Page 1 of 457

	1 1180 1 0) 10
Incident ID	NAPP2105135414
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
✓ Laboratory analyses of final sampling (Note: appropriate ODG	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of	ntions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in
Printed Name: Jenni Fortunato	Title: Progam Manager, Remediation
Signature:	Date: <u>5/17/2021</u>
email: jenni.fortunato@cop.com	Telephone: <u>832-486-2477</u>
OCD Only	
Received by: Chad Hensley	Date: <u>08/03/2021</u>
remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws and/	
Closure Approved by:	Date: <u>08/03/2021</u>
Printed Name: Chad Hensley	Title: Environmental Specialist Advanced
	·

May 18, 2021

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Release Characterization, Remediation, and Closure Report

ConocoPhillips

MCA 151 Flowline Release

Unit Letter G, Section 28, Township 17 South, Range 32 East

Lea County, New Mexico Incident ID: NAPP2105135414

Sir or Madam:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips to assess a release that occurred on a flowline from the Maljamar Cooperative Agreement (MCA) 151 well (API # 30-025-00739) wellhead. The release footprint is located within Public Land Survey System (PLSS) Unit Letter G, Section 28, Township 17 South, Range 32 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.807702°, -103.769118°, as shown on Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report (Appendix A), the release was discovered on February 19, 2021 following a hard freeze in the area. As documented on the C-141 form, a flowline failure resulted in the release of approximately 27 barrels (bbls) of produced water and 3 bbls of crude oil.

According to ConocoPhillips, the release occurred first from a point on the flowline located in the pasture approximately 120 feet (ft) north of the MCA 151 wellhead (release coordinates provided in previous section). A second release point was later identified on the flowline approximately 75 ft north of the initial release point. No free liquids were recovered immediately following the release. The northern release area footprint was fenced as a portion of initial response activities.

The C-141 report form for the release was submitted to the New Mexico Oil Conservation District (NMOCD) on March 15, 2021. The NMOCD assigned this release Incident ID NAPP2105135414. The Initial C-141 contained the incorrect GPS coordinates for the release point. The C-141 was revised and resubmitted to the NMOCD via the fee application portal with PO Number DWU3N-210427-C-1410 on April 27, 2021. The C-141 was approved by NMOCD on May 10, 2021.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.0029 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there are twelve (12) water wells (five (5) of which have groundwater elevation data) within 800 meters (approximately ½

Tetra Tech

ConocoPhillips

mile) of the Site with an average depth to groundwater at 91 ft below ground surface (bgs). The data from these nearby wells used to determine depth to groundwater is no more than 25 years old and well construction information is provided. The site characterization data is included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

Based on the site characterization and in accordance with Table I of 19.15.29.12 NMAC, the Site RRALs for the on-pad areas at the release Site are as follows:

Constituent	Site RRALs
Chloride	10,000 mg/kg
TPH	2,500 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC) (September 6, 2019), the following reclamation requirements for surface soils (0-4 ft bgs) outside of active oil and gas operations are as follows:

Constituent	Reclamation Requirements
Chloride	600 mg/kg
TPH	100 mg/kg

INITIAL RESPONSE AND SITE ASSESSMENT

Based upon information provided by ConocoPhillips representatives, the release traveled approximately 975 ft to the south of the initial release point, where free liquids flowed along a pipeline right-of-way (ROW) in the pasture. An additional overspray area extended approximately 275 ft in pasture to the north of the initial release point. The approximate release extent and release points are shown in Figure 3. Photographic documentation of the initial release extent is presented in Appendix C. Following discovery of the release, ConocoPhillips repaired the split line and scraped the visually impacted areas on the MCA 151 well pad and associated lease road to an approximate depth of 6 inches bgs as a portion of initial response.

In order to properly characterize the release footprint and achieve horizontal and vertical delineation of the release extent, ConocoPhillips conducted soil sampling beginning in February 2021. Ten (10) hand auger borings were installed within (AH-9 to 6 ft bgs and AH-10 to 4 ft bgs) and along the perimeter (AH-1 through AH-8, each to 1 ft bgs) of the entire release extent on February 26, 2021. One (1) boring (BH-1) was installed using an air rotary drill rig to a depth of 20 ft bgs within the release extent on March 1, 2021 in order to vertically delineate near the release point. Select soil samples were field screened for salinity parts per million (ppm) using an ExStik II EC 400 meter.

A total of twenty-seven (27) samples were collected from the eleven (11) boring locations and submitted to Cardinal Laboratories (Cardinal) in Hobbs, New Mexico to be analyzed for chlorides via EPA Method 4500.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical reports and chain-of-custody documentation are included in Appendix D.

On April 1, 2021, ConocoPhillips retained Tetra Tech personnel to install an additional ten (10) hand auger borings to 1 ft bgs (AH-11 through AH-19) and 2 ft bgs (AH-20) inside the overspray area footprint in pasture on the north end of the release extent. Thirteen more (13) hand auger borings (AH-21 through AH-33) were installed within the release extent to depths ranging from 2 to 5 ft bgs in April 2021 to complete vertical

ConocoPhillips

delineation of the release extent. The approximate release extent and boring locations are shown in Figures 4A (north extent of the release) and 4B (south extent of the release).

A total of fifty-nine (59) samples were collected from the twenty-three (23) additional boring locations and submitted to Pace Analytical (Pace) in Mount Juliet, Tennessee to be analyzed for chlorides via EPA Method 300.0, TPH via EPA Method 8015M, and BTEX via EPA Method 8021B. A copy of the laboratory analytical reports and chain-of-custody documentation are included in Appendix D.

SUMMARY OF SAMPLING RESULTS

In all, a total of thirty-four (34) borings were installed within and outside of the release footprint using an air rotary drill rig and/or a hand auger during the Site assessment activities. The analytical results of the 2021 Site assessment are summarized in Table 1. The analytical results associated with the perimeter borings (AH-1 through AH-8) and the overspray area (borings AH-11 through AH-20) were below the Site RRALs and reclamation requirements for all constituents.

The analytical results associated with surface soil intervals (0-4 ft bgs) exceeded the reclamation requirement for chloride (600 mg/kg) at boring locations AH-9, AH-10, AH-21, AH-22, AH-23, AH-24, AH-27, AH-28, AH-30, AH-32, AH-33, and BH-1. Furthermore, the analytical results associated with the 4-5 ft bgs sample interval at BH-1 exceeded the remediation RRAL for chloride (10,000 mg/kg).

The analytical results associated with surface soil intervals (0-4 ft bgs) also exceeded the reclamation requirement for TPH (100 mg/kg) at boring locations AH-9, AH-10, AH-21, AH-22, AH-23, AH-25, AH-26, AH-27, AH-29, AH-30, AH-31, AH-32, AH-33, AH-34, and BH-1. Additionally, the analytical results associated with the 5-6 ft bgs sample interval at AH-9 exceeded the remediation RRAL for TPH (2,500 mg/kg).

The remediation RRAL for BTEX (50 mg/kg) was exceeded in the 0-1 ft sample interval at boring locations AH-9, AH-10, AH-23, AH-26, AH-27, AH-31, AH-32, AH-33, and BH-1. The 1-2 ft bgs sample interval at AH-33 and BH-1, as well as the 5-6 ft sample interval at AH-9 also exceeded the remediation RRAL for BTEX (50 mg/kg). The analytical results associated with the 0-1 ft sample interval at AH-9, AH-10, AH-32 and BH-1, as well as the 1-2 ft sample interval at AH-33 and BH-1, exceeded the remediation RRAL for Benzene (10 mg/kg).

There were no other analytical results which exceeded the Site RRALs or reclamation requirements in samples collected during the February 2021 soil assessment. After review of the analytical results from the sampling event, both horizontal and vertical delineation was achieved following the 2021 soil assessment activities.

REMEDIATION ACTIVITIES AND CONFIRMATION SAMPLING

In accordance with 19.15.29.12 B (2) NMAC, COP elected to begin remediation of the impacted area in March 2021. Based on the analytical results from the soil assessment, impacted soils in the vicinity of boring locations AH-24 and AH-31 were excavated to 2 ft bgs. Impacted soils in the vicinity of boring locations AH-26, AH-28, and AH-29 were excavated to 3 ft bgs. Impacted soils in the vicinity of boring locations AH-21, AH-22, AH-23, AH-25, AH-27, AH-30, AH-32, and AH-33 were excavated to 4 ft bgs. Impacted soils in the vicinity of boring locations BH-1 and AH-9, were excavated to 6 ft bgs. Initial excavation work continued until a representative sample from the walls and bottom of the excavation had a field screening value inferred as lower than the RRALs for the Site. Each confirmation sample laboratory analytical result was directly compared to the proposed RRALs and/or reclamation requirements to demonstrate compliance.

In accordance with 19.15.29.12(D)(1)(b) NMAC, ConocoPhillips conducted confirmation sampling of the remediated area for verification of remedial activities where each sidewall and floor sample was representative of approximately 200 square ft. Confirmation sidewall (SW) sample locations were categorized with the cardinal direction (N, E, S, W) followed by SW-#. Confirmation floor sample locations are labeled with "FS-#". Selected areas required additional excavation to collect a representative sample that was below the respective RRAL for that location. As the analytical results associated with these sample

ConocoPhillips

locations exceeded the respective RRAL, additional excavation was conducted at those locations until field screening results indicated closure criteria were attained.

Iterative confirmation samples were located to encompass the original sample locations that triggered removal post-additional excavation. If the sidewall area was expanded due to unacceptable confirmation sample results, the parentheses indicate the expansion iteration. For floor samples, the parentheses indicate the excavation floor depth from which the sample was collected. Excavated areas, depths and confirmation sample locations are shown in Figures 5A and 5B.

Initial analytical results associated with confirmation floor samples FS-10, FS-20, and FS-22 exceeded the reclamation requirements. Thus, the excavation floor was deepened to 4 ft bgs in these areas and additional floor samples were collected. Although the analytical results associated with FS-21 (2') did not exceed reclamation requirements, the pad area excavation was deepened based upon field visual examination. The deeper FS-21 (4') sample collected was also below reclamation requirements. Analytical results from confirmation sidewall sample locations ESW-11, ESW-16, and ESW-17 exceeded the reclamation requirements and necessitated expansion to the east by 2-4 feet, depending on the location. Iterative confirmation samples were collected after expansion of the excavation walls in these areas. Approximately 1,800 cubic yards of excavated material were transported to the R360 facility in Hobbs, New Mexico.

A total of twenty-four (24) confirmation floor sample locations and fifty-one (51) confirmation sidewall samples were collected during the remedial activities in March through May 2021. Confirmation samples were placed into laboratory-provided sample containers, transferred under chain-of-custody, and analyzed for TPH, BTEX, and chloride within appropriate holding times by Pace. Copies of the laboratory analytical reports and chain-of-custody documentation are included in Appendix E.

Following iterative sampling, all confirmation sidewall and floor sample results were below the 19.15.29.12 NMAC Table I closure criteria. In accordance with 19.15.29.13 (D) NMAC, analytical results for soils collected above 4 ft bgs in the off-pad pasture areas were below reclamation requirements for soils in the 0-4 ft bgs interval. Results from the March through May 2021 confirmation sampling events are summarized in Table 2.

The total remediated area encompassed a surface area of approximately 13,900 square ft. Photographic documentation of the excavation activities prior to backfilling is presented in Appendix C. The excavated areas were backfilled post-confirmation sample collection and upon receiving analytical results below the applicable RRALs. The impacted surface area occurring on the developed pad at the site was remediated to meet the standards of Table I of 19.15.29.12 NMAC. Final on-site reclamation and restoration will occur once the well is plugged and operations have ceased at this active well pad. The overspray portions in the pasture area were treated with Micro-Blaze® Emergency Liquid Spill Control to aid in the degradation of residual hydrocarbon.

The backfilled areas in the pasture were seeded to aid in revegetation. The remediated/reclaimed area was seeded in May 2021. Based on the soils at the site, the New Mexico State Land Office (NMSLO) Sandy (S) Sites Seed Mixture was used for seeding and planted in the amount specified in the pounds pure live seed (PLS) per acre.

Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate.

ConocoPhillips

CONCLUSION

ConocoPhillips has completed remediation at the release site. This final closure report has been submitted within 90 days of discovery of the release. This final closure report details the release characterization and remediation activities and the results of the confirmation sampling. As noted, final on-site reclamation and restoration will occur once the well is plugged and operations have ceased at this active well pad.

If you have any questions concerning the soil assessment, the remediation work, or confirmation sampling for the Site, please call me at (512) 338-2861.

Sincerely,

Tetra Tech, Inc.

Samantha K. Abbott, P.G.

Senior Staff Geologist

Christian M, Llull, P.G.

Project Manager

CC:

Mr. Marvin Soriwei, RMR – ConocoPhillips
Ms. Jenni Fortunato. RMR – ConocoPhillips

Ms. Kelsy Waggaman, GPBU - ConocoPhillips

ConocoPhillips

LIST OF ATTACHMENTS

Figures:

Figure 1 – Site Location Map

Figure 2 – Topographic Map

Figure 3 – Approximate Release Extent – North and South

Figure 4A - Site Assessment - North

Figure 4B – Site Assessment – South

Figure 5A – Remediation Extent and Confirmation Sampling Locations – North

Figure 5B - Remediation Extent and Confirmation Sampling Locations - South

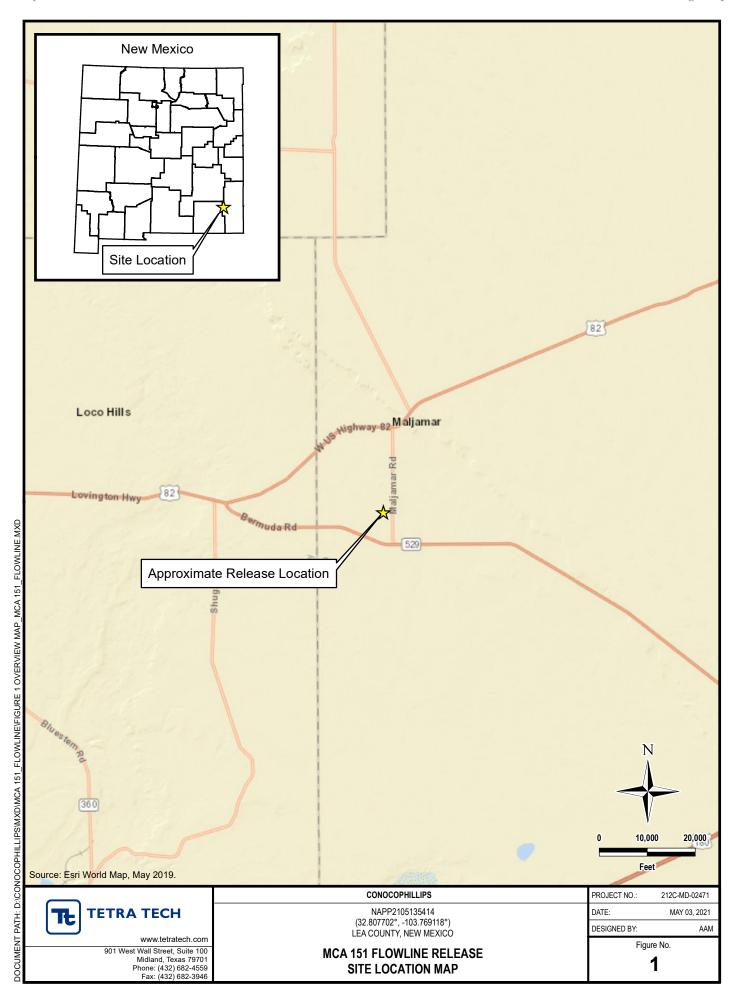
Tables:

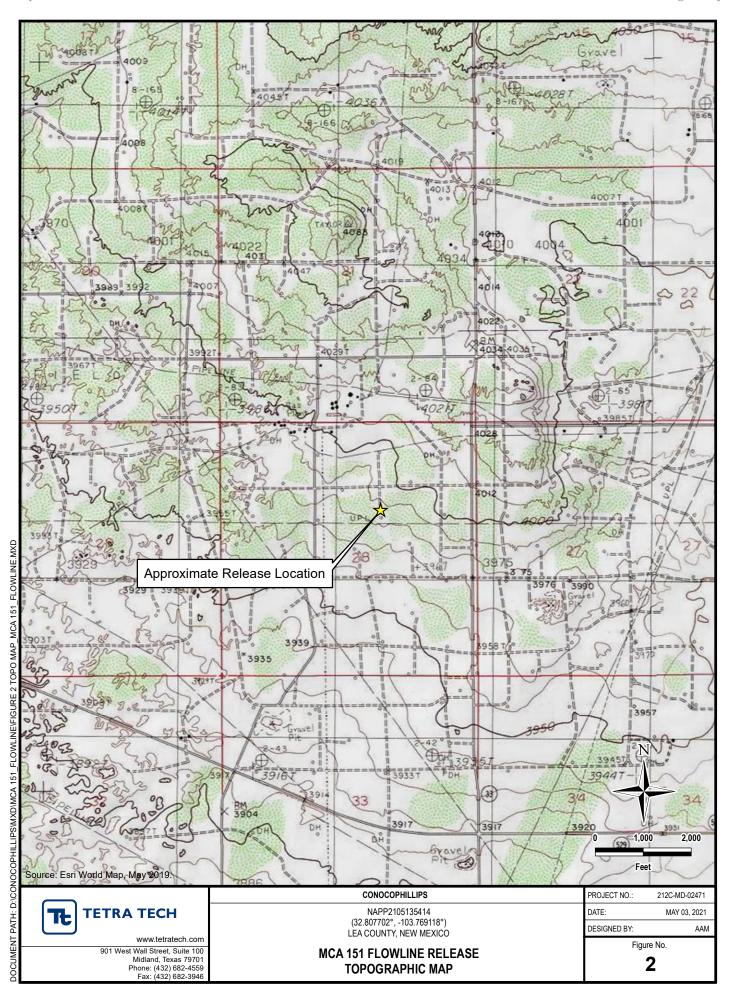
Table 1 – Summary of Analytical Results – Soil Assessment

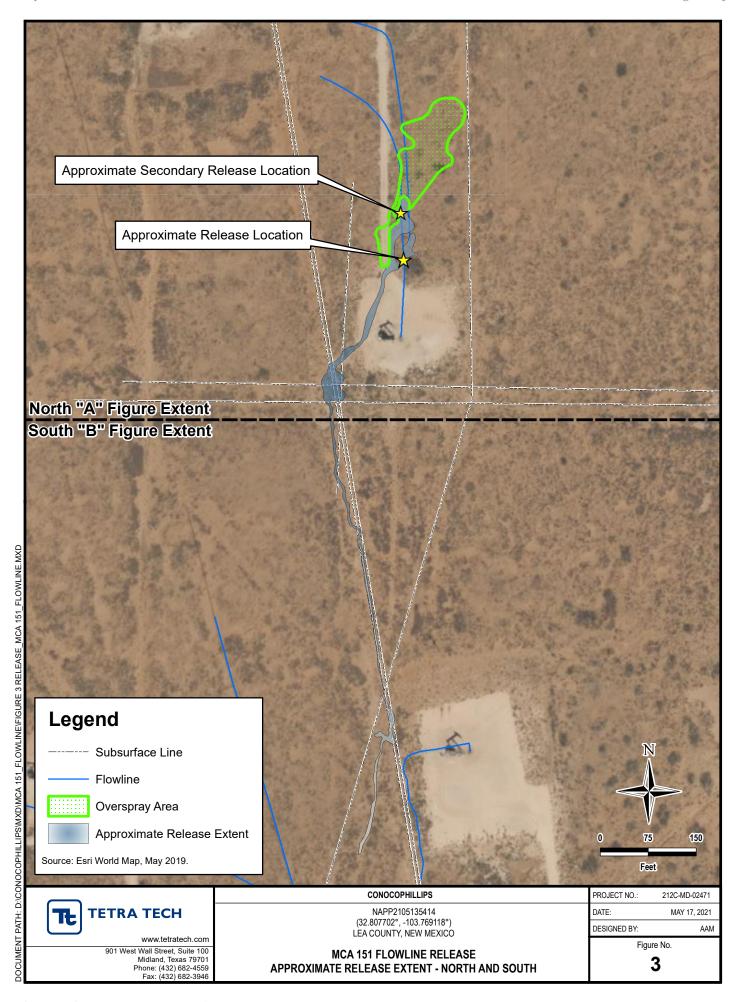
Table 2 - Summary of Analytical Results - Confirmation Sampling

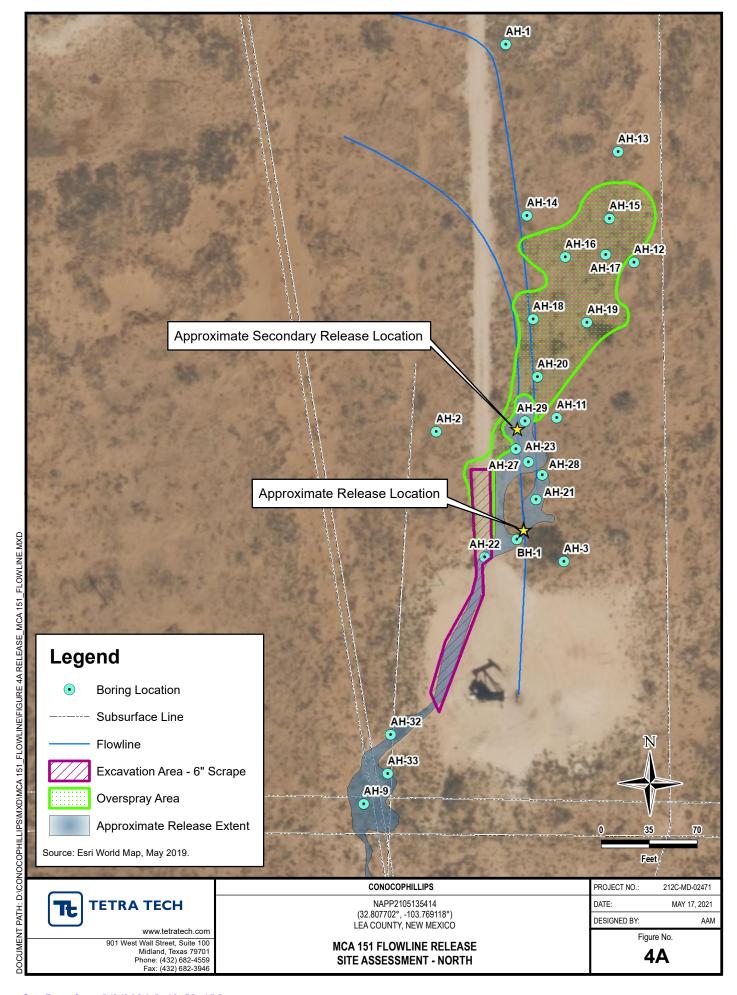
Appendices:

Appendix A - C-141 Forms

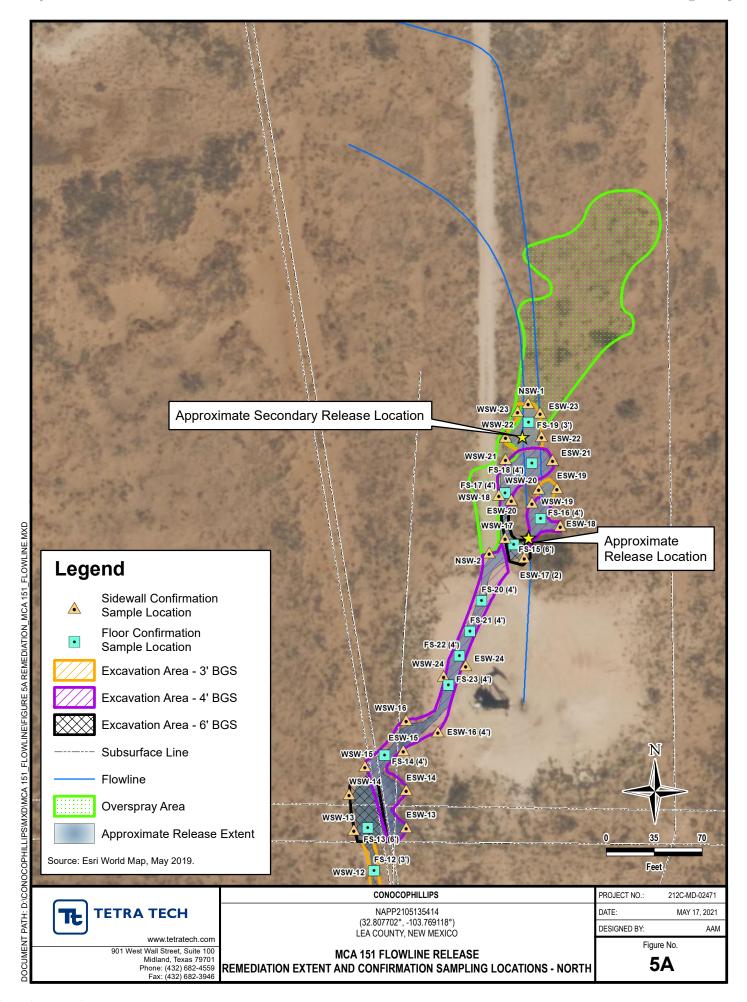

Appendix B – Site Characterization Data

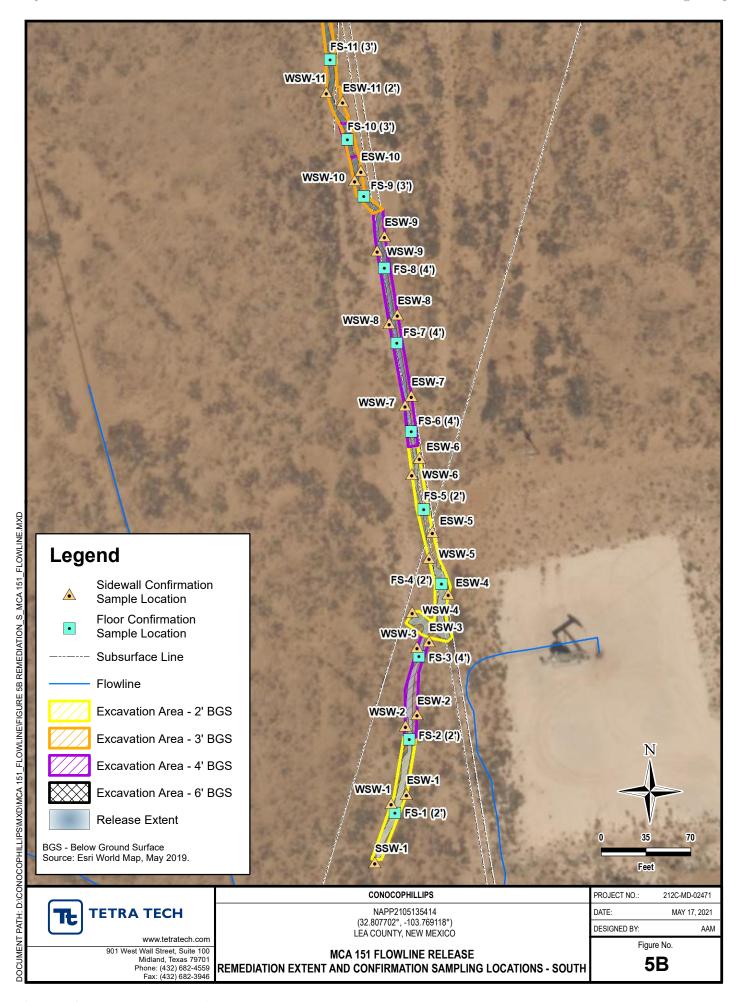

Appendix C – Photographic Documentation


Appendix D - Laboratory Analytical Data - Assessment Sampling


Appendix E – Laboratory Analytical Data – Confirmation Sampling

FIGURES





TABLES

Received by OCD: 5/18/2021 6:32:30 PM

TABLE 1 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT - NAPP2105135414 CONOCOPHILLIPS MCA 151 FLOWLINE RELEASE

LEA COUNTY, NM

			F1-1-1 C								BTEX ³	4								TP	H ^{5,6}		
Cample ID	Comple Date	Sample Depth Interval	Field Scree	ning Results	Chlorid	e ^{1,2}	Benze		Toluer		Cab. db a m		Total Vul		Total B	TEV	GRO	7	DRO		ORC)	Total TPH
Sample ID	Sample Date	interval	Chloride	PID			Benze	ne	loiuer	ie	Ethylben	ene	Total Xyl	enes	Iotai B	IEX	C ₆ - C	10	C ₁₀ - C	28	C ₂₈ - C	40	(GRO+DRO+ORO)
		ft. bgs	pp	pm	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
AH-1	2/26/2021	0-1	68.7	-	16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
AH-2	2/26/2021	0-1	42.7	-	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
AH-3	2/26/2021	0-1	137	-	16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
AH-4	2/26/2021	0-1	57.5	-	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		_
AH-5	2/26/2021	0-1	36.5	-	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
AH-6	2/26/2021	0-1	41.7	-	16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
AH-7	2/26/2021	0-1	27.7	-	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
AH-8	2/26/2021	0-1	28.2	-	< 16.0		< 0.050		0.111		< 0.050		< 0.150		< 0.300		< 10.0		< 10.0		< 10.0		-
		0-1	-	-	192		60.1		415		286		407		1,170		9,460		21,700		4,320		35,480
		1-2	-	-	1,650		0.446		4.07		1.78		2.55		8.84		62.1		1,930		880		2,872
AH-9	2/26/2021	2-3	-	-	3,760		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		40.6		11.0		51.6
	2, 20, 2022	3-4	-	-	1,520		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0	QR-03	185		47.8		233
		4-5	47,800	-	7,600		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		100		23.2		123
		5-6	334	-	880		0.886		12.0		16.3		28.0		57.2		470		3,530		731		4,731
		0-1	-	-	2,480		18.8		155		142		227		542		5,530		21,100		3,800		30,430
AH-10	2/26/2021	1-2	-	-	720		< 0.050		0.085		0.290		0.664		1.04		15.9		265		46.6		328
		2-3	-	-	48.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		57.5		10.5		68.0
		3-4	68.2	-	32.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	<u> </u>	< 10.0		63.0		10.5		73.5
AH-11	4/1/2021	0-1	-	-	< 20.4		< 0.00104		< 0.00521		< 0.00261		0.00321	J	0.003	21	< 0.102		< 4.09		10.1		10.1
AH-12	4/1/2021	0-1	-	-	< 21.4		< 0.00114		< 0.00572		< 0.00286		< 0.00743		-		< 0.107		< 4.29		10.5		10.5
AH-13	4/1/2021	0-1	-	-	< 20.3		< 0.00103		< 0.00514		< 0.00257		< 0.00668		-		< 0.101		< 4.06		5.79	В	5.79
AH-14	4/1/2021	0-1	-	-	< 20.3		< 0.00103		< 0.00516		< 0.00258		< 0.00671		-		< 0.102		< 4.06		7.64	В	7.64
AH-15	4/1/2021	0-1	-	-	< 20.2		< 0.00101		< 0.00507		< 0.00254		< 0.00660		-		< 0.102		< 4.03		16.9		16.9
AH-16	4/1/2021	0-1	-	-	< 23.3		< 0.00133		< 0.00665		0.00153	J	0.00432	J	0.005	85	< 0.118		< 4.66		8.04	В	8.04
AH-17	4/1/2021	0-1	-	-	< 20.2		< 0.00102		< 0.00508		0.000812	J	0.00105	J	0.001	86	< 0.101		< 4.03		15.6		15.6
AH-18	4/1/2021	0-1	-	-	10.3	J	< 0.00101		< 0.00504		< 0.00252		< 0.00656		-		< 0.100		20.3		27.1		47.4
AH-19	4/1/2021	0-1	-	-	< 20.3		< 0.00103		< 0.00515		< 0.00258		< 0.00670		-		< 0.102		< 4.06		5.86	В	5.86
AH-20	4/1/2021	0-1	-	-	9.59	J	< 0.00103		< 0.00517		< 0.00259		< 0.00671		-		< 0.101		8.39		18.4		26.8
	1, -, -, -	1.5-2	-	-	< 20.4		< 0.00104		< 0.00519		< 0.00260		< 0.00675		-		< 0.102		7.58		14.1		21.7
		0-1	-	-	1,920		< 0.0211		0.299		0.684		2.01		2.99)	103		1,990		1,190		3,283
AH-21	4/6/2021	1-2	-	-	2,760		< 0.00107		0.0160		0.00129	J	0.00341	J	0.020		0.0544	J	2.47	J	3.04	J	5.56
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2-3	-	-	8,590		0.000810	J	0.00893		0.00401		0.00895		0.022		< 0.112		< 4.49		4.12	J	4.12
	<u> </u>	3-4	-	-	4,090		0.000662	J	0.00581	J	0.0132		0.0370		0.056	57	4.98		225		160		390
		0-1	-	-	2,240		< 0.00106		0.182		2.14		4.74		7.06		266		1,710		1,020		2,996
AH-22	4/1/2021	1.5-2	-	-	5,670		0.00199		0.0755		0.138		0.266		0.48		0.0793	J	4.09	J	9.60	В	13.8
	'''	2.5-3	-	-	3,710		< 0.00125		< 0.00627		0.00462		0.0133		0.017		0.0565	J	3.37	J	13.0		16.4
		3.5-4	-	-	1,210		< 0.00125		< 0.00625		< 0.00313		0.00422	J	0.004	22	0.0923	J	59.2		45.3		105

Received by OCD: 5/18/2021 6:32:30 PM

TABLE 1 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT - NAPP2105135414 CONOCOPHILLIPS MCA 151 FLOWLINE RELEASE

LEA COUNTY, NM

			Field Career								BTEX ³	4								TP	H ^{5,6}		
Sample ID	Sample Date	Sample Depth Interval	rieid Screen	iing kesuits	Chloride	e ^{1,2}	Benzer	ie.	Toluer	ie.	Ethylben	ene	Total Xyl	enes	Total B	TFX	GRO	'	DRO		ORC)	Total TPH
Sample 15	Sample Date		Chloride	PID			Delizer		Toluci		Lanyibeni	ciic	Total Ayl		Total b		C ₆ - C ₁	.0	C ₁₀ - C	28	C ₂₈ - C	40	(GRO+DRO+ORO)
		ft. bgs	pp	om	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0-1	-	-	2,120		1.96		103		98.1		142		345		2,590		4,830		2,350		9,770
AH-23	4/6/2021	1-2	-	-	1,770		0.00667	J	1.12		2.02		3.20		6.35		76.4		3,080		1,540		4,696
		2-3	-	-	8,020		0.000976	J	0.0189		0.0406		0.0869		0.14		0.751		2.55	J	6.59		9.89
		3-4	-	-	7,880		0.000607	J	0.00552	J	0.00858		0.167		0.18	2	0.401		22.8		22.1		45.3
		0.5-1	-	-	1,470		0.000949	J	0.00322	J	0.00446		0.0193		0.027	79	0.0416	J	9.75	В	12.4	В	22.2
AH-24	4/5/2021	1.5-2	-	-	3,710		< 0.00114		< 0.00568		0.00171	J	0.00608	J	0.007		0.0453	J	26.9		32.9		59.8
	,,,,,,,,,,	2.5-3	-	-	< 20.8		0.00238		< 0.00452		< 0.00271		0.00155	J	0.003	93	< 0.104		2.77	B J	3.29	B J	6.06
		3.5-4	-	-	15.2	J	< 0.00110		< 0.00551		< 0.00275		0.00152	J	0.001	52	< 0.105		1.81	BJ	3.11	B J	4.92
		0.5-1	-	-	397		< 0.0419		1.21		12.4		23.7		37.3	3	1,250		6,550		3,600		11,400
AH-25	4/5/2021	1.5-2	-	-	107		< 0.00116		< 0.00580		0.00595		0.0172		0.023	32	0.240		254		255		509
AI1-23	4/3/2021	2.5-3	-	-	328		< 0.00104		0.00743		0.111		0.257		0.37		1.77		800		744		1,546
		3.5-4	-	-	81.6		< 0.00109		< 0.00546		0.00396		0.00966		0.013	86	0.358		181		189		370
		0.5-1	-	-	384		< 0.0432		2.25		25.4		50.3		78.0)	1,810		8,610		4,280		14,700
AH-26	4/5/2021	1.5-2	-	-	448		< 0.00114		< 0.00572		0.00212	J	0.00720	J	0.009	32	0.0522	BJ	13.0	В	16.6		29.7
		2.5-3	-	-	34.8		< 0.00111		< 0.00556		0.00776		0.0209		0.028	37	0.322	В	162		140		302
		0-1	-	-	2,630		2.39		85.2		98.2		143		329		2,060		6,080		2,910		11,050
		1-2	-	-	3,390		< 0.00109		0.00505	J	0.00190	J	0.00556	J	0.012	25	0.934		11.3		11.4		23.6
AH-27	4/6/2021	2-3	-	-	9,150		0.00199		0.0227		0.0388		0.0718		0.13	5	0.641		2.14	J	8.20		11.0
		3-4	-	-	7,780		0.000994	J	0.00293	J	0.00349		0.00604	J	0.013	35	0.131		16.9		15.3		32.3
		4-5	-	-	6,960		0.00610		0.0460		0.0352		0.0492		0.13	7	0.143		3.30	J	8.45		11.9
		0-1	-	-	1,270		0.00203		0.04119		0.0350		0.0676		0.14	6	4.11		71.6		59.8		136
		1-2	-	-	1,740		< 0.00109		0.0384		0.0737		0.167		0.27	9	0.0633	J	< 4.17		2.01	J	2.07
AH-28	4/6/2021	2-3	-	-	5,630		< 0.00123		0.00384	J	0.00261	J	0.00929		0.015	57	0.178		< 4.45		14.6		14.8
		3-4	-	-	53.3		< 0.00120		0.00222	J	0.00132	J	0.00409	J	0.007	63	< 0.110		< 4.40		6.23		6.23
		4-5	-	-	10.6	J	< 0.00112		0.00224	J	< 0.00280		0.00134	J	0.003	58	< 0.106		11.0		11.0		22.0
	l	0-1	-	-	33.7		< 0.00104		0.00164	J	< 0.00259		< 0.00673		0.001	64	< 0.102		26.4		40.3		66.7
AH-29	4/6/2021	1-2	_	-	11.2	J	< 0.00103		< 0.00517		< 0.00259		< 0.00672		-		0.0270	J	91.4		88.8		180
	i I	0.5-1	 		1,260	ıc	< 0.0224		3.11		12.5		22.8		38.4		500		3,080		1,610		5,190
AH-30	4/7/2021	1-2	-	-	1,260	J6	< 0.0224		0.00251	-	0.00616		0.0132		0.021		0.0743	1	4.66		4.23	В	5,190 8.96
AITSO	4/1/2021	2-3	_		2,420		0.000857	-	0.00231	,	0.0704		0.193		0.29		0.355	,	3.55		10.0	В	13.9
	1		1			l								l	59.9			l		,			
AH-31	4/7/2021	0.5-1 1-2	-	-	39.5 35.6		0.0170 < 0.00111	J	3.38 0.00363	-	19.0 0.0125		37.5 0.0280		0.044		1,230 0.0697	1	11,700 71.4		8,060 46.3		20,990 118
			-				< 0.00111		I.	J	1		0.0280					J			1		
		0.5-1	-	-	3,570		11.6		324		233		160		729		4,830		14,600		10,300		29,730
AH-32	4/7/2021	1-2	-	-	3,850		0.810		19.1		10.9		13.9		44.7		398		1,320		1,600		3,318
		2-3	<u> </u>	-	2,490		< 0.00112		0.00264	J	0.00150	J	0.00112	J	0.005		< 0.106	<u> </u>	3.93	J	3.15	B J	7.08
		3-4		-	5,000	<u> </u>	0.00187		0.00685		0.00463		0.00399	J	0.017	13	0.0623	J	4.19	J	5.32	B J	9.57
		0.5-1	-	-	1,030		7.84		237		191		268		704		3,750		9,540		5,930		19,220
AH-33	4/7/2021	1-2	-	-	826		19.4		388		255		345		1,00		4,470		9,520		6,250		20,240
	-33 4/7/2021	2-3	-	-	675		0.00164		0.0159		0.0111		0.0181		0.046		0.445		7.97		6.43	В	14.8
		3-4	-	-	10,400		0.00184		0.0202		0.0270		0.0447		0.093	37	0.816		73.6		58.3		133

Received by OCD: 5/18/2021 6:32:30 PM

TABLE 1

SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT - NAPP2105135414

CONOCOPHILLIPS

MCA 151 FLOWLINE RELEASE LEA COUNTY, NM

			Field Screen	sing Posults							BTEX ³	.4								TPH	5,6		
Sample ID	Sample Date	Sample Depth Interval	rieid Screen	iing Results	Chloride	e ^{1,2}	Benzene		Tolue	20	Ethylben	·ono	Total Xyl	onos	Total BT	EV	GRO	7	DRO)	ORO		Total TPH
Sample 15	Sample Date	inter var	Chloride	PID			Belize	ile	Tolue	ie	Ethylben	zene	TOTAL AY	elles	Total Bi	LA	C ₆ - C	10	C ₁₀ - C	28	C ₂₈ - C ₄	10	(GRO+DRO+ORO)
		ft. bgs	рр	m	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
		0-1	-	-	2,320		67.6	QM-07	350	QM-07	194	QM-07	270	QM-07	881		6,620	QM-07	9,350	QM-07	1,040		17,010
		1-2	-	-	2,760		67.5		353		196		276		892		6,080		8,710		1,010		15,800
		2-3	-	-	8,880		0.066		0.233		0.127		0.197		0.624		< 10.0		137		19.3		156
		3-4	-	-	10,400		< 0.050		0.181		0.107		< 0.150		< 0.300		< 10.0		89.5		< 10.0		89.5
BH-1	3/2/2021	4-5	-	-	12,000		0.308		3.11		3.76		6.34		13.5		88.9		559		75.9		724
		6-7	-	-	2,520		< 0.050		0.081		0.270		0.636		0.987		< 10.0		201		31.0		232
		9-10	-	-	560		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		128		15.7		144
		14-15	-	-	192		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		79.3		< 10.0		79.3
		19-20	-	-	48.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300		< 10.0		18.2		< 10.0		18.2

NOTES:

ft. Feet

bgs Below ground surface

ppm Parts per million

mg/kg Milligrams per kilogram

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics
DRO Diesel range organics

ORO Oil range organics

1 EPA Method SM4500Cl-B / 300.0

2 EPA Method 300.0

3 EPA Method 8021B

4 EPA Method 8260B

5 EPA Method 8015M

EPA Method 8015
 EPA Method 8015D/GRO

Bold and italicized values indicate exceedance of proposed RRALs

Shaded rows indicate intervals proposed for excavation.

QUALIFIERS:

QM-07 The spike recovery was outside the acceptance limits for the MS and/or MSD.

The batch was accepted based on acceptable limits.

QR-03 The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference.

QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.

B The same analyte is found in the associated blank.

J The identification of the analyte is acceptable; the reported value is an estimate.

J6 The sample matrix interfered with the ability to make any accurate determination; spike value is low.

TABLE 2 SUMMARY OF ANALYTICAL RESULTS SOIL REMEDIATION - NAPP2105135414 CONOCOPHILLIPS MCA 151 FLOWLINE RELEASE LEA COUNTY, NM

											IN I Y , INIVI									3		
		County Double	Field Screen	ning Results	1				ı		BTEX ²		ı			4		DRO	TPI			
Sample ID	Sample Date	Sample Depth		T	Chloride ¹		Benzene		Toluene		Ethylbenzen	e	Total Xylenes	5	Total BTEX	GRO⁴		_		ORO		Total TPH (GRO+DRO+ORO)
		ft. bgs	Chloride pp	PID	mg/kg	Q	mg/kg	Q	mg/kg	0	mg/kg	0	mg/kg	0	mg/kg	C ₃ - C ₁₀	Q	C ₁₀ - C ₂₈	0	C ₂₈ - C ₄₀	Q	mg/kg
FS-1 (2')	4/13/2021	2	-	-	< 20.8	ų	0.000539	ı	0.00189	ı	0.00189	ı	0.00992	ų	0.0142	0.0569	ų I	21.1	ų	25.7	ų	46.9
FS-2 (2')	4/13/2021	2	-	-	< 20.8		< 0.00108	_	< 0.00538	Ĺ	0.00418	Ť	0.0102		0.0144	0.0233	J	15.2		29.2		44.4
FS-3 (4')	4/20/2021	4	97.0	4.3	30.4		< 0.00113		< 0.00563		< 0.00281		0.00274	J	0.00274	< 0.106	Ť	< 4.25		2.37	ВЈ	2.37
FS-4 (2')	4/14/2021	2	-	-	11.3	J	< 0.00106		< 0.00530		< 0.00265		0.00501	J	0.00501	< 0.103	1	< 4.12		5.24		5.24
FS-5 (2')	4/14/2021	2	-	-	< 20.7		< 0.00107		< 0.00536		0.000928	J	0.00501	J	0.00594	< 0.104		2.36	J	3.57	J	5.93
FS-6 (4')	4/14/2021	4	-	-	12.2	J	< 0.00109		< 0.00547		< 0.00274		0.00242	J	0.00242	< 0.105	1	1.95	J	3.89	J	5.84
FS-7 (4')	4/20/2021	4	48.6	1.5	< 21.0		< 0.00110		< 0.00549		< 0.00275		< 0.00714		-	< 0.105		2.42	J	3.43	J	5.85
FS-8 (4')	4/20/2021	4	46.8	4.5	< 21.2		< 0.00112		< 0.00560		0.000867	J	0.00302	J	0.00389	< 0.106		5.19		6.89	Ħ	12.1
FS-9 (3')	4/20/2021	3	113	5.0	26.1		< 0.00113		< 0.00567		< 0.00284		< 0.00737		-	< 0.107		20.0		28.9		48.9
FS-10 (3')	4/20/2021	3	143	7.0	102		< 0.00107		< 0.00537		< 0.00268		0.00217	J	0.00217	< 0.104		54.1		65.8		120
FS-10 (4')*	4/27/2021	4	263	6.8	180		< 0.00113		0.00175	-	0.00988		0.0423		0.0539	0.0421	1	4.19	ВЈ	2.75	ВЈ	6.98
FS-11 (3')	4/20/2021	3	57.2	6.7	16.3		< 0.00115		< 0.00575	Ť	0.00218	1	0.00586	_	0.00804	< 0.108	Ť	3.01	1	5.90		8.91
FS-12 (3')	4/20/2021	3	105	4.1	60.6	Ť	< 0.00110		< 0.00548		< 0.00274	Ť	0.00281	1	0.00281	< 0.106		8.57		12.0		20.6
FS-13 (6')	4/21/2021	6	62.7	0.1	9.94	J	< 0.00113		< 0.00565		< 0.00282		< 0.00734	Ħ	-	< 0.106		< 4.26		2.34	ВЈ	2.34
FS-14 (4')	4/21/2021	4	131	2.5	17.5	Ť	< 0.00113		< 0.00551	H	< 0.00282	\vdash	< 0.00734	H	-	< 0.105		223	H	454	H	677
FS-15 (6')	4/27/2021	6	720	3.2	958	Ť	0.00140		0.00651		0.00347		0.0145	H	0.0259	< 0.112		< 4.48		< 4.48		-
FS-16 (4')	5/3/2021	4	118	14.4	11.9	-	< 0.00116		< 0.00582		0.00166	1	0.00426	-	0.00592	0.0421	1	12.1		17.7		29.8
FS-17 (4')	5/3/2021	4	66.3	12.1	< 21.6	Ť	< 0.00116		< 0.00578		< 0.00289	_	< 0.00752	_	-	< 0.108	Ť	< 4.31		4.44		4.44
FS-18 (4')	5/3/2021	4	5240	19.8	4980		< 0.00129		0.00336		0.00349		0.0135		0.0204	0.0342	1	5.84		6.99		12.9
FS-19 (3')	5/3/2021	3	44.9	7.8	< 20.9		< 0.00129		< 0.00545	_	< 0.00272		< 0.00708		-	< 0.104	Ť	< 4.18		4.80		4.80
FS-20 (2')	5/5/2021	2	4840	41.3	5310		< 0.00127		< 0.00636		< 0.00318		0.00131	_	0.00131	0.0442	1	< 4.54		2.69	1	2.73
FS-20 (4')*	5/5/2021	4	6610	30.2	7680		< 0.00133		< 0.00667		< 0.00334		< 0.00867	,	-	< 0.117	,	3.49		2.18	1	5.67
FS-21 (2')	5/5/2021	2	144	9.4	49.2		< 0.00107		< 0.00536		< 0.00268		< 0.00696		_	< 0.105		25.2	,	22.8	1	48.0
FS-21 (4')*	5/5/2021	4	461	3.4	132		< 0.00119		< 0.00594		< 0.00297		< 0.00772		-	< 0.109		3.53		5.61		9.14
FS-22 (2')	5/5/2021	2	8640	156.5	7590		< 0.00127		< 0.00634		< 0.00317		0.00165	_	0.00165	0.0307	1	8.22	,	5.35		13.6
FS-22 (4')*	5/5/2021	4	121	7.5	< 21.7		< 0.00117		< 0.00583		< 0.00291		< 0.00757	,	-	< 0.108	1	1.75		2.04		3.79
FS-23 (2')	5/5/2021	2	110	5.1	< 20.7		< 0.00117		< 0.00534		< 0.00267		< 0.00694		-	0.0505	ВЈ	3.48	1	4.12	1	7.65
FS-24 (4')	5/5/2021	4	-	-	38.0		< 0.00107	J3	< 0.00515	J3	< 0.00258		< 0.00670		_	0.049	BJ	< 4.06	,	0.920	J	0.969
	1	<u> </u>	_	-					l	1			l				1	!				
NSW-1 NSW-2	5/3/2021	-	45.5 88.9	2.4	< 20.7 34.2	-	< 0.00107		< 0.00533		< 0.00267		< 0.00693	-	-	< 0.103	-	< 4.13 < 4.07		4.43 2.66		4.43 2.66
	5/11/2021	-	88.9	1.1		<u> </u>	< 0.00103	<u> </u>	< 0.00517	<u> </u>	< 0.00259		0.00155	J	-	< 0.102	<u> </u>		Щ		ВJ	
ESW-1	4/13/2021	-	-	-	< 20.3		< 0.00103		< 0.00516		< 0.00258		< 0.00670		-	< 0.102		< 4.06		10.4		10.4
ESW-2	4/13/2021	-	-	-	< 20.2	Ш	< 0.00102		0.00189	J	0.00200	J	0.00733	Ш	0.0112	0.0601	J	< 4.05		4.25	Ш	4.31
ESW-3	4/13/2021	-	-	-	< 20.3	Ш	< 0.00103		0.00144	J	0.00378		0.00962	Ш	0.0148	0.0949	J	3.74	J	10.1	Ш	13.9
ESW-4	4/14/2021	-	-	-	< 20.4		< 0.00104		< 0.00518		0.000932	J	0.00331	J	0.00942	< 0.102	<u> </u>	< 4.07	Щ	2.45	J	2.45
ESW-5	4/14/2021	-	-	-	< 20.4		< 0.00104		< 0.00518		< 0.00259	<u> </u>	0.00147	J	0.00147	< 0.102	<u> </u>	< 4.07	Щ	4.51	Ш	4.51
ESW-6	4/14/2021	-	-	-	< 20.6		< 0.00106		< 0.00531		0.000902	J	0.00287	J	0.00377	< 0.103	<u> </u>	< 4.12	Щ	7.49	Ш	7.49
ESW-7	4/14/2021	-	-	-	< 20.7		< 0.00107		< 0.00534		< 0.00267	<u> </u>	0.00129	J	0.00129	< 0.103	<u> </u>	3.09	J	7.15	Ш	10.2
ESW-8	4/20/2021	-	37.8	2.8	< 20.3		< 0.00103		< 0.00517		< 0.00259	<u> </u>	< 0.00673	Щ	-	< 0.102	<u> </u>	4.66		6.92	\sqcup	11.6
ESW-9	4/20/2021	-	24.7	4.2	< 20.4	Ш	< 0.00104		< 0.00522	Ш	< 0.00261		< 0.00679	Ш	-	< 0.102	<u> </u>	1.66	J	6.35	Ш	8.01
ESW-10	4/20/2021	-	61.1	3.5	23.2	Ш	< 0.00103		< 0.00515	Ш	< 0.00257	Ш	< 0.00669	Ш	-	< 0.101	L	< 4.06	Ш	5.21	Ш	5.21
ESW-11	4/20/2021	-	39.9	37.3	< 20.6		< 0.00106		< 0.00528		0.00274		0.0145		0.0172	0.0908	J	81.0		251		332
ESW-11 (2')*	4/21/2021	-	67.1	0.2	< 20.5	Ш	< 0.00105		< 0.00525	Ш	< 0.00262		< 0.00682	Ш	-	< 0.102	<u> </u>	< 4.10		3.25	ВJ	3.25
ESW-12	4/20/2021	-	70.3	17.8	10.3	J	< 0.00105		< 0.00523	Ш	< 0.00262		< 0.00680	Ш	-	< 0.102	<u> </u>	16.5		30.4	Ш	46.9
ESW-12 (2')*	4/21/2021	-	104	1.1	14.9	J	< 0.00106		< 0.00531	Ш	< 0.00266	<u> </u>	< 0.00691	Ш	=	< 0.103	<u> </u>	19.1		43.9	Ш	63.0
ESW-13	4/21/2021	-	74.6	17.9	13.9	J	< 0.00102		< 0.00508		0.00196	J	0.00436	J	0.00632	< 0.101	<u> </u>	16.2	Щ	15.4		31.6
ESW-14	4/21/2021	-	29.5	1.4	34.0		< 0.00139		< 0.00697		< 0.00349		< 0.00906	Ш	=	0.0363	J	< 4.79	Щ	2.08	ВJ	2.12
ESW-15	4/21/2021	-	31.8	1.5	11.0	J	< 0.00109		< 0.00544	Ш	< 0.00272		< 0.00707	Ш	=	< 0.104		1.81	J	5.25	В	7.06
ESW-16	4/21/2021	-	176	5.8	53.5		0.000781	J	< 0.00521		0.00321		0.0270		0.0310	0.0686	J	49.2		261		310
ESW-16 (4')	4/27/2021	-	439	2.9	91.8		0.000573	J	< 0.00521		0.00469		0.0409		0.0462	< 0.102		2.57	ВJ	3.92	ВJ	6.49

