Dog

Sample ID: mb-1 alk SampType: MBLK TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R97557 RunNo: 97557

Prep Date: Analysis Date: 6/19/2023 SeqNo: 3545923 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) ND 20.00

Sample ID: Ics-1 alk SampType: LCS TestCode: SM2320B: Alkalinity

Client ID: LCSW Batch ID: R97557 RunNo: 97557

Prep Date: Analysis Date: 6/19/2023 SeqNo: 3545924 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 79.04 20.00 80.00 0 98.8 90 110

Sample ID: 2306902-008ADUP SampType: DUP TestCode: SM2320B: Alkalinity

Client ID: MW-3 Batch ID: R97557 RunNo: 97557

Prep Date: Analysis Date: 6/19/2023 SeqNo: 3545926 Units: mg/L CaCO3

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Alkalinity (as CaCO3) 233.3 20.00 0.0343 20

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 18 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: **2306902**

14-Jul-23

Client: Daniel B. Stephens & Assoc.

Project: Salty Dog

Sample ID: 2306902-008ADUP SampType: DUP TestCode: Specific Gravity

Client ID: MW-3 Batch ID: R97708 RunNo: 97708

Prep Date: Analysis Date: 6/26/2023 SeqNo: 3553472 Units:

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Specific Gravity 1.004 0 0.329 20

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 19 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: 2306902

14-Jul-23

Client: Daniel B. Stephens & Assoc.

Project: Salty Dog

Sample ID: MB-75719 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 75719 RunNo: 97614

Prep Date: 6/20/2023 Analysis Date: 6/21/2023 SeqNo: 3549236 Units: mg/L

SPK value SPK Ref Val HighLimit %RPD **RPDLimit** Analyte Result PQL %REC LowLimit Qual

Total Dissolved Solids ND 50.0

Sample ID: LCS-75719 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 75719 RunNo: 97614

Prep Date: 6/20/2023 Analysis Date: 6/21/2023 SeqNo: 3549237 Units: mg/L

%RPD **RPDLimit** Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit Qual

Total Dissolved Solids 1030 50.0 1000 103 80 120

Sample ID: MB-75777 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: Batch ID: 75777 RunNo: 97673

Prep Date: Analysis Date: 6/23/2023 SeqNo: 3552098 Units: mg/L 6/22/2023

Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte LowLimit

Total Dissolved Solids 50.0

Sample ID: LCS-75777 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 75777 RunNo: 97673

Prep Date: Analysis Date: 6/23/2023 SeqNo: 3552099 Units: mg/L 6/22/2023

PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte Result LowLimit

Total Dissolved Solids 1010 50.0 1000 n 101 80 120

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 20 of 20

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Released to Imaging: 2/26/2025 11:51:06 AM

Client Name: Daniel B. Stephens & Assoc.	Work Order Numl	ber: 2306902		RcptNo: 1	
Received By: Juan Rojas	6/16/2023 9:15:00	ΑM	Guarage !		
Completed By: Desiree Dominguez	6/16/2023 10:45:42	AM	TD		
Reviewed By: 7n 6/16/23					
Chain of Custody			_		
1. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the sample delivered?		Client			
Log In 3. Was an attempt made to cool the samples?	,	Yes 🗹	No 🗌	na 🗌	
4.44		-	No 🗌	—	
 Were all samples received at a temperature 	of >0° C to 6.0°C	Yes 🗹	NO 🗆	na 🗌	
5. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
6. Sufficient sample volume for indicated test(s	s)?	Yes 🗹	No 🗌		
7. Are samples (except VOA and ONG) proper	ly preserved?	Yes 🗹	No 🗌		
8. Was preservative added to bottles?		Yes 🗌	No 🗹	NA 🗆	
9. Received at least 1 vial with headspace <1/	4" for AQ VOA?	Yes 🗌	No 🗌	NA 🗹	
0. Were any sample containers received broke	en?	Yes	No 🗹	# of preserved	pH strip lot#
1.Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗹	No 🗆	bottles checked for pH:	unless noted)
2. Are matrices correctly identified on Chain of	Custody?	Yes 🗹	No 🗆	Adjusted?	Jo
3. Is it clear what analyses were requested?	•	Yes 🗹	No 🗌		
4. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🗆	Checked by:	8 6/16/23
Special Handling (if applicable)					
15. Was client notified of all discrepancies with	this order?	Yes 🗌	No 🗆	NA 🗹	
Person Notified:	Date:		CONTRACTOR CONTRACTOR CONTRACTOR		
By Whom:	Via:	☐ eMail ☐ I	Phone Fax	☐ In Person	
Regarding:					
Client Instructions:		CALLED BY CO. OF AUGUST AND AUGUS			
16. Additional remarks:					
17. <u>Cooler Information</u>					
	eal Intact Seal No	Seal Date	Signed By		
1 3.8 Good No	t Present Yogi				

(Chair	1-of-C	ustody Record	Turn-Aro	ound T	ime:	***	٦.															
Client:	Dane	B.Sk	phone & Associates	Ştand	dard	□ Rus	sh													EN			
			9	Project N			neigh, for	1			-								R	AT	O	₹Y	
Mailing	Addres	s: AB	2 office		Sal	ty So	9		40	101 L	المرماد					men							
				Project #			_				dawk)			
Phone		505-	822 - 9400			198	Ph.10			el. 5	05-34	45-39				505 Req)7	DX OF		PER I	
email c	r Fax#:	JA	par be e.geo-logic.com	✓ Project M	lanage	er:			<u> </u>											00	,	10)	
A /	Package	: -		100		A		021	AR	s.		8	3000	PO ₄ , SO ₄	369.5	0	sen	5 PH		Bolos	å	18	
Star			☐ Level 4 (Full Validation))))	W 1	Ayarbe		8) s	170	PCB's		SIN	S	δ ₁	4	ORI	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	100	4	8	12	Sol	,5
Accred			ompliance	Sampler:		norsan		TMB's (8021)	TPH:8015D(GRO / DRO / MRO)	82 1		PAHs by 8310 or 8270SIMS		NO ₂ , I	Œ	0	Total Coliform (Present/Absent)	Pervity	1	4	onductora	Carbonate	17/4
O NEL		□ Othe	r	On Ice:		-Yés	□ No	-	0/	8081 Pesticides/8082	504.1)	or 8				व	Pre	3	8	B	2	7	3
LI EDL	(Type)	T		# of Coole	-		Y09;	BTEX/ MTBE	GR	ide)d 5	9	RCRA 8 Metals	Cl, F, Br, NO ₃ ,		8270 (Semi-VOA)) m	9	10	X		3	元
			= 116. = 17	Cooler Te	mp(inc	luding CF): 3	8-6-1=3.7 (°C)	ĭ	150	stic	EDB (Method	/83	ON I	2	8260 (VOA)	į	lifor	4	3	4	った	or bonak	~
			Age.	Container	.	reservative	HEAL No.	$ \mathbf{x} $	86	٩	Ξ	s b	N N	8	Š	3	ပိ	Perfit	,	Mg	Spert	3	B
Date		Matrix	Sample Name	Type and	100	ype	2306902	빏	핍	8		¥Ι			260	276	otal	1/2	2	ও	Per	3	10
6-17-33	15:55	GW	DB5-1R	1 Plast		None	-001			\Box		<u>"</u> ,	4	9	-	- 8	-	7		0	40	7	-
1	18:14	1	N65-3	1 (1	-002		\dashv		\dashv	-	X V					3077		001/4		\dashv	er .
1	15:20		DBS-4			= 1-	-003		\neg		7		X		1501		-	7	11/4-4	110	\dashv	\dashv	-
6-13-23	-0		NBS-6		A IN C Market	ol Fordis	-004		\neg	\neg	7 1		7			- II	i		-		\dashv	\dashv	-
	15:07		0B5-8			The Part of	-005			\dashv	1	7	${x}$	-		+	11.0	-	-	-	\rightarrow	\dashv	-
	08:54		DBS-9				-006	_	+	\dashv		-/	}			-		en lie	\rightarrow	\dashv	\dashv	-	-
	14:17		065-10	1		1	-007	-	_	\dashv	-	-/			-	lere l	n/i		-	11		_	\dashv
	11:30		MW-3	4 Plashe	1	laries	-008	\dashv	\dashv	-		- /	1	/		X			700	7			
V	13:00		MW-3	1 plastic		More	-009	\dashv	-	+	-	-	/	1				Х	_	A	Д,	X	X
6-13-33	17:25		Brine	2 Platic	V	anes	-010		+	_	+		7	+	+			7	V	1000	\dashv	\dashv	\dashv
V	16.18	1	Injection	2 Plastro	1//	wies	011	+	+	-		1			\dashv			<u>X</u>	\mathcal{A}	-	\dashv	\dashv	_
				1 100000	1/4		2011	-		_	1	- 7	4	-	-				M		_	_	
1	Time:	Relinquishe	ed by	Received by:		/ia: /	Date Time	Rem	arks	\perp		- 1									士		
6140	0900	ME	1/20	urs	1/1	4	6/16/22 9:15	\OIII	ai ko	•													
Date:	Time:	Relinquishe	d by:	Received by:	CV	ľa:	Date Time																
			V				THE PERSON NAMED IN																
	DOCOSSON!																						

