November 2020

C-141 Release Characterization Report and Remediation Plan

DeSoto Springs Recycling Containment Release Incident Number NRM2025449421 Section 5, T26S R36E, Lea County

Google Earth satellite image of DeSoto Springs recycling facility from 2/21/2019

Prepared for: Ameredev Operating, LLC Austin, Texas

Prepared by: R.T. Hicks Consultants, Ltd. 901 Rio Grande NW F-142 Albuquerque, New Mexico

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996 Artesia ▲ Carlsbad ▲ Midland

November 23, 2020

New Mexico Oil & Gas Conservation Division, District I 1625 N. French Drive Hobbs, New Mexico 88240 *Emailed to OCD.Enviro@state.nm.us and submitted via NMOCD E-permitting portal*

RE: Ameredev Operating LLC – DeSoto Springs Release (8/4/2020) Characterization Report and Remediation Plan Incident Number NRM2025449421

To Whom It May Concern:

In accordance with 19.15.29 NMAC (Rule), R.T. Hicks Consultants submits this Site Assessment/Characterization Report and Remediation Plan on behalf of Ameredev Operating LLC (Ameredev). The updated C-141 form is attached.

Characterization Report Checklist: Each of the following items must be included in the report. Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. (See Plate 1) Field data (See site photographs, Plate 1, Table 1) Data table of soil contaminant concentration data (Tables 1 and 2) Depth to water determination (See Figures 1 and 2 and Appendix A from the August 2018 C-147 registration of the De Soto Containment and Appendix C provides drillers' logs in the area) \boxtimes Determination of water sources and significant watercourses within $\frac{1}{2}$ -mile of the lateral extents of the release (Figure 3, Appendix A) Boring or excavation logs (Not applicable) Photographs including date and GIS information (Site photographs follow Plate 1) Topographic/Aerial maps (Figures 3, 4, 6 and 7 provide the best images) Laboratory data including chain of custody Table 1 shows delineation data including chloride field tests, electrical conductivity (EC) readings, and laboratory analyses of soils within the footprint of the release. Table 2 displays the correlation between the field EC readings and laboratory chloride concentrations. Appendix B includes the Laboratory Certificate of Analyses.

Description of Site Assessment/Characterization Methods

All delineation samples were collected in accordance with 19.15.29.11, following the NRCS Field Guide¹. An extension was granted by the District for this delineation report and is enclosed herein.

The release consisted of a spray of produced water on the location and a narrow flow off location. Shallow pooling was noted by Ameredev in two small areas, one on the pad and one off the east side of the location fence (see Plate 1). Ameredev immediately responded to the release by flagging the perimeter of the affected area. Hicks Consultants initially collected near-surface samples by hand to determine if further actions were required and added the seven sample points and the perimeter to our GIS database.

On September 10, 2020, we directed a backhoe to collect sub-surface samples while fieldscreening for EC to determine the vertical extent of impact at the representative sample points. Plate 1 displays the locations of the sample points within the release area and demonstrates the majority of impacted surface is within the facility pad. A narrow channel exited the pad near the gate, following the slope of the entrance ramp, and pooled in a sandy area of approximately 3,200 square feet between the facility and a buried pipeline. We asked the laboratory to analyze soil samples for chloride at all sample points and TPH, BTEX, and Benzene on the samples from the pooling areas. Table 1 summarizes the soil analyses.

Summary of Laboratory Findings

- Four samples analyzed for petroleum hydrocarbon constituents listed in Table 1 of the Rule demonstrate the absence of these constituents within the laboratory's detection limits.
- Chloride concentrations beneath the release footprint on the pad ("in-use")
 - All samples meet the remediation criteria of Table 1 (20,000 mg/kg)
 - All samples except point H exceed the reclamation criteria for the upper 4-feet of soil (600 mg/kg chloride).
 - By EC readings and laboratory analyses, all 4.1-feet samples meet closure criteria of 20,000 mg/kg chloride.
- Chloride concentrations beneath the release area footprint off the pad (not "in-use")
 - These sample points exceed the reclamation target value of 600 mg/kg in the upper 4 feet
 - All samples meet the closure criteria below 4 feet.

Proposed Remediation

Off-Site Remediation

For areas not "in-use" and for depths from 0 to 4 feet BGS, the 600 mg/kg chloride Closure Criteria will be used to determine excavation extent and depth. Sample points A and B exhibit chloride concentrations in exceedance of the limits found in Table 1 of the Rule for 0-4 feet.

¹ https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052523.pdf

Chloride concentrations and EC readings at 4.1 feet indicate Table 1 limits are met at these locations in soils deeper than 4 feet BGS. Ameredev proposes the removal of affected soils from the surface to 4 feet BGS from the shaded area drawn on the satellite image of Plate 1. The excavation area is approximately 2,500 square feet and the proposed volume of soil removed will be approximately 370 cubic yards.

Five-point composite soil samples will be collected from the each wall of the excavation from 0 to 4 feet BGS. If soil sample results exceed 600 mg/kg chloride at the excavation walls, the wall will be extended horizontally, if active facilities permit, and resampled. Horizontal excavation will continue until subsequent sampling shows chloride below 600 mg/kg in the upper 4-feet. Excavation depth will be determined by the collection of a five-point (or more, depending on final excavation size) composite sample of the floor of the excavation of this area. Each component of the composite sample will be spaced no more than 200 square feet apart. Based on the previous chloride delineation concentrations, the floor or base of the excavation is anticipated to be approximately 4 feet deep, but will be extended as needed in order to meet Table 1 Closure Criteria of the Rule.

NMOCD will be notified of the collection of composite samples at least two business days prior. All composite samples of the final excavation will be analyzed for the constituents listed in Table 1 of the Rule. If parameters of Table 1 area met, clean material will be imported and backfilled into the excavation and contoured to match the surrounding terrain with regard to erosion control, stability, and surface runoff flow patterns. The excavated soils will be removed to a permitted disposal facility. Surface restoration/re-vegetation efforts will be addressed in the subsequent closure report.

Reclamation of In-Use Area

Aside from the areas discussed above, the remainder of the impacted area is confined to the active recycling location. The sample points on the in-use portion of the release meet Table 1 criteria, so remediation is not required on this portion of the release. In accordance with paragraph B of 19.15.29.13 NMAC, Ameredev has restored the surface of the location pad and ramp to prevent ponding and erosion.

Proposed Timeline

<u>Within two weeks</u> after approval is received, excavation will begin at the area of impact outside the facility as described above. NMOCD will be notified prior to closure sampling as prescribed by the Rule.

<u>Within one week</u> of confirmation that the final composite samples meet Table 1 closure criteria, the excavation will be backfilled and contoured in accordance with the Rule.

Within 90 days after approval of this remediation plan, a closure report and final C-141 form will be submitted to the District.

The backfilled excavation area will be contoured to blend with the surrounding terrain and to minimize erosion in accordance with the Rule. The disturbed area not "in-use" will be seeded in the first favorable growing season following closure and in coordination with a forecasted rainfall. NMOCD will be notified when re-vegetation criteria described in the Rule are met.

Thank you for your consideration of this Characterization Report and Remediation Plan. Please contact me with any questions regarding this submission.

Sincerely,

Knistin Pope

R.T. Hicks Consultants, Ltd. Kristin Pope Sr. Project Geologist

Cc: Ameredev

Updated form C-141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NRM2025449421
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

			nest	101151		y		
Responsible	Party Amer	edev Operating, I	LC		OGRID 3	372224		
Contact Nam	ne Shane M	°Neely			Contact Telephone 737-300-4729			
Contact ema	il smcneely	@ameredev.com			Incident #	(assigned by OCD)		
Contact mailin	ng address 29	001 Via Fortuna Sui	te 600,Austin, Texas	78746				
Latitude 32.0)75571°		Location	of R	Celease S Longitude	ource 105 281/ 82° ((approx.)	
			(NAD 83 in de	cimal de	grees to 5 decir	nal _F laces		
Site Name D	eSoto Sprin	ts Recycling Cont	ainment		Si e Type	ycling Cont	ainment	
Date Release	Discovered	8/4/2020 7 am		4	API# (if p	plicable)		
Unit Letter	Section	Township	Range		Cour	nty]	
D	5	26S	36E	Lea	•		NOT ACCEPTEI)
	Materia	l(s) Released (Set et a	Notwe and	l Vo	lume of]	Release	volumes provided below)	
Crude Oi	1	Volume K leas.	(bbls)		•	Volume Reco	wered (bbls)	
Produced	Water	Volume Release	ed (bbls) Unknown	ı		Volume Reco	vered (bbls) 0	
		Is the concentra	tion of dissolved c >10,000 mg/l?	hlorid	e in the	Yes 🗌 N	0	
Condensa	ite	V rume Release	ed (bbls)			Volume Recovered (bbls)		
🗌 Natural G	V.0	Volume Release	ed (Mcf)		Volume Recovered (Mcf)			
Other (de cribe) Volume/Weight Released (provide unit			e units	ts) Volume/Weight Recovered (provide units)				
Cause of Rel	ease: Gaske	t on a water trans	port pump failed a	nd cre	ated a spray	I of produced wat	er with a few small pooling ar	eas.

<i>ceived by OCD: 11/24/20</i>	20 7:47:13 AM	F		Page 8 03
 me ?	Oil Conservation Division	<u>I</u>	ncident ID	INRIVIZUZ04494Z1
30 2	On Conservation Division		District RP	
		F	actifity ID	
		F	Application ID	
Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the resp There are no reasonable data at this time reporting the release within the 24-hour after site characterization.	ponsible party consider thi e to determine if this relea window and will provide	s a major release se less than 25 b an estimate of th	? bls. Therefore, we are ne volume of the release
If YES, was immediate n This form was transmitte	otice given to the OCD? By whom? To d to ocd.enviro@state.nm.us with return/n	whom? When and by what read receipt.	at means (phone,	email, etc).
	Initial 1	Response	ĺ.	
The responsible	party must undertake the following actions immedia	ttely unless they could create a s	afety haza a that wo	d result in injury
\square The source of the rele	ease has been stopped.		\sim	
The impacted area ha	s been secured to protect human health an	nd the environment.		
Released materials ha	ave been contained via the use of berms o	r dikes, absorber pars of	other containme	ent devices.
All free liquids and r	ecoverable materials have been removed a	and managed appropriate	у.	
 Anake a Fearl as Cause excavatio Place the excava Secure a 12-mil Notify NMOCD 	n of impacted material in any pooling are ated material within the spill footprint with (minimum) synthetic liner over the stock 48 hours prior to site characterization set	as before August 11 re pooling did not occur a pile to minimize the poten mpling.	and tial of downward	l seepage after precipitation
I hereby certify that the info regulations all operators are public health or the environ failed to adequately investig addition, OCD acceptance of and/or regulations.	rmation given above is true a d complete to the required to report and/or file certain release no ment. The acceptance of a C-41 report by the gate and remediate contamination that pose a the f a C-141 report closes of the vertice the operator	ne best of my knowledge and otifications and perform corr e OCD does not relieve the o nreat to groundwater, surface of responsibility for complia	understand that pu ective actions for r perator of liability water, human hea nce with any other	ursuant to OCD rules and eleases which may endanger should their operations have lth or the environment. In federal, state, or local laws
Printed Name:Randa		The:Consultant for Ar	neredev Operatir	1g LLC
Signature:	2 M M 181	Date:	_8/4/2020	
email: <u>r@rthickscop.an</u> .	AND <u>smcneely@ameredev.com</u> _T	elephone: Hicks: 505 238	9515_AND Mcl	Neely: (737) 300-4729
	IAC the responsible party may commence	e remediation immediately	after discovery	of a release. If remediation
Per 19.15.25 827. (4) NM has begun, please attach within a lined containmen	a narrative of actions to date. If remedia nt area (see 19.15.29.11(A)(5)(a) NMAC)	al efforts have been succe , please attach all informa	tion needed for c	closure evaluation.
Per 19.15.25 8 7. (4) NM has begun, please attach within a lined containmen OCD Only	a narrative of actions to date. If remedia nt area (see 19.15.29.11(A)(5)(a) NMAC)	al efforts have been succe , please attach all informa	tion needed for c	T ACCEPTED

Received by OCD: 11/24/2020 7:47:13 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 9 of 10
Incident ID	NRM2025449421
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water? SEE FIGURE 1 AND 2	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse? SEE FIGURE 3	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)? SEE FIGURE 3	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church? SEE FIGURE 4	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes? SEE FIGURES 1 AND 3	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring? SEE FIGURES 1 AND 3	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field? SEE FIGURE 5	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland? SEE FIGURE 6	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine? SEE FIGURE 7	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology? SEE FIGURE 8	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain? SEE FIGURE 9	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🛛 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data

Page 3

- Data table of soil contaminant concentration data
- \boxtimes Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 11/2	4/2020 7:47:13 AM			Page 10 of 109
F01111 C-141			Incident ID	NRM2025449421
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
I hereby certify that the regulations all operators public health or the envi failed to adequately inveated addition, OCD acceptance and/or regulations. Printed Name:Kristi Signature:A email: kristin@rthicks	information given above is true and complete to the are required to report and/or file certain release notic ronment. The acceptance of a C-141 report by the C estigate and remediate contamination that pose a thre ce of a C-141 report does not relieve the operator of in Pope	best of my knowledge at fications and perform co OCD does not relieve the at to groundwater, surfa responsibility for compl Title: _Consultant for Date: _11/23/2020_ Telephone:575-	nd understand that pursu orrective actions for rele operator of liability sho ce water, human health iance with any other fec Ameredev Operating 302-6755, 737-300-47	Jant to OCD rules and ases which may endanger build their operations have or the environment. In deral, state, or local laws g LLC
OCD Only Received by: Cristi	na Eads	Date:11/2	24/2020	

Received by OCD: 11/24/2020 7:47:13 AM Form C-141 State of New Mexico

Page 5

Incident ID	NRM2025449421
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan. Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: _Kristin Pope_ Title: _Consultant for Ameredev Operating LLC_____ Signature: _____ Knistin Pope____ Date: __11/23/2020_____ email: kristin@rthicksconsult.com AND smcneely@ameredev.com Telephone: _575-302-6755, 737-300-4729_____ **OCD Only** _____ Date: <u>11/24/2020</u> Received by: ____Cristina Eads____ Approved Approved with Attached Conditions of Approval Denied Deferral Approved Date: 02/03/2021 Signature

Page 6

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Page 12 of 109

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: _____ Title: _____ Signature: _____ Date: _____ email: Telephone: **OCD Only** Received by: Date: _____ Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and

remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by:	Date:
Printed Name:	Title:

From:	Hamlet, Robert, EMNRD
To:	Kristin Pope; EMNRD-OCD-District1spills
Cc:	<u>"Shane McNeely"; "Randall Hicks"</u>
Subject:	(Extension Approval) Ameredev-DeSoto Release #NRM2025449421
Date:	Friday, October 30, 2020 10:17:05 AM

RE: Incident **#NRM2025449421**

Kristin,

Your request for an extension to **November 9th, 2020** is approved. Ameredev Operating, R.T. Hicks Consultants requests an extension of 7-days' time for #NRM2025449421 from the 90-day timeline for a characterization report which is due on November 2, 2020. Characterization is complete but lab analysis took longer than expected. Ameredev asks for a 7-day extension to complete the proposed remediation plan for NMOCD approval to submit along with the characterization report. A 7-day extension will allow enough time to complete the characterization report/correction action plan and for peer review before submission to NMOCD.