TABLE 2

SUMMARY OF ANALYTICAL RESULTS SOIL REMEDIATION - NAPP2105135414

CONOCOPHILLIPS

MCA 151 FLOWLINE RELEASE LEA COUNTY, NM

			Field Comme								BTEX ²							TP	PH ³			
		Sample Depth	Field Screen	ning Results	Chloride ¹		_									GRO⁴		DRO		ORO		Total TPH
Sample ID	Sample Date		Chloride	PID			Benzene		Toluene		Ethylbenzen	е	Total Xylenes		Total BTEX	C ₃ - C ₁₀		C ₁₀ - C ₂₈		C ₂₈ - C ₄₀		(GRO+DRO+ORO)
		ft. bgs	pp	om	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg Q		mg/kg	Q	mg/kg
ESW-17	5/3/2021	-	1460	4.1	694		< 0.00109		< 0.00543		< 0.00271		< 0.00706		-	0.0366	J	< 4.17		3.47	J	3.51
ESW-17 (2')*	5/11/2021		21.1	0.4	< 20.3		< 0.00103		< 0.00515		< 0.00257		< 0.00669		-	< 0.101		< 4.06	Ī	3.62	ВJ	3.62
ESW-18	5/3/2021	-	88.4	7.6	27.2		< 0.00112		< 0.00559		< 0.00280		< 0.00726		-	0.0450	J	< 4.21		4.59		4.64
ESW-19	5/3/2021	-	23.6	3.7	< 21.1		< 0.00111		< 0.00554		< 0.00277		< 0.00721		-	< 0.105		< 4.22		3.11	J	3.11
ESW-20	5/3/2021	=	42.0	3.1	12.6	J	< 0.00109		< 0.00547		< 0.00274		< 0.00712		-	< 0.106		< 4.19	Ī	4.37		4.37
ESW-21	5/3/2021	=	64.6	1.8	10.0	J	< 0.00107		< 0.00535		< 0.00268		< 0.00696		-	< 0.104		< 4.14	Ī	3.60	J	3.60
ESW-22	5/3/2021	=	82.9	1.1	12.1	J	< 0.00110		< 0.00551		0.00154	J	< 0.00716		-	< 0.105		< 4.20	Ī	2.78	J	2.78
ESW-23	5/3/2021	=	91.6	3.4	10.2	J	< 0.00110		< 0.00548		< 0.00274		< 0.00713		-	< 0.105		< 4.19	Ī	8.66		8.66
ESW-24	5/5/2021	-	47.6	7.8	< 20.6		< 0.00106		< 0.00530		< 0.00265		< 0.00689		-	< 0.103		< 4.12	L	0.509	J	0.509
SSW-1	4/13/2021	-	-		< 20.3		< 0.00103		< 0.00514		< 0.00257		< 0.00668		-	< 0.101		< 4.06	Π	2.94	J	2.94
WSW-1	4/13/2021	-	-	-	< 20.3		< 0.00103		< 0.00513		< 0.00257		< 0.00667	T	-	< 0.101		< 4.05	Т	3.65	J	3.65
WSW-2	4/13/2021	-	-	-	< 20.5		< 0.00105		< 0.00525		< 0.00263		0.00541	J	0.00541	0.0593	J	< 4.10		8.30		8.36
WSW-3	4/13/2021	-	-	-	< 20.5		< 0.00105		< 0.00523		0.00152	J	0.00413	J	0.00565	< 0.102		< 4.09		3.36	J	3.36
WSW-4	4/14/2021	-	-	-	< 20.3		< 0.00103		< 0.00513		< 0.00257		< 0.00667	1	-	< 0.101		< 4.05	T	3.89		3.89
WSW-5	4/14/2021	-	-	-	10.6	J	< 0.00102		< 0.00510		< 0.00255		< 0.00663		-	< 0.101		1.66 J		5.78		7.44
WSW-6	4/14/2021	-	-	-	15.8	J	< 0.00112		< 0.00560		0.00112	J	0.00397	J	0.00509	< 0.106		2.90 J		7.17		10.1
WSW-7	4/14/2021	-	-	-	< 20.7		< 0.00107		< 0.00533		< 0.00266		< 0.00693		-	< 0.103		2.27 J		6.9		9.17
WSW-8	4/20/2021	-	21.8	2.2	< 20.2		< 0.00102		< 0.00511		0.00107	J	0.00278	J	0.00385	< 0.101		1.79 J		4.71		6.50
WSW-9	4/20/2021	-	49.2	5.9	< 20.3		< 0.00103		< 0.00514		< 0.00257		< 0.00668		-	< 0.101		< 4.06	Г	3.53	J	3.53
WSW-10	4/20/2021	-	37.7	5.0	10.3	J	< 0.00103		< 0.00513		< 0.00256		< 0.00667		-	< 0.101		1.87 J	Г	4.30		6.17
WSW-11	4/20/2021	-	36.1	2.9	20.5		< 0.00105		< 0.00523		< 0.00261		0.00125	J	0.00125	< 0.102		1.73 J	Г	3.57	J	5.30
WSW-12	4/20/2021	-	28.9	3.6	< 22.6		< 0.00126		< 0.00630		< 0.00315		0.00139	J	0.00139	0.0348	J	< 4.52	Г	2.57	J	2.60
WSW-13	4/21/2021	-	55.9	1.8	37.6		< 0.00148		< 0.00740		< 0.00370		< 0.00962		-	< 0.124		< 4.96	Г	0.624	ВЈ	0.624
WSW-14	4/21/2021	=	42.5	0.6	38.2		< 0.00148		< 0.00739		< 0.00369		< 0.00960		-	< 0.124		< 4.95	Ī	0.907	ВЈ	0.907
WSW-15	4/21/2021	-	81.6	15.9	45.6		0.00109	J	0.00997		0.00673		0.0115		0.0293	< 0.125		< 5.00	Г	2.36	ВЈ	2.36
WSW-16	4/21/2021	-	14.4	5.1	32.5		< 0.00144		< 0.00718		< 0.00359		< 0.00933		-	< 0.122		< 4.87	Г	< 4.87		-
WSW-17	5/3/2021	-	923	4.1	367		< 0.00114		< 0.00572		< 0.00286		< 0.00743		-	< 0.107		< 4.29	Г	2.38	J	2.38
WSW-18	5/3/2021	-	2570	5.3	139		< 0.00111		< 0.00556		< 0.00278		< 0.00722	Ī	=	< 0.106		< 4.22		2.45	J	2.45
WSW-19	5/3/2021	-	840	33.7	489		< 0.00108		< 0.00539		0.00205	J	0.00681	J	0.00886	0.0237	J	1.74 J		2.70	J	4.46
WSW-20	5/3/2021	-	42.6	13.3	11.1	J	< 0.00111		< 0.00554		< 0.00277		0.00421	J	0.00421	< 0.106		< 4.21		2.84	J	2.84
WSW-21	5/3/2021	-	42.2	2.9	347		< 0.00112		< 0.00562		< 0.00281		0.00279	J	0.00279	0.0712	J	1.91 J		4.60		6.58
WSW-22	5/3/2021	-	39.0	3.8	< 20.2		< 0.00102		< 0.00509		< 0.00255		< 0.00662	Ī	=	< 0.101		< 4.04		7.30		7.30
WSW-23	5/3/2021	-	78.5	1.6	< 20.4		< 0.00104		< 0.00520		< 0.00260		< 0.00676	T	=	< 0.102		< 4.08		4.06	J	4.06
WSW-24	5/5/2021	-	53.4	3.7	< 20.1		< 0.00101		< 0.00507		< 0.00254		< 0.00659		-	< 0.101		3.92 J		10.1		14.0

NOTES:

bgs Below ground surface ppm Parts per million

mg/kg Milligrams per kilogram

TOU Total Data law Ut day on the

TPH Total Petroleum Hydrocarbons

GRO Gasoline range organics

DRO Diesel range organics
ORO Oil range organics

QUALIFIERS:

B The same analyte is found in the associated blank.

Bold and italicized values indicate exceedance of proposed RRALs

J The identification of the analyte is acceptable; the reported value is an estimate.

Gold highlight represents soil horizons that were removed during deepening of excavation floors.

Green highlight represents soil intervals that were removed during horizontal expansion of excavation sidewalls.

* These iterative samples are located to encompass the original sample location that triggered removal, with further excavation in each area indicated in ().

APPENDIX A C-141 Forms

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	NAPP2105135414
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible	Party Cono	coPhillips Co	mpany	OC	GRID 2	217817
Contact Nam	e Kelsy V	Vaggaman		Co	ontact Tel	Telephone 505-577-9071
Contact emai	I Kelsy.\	Waggaman@	ConocoPhillips	s.comInd	cident#(# (assigned by OCD) NAPP2105135414
Contact mail	ing address	29 Vacuum	Complex Lane	e, Loving	gton, N	NM 88260
			-	4D 1	~	
			Location	of Rele	ease So	Source
Latitude 32.78	6111 32.80	7702				ongitude -103.478056 -103.769118
			(NAD 83 in deci	imal degrees	s to 5 decim	imal places)
Site Name M	ICA 151			Site	te Type F	Flowline - off-location
Date Release	Discovered	2/19/21		AP	PI# (if appl	pplicable) 30-025-00739
Unit Letter	Section	Township	Danga	•	Count	antr.
G	28	17S	Range			•
	20	173	32E		Lea	<u> </u>
Surface Owner	r: State	X Federal T	ribal Private (A	Name:		
			Nature and	Volum	na of R	Ralassa
			rature and	Volum	iic oi iv	Release
[V				calculations of	or specific j	c justification for the volumes provided below)
Crude Oil		Volume Release				Volume Recovered (bbls) 0
Produced	Water	Volume Release	d (bbls) 27			Volume Recovered (bbls) 0
		Is the concentrat produced water	ion of dissolved ch	nloride in t	the	☐ Yes ☐ No
Condensa	te	Volume Release				Volume Recovered (bbls)
Natural G	as	Volume Release	d (Mcf)			Volume Recovered (Mcf)
Other (des	scribe)	Volume/Weight	Released (provide	units)		Volume/Weight Recovered (provide units)
Cause of Rele	ease	l				
Flo	wline Fai	lura				
110	vviiii c i ai	iui6				

Received by OCD: 5/18/2021 6:32:30 PM Form C-141 State of New Mexico Page 2 Oil Conservation Division

Page 24 of 457

Incident ID NAPP2105135414
District RP
Facility ID
Application ID

Was this a major release as defined by	If YES, for what reason(s) does the respon	sible party consider this a major release?
19.15.29.7(A) NMAC?	The release exceeded 25 bbls	of produced water.
X Yes No		
Notification of Rele Waggaman, Conoc	ease (NOR)/C-141a submitted ele	om? When and by what means (phone, email, etc)? ectronically through NMOCD portal by Kelsy ator on 2/20/21. Bradford Billings (NMOCD) and 1.
,	Initial Re	
The responsible	party must undertake the following actions immediately	vunless they could create a safety hazard that would result in injury
The source of the rele	ease has been stopped.	
The impacted area ha	as been secured to protect human health and	the environment.
X Released materials ha	ave been contained via the use of berms or d	ikes, absorbent pads, or other containment devices.
All free liquids and re	ecoverable materials have been removed and	l managed appropriately.
If all the actions described	d above have <u>not</u> been undertaken, explain v	vhy:
Dog 10 15 20 9 D (4) NIM	IAC the responsible porty may commence w	emediation immediately after discovery of a release. If remediation
has begun, please attach	a narrative of actions to date. If remedial e	efforts have been successfully completed or if the release occurred lease attach all information needed for closure evaluation.
		pest of my knowledge and understand that pursuant to OCD rules and
		ications and perform corrective actions for releases which may endanger CD does not relieve the operator of liability should their operations have
failed to adequately investig	ate and remediate contamination that pose a threa	at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
and/or regulations.	1 a C-141 report does not reneve the operator of i	responsionity for compnance with any other federal, state, or local laws
Printed Name: Kelsy W	Vaggaman	Title: Environmental Coordinator
Signature: Kuyll	bryspinn	Date: 3/15/21
_{email:} Kelsy.Waggar	man@ConocoPhillips.com	Telephone: 505-577-9071
		s to release source via the payment portal on 4/27/2021. cml
OCD Only		
-		D. () (0.1/2024
Received by: <u>Karen Co</u>	llins	Date: 3/24/2021

•							1 17 11 1	21031331	110
				L48 Spill Volume	Estimate Form				
		Facility Name & Number:	MCA 151						
		Asset Area:	Maljamar						
	F	Release Discovery Date & Time:	02/19/2021 8:00am	1					
		Release Type:	Oil Mixture						
	Provide an	y known details about the event:	Flow line leak	The same of the sa	2317. F 2 2 2 2				
				Spill Calculation - Subst	urface Spill - Rectangle				
	Wa	is the release on pad or off-pad?			See reference table	below			
	Has it rained at least	a half inch in the last 24 hours?			See reference table	below			
Convert Irregular shape into a series of rectangles	Length (ft.)	Width (it.)	Depth (in.)	Soil Spilled-Fluid Saturation	Estimated volume of each area (bbl.)	Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture	Total Estimated Volume of Spilled Oil (bbl.)	Total Estimated Volume of Spilled Liquid other than Oil (bbl.)
Rectangle A	600.0	2.0	1,00	15,32%	17.800	2.727	10.00%	0.273	2 454
Rectangle B	100.0	3.0	1.00	15.32%	4.450	0.682	10.00%	0.068	0.614
Rectangle C	36.0	36.0	2.00	15.32%	38.448	5.890	10.00%	0.589	5.301
Rectangle D	200.0	100.0	0.13	15.32%	37.083	5.681	10.00%	0.568	5.113
Rectangle E					0.000	0.000		0.000	0.000
Rectangle F		1			0.000	0.000		0.000	0.000
Rectangle G				N - I	0.000	0.000		0.000	0.000
Rectangle H		1			0.000	0.000		0.000	0,000
Rectangle I					0.000	0.000		0.000	0.000
Rectangle J					0.000	0.000		0.000	0.000
					Total Volume Release:	14.980		1.498	13.482

						L48 Spill Vo	lume Estimate	Form				
		Facili	ty Name & Number:	MCA 151								
			Asset Area:	Buckeye West								
	Rele	ase Disc	overy Date & Time:	02/19/2021 8:00am								
			Release Type:	Oil Mixture								
Provi	de any k	nown det	ails about the event.		2-0	4.00	TO SEE SEE ST	A TOTAL PROPERTY.				
					Sp	II Calculation	- On Pad Surface	Pool Spill				
Convert Irregular shape nto a series of rectangles	Length (ft.)	Width (ft.)	Deepest point in each of the areas (in.)	No. of boundaries of "shore" in each area	Estimated <u>Pool</u> Area (sq.ft.)	Estimated Average Depth (ft.)	Estimated volume of each pool area (bbl.)	Penetration allowance (ft.)	Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture	Total Estimated Volume of Spilled Oil (bbl.)	Total Estimated Volume of Spilled Liquid other than C (bbl.)
Rectangle A	20.0	30.0	3.00	3	600,000	0.083	8 900	0.004	8.937	10.00%	0.894	8.043
Rectangle B	15.0	20.0	3.00	3	300 000	0.083	4,450	0.004	4.469	10.00%	0.447	4.022
Rectangle C	10.0	5.0	4.00	4	50.000	0.083	0.742	0.004	0.745	10.00%	0.074	0.670
Rectangle D					0.000	#DIV/01	#DIV/01	#DIV/01	#DIV/01		#DIV/01	#DIV/01
Rectangle E					0.000	#DIV/01	#DIV/01	#DIV/01	#DIV/01		#DIV/01	#DIV/01
Rectangle F					0.000	#DIV/01	#DIV/01	#DIV/01	#DIV/01		#DIV/01	#DIV/01
Rectangle G					0.000	#DIV/0!	#DIV/01	#DIV/01	#DIV/0!		#DIV/01	#DIV/0!
Rectangle H					0.000	#DIV/0!	#DIV/0!	#DIV/01	#DIV/01		#DIV/01	#DIV/0!
Rectangle I					0.000	#DIV/0!	#DIV/01	#DIV/01	#DIV/0!		#DIV/0!	#DIV/01
Rectangle J					0.000	#DIV/01	#DIV/01	#DIV/01	#DIV/01		#DIV/01	#DIV/0!
								Total Volume Release:	14.150		1.415	12.735

Received by OCD: 5/18/2021 6:32:30 PM Form C-141 State of New Mexico Page 3 Oil Conservation Division

	Page 26 of 457
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody	ls.

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 5/18/2021 6:32:30 PM Form C-141 State of New Mexico Page 4 Oil Conservation Division

Page 27 of 457

Incident ID		
District RP		
Facility ID		
Application ID		

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release no public health or the environment. The acceptance of a C-141 report by the failed to adequately investigate and remediate contamination that pose a the addition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	occidentifications and perform corrective actions for releases which may endanger occident occidentations and perform corrective actions for releases which may endanger occidentations and perform corrective actions for releases which may endanger occidentations and perform corrective actions for releases which may endanger occidentations and perform corrective actions for releases which may endanger occidentations and perform corrective actions for releases which may endanger occidentations and perform corrective actions for releases which may endanger occidentations and perform corrective actions for releases which may endanger occidentations are considered actions.
Printed Name:	
Printed Name: Signature: email:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

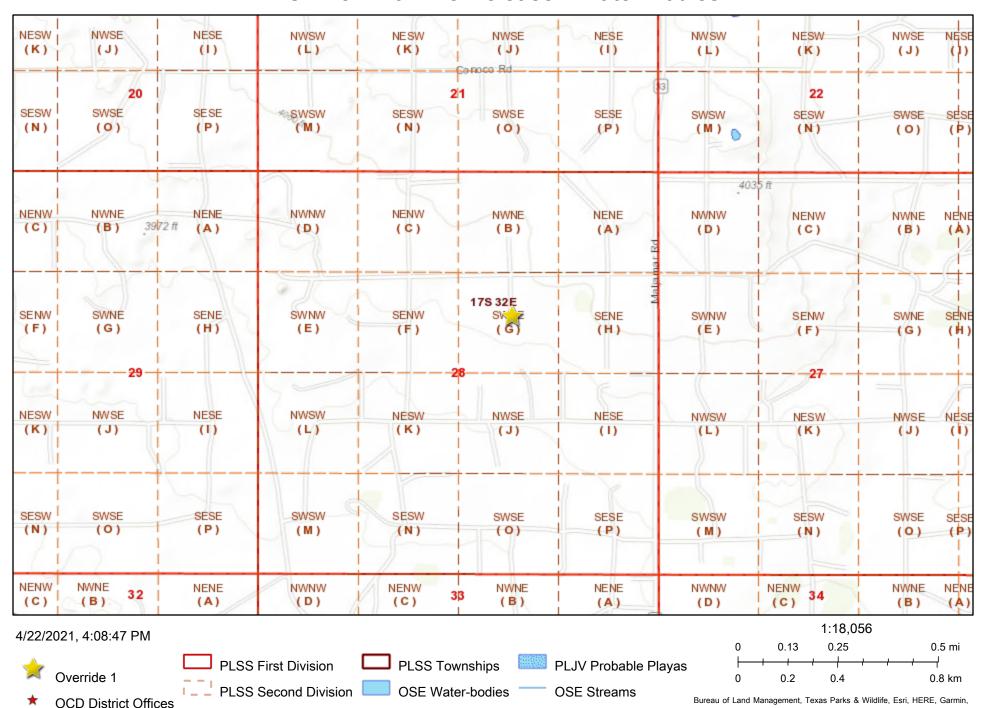
Received by OCD: 5/18/2021 6:32:30 PM Form C-141 State of New Mexico Page 6 Oil Conservation Division

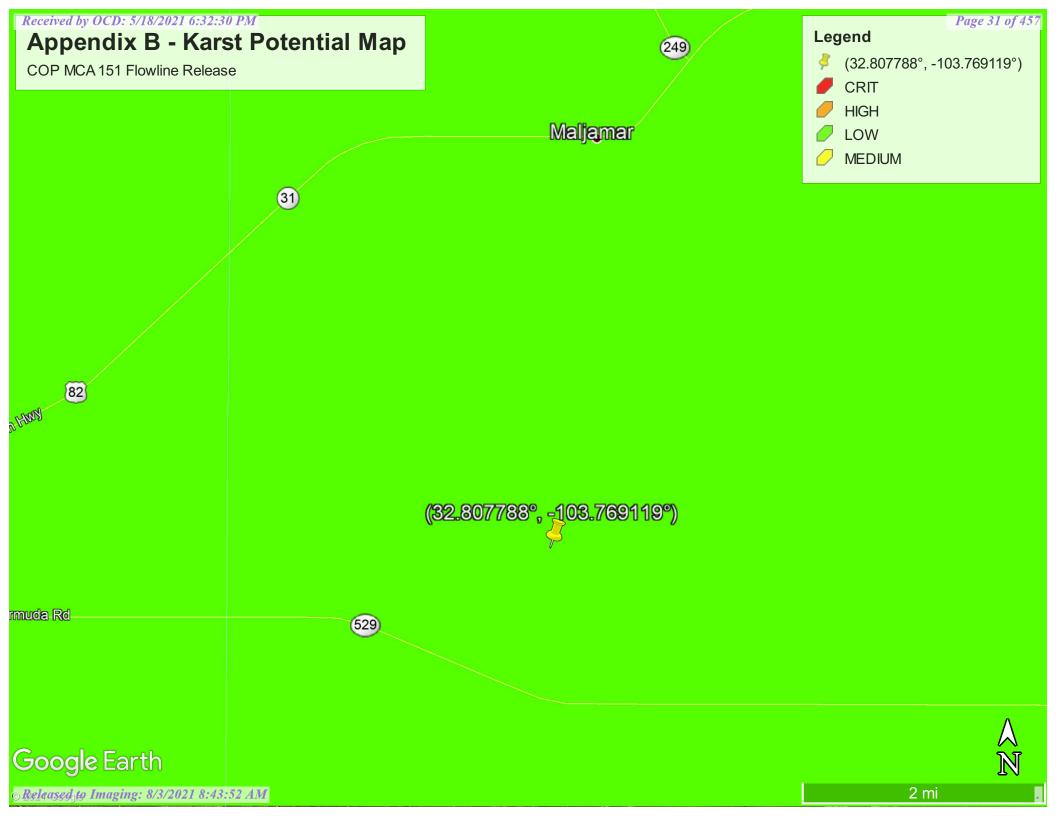
Incident ID

District RP

Facility ID

Application ID


Closure


The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following	items must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.	.11 NMAC
Photographs of the remediated site prior to backfill or photo must be notified 2 days prior to liner inspection)	s of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate OD	OC District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certar may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rehuman health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regularestore, reclaim, and re-vegetate the impacted surface area to the caccordance with 19.15.29.13 NMAC including notification to the OP rinted Name:	lations. The responsible party acknowledges they must substantially onditions that existed prior to the release or their final land use in
OCD Only	
Received by:	Date:
	y of liability should their operations have failed to adequately investigate and e water, human health, or the environment nor does not relieve the responsible d/or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

APPENDIX B Site Characterization Data

MCA 151 Flowline Release - Water Bodies

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

3 ,	,	`	•					J	, ,		,	`	,	
POD Number	POD Sub- Code basin	County		Q 16	_	ec Tw	/s R	lng	х	Y	Distance	•	-	Water Column
RA 12721 POD2	RA	LE				28 17		_	615055	3630407 🌍	264	124	75	49
RA 12020 POD3	RA	LE	2	1	2 2	28 17	'S 3	32E	615152	3631019 🌍	422	112	83	29
RA 12020 POD1	RA	LE	2	2	1 2	28 17	'S 3	32E	614828	3630954 🌕	534	120	81	39
RA 12522 POD3	RA	LE	4	4	3 2	28 17	'S 3	32E	614980	3631093 🌍	549	100		
RA 12522 POD2	RA	LE	2	2	1 2	28 17	'S 3	32E	614949	3631098 🌍	569	100		
RA 10175	RA	LE		2	1 2	28 17	'S 3	32E	614814	3631005*	578	158		
RA 12522 POD1	RA	LE	3	3	4 2	21 17	'S 3	32E	614941	3631122 🌍	593	100		
RA 12721 POD3	RA	LE	2	3	4 2	28 17	'S 3	32E	615417	3629979 🌑	651	115		
RA 12042 POD1	RA	LE	2	2	1 2	28 17	'S 3	32E	614891	3631181 🎒	669	400		
RA 12521 POD1	RA	LE	3	3	4 2	21 17	'S 3	32E	615127	3631271 🌕	674	105	92	13
RA 12721 POD1	RA	LE	3	2	3 2	28 17	'S 3	32E	614645	3630141 🌑	747	125		
RA 12721 POD5	RA	LE	2	4	4 2	28 17	'S 3	32E	615650	3629961 🌑	766	130	124	6

Average Depth to Water: 91

91 feet

Minimum Depth:

75 feet

Maximum Depth:

124 feet

Record Count: 12

UTMNAD83 Radius Search (in meters):

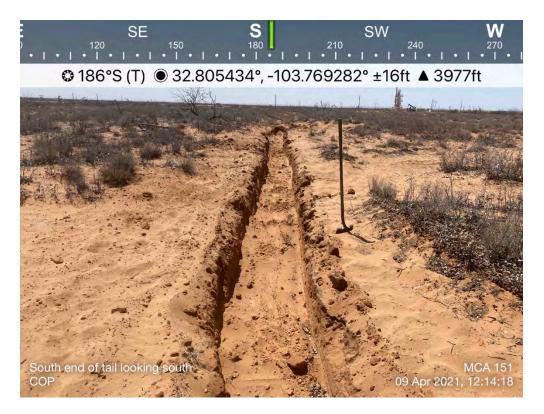
Easting (X): 615231.432 Northing (Y): 3630604.468 Radius: 800


*UTM location was derived from PLSS - see Help

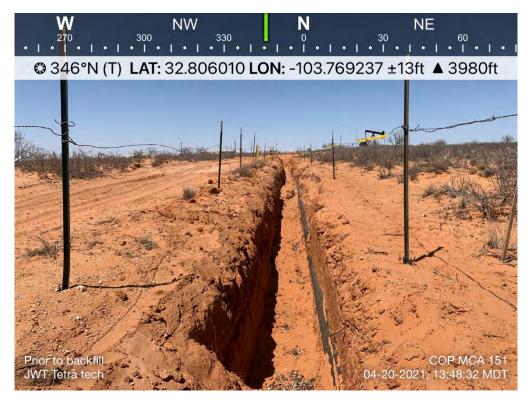
The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

APPENDIX C Photographic Documentation

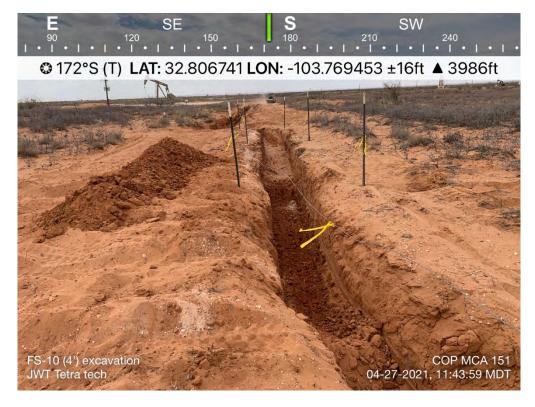
TETRA TECH, INC. PROJECT NO. 212C-MD-02471	DESCRIPTION	View north. Release point and staining.	1
	SITE NAME	MCA 151 FL Release	2/2/2021

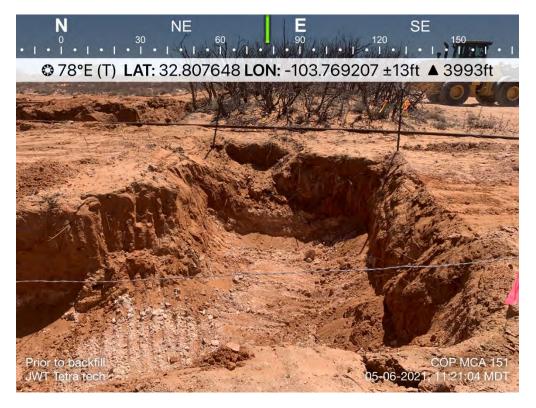

TETRA TECH, INC. PROJECT NO. 212C-MD-02471	DESCRIPTION	View northwest. Pad east central of the release and staining.	2
	SITE NAME	MCA 151 FL Release	2/2/2021

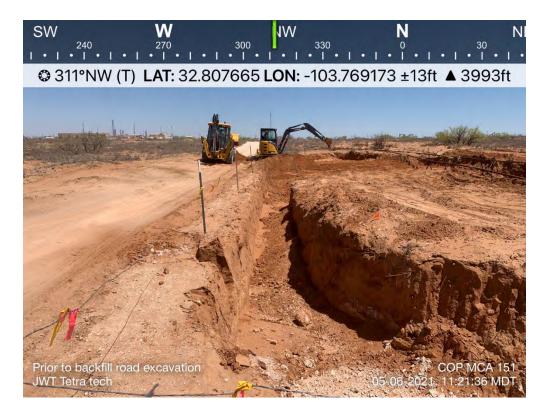
TETRA TECH, INC. PROJECT NO. 212C-MD-02471	DESCRIPTION	View southeast. Central portion of the release footprint and associated ~2' bgs excavation.	3
	SITE NAME	MCA 151 FL Release	4/9/2021

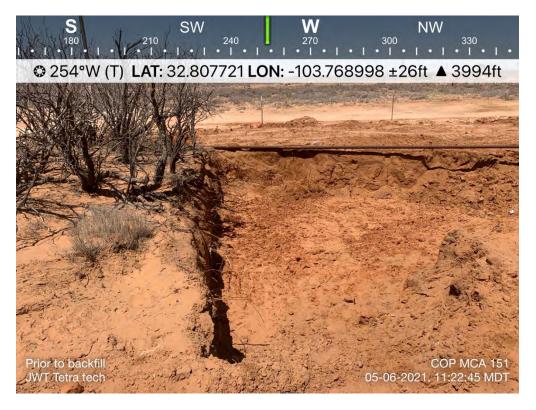

TETRA TECH, INC. PROJECT NO. 212C-MD-02471	DESCRIPTION	View north. Release footprint, pasture and associated ~2' bgs excavation.	4
	SITE NAME	MCA 151 FL Release	4/9/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02471	DESCRIPTION	View south. Release footprint, pasture and associated ~2' bgs excavation.	5
	SITE NAME	MCA 151 FL Release	4/9/2021