Appendix B Field Notes

GROUNDWATER ELEVATION DATA SHEE

Project Name: Salty Dog	Sampler: V. hargon
Project #: _DB19.1198	Sample Date: 6-12-23
Project Manager: <u>John Ayarbe</u>	Sheet # _ 1 _ of _1

Time	Well ID	previous (06/22)	Depth to Water	Total Depth	Comments: (well dia., sampled, condition)	
15:32	DBS-1R	72.80	7362	74.42 74.58	6-12-23	
14:30	DBS-2	74.89	- Dry	7535 74,91	No souple-dry	
17.47	DBS-3	69.57	71.74	74.76 75.10	6-12-23	نسا
14:50	DBS-4	75.30	76.97	78.81 78.15	5-19-23	1
17:35	DBS-5	71.99	74.31	75.38		
909	DBS-6	69.79	70.63	76.02 75.31	6-13-03	1—
1919	DBS-7	68.29	69.04		WL only	
1915	DBS-8	<u>67.84</u>	68.58	8921 GN	6-13-33	<i>i</i>
1823	DBS-9	60.95	62.58	67.55	6-13-23	
1854	DBS-10	67.28	68.23	77.88	6-12-23	_
910	MW-2	68.46	69,47		WL only	
1833	MW-3	70.60	69.96 m	147.13	4 containers 5-13-23	ν
1846	MW-4	70.44	69.82		WL only	
1852	MW-5	67.59	68.06	128.78.48	613.23	2
1900	MW-6	<u>69.04</u> <u>75.97</u>	69.96		WL only	
16:39	PMW-1	1	77.30	77.73 77.25	1 1/2 76. 4	
16100	Comments:	FW5-1	Totalizer 2	<u>5949603</u>	bbl ,0.09PA @ 16,80 valve new FWS1-1612	
17:25	Bore	South p \$166	fort C St	chertes e	2001/2 new rws -1612	86-12-23
10, 10	FWS Q A: ProjecAES08.0118	No pung ROGASHIP DIN 2016 Form	10 +0 talizer		DI COMMENT 6 NA JE	V
Released to	Imaging: 2/26	/2025 11:51:08 AM	lotution by h	or your	Cordy Continued 612-02. Thashing illegible #5	

GROUNDWATER MONITORING DATA SHEET

	Depth to Wa Total Depth			et btoc) Purge $\frac{8}{2}$ (feet) Purg			(gal)		
	Note: One casing vo			asing = 0.16 gal/ft;	4.0" = 0.65 gal	/ft; 6.0" = 1.47	gal/ft		
Tire	Casing Volume pH Conductivity (µS/cm) ORP (mv) Conductivity (NTU)								
15:38									
15:43	1	7.17	20.6	3186	150.9	5.23	11		
15:48	2	7.17	20.4	3/69	148-4	5.38	Moderate		
15:35	3	7.16	19.5	3330	147.3	6 36	n		
Sample Description: 1 poly Moderale twhiting, brown									
	Physical Ok	oservations:	Short W	inter Column	(60/61)	between &	rales e		

T:\Admin\Field Forms\Att 1.5-1_GROUNDWATER MONITORING DATA SHEET_rev1.pdf

Analytical Method(s): Chloride

	GRO	DUNDWATE	R MONITORING	G DATA SHI	EET	
Project Nam	ne: Salty Do	og		mpler:		
			Sa	mple Date: .	6-10-03	3
(7/)	ager: John			mple Time: _	V / A	
Well#: DBS	S-2					
8		,	· (inches) Heig	ht of Water	Column: —	(feet)
			et btoc) Casing			
	ater: Dry	(fe	et btoc) Purge	Volume:		
Total Depth	of Well:	75.35 . 74	9/ _(feet) Purg	e Method: 0	3rab	
Note:						
One casing vo	olume (SCH 40	PVC): 2.0" ID	casing = 0.16 gal/ft	; 4.0" = 0.65 ga	I/ft; 6.0" = 1.47	gal/ft
Groundwat	ter Paramet	ers:				
Casing Volume	nU.	Temp	Conductivity	ORP	D.O.	Turbidity
volume	Hq	(°F)	(µS/cm)	(mv)	(mg/L)	(NTU)
Initial		/ A				
1	1) A				
2		-				
3						
		A CHARLES OF THE STREET	Annual National Control of the Control			
			1.			
Sample Des	scription: 🛨	N ylog	IA			
J 						
		11 -	- 01			
Physical Of	bservations:	100 2)anf 6			
Analytical N	Method(s):	Chloride				

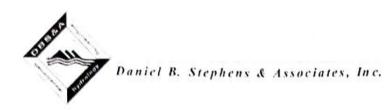
 $T \land Admin \lor field Forms \lor Att. 1.5-1 _GROUNDWATFR MONITORING DATA SHEET_rev1.pdf$

GROUNDWATER MONITORING DATA SHEET

		GIN	DONDANTE			7-:			
		ne: Salty Do			mpler:	Mogo	7		
		DB19.1198.		Sa	imple Date: .	6-17-2			
	Project Mar	nager: John	Ayarbe	Sa	imple Time:	1814			
	Well #: DBS-3								
		ter:2		,	ht of Water		3 <u>36</u> (feet)		
	Depth to NA	APL:	(fe	et btoc) Casing	Volume:	6,24	(gal)		
	Depth to Wa	ater:	74(fe	et btoc) Purge	Volume:/	.6	(gal)		
	Total Depth	of Well:	74.76 75.10		je Method: <u>(</u>				
	Note:								
	One casing vo	olume (SCH 40	PVC): 2.0" ID (casing = 0.16 gal/ft	4.0" = 0.65 ga	l/ft; 6.0" = 1.47	gal/ft		
	Groundwat	ter Paramet	ers:						
	Casing Volume	рН	Temp (♣) °C	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)		
900	Initial	7.47	199	646	146,2	7.09	Moderate		
865	1	7.26	19.8	638	147.2	7.4	High		
1809	2	7.24	196	633	147.3	6-91	High		
1814	3	7.24	19,6	632	147.5	6.92	High		
				D					
	Sample Des	scription: 1	ooly	Turbic E	Bu				
						·····			
				-1-1	- /	1 0	-1/		
	Physical Ob	oservations:	WC	(123r)	but rea	ivers 21	LICKS_		
	Analytical M	/lethod(s):	Chloride						

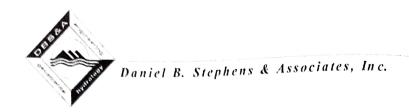
 $T. \land Admin \land Freld\ Forms \land Att \bot 5-1_GROUNDWATER\ MONITORING\ DATA\ SHEET_rev\ L.pdf$

GROUNDWATER MONITORING DATA SHEET


	Project #: 5	ne: Salty Do 0B19.1198.0 nager: John	00	Sa	ampler: / ample Date: . ample Time:	Mg- 6-12-2 1520	3
	Depth to NA Depth to Wa Total Depth Note: One casing vo	ter:2' APL: ater:7(6 of Well:	(fe .97(fe 78.81, 78/2 PVC): 2.0" ID c	(inches) Heighet btoc) Casing et btoc) Purge $\frac{5}{2}$ (feet) Purge casing = 0.16 gal/ft	Volume: Volume: 2 ge Method: <u>(</u>	0.18 7.60 6.	
	Casing Volume	рН	Temp	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
15:00	Initial	1.52	21.5	694	136.0	3.97	Very
15:05	1	7.46	20.7	602	1359	409	"L
15:09	2	7,70	20,1	601	137.5	4.31	(1
_	3	Dry					
ø.	Physical Ob	scription: 1 poservations: 56い Cethod(s):	Short w.	ry turbid, exter Colemn Scriped a	brown - going ther 2	dry aft will volu	e Cal

 $T. \land Admin \land Field\ Forms \land Att\ 1.5-1_GROUNDWATER\ MONITORING\ DATA\ SHEET_rev1.pdf$