Thank you,

Robert J Hamlet State of New Mexico Energy, Minerals, and Natural Resources Oil Conservation Division 811 S. First St., Artesia NM 88210 (575) 748-1283 Robert.Hamlet@state.nm.us

From: Kristin Pope <kristin@rthicksconsult.com>
Sent: Thursday, October 29, 2020 10:50 PM
To: EMNRD-OCD-District1spills <EMNRD-OCD-District1spills@state.nm.us>; Enviro, OCD, EMNRD
<OCD.Enviro@state.nm.us>
Cc: 'Shane McNeely' <smcneely@ameredev.com>; 'Randall Hicks' <r@rthicksconsult.com>
Subject: [EXT] RE: Ameredev-DeSoto Release #NRM2025449421

NMOCD, District I:

On the behalf of Ameredev Operating, R.T. Hicks Consultants respectfully requests for an extension of 7-days' time for #NRM2025449421 from the 90-day timeline for a characterization report which is due on November 2, 2020. Characterization is complete but lab analysis took longer than expected. We ask for a 7-day extension to complete the proposed remediation plan for NMOCD approval to submit along with the characterization report.

A 7-day extension will allow enough time to complete the characterization report/correction action

plan and for peer review before submission to NMOCD.

19.15.29.11 SITE ASSESSMENT/CHARACTERIZATION: After the responsible party has removed all free liquids and recoverable materials, the responsible party must assess soils both vertically and horizontally for potential environmental impacts from any major or minor release containing liquids.

 A. Characterization requirements. The responsible party must submit information characterizing the release to the appropriate division district office within 90 days of discovery of the release or characterize the release by submitting a final closure report within 90 days of discovery of the release in accordance with Subsection E of 19.15.29.12 NMAC. The responsible party may seek an extension of time to submit characterization information for good cause as determined by the division. The responsible party must submit the following information to the division.

Please contact me with any questions regarding this request to submit the report/plan by November 9, 2020. Thank you.

Kristin Pope, Sr. Project Geologist **R.T. Hicks Consultants** Carlsbad Field Office (575) 302-6755 <u>www.RTHicksConsult.com</u>

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, August 11, 2020 9:20 AM
To: 'r@rthicksconsult.com' <<u>r@rthicksconsult.com</u>>; 'EMNRD-OCD-District1spills@state.nm.us'
<<u>EMNRD-OCD-District1spills@state.nm.us</u>>; 'Enviro, OCD, EMNRD' <<u>OCD.Enviro@state.nm.us</u>>
Cc: 'Shane McNeely' <<u>smcneely@ameredev.com</u>>
Subject: RE: Ameredev DeSoto Release Notification

Please accept this notification of characterization sampling at the release on **Thursday, August 13**, 2020, beginning at approximately 9:00 am MST. Please contact me at the number below if you have any questions. Thank you.

Kristin Pope, Sr. Project Geologist **R.T. Hicks Consultants** Carlsbad Field Office (575) 302-6755 <u>www.RTHicksConsult.com</u>

From: r@rthicksconsult.com [mailto:r@rthicksconsult.com]
Sent: Tuesday, August 4, 2020 4:12 PM
To: EMNRD-OCD-District1spills@state.nm.us; 'Enviro, OCD, EMNRD' <<u>OCD.Enviro@state.nm.us</u>>
Cc: 'Shane McNeely' <<u>smcneely@ameredev.com</u>>; kristin@rthicksconsult.com
Subject: Ameredev DeSoto Release Notification

Sir or Madam

Please accept this as notification of a release at the DeSoto Springs Containment site of Ameredev Operating LLC. At this time we cannot determine if the release exceeded 25 bbls, thus we are notifying OCD within the 24 hour window.

Thanks you for your attention to this matter.

Randall Hicks, PG 505-238-9515 (cell) 505-266-5004 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104

Plate 1 (Release area, sample points) & Delineation Photographs

Received by OCD: 11/24/2020 7:47:13 AM

M:\Ameridev\DeSotoRelease_Aug2020\ArcGISProDeSotoRelease\ArcGISProDeSotoRelease.aprx

8/13/2020

Close-up of release origin

32.075769°, -103.281887°

Northern extent of release area; view south toward release origin 32.076332°, -103.281954°

. Released to Imaging: 2/3/2021 11:41:42 AM

8/13/2020 Exit channel of release from location; view east toward Sample Point 'C' 32.076250°, -103.281106°

8/13/2020 Terminus of release and pooling area near Sample Point 'A'; view north 32.076044°, -103.280807°

9/10/2020 Collection of samples at Sample Point 'I'; view southwest 32.076199°, -103.281752°

9/10/2020 Backhoe delineation trenches at off-site release area; view southeast from facility gate. 32.076244°, -103.281034°

Tables 1 & 2 Chloride delineation data

DeSoto Springs Release (8/4/2020)

Sample ID	Date	Discrete Depth	Top Depth	Bottom Depth	EC (Hanna)	Chloride	In	Comments
		(Feet)	(Feet)	(Feet)	(dS/m)	(mg/kg)	Use?	
NMOCD Limits					Field	Lab		
0 - 4 feet & "not in-use"						600		
> 4 ft or "in-use"						20,000		
A @ 0-2 ft	8/13/2020		0.0	2.0	1.30	2200		
A @ 0-4 ft	9/10/2020		0.0	4.0		2200	No	nooling area
A @ 4.1 ft	9/10/2020	4.1			0.16	280	NO	
A @ 5.0 ft	9/10/2020	5.0				190		
B @ 0-2 ft	8/13/2020		0.0	2.0	2.75	2480		
B @ 0-4 ft	9/10/2020		0.0	4.0		1700	No	narrow area of flow
B @ 4.1 ft	9/10/2020	4.1			0.00			
C @ 0-2 ft	8/13/2020		0.0	2.0	4.61	6080		narrow area of flow, adjacent to
C @ 0-4 ft	9/10/2020		0.0	4.0		860	Yes	ramp onto location
C @ 4.1 ft	9/10/2020	4.1			0.01			
D @ 1.5 ft	8/13/2020		0.0	1.5	2.05	4080		
D @ 0-4 ft	9/10/2020		0.0	4.0		1800	Yes	Location pad
D @ 4.1 ft	9/10/2020	4.1			0.00			
E @ 1.5 ft	8/13/2020		0.0	1.5	1.97	3360		pooling area
E @ 0-4 ft	9/10/2020		0.0	4.0		470	Yes	
E @ 4.1 ft	9/10/2020	4.1			0.00	<60		
F @ 1.0 ft	8/13/2020		0.0	1.0	1.66	2160		
F @ 0-4 ft	9/10/2020		0.0	4.0		190	Yes	Location pad
F @ 4.1 ft	9/10/2020	4.1			0.01			
G @ 1.5 ft	8/13/2020		0.0	1.5	3.75	5920		
G @ 0-4 ft	9/10/2020		0.0	4.0		680	Yes	Location pad
G @ 4.1 ft	9/10/2020	4.1			0.00			
H @ 0-4 ft	9/10/2020		0.0	4.0		580	Voc	Location had
H @ 4.1 ft	9/10/2020	4.1			0.01		163	
I @ 0-4 ft	9/10/2020		0.0	4.0		680	Voc	Location had
I @ 4.1 ft	9/10/2020	4.1			0.00		Tes	
Background	8/13/2020		0.0	2.0	0.02	16	n/a	NE of site; healthy vegetation
R.T. Hicks Co	onsultants, L	_td.	Soil Samples & Analyses					Table 1
Albuquerque, Ne	ew Mexico 8	7104	Ameredev Operating LLC		November 2020			

Laboratory analyses of BTEX, Benzene, TPHext were also performed on samples A and E at 0-4 ft, and C and G at 0-2 ft; All concentrations are below detection limits.

ge 23 of 109

Figures 1-9

Supporting site-specific description (Appendix A)

M:\Ameridev\Desoto Containment\ap_nmGIS\Figures\figure1_GeoIDTW.mxd

M:\Ameridev\Desoto Containment\ap_nmGIS\Figures\figure1_LEGEND.mxd

R.T. Hicks Consultants, Ltd	Depth To Water and Geology	Figure 1 LEGEND
Albuquerque, NM 87104 Ph: 505.266.5004	Ameredev Operating Desoto Springs Frac Pond #3	May 2018

M:\Ameridev\Desoto Containment\ap_nmGIS\Figures\Figure2_topographyGW.mxd

M:\Ameridev\Desoto Containment\ap_nmGIS\Figures\Figure2_LEGEND.mxd

<u>R.T. Hicks Consultants, Ltd</u> 901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104 Ph: 505.266.5004	Potentiometric Surface and Groundwater Elevation	Figure 2 LEGEND
	Ameredev Operating Desoto Springs Frac Pond #3	May 2018

Received by OCD: 11/24/2020 7:47:13 AM

M:\Ameridev\Desoto Containment\ap_nmGIS\Figures\figure3_SurfaceWater.mxd

. Released to Imaging: 2/3/2021 11:41:42 AM

M:\Ameridev\Desoto Containment\ap_nmGIS\Figures\figure4_NearbyStructures.mxd

Received by OCD: 11/24/2020 7:47:13 AM

M:\Ameridev\Desoto Containment\ap_nmGIS\Figures\figure5_wellFields.mxd

Received by OCD: 11/24/2020 7:47:13 AM

M:\Ameridev\Desoto Containment\ap_nmGIS\Figures\figure6_wetlands.mxd

. Released to Imaging: 2/3/2021 11:41:42 AM

M:\Ameridev\Desoto Containment\ap_nmGIS\Figures\figure7_minesMinerals.mxd

M:\Ameridev\Desoto Containment\ap_nmGIS\Figures\figure8_karstPotential.mxd

Received by OCD: 11/24/2020 7:47:13 AM

M:\Ameridev\Desoto Containment\ap_nmGIS\Figures\figure9_femaFlood.mxd

. Released to Imaging: 2/3/2021 11:41:42 AM

Appendix A Site-Specific Description of Siting Assessment Criteria
Geologic Setting of the Regional Fresh-Water Bearing Formations

The Ogallala and associated alluvial aquifers are the primary groundwater source in the area of the DeSoto Containment. All of water wells within the area of the containment that were measured by the USGS are considered "Alluvium" by the agency (see Figures 1 and 2). . Drillers and other experts, however, may consider the producing strata equivalent to the Ogallala. Driller's logs of several of these wells suggest the water-bearing zone of the deeper wells (500-600 feet) tap the basal conglomerate of the Ogallala.

Groundwater in the area within the area is also found in in Mesozoic and Cenozoic Era rocks. The oldest of these are the Triassic age Dockum Group. They consist of conglomerates, crossbedded sandstones, claystones, and siltstones that were deposited in a continental fluvial environment over the evaporites of the late Permian Ochoan Series, which had filled the Delaware Basin by that time. In much of the South Plain area, the Dockum Group (aka Chinle) is a secondary groundwater zone relative to the Ogallala.

Any Jurassic or Cretaceous age rocks that were deposited above the Triassic have subsequently been removed by erosion leaving an irregular surface on the Triassic rocks. Cenozoic Era rocks in the area consist of the Tertiary age Ogallala Formation and Quaternary age eolian and piedmont deposits. The Ogallala Formation consists of terrestrial sediments (sand with some clay, silt and gravel) that were deposited on the Triassic age rocks. The Quaternary deposits are generally thin veneers over the Ogallala in this area, except in larger drainages, such as Monument Draw.

© 2020 R.T. HICKS CONSULTANTS, LTD.

Distance to Groundwater

Figure 1, Figure 2, and the discussion presented below demonstrates that the depth to the groundwater surface at the location is approximately 222 feet.

Figure 1 is an area geologic base map that depicts regional topography and includes the water wells located nearest to the containment site for which information is available, regardless of how comprehensive or useful. It also shows:

- 1. The location of the containment in the northeast quarter of Section 5 within an area mapped as Quaternary eolian/piedmont deposits.
- 2. Water wells from the USGS database as color-coded triangles that indicate the producing aquifer (see Legend).
- 3. Water wells from the New Mexico Office of the State Engineer (OSE) database as a small blue triangle inside a colored circle that indicates the well depth (see Legend). Please note, OSE wells are often miss-located in the WATERS database as older wells are plotted in the center of the quarter, quarter, quarter, of the Section Township and Range. Topographic maps and/or aerial photographs verified many of the OSE well locations included on this map.
- 4. Water wells, which are not documented in the public databases but were identified by field inspection or other published reports are shown as a dot inside a color-coded (depth) square.
- 5. Depth to water and gauging dates from the most recent and reliable measurement for each well is provided adjacent to the well symbol. It should be noted that in most cases the depth to water provided by the OSE database are from drillers log notes estimated at the time of completion, rather than actual field measurements.
- 6. Based upon the information discussed below, the 80-foot depth to water measurement associated with CP-00938, located about 1 mile northeast of the containment, is erroneous and is probably the depth to drilling mud in the boring at completion of the well. Evidence suggests that the USGS measured a depth to water of 379 feet at this well in 2016 (USGS well 14380), which is about 0.75 miles east of the containment. This active windmill is not shown on the 2005 Google Earth image but is obvious in the 2008 image and therefore corresponds to the drilling date provided on the driller's log in Appendix F. There is no evidence of a well on Google Earth at the location shown on the OSE database for CP-00938.
- 7. The driller's log for Well CP-01446, about 1 mile east of the containment, shows a total depth of 5,000 feet and contains a detailed mud log. This well is an open hole completion in dolomite from 3632 to 4975 feet below surface. This well appears to be a Capitan Reef test well.

Figure 2 is a regional geologic base map that depicts the potentiometric surface contours of the shallow-most aquifer surrounding the site. The potentiometric contours are labeled in feet above sea level (ASL). The water wells plotted include only the USGS database and published report water wells from Figure 1 for which a reliable depth to water measurement has been recorded. Figure 2 also shows:

- 1. The location of the containment as a blue rectangle
- 2. Groundwater elevations and gauging dates from the most recent available static water level measurement for each well.
- 3. USGS well 14559 shown east of the containment is mis-located. This USGS well could be well CP-00857, which is located 504 feet north of the northeast corner of the recycling

© 2020 R.T. HICKS CONSULTANTS, LTD.

facility and containment or an abandoned windmill located 1500 feet northeast of CP-00857 that is shown on Google Earth.

4. USGS well 14380 also appears slightly mis-located. As mentioned above, we believe this USGS well is the active windmill about 1-mile east of CP-0057 on Google Earth.

Site Geology

The containment is located on what is mapped as Quaternary Age eolian and piedmont deposits (Qe/Qp on Figure 1). Aeolian deposits are fine-grained sands in vegetated low dunes that cover most of Section 5. Regional evidence suggests that these dunes are 5-10 feet thick and underlain by caliche.

Water Table Elevation and Depth to Groundwater

A large number of depth to groundwater measurements are presented in Figure 2. These data provide a very good estimate of the groundwater elevation in the area (see Figure 2). Figure 2 uses only data from the USGS.

Based on the potentiometric surface contours created using the available measurements from surrounding wells (Figure 2), we conclude that the groundwater elevation at the containment site is approximately 2,775 feet ASL. With a surface elevation of 2,997 feet ASL, the depth to groundwater below the containment floor should be approximately 222 feet.