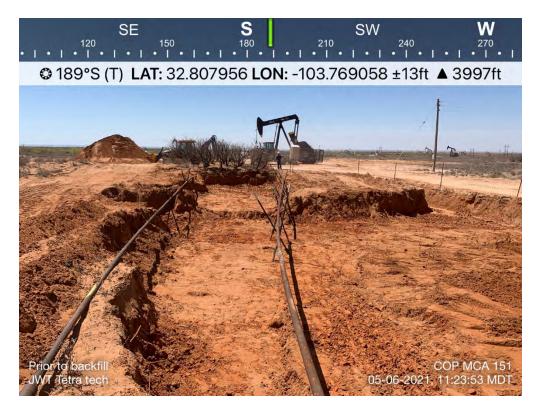

TETRA TECH, INC. PROJECT NO. 212C-MD-02471	DESCRIPTION	View south. Release footprint, pasture and associated ~2' bgs excavation.	6
	SITE NAME	MCA 151 FL Release	4/14/2021

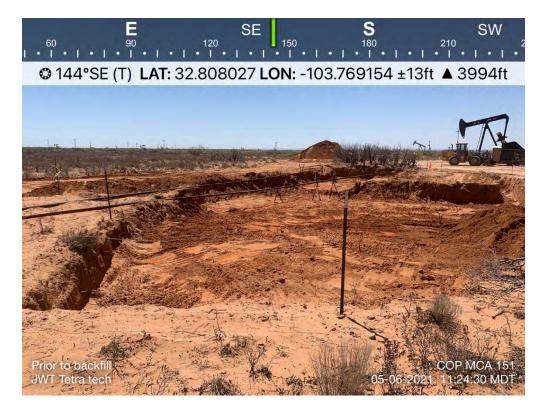

TETRA TECH, INC. PROJECT NO. 212C-MD-02471	DESCRIPTION	View north. Release footprint, pasture, buried line, and associated ~3' bgs excavation.	7
	SITE NAME	MCA 151 FL Release	4/20/2021

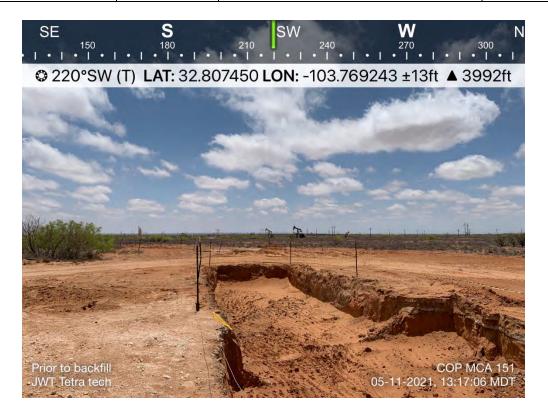

TETRA TECH, INC. PROJECT NO. 212C-MD-02471	DESCRIPTION	View south. Release footprint, buried lines, and associated excavation.	8
	SITE NAME	MCA 151 FL Release	4/26/2021

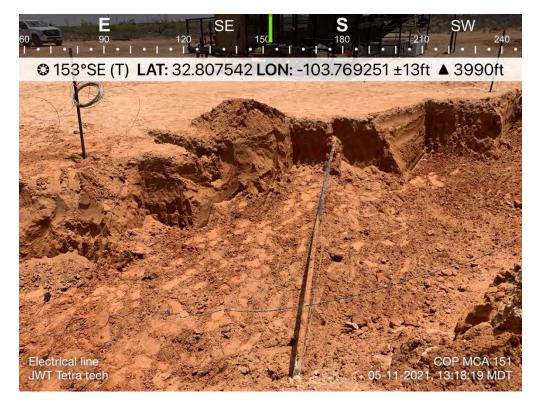

TETRA TECH, INC. PROJECT NO. 212C-MD-02471	DESCRIPTION	View south. Release footprint, pasture and associated ~4' bgs excavation.	9
	SITE NAME	MCA 151 FL Release	4/27/2021

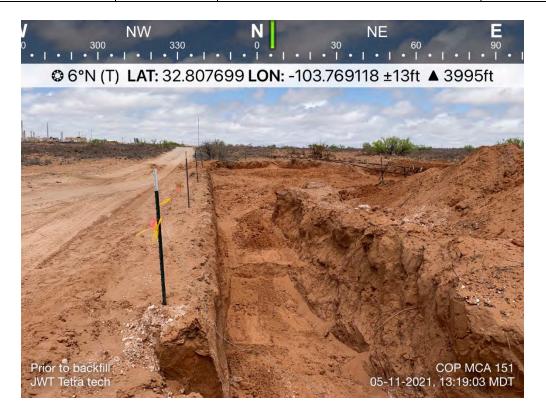

TETRA TECH, INC.	DESCRIPTION	View east. Release point, surface line, and associated 6' bgs excavation.	10
212C-MD-02471	SITE NAME	MCA 151 FL Release	5/6/2021


TETRA TECH, INC.	DESCRIPTION	View northwest. Release footprint and excavation.	11
PROJECT NO. 212C-MD-02471	SITE NAME	MCA 151 FL Release	5/6/2021


TETRA TECH, INC. PROJECT NO. 212C-MD-02471	DESCRIPTION	View west. Release footprint. Surface line and excavation.	12
	SITE NAME	MCA 151 FL Release	5/6/2021


TETRA TECH, INC.	DESCRIPTION	View west. Release footprint. Surface line and excavation.	13
PROJECT NO. 212C-MD-02471	SITE NAME	MCA 151 FL Release	5/6/2021


TETRA TECH, INC. PROJECT NO. 212C-MD-02471	DESCRIPTION	View south. Release footprint. Surface lines and excavation.	14
	SITE NAME	MCA 151 FL Release	5/6/2021


TETRA TECH, INC. PROJECT NO. 212C-MD-02471	DESCRIPTION	View southeast. Release footprint. Surface lines and excavation.	15
	SITE NAME	MCA 151 FL Release	5/6/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02471	DESCRIPTION	View southwest. Release footprint and excavation.	16
	SITE NAME	MCA 151 FL Release	5/11/2021

TETRA TECH, INC. PROJECT NO. 212C-MD-02471	DESCRIPTION	View southeast. On pad. Release footprint, buried line and excavation	17
	SITE NAME	MCA 151 FL Release	5/11/2021

TETRA TECH, INC.	DESCRIPTION	View north from the release point. Release footprint and excavation.	18
PROJECT NO. 212C-MD-02471	SITE NAME	MCA 151 FL Release	5/11/2021

APPENDIX D Laboratory Analytical Data Soil Assessment

March 02, 2021

JOE TYLER

Conoco Phillips - Hobbs

P. O. BOX 325

Hobbs, NM 88240

RE: MCA #151 FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 02/26/21 16:25.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-20-13. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240 Fax To: (575) 297-14

Fax To: (575) 297-1477

 Received:
 02/26/2021
 Sampling Date:
 02/26/2021

 Reported:
 03/02/2021
 Sampling Type:
 Soil

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)
Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

A ... - L ... - - - I D. .. MC

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 1 (0 - 1') (H210470-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	<0.050	0.050	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	<0.050	0.050	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	<0.150	0.150	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	<0.300	0.300	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	03/01/2021	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2021	ND	207	103	200	2.59	
DRO >C10-C28*	<10.0	10.0	03/01/2021	ND	212	106	200	1.04	
EXT DRO >C28-C36	<10.0	10.0	03/01/2021	ND					
Surrogate: 1-Chlorooctane	72.7	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	73.2	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Sample Received By:

Tamara Oldaker

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Location: COPC - LEA COUNTY, NM

212C-MD-02377

Sample ID: AH - 2 (0 - 1') (H210470-02)

Project Number:

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	<0.050	0.050	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	<0.050	0.050	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	<0.150	0.150	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	<0.300	0.300	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 73.3-12	9						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	03/01/2021	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2021	ND	207	103	200	2.59	
DRO >C10-C28*	<10.0	10.0	03/01/2021	ND	212	106	200	1.04	
EXT DRO >C28-C36	<10.0	10.0	03/01/2021	ND					
Surrogate: 1-Chlorooctane	76.7	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	76.1	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil
Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

Analyzed By: MS

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 3 (0 - 1') (H210470-03)

BTEX 8021B

BIEX 8021B	ilig/	ky	Allalyze	u by. M3					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	<0.050	0.050	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	<0.050	0.050	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	<0.150	0.150	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	<0.300	0.300	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	03/01/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2021	ND	207	103	200	2.59	
DRO >C10-C28*	<10.0	10.0	03/01/2021	ND	212	106	200	1.04	
EXT DRO >C28-C36	<10.0	10.0	03/01/2021	ND					
Surrogate: 1-Chlorooctane	73.5	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	71.5	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes) Sample Received By: Project Number: 212C-MD-02377 Tamara Oldaker

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 4 (0 - 1') (H210470-04)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	<0.050	0.050	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	<0.050	0.050	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	<0.150	0.150	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	<0.300	0.300	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	03/01/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2021	ND	207	103	200	2.59	
DRO >C10-C28*	<10.0	10.0	03/01/2021	ND	212	106	200	1.04	
EXT DRO >C28-C36	<10.0	10.0	03/01/2021	ND					
Surrogate: 1-Chlorooctane	74.2	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	74.2	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes) Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 5 (0 - 1') (H210470-05)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	<0.050	0.050	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	<0.050	0.050	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	<0.150	0.150	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	<0.300	0.300	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	'kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	03/01/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2021	ND	207	103	200	2.59	
DRO >C10-C28*	<10.0	10.0	03/01/2021	ND	212	106	200	1.04	
EXT DRO >C28-C36	<10.0	10.0	03/01/2021	ND					
Surrogate: 1-Chlorooctane	68.9	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	69.1	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 6 (0 - 1') (H210470-06)

RTFY 8021R

B1EX 8021B	mg/	кд	Anaiyze	а ву: мѕ					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	<0.050	0.050	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	<0.050	0.050	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	<0.150	0.150	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	<0.300	0.300	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	03/01/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2021	ND	207	103	200	2.59	
DRO >C10-C28*	<10.0	10.0	03/01/2021	ND	212	106	200	1.04	
EXT DRO >C28-C36	<10.0	10.0	03/01/2021	ND					
Surrogate: 1-Chlorooctane	77.4	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	75.6	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil
Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker
Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 7 (0 - 1') (H210470-07)

BTEX 8021B	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	<0.050	0.050	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	<0.050	0.050	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	<0.150	0.150	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	<0.300	0.300	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	03/01/2021	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2021	ND	207	103	200	2.59	
DRO >C10-C28*	<10.0	10.0	03/01/2021	ND	212	106	200	1.04	
EXT DRO >C28-C36	<10.0	10.0	03/01/2021	ND					
Surrogate: 1-Chlorooctane	75.5	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	73.8	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil
Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 8 (0 - 1') (H210470-08)

RTFY 8021R

BIEX 8021B	mg/	кg	Anaiyze	а ву: мѕ					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	0.111	0.050	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	<0.050	0.050	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	<0.150	0.150	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	<0.300	0.300	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	03/01/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2021	ND	207	103	200	2.59	
DRO >C10-C28*	<10.0	10.0	03/01/2021	ND	212	106	200	1.04	
EXT DRO >C28-C36	<10.0	10.0	03/01/2021	ND					
Surrogate: 1-Chlorooctane	80.0	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	79.2	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

C-04

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes) Sample Received By: Project Number: 212C-MD-02377 Tamara Oldaker

Applyzod By: MC

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 9 (0 - 1') (H210470-09)

RTFY 8021R

B1EX 8021B	mg	/кд	Analyze	а ву: м5					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	60.1	5.00	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	415	5.00	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	286	5.00	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	407	15.0	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	1170	30.0	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	03/01/2021	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	9460	50.0	03/01/2021	ND	207	103	200	2.59	
DRO >C10-C28*	21700	50.0	03/01/2021	ND	212	106	200	1.04	
EXT DRO >C28-C36	4320	50.0	03/01/2021	ND					
Surrogate: 1-Chlorooctane	499	% 44.3-14	4						
Surrogate: 1-Chloroctadecane	581	% 42.2-15	6						

Surrogate: 1-Chlorooctadecane 581 % 42.2-156

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil
Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 9 (1' - 2') (H210470-10)

RTFY 8021R

B1EX 8021B	mg	/kg	Analyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.446	0.050	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	4.07	0.050	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	1.78	0.050	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	2.55	0.150	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	8.84	0.300	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1650	16.0	03/01/2021	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	62.1	50.0	03/01/2021	ND	207	103	200	2.59	
DRO >C10-C28*	1930	50.0	03/01/2021	ND	212	106	200	1.04	
EXT DRO >C28-C36	880	50.0	03/01/2021	ND					
Surrogate: 1-Chlorooctane	81.2	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	163	% 42.2-15	6						

Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keens

Celey D. Keene, Lab Director/Quality Manager

*=Accredited Analyte

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition:

** (See Notes) Tamara Oldaker Project Number: 212C-MD-02377 Sample Received By:

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 9 (2' - 3') (H210470-11)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	<0.050	0.050	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	<0.050	0.050	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	<0.150	0.150	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	<0.300	0.300	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.9	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3760	16.0	03/01/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2021	ND	207	103	200	2.59	
DRO >C10-C28*	40.6	10.0	03/01/2021	ND	212	106	200	1.04	
EXT DRO >C28-C36	11.0	10.0	03/01/2021	ND					
Surrogate: 1-Chlorooctane	75.7	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	76.5	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes) Tamara Oldaker Project Number: 212C-MD-02377 Sample Received By:

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 9 (3' - 4') (H210470-12)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	<0.050	0.050	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	<0.050	0.050	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	<0.150	0.150	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	<0.300	0.300	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.9	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1520	16.0	03/01/2021	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/01/2021	ND	214	107	200	1.75	QR-03
DRO >C10-C28*	185	10.0	03/01/2021	ND	225	112	200	3.74	
EXT DRO >C28-C36	47.8	10.0	03/01/2021	ND					
Surrogate: 1-Chlorooctane	80.0	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	88.6	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil
Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 9 (4' - 5') (H210470-13)

Analyte Result Reporting Limit Analyzed Method Blank BS % Recommendation Benzene* <0.050 0.050 03/01/2021 ND 2.08 10 Toluene* <0.050 0.050 03/01/2021 ND 2.12 10 Ethylbenzene* <0.050 0.050 03/01/2021 ND 2.05 10 Total Xylenes* <0.150 0.150 03/01/2021 ND 5.98 99 Total BTEX <0.300 0.300 03/01/2021 ND ND ND Surrogate: 4-Bromofluorobenzene (PID 101 % 73.3-129 Analyzed By: GM Method Blank BS % Recommender Analyte Result Reporting Limit Analyzed Method Blank BS % Recommender Chloride 7600 16.0 03/01/2021 ND 416 10	,
Toluene* <0.050 0.050 03/01/2021 ND 2.12 10 Ethylbenzene* <0.050 0.050 03/01/2021 ND 2.05 10 Total Xylenes* <0.150 0.150 03/01/2021 ND 5.98 99. Total BTEX <0.300 0.300 03/01/2021 ND Surrogate: 4-Bromofluorobenzene (PID 101 % 73.3-129 Chloride, SM4500Cl-B mg/kg Analyzed By: GM Analyte Result Reporting Limit Analyzed Method Blank BS % Recommendation of the surrogate of the surr	04 2.00 2.65
Ethylbenzene* < 0.050	
Total Xylenes* < 0.150	06 2.00 2.18
Total BTEX < 0.300 0.300 03/01/2021 ND Surrogate: 4-Bromofluorobenzene (PID 101 % 73.3-129 Chloride, SM4500Cl-B mg/kg Analyzed By: GM Analyte Result Reporting Limit Analyzed Method Blank BS % Record	02 2.00 3.21
Surrogate: 4-Bromofluorobenzene (PID 101 % 73.3-129 Chloride, SM4500Cl-B mg/kg Analyzed By: GM Analyte Result Reporting Limit Analyzed Method Blank BS % Reco	9.7 6.00 3.07
Chloride, SM4500Cl-B mg/kg Analyzed By: GM Analyte Result Reporting Limit Analyzed Method Blank BS % Reco	
Analyte Result Reporting Limit Analyzed Method Blank BS % Reco	
,	
Chloride 7600 16.0 03/01/2021 ND 416 10	ecovery True Value QC RPD Qualifier
·	04 400 0.00
TPH 8015M mg/kg Analyzed By: MS	
Analyte Result Reporting Limit Analyzed Method Blank BS % Reco	ecovery True Value QC RPD Qualifier
GRO C6-C10* <10.0 10.0 03/01/2021 ND 214 10	07 200 1.75
DRO >C10-C28* 100 10.0 03/01/2021 ND 225 11	12 200 3.74
EXT DRO >C28-C36 23.2 10.0 03/01/2021 ND	
Surrogate: 1-Chlorooctane 78.8 % 44.3-144	
Surrogate: 1-Chlorooctadecane 82.9 % 42.2-156	

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Tamara Oldaker Project Number: 212C-MD-02377 Sample Received By:

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 9 (5' - 6') (H210470-14)

BTEX 8021B	mg	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.886	0.100	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	12.0	0.100	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	16.3	0.100	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	28.0	0.300	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	57.2	0.600	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	179	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	880	16.0	03/01/2021	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	470	50.0	03/02/2021	ND	214	107	200	1.75	
DRO >C10-C28*	3530	50.0	03/02/2021	ND	225	112	200	3.74	
EXT DRO >C28-C36	731	50.0	03/02/2021	ND					
Surrogate: 1-Chlorooctane	111 9	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	154	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil
Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker
Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 10 (0 - 1') (H210470-15)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	18.8	2.00	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	155	2.00	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	142	2.00	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	227	6.00	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	542	12.0	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	126	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2480	16.0	03/01/2021	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	5530	50.0	03/02/2021	ND	214	107	200	1.75	
DRO >C10-C28*	21100	50.0	03/02/2021	ND	225	112	200	3.74	
EXT DRO >C28-C36	3800	50.0	03/02/2021	ND					
Surrogate: 1-Chlorooctane	443	% 44.3-14	14						
Surrogate: 1-Chlorooctadecane	563	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: **(

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 10 (1' - 2') (H210470-16)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	0.085	0.050	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	0.290	0.050	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	0.664	0.150	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	1.04	0.300	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 73.3-12	9						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	720	16.0	03/01/2021	ND	416	104	400	3.92	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	15.9	10.0	03/02/2021	ND	214	107	200	1.75	
DRO >C10-C28*	265	10.0	03/02/2021	ND	225	112	200	3.74	
EXT DRO >C28-C36	46.6	10.0	03/02/2021	ND					
Surrogate: 1-Chlorooctane	81.1	% 44.3-14	'4						
Surrogate: 1-Chlorooctadecane	87.7	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes) Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 10 (2' - 3') (H210470-17)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	<0.050	0.050	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	<0.050	0.050	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	<0.150	0.150	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	<0.300	0.300	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 9	73.3-12	9						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	03/01/2021	ND	416	104	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/02/2021	ND	214	107	200	1.75	
DRO >C10-C28*	57.5	10.0	03/02/2021	ND	225	112	200	3.74	
EXT DRO >C28-C36	10.5	10.0	03/02/2021	ND					
Surrogate: 1-Chlorooctane	76.1	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	78.9	% 42.2-15	6						

Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

*=Accredited Analyte

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 02/26/2021 Sampling Date: 02/26/2021

Reported: 03/02/2021 Sampling Type: Soil

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

Project Location: COPC - LEA COUNTY, NM

Sample ID: AH - 10 (3' - 4') (H210470-18)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/01/2021	ND	2.08	104	2.00	2.65	
Toluene*	<0.050	0.050	03/01/2021	ND	2.12	106	2.00	2.18	
Ethylbenzene*	<0.050	0.050	03/01/2021	ND	2.05	102	2.00	3.21	
Total Xylenes*	<0.150	0.150	03/01/2021	ND	5.98	99.7	6.00	3.07	
Total BTEX	<0.300	0.300	03/01/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	03/01/2021	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/02/2021	ND	214	107	200	1.75	
DRO >C10-C28*	63.0	10.0	03/02/2021	ND	225	112	200	3.74	
EXT DRO >C28-C36	10.5	10.0	03/02/2021	ND					
Surrogate: 1-Chlorooctane	77.1	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	77.8	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client is subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

† Cardinal cannot accept verbal changes. Please fax written changes to (575) 393-2326

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Company Name: ConocoPhillips	ConocoPhillips		BILL TO			ANALYSIS REQUEST	
roject Manager:	Project Manager: Joe Tyler with Tetra Tech		P.O. #:				
Address:			Company: ConocoPhillips	S			- 3
City:	State:	Zip:	Attn: Andrew r. rich	richerdse			
Phone #: (432) 210-6952	0-6952 Fax #:		D K	COM			
Project #: 212C-MD-02377	ND-02377 Project Owner:	ner:					
Project Name: (Coneco Phillips MCA 151 F	Flowline Release	State: Zip:				
ä	CA 151 Flowline Rele	\	#		_		
Sampler Name:	Mathew Castrojon		Fax #:				
FOR LAB USE ONLY	<	MATRIX	PRESERV. SAMPLING	67			
Lab I.D. 4216470	Sample I.D.	(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE	OTHER: ACID/BASE: ICE / COOL OTHER: DATE	TPH	BTEX Chlorides	Hold	
)	AH-1 (0-1)	7 5	× 1	×	×		
2	AH-2 (0-1)	-	x 7/26/21	×	X		
40	AH-4 (0-17)	× ×	Mary CX	××	< x x		
4		-	2	×	X		
10	VH-6 (0-1)	5	X Week	×	< X		
0-	AH-9 (0-11)	O 0	x 2/10/2	*7	X		
9	A H-9 (0-1)	¥ 19	X 2/26/21	X	× -		
10 NLEASE NOTE: Liability and D Inalyses All daims including t Inervice in no event shall Card	10 AH — 9 12 C196/s1 PLEASE NOTE: Liability and Damages. Cardinal's liability and client's evid-sive remedy for any claim arising whether based in contract or tort, shall be limited to the arrifount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed valued unless made in writing and received by Cardinal within 30 days affer completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential claimages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries,	edy for any claim arising whether based in contract shall be deemed waived unless made in writing and including without limitation, business interruptions, in	act or tort, shall be limited to the arribunt paid by and received by Cardinal within 30 days after cost, loss of use, or loss of profits incurred by clients, loss of use, or loss of profits incurred by clients.	an paid by the client for the applicable saffer completion of the applicable by client, its subsidiaries.	* ×		
Relinquished By:	y: Date: 1/26/21	Received By:	MILL	Ē	☐ Yes ☐ No	Add'l Phone #: Add'l Fax #:	
Relinquished By:	Time:	Received By:	Manage R	Sulk		-	Etratedie
Delivered By: (Circle One) Sampler - UPS - Bus - Other:	D1.4	Sample Condition Cool Infact	ion CHECKED BY: (Initials)				

Page 21 of 22

Sampler - UPS - Bus - Other:

Cardinal cannot accept verbal changes. Please fax written changes to (575) 393-2326

(Initials)

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Company Name: ConocoPhillips	ConocoPhillips		BILL TO		ANALYSIS REC	REQUEST
Project Manager:	Project Manager: Joe Tyler with Tetra Tech		P.O. #:			
Address:			Company: ConocoPhillips	ps		
City:	State:	Zip:	Attn: Addrew. F. Fich	(Same)		
Phone #: (432) 210-6952)-6952 Fax #:		Address: Conece phillips, com	B. COM		
Project #: 212C-MD-02377	D-02377 Project Owner:	317	City:			
Project Name:	GARCO Phillips MEA 151 However	butine Resease	State: Zip:			
Š	MLA 151 Plantine Release		Phone #:			
Sampler Name:	2		Fax #:			
FOR LAB USE ONLY		MATRIX	PRESERV. SAMPLING		8	
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP. # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE	OTHER: ACID/BASE: ICE / COOL OTHER:	TPH BTEX	Chloride	
//	KH9 (2-3)	-	X Theyr	<×	< ×	
na	4H-9 (11-51)	× ×	14/34/7, X	×>	×>	
12	2)	X	2	×	×	
15	0		200	<××	(×	
36	AH-10 (25-4)	O C	× 2/20/21	× ;	× >	
18	AH-10 (3-47)	×	× 2664	×	*	
LEASE NOTE: Liability and Dialyses. All claims including the including the project in no event shall Card	PLEASE NOTE: Lability and Damages. Cardinal's liability and client's exclusive remedy for any daim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within 30 days after completion of the applicable service. In no event shall Cardinal be table for incidental or consequential damages, including without limitation, business interruptions, loss of profits incurred by client, its substituties.	r any claim arising whether based in confra e deemed walved unless made in writing a ing without limitation, business interruption	eely for any claim arising whether based in contract or tort, shall be imited to the amount paid by the client for the shall be deemed waived unless made in writing and received by Caudinal within 30 days after competion of the air including without limitation, business interruptions, toss of use, or loss of profix incurred by client, its subsidiaries.	by the client for the completion of the applicable lient, its subsidiaries, sone or otherwise.		
Relinquished By:	Date:	Received By:	Mille In	Phone Result: ☐ Yes Fax Result: ☐ Yes REMARKS:	□ No Add'l Phone #: □ No Add'l Fax #:	
	Time:		(,	(
-Delivered By: (Circle One)	(Circle One)	Cample Condition	HECKED BY.			