B19.1198.0	og	Sai	mpler:	<u> </u>	
		Sar	mple Date: _	6-6-23	
ager: John	Ayarbe	Sar	mple Time: _	NB	
S-5					
ter: 2'		(inches) Heig	ht of Water C	Column: 0	(feet)
PL:	- (fe	et btoc) Casing	Volume: 🆊	1/1	(gal)
ater: 14.	51 (fe	et btoc) Purge \	/olume:		(gal)
of Well:	25.38, 74?	15(feet) Purg	e Method: 8	fab	
We seemed with the seement	See See See See See See	and there we save	NII		1/6
lume (SCH 40	PVC): 2.0" ID 6	casing = 0.16 gal/ft;	4.0" = 0.65 gal	ft; 6.0" = 1.47	gal/ft
er Paramete	ers:				
	Temp	Conductivity	ORP	D.O.	Turbidity
рН	(°F)	(µS/cm)	(mv)	(mg/L)	(NTU)
NA	July 22 H. Shrovatorio	CHECK COMMENTS CONTROL OF THE CONTRO	NUMBER OF STREET	Ann a Marian (Annual Annual	
		THE RESIDENCE OF THE PERSON OF			
		11 5	01-		
scription: 🚹	oly	100 00	my Ce		
	101	of Sluirs	10 h	ilor	Ab
	20.1	* 5700)	171 00	JPO -	700
	ater: 74. of Well: plume (SCH 40) ter Parameter pH Scription: 1	ter:	ter:	ter:	ter: 2" (inches) Height of Water Column: On APL: (feet btoc) Casing Volume: N/A ater: 131 (feet btoc) Purge Volume: of Well: 75.38. 14.45 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 (feet) Purge Method: drab plume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/


 $T. Admin\ \ Field\ Forms. Att 1.5-1_GROUNDWATER\ MONITORING\ DATA\ SHEET_rev1.pdf$

GROUNDWATER	MONITORING DATA	SHEET
CHOCKEDIALER	MICHALL CIVILLA DATA	SHIELL

Project Nan Project #: □			1000000000	mpler:	Morgen	13.73
Project Man				mple Time: _	1608	
Well# DB	S-6			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	,	1,-
Well Diame	ter:2	"	· (inches) Heig	ht of Water (Column:	$t_{8_{\text{(feet)}}}$
Depth to NA	PL:	(fe	et btoc) Casing	Volume:	0.75	(gal)
Depth to Wa		ე, სა (fe	et btoc) Purge	Volume:	2.25	(gal)
Total Depth	of Well:	76.02 75.3	M_(feet) Purg	e Method: _C	Grab	
Note: One casing vo			casing = 0.16 gal/ft;	4.0" = 0.65 ga	l/ft; 6.0" = 1.47	gal/ft
Casing Volume	рH	Temp	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	6.89	0.00	1656	1929	587	None
1	(85	195	1625	189.4	5.94	moderate
2	6.95	20.1	1629	175.9	560	High
3	6.92	19.7	1639	173.0	5.73	High
Sample De	scription: <u>1</u>	poly				

 $^{{\}it 1-Admin, Field Forms, Art.} \\ {\it 1-5-1_GROUNDWATER MONITORING DATA SHEET_revt.pdf}$

GROUNDWATER MONITORING DATA SHEET

Project #: Project Ma	me: Salty Do DB19.1198. anager: John	00	Sa Sa	mpler: // mple Date: . mple Time:	6-13 1507	.93
Well #: Diam		21	(inches) Heig	bt of Mari		10
	leter: 2		` ,	ht of Water	_	, ,
Depth to \	NAPL: Vater:	(16 8・58 (fe	et btoc) Casing et btoc) Purge '			(gal)
			L (feet) Purg	re Method: (Grah	(gal)
	volume (SCH 40		casing = 0.16 gal/ft;	4.0" = 0.65 ga	l/ft; 6.0" = 1.47	gal/ft
Casing Volume	рН	Temp	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	681	21.2	657	169.8	6.32	None Nigh
1	7.06	20.5	643	157,5	6.80	High
2	7.05	21.1	639	156.0	5.56	High
3	7.05	20,5	641	164.8	5,64	Moderale
Physical	Description: 1	Moderate	ely furbil,	Short 1	Water Col	Lim recove

T:\Admin\Field Forms\An 1.5-1_GROUNDWATER MONITORING DATA SHEET_rev1.pdf

GROUNDWATER MONITORING DATA SHEET

				. /	Λ.			
Project Name: Salty Dog Sampler: Sample Date: 6-13-33								
Project Name: <u>Oalty Dog</u> Sampler: <u>1.1 (rgs)</u> Project #: <u>DB19.1198.00</u> Sample Date: <u>6-13-33</u>								
Project Man	ager: John	Ayarbe	Sa	mple Time: _	0854			
Well #: DBS	S-9				^	~ 1		
Well Diamet	ter:2		(inches) Heig	ht of Water (Column: 2.	//_(feet)		
Depth to NA	\PL:	- (fe	et btoc) Casing	Volume:	(b), 7 >	(gal)		
Depth to Wa	ater: 60	58(fe	et btoc) Purge	Volume:	1,5:1.	3(gal)		
Total Depth	of Well:	S7.55 65.00	(feet) Purg	je Method: <u>G</u>	Brab			
Note:	lume (SCH 40	DVC): 2 0" ID o	asing = 0.16 gal/ft;	4 0" = 0 65 gal	/ff: 6 0" - 1 47	gal/ft		
_	,	,	asing – U. 10 gaint,	4.0 - 0.05 gaii	nt, 0.0 - 1.47	gaint		
Groundwat	er Paramet	ers:						
Casing		Temp	SP Conductivity	ORP	D.O.	Turbidity		
Volume	рН		(µS/cm)	(mv)	(mg/L)	(NTU)		
	<i>(</i> - A	and the second s	∧ 141 ∽	1 (/)	110			
Initial	Initial 6.96 190 2147 160 550 Shight							
1	7.00	191	1726	158,6	5.81	High		
2	7.01	12.2	1445	16 1537	5.69	HIZL		
3	6.99	19.3	1347	1540	5,61	n'		
	en e							
'	scription: 1							
Ligh	brown,	tware						
		chat late	100	× × (/)	. h - y/w	<u> </u>		
Physical Ob	servations:	Short WC	recovers q	swary du	JIJ SEY W)		
Analytical M	lethod(s):	Chloride						

GROUNDWATER MONITORING DATA SHEET

· ·					. /		
Project Name: Salty Dog Sampler: Wholey							
Project #: DB19.1198.00 Sample Date:							
Project Mar	nager: John	Ayarbe	Sa	ample Time: _	1417	<u> </u>	
Well #: DB	S-10		-		a a	16	
Well Diame	eter:2	11	(inches) Heig	ght of Water (Column:	(feet)	
Depth to NA	APL:	(fe	et btoc) Casing	Volume:	15	(gal)	
Depth to Wa	ater:6%	///	et btoc) Purge		, ,	(gal)	
Total Depth	of Well:	7811 77.3	(feet) Purg	re Method: G	Proh	(gui)	
Note:			(1001) 1 419	go Motriod. <u>C</u>	Diab		
One casing vo	olume (SCH 40	PVC): 2.0" ID (casing = 0.16 gal/ft	; 4.0" = 0.65 gal	/ft; 6.0" = 1.47	gal/ft	
Groundwat	ter Paramet	ers:					
Casing Volume	рН	Temp	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)	
Initial	1210	20/	2028	2194	6.82	SINIA	
	100	<i>y</i>	000 1	001101	T.10	angm	
1	6.4)	Doid	21915	1940	2.40	High	
2	696	19.9	2209	185.7	5,15	High	
3	6.97	20,0	2224	1820	5.17	High	
Sample De	scription: 1	poly		de contractivo de la		1	
				-			
Physical Of	bservations:	1word					
Analytical N	/lethod(s):	Chloride			-		

GROUNDWATER MONITORING DATA SHEET

	Project #: 🖺	ne: Salty Do 0B19.1198.0 nager: John	00	Sa	ampler:	Na	3
	Well #: MV	/-3				4	111
	Well Diame	ter:2	1	(inches) Heig	ht of Water	Column: 10	<u>////</u> (feet)
	Depth to NA	APL:	(fe	et btoc) Casing	Volume:	1.69	(gal)
	Depth to Wa	ater: <u>69</u> ,	<u>96 (fe</u>	et btoc) Purge	Volume:	35	(gal)
		of Well:	147.43 14)	<u>1</u> eet) Purg	ge Method: <u>(</u>	Grab	
		olume (SCH 40 ter Paramete		casing = 0.16 gal/ft;	; 4.0" = 0.65 ga	l/ft; 6.0" = 1.47	gal/ft
	Casing Volume	рН	Temp	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
0	Initial	718	19.5	2791	183.3	473	Note
17	1	7.18	19,6	3107	1521	4.14	None
$\leq $	2	6.74	18.8	14512	167.0	3,50	Stight
20	3	6.84	190	15616	158.2	3.58	Slight
	Physical Ob	oservations:	ooly (unprese	erved Chloride),	Water Quali	ty Suite	