Distance to Surface Water

Figure 3 and the site visit demonstrates that the location is not within 300 feet of a continuously flowing watercourse, or within 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). No continuously flowing watercourses exist within 300 feet of the location. The nearest surface feature is an intermittent stream located about ½ mile to the east (Figure 3). Note that Figure 3 shows the "New Windmill" northeast of the containment, which is the abandoned windmill discussed in the previous section of this submittal.

Stabilized dune fields, like that which characterizes the location and much of the surrounding area, are seldom characterized by well-defined drainage patterns and that is the case in the area shown in Figure 3.

Distance to Permanent Residence or Structures

Figure 4 and the site visit demonstrates that the location is not within 300 feet from a permanent residence, school, hospital, institution, church, or other structure in existence at the time of initial application.

Distance to Non-Public Water Supply

Figures 1 and 2, and 3 demonstrate that the location is not within 500 feet of a spring or fresh water well used for domestic or stock watering purposes in existence at the time of the initial registration;.

• Figure 1 shows that the closest fresh water well is about 700 feet north of the containment

© 2020 R.T. HICKS CONSULTANTS, LTD.

• Figure 3 shows that no springs are identified within the mapping area and the field survey identified no evidence of springs.

Distance to Municipal Boundaries and Fresh Water Fields

Figure 5 demonstrates that the location is not within incorporated municipal boundaries or defined municipal fresh water well fields covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended.

- The closest municipality is Jal, NM approximately 7 miles to the northeast.
- The closest public well field is located west of Carlsbad or north of Maljamar

Distance to Wetlands

Figure 6 and the site visit demonstrates the location is not within 500 feet of wetlands.

- The nearest designated wetlands are about 1.5 miles north of the site and are considered freshwater ponds
- The site inspection identified no evidence of wetlands in the general area

Distance to Subsurface Mines

Figure 7 and our general reconnaissance of the area demonstrate that the nearest mine is caliche pit.

• Figure 7 show the nearest caliche pit about 2 miles southeast of the containment

Distance to High or Critical Karst Areas

Figure 8 shows the location of the temporary pit with respect BLM Karst areas

- The release area is located within a "low" potential karst area.
- The nearest moderate potential karst area is located approximately 12 miles west of the site.
- We saw no evidence of unstable ground near the containment location during the site inspection.

Distance to 100-Year Floodplain

Figure 9 demonstrates that the location is within an area that has not yet been mapped by the Federal Emergency Management Agency with respect to the Flood Insurance Rate 100-Year Floodplain.

- Areas that are not mapped are designated as "Undetermined Flood Hazard" and are generally considered minimal flood risk.
- Our field inspection and examination of the topography permit a conclusion that the location is not within any floodplain.

Appendix B Laboratory Reports

October 01, 2020

Kristin Pope R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104 TEL: (505) 266-5004 FAX: (505) 266-0745

RE: Ameredev- DeSoto Release

OrderNo.: 2009B90

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kristin Pope:

Hall Environmental Analysis Laboratory received 12 sample(s) on 9/19/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Project:

CLIENT: R.T. Hicks Consultants, LTD

Ameredev- DeSoto Release

Analytical Report Lab Order 2009B90

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/1/2020 Client Sample ID: A @ 0-4 ft Collection Date: 9/10/2020 9:59:00 AM **Received Date:** 0/10/2020 7:30:00 AM

Lab ID: 2009B90-001	Matrix: SOIL		Received Dat			
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	2200	60	mg/Kg	20	9/28/2020 9:34:42 PM	55496
EPA METHOD 8015D MOD: GASOLI	NE RANGE				Analyst	JMR
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/23/2020 5:29:00 AM	55331
Surr: BFB	102	70-130	%Rec	1	9/23/2020 5:29:00 AM	55331
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst	BRM
Diesel Range Organics (DRO)	ND	8.9	mg/Kg	1	9/23/2020 4:13:27 PM	55347
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	9/23/2020 4:13:27 PM	55347
Surr: DNOP	81.0	30.4-154	%Rec	1	9/23/2020 4:13:27 PM	55347
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst	JMR
Benzene	ND	0.024	mg/Kg	1	9/23/2020 5:29:00 AM	55331
Toluene	ND	0.049	mg/Kg	1	9/23/2020 5:29:00 AM	55331
Ethylbenzene	ND	0.049	mg/Kg	1	9/23/2020 5:29:00 AM	55331
Xylenes, Total	ND	0.098	mg/Kg	1	9/23/2020 5:29:00 AM	55331
Surr: 1,2-Dichloroethane-d4	88.6	70-130	%Rec	1	9/23/2020 5:29:00 AM	55331
Surr: 4-Bromofluorobenzene	99.2	70-130	%Rec	1	9/23/2020 5:29:00 AM	55331
Surr: Dibromofluoromethane	104	70-130	%Rec	1	9/23/2020 5:29:00 AM	55331
Surr: Toluene-d8	98.0	70-130	%Rec	1	9/23/2020 5:29:00 AM	55331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 16

Hall Environmental Analysis	Laboratory, Inc	•			Analytical Report Lab Order 2009B90 Date Reported: 10/1/20	20
CLIENT: R.T. Hicks Consultants, LTD Project: Ameredev- DeSoto Release Lab ID: 2009B90-002	Matrix: SOIL	Clie Ca	ent Sample II ollection Dat Received Dat	D: B e: 9/1 e: 9/1	@ 0-4 ft 10/2020 9:55:00 AM 19/2020 7:30:00 AM	
Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS Chloride	1700	59	mg/Kg	20	Analys 9/28/2020 9:47:06 PM	t: CAS 55496

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 16

Hall Environmental Analysis	Laboratory, Inc				Analytical Report Lab Order 2009B90 Date Reported: 10/1/20	120
CLIENT: R.T. Hicks Consultants, LTD Project: Ameredev- DeSoto Release Lab ID: 2009B90-003	Matrix: SOIL	Clie Co R	nt Sample II llection Dat eceived Dat	D: C e: 9/1 e: 9/1	@ 0-4 ft 10/2020 9:50:00 AM 19/2020 7:30:00 AM	
Analyses	Result	RL Q	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS Chloride	860	59	mg/Kg	20	Analys 9/28/2020 9:59:31 PM	t: CAS 55496

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 16

Hall Environmental Analysis	Laboratory, Inc	•			Analytical Report Lab Order 2009B90 Date Reported: 10/1/20)20
CLIENT:R.T. Hicks Consultants, LTDProject:Ameredev- DeSoto ReleaseLab ID:2009B90-004	Matrix: SOIL	Client Coll Re	t Sample II ection Dat ceived Dat	D: D e: 9/1 e: 9/1	@ 0-4 ft 0/2020 10:05:00 AM 9/2020 7:30:00 AM	
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS Chloride	1800	60	mg/Kg	20	Analys 9/28/2020 10:11:56 PM	t: CAS 1 55496

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 16

CLIENT: R.T. Hicks Consultants, LTD

Analytical Report Lab Order 2009B90

Hall Environmental Analysis Laboratory, Inc.

 Date Reported: 10/1/2020

 Client Sample ID: E @ 0-4 ft

Project: Ameredev- DeSoto Release Collection Date: 9/10/2020 10:10:00 AM Lab ID: 2009B90-005 Matrix: SOIL Received Date: 9/19/2020 7:30:00 AM Result **RL** Oual Units **DF** Date Analyzed Batch Analyses **EPA METHOD 300.0: ANIONS** Analyst: CAS Chloride 470 60 mg/Kg 20 9/28/2020 10:49:10 PM 55496 **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) ND 4.9 mg/Kg 1 9/23/2020 5:57:53 AM 55331 Surr: BFB 103 70-130 %Rec 1 9/23/2020 5:57:53 AM 55331 **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM **Diesel Range Organics (DRO)** ND 9.9 mg/Kg 1 9/23/2020 4:23:15 PM 55347 Motor Oil Range Organics (MRO) ND 1 9/23/2020 4:23:15 PM 55347 50 mg/Kg Surr: DNOP 82.8 30.4-154 %Rec 1 9/23/2020 4:23:15 PM 55347 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: JMR ND 0.025 9/23/2020 5:57:53 AM 55331 Benzene mg/Kg 1 Toluene ND 0.049 mg/Kg 1 9/23/2020 5:57:53 AM 55331 Ethylbenzene ND 0.049 mg/Kg 1 9/23/2020 5:57:53 AM 55331 Xylenes, Total ND 0.098 mg/Kg 9/23/2020 5:57:53 AM 55331 1 Surr: 1,2-Dichloroethane-d4 87.9 70-130 %Rec 1 9/23/2020 5:57:53 AM 55331 Surr: 4-Bromofluorobenzene 70-130 99.8 %Rec 1 9/23/2020 5:57:53 AM 55331 Surr: Dibromofluoromethane 104 70-130 %Rec 1 9/23/2020 5:57:53 AM 55331 Surr: Toluene-d8 100 70-130 %Rec 1 9/23/2020 5:57:53 AM 55331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 16

Hall Environmental Analysis	Laboratory, Inc	•			Analytical Report Lab Order 2009B90 Date Reported: 10/1/20	020
CLIENT:R.T. Hicks Consultants, LTDProject:Ameredev- DeSoto ReleaseLab ID:2009B90-006	Matrix: SOIL	Clien Col Re	t Sample I lection Dat eceived Dat	D:F æ:9/	@ 0-4 ft 10/2020 10:14:00 AM 19/2020 7:30:00 AM	
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS Chloride	190	60	mg/Kg	20	Analys 9/28/2020 11:01:35 Pf	st: CAS M 55496

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 16

Hall Environmental Analysis	Laboratory, Inc	•			Analytical Report Lab Order 2009B90 Date Reported: 10/1/20	020
CLIENT:R.T. Hicks Consultants, LTDProject:Ameredev- DeSoto ReleaseLab ID:2009B90-007	Matrix: SOIL	Client Coll Re	t Sample II ection Dat ceived Dat	D: G e: 9/1 e: 9/1	@ 0-4 ft 10/2020 10:17:00 AM 19/2020 7:30:00 AM	
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS Chloride	680	60	mg/Kg	20	Analys 9/28/2020 11:13:59 PN	t: CAS 1 55496

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 16

Hall Environmental Analysis	Laboratory, Inc	•			Analytical Report Lab Order 2009B90 Date Reported: 10/1/20	120
CLIENT: R.T. Hicks Consultants, LTD Project: Ameredev- DeSoto Release Lab ID: 2009B90-008	Matrix: SOIL	Client Coll Re	t Sample II ection Dat ceived Dat	D:H æ:9/1	@ 0-4 ft 10/2020 10:25:00 AM 19/2020 7:30:00 AM	
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS Chloride	580	60	mg/Kg	20	Analys 9/28/2020 11:26:24 PM	t: CAS 1 55496

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 16

Hall Environmental Analysis	Laboratory, Inc	•			Analytical Report Lab Order 2009B90 Date Reported: 10/1/20	020
CLIENT:R.T. Hicks Consultants, LTDProject:Ameredev- DeSoto ReleaseLab ID:2009B90-009	Matrix: SOIL	Client Colle Rec	Sample I ction Dat eived Dat	D: I @ ce: 9/1	@ 0-4 ft 10/2020 10:34:00 AM 19/2020 7:30:00 AM	
Analyses	Result	RL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS Chloride	680	60	mg/Kg	20	Analys 9/28/2020 11:38:48 PM	t: CAS 1 55496

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 16

Hall Environmental Analysis	Laboratory, Inc	•			Analytical Report Lab Order 2009B90 Date Reported: 10/1/2	020
CLIENT:R.T. Hicks Consultants, LTDProject:Ameredev- DeSoto ReleaseLab ID:2009B90-010	Matrix: SOIL	Clien Col Ro	nt Sample II llection Dat eceived Dat	D: E e: 9/1 e: 9/1	@ 4.1 ft 10/2020 10:10:00 AN 19/2020 7:30:00 AM	[
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS Chloride	ND	60	mg/Kg	20	Analy: 9/28/2020 11:51:13 P	st: CAS M 55496

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 16

Hall Environmental Analysis	Laboratory, Inc	•			Analytical Report Lab Order 2009B90 Date Reported: 10/1/20)20
CLIENT: R.T. Hicks Consultants, LTD Project: Ameredev- DeSoto Release	Metrice SOU	Clien Col	t Sample II lection Dat	D: A :e: 9/1	@ 4.1 ft 10/2020 9:59:00 AM	
Analyses	Result	DF	DF Date Analyzed Batc			
EPA METHOD 300.0: ANIONS Chloride	280	60	mg/Kg	20	Analys 9/29/2020 1:32:26 PM	t: CAS 55518

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 16

Hall Environmental Analysis	Laboratory, Inc	•			Analytical Report Lab Order 2009B90 Date Reported: 10/1/20	20
CLIENT:R.T. Hicks Consultants, LTDProject:Ameredev- DeSoto ReleaseLab ID:2009B90-012	Matrix: SOIL	Client Colle Rec	Sample I ection Dat eived Dat	D: A te: 9/1 te: 9/1	@ 5.0 ft 10/2020 10:40:00 AM 19/2020 7:30:00 AM	
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS Chloride	190	60	mg/Kg	20	Analyst 9/29/2020 2:09:39 PM	:: CAS 55518

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 16

2009B90

01-Oct-20

WO#:

Client:	R.T. H	licks Consultants, LTE)							
Project:	Amere	edev- DeSoto Release								
Sample ID:	: MB-55496	SampType: mbll	¢	Tes	tCode: EF	PA Method	300.0: Anion	S		
Client ID:	PBS	Batch ID: 5549	6	F	RunNo: 72	2226				
Prep Date:	9/28/2020	Analysis Date: 9/28	3/2020	5	SeqNo: 25	532664	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 1.5								
Sample ID:	LCS-55496	SampType: Ics		Tes	tCode: EF	A Method	300.0: Anion	s		
Client ID:	LCSS	Batch ID: 5549	6	F	RunNo: 72	2226				
Prep Date:	9/28/2020	Analysis Date: 9/28	3/2020	5	SeqNo: 25	532665	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14 1.5	15.00	0	95.6	90	110			
Sample ID:	: MB-55518	SampType: mbli	(Tes	tCode: EF	PA Method	300.0: Anion	S		
Client ID:	PBS	Batch ID: 5551	8	F	RunNo: 72	231				
Prep Date:	9/29/2020	Analysis Date: 9/29	9/2020	5	SeqNo: 25	534523	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 1.5								
Sample ID:	: LCS-55518	SampType: Ics		Tes	tCode: EF	PA Method	300.0: Anion	S		
Client ID:	LCSS	Batch ID: 5551	8	F	RunNo: 72	2231				
Prep Date:	9/29/2020	Analysis Date: 9/29	9/2020	S	SeqNo: 25	534524	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14 1.5	15.00	0	96.3	90	110			
Sample ID:	: MB-55518	SampType: mbll	(Tes	tCode: EF	PA Method	300.0: Anion	S		
Client ID:	PBS	Batch ID: 5551	8	F	RunNo: 72	2232				
Prep Date:	9/29/2020	Analysis Date: 9/29	9/2020	8	SeqNo: 25	534647	Units: mg/K	g		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 1.5								
Sample ID:	: LCS-55518	SampType: Ics		Tes	tCode: EF	PA Method	300.0: Anion	S		
Client ID:	LCSS	Batch ID: 5551	8	F	RunNo: 72	2232				
Prep Date:	9/29/2020	Analysis Date: 9/29	9/2020	S	SeqNo: 25	534648	Units: mg/K	g		
Analvte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HiahLimit	%RPD	RPDLimit	Qual