March 04, 2021

JOE TYLER

Conoco Phillips - Hobbs

P. O. BOX 325

Hobbs, NM 88240

RE: MCA #151 FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 03/02/21 15:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-20-13. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Tamara Oldaker

Sample Received By:

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

 Received:
 03/02/2021
 Sampling Date:
 03/02/2021

 Reported:
 03/04/2021
 Sampling Type:
 Soil

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Location: COPC - LEA COUNTY, NM

212C-MD-02377

Sample ID: BH - 1 (0-1) (H210499-01)

Project Number:

DTEV 0021D

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	67.6	5.00	03/03/2021	ND	2.23	112	2.00	0.770	QM-07
Toluene*	350	5.00	03/03/2021	ND	2.26	113	2.00	1.03	QM-07
Ethylbenzene*	194	5.00	03/03/2021	ND	2.18	109	2.00	1.12	QM-07
Total Xylenes*	270	15.0	03/03/2021	ND	6.33	106	6.00	0.986	QM-07
Total BTEX	881	30.0	03/03/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2320	16.0	03/03/2021	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	6620	100	03/03/2021	ND	211	106	200	3.47	QM-07
DRO >C10-C28*	9350	100	03/03/2021	ND	203	102	200	1.36	QM-07
EXT DRO >C28-C36	1040	100	03/03/2021	ND					
Surrogate: 1-Chlorooctane	557 5	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	422 9	% 42.2-15	6						

Analyzed By MC

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 03/02/2021 Sampling Date: 03/02/2021

Reported: 03/04/2021 Sampling Type: Soil Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Sample Received By: Project Number: 212C-MD-02377 Tamara Oldaker

Project Location: COPC - LEA COUNTY, NM

Sample ID: BH - 1 (1-2) (H210499-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	67.5	5.00	03/03/2021	ND	2.23	112	2.00	0.770	
Toluene*	353	5.00	03/03/2021	ND	2.26	113	2.00	1.03	
Ethylbenzene*	196	5.00	03/03/2021	ND	2.18	109	2.00	1.12	
Total Xylenes*	276	15.0	03/03/2021	ND	6.33	106	6.00	0.986	
Total BTEX	892	30.0	03/03/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2760	16.0	03/03/2021	ND	400	100	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	6080	100	03/03/2021	ND	211	106	200	3.47	
DRO >C10-C28*	8710	100	03/03/2021	ND	203	102	200	1.36	
EXT DRO >C28-C36	1010	100	03/03/2021	ND					
Surrogate: 1-Chlorooctane	671	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	398	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Received: 03/02/2021 Sampling Date: 03/02/2021

Reported: 03/04/2021 Sampling Type: Soil

Fax To:

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

Applyzod By: MC

(575) 297-1477

Project Location: COPC - LEA COUNTY, NM

Sample ID: BH - 1 (2-3) (H210499-03)

RTFY 8021R

B1EX 8021B	mg	/кд	Anaiyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.066	0.050	03/03/2021	ND	2.23	112	2.00	0.770	
Toluene*	0.233	0.050	03/03/2021	ND	2.26	113	2.00	1.03	
Ethylbenzene*	0.127	0.050	03/03/2021	ND	2.18	109	2.00	1.12	
Total Xylenes*	0.197	0.150	03/03/2021	ND	6.33	106	6.00	0.986	
Total BTEX	0.624	0.300	03/03/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	ed By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8880	16.0	03/03/2021	ND	400	100	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/03/2021	ND	211	106	200	3.47	
DRO >C10-C28*	137	10.0	03/03/2021	ND	203	102	200	1.36	
EXT DRO >C28-C36	19.3	10.0	03/03/2021	ND					
Surrogate: 1-Chlorooctane	77.6	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	83.0	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey & Keene

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 03/02/2021 Sampling Date: 03/02/2021

Reported: 03/04/2021 Sampling Type: Soil

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: COPC - LEA COUNTY, NM

Sample ID: BH - 1 (3-4) (H210499-04)

RTFY 8021R

BIEX 8021B	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/03/2021	ND	2.23	112	2.00	0.770	
Toluene*	0.181	0.050	03/03/2021	ND	2.26	113	2.00	1.03	
Ethylbenzene*	0.107	0.050	03/03/2021	ND	2.18	109	2.00	1.12	
Total Xylenes*	<0.150	0.150	03/03/2021	ND	6.33	106	6.00	0.986	
Total BTEX	<0.300	0.300	03/03/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 73.3-12	9						
Chloride, SM4500CI-B	mg/kg		Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	10400	16.0	03/03/2021	ND	400	100	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/03/2021	ND	211	106	200	3.47	
DRO >C10-C28*	89.5	10.0	03/03/2021	ND	203	102	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	03/03/2021	ND					
Surrogate: 1-Chlorooctane	77.0	% 44.3-14	14						
Surrogate: 1-Chlorooctadecane	80.5	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 03/02/2021 Sampling Date: 03/02/2021

Reported: 03/04/2021 Sampling Type: Soil

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes) Project Number: Sample Received By: 212C-MD-02377 Tamara Oldaker

Project Location: COPC - LEA COUNTY, NM

Sample ID: BH - 1 (4-5) (H210499-05)

BTEX 8021B	mg/kg		Analyzed By: MS					S-04	
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.308	0.050	03/03/2021	ND	2.23	112	2.00	0.770	
Toluene*	3.11	0.050	03/03/2021	ND	2.26	113	2.00	1.03	
Ethylbenzene*	3.76	0.050	03/03/2021	ND	2.18	109	2.00	1.12	
Total Xylenes*	6.34	0.150	03/03/2021	ND	6.33	106	6.00	0.986	
Total BTEX	13.5	0.300	03/03/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	135 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	12000	16.0	03/03/2021	ND	400	100	400	0.00	
TPH 8015M	12000 16.0 mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	88.9	10.0	03/03/2021	ND	211	106	200	3.47	
DRO >C10-C28*	559	10.0	03/03/2021	ND	203	102	200	1.36	
EXT DRO >C28-C36	75.9	10.0	03/03/2021	ND					
Surrogate: 1-Chlorooctane	94.3	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	107 9	% 42.2-15	6						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 03/02/2021 Sampling Date: 03/02/2021

Reported: 03/04/2021 Sampling Type: Soil
Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: **(

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: COPC - LEA COUNTY, NM

Sample ID: BH - 1 (6-7) (H210499-06)

RTFY 8021R

BIEX 8021B	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/03/2021	ND	2.23	112	2.00	0.770	
Toluene*	0.081	0.050	03/03/2021	ND	2.26	113	2.00	1.03	
Ethylbenzene*	0.270	0.050	03/03/2021	ND	2.18	109	2.00	1.12	
Total Xylenes*	0.636	0.150	03/03/2021	ND	6.33	106	6.00	0.986	
Total BTEX	0.987	0.300	03/03/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	111	% 73.3-12	9						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: GM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2520	16.0	03/03/2021	ND	400	100	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/03/2021	ND	211	106	200	3.47	
DRO >C10-C28*	201	10.0	03/03/2021	ND	203	102	200	1.36	
EXT DRO >C28-C36	31.0	10.0	03/03/2021	ND					
Surrogate: 1-Chlorooctane	80.6	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	85.3	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 03/02/2021 Sampling Date: 03/02/2021

Reported: 03/04/2021 Sampling Type: Soil Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition:

** (See Notes) Sample Received By: Project Number: 212C-MD-02377 Tamara Oldaker

Project Location: COPC - LEA COUNTY, NM

Sample ID: BH - 1 (9-10) (H210499-07)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/03/2021	ND	2.23	112	2.00	0.770	
Toluene*	<0.050	0.050	03/03/2021	ND	2.26	113	2.00	1.03	
Ethylbenzene*	<0.050	0.050	03/03/2021	ND	2.18	109	2.00	1.12	
Total Xylenes*	<0.150	0.150	03/03/2021	ND	6.33	106	6.00	0.986	
Total BTEX	<0.300	0.300	03/03/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 5	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	560	16.0	03/03/2021	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/03/2021	ND	211	106	200	3.47	
DRO >C10-C28*	128	10.0	03/03/2021	ND	203	102	200	1.36	
EXT DRO >C28-C36	15.7	10.0	03/03/2021	ND					
Surrogate: 1-Chlorooctane	83.8	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	89.1	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 03/02/2021 Sampling Date: 03/02/2021

Reported: 03/04/2021 Sampling Type: Soil MCA #151 FLOWLINE RELEASE

Project Name: Sampling Condition: ** (See Notes) Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

Project Location: COPC - LEA COUNTY, NM

Sample ID: BH - 1 (14-15) (H210499-08)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/03/2021	ND	2.23	112	2.00	0.770	
Toluene*	<0.050	0.050	03/03/2021	ND	2.26	113	2.00	1.03	
Ethylbenzene*	<0.050	0.050	03/03/2021	ND	2.18	109	2.00	1.12	
Total Xylenes*	<0.150	0.150	03/03/2021	ND	6.33	106	6.00	0.986	
Total BTEX	<0.300	0.300	03/03/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	03/03/2021	ND	400	100	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/03/2021	ND	211	106	200	3.47	
DRO >C10-C28*	79.3	10.0	03/03/2021	ND	203	102	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	03/03/2021	ND					
Surrogate: 1-Chlorooctane	84.5	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	87.7	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Conoco Phillips - Hobbs JOE TYLER P. O. BOX 325 Hobbs NM, 88240

Fax To: (575) 297-1477

Received: 03/02/2021 Sampling Date: 03/02/2021

Reported: 03/04/2021 Sampling Type: Soil

Project Name: MCA #151 FLOWLINE RELEASE Sampling Condition: ** (See Notes)

Project Number: 212C-MD-02377 Sample Received By: Tamara Oldaker

Applyzod By: MC

Project Location: COPC - LEA COUNTY, NM

Sample ID: BH - 1 (19-20) (H210499-09)

RTFY 8021R

B1EX 8021B	mg/	кg	Anaiyze	а ву: м5					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/03/2021	ND	2.23	112	2.00	0.770	
Toluene*	<0.050	0.050	03/03/2021	ND	2.26	113	2.00	1.03	
Ethylbenzene*	<0.050	0.050	03/03/2021	ND	2.18	109	2.00	1.12	
Total Xylenes*	<0.150	0.150	03/03/2021	ND	6.33	106	6.00	0.986	
Total BTEX	<0.300	0.300	03/03/2021	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 73.3-12	9						
Chloride, SM4500CI-B	mg/	/kg	Analyze	d By: GM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	03/03/2021	ND	400	100	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/03/2021	ND	211	106	200	3.47	
DRO >C10-C28*	18.2	10.0	03/03/2021	ND	203	102	200	1.36	
EXT DRO >C28-C36	<10.0	10.0	03/03/2021	ND					
Surrogate: 1-Chlorooctane	80.4	% 44.3-14	4						
Surrogate: 1-Chlorooctadecane	81.7	% 42.2-15	6						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Frence

Notes and Definitions

The control of this company is a heider and all limite days to consider the first of the control of the control

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client is subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Sampler - UPS -

Bus - Other:

7.6€

† Cardinal cannot accept verbal changes. Please fax written changes to (575) 393-2326

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Project Manager: Joe Tyler with Tetra Tech Company Name: ConocoPhillips Phone #: (432) 210-6952 Project Name: Project #: 212C-MD-02377 Address: 'ye, tyler @ tetratech. Project Location: Sampler Name: Relinquished By: 421649 Relinquished By Lab I.D. Delivered By: (Circle One) 0 wa 101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476 Coroso Phillips FH8 Sample I.D. 0-(9-10) S-H 6-7 2-3 19-20 14-15 MCA 151 Release SM Fax #: Project Owner: State: Time: 500 Date: Time: 18-6-3 Zip (G)RAB OR (C)OMP Received By: Received By: # CONTAINERS GROUNDWATER Cool Intact
Yes 3 Yes WASTEWATER Sample Condition MATRIX SOIL OIL SLUDGE P.O. #: Company: ConocoPhillips Fax #: State: Attn: Ambew Kicherds Phone #: City: @ Coreco phillips . com Address: andiew f. fichends OTHER ACID/BASE PRESERV ICE / COOL CHECKED BY: (Initials) 4 BILL TO OTHER 3-2-2 DATE Phone Result: Fax Result: REMARKS: Enril results to Andrew and Joe please TIME of the applicable TPH BTEX Yes Chlorides No ANALYSIS Add'l Phone #: Add'l Fax #: Hold REQUEST

Pace Analytical® ANALYTICAL REPORT

April 06, 2021

Ss

ConocoPhillips - Tetra Tech

Sample Delivery Group:

L1334083

Samples Received:

04/03/2021

Project Number:

212CMD02471

Description:

COP MCA 151 Flowline Release

Report To:

Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858

800-767-5859

www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
AH 11 (0-1') L1334083-01	7
AH 12 (0-1') L1334083-02	8
AH 13 (0-1') L1334083-03	9
AH 14 (0-1') L1334083-04	10
AH 15 (0-1') L1334083-05	11
AH 16 (0-1') L1334083-06	12
AH 17 (0-1') L1334083-07	13
AH 18 (0-1') L1334083-08	14
AH 19 (0-1') L1334083-09	15
AH 20 (0-1') L1334083-10	16
AH-20 (1.5'-2') L1334083-11	17
AH-22 (0'-1') L1334083-12	18
AH-22 (1.5-2') L1334083-13	19
AH-22 (2.5-3') L1334083-14	20
AH-22 (3.5-4') L1334083-15	21
Qc: Quality Control Summary	22
Total Solids by Method 2540 G-2011	22
Wet Chemistry by Method 300.0	24
Volatile Organic Compounds (GC) by Method 8015D/GRO	25
Volatile Organic Compounds (GC/MS) by Method 8260B	27
Semi-Volatile Organic Compounds (GC) by Method 8015	29
GI: Glossary of Terms	30

Al: Accreditations & Locations

Sc: Sample Chain of Custody

31

32

SAMPLE SUMMARY

			Collected by	Collected date/time	Received date/time	
AH 11 (0-1') L1334083-01 Solid			Adrian	04/01/21 11:00	04/03/2110:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1645523	1	04/05/21 08:11	04/05/21 08:25	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1645918	1	04/05/21 19:03	04/05/21 21:07	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1645423	1	04/03/21 20:22	04/04/21 01:44	CMJ	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1645411	1	04/03/21 20:22	04/03/21 22:40	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1645925	1	04/05/21 23:05	04/06/21 06:52	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 12 (0-1') L1334083-02 Solid			Adrian	04/01/21 11:10	04/03/2110:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1645523	1	04/05/21 08:11	04/05/21 08:25	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1645918	1	04/05/21 19:03	04/05/21 21:35	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1645423	1	04/03/21 20:22	04/04/21 03:06	CMJ	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1645411	1	04/03/21 20:22	04/03/21 22:59	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1645925	1	04/05/21 23:05	04/06/21 11:49	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 13 (0-1') L1334083-03 Solid			Adrian	04/01/21 11:20	04/03/2110:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1645523	1	04/05/21 08:11	04/05/21 08:25	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1645918	1	04/05/21 19:03	04/05/21 21:45	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1645423	1	04/03/21 20:22	04/04/21 03:29	CMJ	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1645411	1	04/03/21 20:22	04/03/21 23:18	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1645925	1	04/05/21 23:05	04/06/21 11:22	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 14 (0-1') L1334083-04 Solid			Adrian	04/01/21 11:30	04/03/2110:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1645523	1	04/05/21 08:11	04/05/21 08:25	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1645918	1	04/05/21 19:03	04/05/21 21:54	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1645423	1	04/03/21 20:22	04/04/21 03:51	CMJ	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1645411	1	04/03/21 20:22	04/03/21 23:37	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1645925	1	04/05/21 23:05	04/06/21 11:35	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 15 (0-1') L1334083-05 Solid			Adrian	04/01/21 11:50	04/03/2110:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1645523	1	04/05/21 08:11	04/05/21 08:25	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1645918	1	04/05/2119:03	04/05/21 22:04	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1645423	1.01	04/03/21 20:22	04/04/21 04:13	CMJ	Mt. Juliet, TN
V-1-til- 0i- C	NICAC AE AAA	4	0.4/00/04/00/00	0.4/0.2/24.22.50	DIMD	NAC INTER TAI

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1645411

WG1645925

1

04/03/21 20:22

04/05/21 23:05

04/03/21 23:56

04/06/21 08:40

DWR

CAG

Mt. Juliet, TN

Mt. Juliet, TN

SAMPLE SUMMARY

•	SAIVII LL V		/I//I/ I			
AH 16 (0-1') L1334083-06 Solid			Collected by Adrian	Collected date/time 04/01/21 12:00	Received da 04/03/2110:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1645523	1	04/05/21 08:11	04/05/21 08:25	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1645918	1	04/05/21 19:03	04/05/21 22:13	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1646056	1.01	04/03/21 20:22	04/05/21 23:40	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1645411	1	04/03/21 20:22	04/04/21 00:15	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1645925	1	04/05/21 23:05	04/06/21 13:37	CAG	Mt. Juliet, TN
			Collected by	Collected date/time		
AH 17 (0-1') L1334083-07 Solid			Adrian	04/01/21 12:10	04/03/2110:	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1645523	1	04/05/21 08:11	04/05/21 08:25	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1645918	1	04/05/21 19:03	04/05/21 22:42	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1645423	1	04/03/21 20:22	04/04/21 09:27	CMJ	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1645411	1	04/03/21 20:22	04/04/21 00:34	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1645925	1	04/05/21 23:05	04/06/21 07:46	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 18 (0-1') L1334083-08 Solid			Adrian	04/01/21 12:20	04/03/2110:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1645524	1	04/05/21 07:59	04/05/21 08:07	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1645918	1	04/05/21 19:03	04/05/21 22:51	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1645423	1	04/03/21 20:22	04/04/21 09:49	CMJ	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1645411	1	04/03/21 20:22	04/04/21 00:53	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1645925	1	04/05/21 23:05	04/06/21 09:21	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 19 (0-1') L1334083-09 Solid			Adrian	04/01/21 13:00	04/03/2110:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1645524	1	04/05/21 07:59	04/05/21 08:07	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1645918	1	04/05/21 19:03	04/05/21 23:01	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1645423	1	04/03/21 20:22	04/04/21 10:11	CMJ	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1645411	1	04/03/21 20:22	04/04/21 01:13	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1645925	1	04/05/21 23:05	04/06/21 11:08	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 20 (0-1') L1334083-10 Solid			Adrian	04/01/21 13:10	04/03/2110:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1645524	1	04/05/21 07:59	04/05/21 08:07	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1645918	1	04/05/21 19:03	04/05/21 23:20	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1645423	1	04/03/21 20:22	04/04/21 11:52	CMJ	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1645411	1.01	04/03/21 20:22	04/04/21 01:32	DWR	Mt. Juliet, TN
					0.1.0	

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1645925

04/05/21 23:05

04/06/21 09:35

CAG

Mt. Juliet, TN

SAMPLE SUMMARY

		_				
AH-20 (1.5'-2') L1334083-11 Solid			Collected by Adrian	Collected date/time 04/01/21 13:20	Received da 04/03/2110:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1645524	1	04/05/21 07:59	04/05/21 08:07	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1645918	1	04/05/21 19:03	04/05/21 23:30	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1645423	1	04/03/21 20:22	04/04/21 14:55	CMJ	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1645411	1	04/03/21 20:22	04/04/21 01:51	DWR	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1645925	1	04/05/21 23:05	04/06/21 13:51	CAG	Mt. Juliet, Ti
AH-22 (0'-1') L1334083-12 Solid			Collected by Adrian	Collected date/time 04/01/21 14:00	Received da 04/03/2110:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
metrod	Buten	Dilation	date/time	date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1645524	1	04/05/21 07:59	04/05/21 08:07	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1645918	10	04/05/21 19:03	04/05/21 23:39	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1646056	50	04/03/21 20:22	04/06/21 02:02	ACG	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1645411	1	04/03/21 20:22	04/04/21 02:10	DWR	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1645925	10	04/05/21 23:05	04/06/21 14:04	CAG	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
AH-22 (1.5-2') L1334083-13 Solid			Adrian	04/01/21 14:10	04/03/2110:	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Fotal Solids by Method 2540 G-2011	WG1645524	1	04/05/21 07:59	04/05/21 08:07	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1645918	10	04/05/21 19:03	04/05/21 23:49	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1646056	1	04/03/21 20:22	04/06/21 00:09	ACG	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1646016	1	04/03/21 20:22	04/05/21 19:34	ACG	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1645925	1	04/05/21 23:05	04/06/21 12:16	CAG	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
AH-22 (2.5-3') L1334083-14 Solid			Adrian	04/01/21 14:20	04/03/2110:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1645524	1	04/05/21 07:59	04/05/21 08:07	KDW	Mt. Juliet, Tl
Wet Chemistry by Method 300.0	WG1645918	10	04/05/21 19:03	04/05/21 23:58	ELN	Mt. Juliet, Ti
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1645423	10	04/03/21 19.03	04/03/21 23:38	CMJ	Mt. Juliet, Ti
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1645411	1	04/03/21 20:22	04/04/21 02:48	DWR	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1645411 WG1646016	1	04/03/21 20:22	04/05/21 19:52	ACG	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1645925	1	04/05/21 23:05	04/06/21 08:13	CAG	Mt. Juliet, Ti
			Collected by	Collected date/time	Docoinad da	to/timo
AH-22 (3.5-4') L1334083-15 Solid			Collected by Adrian	04/01/21 14:30	Received da 04/03/2110:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Solids by Method 2540 G-2011	WG1645524	1	date/time 04/05/21 07:59	04/05/21 08:07	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1645918	10	04/05/21 19:03	04/06/21 00:08	ELN	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1645423	1.01	04/03/21 19.03	04/04/21 16:25	CMJ	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1645411	1.01	04/03/21 20:22	04/04/21 03:07	DWR	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1645411 WG1646016	1.01	04/03/21 20:22	04/05/21 20:11	ACG	Mt. Juliet, Ti
Constitution Composite Composite (CC) by Matter 4 0045	WG1040U10	1.01	04/05/21 20.22	04/05/21 20.11	CAC	IVIL. JUIIEL, II

Semi-Volatile Organic Compounds $\,$ (GC) by Method 8015 $\,$

WG1645925

1

04/05/21 23:05

04/06/21 08:54

CAG

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Collected date/time: 04/01/21 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.9		1	04/05/2021 08:25	WG1645523

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.40	20.4	1	04/05/2021 21:07	WG1645918

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	04/04/2021 01:44	WG1645423
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/04/2021 01:44	WG1645423

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000487	0.00104	1	04/03/2021 22:40	WG1645411
Toluene	U		0.00136	0.00521	1	04/03/2021 22:40	WG1645411
Ethylbenzene	U		0.000769	0.00261	1	04/03/2021 22:40	WG1645411
Total Xylenes	0.00321	<u>J</u>	0.000918	0.00678	1	04/03/2021 22:40	WG1645411
(S) Toluene-d8	96.4			75.0-131		04/03/2021 22:40	WG1645411
(S) 4-Bromofluorobenzene	104			67.0-138		04/03/2021 22:40	WG1645411
(S) 1,2-Dichloroethane-d4	107			70.0-130		04/03/2021 22:40	WG1645411

Gl

<u> </u>	J 1	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.09	1	04/06/2021 06:52	WG1645925
C28-C40 Oil Range	10.1		0.280	4.09	1	04/06/2021 06:52	WG1645925
(S) o-Terphenyl	60.5			18.0-148		04/06/2021 06:52	WG1645925

Collected date/time: 04/01/21 11:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.3		1	04/05/2021 08:25	WG1645523

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.86	21.4	1	04/05/2021 21:35	WG1645918

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0233	0.107	1	04/04/2021 03:06	WG1645423
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/04/2021 03:06	WG1645423

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

		-						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Benzene	U		0.000534	0.00114	1	04/03/2021 22:59	WG1645411	
Toluene	U		0.00149	0.00572	1	04/03/2021 22:59	WG1645411	
Ethylbenzene	U		0.000843	0.00286	1	04/03/2021 22:59	WG1645411	
Total Xylenes	U		0.00101	0.00743	1	04/03/2021 22:59	WG1645411	
(S) Toluene-d8	98.3			<i>75.0-131</i>		04/03/2021 22:59	WG1645411	
(S) 4-Bromofluorobenzene	97.7			67.0-138		04/03/2021 22:59	WG1645411	
(S) 1,2-Dichloroethane-d4	88.4			70.0-130		04/03/2021 22:59	WG1645411	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.29	1	04/06/2021 11:49	WG1645925
C28-C40 Oil Range	10.5		0.294	4.29	1	04/06/2021 11:49	WG1645925
(S) o-Terphenvl	70.1			18.0-148		04/06/2021 11:49	WG1645925

Gl

Collected date/time: 04/01/21 11:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.6		1	04/05/2021 08:25	WG1645523

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.33	20.3	1	04/05/2021 21:45	WG1645918

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.101	1	04/04/2021 03:29	WG1645423
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/04/2021 03:29	WG1645423

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	04/03/2021 23:18	WG1645411
Toluene	U		0.00134	0.00514	1	04/03/2021 23:18	WG1645411
Ethylbenzene	U		0.000758	0.00257	1	04/03/2021 23:18	WG1645411
Total Xylenes	U		0.000905	0.00668	1	04/03/2021 23:18	WG1645411
(S) Toluene-d8	96.3			75.0-131		04/03/2021 23:18	WG1645411
(S) 4-Bromofluorobenzene	98.8			67.0-138		04/03/2021 23:18	WG1645411
(S) 1,2-Dichloroethane-d4	98.7			70.0-130		04/03/2021 23:18	WG1645411

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.06	1	04/06/2021 11:22	WG1645925
C28-C40 Oil Range	5.79	В	0.278	4.06	1	04/06/2021 11:22	WG1645925
(S) o-Terphenyl	63.7			18.0-148		04/06/2021 11:22	WG1645925

Gl

Collected date/time: 04/01/21 11:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.4		1	04/05/2021 08:25	WG1645523

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.35	20.3	1	04/05/2021 21:54	WG1645918

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	04/04/2021 03:51	WG1645423
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/04/2021 03:51	WG1645423

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	04/03/2021 23:37	WG1645411
Toluene	U		0.00134	0.00516	1	04/03/2021 23:37	WG1645411
Ethylbenzene	U		0.000761	0.00258	1	04/03/2021 23:37	WG1645411
Total Xylenes	U		0.000909	0.00671	1	04/03/2021 23:37	WG1645411
(S) Toluene-d8	97.2			75.0-131		04/03/2021 23:37	WG1645411
(S) 4-Bromofluorobenzene	99.9			67.0-138		04/03/2021 23:37	WG1645411
(S) 1,2-Dichloroethane-d4	99.2			70.0-130		04/03/2021 23:37	WG1645411

Gl

•	J 1	`	/ /				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.06	1	04/06/2021 11:35	WG1645925
C28-C40 Oil Range	7.64	<u>B</u>	0.278	4.06	1	04/06/2021 11:35	WG1645925
(S) o-Terphenyl	62.5			18.0-148		04/06/2021 11:35	WG1645925

Collected date/time: 04/01/21 11:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.3		1	04/05/2021 08:25	WG1645523

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.27	20.2	1	04/05/2021 22:04	WG1645918

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1.01	04/04/2021 04:13	WG1645423
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/04/2021 04:13	WG1645423

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000474	0.00101	1	04/03/2021 23:56	WG1645411
Toluene	U		0.00132	0.00507	1	04/03/2021 23:56	WG1645411
Ethylbenzene	U		0.000748	0.00254	1	04/03/2021 23:56	WG1645411
Total Xylenes	U		0.000893	0.00660	1	04/03/2021 23:56	WG1645411
(S) Toluene-d8	98.4			75.0-131		04/03/2021 23:56	WG1645411
(S) 4-Bromofluorobenzene	97.5			67.0-138		04/03/2021 23:56	WG1645411
(S) 1,2-Dichloroethane-d4	98.9			70.0-130		04/03/2021 23:56	WG1645411

Gl

	9	,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.03	1	04/06/2021 08:40	WG1645925
C28-C40 Oil Range	16.9		0.276	4.03	1	04/06/2021 08:40	WG1645925
(S) o-Terphenyl	65.8			18.0-148		04/06/2021 08:40	WG1645925

Collected date/time: 04/01/21 12:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	85.8		1	04/05/2021 08:25	WG1645523

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.7	23.3	1	04/05/2021 22:13	WG1645918

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0255	0.118	1.01	04/05/2021 23:40	WG1646056
(S) a,a,a-Trifluorotoluene(FID)	98.2			77.0-120		04/05/2021 23:40	WG1646056

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000621	0.00133	1	04/04/2021 00:15	WG1645411
luene	U		0.00173	0.00665	1	04/04/2021 00:15	WG1645411
hylbenzene	0.00153	<u>J</u>	0.000980	0.00332	1	04/04/2021 00:15	WG1645411
tal Xylenes	0.00432	<u>J</u>	0.00117	0.00864	1	04/04/2021 00:15	WG1645411
S) Toluene-d8	97.7			75.0-131		04/04/2021 00:15	WG1645411
S) 4-Bromofluorobenzene	103			67.0-138		04/04/2021 00:15	WG1645411
S) 1,2-Dichloroethane-d4	104			70.0-130		04/04/2021 00:15	WG1645411

Semi-Volatile Organic Compounds (GC) by Method 8015

•	J 1	`	/ /				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.88	4.66	1	04/06/2021 13:37	WG1645925
C28-C40 Oil Range	8.04	<u>B</u>	0.319	4.66	1	04/06/2021 13:37	WG1645925
(S) o-Terphenyl	58.8			18.0-148		04/06/2021 13:37	WG1645925

Gl

Received to OCD: 5/18/2021 6:32:30 PM Collected date/time: 04/01/21 12:10

SAMPLE RESULTS - 07

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.2		1	04/05/2021 08:25	WG1645523

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.27	20.2	1	04/05/2021 22:42	WG1645918

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	04/04/2021 09:27	WG1645423
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/04/2021 09:27	WG1645423

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry) ng/kg		,	RDL (dry)	Dilution	Analysis	Batch
Analyte m	mg/kg		**				
			mg/kg	mg/kg		date / time	
Benzene U	J		0.000474	0.00102	1	04/04/2021 00:34	WG1645411
Toluene U	J		0.00132	0.00508	1	04/04/2021 00:34	WG1645411
Ethylbenzene 0.	0.000812	<u>J</u>	0.000748	0.00254	1	04/04/2021 00:34	WG1645411
Total Xylenes 0.	0.00105	<u>J</u>	0.000894	0.00660	1	04/04/2021 00:34	WG1645411
(S) Toluene-d8 99	99.1			75.0-131		04/04/2021 00:34	WG1645411
(S) 4-Bromofluorobenzene 10	000			67.0-138		04/04/2021 00:34	WG1645411
(S) 1,2-Dichloroethane-d4 95	95.0			70.0-130		04/04/2021 00:34	WG1645411

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.03	1	04/06/2021 07:46	WG1645925
C28-C40 Oil Range	15.6		0.276	4.03	1	04/06/2021 07:46	WG1645925
(S) o-Terphenyl	68.4			18.0-148		04/06/2021 07:46	WG1645925

Collected date/time: 04/01/21 12:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.6		1	04/05/2021 08:07	WG1645524

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10.3	<u>J</u>	9.24	20.1	1	04/05/2021 22:51	WG1645918

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0218	0.100	1	04/04/2021 09:49	WG1645423
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		04/04/2021 09:49	WG1645423