 $T: Admin \backslash Field\ Forms \backslash Att\ 1.5-1_GROUNDWATER\ MONITORING\ DATA\ SHEET_rev\ L.pdf$

GROUNDWATER	MONITORING	DATA	SHEET
-------------	------------	------	-------

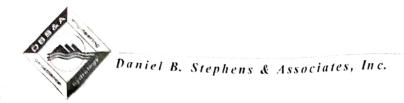
	GKC	DONDWATE	RIMONITORING	DATA SHE	(C)			
Project Nam				mpler:	Morgan	13		
Project #: D			Sa	mple Date: _	633			
Project Man	lager: John	Ayarbe	Sa	mple Time: _	V) 6			
Well #: MW	V-5				/·n	112		
Well Diame	ter:2	"	inches) Heig	ht of Water C	Column: 60/	(feet)		
Depth to NA	APL:	(fe	et btoc) Casing	Volume:	-6/	(gal)		
Depth to Wa	Depth to NAPL: (feet btoc) Casing Volume: (gal) Depth to Water: (feet btoc) Purge Volume: (gal)							
Total Depth	of Well:	1 28.78 1981	$\frac{18}{10}$ (feet) Purg	e Method: <u>G</u>	irab			
Note:						1/64		
One casing vo	olume (SCH 40	PVC): 2.0" ID o	asing = 0.16 gal/ft;	4.0" = 0.65 gal	π; 6.0" = 1.47	gai/it		
Groundwa	ter Paramet	ers:						
Casing Volume	рН	Temp	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)		
Initial	676	20.0	3028	185.4	448	None		
1	6-80	20.3	2407	1647	463	и		
2	6.75	1913	2257	160.8	4.86	ч		
3	6.59	19.5	2787	155.4	473	Stight		
1	!	V	1	1	1			
Sample De	escription: 1	noly	menanangun kan Carakenya sekatrah hari kecama sekanangun menan)		
Sample De	escription: 1	poly)		
Sample De	escription: 1	poly	an aus agus no dh' Eadh air a' ga Nasa an h-air a cheann an an an ann an an an ann an an an a)		
	escription: 1	21.111	tusid			,		

T:\Admin\Field Forms\Att 1.5-1_GROUNDWATER MONITORING DATA SHEET_rev1.pdf

Analytical Method(s): Chloride

GROUNDWATER MONITORING DATA SHEET

	GRO	DUNDWAIL	RIMOMITORING	J DATA SH	CEI	
Project Nam	ne: Salty Do	og	Sai	mpler:	yn_	
Project #: D	B19.1198.0	00	Sai	mple Date:	6-12-2	3
Project Man	ager: John	Ayarbe	Sai	mple Time:	NA	
Well#: PM	W-1					
Well Diamet	ter:2'	"	(inches) Heig	ht of Water	Column: 0	$\frac{1}{\sqrt{95}}$ (feet)
Depth to NA	\PL:	(fe	et btoc) Casing	Volume:	MA	(gal)
Depth to Wa	ater: <u>77</u>	<i>∂</i> o(fe	et btoc) Purge \	Volume:	MA	(gal)
Total Depth	of Well:	77.73 77.23	(feet) Purg	e Method: _	Grab	
Note:	duma (SCH 40	DVC)+ 2 0" ID 4	casing = 0.16 gal/ft;	4.0" = 0.65 gs	J/ff · 6 ∩" = 1 <i>4</i> .7	'aal/ft
			asing - 0.10 gaint,	4.0 - 0.05 ga	u/it, 0.0 – 1.47	gant
Groundwat	er Paramet	ers:				
Casing Volume	рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	\ \ \ \ \					
1		14				
2	1	0				
3						
	scription: 1	only sal	No Samp	k in 5	aile st	nort wr
More	lough to	Soufle			, 3	
	//ethod(s):	,	NA			


 $\texttt{T:} Admin\ Field\ Forms\ Att\ 1.5-1_GROUNDWATER\ MONITORING\ DATA\ SHEET_rev\ 1.pdf$

GROUNDWATER MONITORING DATA SHEET

Project Nan	ne: Salty Do	og	Sa	ımpler:	YM	
Project #: [DB19.1198.0	00	Sa	imple Date:	6-12-2	3
Project Mar	nager: John	Ayarbe	Sa	ımple Time:	16:48	3 2 17125
Well#: Brin	ne					
Well Diame	ter:	Ď	(inches) Heig	ght of Water	Column: 4	(feet)
Depth to NA	APL:	(fe	et btoc) Casing	Volume:		(gal)
Depth to Wa	ater:	(fe	et btoc) Purge	Volume:	100	(gal)
Total Depth	of Well:		(feet) Purg	ge Method: _	Grab	
Note: One casing vo	nlume (SCH 40	P\/C\- 2 0" ID <	casing = 0.16 gal/ft	· 4 0" = 0 65 ~~	N/#: 6 0" - 4 47	' aal/ft
			asing – U. 16 gai/it	, 4.0 – 0.05 ga	ai/il, 0.0" = 1.4/	gal/II
Groundwat	ter Paramet	ers:				
Casing Volume	рН	Temp (©) • C	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	6-51	215	242452	141.8	0.86	Slight
1						
2						
3						
Collected at B Physical Of	the fork observations:	s solon at phi to sample	e ports	Tike in	Full du Power o	ber

 $T.Admin.Eicld.Forms.An.L.5-L.GROUNDWATER.MONITORING.DATA.SHEET_rev1.pdf$

GROUNDWATER MONITORING DATA SHEET Project Name: Salty Dog Sampler: Project # DB19.1198.00 Sample Date: . Project Manager: John Ayarbe Sample Time: Fresh Water Station Well #: Injection Well Diameter: _(inches) Height of Water Column:___ (feet) Depth to NAPL: _____(feet btoc) Casing Volume:___ (gal) Depth to Water: (feet btoc) Purge Volume: (gal) Total Depth of Well: ____(feet) Purge Method: Grab Note: One casing volume (SCH 40 PVC): 2.0" ID casing = 0.16 gal/ft; 4.0" = 0.65 gal/ft; 6.0" = 1.47 gal/ft Groundwater Parameters: Casing Temp Conductivity **ORP** Turbidity D.O. Volume Ha (µS/cm) (NTU) (mv) (mg/L)1.76 1,99°c Initial 1749 None 33.71 2 3 Sample Description: 2 poly - Us Said 2 container Sufficient Physical Observations: From Fill fort next to 2 XL brown tanks. Man valve already Analytical Method(s): Chloride, TDS, Spec Gravity, pH, and Na Permenty. Broken in open position. Must open

GROUNDWATER METER CALIBRATION SHEET

Project Name: Project #:BIG Project Manager:	1198 Jog J. Ayask	Sampler: Y \(\) Date: 6-12-33
<u>Н</u> д	Temp (°C)	Comments
(4)		
7.06	30.4	No Cal needed
(10)		
SpCon (µs/cm)	Temp (°C)	<u>Comments</u>
1390 -> 1413	31.1	
ORP (mv)	Temp (°C)	<u>Comments</u>
306.77330	13 31.3	
Dissolved O ₂	Temp (°C)	<u>Comments</u>
(°/o)		
(mg/L) 0.80	27.7	
Pressure	Temp (°C)	<u>Comments</u>
(58.8) (mmHg)	24.5	
Comments: \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	Pro Plus	

Appendix C

Historical Data

Table C-1. Historical Fluid Level Measurements Page 1 of 13

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-1	56.0–76.0	3,817.09	4/8/2009	62.38	3,754.71
			5/11/2011	64.70	3,752.39
			10/4/2011	Well de	estroyed
DBS-1R	58.0–78.0	3,817.00 ^b	4/30/2012	63.60	3,753.40
			9/10/2012	65.65	3,751.35
			6/23/2013	64.40	3,752.60
			1/9/2014	67.23	3,749.77
			4/7/2014	66.36	3,750.64
			3/20/2015	67.17	3,749.83
			7/1/2015	67.92	3,749.08
			9/29/2015	67.07	3,749.93
			12/16/2015	67.54	3,749.46
			3/22/2016	66.61	3,750.39
			6/8/2016	66.23	3,750.77
			9/13/2016	67.43	3,749.57
			12/1/2016	67.31	3,749.69
			6/20/2017	69.60	3,747.40
			12/19/2017	67.80	3,749.20
			6/18/2018	67.45	3,749.55
			11/7/2018	68.71	3,748.29
			6/3/2019	68.25	3,748.75
			12/17/2019	70.41	3,746.59
			6/23/2020	68.66	3,748.34
			11/21/2020	68.94	3,748.06
			6/2/2021	69.95	3,747.05
			11/28/2021	70.06	3,746.94
			6/9/2022	72.80	3,744.20
			12/22/2022	73.65	3,743.35
			6/12/2023	73.62	3,743.38

Notes are provided at the end of the table.