Chloride

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

14

1.5

15.00

B Analyte detected in the associated Method Blank

96.0

90

110

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

0

Client: R.T. H Project: Amere	Hicks Consultatedev- DeSoto	ants, LT Release	D e								
-			_								=
Sample ID: LCS-55347	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Die	esel Rango	e Organics		
Client ID: LCSS	Batch	n ID: 55	347	F	RunNo: 7	2066					
Prep Date: 9/22/2020	Analysis D	ate: 9/	23/2020	S	SeqNo: 2	527106	Units: mg/#	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	53	10	50.00	0	106	70	130				
Surr: DNOP	5.3		5.000		106	30.4	154				
Sample ID: MB-55347	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Rang	e Organics		
Client ID: PBS	Batch	n ID: 55	347	F	RunNo: 7	2066					
Prep Date: 9/22/2020	Analysis D	ate: 9/	23/2020	S	SeqNo: 2	527109	Units: mg/k	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	ND	10									
Motor Oil Range Organics (MRO)	ND	50									
Surr: DNOP	11		10.00		113	30.4	154				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 16

2009B90

01-Oct-20

WO#:

ige 14 01 10

Client: R.T. H	icks Consult	ants, LT	D							
Project: Amere	dev- DeSoto	Release	e							
Sample ID: Ics-55331	Samp	Гуре: LC	S4	Tes	tCode: E	PA Method	8260B: Volat	iles Short	List	
Client ID: BatchQC	Batc	h ID: 55	331	F	RunNo: 7	2064				
Prep Date: 9/21/2020	Analysis [Date: 9/	23/2020	S	SeqNo: 2	524709	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.97	0.025	1.000	0	96.9	80	120			
Toluene	1.0	0.050	1.000	0	102	80	120			
Ethylbenzene	1.0	0.050	1.000	0	101	80	120			
Xylenes, Total	3.1	0.10	3.000	0	104	80	120			
Surr: 1,2-Dichloroethane-d4	0.42		0.5000		85.0	70	130			
Surr: 4-Bromofluorobenzene	0.50		0.5000		99.5	70	130			
Surr: Dibromofluoromethane	0.50		0.5000		101	70	130			
Surr: Toluene-d8	0.48		0.5000		96.3	70	130			
Sample ID: mb-55331	Samp ⁻	Гуре: МЕ	BLK	Tes	tCode: E	PA Method	8260B: Volat	iles Short	List	
Client ID: PBS	Batc	h ID: 55	331	F	RunNo: 7	2064				
Prep Date: 9/21/2020	Analysis [Date: 9/	23/2020	5	SeqNo: 2	524710	Units: mg/K	íg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 1,2-Dichloroethane-d4	0.43		0.5000		86.1	70	130			
Surr: 4-Bromofluorobenzene	0.50		0.5000		99.7	70	130			
Surr: Dibromofluoromethane	0.53		0.5000		106	70	130			
Surr: Toluene-d8	0.50		0.5000		99.6	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 16

2009B90

01-Oct-20

WO#:

Client: R.T. Hic	ks Consultan	ts, LT	D							
Project: Amerede	ev- DeSoto R	elease	e							
Sample ID: Ics-55331	SampTy	be: LC	S	Tes	Code: EF	PA Method	8015D Mod:	Gasoline I	Range	
Client ID: LCSS	Batch I	D: 55	331	F	unNo: 72	2064				
Prep Date: 9/21/2020	Analysis Da	te: 9/	23/2020	S	eqNo: 2	524727	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	20	5.0	25.00	0	79.6	70	130			
Surr: BFB	510		500.0		102	70	130			
Sample ID: mb-55331	SampTy	be: ME	BLK	Tes	Code: EF	PA Method	8015D Mod:	Gasoline I	Range	
Client ID: PBS	Batch I	D: 55	331	F	unNo: 72	2064				
Prep Date: 9/21/2020	Analysis Da	te: 9/	23/2020	S	eqNo: 2	524728	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	520		500.0		105	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 16 of 16

WO#: 2009B90 01-Oct-20

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Anal 49 Albuquer TEL: 505-345-3975 FAX Website: clients.hallenv	ysis Laboratory 01 Hawkins NE que, NM 87109 : 505-345-4107 ironmental.com	San	nple Log-In Check List
Client Name: R.T. Hicks Consultants, LTD	Work Order Number: 200)9B90		RcptNo: 1
Received By: Emily Mocho 9/*	19/2020 7:30:00 AM			
Completed By: Juan Rojas 9/2	21/2020 10:09:22 AM	4	liansig	~
Reviewed By: EM 9/21/20				
Chain of Custody				
1. Is Chain of Custody complete?	Yes	s 🔽	No 🗌	Not Present
2. How was the sample delivered?	Cou	urier		
<u>Log In</u>				
3. Was an attempt made to cool the samples?	Yes		No 🗌	NA 🗌
Were all samples received at a temperature of			No 🗔	
. Were all samples received at a temperature or >	0 C 10 6.0 C Yes			
. Sample(s) in proper container(s)?	Yes	~	No 🗌	
Sufficient sample volume for indicated test(s)?	Yes		No 🗌	
Are samples (except VOA and ONG) properly pre	served? Yes	~	No 🗌	
. Was preservative added to bottles?	Yes		No 🔽	NA 🗌
. Received at least 1 vial with headspace <1/4" for	AQ VOA? Yes		No 🗌	NA 🔽
0. Were any sample containers received broken?	Yes		No 🔽	/
				# of preserved bottles checked
1. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes		No 🗌	for pH: (<2 or >12 unless noted)
2 Are matrices correctly identified on Chain of Custo	odv? Yes	V	No 🗌	Adjusted?
3, Is it clear what analyses were requested?	Yes		No 🗌	
4. Were all holding times able to be met?	Yes		No 🗌	Checked by: SPA 2.21
(IT NO, NOTIFY CUSTOMER for authorization.)				/
pecial Handling (if applicable)				
5. Was client notified of all discrepancies with this o	rder? Yes		No 🗌	NA 🔽
Person Notified:	Date	_		
By Whom:	Via: 🗌 eN	lail 🗌 Phone	e 🗌 Fax	In Person
Regarding:				
Additional remarks:				
7. Cooler Information	-			
Cooler No Temp °C Condition Seal In	tact Seal No Seal D	ate Sign	ed By	
<u>, 0.7 000a </u>				

Client: R.T. Hicks Consultants R.Standard R.L. Mailing Address: 90.1 Fio. Clancke Blvd NW. Suite F.142 Project Name: Mailing Address: Mailing Address: Albuqueroutu. NM 87104 Project Name: Anneeredet v. Ecoto Release Mailing Address: Albuqueroutu. NM 87104 Project Name: Anneeredet v. Ecoto Release Albuqueroutu. NM 87104 Project K Anneeredet v. Ecoto Release Anneeredet v. Ecoto Release Albuqueroutu. NM 87104 Project K Anneeredet v. Ecoto Release Anneeredet v. Ecoto Release Albuqueroutu. NM 87104 Project K Anneeredet v. Ecoto Release Anneeredet V. Ecoto Release Albuqueroutu. NM 87104 Project K Anneeredet A (Full Validation) Project K Albudueroutu. NM 87104 Project K Anneeredet A (Full Validation) Anneeredet A (Full Validation) Albudueroutu. NM 87104 Anneeredet A (Full Validation) Anneeredet A (Full Validation) Anneeredet A (Full Validation) Albudueroutu. NM 87104 Anneeredet A (Full Validation) Anneeredet A (Full Validation) Anneeredet A (Full Validation) Albudueroutu. NM 87104 Anneeredet A (Full Validation) Anneeredet A										KONMEN.	
Project Name: Project Name: Mailing Address: Project Name: Mailing Address: Albuquerque, MM Sr104 Mailing Address: Albuquerque, MM Sr104 Mailing Address: Albuquerque, MM Sr104 Albuquerque, MM Sr104 Project Mainager: Maining Address: 505-266-5004 Project Mainager: Kristin Pope Marix Sampler: Kristin Pope Marix Matrix Sampler: Multi Project Mainager: Marix Sampler: Marix Sam	Client: K.I. HICKS Consultants		B. Standard	C Rush			AR	VIAIN	STS	TACODAT	VOC.
Mailing Address: Americaev Description Americaev	901 Rio Grande Blvd NW, Suite F-142		Project Nam	ö			M	w.haller	vironme	ental.com	
Albuquerque MB 87104 Project #: Albuquerque NM 87104 Plone #: 505-206-5004 Plone #: Flone #: Flore #: Flore #: Flore #: Flone #: Flore #: Flone #:	Mailing Address:		Ameredev -	DeSoto Relea	se	4901	Hawkins	NE - A	Ipuquero	que, NM 87109	
Project Manager: BORDA 61/2014 Finite # 505-266-5004 Finite # 805-266-5004 GAVAC Package: CAVAC Package: CAVAC Package: CAVAC Package:	Albuquerque, NM 87104		Project #:			Tel. 5	05-345-	3975	Fax 50	15-345-4107	
Email of Fax#: R@nthicksconsult.com Project Manager: 0A/0C Package: 0A/0C Package: I Level 4 (Full Validation) OA/0C Package: Evel 4 (Full Validation) Project Manager: Nonce Package: I Level 4 (Full Validation) Sampler: Kristin Pope Nonce Package: I Level 4 (Full Validation) Sampler: Kristin Pope Nonce Package: I Level 4 (Full Validation) Sampler: Kristin Pope Nonce Package: I Level 4 (Full Validation) Sampler: Kristin Pope Nonce Package: I Level 4 (Full Validation) Sampler: Kristin Pope Nonce Package: I Level 4 (Full Validation) Sampler: Kristin Pope Nonce Package: I Reservative HEAL No. Provertive Nonce Package: I Pope Cooler Templeauchance: L Pope Nonce Package: I Pope Pope Pope Pope Nonce Package: I Pope Doler Templeauchanes L Pope Pope Nonce Package: I Pope Pope Pope Pope Nonce Package: I	Phone #: 505-266-5004							Ana	lysis Re	equest	
QAQC Package: PAHe by 8310 or 8270SIMS Accreditation: Az Compliance Standard Image: Standard Image: Standard Standard Image: Standard Standard Standard Standard Image: Standard Image: Standard Standard Standard Image: Standard Standard Standard Standard Standard Image: Standard	email or Fax#: R@rthicksconsult.com		Project Mana	iger:		(0 (†		10:	-	(ţu	
MW 75:11 MU Date Conditate Devel 4 (Full Validation) Accreditation: Az Compliance Sampler: Kristin Pope Sampler: Kristin Pope Accreditation: Az Compliance Sampler: Kristin Pope Sampler: Kristin Pope Accreditation: Az Compliance Sampler: Kristin Pope Sampler: Kristin Pope Accreditation: Az Compliance Contert Preservative HEAL No. Preservative Accreditation: Accreditation: Accreditation Cooler: Cooler: Accreditation Accreditation: Accreditation: Accreditation Barrix Sampler: Kristin Pope Accreditation: Accreditation: Accreditation Barrix Sampler: Kristin Pope Accreditation: Accreditation: Accreditation Barrix Sampler: Kristin Pope Accreditation: Accreditation: Accreditation Cooler: Cooler: Accreditation Accreditation: Accreditation Type Type Accreditation Accreditation Accreditatine: Accreditation	QA/QC Package:			Kristin Pope		208 ЯМ 8'8:	SM	5 (əsq	
Accreditation: Date: Kristin Pope InELAC Onter: Zrompliance Sampler: Kristin Pope InELAC Onter: Zrompliance Sampler: Kristin Pope Inel: Inel: Inel: Inel: Inel: Inel: Inel: Inel: Inel: Inel: Inel: Inel: Inel: Inel:	X Standard D Level 4 (F.	ull Validation)				ЬС / ОХ) г (IIS0	29		Avtu	
Image: Contract of the solution of the	Accreditation:		Sampler.	Kristin Pope		9M7 7 DF 7 DF	(1.	-01	_	ləsə	
□ EDD (Type) □ EDD (Type)□ E E E E E E E E E E E E E E E E E E E	D NELAC D Other		On Ice:	D Yes	ON D	8/s	40g	s		(Pr)	
WP Cooler Templesurisces: 0. 3 - 0.1 - 0.1 MHE Name Cooler Templesurisces: ME Name Method	EDD (Type)		# of Coolers:	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 pc	elete OV			
Date Time Matrix Sample Name Container Preservative HEAL No. Employee Matrix Sample Name Type 2009590 Employee Matrix Sample Name Type 2009590 Employee Matrix Sample Name Type 2009590 Employee	d/r		Cooler Temp	(including CF): [].	8-0.1=0.7	TM. 15D	v 83 etpo	9M 8	(AO	ofilo	
1959 9180 100 <	Date Time Matrix Sample	Name	Container Type and #	Preservative Type	HEAL No.	(X3TEX) 991 PG	M) 803 d sHA	3 ARDS	N) 092	e) 012 O listo	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1959 9 10 20 soil A @ 0	tt h-	1 glass	ice	104		3		8	L	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0855 1 1 B 0 0	15 %-	(\subset	2007						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10950 1 1 1 C @ 0	tt h- (/	/	600			\wedge			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1005/1) 1000	11 h-1	/		100-			X			
$\begin{pmatrix} 1014 \\ 017 \\ 1017 \\ 1025 \\ 1035 \\ 1034 \\ 1034 \\ 1000 \\$	1010 1 1 1 1 1 10 0	tt h-(/		Dar	X					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11014 E 0 0	++ +-	-		-606			X			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1017 1 6 00	tt +-	/	-	-007						
VIDE A CO-4 77 1 -009 18 20 - 4 - 009 - 100 18 20 - 009 - 000 - 100 - 00	1025 /) H @ 0	-4 tt		/	-005			\triangle			
Violo 1959 (E @ 4,1 44) -010 18 20 1	1034 / I OO	-4 ft	_	/	-00-						
10959) A (a) 4,1 ft /) will	1010 / E @ 4.	17 11	_	/	-010 12	XXX					
	20959 A B (a) 4.	1 ++	-		110-			X			
1040 / 1 A (25.0 ft / 1 - UN	1040 /) A @ 5.	17 0.	_	/	20-						
Date: Time: Relinquished by: Via: Date Time Remarks: email to	Date: Tinje: Relinquished by:		Received by:	Via:	Date Time	Remarks:	email	to kristii	@rthick	ksconsult.com	
1420 1430 1430 Marstin Pene Williamminen 9/18/30 1430	alpha 1400 Marstin Pope	0	UNAMAN	CANN	08/1 08/31/1						
Date: Time: Relinquished by: / Received by: Via: Via: Date Time	Date: Time: Relinquished by:		Received by:	Via: V	Date Time						
118/20 1900 QUUMANA DE 200 COURIER 9/19/20 7:30	101/10/10/10/10/10/10/10/10/10/10/10/10/		J WNZ	ourier	9/19/20 7:30						