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000471	0.00101	1	04/04/2021 00:53	WG1645411
Toluene	U		0.00131	0.00504	1	04/04/2021 00:53	WG1645411
Ethylbenzene	U		0.000744	0.00252	1	04/04/2021 00:53	WG1645411
Total Xylenes	U		0.000888	0.00656	1	04/04/2021 00:53	WG1645411
(S) Toluene-d8	99.1			75.0-131		04/04/2021 00:53	WG1645411
(S) 4-Bromofluorobenzene	104			67.0-138		04/04/2021 00:53	WG1645411
(S) 1,2-Dichloroethane-d4	99.4			70.0-130		04/04/2021 00:53	WG1645411

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	20.3		1.62	4.02	1	04/06/2021 09:21	WG1645925
C28-C40 Oil Range	27.1		0.275	4.02	1	04/06/2021 09:21	WG1645925
(S) o-Terphenvl	56.9			18.0-148		04/06/2021 09:21	WG1645925

Collected date/time: 04/01/21 13:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.5		1	04/05/2021 08:07	WG1645524

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.34	20.3	1	04/05/2021 23:01	WG1645918

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.102	1	04/04/2021 10:11	WG1645423
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/04/2021 10:11	WG1645423

Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Senzene	U		0.000481	0.00103	1	04/04/2021 01:13	WG1645411
luene	U		0.00134	0.00515	1	04/04/2021 01:13	WG1645411
hylbenzene	U		0.000759	0.00258	1	04/04/2021 01:13	WG1645411
tal Xylenes	U		0.000907	0.00670	1	04/04/2021 01:13	WG1645411
S) Toluene-d8	96.4			75.0-131		04/04/2021 01:13	WG1645411
(S) 4-Bromofluorobenzene	100			67.0-138		04/04/2021 01:13	WG1645411
S) 1,2-Dichloroethane-d4	106			70.0-130		04/04/2021 01:13	WG1645411

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	· · · · · · · · · · · · · · · · · · ·	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.06	1	04/06/2021 11:08	WG1645925
C28-C40 Oil Range	5.86	В	0.278	4.06	1	04/06/2021 11:08	WG1645925
(S) o-Terphenyl	60.3			18.0-148		04/06/2021 11:08	WG1645925

15 of 33

Collected date/time: 04/01/21 13:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.9		1	04/05/2021 08:07	WG1645524

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	9.59	<u>J</u>	9.31	20.2	1	04/05/2021 23:20	WG1645918

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.101	1	04/04/2021 11:52	WG1645423
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/04/2021 11:52	WG1645423

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000483	0.00103	1.01	04/04/2021 01:32	WG1645411
Toluene	U		0.00134	0.00517	1.01	04/04/2021 01:32	WG1645411
Ethylbenzene	U		0.000761	0.00259	1.01	04/04/2021 01:32	WG1645411
Total Xylenes	U		0.000910	0.00671	1.01	04/04/2021 01:32	WG1645411
(S) Toluene-d8	97.9			75.0-131		04/04/2021 01:32	WG1645411
(S) 4-Bromofluorobenzene	102			67.0-138		04/04/2021 01:32	WG1645411
(S) 1,2-Dichloroethane-d4	108			70.0-130		04/04/2021 01:32	WG1645411

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.39		1.63	4.05	1	04/06/2021 09:35	WG1645925
C28-C40 Oil Range	18.4		0.277	4.05	1	04/06/2021 09:35	WG1645925
(S) o-Terphenyl	56.4			18.0-148		04/06/2021 09:35	WG1645925

Gl

Collected date/time: 04/01/21 13:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.1		1	04/05/2021 08:07	WG1645524

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.38	20.4	1	04/05/2021 23:30	WG1645918

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	04/04/2021 14:55	WG1645423
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/04/2021 14:55	WG1645423

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000485	0.00104	1	04/04/2021 01:51	WG1645411
Toluene	U		0.00135	0.00519	1	04/04/2021 01:51	WG1645411
Ethylbenzene	U		0.000766	0.00260	1	04/04/2021 01:51	WG1645411
otal Xylenes	U		0.000914	0.00675	1	04/04/2021 01:51	WG1645411
(S) Toluene-d8	97.9			75.0-131		04/04/2021 01:51	WG1645411
(S) 4-Bromofluorobenzene	96.3			67.0-138		04/04/2021 01:51	WG1645411
(S) 1,2-Dichloroethane-d4	98.8			70.0-130		04/04/2021 01:51	WG1645411

Semi-Volatile Organic Compounds (GC) by Method 8015

	1	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.58		1.64	4.08	1	04/06/2021 13:51	WG1645925
C28-C40 Oil Range	14.1		0.279	4.08	1	04/06/2021 13:51	WG1645925
(S) o-Terphenyl	67.5			18.0-148		04/06/2021 13:51	WG1645925

Gl

Collected date/time: 04/01/21 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.1		1	04/05/2021 08:07	WG1645524

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2240		94.7	206	10	04/05/2021 23:39	WG1645918

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	266		1.15	5.30	50	04/06/2021 02:02	WG1646056
(S) a,a,a-Trifluorotoluene(FID)	98.4			77.0-120		04/06/2021 02:02	WG1646056

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000495	0.00106	1	04/04/2021 02:10	WG1645411
Toluene	0.182		0.00138	0.00530	1	04/04/2021 02:10	WG1645411
Ethylbenzene	2.14		0.000781	0.00265	1	04/04/2021 02:10	WG1645411
Total Xylenes	4.74		0.000932	0.00688	1	04/04/2021 02:10	WG1645411
(S) Toluene-d8	90.8			<i>75.0-131</i>		04/04/2021 02:10	WG1645411
(S) 4-Bromofluorobenzene	149	<u>J1</u>		67.0-138		04/04/2021 02:10	WG1645411
(S) 1,2-Dichloroethane-d4	109			70.0-130		04/04/2021 02:10	WG1645411

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1710		16.6	41.2	10	04/06/2021 14:04	WG1645925
C28-C40 Oil Range	1020		2.82	41.2	10	04/06/2021 14:04	WG1645925
(S) o-Terphenyl	183	J1		18.0-148		04/06/2021 14:04	WG1645925

Sample Narrative:

L1334083-12 WG1645925: Surrogate failure due to matrix interference

Cn

Recrived by OCD: \$/18/2021 6:32:30 PM

SAMPLE RESULTS - 13

Total Solids by Method 2540 G-2011

Collected date/time: 04/01/21 14:10

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.5		1	04/05/2021 08:07	WG1645524

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	5670		98.3	214	10	04/05/2021 23:49	WG1645918

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0793	<u>J</u>	0.0232	0.107	1	04/06/2021 00:09	WG1646056
(S) a,a,a-Trifluorotoluene(FID)	98.2			77.0-120		04/06/2021 00:09	WG1646056

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00199		0.000531	0.00114	1	04/05/2021 19:34	WG1646016
oluene	0.0755		0.00148	0.00569	1	04/05/2021 19:34	WG1646016
hylbenzene	0.138		0.000839	0.00284	1	04/05/2021 19:34	WG1646016
tal Xylenes	0.266		0.00100	0.00740	1	04/05/2021 19:34	WG1646016
S) Toluene-d8	108			<i>75.0-131</i>		04/05/2021 19:34	WG1646016
'S) 4-Bromofluorobenzene	96.7			67.0-138		04/05/2021 19:34	WG1646016
S) 1,2-Dichloroethane-d4	104			70.0-130		04/05/2021 19:34	WG1646016

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.09	<u>J</u>	1.72	4.28	1	04/06/2021 12:16	WG1645925
C28-C40 Oil Range	9.60	В	0.293	4.28	1	04/06/2021 12:16	WG1645925
(S) o-Terphenyl	64.8			18.0-148		04/06/2021 12:16	WG1645925

Collected date/time: 04/01/21 14:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	88.7		1	04/05/2021 08:07	WG1645524

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3710		104	226	10	04/05/2021 23:58	WG1645918

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0565	<u>J</u>	0.0245	0.113	1	04/04/2021 16:03	WG1645423
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		04/04/2021 16:03	WG1645423

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000586	0.00125	1	04/04/2021 02:48	WG1645411
Toluene	U		0.00163	0.00627	1	04/04/2021 02:48	WG1645411
Ethylbenzene	0.00462		0.000925	0.00314	1	04/05/2021 19:52	WG1646016
Total Xylenes	0.0133		0.00110	0.00816	1	04/05/2021 19:52	WG1646016
(S) Toluene-d8	98.0			75.0-131		04/04/2021 02:48	WG1645411
(S) Toluene-d8	108			75.0-131		04/05/2021 19:52	WG1646016
(S) 4-Bromofluorobenzene	100			67.0-138		04/04/2021 02:48	WG1645411
(S) 4-Bromofluorobenzene	99.1			67.0-138		04/05/2021 19:52	WG1646016
(S) 1,2-Dichloroethane-d4	95.1			70.0-130		04/04/2021 02:48	WG1645411
(S) 1,2-Dichloroethane-d4	101			70.0-130		04/05/2021 19:52	WG1646016

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.37	<u>J</u>	1.82	4.51	1	04/06/2021 08:13	WG1645925
C28-C40 Oil Range	13.0		0.309	4.51	1	04/06/2021 08:13	WG1645925
(S) o-Terphenyl	63.4			18.0-148		04/06/2021 08:13	WG1645925

Collected date/time: 04/01/21 14:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	89.3		1	04/05/2021 08:07	WG1645524

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1210		103	224	10	04/06/2021 00:08	WG1645918

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0923	<u>J</u>	0.0245	0.113	1.01	04/04/2021 16:25	WG1645423
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		04/04/2021 16:25	WG1645423

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000585	0.00125	1.01	04/04/2021 03:07	WG1645411
Toluene	U		0.00162	0.00625	1.01	04/04/2021 03:07	WG1645411
Ethylbenzene	U		0.000921	0.00313	1.01	04/04/2021 03:07	WG1645411
Total Xylenes	0.00422	<u>J</u>	0.00110	0.00812	1.01	04/05/2021 20:11	WG1646016
(S) Toluene-d8	97.9			<i>75.0-131</i>		04/04/2021 03:07	WG1645411
(S) Toluene-d8	110			75.0-131		04/05/2021 20:11	WG1646016
(S) 4-Bromofluorobenzene	99.9			67.0-138		04/04/2021 03:07	WG1645411
(S) 4-Bromofluorobenzene	96.4			67.0-138		04/05/2021 20:11	WG1646016
(S) 1,2-Dichloroethane-d4	97.0			70.0-130		04/04/2021 03:07	WG1645411
(S) 1,2-Dichloroethane-d4	104			70.0-130		04/05/2021 20:11	WG1646016

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	59.2		1.80	4.48	1	04/06/2021 08:54	WG1645925
C28-C40 Oil Range	45.3		0.307	4.48	1	04/06/2021 08:54	WG1645925
(S) o-Terphenyl	56.0			18.0-148		04/06/2021 08:54	WG1645925

Page 99 of 457

Total Solids by Method 2540 G-2011

L1334083-01,02,03,04,05,06,07

Method Blank	· (MR

(M	IB) R3638408-1 04	1/05/21 08:25			
		MB Result	MB Qualifier	MB MDL	MB RDL
An	alyte	%		%	%
Tot	tal Solids	0.00100			

L1334083-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1334083-01 04/05/21 08:25 • (DUP) R3638408-3 04/05/21 08:25

(,	Original Result	•		DUP RPD	DUP Qualifier	DUP RPD Limits
/te	%	%		%		%
otal Solids	97.9	98.0	1	0.0785		10

⁴Cn

al Solids 97.9 98.0 1 0.0785 10

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3638408-2 04/05/21 08:25

(LC3) K3030400-2 04/03	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	99.9	85.0-115

Page 100 of 457

Total Solids by Method 2540 G-2011

L1334083-08,09,10,11,12,13,14,15

Method Blank	(MB)
--------------	------

(MB) R3638405-1 04/05/21 08:07 MB Result MB MDL MB RDL MB Qualifier Analyte % % % Total Solids 0.00100

Ss

L1334083-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1334083-08 04/05/21 08:07 • (DUP) R3638405-3 04/05/21 08:07

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	99.6	99.6	1	0.000502		10

[†]Cn

GI

Laboratory Control Sample (LCS)

(LCS) R3638405-2 04/05	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 101 of 457

Wet Chemistry by Method 300.0

L1334083-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15

Method Blank (MB)

(MB) R3638456-1 04/05/	21 20:21			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	Ш		9.20	20.0

L1334083-09 Original Sample (OS) • Duplicate (DUP)

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

Cn

L1333244-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1333244-02 04/06/21 00:46 • (DUP) R3638456-6 04/06/21 00:55

(00) 21000244 02 04/00/	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	9.36	1	200	<u>J P1</u>	20

Laboratory Control Sample (LCS)

(LCS) R3638456-2 04/05/21 20:31

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	203	101	90.0-110	

L1334083-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1334083-01 04/05/21 21:07 • (MS) R3638456-3 04/05/21 21:16 • (MSD) R3638456-4 04/05/21 21:26

(03) [1334003-01 04	(OS) E1004000-01 04/00/21 21.07 • (MIS) (COUDOT-00-0 04/00/21 21.10 • (MISD) (COUDOT-00-4 04/00/21 21.20											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	511	U	500	510	97.9	99.9	1	80.0-120			2.02	20

Page 102 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1334083-01,02,03,04,05,07,08,09,10,11,14,15

Method Blank (MB)

MB) R3638407-2 04/04/	/21 01:16				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3638407-1 04/04/	CS) R3638407-1 04/04/21 00:32										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
TPH (GC/FID) Low Fraction	5.50	5.05	91.8	72.0-127							
(S) a,a,a-Trifluorotoluene(FID)			96.1	77.0-120							

Page 103 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1334083-06,12,13

Method Blank (MB)

(MB) R3638421-2 04/05/2	21 19:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120

2_{**T**} -

Laboratory Control Sample (LCS)

(LCS) R3638421-1 04/05/2	CS) R3638421-1 04/05/21 18:13									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
TPH (GC/FID) Low Fraction	5.50	4.80	87.3	72.0-127						
(S) a,a,a-Trifluorotoluene(FID)			103	77.0-120						

Page 104 of 457

L1334083-01,02,03,04,05,06,07,08,09,10,11,12,14,15 Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3638064-3 04/03/21 19:09									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
Benzene	U		0.000467	0.00100					
Ethylbenzene	U		0.000737	0.00250					
Toluene	U		0.00130	0.00500					
Xylenes, Total	U		0.000880	0.00650					
(S) Toluene-d8	96.8			75.0-131					
(S) 4-Bromofluorobenzene	97.7			67.0-138					
(S) 1,2-Dichloroethane-d4	98.9			70.0-130					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3638064-1 04/03/21 17:53 • (LCSD) R3638064-2 04/03/21 18:11										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.125	0.147	0.147	118	118	70.0-123			0.000	20
Ethylbenzene	0.125	0.119	0.123	95.2	98.4	74.0-126			3.31	20
Toluene	0.125	0.117	0.121	93.6	96.8	75.0-121			3.36	20
Xylenes, Total	0.375	0.369	0.367	98.4	97.9	72.0-127			0.543	20
(S) Toluene-d8				93.1	95.0	75.0-131				
(S) 4-Bromofluorobenzene				105	103	67.0-138				

70.0-130

L1333580-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

110

109

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.124	U	0.182	0.170	147	137	1	10.0-149			6.82	37
Ethylbenzene	0.124	0.00309	0.162	0.163	128	129	1	10.0-160			0.615	38
Toluene	0.124	U	0.151	0.153	122	123	1	10.0-156			1.32	38
Xylenes, Total	0.372	0.0188	0.529	0.545	137	141	1	10.0-160			2.98	38
(S) Toluene-d8					94.0	96.2		75.0-131				
(S) 4-Bromofluorobenzene					107	106		67.0-138				
(S) 1.2-Dichloroethane-d4					104	103		70.0-130				

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Page 105 of 457

L1334083-13,14,15

Method Blank (MB)

(MB) R3638503-3 04/05/	/21 10:40					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
Benzene	U		0.000467	0.00100		
Ethylbenzene	U		0.000737	0.00250		
Toluene	U		0.00130	0.00500		
Xylenes, Total	U		0.000880	0.00650		
(S) Toluene-d8	110			75.0-131		
(S) 4-Bromofluorobenzene	94.2			67.0-138		
(S) 1,2-Dichloroethane-d4	106			70.0-130		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3638503-1 04/05/21 09:24 • (LCSD) R3638503-2 04/05/21 0
--

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.125	0.129	100	103	70.0-123			3.15	20	
Ethylbenzene	0.125	0.119	0.121	95.2	96.8	74.0-126			1.67	20	
Toluene	0.125	0.121	0.127	96.8	102	75.0-121			4.84	20	
Xylenes, Total	0.375	0.373	0.370	99.5	98.7	72.0-127			0.808	20	
(S) Toluene-d8				102	103	75.0-131					
(S) 4-Bromofluorobenzene				106	97.6	67.0-138					
(S) 1,2-Dichloroethane-d4				111	111	70.0-130					

ConocoPhillips - Tetra Tech

Page 106 of 457

L1334083-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15 Semi-Volatile Organic Compounds (GC) by Method 8015

Method Blank (MB)

(MB) R3638606-1 04/06/21 06:25 MB MDL MB RDL MB Result MB Qualifier Analyte mg/kg mg/kg mg/kg U C10-C28 Diesel Range 1.61 4.00 C28-C40 Oil Range 0.979 0.274 4.00 (S) o-Terphenyl 62.0 18.0-148

Laboratory Control Sample (LCS)

(LCS) R3638606-2 04/06	.CS) R3638606-2 04/06/21 06:38									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
C10-C28 Diesel Range	50.0	32.5	65.0	50.0-150						
(S) o-Terphenyl			79.9	18.0-148						

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

Pace Analytical National	12065 Lebanon Rd Mount Julie	ot TN 37122
i ace Analytical National		5L, IIN 0/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.\\$

Analysis Request of Chain of Custody Record

Page: 1 of 2

Æ	Total Teen, Inc.						tidlan	d, Te	Street, exas 7 682-4 682-3	559	100								9		L	-13	134	08	3		
Client Name:	Conoco Phillips	Site Manag	er:	Ch	ristiar	n Llu	ull					T										JEST					7
Project Name:	COP MCA 151 Flowline release	Contact Inf	0;		ail: cl					ch.con	n	1	1	(Cir	cle	or	Sp	ec	ify	Me	the	l bo	No.)	1.1	
Project Location: (county, state)	Lea County, New Mexico	Project #:	#: 212C-MD-02471								11				1								6				
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 75	9701	A.							11											pi	t)					
Receiving Laboratory		Sampler Sig	gnature:		Adria	an		00		J.F		11	· MRO)		Se Hg	D D					1,20			ched lis	4.0	100	
Comments: COPTE	ETRA Acctnum					O III	À					8260B	DRO - ORO - MRO)		Cr Pb	2				2/625			co	General Water Chemistry (see attached list)			
		SAMI	SAMPLING N					SERV	ATIV		9	1×1			As Ba Cd	Da D	iles			l. 8270C/625		-86	e TDS	nemistry	ance		1
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020			T	†	T	T		AINER	(N/V) C	1 1		0	Ag A		ni Volat		1. 826	Semi. Vol. 8082 / 608		estos)	Sulfate	ater Cl	on Balar R		
(LAB USE)		DATE	TIME	WATER	SOIL	3	HCL	ICE	NONE	# CONTAINERS	FILTERED	BTEX 802		PAH 8270C	otal Metals	CLP Volatiles	rCLP Semi Volatiles	RCI	GC/MS Vol.	GC/MS Semi. Vol. PCB's 8082 / 608	NORM	PLM (Asbestos)	Chloride	seneral W	Anion/Cation TPH 8015R		НОГР
1000年	AH 11 (0-1')	4/1/2021	1100		X	Ť	-	X	_	1	N	X	X			-	-	E	0 0	2 1	Z		X	0	4 F	H	- a
	AH 12 (0-1')	4/1/2021	1110		x	+	\top	X		1	N	x	×	H	\dagger	+	-		+	+	Н	-	x			H	-0
	AH 13 (0-1')	4/1/2021	1120		X	\dagger	1	x	\top	1	N	x	×	Н	\top	+	\vdash	Н	†	+	\forall	-	x	Н		†	10
	AH 14 (0-1')	4/1/2021	1130		х	1		×		1	N	X	X	Н	\dagger	+		Н	+	\top	\vdash		x	H		\forall	0
wel	AH 15 (0-1')	4/1/2021	1150		X	T	1	Х		1	N	х	×	Н	\dagger	\dagger		Н	†	+	\forall		x	Н		\forall	-0
4950	AH 16 (0-1')	4/1/2021	1200		X	T	\top	X		1	N	Х	×	Н	\top	+		\Box	+	+	\forall		x	H		\forall	10
	AH 17 (0-1')	4/1/2021	1210		x	\dagger		Х		1	N	х	X	Н	+	\dagger		H	†	+	\forall		x	H		\forall	-
	AH 18 (0-1')	4/1/2021	1220		x	T	\top	X		1	N	х	X	\Box		+		Н	†	+	\Box		x	Н	\top	\forall	-9
	AH-19 (0-1')	4/1/2021	1300		x	1		х		1	N	х	×	П	\dagger	\dagger	-	Н	†	+		3	x	Н		\forall	-,d
-104	AH-20 (0-1')	4/1/2021	1310		x	T		х		1	N	x	x	Н	1	T	T	\Box	+	+	\forall	1	x	\Box		\forall	7-1
Relinquished by:	Date: Time: 1 121 Date: Time: 4-2-91 13:3	Received by:	L)	4-	2-	ate: -21	1	ime:	:11		Samp		MLY	ature	RE			ndar		Day	24 h	r.)48	3 hr.	72 hr.		
Relinquished by:	Received by:									H H		w					arges a		orized s or TF	RRP F	Report	t	0	K			
COC Signed/Accurat Bottles arrive int Correct bottles us Sufficient volume	e:N VOA Zero Headspace:Y N	OFFICIAL STREET			1	1				78		(Circ	le) H	IAND	DELI	VERE	D	FEDE	X	UPS	Tra	acking	#:				J

Analysis Request of Chain of Custody Record

Page: 2 of 2

TE	Tetra Tech, Inc.		901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946									10	1083													
Client Name:	Conoco Phillips	Site Manage	er:	Chr	istian	Llull					Γ										UE		7	Ča .		
Project Name:	COP MCA 151 Flowline release	Contact Info	:		ail: chr			@tetrated	ch.con	n	1,	1	1	(Ci	rele	0	r S	pe	cif	y №	leth	lod	No).)	1 1	1
Project Location: (county, state)	Lea County, New Mexico	Project #:	Project #: 212C-MD-02471								11					+	1					19	7			
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas	s 79701	1							11											1.79	197	(isi)			
Receiving Laboratory	Pace Analytical	Sampler Sig	Sampler Signature: Adrian							11	- MRO		e Hg	Se Hg		13			Ė			porp	acheni			
Comments: COPT	ETRA Acctnum		8260B							1260B	C35)		otal Metals Ag As Ba Cd Cr Pb Se Hg	d Cr Pb		de la constitución de la constit	i dia	C/625	98	N SERVI		S) (see an			
		SAMP	LING	ATRIX	ATRIX PRESERVATION METHOD			VE		1×1	axt to C35)		As Ba C	As Ba C	ofiloe		8260B / 624	ol. 8270C,	809	dil		ate TDS	Jance			
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020			T	1	T		AINE!	(N/N) Q	8021B	TX1005 (Ext to 8015M (GRO -	00	als Ag	als Ag	Volatiles Semi Volatiles		J. 826	emi. V	8082 / 6(estos)	0.00	Sulfate	ion Ba	Œ	
(LAB USE)	-0	DATE	TIME	WATER	SOIL	HCL	HNOS	NONE	# CONTAINERS	FILTERED		TPH TX1		Fotal Meta	rcLP Met	TCLP Volatiles		3C/MS Vol.	GC/MS Semi. Vol.	PCB's 80	PLM (Asbestos)	Chloride 300.0	Chloride	General Water Chemistry (see attached list) Anion/Cation Balance	TPH 8015R	HOLD
	AH-20 (1.5'-2')	4/1/2021	1320		X			x	1	N	Х	>	(5.								X	Ť			
	AH-22 (0'-1')	4/1/2021	1400		X .			x	1	N	Х)	(Ť,		Je			A.	10		X	2018			
	AH-22 (1.5-2')	4/1/2021	1410		Х			x	1	N	Х	>	(X		19	1	2
Following	AH-22 (2.5-3')	4/1/2021	1420		X			x	1	N	Х	>										X				
	AH-22 (3.5-4')	4/1/2021	1430		Х		1	X	1	N	Х	>	(X				
					-		1		F	-	H	7	-		-	+	F		П		I			1		
							1					1			1	1					8 2			17		1
Relinquished by: Relinquished by: Relinquished by:	Date: Time: Date: Time: D	Received by: Received by: Received by:	A	4	-2	Date Date Date	/	Time:	23	2	2	LAE O	NL' empe	Y eratur			RL	anda JSH: ush C	: Sar Charg	ges Au	ay 24	ed		r. 72 i	hr.	