Table C-1. Historical Fluid Level Measurements Page 2 of 13

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-2 (cont.)	58.0–78.0	3,820.50	4/8/2009	65.45	3,755.05
			5/11/2011	66.80	3,753.70
			10/4/2011	65.87	3,754.63
			2/8/2012	65.96	3,754.54
			4/30/2012	66.26	3,754.24
			9/10/2012	67.45	3,753.05
			6/23/2013	67.03	3,753.47
			1/9/2014	69.08	3,751.42
			4/7/2014	68.67	3,751.83
			3/20/2015	69.32	3,751.18
			6/30/2015	69.29	3,751.21
			9/29/2015	69.41	3,751.09
			12/16/2015	69.71	3,750.79
			3/22/2016	69.13	3,751.37
			6/8/2016	68.91	3,751.59
			9/13/2016	69.76	3,750.74
			12/1/2016	69.73	3,750.77
			6/20/2017	71.33	3,749.17
			12/19/2017	70.42	3,750.08
			6/18/2018	70.25	3,750.25
			11/7/2018	71.07	3,749.43
			6/03/2019	70.94	3,749.56
			12/17/2019	72.43	3,748.07
			6/23/2020	71.54	3,748.96
			11/21/2020	71.57	3,748.93
			6/2/2021	72.43	3,748.07
			11/28/2021	72.81	3,747.69
			6/9/2022	74.89	3,745.61
			12/22/2022	74.95	3,745.55
			6/12/2023	Dry	NA

Table C-1. Historical Fluid Level Measurements Page 3 of 13

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-3	56.0–76.72	3,816.66	4/8/2009	60.67	3,755.99
			5/11/2011	61.25	3,755.41
			10/4/2011	61.25	3,755.41
			2/8/2012	61.11	3,755.55
			4/30/2012	61.41	3,755.25
			9/10/2012	61.81	3,754.85
			6/23/2013	62.08	3,754.58
			1/9/2014	63.30	3,753.36
			4/7/2014	63.43	3,753.23
			3/20/2015	63.93	3,752.73
			6/30/2015	63.99	3,752.67
			9/29/2015	64.17	3,752.49
			12/16/2015	64.41	3,752.25
			3/22/2016	63.88	3,752.78
			6/8/2016	63.92	3,752.74
			9/13/2016	64.56	3,752.10
			12/1/2016	64.59	3,752.07
			6/20/2017	65.52	3,751.14
			12/19/2017	65.54	3,751.12
			6/18/2018	65.60	3,751.06
			11/7/2018	66.11	3,750.55
			6/3/2019	66.10	3,750.56
			12/17/2019	66.96	3,749.70
			6/23/2020	66.81	3,749.85
			11/21/2020	66.67	3,749.99
			6/2/2021	67.50	3,749.16
			11/28/2021	68.12	3,748.54
			6/9/2022	69.57	3,747.09
			12/22/2022	70.95	3,745.71
			6/12/2023	71.74	3,744.92

Table C-1. Historical Fluid Level Measurements Page 4 of 13

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-4	56.0–76.0	3,820.37	4/8/2009	66.27	3,754.10
			5/11/2011	67.23	3,753.14
			10/4/2011	66.67	3,753.70
			2/8/2012	66.76	3,753.61
			4/30/2012	67.02	3,753.35
			9/10/2012	67.78	3,752.59
			6/23/2013	67.70	3,752.67
			1/9/2014	69.37	3,751.00
			4/7/2014	69.23	3,751.14
			3/20/2015	69.81	3,750.56
			6/30/2015	69.85	3,750.52
			9/29/2015	70.00	3,750.37
			12/16/2015	70.25	3,750.12
			3/22/2016	69.74	3,750.63
			6/8/2016	69.62	3,750.75
			9/13/2016	70.35	3,750.02
			12/1/2016	70.38	3,749.99
			6/20/2017	71.67	3,748.70
			12/19/2017	71.08	3,749.29
			6/18/2018	70.98	3,749.39
			11/7/2018	71.61	3,748.76
			6/3/2019	71.66	3,748.71
			12/17/2019	72.90	3,747.47
			6/23/2020	72.36	3,748.01
			11/21/2020	72.33	3,748.04
			6/2/2021	73.05	3,747.32
			11/28/2021	73.57	3,746.80
			6/9/2022	75.30	3,745.07
			12/22/2022	76.42	3,743.95
			6/12/2023	76.97	3,743.40

Table C-1. Historical Fluid Level Measurements Page 5 of 13

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-5	56.9–76.9	3,820.66	4/8/2009	62.99	3,757.67
			5/11/2011	63.45	3,757.21
			10/4/2011	63.41	3,757.25
			2/8/2012	63.46	3,757.20
			4/30/2012	63.70	3,756.96
			9/10/2012	63.92	3,756.74
			6/23/2013	64.30	3,756.36
			1/9/2014	65.28	3,755.38
			4/7/2014	65.48	3,755.18
			3/20/2015	65.90	3,754.76
			7/1/2015	66.18	3,754.48
			9/29/2015	66.25	3,754.41
			12/16/2015	66.47	3,754.19
			3/22/2016	66.08	3,754.58
			6/8/2016	66.16	3,754.50
			9/13/2016	66.64	3,754.02
			12/1/2016	66.72	3,753.94
			6/20/2017	67.60	3,753.06
			12/19/2017	67.88	3,752.78
			6/18/2018	68.04	3,752.62
			11/7/2018	68.47	3,752.19
			6/3/2019	68.44	3,752.22
			12/17/2019	69.13	3,751.53
			6/23/2020	66.26	3,754.40
			11/21/2020	69.08	3,751.58
			6/2/2021	69.88	3,750.78
			11/28/2021	70.60	3,750.06
			6/9/2022	71.99	3,748.67
			12/22/2022	73.50	3,747.16
			6/12/2023	74.31	3,746.35

Table C-1. Historical Fluid Level Measurements Page 6 of 13

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-6	56.7–76.7	3,812.65	4/7/2009	62.75	3,749.90
			5/11/2011	63.11	3,749.54
			10/4/2011	63.16	3,749.49
			2/8/2012	63.20	3,749.45
			4/30/2012	63.43	3,749.22
			9/10/2012	63.60	3,749.05
			6/23/2013	63.74	3,748.91
			1/9/2014	64.00	3,748.65
			4/7/2014	64.22	3,748.43
			3/19/2015	64.78	3,747.87
			7/01/2015	64.81	3,747.84
			9/29/2015	65.48	3,747.17
			12/16/2015	65.26	3,747.39
			3/22/2016	65.38	3,747.27
			6/8/2016	65.37	3,747.28
			9/13/2016	65.51	3,747.14
			12/1/2016	65.51	3,747.14
			6/20/2017	65.81	3,746.84
			12/19/2017	66.29	3,746.36
			6/18/2018	66.45	3,746.20
			11/7/2018	66.62	3,746.03
			6/3/2019	67.24	3,745.41
			12/17/2019	67.95	3,744.70
			6/23/2020	68.29	3,744.36
			11/21/2020	68.38	3,743.27
			6/2/2021	68.72	3,743.93
			11/28/2021	69.27	3,743.38
			6/9/2022	69.79	3,742.86
			12/22/2022	70.64	3,742.01
			6/12/2023	70.63	3,742.02