August 26, 2020

KRISTIN POPE R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE, NM 87104

RE: DE SOTO RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 08/20/20 11:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-20-13. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS KRISTIN POPE 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	08/20/2020	Sampling Date:	08/13/2020
Reported:	08/26/2020	Sampling Type:	Soil
Project Name:	DE SOTO RELEASE	Sampling Condition:	Cool & Intact
Project Number:	RECYCLING FACILITY	Sample Received By:	Tamara Oldaker
Project Location:	AMEREDEV		

Sample ID: A @ 0-2' (H002190-01)

Chloride, SM4500CI-B	mg/	kg	Analyzed	l By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2200	16.0	08/21/2020	ND	416	104	400	0.00	

Sample ID: B @ 0-2' (H002190-02)

Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2480	16.0	08/21/2020	ND	416	104	400	0.00	

Sample ID: C @ 0-2' (H002190-03)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/21/2020	ND	2.09	105	2.00	1.71	
Toluene*	<0.050	0.050	08/21/2020	ND	2.07	104	2.00	1.77	
Ethylbenzene*	<0.050	0.050	08/21/2020	ND	2.06	103	2.00	1.48	
Total Xylenes*	<0.150	0.150	08/21/2020	ND	5.97	99.5	6.00	1.61	
Total BTEX	<0.300	0.300	08/21/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.2 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6080	16.0	08/21/2020	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS KRISTIN POPE 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	08/20/2020	Sampling Date:	08/13/2020
Reported:	08/26/2020	Sampling Type:	Soil
Project Name:	DE SOTO RELEASE	Sampling Condition:	Cool & Intact
Project Number:	RECYCLING FACILITY	Sample Received By:	Tamara Oldaker
Project Location:	AMEREDEV		

Sample ID: C @ 0-2' (H002190-03)

TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/24/2020	ND	183	91.6	200	6.67	
DRO >C10-C28*	<10.0	10.0	08/24/2020	ND	182	91.0	200	5.19	
EXT DRO >C28-C36	<10.0	10.0	08/24/2020	ND					
Surrogate: 1-Chlorooctane	90.0	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	94.4	% 42.2-15	6						

Sample ID: BACKGROUND @ 0-2' (H002190-04)

Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	08/21/2020	ND	416	104	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose share there are also on the services are interruptions, loss of profits incurred by client, its subsidiaries, afflictes or successor arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 11/24/2020 7:47:13 AM

Relinquished By Sampler - UPS - Bus - Other: service. In no event shall Cardinal be fiable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable Relinquished By: PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim Company Name: RT Sampler Name: Project Location: Phone #: 505-966-5004 city: Albuquerque Project Manager: Delivered By: (Circle One) Project Name: Project #: Address: 901 FOR LAB USE ONLY 4002190 Lab I.D. Condinal connet accent unrhal channe S aboratories N ising out of or related to the 000 background @ DeSoto 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476 Rio Grande Blvd NW Kristin 0 Recycl 2 Kristin 0 0-2 0-2 0-2 HICKS Sample I.D. ina Release Uate: 7-20 Time: 1/25 onsultants 5 0-2 tacilit Fax #: Time: Project Owner: Amerida V w P. State: //// 20 -20 4 Diasen fav #113 F-142 Zip: 87/04 0 C 0 (G)RAB OR (C)OMP. Received By: Received, By: written channe to (272) 202_3232 **# CONTAINERS** GROUNDWATER whether based in contract or tort, shall be limited to the amount paid by the client for the Cool Intact Yes Yes No No Sample Condition WASTEWATER MATRIX SOIL OIL claim SLUDGE State: Fax #: City: OTHER : Address: P.O. #: Phone #: Attn: Kondy Company: RT Hicks ACID/BASE: PRESERV CHECKED BY ICE / COOL 10 (Initials) BILL TO OTHER : the above stated 8-13-20 Zip: DATE 1 -SAMPLING 36 Hicks Phone Result: Fax Result: REMARKS: CHAIN-OF-CUSTODY AND ANALYSIS REQUEST Sample with highest [C1-]. Email to Kristin@ thicks consult. com RUN BTEX, DRO, GRO, MRS 1100 1045 1010 1510 TIME Chloride □ Yes SE F BELOV Add'l Phone #: Add'l Fax #: ANALYSIS REQUEST huo 00

Page 65 of 109

ഹ

Page 5 of

August 26, 2020

KRISTIN POPE R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE, NM 87104

RE: DE SOTO RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 08/20/20 11:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-20-13. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS KRISTIN POPE 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	08/20/2020	Sampling Date:	08/13/2020
Reported:	08/26/2020	Sampling Type:	Soil
Project Name:	DE SOTO RELEASE	Sampling Condition:	Cool & Intact
Project Number:	RECYCLING FACILITY	Sample Received By:	Tamara Oldaker
Project Location:	AMEREDEV		

Sample ID: D @ 0-1.5' (H002191-01)

Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4080	16.0	08/21/2020	ND	416	104	400	0.00	

Sample ID: E @ 0-1.5' (H002191-02)

Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3360	16.0	08/21/2020	ND	416	104	400	0.00	QM-07

Sample ID: F @ 0-1.0' (H002191-03)

Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2160	16.0	08/21/2020	ND	416	104	400	0.00	

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS KRISTIN POPE 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	08/20/2020	Sampling Date:	08/13/2020
Reported:	08/26/2020	Sampling Type:	Soil
Project Name:	DE SOTO RELEASE	Sampling Condition:	Cool & Intact
Project Number:	RECYCLING FACILITY	Sample Received By:	Tamara Oldaker
Project Location:	AMEREDEV		

Sample ID: G @ 0-1.5' (H002191-04)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/21/2020	ND	2.09	105	2.00	1.71	
Toluene*	<0.050	0.050	08/21/2020	ND	2.07	104	2.00	1.77	
Ethylbenzene*	<0.050	0.050	08/21/2020	ND	2.06	103	2.00	1.48	
Total Xylenes*	<0.150	0.150	08/21/2020	ND	5.97	99.5	6.00	1.61	
Total BTEX	<0.300	0.300	08/21/2020 ND						
Surrogate: 4-Bromofluorobenzene (PID 100 % 73.3-12		9							
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result Reporting Limit		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5920	16.0	08/21/2020	ND	416	104	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/24/2020	ND	183	91.6	200	6.67	
DRO >C10-C28*	<10.0	10.0	08/24/2020	ND	182	91.0	200	5.19	
EXT DRO >C28-C36	<10.0	10.0	08/24/2020	ND					
Surrogate: 1-Chlorooctane	100 9	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	104 9	42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose share there are also on the services are interruptions, loss of profits incurred by client, its subsidiaries, afflictes or successor arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 11/24/2020 7:47:13 AM

Page 70 of 109 ഹ Page 5 of

ARDINAL

aboratories

Appendix C

Drillers' Logs of Nearby Water Wells

Revised June 1972

STATE ENGINEER OFFICE
WELL RECORD

(A) Owner's Weil No			•	Section 1	. GENER		FORMATION	l .				
Street or Post Office Address 4D DEALLO 2012 31 City and Stilled under Permit No. $CP - 933$ and is located in the: 25 a 4 4 S.E. 4 of Section 33 Township 4 @ Range 36 E NM.P.M b. Tract No of Block No of the Country. c. Lot No of Block No of the Country. d. Xe test, Y= (est, N.M. Coordinate System Zone in b. Tract No of Block No of the Country. d. Xe test, Y= (est, N.M. Coordinate System Zone in the Country. d. Xe test, Y= (est, N.M. Coordinate System Zone in Grant (B) Drilling Contractor DLAGO Drilling Q License No. Lul D = 1607. Address P.O. BOX . To G1 Section 2 S - 7.2 - 2.6 Type tools $BACk(t_{} Size of hole 33/4 In Exercision of lad auface or at well is ft. Total depth of well 300 ft. Completed well is blatlow Eff artesian. Depth to water upon completion of well 200 ft. Depth in Feet There Description of Water-Bearing Formation (address per munito) \frac{3500}{300} \frac{360}{300} \frac{500}{400} \frac{500}{400} \frac{500}{300} \frac{100}{300} \frac{360}{300} \frac{360}$	(A) Owner of	r well Jay	Anthe	<u>od</u> .	30		·	Owne	r's We	ll No	· · ·	
Weil was drilled under Permit No CP - 933 and is located in the: SS a 4 SE 4 of Section 32 Township Ale SE NM P.M b. Tract No of Map No. of the	Street or City and	Post Office Ad State	Idress <u>P.O. P</u> New Me	o x · S	2825	5.2		······································	 ·			
a. W. W. SEE. W of Section 33 Township 36.2 Range 3.6.2 N.M.P.M. b. That No. of the	Well was drilled	i under Permit	No	P-93	8		_ and is located	in the: 755		- <u> </u>		
b. Tract NoOf Map NoOf the	a	_ ¼ ¼	SE 15	¼ of Se	ction	33	Township	AG B Rai		36E	N.M.P.M	
c. Lot NoOf Block NoCounty. d. X=County. d. X=feet, Y*feet, N.M. Coordinate SystemCounty. County. d. X=Get, Y=feet, N.M. Coordinate SystemCounty. County. d. X=Get, Y=Get, N.M. Coordinate SystemCounty. County. d. X=Get, Y=Get, Y=Get, N.M. Coordinate SystemCounty. County. d. X=Get, Y=Get, Y=Get, Y=Get, Y=	b. Tract	No	of Map No		· ·	of the		· · ·		· · · · · · · · · · · · · · · · · · ·		
d. X=	c. Lot N Subdi	o	of Block No			of the				· · · · · · · · · · · · · · · · · · ·		
(B) Drilling Contractor Dix GO Drilling License No. LJD-1607 Address P.O. BOX. 1561 Section 2. TX. 793600 Size of hole 334 in. Drilling Began S=10=0.6 completed S=12=26 Type tools Bottaty size of hole 334 in. Elevation of land surface or	d. X= the		_ feet, Y=		fe	et, N.	M. Coordinate	System		• <u></u>	Zone in Grant.	
Address P.O. BOX 561 Semirode: Tx. 79360 Drilling Began 5-10-06 Completed 5-12-06 Type tools Address Elevation of land surface or	(B) Drilling (uran f	Deillie	X.			License No	ЛL	-1607	•••	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Address P.O	. Box 151	61 50	eninol	e To	 X	79360					
Elevation of land surface or	Drilling Began	5-10-0	2 <u>6</u> Comp	eted <u>5</u> -	12-0	6	Type tools	hotary	Si	ze of hole	\$ <u>3/4</u> in.	
Completed well is Image: Section 2. PRINCIPAL WATER-BEARING STRATA Depth in Feet Thickness in Feet Description of Water-Bearing Formation Base of the section 2. PRINCIPAL WATER-BEARING STRATA Depth in Feet Thickness in Feet Description of Water-Bearing Formation Base of the section 2. PRINCIPAL WATER-BEARING STRATA Base of the section 2. PRINCIPAL WATER-BEARING STRATA Base of the section 3. RECORD of CASING Base of the section 3. RECORD OF CASING Diameter Pounds (inches) per foot per in. Top Bottom (feet) Type of Shoe Perforations From Top Section 3. RECORD OF MUDDING AND CEMENTING Section 4. RECORD OF MUDDING AND CEMENTING Section 5. RECORD OF MUDDING AND CEMENTING Section 5. PLUGGING RECORD State Engineer Representative State Engineer Representative State Engineer Representative	Elevation of la	nd surface or _		<u> </u>	<u></u> ·	at well	l is	ft. Total depth	of we	<u>360</u>	 ft.	
Section 2. PRINCIPAL WATER-BEARING STRATA Depth in Feet Thickness Description of Water-Bearing Formation Estimated Yield (gallons per minute) 350 385 35 hay ers of rockst Sand 30 300 3(60 160 hay ers of rockst Sand 30 300 3(60 160 hay ers of rockst Sand 30 Section 3. RECORD OF CASING Diameter Pounds Threads Depth in Feet Length Type of Shoe Perforations 5:0 0 360 360 360 360 360 Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Method of Placement 6 10 3'4 7 35'4 Section 5. PLUGGING RECORD Section 5. PLUGGING RECORD State Engineer Representative State Engineer Representative State Engineer Representative FWL FSL Out of 5/30/06 For Use of State EngINEER ONLY State Engineer Representative <td>Completed wel</td> <td>lis 🗆 sl</td> <td>hallow 🗹 ar</td> <td>tesian.</td> <td></td> <td>:</td> <td>Depth to water</td> <td>upon completior</td> <td>of we</td> <td><u>11 - 80</u></td> <td> ft.</td>	Completed wel	lis 🗆 sl	hallow 🗹 ar	tesian.		:	Depth to water	upon completior	of we	<u>11 - 80</u>	ft.	
Depth in Feet Thickness Description of Water-Bearing Formation Estimated Yield (gallons per minute) 350 385 35 hay ers of rockst Sand 30 300 360 60 hay ers of rockst Sand 30 300 360 60 hay ers of rockst Sand 30 300 360 60 hay ers of rockst Sand 30 300 360 60 hay ers of rockst Sand 30 300 360 10 10 10 10 Section 3. RECORD OF CASING Perforations From To 10 360 510 0 360 360 360 360 Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole 10 324 7 10 10 Section 5. PLUGGING RECORD Section 5. PLUGGING RECORD State Engineer Representative For USE OF STATE ENGINEER ONLY Top Bottom of Cement Adven			Secti	ion 2. PRIN	CIPAL W	ATER	BEARING ST	RATA				
350 385 35 $hay ers$ of rockst Sand 30 300 360 60 $hay ers$ of rockst Sand 30 300 360 60 $hay ers$ of rockst Sand 35 Diameter Pounds Threads Depth in Feet Length Type of Shoe Perforations (inches) per foot per in. Top Bottom (feet) Type of Shoe Perforations Section 4. RECORD OF MUDDING AND CEMENTING 0 360 360 360 360 Depth in Feet Hole of Mud of Cement Method of Placement From To Diameter of Mud of Cement 560 0 10 $3^3/4$ 7 560 560 Plugging Contractor	Depth	in Feet	Thickness in Feet]	Descriptio	on of V	Vater-Bearing F	ormation	i u	Estimated gallons per n	r ield ninute)	
Section 3. RECORD OF CASING Diameter Pounds Threads Depth in Feet Length Type of Shoe Perforations Inches) per foot per in. Top Bottom (feet) Type of Shoe Perforations Sin 0 360 360 360 360 360 Section 4. RECORD OF MUDDING AND CEMENTING Section 4. RECORD OF MUDDING AND CEMENTING Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole O 360 360 Section 5. PLUGGING RECORD V Section 5. PLUGGING RECORD Section 5. PLUGGING RECORD Plugging Contractor Section 5. PLUGGING RECORD Section 5. PLUGGING RECORD V Section 5. PLUGGING RECORD Section 5. PLUGGING RECORD Section 5. PLUGGING RECORD Section 5. PLUGGING RECORD Section 5. PLUGGING RECORD State Engineer Representative 1 Bottom of Cement 1 Bottom State Engineer Representative State Engineer Representative State Engineer Representative 1 For USE OF STATE ENGINEER ONLY State Section So. 25-36-33. 44	250	285	35	h	aupr	5 (of rock	StSand		20		
Section 3. RECORD OF CASING Diameter (inches) Pounds per foot Threads Depth in Feet Top Length (feet) Type of Shoe Perforations 510 0 360 360 360 360 360 360 Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Method of Placement 0 10 3'4 7 36'4' 7 36'4' Section 5. PLUGGING RECORD Weiging Contractor Address Plugging Contractor Address Plugging approved by: Section 5. PLUGGING RECORD State Engineer Representative FOR USE OF STATE ENGINEER ONLY Top Bottom Of Sign / 000 For USE OF STATE ENGINEER ONLY Top Sign / 000 For USE OF STATE ENGINEER ONLY Top Sign / 000 File No. CP-938	300	3(00)	60	hai	105	νt	racks +	- Sand		25	<i>.</i> .	
Section 3. RECORD OF CASING Diameter Pounds Treads Depth in Feet Length Type of Shoe Perforations Sin 0 360 361 360 360 Section 4. RECORD OF MUDDING AND CEMENTING Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Method of Placement Section 5. PLUGGING RECORD State Engineer Representative State Engineer Representative FOR USE OF STATE ENGINEER ONLY Top Bottom Top State Engineer Representative Top Bottom Top State Engineer Representative Top <td></td> <td></td> <td></td> <td>- mark</td> <td>jeu</td> <td>-01</td> <td>10010</td> <td></td> <td>-</td> <td>0.5</td> <td>• ••</td>				- mark	jeu	-01	10010		-	0.5	• ••	
Section 3. RECORD OF CASING Diameter (inches) Pounds per foot Threads per in. Depth in Feet Length (reet) Type of Shoe Perforations 5 in 0 360 361 200 360 5 in 0 360 361 200 360 Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Method of Placement 6 10 83/4 7 360 360 360 Section 5. PLUGGING RECORD Plugging Contractor Address Plugging Method Depth in Feet Cubic Feet No. Depth in Feet Of Cement Address Plugging Contractor Address Plugging approved by: State Engineer Representative For USE OF \$TATE ENGINEER ONLY #358##8 W1040 Quad FWL FSL Greption of Cement Add		·	<u>.</u>		· · · ·			<u> </u>				
Section 3, RECORD OF CASING Diameter Pounds Threads Depth in Feet Type of Shoe Perforations Sin 0 360 361 360 360 360 Sin 0 360 361 360 360 Section 4. RECORD OF MUDDING AND CEMENTING Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Method of Placement O 10 3/4 7 360 360 Section 5. PLUGGING RECORD 360 360 360 360 Plugging Contractor		<u>L</u>	<u>;</u>						L	······		
(inches) per foot per in. Top Bottom (feet) Type of shoe From To 5 i 0 0 3 G0 3 G0 <t< td=""><td>Diameter</td><td>Pounds</td><td>Threads</td><td>Sectio Depth</td><td>in Feet</td><td>OKD</td><td>Length</td><td>Turne of She</td><td></td><td>Perfor</td><td>ations</td></t<>	Diameter	Pounds	Threads	Sectio Depth	in Feet	OKD	Length	Turne of She		Perfor	ations	
Sin 0 360 361 360 360 Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Method of Placement 0 10 374 7 360 0 10 374 7 360 0 10 374 7 360 Section 5. PLUGGING RECORD State Engineer Representative <td c<="" td=""><td>(inches)</td><td>per foot</td><td>per in.</td><td>Тор</td><td>Botto</td><td>om</td><td>(feet)</td><td>i ype of Sho</td><td></td><td>From</td><td>To</td></td>	<td>(inches)</td> <td>per foot</td> <td>per in.</td> <td>Тор</td> <td>Botto</td> <td>om</td> <td>(feet)</td> <td>i ype of Sho</td> <td></td> <td>From</td> <td>To</td>	(inches)	per foot	per in.	Тор	Botto	om	(feet)	i ype of Sho		From	To
Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Method of Placement 0 10 8 ³ /4 7 3 3 3 0 10 8 ³ /4 7 3 3 3 3 No. Depth in Feet Cubic Feet Top Bottom Of Cement No. Depth in Feet Cubic Feet Plugging Contractor Address No. Depth in Feet Cubic Feet 1 1 1 1 Date Will Plugged Plugging approved by: 3 4 1 State Engineer Representative FOR USE OF STATE ENGINEER ONLY #358#98 WMd FWL FSL FUL FUL State Engineer Representative FOR USE OF STATE ENGINEER ONLY FUL FUL FUL FUL CP-938 Use Us	5in	-		0	360	2	361			260	360	
Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Method of Placement 0 10 83/4 7 3023 0 10 83/4 7 3023 10 83/4 7 3023 3023 10 83/4 7 3023 3023 10 83/4 7 3023 3023 Section 5. PLUGGING RECORD Plugging Contractor Address Plugging Method Date Well Plugged Plugging approved by: 7 1 2 State Engineer Representative FOR USE OF STATE ENGINEER ONLY #3584498 4040 Plug Date Received P5/30/06 FWL FSL FIL Mon. CP-938 How Location No. 25: 36: 33: 44		·		<u> </u>				 				
Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Method of Placement Image: Contractor			1 1	•	l			L, <u></u>		<u> </u>		
From To Diameter of Mud of Cement Internet of Mud of Cement \bigcirc Plugging Contractor	Depth	in Feet	Sectio Hole	n 4. RECO Saci	RD OF M	UDDI Cu	NG AND CEM	ENTING				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	From	То	Diameter	of M	ud	of	Cement				- HSI	
Section 5. PLUGGING RECORD Plugging Contractor Address Plugging Method Date Well Plugged Plugging approved by: State Engineer Representative For USE OF STATE ENGINEER ONLY #358498 Quad File No. CP-938 Use State Income No. 25.36.33.444	6	10	874	7				• 		×	SWEE	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					<u>.</u>					<u> </u>		
Section 5. PLUGGING RECORD Plugging Contractor	L						L			2014 1014		
Address Depth in Feet Cubic Feet Plugging Method Image: Comparison of Cement Image: Comparison of Cement Image: Comparison of Cement Date Well Plugged Image: Comparison of Cement Image: Comparison of Cement Image: Comparison of Cement State Engineer Representative Image: Comparison of Cement Image: Comparison of Cement Image: Comparison of Cement Date Received 05/30/06 FOR USE OF STATE ENGINEER ONLY #358498 Generation File No. CP-938 Use Image: CP-938 For Use OF State	Plugging Contr	actor		Sectio	on 5. PLU	ĠĠĨŇ	G RECORD		â,	1:30		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Address						No.	Depth in	Feet	Cu	bic Feet	
Plugging approved by: 2 State Engineer Representative 3 Date Received $05/30/06$ For USE OF STATE ENGINEER ONLY $#358498$ UT047 Quad FWL FSL Guad FWL FSL Use HK Location No. $25.36.33.444$	Date Well Plug	ged			· ·				Botto			
State Engineer Representative 4 FOR USE OF STATE ENGINEER ONLY #358498 47747 Quad FWL FSL Use Location No. 25.36.33, 44	Plugging appro	ved by: 	Charles Davas			•						
Date Received 05/30/06 FOR USE OF STATE ENGINEER ONLY #358498 471047 Quad		<u></u>				2	4					
File No CP-938 Use Location No. 25.36.33.44	Date Received	05/30/0	6	FOR USE	OF STA	TE EN Ouad	IGINEER ONL	Y #	35	87998 (FSI	e-1 1047	
	File No	CP-9	38		Use	Št	te	Location No.	5.5	36,33,	44	

. Released to Imaging: 2/3/2021 11:41:42 AM
Received by OCD: 11/24/2020 7:47:13 AM

Depth	in Feet	Thickness	Color and Type of Material Encountered
From	10		
0	5	5	Tapsoil
5	75	70	Caliche + Sand
75	85	10	layers of Packs + Sand
85	250	165	Bed Clay + White Sand
250	285	35	layers of Rock twhite Sand
285	300	15	Clay + White Sand
300	360	60-	layers of Rocks + White Sand
· · · · · ·			
- v	`		
	-		
<u>,</u> *		· · · ·	
-		•	· · · · · · · · · · · · · · · · · · ·
. • • • • •	·		
		-	
	·		
	· · · · · · · · · · · · · · · · · · ·	:	
· .	·		
·			
	· · · · · · · · · · · · · · · · · · ·		

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Driller ` . ئ

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a)-and Section 5 need be completed.

Released to Imaging: 2/3/2029 18:41:42 AM

т М

AUG 16

STATE ENGINEER ROSWELL, NEW 1

Stk

358498

Page 73 of 109

WELL F CORD & LOG OFFICE OF THE STATE ENGINEER

Ì	www.ose.state.nm.us	
/		

	1912		wv	ww.ose.state	.nm.us			()	PY(
ATION	OSE POD NU	JMBER (V	VELL I	NUMBER)				OSE FILE NUI CP-1285 PHONE (OPTI	MBER(S)		
LL LOC				DDRESS	Y, LLC & ATK	INS ENGINEEF	RING A		2489 	STATE	ZIP
WE	1.0.00										
AL AND	WELL LOCATION		ATIT	DEGREE 32 UDE	s мілит 03	03 55 N		* ACCURACY REQUIRED: ONE TENTH OF A SECOND			
INER	(FROM GI	2S)	ONG	ITUDE 103	17	37	W	W *DATUM REQUIRED: WGS 84			
1. GI	SE 1/4,	SW 1/	4, S	W 1/4, SECT	ION 05, TOW	NSHIP 26 SOU	TH, RAN	IGE 36 EA	ST N.M.P.M		
	LICENSE NU WD-160	MBER 17	i I	NAME OF LICENSED	DRILLER Y) DURAN				DURAN DRIL	ILING COMPANY LING	
	DRILLING STARTED DRILLING ENDED 7/01/15 7/6/15		drilling ended 6/15	DEPTH OF COMPL 511	ETED WELL (FT)	BORE HOLE DEPTH (FT) 510		DEPTH WATER FIR 250		NT &	
N	COMPLETED WELL IS: O ARTESIAN O DRY HOLE SHALLOW (UNCON					ONFINED)	STATIC WATER LEVEL IN COMPLETED WELL			WELL (FT)	
АТІС	DRILLING F	LUID:	0	AIR	O MUD	ADDITIVES – SPE	CIFY: DF	RILLING M	UD	Ū	
DRM	DRILLING METHOD: O ROTARY				O HAMMER	O CABLE TOOL	O OTHE	R - SPECIFY:		10 10 mail 21 - 24 21 - 24	
SING INFO	DEPTH (feet bgl) FROM TO		BORE HOLE DIAM (inches)	CASING MATERIAL AND/OR GRADE (include each casing string, and note sections of screen)		CA CONN T	ASING NECTION TYPE	CASING INSIDE DIAM. (inches)	CASING-WAI THICKNESS (inches)	SIZE (inches)	
& CA	0	190		16	STEEL STE		STEEL	PERF	10	1/4	
ILLING	190	510		16	STEEL PE	RF	STEEL		10	1/4	1/8
2. DR											
						· · · · · · · · · · · · · · · · · · ·					
					 	······································					
	DEPTH	(feet bgl)	BORE HOLE		ANNULAR SEAL MA	ATERIAL A		AMOUNT	LMET	THOD OF
RIAI	FROM 0	то - 20		16	20 BGS 80	BACK SIZE-RANG					
MATE	20	510		16	36 YARDS	1/4 GRAVEL P/	ACK				
INULAE	·										
3. AN											
	OSE INTER	NAL US	E	l	<u> </u>		1 - 1 - 1		0 WELL RECORD	L & LOG (Version	06/08/2012)
FILE	NUMBER		2-2	1285		POD NUMBER	·····	TRN 1	NUMBER 664	1512	
LOC	ATION	200	S.	36E.5.	3.3.3)		·····		PA	GE 1 OF 2