Table C-1. Historical Fluid Level Measurements Page 7 of 13

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-7	55.1–75.1	3,810.21	4/7/2009	61.74	3,748.47
DBS-8	55.2–75.2	3,810.70	4/7/2009	61.20	3,749.50
			5/11/2011	61.67	3,749.03
			10/4/2011	61.71	3,748.99
			2/8/2012	61.77	3,748.93
			4/30/2012	62.00	3,748.70
			9/10/2012	62.15	3,748.55
			6/23/2013	62.28	3,748.42
			1/9/2014	62.47	3,748.23
			4/7/2014	62.67	3,748.03
			3/19/2015	63.19	3,747.51
			6/30/2015	63.25	3,747.45
			9/29/2015	63.82	3,746.88
			12/16/2015	63.58	3,747.12
			3/22/2016	63.76	3,746.94
			6/8/2016	63.72	3,746.98
			9/13/2016	63.83	3,746.87
			12/1/2016	63.79	3,746.91
			6/20/2017	64.09	3,746.61
			12/19/2017	64.53	3,746.17
			6/18/2018	64.70	3,746.00
			11/7/2018	64.82	3,745.88
			6/3/2019	65.52	3,745.18
			12/17/2019	66.12	3,744.58
			6/23/2020	66.42	3,744.28
			11/21/2020	66.55	3,744.15
			6/2/2021	66.91	3,743.79
			11/28/2021	67.33	3,743.37
			6/9/2022	67.84	3,742.86

Table C-1. Historical Fluid Level Measurements Page 8 of 13

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-8 (cont.)	55.2–75.2	3,810.70	12/22/2022	68.55	3,742.15
			6/12/2023	68.58	3,742.12
DBS-9	48.0–68.0	3,806.26	4/8/2009	53.93	3,752.33
			5/11/2011	54.39	3,751.87
			10/4/2011	54.59	3,751.67
			2/8/2012	54.53	3,751.73
			4/30/2012	54.68	3,751.58
			9/10/2012	54.77	3,751.49
			6/23/2013	55.04	3,751.22
			1/9/2014	55.27	3,750.99
			4/7/2014	55.56	3,750.70
			3/19/2015	55.95	3,750.31
			7/1/2015	56.14	3,750.12
			9/29/2015	56.49	3,749.77
			12/16/2015	56.52	3,749.74
			3/22/2016	56.51	3,749.75
			6/8/2016	56.64	3,749.62
			9/13/2016	56.81	3,749.45
			12/1/2016	56.88	3,749.38
			6/20/2017	57.28	3,748.98
			12/19/2017	57.67	3,748.59
			6/18/2018	57.98	3,748.28
			11/7/2018	58.22	3,748.04
			6/3/2019	58.53	3,747.73
			12/17/2019	59.25	3,747.01
			6/23/2020	59.55	3,746.71
			11/21/2020	59.64	3,746.62
			6/2/2021	59.95	3,746.31
			11/28/2021	60.48	3,745.78
			6/9/2022	60.95	3,745.31

Table C-1. Historical Fluid Level Measurements Page 9 of 13

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
DBS-9 (cont.)	48.0–68.0	3,806.26	12/22/2022	61.89	3,744.37
			6/12/2023	62.58	3,743.68
DBS-10	57.2–77.2	3,807.48	6/18/2018	64.46	3,743.02
			11/7/2018	64.66	3,742.82
			6/3/2019	65.11	3,742.37
			12/17/2019	65.80	3,741.68
			6/23/2020	66.03	3,807.48
			11/21/2020	66.23	3,741.25
			6/2/2021	66.52	3,740.96
			11/28/2021	67.03	3,740.45
			6/9/2022	67.28	3,740.20
			12/22/2022	68.08	3,739.42
			6/12/2023	68.23	3,739.25
NW-1s	52.95–72.95	3,817.33	4/8/2009	62.35	3,754.98
NW-1m	99.31–119.31	3,817.35	4/8/2009	62.25	3,755.10
NW-1d	149.45–169.45	3,817.35	4/8/2009	62.04	3,755.31
NW-2s	53.35–73.35	3,812.50	4/8/2009	63.08	3,749.42
NW-2m	93.72–113.72	3,812.45	4/8/2009	63.27	3,749.18
NW-2d	126.87–146.87	3,812.46	4/8/2009	66.41	3,746.05
PMW-1	63–78	3,821.17	6/23/2008	67.51	3,753.66
			4/8/2009	65.97	3,755.20
			5/11/2011	68.70	3,752.47
			10/4/2011	66.95	3,754.22
			2/8/2012	66.69	3,754.48
			4/30/2012	67.27	3,753.90
			9/10/2012	69.77	3,751.40
			6/23/2013	68.40	3,752.77
			1/9/2014	71.24	3,749.93
			4/7/2014	69.97	3,751.20
			3/20/2015	70.78	3,750.39

Table C-1. Historical Fluid Level Measurements Page 10 of 13

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
PMW-1 (cont.)	63–78	3,821.17	7/1/2015	71.41	3,749.76
			9/29/2015	70.76	3,750.41
			12/16/2015	71.03	3,750.14
			3/22/2016	70.30	3,750.87
			6/8/2016	69.65	3,751.52
			9/13/2016	71.08	3,750.09
			12/1/2016	70.97	3,750.20
			6/20/2017	73.06	3,748.11
			12/19/2017	71.19	3,749.98
			6/18/2018	70.97	3,750.20
			11/7/2018	72.52	3,748.65
			6/3/2019	71.76	3,749.41
			12/17/2019	76.25	3,744.92
			6/23/2020	72.03	3,749.14
			11/21/2020	72.19	3,748.98
			6/2/2021	73.10	3,748.07
			11/28/2021	73.49	3,747.68
			6/9/2022	75.97	3,745.20
			12/22/2022	77.15	3,744.02
			6/12/2023	77.20	3,743.97
MW-1	120–140	NA	6/23/2008	59.90	NA
MW-2	127–147	3,812.68	6/23/2008	61.42	3,751.26
			4/7/2009	61.65	3,751.03
MW-3	NA	3,812.05	6/23/2008	62.06	3,749.99
			4/7/2009	62.02	3,750.03
			5/11/2011	62.91	3,749.14
			10/4/2011	62.91	3,749.14
			2/8/2012	62.95	3,749.10
			4/30/2012	63.39	3,748.66
			9/10/2012	63.50	3,748.55

Table C-1. Historical Fluid Level Measurements Page 11 of 13

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
MW-3 (cont.)	NA	3,812.05	6/23/2013	63.36	3,748.69
			1/9/2014	63.55	3,748.50
			4/7/2014	63.88	3,748.17
			3/19/2015	64.27	3,747.78
			7/1/2015	64.34	3,747.71
			9/29/2015	67.94	3,744.11
			12/16/2015	64.75	3,747.30
			3/22/2016	64.84	3,747.21
			6/8/2016	64.89	3,747.16
			9/13/2016	66.33	3,745.72
			12/1/2016	66.66	3,745.39
			6/20/2017	65.56	3,746.49
			12/19/2017	65.70	3,746.35
			6/18/2018	66.52	3,745.53
			11/7/2018	66.09	3,745.96
			6/3/2019	68.18	3,743.87
			12/17/2019	67.38	3,744.67
			6/23/2020	69.16	3,742.89
			11/21/2020	67.73	3,744.32
			6/2/2021	69.83	3,742.22
			11/28/2021	68.62	3,743.43
			6/9/2022	70.60	3,741.45
			12/22/2022	69.92	3,742.13
			6/12/2023	69.96	3,742.09
MW-4	111–131	3,811.33	6/23/2008	62.12	3,749.21
			4/7/2009	62.51	3,748.82
MW-5	112–132	3,808.96	6/23/2008	60.60	3,748.36
			4/7/2009	60.79	3,748.17
			5/11/2011	61.17	3,747.79
			10/4/2011	61.72	3,747.24

Table C-1. Historical Fluid Level Measurements Page 12 of 13

Monitor Well	Screen Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet msl)
MW-5 (cont.)	112–132	3,808.96	2/8/2012	61.23	3,747.73
			4/30/2012	61.50	3,747.46
			9/10/2012	61.65	3,747.31
			6/23/2013	61.75	3,747.21
			1/9/2014	61.90	3,747.06
			4/7/2014	62.18	3,746.78
			3/19/2015	62.96	3,746.00
			6/30/2015	62.71	3,746.25
			9/29/2015	63.92	3,745.04
			12/16/2015	63.02	3,745.94
			3/22/2016	63.14	3,745.82
			6/8/2016	63.47	3,745.49
			9/13/2016	63.66	3,745.30
			12/1/2016	63.70	3,745.26
			6/21/2017	63.62	3,745.34
			12/19/2017	65.02	3,743.94
			6/18/2018	64.32	3,744.64
			11/7/2018	64.34	3,744.62
			06/3/2019	65.30	3,743.66
			12/17/2019	65.57	3,743.39
			6/23/2020	66.26	3,742.70
			11/21/2020	66.00	3,742.96
			6/2/2021	66.70	3,742.26
			11/28/2021	66.85	3,742.11
			6/9/2022	67.59	3,741.37
			12/22/2022	68.02	3,740.94
			6/12/2023	68.06	3,740.90
MW-6	NA	3,810.17	6/23/2008	62.17	3,748.00
			4/7/2009	62.41	3,747.76

Notes are provided on the next page.