LOCATION

	FROM	TO	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)	WATER BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
t	0	1	1	TOPSOIL		
T	1	16	15	CALICHE	OY ON	
T	16	230	214	CLAY	OY ON	
	230	285	55	ROCK	OY ON	
Ī	285	290	5	SAND	OY ON	20
Ī	290	315	25	ROCK	OY ON	40
	315	507	192	SAND	O Y O N	30
l	507	510	3	RED BED	OY ON	
					O ^Y O ^N	
					O ^Y O ^N	
					O ^Y O ^N	
l						
I					O ^Y O ^N	
l					O ^Y O ^N	
					O ^Y O ^N	
_		<u> </u>		· · · · · · · · · · · · · · · · · · ·		
ļ						
		ļ				
	METHOD L	JSED TO E	STIMATE VIELI BAILER C	D OF WATER-BEARING STRATA: O PUMP OTHER SPECIFY:	O Y O N O Y O N TOTAL ESTIMATED WELL YIELD (gpm):	90
	METHOD U O AIR LIF WELL TES	JSED TO E T O ST TEST STAI	STIMATE YIELL BAILER C RESULTS - ATT KT TIME, END TI	D OF WATER-BEARING STRATA: O PUMP OTHER - SPECIFY: FACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCL IME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVE	OYON OYON TOTAL ESTIMATED WELL YIELD (gpm):	90 ÆTHOD, D.
	METHOD U O AJR LIF WELL TES MISCELLA PRINT NAR LUIS A.	USED TO E T TEST ST TEST STAI NEOUS IN ME(S) OF I DURAN	STIMATE YIELL BAILER C RESULTS - ATTI TIME, END TH FORMATION:	D OF WATER-BEARING STRATA: O PUMP OTHER - SPECIFY: TACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCL IME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVE	OYON OYON TOTAL ESTIMATED WELL YIELD (gpm): LUDING DISCHARGE N R THE TESTING PERIO	90 ÆTHOD, D. AN LICENSEE:
	METHOD I O AJR LIF WELL TES MISCELLA PRINT NAH LUIS A. THE UNDE CORRECT AND THE I	JSED TO E T © ST TEST STAT INEOUS IN ME(S) OF I DURAN ERSIGNED RECORD O PERMIT HO	STIMATE YIELI BAILER C RESULTS - ATT TTIME, END TH FORMATION: DRILL RIG SUPE HEREBY CERTI DF THE ABOVE I DLIDER WITHIN	D OF WATER-BEARING STRATA: O PUMP) OTHER - SPECIFY: TACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCL IME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVE IME, AND A TABLE SHOWING DISCHARGE AND BELLE IME, AND A TAB	OYON OYON TOTAL ESTIMATED WELL YIELD (gpm): LUDING DISCHARGE N R THE TESTING PERIO	90 RETHOD, D. AN LICENSEE: A TRUE AND TE ENGINEER
	METHOD L O AIR LIF WELL TES MISCELLA PRINT NAH LUIS A. THE UNDER CORRECT AND THE I	JSED TO E T © ST TEST STAI INEOUS IN ME(S) OF I DURAN RECORD O PERMIT HO RECORD O PERMIT HO RECORD O	STIMATE YIELI BAILER C RESULTS - ATI (T TIME, END TI FORMATION: FORMATION: BRILL RIG SUPE HEREBY CERTI DF THE ABOVE I DI DER WITHIN	D OF WATER-BEARING STRATA: O PUMP O OTHER - SPECIFY: TACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCI IME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVE RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONS IFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RE 20 DAYS AFTER COMPLETION OF WELL DRILLING;	OYON OYON TOTAL ESTIMATED WELL YIELD (gpm): LUDING DISCHARGE N R THE TESTING PERIO	90 AETHOD, D. AN LICENSEE: A TRUE AND TE ENGINEER
	METHOD I O AJR LIF WELL TES MISCELLA PRINT NAR LUIS A. THE UNDE CORRECT AND THE I	JSED TO E T O ST TEST ST TEST STAI INEOUS IN INEOUS IN IN INEOUS IN IN IN IN IN IN IN IN IN IN IN IN IN I	STIMATE YIELI BAILER C RESULTS - ATT RT TIME, END TH FORMATION: FORMATION: ORILL RIG SUPE HEREBY CERTI OF THE ABOVE I DIDER WITHIN TURE OF DRILL	D OF WATER-BEARING STRATA: O PUMP) OTHER – SPECIFY: TACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCL IME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVE IME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVE TRVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONS FFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELLE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RE 20 DAYS AFTER COMPLETION OF WELL DRILLING;	OYON OYON TOTAL ESTIMATED WELL YIELD (gpm): LUDING DISCHARGE N R THE TESTING PERIO STRUCTION OTHER TH EF, THE FOREGOING IS ECORD WITH THE STA -(0-15 DATE	90 ÆTHOD, D. AN LICENSEE: A TRUE AND TE ENGINEER
	METHOD I O AJR LIF WELL TES MISCELLA PRINT NAH LUIS A. THE UNDE CORRECT AND THE I	JSED TO E T © ST TEST STAI INEOUS IN ME(S) OF I DURAN ERSIGNED RECORD O PERMIT HO SIGNA	STIMATE YIELI BAILER C RESULTS - ATT KT TIME, END TI FORMATION: DRILL RIG SUPE HEREBY CERTI DE THE ABOVE I DIDER WITHIN TURE OF DRILL	D OF WATER-BEARING STRATA: O PUMP OTHER - SPECIFY: TACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCI IME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVE RE, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVE REVISIOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONS FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELLE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RE 20 DAYS AFTER COMPLETION OF WELL DRILLING; MUSS M. Dakam ER / PRINT SIGNEE NAME WR-20 WEL	OYON OYON TOTAL ESTIMATED WELL YIELD (gpm): LUDING DISCHARGE N R THE TESTING PERIO STRUCTION OTHER TH EF, THE FOREGOING IS ECORD WITH THE STA -(0-15 DATE	90 AETHOD, D. AN LICENSEE: A TRUE AND TE ENGINEER
	METHOD I O AIR LIF WELL TES MISCELLA PRINT NAH LUIS A. THE UNDER CORRECT AND THE I CORRECT AND THE I COSE INTER E NUMBER	JSED TO E T ISSI ST TEST STAI INEOUS IN ME(S) OF I DURAN RECORD O PERMIT HO SIGNA RNAL USE	STIMATE YIELL BAILER C RESULTS - ATT RT TIME, END TH FORMATION: FORMATION: DRILL RIG SUPE HEREBY CERTI DF THE ABOVE I DIDER WITHIN TURE OF DRILL	D OF WATER-BEARING STRATA: O PUMP O OTHER - SPECIFY: TACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCL IME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVE RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONS FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RE 20 DAYS AFTER COMPLETION OF WELL DRILLING;	OYON OYON TOTAL ESTIMATED WELL YIELD (gpm): LUDING DISCHARGE N R THE TESTING PERIO STRUCTION OTHER TH EF, THE FOREGOING IS ECORD WITH THE STAT -(0-15 DATE LL RECORD & LOG (Ve ER	90 AETHOD, D. AN LICENSEE: A TRUE AND TE ENGINEER ISION 06/08/2012
	METHOD I O AJR LIF WELL TES MISCELLA PRINT NAN LUIS A. THE UNDE CORRECT AND THE I AND THE I COSE INTER E NUMBER CATION	JSED TO E T O ST TEST STAI INEOUS IN ME(S) OF I DURAN ERSIGNED RECORD O PERMIT HO SIGNA RNAL USE	STIMATE VIELL BAILER C RESULTS - ATTI TTIME, END THE FORMATION: DRILL RIG SUPE HEREBY CERTIT DO THE ABOVE I DIDER WITHIN TURE OF DRILL	D OF WATER-BEARING STRATA: O PUMP O OTHER - SPECIFY: Intermediate the second provided on the second provided prov	OYON OYON TOTAL ESTIMATED WELL YIELD (gpm): LUDING DISCHARGE N R THE TESTING PERIO STRUCTION OTHER TH EF, THE FOREGOING IS ECORD WITH THE STA COND WITH THE STA DATE	90 ÆTHOD, D. AN LICENSEE: A TRUE AND TE ENGINEER rsion 06/08/2012 PAGE 2 OF 2

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

CATION	BECKH	ER NAME(S) AM RAN	CH, INC. / MST	APLETON, LLC		PHONE (OPTIC 575-441-	DNAL) 3045			
VELL LO	WELL OWN P.O. BO	er mailing X 823	ADDRESS				<u>,</u>	STATE NM 882	^{ZIP} 52	
1. GENERAL AND W	WELL LOCATIO (FROM GF DESCRIPTION SE 1/4,	N LAT S) LON N RELATING W NW 1/4,	DEGREES 32 GITUDE 103 ELL LOCATION TO STREE SW 1/4, SECTI	MINUTES SEC 03 55 18 15 T ADDRESS AND COMMON LANDMARKS ON 06, TOWNSHIP 26S,	MINUTES SECONDS 03 55 N 18 15 W ADDRESS AND COMMON LANDMARKS - PLSS (SECTION, TOWNSHJIP, RANDON 06, TOWNSHIP 26S, RANGE 36E			Y REQUIRED: ONE TENTH OF A SECOND :QUIRED: WGS 84 GE) WHERE AVAILABLE		
	LICENSE NU WD-160	MBER 7	NAME OF LICENSED	DRILLER Y) DURAN			NAME OF WELL DR	ILLING COMPANY		
	DRILLING S 6/24/15	TARTED 6	DRILLING ENDED 6/28/15	DEPTH OF COMPLETED WELL (FT) 516	PLETED WELL (FT) 515			ST ENCOUNTERED (FT)	NOINEE	
N	COMPLETE	D WELL IS:	O ARTESIAN	O DRY HOLE SHALLOW (STATIC WATER LEV	VEL IN COMPLETED WE			
ATIC	DRILLING FLUID: O AIR			O MUD ADDITIVES	- SPECIFY: D	RILLING M	D S S			
RM.	DRILLING METHOD: O ROTARY O HAMMER O CABLE TOOL O OTHER – SPECIFY:									
ASING INFC	DEPTH FROM	(feet bgl) TO	BORE HOLE DIAM (inches)	CASING MATERIAL AND/O GRADE (include each casing string, an note sections of screen)	R C d CON	CASING C. CONNECTION INSII TYPE (i		CASING WALL THICKNESS (inches)	SI SI (inc	
C Se	0	215	16	STEEL	STEE	LPERF	10	1/4	-	
2. DRILLI										
	DEPTH	(feet bgl)	BORE HOLE	LIST ANNULAR SEA	L MATERIAL	AND	AMOUNT	METHO	D OF	
ERIAL	FROM 0	то 20	DIAM. (inches)	AM. (inches) GRAVEL PACK SIZE-RANGE BY INTE 43 BGS 80 LBS CEMENT			(cubic feet)	t) PLACEMENT MIXER		
. ANNULAR MAI	20	515	16	36 YARDS 3/8 GRAVEI						
•••										
FOF	R OSE INTER E NUMBER	RNAL USE	0-1013	POD NUM	BER 2	WR-2	0 WELL RECORD	& LOG (Version 06/	08/201	
		<u> </u>	$r = 1 d \theta =$		~		Turo	A PAGE	E 1 OF	

•

						<u> </u>		
	DEPTH (feet bgl)	TUICKNESS	COLOR ANI	O TYPE OF MATERIAL ENCOUN	FERED -	WATER	ESTIMATED YIELD FOR
	FROM	то	(feet)	INCLUDE WATE (attach sup	R-BEARING CAVITIES OR FRAC [*] plemental sheets to fully describe a	TURE ZONES Il units)	BEARING? (YES / NO)	WATER- BEARING ZONES (gpm)
	0	1	1	TOPSOIL				
	1	15	14	CALICHE			OY ON	
	15	35	20	SAND			ΟΥΟΝ	
	35	85	50	SAND STONE			ΟΥΟΝ	
	85	160	75	SANDY CLAY	· · · · · · · · · · · · · · · · · · ·		OY ON	
_	160	195	35	BROWN CLAY		······································	OY ON	
VEL	195	254	59	SAND	·····		OYON	25
OF	254	350	96	SANDY CLAY				
8	350	384	34	SAND			• YON	100
	384	512	128	SANDY CLAY				
2	512	515	3	RED CLAY				
GEO							OY ON	
RO		1					O ^Y O ^N	
алн							O ^Y O ^N	
4							O ^Y O ^N	
							O ^Y O ^N	
							O ^Y O ^N	
							O ^Y O ^N	
							O ^Y O ^N	
					· · · · · · · · · · · · · · · · · · ·			
	METHOD	USED TO E	STIMATE YIELD	OF WATER-BEARING	G STRATA: O PUMP		TAL ESTIMATED	125
	O AIR LIF	т 🔘	BAILER O	OTHER – SPECIFY:		w.	ELL MELD (gpm).	
N	WELL TES	ST TEST	RESULTS - ATT TTIME, END TI	ACH A COPY OF DAT ME, AND A TABLE SH	A COLLECTED DURING WELL T IOWING DISCHARGE AND DRAY	ESTING, INCLUI WDOWN OVER T	DING DISCHARGE	METHOD,)D.
/ISIC	MISCELLA	NEOUS IN	FORMATION:				· · · · · · · · ·	
ER								
INS								
RIG								
EST;	PRINT NA	ME(S) OF D	RILL RIG SUPE	RVISOR(S) THAT PRO	VIDED ONSITE SUPER VISION OF	F WELL CONSTR	UCTION OTHER TH	IAN LICENSEE:
5. TI	LUIS A.	DURAN						
	L							
	THE UNDI	RSIGNED	HEREBY CERTI	FIES THAT, TO THE B	EST OF HIS OR HER KNOWLEDG	E AND BELIEF, T	THE FOREGOING IS	S A TRUE AND
URE	AND THE	PERMIT HO	DLDER WITHIN	20 DAYS AFTER COM	PLETION OF WELL DRILLING:	IND WELL KEUL	ND WITH THE STA	TE LIVOINEER
NAT	1	\sim	I					
SIG	usi	11/1/2	rona.	I'US A	DURAN	10-1	28-15	
6.		SIGNA	TURE OF DRILL	ER / PRINT SIGNEE	NAME		DATE	
	L <u></u>		··· · · · · · · · · · · · · · · · · ·		·····			
FO	R OSE INTE	RNAL USE		<u></u>	POD NUMBER	WR-20 WELL I	RECORD & LOG (Ve	ersion 06/08/2012)
			- jales				-, (PAGE 2 OF 2
1 1.0		262	. 365. L	$\rho, \Psi \mathcal{S} \mathcal{S}$.]	-nd.	

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	OSE POD N	MBER (WELL 1	NUMBER)				OSE FILE NU	MBER(S)			
z	CP-1446	Pod 1		·				CP-1446 POD 1				
Ĭ	WELL OWN	ER NAM	E(S)					PHONE (OPTI	ONAL)		·····	
CA	EOG Reso	ources	s Inc.					432-686-3	600			
LLC	WELL OWN	ER MAÍĪ	.ING AI	DDRESS				CITY		STATE		ZIP
WEL	5509 Cha	ampio	ns Dr	ive				Midland		TX 	7970	б
2	WELL			DEGREES	MINUTES	SECOND	S					
TA	LOCATIO	N	LATIT	UDE 32	03	57.82	N	* ACCURACY	REQUIRED ONE TEN	TH OF A	SECOND	
VERA	(FROM GI NAD 19	PS) 27	LONG	ITUDE 103	17	02.84	W	* DATUM RE	QUIRED WGS 84			
GE	DESCRIPTIO	N RELATI	NG WEL	L LOCATION TO STREE	T ADDRESS AND COMMO	N LANDMARKS - PLS	S (SECTION, TI	OWNSHJIP, RANG	E) WHERE AVAILABLE			
	409' Fror	n Sout	th Lin	e and 1849' fro	m East Line Secti	on 5 Townshi	o 26S Ran	ige 36E Lea	County NM			
	LICENSE NU	MBER		NAME OF LICENSED	DRILLER				NAME OF WELL DR	ILLING C	OMPANY	
	WD-331		L l l	ioel Stewart					Stewart Brothe	rs Drill	ing Co.	
	DRILLING STARTED DRILLING ENDED DEPTH OF COMPLETED WELL (FT) BORK 8/12/2015 8/24/2015 4,975' 4,97						BORE HOI 4,975'	LE DEPTH (FT)	DEPTH WATER FIR	ST ENCO	UNTERED (FT)	
7	COMPLETE	D WELL	1S: (ARTESIAN	C DRY HOLE C	SHALLOW (UNC	ONFINED)		STATIC WATER LEV	EL IN CO	OMPLETED WE	LL (FT)
I OL			<u> </u>				CIEV					
WA	DRILLING	COID.		AIR				D CRECIEV				
OR	DRILLING			ROTART	CHAMMER (CABLE TOOL		R - SPECIFY				T
I.	DEPTH	(feet bg	gl)	BORE HOLE	CASING MATER	LIAL AND/OR	CA	SING	CASING	CAS	ING WALL	SLOT
VSING	FROM TO DIAM (inches)		DIAM (inches)	(include each casing string, and note sections of screen)		CON	VECTION YPE	INSIDE DIAM. (inches)		ICKNESS inches)	SIZE (inches)	
C a	0	115		30"	24" H-40 Steel		welded		23.50	0.25	0	NA
ÿ	115	2055	5	20"	16" J-55 75 lbs./	foot	buttres	5	15.124 0.438		8	NA
Ē	2055	3632	2	14.75"	9 5/8" J-55		LTC		8.835	0.39	5	NA
N III	3632	4975	5	8.75"	open hole					<u> </u>		· · · · · · · · · · · · · · · · · · ·
2.1												
ļ												
ļ		ļ										
1						<u></u>						ļ
⊨	L	l <u>. </u>		. <u></u>			l			<u>L</u>		L
	DEPTH	(feet bg	gl)	BORE HOLE	LIST ANN	ULAR SEAL MA	ATERIAL A	ND	AMOUNT		METHO	DOF
IAL	FROM	T	0	DIAM. (inches)	GRAVEL PA	CK SIZE-RANG	E BY INTE	RVAL	(cubic feet)		PLACEN	IENT
ER	0	115		30"	Class C Cement	+ 1.5% CaCl2	+ 6.35 G	PS FW	482	F	ressure Gr	out
LVW	0	2055	5	20"	Lead-Class C Ce	ment + 4% Be	entonite -	+ 2% CaCl2				
R.					+ 9.2 GPS FW	·*			4375	F	Pressure Gr	out
nrv					Tail-Class C + 1.	5% CaCl2 + 6.	34 GPS F	N	623	F	Pressure Gr	out
NN					Top Out - Same	as Lead			1040	т	remie	
3. A	0	3632	2	14.75"	Lead-Class C+1	0% Salt + add	itives+11	.88 GPS FW	3330	P	Pressure Gr	out
					Tail-Class C + 29	% Salt + addit	ves + 6.3	7 GPS FW	540		ressure Gr	out
FOR	OSE INTER	NAL U	SE .						WELL RECORD	& LOG (Version 06/0	8/2012)
FILE	NUMBER		ΛP	-1446		POD NUMBER	-1	TRN 1	NUMBER · 59	841	3	
LOC	ATION	NI	<u>pi</u>			434	52	65 7	LE ON	0.01	PAGE	1 OF 2
L			· 1_		·······		$\underline{\sim \alpha}$	<u> </u>				

4

•

	DEPTH (f	feet bgl)	THICKNESS	COLOR AND TYPE OF MATERIAL ENCOUNTERED -	WATER	ESTIMATED YIELD FOR
	FROM	то	(feet)	INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZO (attach supplemental sheets to fully describe all units)	NES BEARING? (YES / NO)	WATER- BEARING ZONES (gpm)
\vdash			<u> </u>	See detailed mud log attached		
-						
\vdash					СҮСМ	
\vdash					СҮСМ	
\vdash						
┢						
┢						
-						
_						
			<u> </u>			
-			-			
			<u> </u>			
-						
-						
┢						
F						
┢			+			
\vdash						
┢						
\vdash						· · · · · · · · · · · · · · · · · · ·
\mathbf{h}	METHOD U	ISED TO ES	I STIMATE YIELE	OF WATER-BEARING STRATA: C PUMP	TOTAL ESTIMATED	
0	C AIR LIF	г	BAILER C	OTHER - SPECIFY: Well not tested yet	WELL YIELD (gpm):	:
Ī	WELL TES	T TEST STAR	RESULTS - ATT TTIME, END TI	ACH A COPY OF DATA COLLECTED DURING WELL TESTING, ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN (INCLUDING DISCHARGE	Method; `)D.
F	MISCELLA	NEOUS IN	FORMATION			
	PRINT NAM	ME(S) OF D	RILL RIG SUPE	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL C	ONSTRUCTION OTHER TH	IAN LICENSEE:
	THE UNDE CORRECT I AND THE P	RSIGNED I RECORD C PERMIT HO	HEREBY CERTIN OF THE ABOVE I DLDER WITHIN	FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BI DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WEL 20 DAYS AFTER COMPLETION OF WELL DRILLING:	ELIEF, THE FOREGOING IS L RECORD WITH THE STA	S A TRUE AND TE ENGINEER
	1.1	14	2	Jool H. Stewart	September 3, 2015	
-	Joer,	SIGNAT	TURE OF DRILLI	ER / PRINT SIGNEE NAME	DATE	
<u> </u>			·····			
R (OSE INTER	NAL USE			WELL RECORD & LOG (Ve	rsion 06/08/2012)
		- L r	-1474			

Received by OCD: 11/24/2020 7:47:13 AM

Page 80 of 109

	GO	A has I i	Loudin	o, 110		
			P.O. Box 2463			
		MI	DLAND, TX 79702			
			(432)682-7168			
COMPANY: _EO WELL: _Capita	<u>G Resources, Inc</u> an WSW No. 4					
FIELD:Red H	ills	co	UNTY: Lea	STATE: New I	Mexico	
LOCATION:						========
Interval Learned, 1	140	Tax 5000	01	0004		· · · ·
Date Logged: 8-	12-15	To: 8-22	15 Spud Date	2984 K. 8-12-15	B:_0	43 24
Rig: H&P	Rig 415	10	Unit No.:			5 5 3
Loggers: Gary G	Gavitt; Dave Pittn	nan				+ 51
Api No.:						E m
Filename:capita	nwswno4.mlw					A CONTRACT
Geologist: PALK	D/ WASHULESKI					9 9 mi
ed By MainLog						
TGTrip Gas LATLogged WOBWt on Bit PPPump Pro RPMRev/Min SPMStrokes SGSurvey Gas DTGDown T	After Trip essure Min "ime Gas	Coal Carb Shal Red Sh Cust Sh1 Cust Sh4	Shale Granite Wash Cust Sh2 Cust Sh5	Bentonite Quartz Wash Green Sh Cust Sh3 Cust Sh6	C3 IC4 NC4 IC5	
WTWeight VViscosi	ty		Accessories			
PHAcidity FFiltrate CHLChlorides SCSolids	Content	Glauconite	p p Pyrite GG Fossi	Is 0 0 Oolites		
	Vie		Cement			
	Por	Oil	Cut			
Drilling Rate	Tr / Litho	logy Tr /	Tr / Descriptions/Ren	narks	Total Gas/Chroma	atograph
MIN/FT	g	pfg	pfg			
0.5 1.0 1.5 2.0 2.5					25 50 75 100	125 150 17
100			RIG UP 2-MAN LOGGING UN	IT ON		

N.

		RE-XLN EDGES TR-ABUND	
		CLR SEC XLS IP RHOMBIC	
2	Z		
2	<u></u>		
P		, , ,	
	+++++++- 4		
			4089 230.10 ~ 210 ~ 0.00
)			
		, / ,	
	4100		
		CRM WH VF-FG TP DNS TP	
		RE-XLN EDGES TR-ABUND	
		CLR SEC XLS IP RHOMBIC	
		HOUT CHN/V.CHN FRM	
>	——————————————————————————————————————		
		DOL'V LT TN BE OFF-WU	
		CRM WH VF-FG IP DNS IP	
		RE-XLN EDGES TR CLR SE	С
		ALS MOST CLIN/V.CLN FRM	
	c		
>	50		
	50		and the second sec
		DOL:V. LT TN BE OFF-WH	
		CRM WH VF-FXLN IP DNS	
		IP RE-XLN EDGES TR CLR	
		FRM	
	7		
		1	
			4182'228 70 ° 1 20 ° 0 00'
		DOL:V.LT TN BF OFF-WH	
	7	TR-ABUND CLR SEC XLS	
		IP RE-XLN EDGES IP SLI	
	4200	FRM KHOMBIC MOST CLN/V.CLN	
	7		
0.5 10 15	20 25		
			20 00 /b 100 125 150 175
		DOL: V. LT TN BF OFF-WH	
		IP RE-XLN EDGES TR-	
		ABUND CLR SEC XLS IP	
		V.CLN FRM	
			
	C		
	<u> </u>	7	
	50		
		DOL:V.LT TN BF OFF-WH	
		CRM WH VF-FXLN IP DNS	
		SEC XLS MOST CLN/V CIN	
		FRM FRM	
	<u> </u>	7-	
	7		
)		7	
	T T		
			4277' 213.90 0 90 0 00'
	7	DOL VIT TH DE OFF-WH	
1		DOL.V.LI IN BE OFF-WH	

100 AM 48

Cement Blend Calculations CONDUCTOR

DESIRED CEMENT DENSITY	WATER DENSITY FRESH - 8.34 SEA - 8.55	YIELD CU.FT./SK	MIX WATER GPS	TOTAL MIX FLUID - GPS	% WATER - BWOC		
14.80	8.34	1.34	6.35	6.35	56.30%		
CEMENTS	% CU.FT.	LBS/SK	ABS VOL	GALS			
Class C	100	94.00	0.0382	3.5908		674.76	GRAMS
		0.00	0.0000	0.0000		0.00	GRAMS
		0.00	0.0000	0.0000		0.00	GRAMS
		0.00	0.0000	0.0000		0.00	GRAMS
TOTAL BASE	100	94.00		3.5908			······
Dry adds.	%	LBS	ABS VOL	GALS/SK			
CaCl2	1.50	1.410	0.0612	0.0863		10.12	GRAMS
		0.000	0.0000	0.0000		0.00	GRAMS
		0.000	0.0000	0.0000		0.00	GRAMS
		0.000	0.0000	0.0000		0.00	GRAMS
		0.000	0.0000	0.0000		0.00	GRAMS
		0.000	0.0000	0.0000		0.00	GRAMS
		0.000	0.0000	0.0000		0.00	GRAMS
		0.000	0.0000	0.0000		0.00	GRAMS
TOTAL DRY		1.410		0.0863	•		4I
Liquid Adds	gps	LBS	ABS VOL	GALS/SK			
		0.000	0.0000	0.0000	[0.00	GRAMS
		0.000	0.0000	0.0000		0.00	GRAMS
		0.000	0.0000	0.0000		0.00	GRAMS
		0.000	0.0000	0.0000		0.00	GRAMS
		0.000	0.0000	0.0000		0.00	GRAMS
		0.000	0.0000	0.0000	ſ	0.00	GRAMS
TOTAL LIQUIDS		0.000		0.0000	L		·
SALTS	% BWOW	LBS/SK	ABS VOL	GALS/SK			
SALT	0	0.000	0.0000	0.0000	[0.00	GRAMS
KCL	0	0.000	0.0000	0.0000	ľ	0.00	GRAMS
TOTAL SALT		0.000		0.0000	F		

10.12	GRAMS
0.00	GRAMS

The second se			
0.00	GRAMS	0.00	MLS
0.00	GRAMS	0.00	MLS
0.00	GRAMS	0.00	MLS
0.00	GRAMS	0.00	MLS
0.00	GRAMS	0.00	MLS
0.00	GRAMS	0.00	MLS
			the second se

0.00	GRAMS	
0.00	GRAMS	
684.89	GRAMS TOTAL DRY ADDS	٦

WATER TYPE	WEIGHT	SP.GR.	
FRESH	8.34	1.000	
6.35	GPS	7	
1.34	YIELD	7	

POUNDS DRY	95.41
GALLONS DRY	3.677092
POUNDS LIQUID	0
GALLONS LIQUID	0
TOTAL POUNDS	148.3277369

LAB TOTAL WT	1064.748201

379.86	GRAMS	WATER TYPE
379.86	MLS	FRESH

1.75

VIELD

 z^{\prime} ţ - 1 4.

	AB	SOLUTE VC	ILUME CALCULATOR
DESIRED SLURRY WEIGHT		13.5	WATER 9.16
MATERIAL	WEIGHT	FACTOR	GALLONS
CEMENT Coletta C Pozmix TXI Light Weight MC-500	94	0.0382 0.0487 0.0429 0.0414	3.5908 0 0
% BWOC			
	1 hafet	ADC Volume	
Gel			Gais/SK
Calcium Chioride	3.70 1.88	0.0612	0.1151481
CFL 100	0	0.1009	0
C-35	0	0.0649	0
C 3/	0	0.0923	0
C 51	0	0.0857	0
	⇒ 0	0.0/4/	0
C.45		0.0453	5 0
Citric Acid	0	0.072	
0.49	0	0.0462	0
	0	0.078	0
C-24 C 41P	00	0.078	0 0
CCR-550) c		5 0
Mag Ox	0	0.0353	
C-19	0	0.0875	00
C-14A	0	0.081	0
CSA-1000	0	0.1	0
C-16A	0	0.0903	O
	0.0094	0.1275	0.0011985
	#ISK	1000	
GypSeal		0.0445	0
Gilsonite		0.1122	0
cr.		0.0443	0
		0.03645	0 0
Silica Fume		0.0538	5 0
STE		0.0393	
<pre>(oiSeal</pre>		0.09234	0
olyflake	E 26	0.0844	0.0211
henoseal		0.0923	0
lou mesn sand		0.0453	0
laniaue 3ante		0.0284	
Calcium Carbinate		0.0443	00
	99.8994		3.8985746

Received by OCD: 11/24/2020 7:47:13 AM

Page 105 of 109

EOG Capitan WSW #4 Surface Casing Lead Cement

ł

EOG Capitan WS	W #4 Sı	urface Casinç	J Tail Cement	
	AE	SOLUTE VOLUME	CALCULATOR	
DESIRED SLURRY WEIGHT		14.8 WATEF	6.34	ИЕГО
MATERIAL	WEIGHT	FACTOR	GALLONS	
CEMENT Coletta C Pozmix TXI Light Weight MC-500	94	0.0382 0.0487 0.0429 0.0414	3.5908 0 D	
% BWOO				
	Lbs/Sk	ABS Volume	Gals/Sk	
Gel Calcium Chloride	0 1 4 1	0.0453	0 0.006261076	
CFL 100	0	0 1009		
C-35	0	0.0649	00	
C 37	0	0.0923	O	
C 31 C-47A		0.0857	0 (
SSA-1	00	0.0453	5 0	
C-45	0	0.055	0	
Citric Acid	•••	0.072	0	
C-40	00	0.0462 0.078	0 0	
C-24	0	0.078	0	
C 41P	0	0.0444	0	
Mar Oc	0	0.09306	0	
Mag Ox C-19		0.0353	00	
C-14A	0	0.081		
CSA-1000	0	0.1	0	
C-16A	0	0.0903	0	
Stattree 0.07 C-43P	0.0094	0.1275 0.0517	0.0011985 D	
	#/SK			
GypSeal		0.0445	0	
Gilsonite KCI		0.1122	0 0	
Sat		U.U443 D D3645	0 0	
SFA		0.0521	> 0	
Silica Fume		0.0538	0	
STE		0.0393	0	
Polyflake		0.09234	0 0	
Phenoseal		0.0923	> a	
100 mesh Sand		0.0453	0	
Hematite Bartto		0.02265	0	
Calcium Carbinate		0.0443	5 6	
	95.4194		3.678359575	

.

Page 106 of 109

. Released to Imaging: 2/3/2021 11:41:42 AM

1.34

n na series de la companya de la company

Received by OCD: 11/24/2020 7:47:13 AM

. Released to Imaging: 2/3/2021 11:41:42 AM

..., C

Ē,

Ę

96.24

EOG Capitan WS	W #4 P	roduction	Casing Tail	Cement	
	A	SOLUTE VO	LUME CALCULAT	OR	
DESIRED SLURRY WEIGHT		14.8	WATER 637	VIELD	1.35
MATERIAL	WEIGHT	FACTOR	GALLONS		
CEMENT Coleita C Pozmix TXI Light Weight MC-500	8	0.0382 0.0487 0.0429 0.0414	3.5908 0 0 0		
% BWOC					
	Lbs/Sk	ABS Volume	Gals/Sk		
Get	0	0.0453	0		
Calcium Chloride	00	0.0612	0		
C-35	0.47	0.0649	0 0.030503		
C 37	0	0.0923	o		
C-27A	00	0.0857	0		
SSA-1		0.0453	00		
C-45 Chiro Arid	0	0.055	o		
Critic Acid	00	0.072	0		
C-20	0.141	0.078	0.010998		
C-24	0	0.078	0		
C 41P CCR-550	00	0.0444	0 (
Mag Ox	5	0.0353			
C-19	0	0.0875	0		
C-14A	0	0.081	0		
CSA-1000 C-16A	0	0.1	0		
Statfree	0.0094	0.1275	0.0011985		
C-43P	0	0.0517	0		
Current	#/SK				
Gilsonite		0.0445	00		
KCL		0.0443	- c		
Salt	1031	0.03645	0.03867345		
SFA Stirca Frime		0.0521	0		
STE		0.0000 00000	5 0		
KolSeai		0.09234	00		
Polyflake		0.0844	0		
Phenoseal 100 mash Sand		0.0923	0		
Hematite		0.0265	00		
Barite		0.0284	00		
Caldum Carbinate		0.0443	0		
CONDITIONS

Action 11305

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170 District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS OF APPROVAL

Operator:	OGRID:	Action Number:	Action Type:	
AMEREDEV OPERATING, LLC 2901 Via Fortuna	372224	11305	C-141	
Suite 600 Austin, TX78746				
OCD Reviewer	Condition	Condition		
reads	None	None		