First Semiannual 2023 Report Salty Dog Brine Station

Table C-1. Historical Fluid Level Measurements Page 13 of 13

btoc = Below top of casing bgs = Below ground surface

NA = Not available msl = Above mean sea level

^a Top of casing elevations surveyed by Pettigrew & Assoc. on May 28, 2009.

^b Top of casing elevation surveyed by Pettigrew & Assoc. on June 13, 2012.

Table C-2. Historical Chloride Groundwater Analytical Data Page 1 of 13

Marritan Wall	Dete	Chloride Concentration
Monitor Well Date		(mg/L) ^a
	MWQCC Standard	250
DBS-1	4/8/2009	320
	5/12/2011	940
	10/4/2011	Well destroyed
DBS-1R	5/1/2012	3,000
	9/11/2012	3,200
	6/25/2013	3,300
	1/10/2014	1,000
	4/8/2014	1,700
	3/20/2015	1,200
	7/1/2015	860
	9/30/2015	670
	12/17/2015	760
	3/23/2016	560
	6/9/2016	570
	9/14/2016	360
	12/1/2016	360
	6/20/2017	320
	12/20/2017	190
	6/19/2018	190
	11/8/2018	180
	6/3/2019	190
	12/18/2019	210
	6/23/2020	220
	11/21/2020	530
	6/2/2021	2,200
	11/28/2021	2,100
	6/9/2022	940
	12/23/2022	1,200
	6/12/2023	970

Table C-2. Historical Chloride Groundwater Analytical Data Page 2 of 13

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
NI NI	MWQCC Standard	250
DBS-2	4/8/2009	14
	5/12/2011	25
	10/5/2011	18
	2/9/2012	22
	5/1/2012	24
	9/11/2012	44
	6/25/2013	36
	1/10/2014	45
	4/8/2014	22
	3/20/2015	29
	6/30/2015	28
	9/30/2015	40
	12/17/2015	35
	3/23/2016	46
	6/9/2016	41
	9/14/2016	41
	12/2/2016	53
	6/20/2017	59
	12/20/2017	37
	6/18/2018	47
	11/8/2018	47
	6/3/2019	42
	12/17/2019	68
	6/24/2020	66
	11/21/2020	81
	6/2/2021	85
	11/28/2021	100
	6/9/2022	NS
	12/23/2022	NS
	6/12/2023	NS

Table C-2. Historical Chloride Groundwater Analytical Data Page 3 of 13

Monitor Well	Date	Chloride Concentration (mg/L) ^a
	MWQCC Standard	250
DBS-3	4/8/2009	36
	5/12/2011	35
	10/5/2011	34
	2/9/2012	34
	5/1/2012	33
	9/11/2012	34
	6/24/2013	32
	1/10/2014	34
	4/8/2014	32
	3/20/2015	35
	6/30/2015	35
	9/30/2015	34
	12/17/2015	34
	3/23/2016	36
	6/9/2016	35
	9/14/2016	37
	12/2/2016	37
	6/20/2017	39
	12/20/2017	42
	6/18/2018	47
	11/8/2018	46
	6/3/2019	46
	12/17/2019	48
	6/24/2020	50
	11/21/2020	49
	6/3/2021	52
	11/28/2021	53
	6/9/2022	57
	12/23/2022	68
	6/12/2023	65

Table C-2. Historical Chloride Groundwater Analytical Data Page 4 of 13

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
N/	MWQCC Standard	250
DBS-4	4/8/2009	38
	5/12/2011	33
	10/5/2011	32
	2/9/2012	32
	5/1/2012	31
	9/11/2012	32
	6/25/2013	31
	1/10/2014	32
	4/8/2014	30
	3/20/2015	33
	6/30/2015	31
	9/30/2015	33
	12/17/2015	35
	3/23/2016	38
	6/9/2016	35
	9/14/2016	37
	12/2/2016	41
	6/20/2017	35
	12/20/2017	32
	6/19/2018	39
	11/8/2018	35
	6/3/2019	30
	12/17/2019	35
	6/23/2020	35
	11/21/2020	37
	6/3/2021	39
	11/28/2021	40
	6/9/2022	44
	12/23/2022	47
	6/12/2023	42

Table C-2. Historical Chloride Groundwater Analytical Data Page 5 of 13

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
NI	MWQCC Standard	250
DBS-5	4/8/2009	65
	5/12/2011	140
	10/5/2011	140
	2/9/2012	140
	4/30/2012	150
	9/11/2012	160
	6/24/2013	160
	1/10/2014	180
	4/8/2014	160
	3/20/2015	140
	7/1/2015	140
	9/30/2015	150
	12/17/2015	160
	3/23/2016	150
	6/9/2016	150
	9/14/2016	170
	12/2/2016	170
	6/20/2017	170
	12/20/2017	170
	6/18/2018	180
	11/8/2018	170
	6/3/2019	280
	12/18/2019	160
	6/24/2020	190
	11/21/2020	190
	6/3/2021	170
	11/28/2021	200
	6/9/2022	200
	12/23/2022	230
	6/12/2023	NS

Table C-2. Historical Chloride Groundwater Analytical Data Page 6 of 13

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
NI	MWQCC Standard	250
DBS-6	4/7/2009	380
	5/12/2011	410
	10/5/2011	400
	2/9/2012	380
	4/30/2012	400
	9/11/2012	390
	6/24/2013	340
	1/10/2014	390
	4/7/2014	400
	3/19/2015	370
	7/1/2015	360
	9/30/2015	370
	12/17/2015	380
	3/23/2016	310
	6/9/2016	300
	9/14/2016	290
	12/2/2016	300
	6/21/2017	240
	12/19/2017	200
	6/19/2018	210
	11/8/2018	190
	6/3/2019	180
	12/17/2019	220
	6/24/2020	230
	11/21/2020	230
	6/3/2021	250
	11/28/2021	270
	6/9/2022	290
	12/22/2022	360
	6/13/2023	340

Table C-2. Historical Chloride Groundwater Analytical Data Page 7 of 13

Marcina Wall	Dete	Chloride Concentration
Monitor Well	Date	(mg/L) ^a
	MWQCC Standard	250
DBS-7	4/7/2008	570
DBS-8	4/7/2009	58
	5/12/2011	36
	10/5/2011	140
	2/9/2012	41
	4/30/2012	41
	9/10/2012	42
	6/24/2013	45
	1/9/2014	38
	4/7/2014	36
	3/19/2015	36
	7/1/2015	34
	9/30/2015	35
	12/17/2015	33
	3/23/2016	35
	6/9/2016	34
	9/14/2016	34
	12/2/2016	33
	6/21/2017	33
	12/19/2017	28
	6/19/2018	33
	11/8/2018	30
	6/3/2019	35
	12/17/2019	30
	6/24/2020	34
	11/21/2020	34
	6/3/2021	35
	11/28/2021	35
	6/9/2022	37

Table C-2. Historical Chloride Groundwater Analytical Data Page 8 of 13

Monitor Well	Date	Chloride Concentration (mg/L) ^a
	MWQCC Standard	250
DBS-8 (cont.)	12/22/2022	43
	6/13/2023	42
DBS-9	4/8/2009	210
	5/12/2011	600
	10/5/2011	440
	2/9/2012	290
	4/30/2012	330
	9/11/2012	320
	6/24/2013	200
	1/10/2014	170
	4/7/2014	220
	3/19/2015	260
	7/1/2015	210
	9/30/2015	260
	12/17/2015	230
	3/23/2016	200
	6/9/2016	190
	9/14/2016	190
	12/2/2016	180
	6/21/2017	200
	12/20/2017	230
	6/19/2018	260
	6/3/2019	160
	12/17/2019	220
	6/24/2020	360
	11/21/2020	280
	6/3/2021	290
	11/28/2021	300
	6/9/2022	350

Table C-2. Historical Chloride Groundwater Analytical Data Page 9 of 13

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
N	MWQCC Standard	250
DBS-9 (cont.)	12/23/2022	400
	6/13/2023	220
DBS-10	6/19/2018	690
	11/8/2018	590
	6/3/2019	510
	12/17/2019	540
	6/24/2020	560
	11/21/2020	620
	6/3/2021	560
	11/28/2021	560
	6/9/2022	530
	12/22/2022	570
	6/13/2023	520
NW-1s	4/8/2009	630
NW-1m	4/8/2009	57
NW-1d	4/8/2009	38
NW-2s	4/8/2009	410
NW-2m	4/8/2009	570
NW-2d	4/8/2009	4,700
PMW-1	2/27/2008	9,500 b
	5/30/2008	8,600 ^b
	6/23/2008	12,700
	4/8/2009	11,000
	5/12/2011	13,000
	10/5/2011	12,000
	2/9/2012	12,000
	5/1/2012	12,000
	9/11/2012	14,000
	6/25/2013	14,000
	1/10/2014	11,000

Table C-2. Historical Chloride Groundwater Analytical Data Page 10 of 13

Monitor Well	Date	Chloride Concentration (mg/L) ^a
	MWQCC Standard	250
PMW-1 (cont.)	4/8/2014	12,000
(3/20/2015	8,500
	7/1/2015	8,600
	9/30/2015	9,700
	12/17/2015	9,800
	3/23/2016	8,200
	6/9/2016	8,500
	9/14/2016	9,300
	12/1/2016	8,300
	6/20/2017	13,000
	12/20/2017	12,000
	6/19/2018	9,600
	11/8/2018	10,000
	6/3/2019	11,000
	12/18/2019	3,400
	6/23/2020	11,000
	11/21/2020	8,200
	6/2/2021	6,800
	11/28/2021	9,800
	6/9/2022	13,000
	12/23/2022	12,000
	6/13/2023	NS
MW-1	5/30/2008	75 ^b
	6/23/2008	243
MW-2	2/27/2008	120 ^b
	5/30/2008	80 b
	6/23/2008	1,480
	4/7/2009	1,200
	6/19/2018	390

Table C-2. Historical Chloride Groundwater Analytical Data Page 11 of 13

Monitor Well	Date	Chloride Concentration (mg/L) ^a
	MWQCC Standard	250
MW-3	2/27/2008	348 ^b
10100-2	5/30/2008	360 b
	6/23/2008	1,090
	4/7/2009	17,000
	5/12/2011	16,000
	10/5/2011	14,000
	2/9/2012	15,000
	4/30/2012	14,000
	9/10/2012	16,000
	6/24/2013	12,000
	1/10/2014	10,000
	4/7/2014	12,000
	3/19/2015	9,700
	7/1/2015	10,000
	9/30/2015	9,600
	12/17/2015	5,100
	3/23/2016	8,200
	6/9/2016	9,400
	9/14/2016	9,100
	12/2/2016	11,000
	6/21/2017	10,000
	12/20/2017	8,300
	6/19/2018	7,300
	11/8/2018	8,000
	6/3/2019	8,000
	12/18/2019	7,400
	6/24/2020	6,400
	11/21/2020	7,100
	6/3/2021	4,400
	11/28/2021	6,100

Table C-2. Historical Chloride Groundwater Analytical Data Page 12 of 13

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
^	IMWQCC Standard	250
MW-3 (cont.)	6/10/2022	5,100
	12/22/2022	5,700
	6/13/2023	4,800
MW-4	2/27/2008	476 b
	5/30/2008	512 ^b
	6/23/2008	5,730
	4/7/2009	6,600
MW-5	2/27/2008	1,280 ^b
	5/30/2008	1,220 ^b
	6/23/2008	1,260
	4/7/2009	1,300
	5/12/2011	1,500
	10/5/2011	1,500
	2/9/2012	1,500
	4/30/2012	1,400
	9/10/2012	1,500
	6/24/2013	1,300
	1/10/2014	1,300
	4/7/2014	1,300
	3/19/2015	1,200
	7/1/2015	1,200
	9/30/2015	1,000
	12/17/2015	1,000
	3/23/2016	980
	6/9/2016	970
	9/14/2016	1,000
	12/2/2016	710
	6/21/2017	870
	12/19/2017	850
	6/19/2018	840

Table C-2. Historical Chloride Groundwater Analytical Data Page 13 of 13

		Chloride Concentration
Monitor Well	Date	(mg/L) ^a
NI	MWQCC Standard	250
MW-5 (cont.)	11/8/2018	680
	6/3/2019	610
	12/18/2019	550
	6/24/2020	660
	11/21/2020	710
	6/3/2021	640
	11/28/2021	680
	6/10/2022	590
	12/22/2022	710
	6/13/2023	700
MW-6	2/27/2008	32 ^b
	5/30/2008	36 ^b
	6/23/2008	31.4
	4/7/2009	25
Ranch Headquarters	6/23/2008	35.4
Supply Well	6/10/2022	54
Brine Station Fresh	2/27/2008	630 ^b
Water Supply Well	5/30/2008	590 ^b
	6/23/2008	650

Bold indicates that value exceeds the applicable standard.

mg/L = Milligrams per liter

NS = Not sampled

 $^{^{\}rm a}$ All samples analyzed using EPA method 300.0, unless otherwise noted.

^b Samples analyzed using Standard Method 4500-Cl B.

Table C-3. Historical Average Groundwater Extraction Rates Page 1 of 2

Recovery Well	Date	Average Extraction Rate ^a (gpm)
RW-1	4/7/2012	Groundwater extraction started
	5/1/2012	2.1
	9/11/2012	2.9
	6/25/2013	4.1
	11/15/2013	3.6
	3/20/2015 b	2.4
	6/30/2015	_
FWS-1	12/17/2015	_
	3/22/2016	12.8
	6/8/2016	33.9
	9/13/2016	5.4
	12/2/2016	39.7
	6/20/2017	32.7
	12/19/2017	37.3
	6/18/2018	15.4
	11/8/2018	22.4
	6/3/2019 ^c	23.9
	12/18/2019	27.7
	6/23/2020	21.2
	11/21/2020	7.6
	6/2/2021	5.7
	11/28/2021	3.9
	6/9/2022	8.6
	12/22/2022	6.1
	6/12/2023	2.9
RW-2	4/6/2012	Groundwater extraction started
	5/1/2012	2.5
	9/11/2012	4.3
	12/14/2012	3.9
	6/25/2013 ^d	_
	9/21/2013 ^e	2.9
	9/30/2015	68

Second Semiannual 2022 Report Salty Dog Brine Station

Table C-3. Historical Average Groundwater Extraction Rates Page 2 of 2

Recovery Well	Date	Average Extraction Rate ^a (gpm)
RW-2 (cont.)	12/17/2015	44
	3/22/2016	32
	6/8/2016	9.0
	9/13/2016	5.7
	12/1/2016 ^f	_
	6/20/2017 ^f	_
	12/19/2017	12.4
	6/19/2018	5.2
	10/10/2018 ^g	3.4
	6/3/2019	7.0
	12/18/2019	14.9
	6/23/2020	16.7
	11/21/2020	3.9
	6/2/2021	11.5
	11/28/2021	17.6
	6/9/2022	5.8
	12/22/2022 ^h	_
	2/13/2023	_

^a Average extraction rates based on totalizer flow meter readings and/or fresh water production records.

gpm = Gallons per minute

^b Pumping at RW-1 stopped because pumping of FWS-1 lowered groundwater levels at RW-1, precluding groundwater extraction at RW-1. Pumping at FWS-1 provides hydraulic containment and removal of chloride-impacted groundwater in the former brine pond area.

^c New meter on December 3, 2019; well stopped pumping on May 11, 2019.

^d New pump installed in RW-2 and started on June 25, 2013.

^e Meter and pump were removed from RW-2 on approximately September 21, 2013 by facility manager to install a new, larger-capacity pump.

f Meter was inoperable because it was damaged. Meter was replaced in November 2017.

⁹ Meter read on November 8, 2018, but well had not been pumped since October 10, 2018; average extraction rate between June 18 and October 10, 2018 is reported.

^h Not measured due to damaged meter.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

COMMENTS

Action 321214

COMMENTS

Operator:	OGRID:
SALTY DOG INC	184208
P.O. Box 513	Action Number:
Hobbs, NM 88240	321214
	Action Type:
	[UF-DP] Brine Facility Discharge Plan (DISCHARGE PLAN BRINE EXTRACTION)

COMMENTS

С	reated By	Comment	Comment Date
	cchavez	Environmental Semi-Annual Monitor Report Jan - Jun 2023	2/26/2025

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 321214

CONDITIONS

Operator:	OGRID:
SALTY DOG INC	184208
P.O. Box 513	Action Number:
Hobbs, NM 88240	321214
	Action Type:
	[UF-DP] Brine Facility Discharge Plan (DISCHARGE PLAN BRINE EXTRACTION)

CONDITIONS

Created By		Condition Date
cchavez	Conditions of approval: 1. Continue to implement recommendations and corrective action measures outlined in Section 6. 2. Deepen all dry well locations to add at least 10 feet of well screen. Several monitoring locations cannot be sampled. 3. Consider switching to low-flow sampling from bailing 3-casing volumes based on the decreasing water levels at the site.	2/26/2025