Pace Analytical® ANALYTICAL REPORT

L1335085

April 09, 2021

Ss

ConocoPhillips - Tetra Tech

Sample Delivery Group:

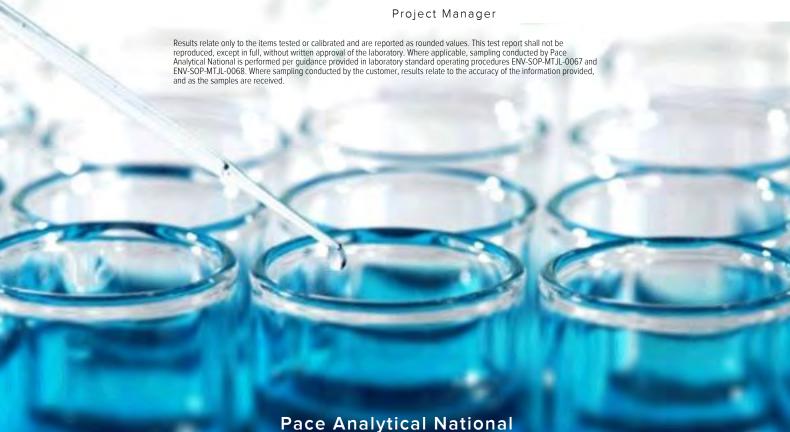
Samples Received: 04/07/2021

Project Number: 212C-MD-02471

Description: COP MCA 151 Flowline Release

Report To: Christian Llull

901 West Wall


Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Enica Mc Neese

Erica McNeese Project Manager

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
AH 24 (0.5-1') L1335085-01	7
AH 24 (1.5-2') L1335085-02	8
AH 24 (2.5-3') L1335085-03	9
AH 24 (3.5-4') L1335085-04	10
AH 25 (0.5-1') L1335085-05	11
AH 25 (1.5-2') L1335085-06	12
AH 25 (2.5-3') L1335085-07	13
AH 25 (3.5-4') L1335085-08	14
AH-26 (0.5-1') L1335085-09	15
AH-26 (1.5-2') L1335085-10	16
AH-26 (2.5-3') L1335085-11	17
Qc: Quality Control Summary	18
Total Solids by Method 2540 G-2011	18
Wet Chemistry by Method 300.0	20
Volatile Organic Compounds (GC) by Method 8015D/GRO	21
Volatile Organic Compounds (GC/MS) by Method 8260B	23
Semi-Volatile Organic Compounds (GC) by Method 8015	25
GI: Glossary of Terms	26
Al: Accreditations & Locations	27

Sc: Sample Chain of Custody

28

			Collected by	Collected date/time	Received da	te/time
AH 24 (0.5-1') L1335085-01 Solid			Adrian	04/05/21 11:00	04/07/21 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1647314	1	04/08/21 08:27	04/08/21 08:35	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1647337	5	04/07/21 19:19	04/08/21 02:51	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1647356	1	04/07/21 11:55	04/08/21 17:29	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1647278	1	04/07/21 11:55	04/07/21 14:35	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1647213	1	04/07/21 20:40	04/08/21 06:39	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 24 (1.5-2') L1335085-02 Solid			Adrian	04/05/21 11:10	04/07/21 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1647314	1	04/08/21 08:27	04/08/21 08:35	CMK	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1647337	10	04/07/21 19:19	04/08/21 03:00	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1647356	1	04/07/21 11:55	04/08/21 17:51	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1647278	1	04/07/21 11:55	04/07/21 14:54	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1647213	1	04/07/21 20:40	04/08/21 07:34	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 24 (2.5-3') L1335085-03 Solid			Adrian	04/05/21 11:20	04/07/21 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1647314	1	04/08/21 08:27	04/08/21 08:35	CMK	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1647337	1	04/07/21 19:19	04/08/21 03:10	MCG	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1647356	1	04/07/21 11:55	04/08/21 18:13	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1647278	1	04/07/21 11:55	04/07/21 15:13	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1647213	1	04/07/21 20:40	04/08/21 06:53	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 24 (3.5-4') L1335085-04 Solid			Adrian	04/05/21 11:30	04/07/21 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1647314	1	04/08/21 08:27	04/08/21 08:35	CMK	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1647337	1	04/07/21 19:19	04/08/21 03:19	MCG	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1647356	1	04/07/21 11:55	04/08/21 18:35	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1647278	1	04/07/21 11:55	04/07/21 15:32	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1647213	1	04/07/21 20:40	04/08/21 07:07	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 25 (0.5-1') L1335085-05 Solid			Adrian	04/05/21 11:50	04/07/21 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1647314	1	04/08/21 08:27	04/08/21 08:35	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1647337	1	04/07/21 19:19	04/08/21 03:29	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1647356	500	04/07/21 11:55	04/08/21 20:03	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1647278	40	04/07/21 11:55	04/07/21 15:51	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1647213	20	04/07/21 20:40	04/08/21 17:33	DMG	Mt. Juliet, TN
C: \/- -+: - O:- C	11104047040	4.0	0.4/07/04.00.40	0.4/0.0/04.40 E.0	DIAC	NAC 1 IN A TAIL

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1647213

40

04/07/21 20:40

DMG

Mt. Juliet, TN

04/09/2110:58

AH 25 (1.5-2') L1335085-06 Solid			Collected by Adrian	Collected date/time 04/05/2112:00	Received da 04/07/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647314	1	04/08/21 08:27	04/08/21 08:35	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1647337	1	04/07/21 19:19	04/08/21 03:38	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1647356	1	04/07/21 11:55	04/08/21 18:57	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1647278	1	04/07/21 11:55	04/07/21 16:10	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1647213	1	04/07/21 20:40	04/08/21 07:48	CAG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1647213	2	04/07/21 20:40	04/08/21 16:10	DMG	Mt. Juliet, TN
AH 25 (2.5-3') L1335085-07 Solid			Collected by Adrian	Collected date/time 04/05/2112:10	Received da 04/07/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647314	1	04/08/21 08:27	04/08/21 08:35	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1647337	1	04/07/21 19:19	04/08/21 03:48	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1647356	1	04/07/21 11:55	04/08/21 19:19	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1647278	1	04/07/21 11:55	04/07/21 16:29	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1647213	10	04/07/21 20:40	04/08/21 17:05	DMG	Mt. Juliet, TN
AH 25 (3.5-4') L1335085-08 Solid			Collected by Adrian	Collected date/time 04/05/2112:20	Received da 04/07/21 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	. ,	
Total Solids by Method 2540 G-2011	WG1647315	1	04/08/21 10:15	04/08/2110:22	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1647337	1	04/07/21 19:19	04/08/21 04:26	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1647356	1	04/07/21 11:55	04/08/21 19:41	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1647278	1	04/07/21 11:55	04/07/21 16:48	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1647213	1	04/07/21 20:40	04/08/21 08:01	CAG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1647213	2	04/07/21 20:40	04/08/21 16:24	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
AH-26 (0.5-1') L1335085-09 Solid			Adrian	04/05/21 13:00	04/07/21 08:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647315	1	04/08/21 10:15	04/08/21 10:22	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1647337	1	04/07/21 19:19	04/08/21 03:57	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1647356	500	04/07/21 11:55	04/08/21 20:25	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1647278	40	04/07/21 11:55	04/07/21 17:07	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1647213	100	04/07/21 20:40	04/09/21 11:12	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-26 (1.5-2') L1335085-10 Solid			Adrian	04/05/21 13:10	04/07/21 08:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647315	1	04/08/21 10:15	04/08/21 10:22	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1647337	1	04/07/21 19:19	04/08/21 05:04	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1647962	1	04/07/21 11:55	04/08/21 15:16	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648533	1	04/07/21 11:55	04/09/2113:08	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1647213	1	04/07/21 20:40	04/08/21 07:20	CAG	Mt. Juliet, TN

AH-26 (2.5-3') L1335085-11 Solid			Collected by Adrian	Collected date/time 04/05/2113:20	Received da 04/07/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647315	1	04/08/21 10:15	04/08/21 10:22	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1647337	1	04/07/21 19:19	04/08/21 05:13	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1647962	1	04/07/21 11:55	04/08/21 15:40	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1647278	1	04/07/21 11:55	04/07/21 17:45	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1647213	10	04/07/21 20:40	04/08/21 17:19	DMG	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Enica Mc Neese

Erica McNeese Project Manager

SAMPLE RESULTS - 01

Collected date/time: 04/05/21 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.3		1	04/08/2021 08:35	WG1647314

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1470		47.3	103	5	04/08/2021 02:51	WG1647337

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0416	<u>J</u>	0.0223	0.103	1	04/08/2021 17:29	WG1647356
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/08/2021 17:29	WG1647356

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000949	<u>J</u>	0.000493	0.00105	1	04/07/2021 14:35	WG1647278
Toluene	0.00322	<u>J</u>	0.00137	0.00527	1	04/07/2021 14:35	WG1647278
Ethylbenzene	0.00446		0.000777	0.00264	1	04/07/2021 14:35	WG1647278
Total Xylenes	0.0193		0.000928	0.00686	1	04/07/2021 14:35	WG1647278
(S) Toluene-d8	107			<i>75.0-131</i>		04/07/2021 14:35	WG1647278
(S) 4-Bromofluorobenzene	97.6			67.0-138		04/07/2021 14:35	WG1647278
(S) 1,2-Dichloroethane-d4	107			70.0-130		04/07/2021 14:35	WG1647278

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.75	<u>B</u>	1.65	4.11	1	04/08/2021 06:39	WG1647213
C28-C40 Oil Range	12.4	В	0.281	4.11	1	04/08/2021 06:39	WG1647213
(S) o-Terphenyl	55.6			18.0-148		04/08/2021 06:39	WG1647213

7 of 29

Collected date/time: 04/05/21 11:10

Page 118 of 457

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.6		1	04/08/2021 08:35	<u>WG1647314</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3710		98.3	214	10	04/08/2021 03:00	WG1647337

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0453	<u>J</u>	0.0232	0.107	1	04/08/2021 17:51	WG1647356
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		04/08/2021 17:51	WG1647356

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
enzene	U		0.000531	0.00114	1	04/07/2021 14:54	WG1647278
luene	U		0.00148	0.00568	1	04/07/2021 14:54	WG1647278
hylbenzene	0.00171	<u>J</u>	0.000838	0.00284	1	04/07/2021 14:54	WG1647278
tal Xylenes	0.00608	<u>J</u>	0.00100	0.00739	1	04/07/2021 14:54	WG1647278
S) Toluene-d8	109			75.0-131		04/07/2021 14:54	WG1647278
(S) 4-Bromofluorobenzene	93.9			67.0-138		04/07/2021 14:54	WG1647278
S) 1,2-Dichloroethane-d4	98.4			70.0-130		04/07/2021 14:54	WG1647278

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	· ·	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	26.9		1.72	4.27	1	04/08/2021 07:34	WG1647213
C28-C40 Oil Range	32.9		0.293	4.27	1	04/08/2021 07:34	WG1647213
(S) o-Terphenyl	48.4			18.0-148		04/08/2021 07:34	WG1647213

Page 119 of 457

SAMPLE RESULTS - 03

Collected date/time: 04/05/21 11:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.0		1	04/08/2021 08:35	WG1647314

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.59	20.8	1	04/08/2021 03:10	WG1647337

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	04/08/2021 18:13	WG1647356
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		04/08/2021 18:13	WG1647356

Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00238		0.000506	0.00108	1	04/07/2021 15:13	WG1647278
Toluene	U		0.00141	0.00542	1	04/07/2021 15:13	WG1647278
Ethylbenzene	U		0.000799	0.00271	1	04/07/2021 15:13	WG1647278
Total Xylenes	0.00155	<u>J</u>	0.000954	0.00705	1	04/07/2021 15:13	WG1647278
(S) Toluene-d8	113			75.0-131		04/07/2021 15:13	WG1647278
(S) 4-Bromofluorobenzene	93.8			67.0-138		04/07/2021 15:13	WG1647278
(S) 1,2-Dichloroethane-d4	88.4			70.0-130		04/07/2021 15:13	WG1647278

Semi-Volatile Organic Compounds (GC) by Method 8015

•	1	\	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.77	<u>B J</u>	1.68	4.17	1	04/08/2021 06:53	WG1647213
C28-C40 Oil Range	3.29	<u>B J</u>	0.285	4.17	1	04/08/2021 06:53	WG1647213
(S) o-Terphenyl	57.8			18.0-148		04/08/2021 06:53	WG1647213

SAMPLE RESULTS - 04

Collected date/time: 04/05/21 11:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.2		1	04/08/2021 08:35	WG1647314

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	15.2	<u>J</u>	9.66	21.0	1	04/08/2021 03:19	WG1647337

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	04/08/2021 18:35	WG1647356
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/08/2021 18:35	WG1647356

Volatile Organic Compounds (GC/MS) by Method 8260B

			-				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000514	0.00110	1	04/07/2021 15:32	WG1647278
Toluene	U		0.00143	0.00551	1	04/07/2021 15:32	WG1647278
Ethylbenzene	U		0.000811	0.00275	1	04/07/2021 15:32	WG1647278
Total Xylenes	0.00152	<u>J</u>	0.000969	0.00716	1	04/07/2021 15:32	WG1647278
(S) Toluene-d8	110			75.0-131		04/07/2021 15:32	WG1647278
(S) 4-Bromofluorobenzene	93.4			67.0-138		04/07/2021 15:32	WG1647278
(S) 1,2-Dichloroethane-d4	97.5			70.0-130		04/07/2021 15:32	WG1647278

Sc

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.81	ВJ	1.69	4.20	1	04/08/2021 07:07	WG1647213
C28-C40 Oil Range	3.11	BJ	0.288	4.20	1	04/08/2021 07:07	WG1647213
(S) o-Ternhenvl	50.9			18 0-148		04/08/2021 07:07	WG1647213

ConocoPhillips - Tetra Tech

Collected date/time: 04/05/21 11:50

Page 121 of 457

SAMPLE RESULTS - 05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.7		1	04/08/2021 08:35	WG1647314

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	397		9.42	20.5	1	04/08/2021 03:29	WG1647337

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	1250		11.4	52.4	500	04/08/2021 20:03	WG1647356
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/08/2021 20:03	WG1647356

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

		, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.0196	0.0419	40	04/07/2021 15:51	WG1647278
Toluene	1.21		0.0545	0.210	40	04/07/2021 15:51	WG1647278
Ethylbenzene	12.4		0.0309	0.105	40	04/07/2021 15:51	WG1647278
Total Xylenes	23.7		0.0369	0.272	40	04/07/2021 15:51	WG1647278
(S) Toluene-d8	114			75.0-131		04/07/2021 15:51	WG1647278
(S) 4-Bromofluorobenzene	102			67.0-138		04/07/2021 15:51	WG1647278
(S) 1,2-Dichloroethane-d4	102			70.0-130		04/07/2021 15:51	WG1647278

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6550		33.0	81.9	20	04/08/2021 17:33	WG1647213
C28-C40 Oil Range	3600		11.3	164	40	04/09/2021 10:58	WG1647213
(S) o-Terphenyl	694	<u>J7</u>		18.0-148		04/08/2021 17:33	WG1647213
(S) o-Terphenyl	0.000	J7		18.0-148		04/09/2021 10:58	WG1647213

Gl

Page 122 of 457

SAMPLE RESULTS - 06

Collected date/time: 04/05/21 12:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.6		1	04/08/2021 08:35	WG1647314

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	107		9.94	21.6	1	04/08/2021 03:38	WG1647337

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.240		0.0234	0.108	1	04/08/2021 18:57	WG1647356
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/08/2021 18:57	WG1647356

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000542	0.00116	1	04/07/2021 16:10	WG1647278
Toluene	U		0.00151	0.00580	1	04/07/2021 16:10	WG1647278
Ethylbenzene	0.00595		0.000855	0.00290	1	04/07/2021 16:10	WG1647278
Total Xylenes	0.0172		0.00102	0.00754	1	04/07/2021 16:10	WG1647278
(S) Toluene-d8	109			75.0-131		04/07/2021 16:10	WG1647278
(S) 4-Bromofluorobenzene	93.3			67.0-138		04/07/2021 16:10	WG1647278
(S) 1,2-Dichloroethane-d4	85.9			70.0-130		04/07/2021 16:10	WG1647278

Sc

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	254		1.74	4.32	1	04/08/2021 07:48	WG1647213
C28-C40 Oil Range	255		0.592	8.64	2	04/08/2021 16:10	WG1647213
(S) o-Terphenyl	63.1			18.0-148		04/08/2021 07:48	WG1647213
(S) o-Terphenyl	84.5			18.0-148		04/08/2021 16:10	WG1647213

Page 123 of 457

SAMPLE RESULTS - 07

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.1		1	04/08/2021 08:35	WG1647314

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	328		9.38	20.4	1	04/08/2021 03:48	WG1647337

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	1.77		0.0221	0.102	1	04/08/2021 19:19	WG1647356
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		04/08/2021 19:19	WG1647356

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000485	0.00104	1	04/07/2021 16:29	WG1647278
Toluene	0.00743		0.00135	0.00519	1	04/07/2021 16:29	WG1647278
Ethylbenzene	0.111		0.000765	0.00260	1	04/07/2021 16:29	WG1647278
Total Xylenes	0.257		0.000914	0.00675	1	04/07/2021 16:29	WG1647278
(S) Toluene-d8	109			75.0-131		04/07/2021 16:29	WG1647278
(S) 4-Bromofluorobenzene	108			67.0-138		04/07/2021 16:29	WG1647278
(S) 1,2-Dichloroethane-d4	104			70.0-130		04/07/2021 16:29	WG1647278

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	800		16.4	40.8	10	04/08/2021 17:05	WG1647213
C28-C40 Oil Range	744		2.79	40.8	10	04/08/2021 17:05	WG1647213
(S) o-Terphenyl	180	J1		18.0-148		04/08/2021 17:05	WG1647213

Sample Narrative:

L1335085-07 WG1647213: Surrogate failure due to matrix interference

Gl

Received by 305 Dr 5/18/2021 6:32:30 PM Collected date/time: 04/05/21 12:20

SAMPLE RESULTS - 08

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.6		1	04/08/2021 10:22	WG1647315

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	81.6		9.62	20.9	1	04/08/2021 04:26	WG1647337

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.358		0.0227	0.105	1	04/08/2021 19:41	WG1647356
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		04/08/2021 19:41	WG1647356

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	,
Benzene	U		0.000510	0.00109	1	04/07/2021 16:48	WG1647278
Toluene	U		0.00142	0.00546	1	04/07/2021 16:48	WG1647278
Ethylbenzene	0.00396		0.000805	0.00273	1	04/07/2021 16:48	WG1647278
Total Xylenes	0.00966		0.000961	0.00710	1	04/07/2021 16:48	WG1647278
(S) Toluene-d8	113			75.0-131		04/07/2021 16:48	WG1647278
(S) 4-Bromofluorobenzene	94.6			67.0-138		04/07/2021 16:48	WG1647278
(S) 1,2-Dichloroethane-d4	96.4			70.0-130		04/07/2021 16:48	WG1647278

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	181		1.68	4.18	1	04/08/2021 08:01	WG1647213
C28-C40 Oil Range	189		0.573	8.37	2	04/08/2021 16:24	WG1647213
(S) o-Terphenyl	88.6			18.0-148		04/08/2021 16:24	WG1647213
(S) o-Terphenyl	65.2			18.0-148		04/08/2021 08:01	WG1647213

14 of 29

Page 125 of 457

SAMPLE RESULTS - 09

Total Solids by Method 2540 G-2011

Collected date/time: 04/05/21 13:00

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.1		1	04/08/2021 10:22	WG1647315

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	384		9.57	20.8	1	04/08/2021 03:57	WG1647337

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	1810		11.8	54.1	500	04/08/2021 20:25	WG1647356
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		04/08/2021 20:25	WG1647356

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Ratch
Analyto		Qualifier	` **		Dilution	date / time	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		uate / time	
Benzene	U		0.0202	0.0432	40	04/07/2021 17:07	WG1647278
Toluene	2.25		0.0562	0.216	40	04/07/2021 17:07	WG1647278
Ethylbenzene	25.4		0.0319	0.108	40	04/07/2021 17:07	WG1647278
Total Xylenes	50.3		0.0381	0.281	40	04/07/2021 17:07	WG1647278
(S) Toluene-d8	113			75.0-131		04/07/2021 17:07	WG1647278
(S) 4-Bromofluorobenzene	109			67.0-138		04/07/2021 17:07	WG1647278
(S) 1,2-Dichloroethane-d4	108			70.0-130		04/07/2021 17:07	WG1647278

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	· ·	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8610		168	416	100	04/09/2021 11:12	WG1647213
C28-C40 Oil Range	4280		28.5	416	100	04/09/2021 11:12	WG1647213
(S) o-Terphenyl	0.000	<u>J7</u>		18.0-148		04/09/2021 11:12	WG1647213

15 of 29

Page 126 of 457

SAMPLE RESULTS - 10

Collected date/time: 04/05/21 13:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.3		1	04/08/2021 10:22	WG1647315

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	448		9.86	21.4	1	04/08/2021 05:04	WG1647337

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0522	ВЈ	0.0233	0.107	1	04/08/2021 15:16	WG1647962
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		04/08/2021 15:16	WG1647962

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000534	0.00114	1	04/09/2021 13:08	WG1648533
Toluene	U		0.00149	0.00572	1	04/09/2021 13:08	WG1648533
Ethylbenzene	0.00212	<u>J</u>	0.000843	0.00286	1	04/09/2021 13:08	WG1648533
Total Xylenes	0.00720	<u>J</u>	0.00101	0.00743	1	04/09/2021 13:08	WG1648533
(S) Toluene-d8	109			75.0-131		04/09/2021 13:08	WG1648533
(S) 4-Bromofluorobenzene	93.6			67.0-138		04/09/2021 13:08	WG1648533
(S) 1,2-Dichloroethane-d4	96.4			70.0-130		04/09/2021 13:08	WG1648533

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	13.0	В	1.73	4.29	1	04/08/2021 07:20	WG1647213
C28-C40 Oil Range	16.6		0.294	4.29	1	04/08/2021 07:20	WG1647213
(S) o-Terphenvl	63.0			18.0-148		04/08/2021 07:20	WG1647213

SAMPLE RESULTS - 11

Collected date/time: 04/05/21 13:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.7		1	04/08/2021 10:22	WG1647315

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	34.8		9.71	21.1	1	04/08/2021 05:13	WG1647337

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.322	В	0.0229	0.106	1	04/08/2021 15:40	WG1647962
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		04/08/2021 15:40	WG1647962

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000519	0.00111	1	04/07/2021 17:45	WG1647278
Toluene	U		0.00144	0.00556	1	04/07/2021 17:45	WG1647278
Ethylbenzene	0.00776		0.000819	0.00278	1	04/07/2021 17:45	WG1647278
Total Xylenes	0.0209		0.000978	0.00722	1	04/07/2021 17:45	WG1647278
(S) Toluene-d8	113			75.0-131		04/07/2021 17:45	WG1647278
(S) 4-Bromofluorobenzene	94.9			67.0-138		04/07/2021 17:45	WG1647278
(S) 1,2-Dichloroethane-d4	92.6			70.0-130		04/07/2021 17:45	WG1647278

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

`	,	•					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	162	<u>B</u>	17.0	42.2	10	04/08/2021 17:19	WG1647213
C28-C40 Oil Range	140		2.89	42.2	10	04/08/2021 17:19	WG1647213
(S) o-Terphenyl	84.9			18.0-148		04/08/2021 17:19	WG1647213

17 of 29

Page 128 of 457

Total Solids by Method 2540 G-2011

L1335085-01,02,03,04,05,06,07

Method	Blank ((MB)
--------	---------	------

 (MB) R3639669-1
 04/08/21 08:35

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 %
 %

 Total Solids
 0.000

L1335187-12 Original Sample (OS) • Duplicate (DUP)

(OS) L1335187-12 04/08/21 08:35 • (DUP) R3639669-3 04/08/21 08:35

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	78.6	78.6	1	0.0916		10

Laboratory Control Sample (LCS)

(LCS) R3639669-2 04/08/21 08:35

,	Spike Amount	e Amount LCS	S Result LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0		0.0 100	85.0-115

Page 129 of 457

Total Solids by Method 2540 G-2011

L1335085-08,09,10,11

Meth	nod	Blaı	nk I	(ME

(MB) R3639899-	1 04/08/21 10:22	/08/21 10:22						
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	%		%	%				
Total Solids	0.00300							

3 Ss

L1333937-02 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	91.8	89.6	1	2.52		10

[‡]Cn

Laboratory Control Sample (LCS)

11 00	D2620000 2	04/09/21	10.22
ILCS) R3639899-2	04/08/21	10.22

(LCS) R3639899-2 04/08/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	99.9	85.0-115

Page 130 of 457

Wet Chemistry by Method 300.0

L1335085-01,02,03,04,05,06,07,08,09,10,11

Method Blank (MB)

(MB) R3639384-1 04/07/21 23:23									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
Chloride	U		9.20	20.0					

L1332681-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1332681-11 04/08/21 00:57 • (DUP) R3639384-3 04/08/21 01:06

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	259	248	1	4.45		20

Cn

(OS) L1335085-08 04/08/21 04:26 • (DUP) R3639384-4 04/08/21 04:35

(O3) L1333063-06 04/06/.	2104.20 • (DOI	-) K3039304-4	04/06/2	104.55		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	81.6	82.6	1	1.21		20

PAGE:

20 of 29

Laboratory Control Sample (LCS)

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	198	99.1	90.0-110	

(LCS) R3639384-2 04/07/21 23:33

L1335085-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1335085-08 04/08/21 04:26 • (MS) R3639384-5 04/08/21 04:45 • (MSD) R3639384-6 04/08/21 04:54

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	523	81.6	628	627	105	104	1	80.0-120			0.140	20

Page 131 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1335085-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3639701-3 04/08	/21 12:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120

(LCS) R3639701-2 04/08	LCS) R3639701-2 04/08/21 11:59								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
TPH (GC/FID) Low Fraction	5.50	5.31	96.5	72.0-127					
(S) a,a,a-Trifluorotoluene(FID)			96.4	77.0-120					

Page 132 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1335085-10,11

Method Blank (MB)

(MB) R3639649-3 04/08/	/21 11:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0503	<u>J</u>	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3639649-2 04/08	3/21 10:34				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.95	90.0	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			110	77.0-120	

Page 133 of 457

Volatile Organic Compounds (GC/MS) by Method 8260B

L1335085-01,02,03,04,05,06,07,08,09,11

Method Blank (MB)

(MB) R3639616-2 04/07/2	21 10:18				
	MB Result	MB Qualifier	MB MDL	MB RDL	2_
Analyte	mg/kg		mg/kg	mg/kg	T
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	³ S
Toluene	U		0.00130	0.00500	L
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	112			75.0-131	⁴ C
(S) 4-Bromofluorobenzene	93.5			67.0-138	
(S) 1,2-Dichloroethane-d4	90.4			70.0-130	⁵ S

Laboratory Control Sample (LCS)

(LCS) R3639616-1 04/0	07/21 09:20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.100	80.0	70.0-123	
Ethylbenzene	0.125	0.122	97.6	74.0-126	
Toluene	0.125	0.119	95.2	75.0-121	
Xylenes, Total	0.375	0.344	91.7	72.0-127	
(S) Toluene-d8			107	75.0-131	
(S) 4-Bromofluorobenzer	пе		97.4	67.0-138	
(S) 1,2-Dichloroethane-d-	4		100	70.0-130	

Page 134 of 457

Volatile Organic Compounds (GC/MS) by Method 8260B

L1335085-10

Method Blank (MB)

(MB) R3640087-3 04/09/	21 12:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	108			75.0-131
(S) 4-Bromofluorobenzene	95.2			67.0-138
(S) 1,2-Dichloroethane-d4	99.3			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

					
- (LCS) R3640087-1	04/09/21 10:45 • (LCSE	N R3640087-2	04/09/21 11:04	
- 1		0-7/03/21 103 - (LC3L	// NOOTOOO/ 2	0-7/03/2111.0-1	

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.118	0.120	94.4	96.0	70.0-123			1.68	20	
Ethylbenzene	0.125	0.120	0.127	96.0	102	74.0-126			5.67	20	
Toluene	0.125	0.118	0.124	94.4	99.2	75.0-121			4.96	20	
Xylenes, Total	0.375	0.347	0.365	92.5	97.3	72.0-127			5.06	20	
(S) Toluene-d8				102	106	75.0-131					
(S) 4-Bromofluorobenzene				102	102	67.0-138					
(S) 1,2-Dichloroethane-d4				116	113	70.0-130					

ConocoPhillips - Tetra Tech

Page 135 of 457

Semi-Volatile Organic Compounds (GC) by Method 8015

L1335085-01,02,03,04,05,06,07,08,09,10,11

Method Blank (MB)

(MB) R3639374-1 04/08/	/21 02:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	2.12	<u>J</u>	1.61	4.00
C28-C40 Oil Range	1.22	<u>J</u>	0.274	4.00
(S) o-Terphenyl	45.2			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3639374-2 04/08	3/21 02:22				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	36.4	72.8	50.0-150	
(S) o-Terphenyl			78.1	18.0-148	

L1335025-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OSUL1335025.07.04/08/21.03:43..(MS).P3630374.3.04/08/21.03:56..(MSD).P3630374.4.04/08/21.04:10

(OS) L1335025-07 04/0	78/21 U3:43 • (IVIS) R3639374-3 (04/08/21 03:56	• (IVISD) R363	19374-4 04/08	3/21 04:10						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
C10-C28 Diesel Range	49.4	7620	7870	6300	405	0.000	1	50.0-150	<u>E V</u>	<u>E J3 V</u>	22.1	20
(S) o-Terphenyl					666	512		18.0-148	<u>J1</u>	<u>J1</u>		

Sample Narrative:

OS: Surrogate failure due to matrix interference

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Ouglifier	Docariation
Qualifier	Description

В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Pace Analytical National	12065 Lebanon Rd Mount Juliet,	TN 37122
race Analytical National	12000 Lebanon Ku Mount Juliet,	111 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Analysis Request of Chain of Custody Record

Page: 1 of 2 901 West Wall Street, Suite 100 Midland, Texas 79701 Tetra Tech, Inc. Tel (432) 682-4559 Fax (432) 682-3946 **ANALYSIS REQUEST** Conoco Phillips Site Manager: Christian Llull Client Name: (Circle or Specify Method No.) Email: christian.llull@tetratech.com Contact Info: COP MCA 151 Flowline release **Project Name:** Phone: (512) 338-1667 **Project Location:** 212C-MD-02471 Project #: Lea County, New Mexico (county, state) Accounts Payable Invoice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 Sampler Signature: Adrian Receiving Laboratory: Pace Analytical **COPTETRA Acctnum** Comments: **PRESERVATIVE** (Ext to (SAMPLING MATRIX METHOD L1335085 YEAR: 2020 SAMPLE IDENTIFICATION LAB # LAB USE HNOS TIME DATE CE ONLY 4/5/2021 1100 X AH 24 (0.5-1') -01 X N X AH 24 (1.5-2') 4/5/2021 1110 02 03 X X N 1120 AH 24 (2.5-3') 4/5/2021 AH 24 (3.5-4') 4/5/2021 1130 X N X 05 1150 X X N AH 25 (0.5-1') 4/5/2021 X N 1200 AH 25 (1.5.-2') 4/5/2021 06 N 4/5/2021 1210 01 AH 25 (2.5-3') 08 N AH 25 (3.5-4') 4/5/2021 1220 1300 AH-26 (0.5-1') 4/5/2021 09 AH-26 (1.5-2') 4/5/2021 1310 10 REMARKS: Date: Relinquished by: LAB USE LuanDale Standard ONLY X RUSH: Same Day 24 hr. 48 hr. 72 hr. Sample Temperature Rush Charges Authorized Relinquished by Special Report Limits or TRRP Report Sample Receipt Checklist ORIGINAL COPY (Circle) HAND DELIVERED FEDEX UPS Tracking #: COC Seal Present/Intact: Y N COC Signed/Accurate:

Released to Imaging: 8/3/2021 8:43:52 AM RAD Screen <0.5 mR/hr:

Bottles arrive intact: Y N Pres.Correct/Check: Y N

Analysis Request of Chain of Custody Record

Page: 2 of 2 901 West Wall Street, Suite 100 Tetra Tech, Inc. Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946 **ANALYSIS REQUEST** Client Name: Conoco Phillips Site Manager: Christian Llull (Circle or Specify Method No.) Email: christian.llull@tetratech.com **Project Name:** COP MCA 151 Flowline release Contact Info: Phone: (512) 338-1667 **Project Location:** Lea County, New Mexico Project #: 212C-MD-02471 (county, state) Accounts Payable Invoice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 Receiving Laboratory: Pace Analytical Sampler Signature: Adrian Comments: COPTETRA Acctnum TX1005 (Ext to C35) **PRESERVATIVE** SAMPLING MATRIX METHOD L133508 YEAR: 2020 LAB# SAMPLE IDENTIFICATION LAB USE SOIL DATE TIME CE ONLY AH-26 (2.5'-3) -11 4/5/2021 1320 Relinquished by: Date: Time: Received by: REMARKS: LAB USE Standard ONLY X RUSH: Same Day 24 hr. 48 hr. 72 hr. Received by: Sample Temperature Rush Charges Authorized Relinquished by: Special Report Limits or TRRP Report (Circle) HAND DELIVERED FEDEX UPS Tracking #:

Pace Analytical® ANALYTICAL REPORT

Ss

Cn

Sr

Qc Gl

Αl

Sc

ConocoPhillips - Tetra Tech

Sample Delivery Group:

L1335764

Samples Received:

04/08/2021

Project Number:

212CMD02471

Description:

COP MCA 151 Flowline Release

Report To:

Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122

615-758-5858

800-767-5859

www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
AH-21 (0'-1') L1335764-01	8
AH-21 (1'-2') L1335764-02	9
AH-21 (2'-3') L1335764-03	10
AH-23 (0'-1') L1335764-04	11
AH-23 (1'-2') L1335764-05	12
AH-23 (2'-3') L1335764-06	13
AH-23 (3'-4') L1335764-07	14
AH-27 (0'-1') L1335764-08	15
AH-27 (1'-2') L1335764-09	16
AH-27 (2'-3') L1335764-10	17
AH-27 (3'-4') L1335764-11	18
AH-27 (4'-5') L1335764-12	19
AH-28 (0'-1') L1335764-13	20
AH-28 (1'-2') L1335764-14	21
AH-28 (2'-3') L1335764-15	22
AH-28 (3'-4') L1335764-16	23
AH-28 (4'-5') L1335764-17	24
AH-29 (0'-1') L1335764-18	25
AH-29 (1'-2') L1335764-19	26
AH-21 (3-4) L1335764-20	27
Qc: Quality Control Summary	28
Total Solids by Method 2540 G-2011	28
Wet Chemistry by Method 300.0	30
Volatile Organic Compounds (GC) by Method 8015D/GRO	31
Volatile Organic Compounds (GC/MS) by Method 8260B	34
Semi-Volatile Organic Compounds (GC) by Method 8015	36
GI: Glossary of Terms	38
Al: Accreditations & Locations	39

Sc: Sample Chain of Custody

40

			Collected by	Collected date/time	Received da	te/time
AH-21 (0'-1') L1335764-01 Solid			Adrian	04/06/21 12:00	04/08/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647941	1	04/08/21 13:00	04/08/2113:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1648080	5	04/08/21 19:54	04/09/21 04:24	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1648077	200	04/08/21 11:25	04/08/21 20:52	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648162	20	04/08/21 11:25	04/09/21 01:47	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	20	04/08/21 11:25	04/09/21 09:04	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	10	04/08/21 17:16	04/09/21 04:15	DMG	Mt. Juliet, TN
AH-21 (1'-2') L1335764-02 Solid			Collected by Adrian	Collected date/time 04/06/2112:10	Received da 04/08/21 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647941	1	date/time 04/08/21 13:00	date/time	KDM	Mt. Juliet, TN
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1647941 WG1648080	5	04/08/21 13:00	04/08/21 13:09 04/09/21 04:33	KDW MCG	Mt. Juliet, TN Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1648077	1	04/08/21 11:25	04/08/21 17:11	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648162	1	04/08/21 11:25	04/08/21 72:36	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/21 09:23	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	1	04/08/21 17:16	04/09/21 00:22	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-21 (2'-3') L1335764-03 Solid			Adrian	04/06/2112:20	04/08/21 08:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647941	1	04/08/2113:00	04/08/2113:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1648080	10	04/08/21 19:54	04/09/21 04:43	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1648077	1	04/08/21 11:25	04/08/21 17:33	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1648162	1	04/08/21 11:25	04/08/21 22:55	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/21 09:43	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	1	04/08/21 17:16	04/09/21 00:36	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
AH-23 (0'-1') L1335764-04 Solid			Adrian	04/06/2112:30	04/08/21 08:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Ental Solids by Method 25/10 G 2011	WG1647941	1	04/08/2113:00		KUW	Mt. Juliet, TN
Fotal Solids by Method 2540 G-2011 Not Chamistry by Method 300 0		5		04/08/21 13:09	KDW	
Wet Chemistry by Method 300.0 /olatile Organic Compounds (GC) by Method 8015D/GRO	WG1648080 WG1648077	5000	04/08/21 19:54 04/08/21 11:25	04/09/21 04:52 04/09/21 00:10	MCG BMB	Mt. Juliet, TN Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1648162	400	04/08/21 11:25	04/09/21 02:06	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	400	04/08/21 11:25	04/09/2110:02	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	50	04/08/21 17:16	04/09/2112:35	DMG	Mt. Juliet, TN
ochii voidile organie compounds (oc) sy method dois	W01010012	30	0 1/00/21 17:10	0 1/03/21 12.33	DINIO	Wit. Juliet, TV
AH-23 (1'-2') L1335764-05 Solid			Collected by Adrian	Collected date/time 04/06/2112:40	Received da 04/08/21 08:	
	D . I	Dilett	D			
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647941	1	04/08/21 13:00	04/08/2113:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1648080	5	04/08/21 19:54	04/09/21 05:02	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1648077	500	04/08/21 11:25	04/08/21 21:14	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	8	04/08/21 11:25	04/09/2110:21	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	10	04/08/21 17:16	04/09/21 03:48	DMG	Mt. Juliet, TN

		_				
AH-23 (2'-3') L1335764-06 Solid			Collected by Adrian	Collected date/time 04/06/2112:50	Received da 04/08/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647941	1	04/08/2113:00	04/08/2113:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1648080	10	04/08/21 19:54	04/09/21 05:11	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1648517	1	04/08/21 11:25	04/09/2114:22	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/2110:40	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	1	04/08/21 17:16	04/09/21 00:49	DMG	Mt. Juliet, TN
All 22 (2) 41 1422E764 07 Colid			Collected by Adrian	Collected date/time 04/06/21 13:00	Received da 04/08/21 08:	
AH-23 (3'-4') L1335764-07 Solid						
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647941	1	04/08/21 13:00	04/08/21 13:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1648080	10	04/08/21 19:54	04/09/21 05:59	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1648517	1	04/08/21 11:25	04/09/21 15:03	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/2110:58	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	1	04/08/21 17:16	04/09/21 01:43	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-27 (0'-1') L1335764-08 Solid			Adrian	04/06/2113:30	04/08/21 08:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647941	1	04/08/2113:00	04/08/21 13:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1648080	5	04/08/21 19:54	04/09/21 05:21	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1648077	5000	04/08/21 11:25	04/08/21 23:48	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648162	400	04/08/21 11:25	04/09/21 03:22	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	400	04/08/21 11:25	04/09/21 11:17	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	50	04/08/21 17:16	04/09/21 12:21	DMG	Mt. Juliet, TN
AH-27 (1'-2') L1335764-09 Solid			Collected by Adrian	Collected date/time 04/06/2113:40	Received da 04/08/21 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1647941	1	04/08/21 13:00	04/08/21 13:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1648080	5	04/08/21 19:54	04/09/21 06:09	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1648077	1	04/08/21 11:25	04/08/21 17:55	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648162	1	04/08/21 11:25	04/08/21 23:14	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/21 11:37	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	1	04/08/21 17:16	04/09/21 02:55	DMG	Mt. Juliet, TN
AH-27 (2'-3') L1335764-10 Solid			Collected by Adrian	Collected date/time 04/06/2113:50	Received da 04/08/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Mothod 2540 C 2011	\NC16.470.44	1	04/08/2113:00		KUM	Mt luliat TN
Total Solids by Method 2540 G-2011	WG1647941	1		04/08/21 13:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1648080	10	04/08/21 19:54	04/09/21 06:18	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1648517	1	04/08/21 11:25	04/09/21 15:35	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/21 11:56	BMB	Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1648012

1

04/08/21 17:16

DMG

Mt. Juliet, TN

04/09/21 01:03

	0, 22 (,			
			Collected by	Collected date/time		
AH-27 (3'-4') L1335764-11 Solid			Adrian	04/06/21 14:00	Analyst KDW MCG TPR BMB DMG Received da 04/08/21 08 Analyst KDW MCG BMB BMB BMB DMG Received da 04/08/21 08 Analyst KDW MCG TPR BMB DMG Received da 04/08/21 08 Analyst KDW MCG TPR BMB DMG Received da 04/08/21 08 Analyst	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1647942	1	04/08/2112:45	04/08/21 12:55	KDW	Mt. Juliet, Ti
Vet Chemistry by Method 300.0	WG1648080	10	04/08/21 19:54	04/09/21 06:28	MCG	Mt. Juliet, Ti
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1648517	1	04/08/21 11:25	04/09/21 16:04	TPR	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/21 12:15	BMB	Mt. Juliet, TI
semi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	1	04/08/21 17:16	04/09/21 01:16	DMG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	ite/time
AH-27 (4'-5') L1335764-12 Solid			Adrian	04/06/21 14:10	04/08/21 08	:00
1ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1647942	1	04/08/21 12:45	04/08/21 12:55	KDW	Mt. Juliet, TI
/et Chemistry by Method 300.0	WG1648080	10	04/08/21 19:54	04/09/21 06:37	MCG	Mt. Juliet, Ti
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1648077	1	04/08/21 11:25	04/08/21 18:17	BMB	Mt. Juliet, TI
olatile Organic Compounds (GC/MS) by Method 8260B	WG1648162	1	04/08/21 11:25	04/08/21 23:33	BMB	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/2112:33	BMB	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	1	04/08/21 17:16	04/09/21 02:01	DMG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	ite/time
AH-28 (0'-1') L1335764-13 Solid			Adrian	04/06/21 14:30	04/08/21 08	
ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1647942	1	04/08/21 12:45	04/08/21 12:55	KDW	Mt. Juliet, T
et Chemistry by Method 300.0	WG1648080	5	04/08/21 19:54	04/09/21 06:47	MCG	Mt. Juliet, T
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1648517	25	04/08/21 11:25	04/09/21 16:32	TPR	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/2112:52	BMB	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	1	04/08/21 17:16	04/09/21 03:22	DMG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	ite/time
AH-28 (1'-2') L1335764-14 Solid			Adrian	04/06/21 14:40	04/08/21 08	
lethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1647942	1	04/08/21 12:45	04/08/21 12:55	KDW	Mt. Juliet, TI
et Chemistry by Method 300.0	WG1648080	5	04/08/21 19:54	04/09/21 06:56	MCG	Mt. Juliet, T
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1648077	1	04/08/21 11:25	04/08/21 18:39	BMB	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1648162	1	04/08/21 11:25	04/08/21 23:52	BMB	Mt. Juliet, Tl
olatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/21 13:11	BMB	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	1	04/08/21 17:16	04/09/21 11:53	DMG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	ite/time
AH-28 (2'-3') L1335764-15 Solid			Adrian	04/06/21 14:50	04/08/21 08	
lethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
otal Solids by Mathad 2540 C 2011	WG1647942	1	date/time 04/08/21 12:45	date/time	NDM	Mt. Juliet, Tl
otal Solids by Method 2540 G-2011		1		04/08/21 12:55		
/et Chemistry by Method 300.0	WG1648080	10	04/08/21 19:54	04/09/21 07:06		Mt. Juliet, T
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1648077	1	04/08/21 11:25	04/08/21 19:01		Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1648162	1	04/08/21 11:25	04/09/21 00:11		Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/21 13:30		Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	1	04/08/21 17:16	04/09/21 02:28	DMG	Mt. Juliet, Ti

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	
AH-28 (3'-4') L1335764-16 Solid	Detel	Dibation	Adrian	04/06/21 15:00	04/08/21 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647942	1	04/08/21 12:45	04/08/21 12:55	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1648080	1	04/08/21 19:54	04/09/21 07:15	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1648077	1	04/08/21 11:25	04/08/21 19:24	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648162	1	04/08/21 11:25	04/09/21 00:30	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/21 13:49	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648012	1	04/08/21 17:16	04/09/21 02:41	CLG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-28 (4'-5') L1335764-17 Solid			Adrian	04/06/21 15:10	04/08/21 08:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647942	1	04/08/2112:45	04/08/2112:55	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1648080	1	04/08/21 19:54	04/09/21 07:25	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1648077	1	04/08/21 11:25	04/08/21 19:46	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648162	1	04/08/21 11:25	04/09/21 00:49	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/21 14:08	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648014	1	04/08/21 17:18	04/08/21 23:25	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-29 (0'-1') L1335764-18 Solid			Adrian	04/06/21 15:30	04/08/21 08:	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1647942	1	04/08/21 12:45	04/08/21 12:55	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1648080	1	04/08/21 19:54	04/09/21 07:53	MCG	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1648077	1	04/08/21 11:25	04/08/21 20:08	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1648162	1	04/08/21 11:25	04/09/21 01:08	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/21 14:27	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648014	1	04/08/21 17:18	04/08/21 23:38	TJD	Mt. Juliet, TN
			Collected by	Collected date/time		
AH-29 (1'-2') L1335764-19 Solid			Adrian	04/06/21 15:40	04/08/21 08:	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	11104047040		date/time	date/time	L/DIL/	14. 1 to 1 Th
Fotal Solids by Method 2540 G-2011	WG1647942	1	04/08/2112:45	04/08/21 12:55	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1648080	1	04/08/21 19:54	04/09/21 08:31	MCG	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1648077	1	04/08/21 11:25	04/08/21 20:30	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1648162	1	04/08/21 11:25	04/09/21 01:27	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/21 14:46	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648014	1	04/08/21 17:18	04/08/21 23:51	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
AH-21 (3-4) L1335764-20 Solid			Adrian	04/06/21 16:00	04/08/21 08:	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1647942	1	04/08/21 12:45	04/08/21 12:55	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1648080	10	04/08/21 19:54	04/09/21 08:41	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1648956	25	04/08/21 11:25	04/09/21 18:31	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1648487	1	04/08/21 11:25	04/09/21 15:05	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1648014	1	04/08/21 17:18	04/09/21 00:04	TJD	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Collected date/time: 04/06/21 12:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.4		1	04/08/2021 13:09	WG1647941

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1920		47.2	103	5	04/09/2021 04:24	WG1648080

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	103		4.57	21.1	200	04/08/2021 20:52	WG1648077
(S) a,a,a-Trifluorotoluene(FID)	97.2			77.0-120		04/08/2021 20:52	WG1648077

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Benzene	U		0.00984	0.0211	20	04/09/2021 09:04	WG1648487	
Toluene	0.299		0.0274	0.105	20	04/09/2021 01:47	WG1648162	
Ethylbenzene	0.684		0.0155	0.0527	20	04/09/2021 01:47	WG1648162	
Total Xylenes	2.01		0.0186	0.137	20	04/09/2021 01:47	WG1648162	
(S) Toluene-d8	110			75.0-131		04/09/2021 01:47	WG1648162	
(S) Toluene-d8	98.1			75.0-131		04/09/2021 09:04	WG1648487	
(S) 4-Bromofluorobenzene	100			67.0-138		04/09/2021 01:47	WG1648162	
(S) 4-Bromofluorobenzene	116			67.0-138		04/09/2021 09:04	WG1648487	
(S) 1,2-Dichloroethane-d4	100			70.0-130		04/09/2021 01:47	WG1648162	
(S) 1,2-Dichloroethane-d4	112			70.0-130		04/09/2021 09:04	WG1648487	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1990		16.5	41.1	10	04/09/2021 04:15	WG1648012
C28-C40 Oil Range	1190		2.81	41.1	10	04/09/2021 04:15	WG1648012
(S) o-Terphenyl	145			18.0-148		04/09/2021 04:15	WG1648012

Collected date/time: 04/06/21 12:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.5		1	04/08/2021 13:09	WG1647941

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2760		47.7	104	5	04/09/2021 04:33	WG1648080

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0544	<u>J</u>	0.0225	0.104	1	04/08/2021 17:11	WG1648077
(S) a,a,a-Trifluorotoluene(FID)	92.3			77.0-120		04/08/2021 17:11	<u>WG1648077</u>

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000501	0.00107	1	04/09/2021 09:23	WG1648487
Toluene	0.0160		0.00139	0.00536	1	04/08/2021 22:36	WG1648162
Ethylbenzene	0.00129	<u>J</u>	0.000791	0.00268	1	04/08/2021 22:36	WG1648162
Total Xylenes	0.00341	<u>J</u>	0.000944	0.00697	1	04/08/2021 22:36	WG1648162
(S) Toluene-d8	109			75.0-131		04/08/2021 22:36	WG1648162
(S) Toluene-d8	103			75.0-131		04/09/2021 09:23	WG1648487
(S) 4-Bromofluorobenzene	91.4			67.0-138		04/08/2021 22:36	WG1648162
(S) 4-Bromofluorobenzene	104			67.0-138		04/09/2021 09:23	WG1648487
(S) 1,2-Dichloroethane-d4	102			70.0-130		04/08/2021 22:36	WG1648162
(S) 1,2-Dichloroethane-d4	106			70.0-130		04/09/2021 09:23	WG1648487

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.47	<u>J</u>	1.67	4.15	1	04/09/2021 00:22	WG1648012
C28-C40 Oil Range	3.04	<u>J</u>	0.284	4.15	1	04/09/2021 00:22	WG1648012
(S) o-Terphenyl	54.4			18.0-148		04/09/2021 00:22	WG1648012

Page 149 of 457

SAMPLE RESULTS - 03

Collected date/time: 04/06/21 12:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.1		1	04/08/2021 13:09	WG1647941

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	8590		103	225	10	04/09/2021 04:43	WG1648080

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0244	0.112	1	04/08/2021 17:33	WG1648077
(S) a,a,a-Trifluorotoluene(FID)	92.6			77.0-120		04/08/2021 17:33	WG1648077

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000810	<u>J</u>	0.000582	0.00125	1	04/09/2021 09:43	WG1648487
Toluene	0.00893		0.00162	0.00623	1	04/08/2021 22:55	WG1648162
Ethylbenzene	0.00401		0.000918	0.00311	1	04/08/2021 22:55	WG1648162
Total Xylenes	0.00895		0.00110	0.00810	1	04/08/2021 22:55	WG1648162
(S) Toluene-d8	111			<i>75.0-131</i>		04/08/2021 22:55	WG1648162
(S) Toluene-d8	110			75.0-131		04/09/2021 09:43	WG1648487
(S) 4-Bromofluorobenzene	91.4			67.0-138		04/08/2021 22:55	WG1648162
(S) 4-Bromofluorobenzene	94.4			67.0-138		04/09/2021 09:43	WG1648487
(S) 1,2-Dichloroethane-d4	95.8			70.0-130		04/08/2021 22:55	WG1648162
(S) 1.2-Dichloroethane-d4	101			70.0-130		04/09/2021 09:43	WG1648487

	<u> </u>	<u> </u>					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.81	4.49	1	04/09/2021 00:36	WG1648012
C28-C40 Oil Range	4.12	<u>J</u>	0.308	4.49	1	04/09/2021 00:36	WG1648012
(S) o-Terphenyl	47.1			18.0-148		04/09/2021 00:36	WG1648012

Page 150 of 457

Collected date/time: 04/06/21 12:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.8		1	04/08/2021 13:09	WG1647941

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2120		48.0	104	5	04/09/2021 04:52	WG1648080

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	2590		119	544	5000	04/09/2021 00:10	WG1648077
(S) a,a,a-Trifluorotoluene(FID)	95.7			77.0-120		04/09/2021 00:10	WG1648077

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	,	,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Benzene	1.96		0.203	0.435	400	04/09/2021 10:02	WG1648487	
Toluene	103		0.565	2.17	400	04/09/2021 02:06	WG1648162	
Ethylbenzene	98.1		0.321	1.09	400	04/09/2021 02:06	WG1648162	
Total Xylenes	142		0.383	2.83	400	04/09/2021 02:06	WG1648162	
(S) Toluene-d8	113			75.0-131		04/09/2021 02:06	WG1648162	
(S) Toluene-d8	102			75.0-131		04/09/2021 10:02	WG1648487	
(S) 4-Bromofluorobenzene	94.9			67.0-138		04/09/2021 02:06	WG1648162	
(S) 4-Bromofluorobenzene	109			67.0-138		04/09/2021 10:02	WG1648487	
(S) 1,2-Dichloroethane-d4	95.1			70.0-130		04/09/2021 02:06	WG1648162	
(S) 1,2-Dichloroethane-d4	110			70.0-130		04/09/2021 10:02	WG1648487	

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4830		84.0	209	50	04/09/2021 12:35	WG1648012
C28-C40 Oil Range	2350		14.3	209	50	04/09/2021 12:35	WG1648012
(S) o-Terphenyl	0.000	J7		18.0-148		04/09/2021 12:35	WG1648012

Page 151 of 457

Collected date/time: 04/06/21 12:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.3		1	04/08/2021 13:09	WG1647941

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1770		47.8	104	5	04/09/2021 05:02	WG1648080

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	76.4		11.7	53.8	500	04/08/2021 21:14	WG1648077
(S) a,a,a-Trifluorotoluene(FID)	96.8			77.0-120		04/08/2021 21:14	WG1648077

Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00667	<u>J</u>	0.00403	0.00861	8	04/09/2021 10:21	WG1648487
Toluene	1.12		0.0112	0.0431	8	04/09/2021 10:21	WG1648487
Ethylbenzene	2.02		0.00635	0.0215	8	04/09/2021 10:21	WG1648487
Total Xylenes	3.20		0.00758	0.0560	8	04/09/2021 10:21	WG1648487
(S) Toluene-d8	107			75.0-131		04/09/2021 10:21	WG1648487
(S) 4-Bromofluorobenzene	97.0			67.0-138		04/09/2021 10:21	WG1648487
(S) 1,2-Dichloroethane-d4	108			70.0-130		04/09/2021 10:21	WG1648487

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3080		16.7	41.5	10	04/09/2021 03:48	WG1648012
C28-C40 Oil Range	1540		2.84	41.5	10	04/09/2021 03:48	WG1648012
(S) o-Terphenyl	0.000	J2		18.0-148		04/09/2021 03:48	WG1648012

Sample Narrative:

Page 152 of 457

Collected date/time: 04/06/21 12:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.1		1	04/08/2021 13:09	WG1647941

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	8020		102	222	10	04/09/2021 05:11	WG1648080

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.751		0.0241	0.111	1	04/09/2021 14:22	WG1648517
(S) a,a,a-Trifluorotoluene(FID)	95.5			77.0-120		04/09/2021 14:22	WG1648517

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000976	<u>J</u>	0.000570	0.00122	1	04/09/2021 10:40	WG1648487
Toluene	0.0189		0.00159	0.00610	1	04/09/2021 10:40	WG1648487
Ethylbenzene	0.0406		0.000899	0.00305	1	04/09/2021 10:40	WG1648487
Total Xylenes	0.0869		0.00107	0.00793	1	04/09/2021 10:40	WG1648487
(S) Toluene-d8	108			75.0-131		04/09/2021 10:40	WG1648487
(S) 4-Bromofluorobenzene	95.1			67.0-138		04/09/2021 10:40	WG1648487
(S) 1,2-Dichloroethane-d4	98.0			70.0-130		04/09/2021 10:40	WG1648487

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.55	<u>J</u>	1.79	4.44	1	04/09/2021 00:49	WG1648012
C28-C40 Oil Range	6.59		0.304	4.44	1	04/09/2021 00:49	WG1648012
(S) o-Terphenyl	52.9			18.0-148		04/09/2021 00:49	WG1648012

Collected date/time: 04/06/21 13:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.4		1	04/08/2021 13:09	WG1647941

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	7880		102	221	10	04/09/2021 05:59	WG1648080

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.401		0.0240	0.111	1	04/09/2021 15:03	WG1648517
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		04/09/2021 15:03	WG1648517

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000607	<u>J</u>	0.000567	0.00121	1	04/09/2021 10:58	WG1648487
Toluene	0.00552	<u>J</u>	0.00158	0.00607	1	04/09/2021 10:58	WG1648487
Ethylbenzene	0.00858		0.000894	0.00303	1	04/09/2021 10:58	WG1648487
Total Xylenes	0.0167		0.00107	0.00789	1	04/09/2021 10:58	WG1648487
(S) Toluene-d8	108			<i>75.0-131</i>		04/09/2021 10:58	WG1648487
(S) 4-Bromofluorobenzene	94.4			67.0-138		04/09/2021 10:58	WG1648487
(S) 1,2-Dichloroethane-d4	106			70.0-130		04/09/2021 10:58	WG1648487

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	22.8		1.78	4.43	1	04/09/2021 01:43	WG1648012
C28-C40 Oil Range	22.1		0.303	4.43	1	04/09/2021 01:43	WG1648012
(S) o-Terphenyl	37.5			18.0-148		04/09/2021 01:43	WG1648012

Page 154 of 457

SAMPLE RESULTS - 08

Collected date/time: 04/06/21 13:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.5		1	04/08/2021 13:09	WG1647941

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2630		48.2	105	5	04/09/2021 05:21	WG1648080

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	2060		119	547	5000	04/08/2021 23:48	WG1648077
(S) a,a,a-Trifluorotoluene(FID)	93.7			77.0-120		04/08/2021 23:48	WG1648077

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	2.39		0.205	0.438	400	04/09/2021 11:17	WG1648487
Toluene	85.2		0.569	2.19	400	04/09/2021 03:22	WG1648162
Ethylbenzene	98.2		0.323	1.09	400	04/09/2021 03:22	WG1648162
Total Xylenes	143		0.385	2.85	400	04/09/2021 03:22	WG1648162
(S) Toluene-d8	110			75.0-131		04/09/2021 03:22	WG1648162
(S) Toluene-d8	107			75.0-131		04/09/2021 11:17	WG1648487
(S) 4-Bromofluorobenzene	98.4			67.0-138		04/09/2021 03:22	WG1648162
(S) 4-Bromofluorobenzene	97.6			67.0-138		04/09/2021 11:17	WG1648487
(S) 1,2-Dichloroethane-d4	96.5			70.0-130		04/09/2021 03:22	WG1648162
(S) 1,2-Dichloroethane-d4	109			70.0-130		04/09/2021 11:17	WG1648487

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6080		84.3	209	50	04/09/2021 12:21	WG1648012
C28-C40 Oil Range	2910		14.3	209	50	04/09/2021 12:21	WG1648012
(S) o-Terphenyl	0.000	<u>J7</u>		18.0-148		04/09/2021 12:21	WG1648012

Page 155 of 457

SAMPLE RESULTS - 09

Total Solids by Method 2540 G-2011

Collected date/time: 04/06/21 13:40

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.9		1	04/08/2021 13:09	WG1647941

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3390		48.0	104	5	04/09/2021 06:09	WG1648080

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.934		0.0226	0.104	1	04/08/2021 17:55	WG1648077
(S) a,a,a-Trifluorotoluene(FID)	93.1			77.0-120		04/08/2021 17:55	WG1648077

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Daniella (alica)	0	MDL (-I)	DDI (-I)	Diletter	Al.	Datab
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000507	0.00109	1	04/09/2021 11:37	WG1648487
Toluene	0.00505	<u>J</u>	0.00141	0.00543	1	04/08/2021 23:14	WG1648162
Ethylbenzene	0.00190	<u>J</u>	0.000801	0.00272	1	04/08/2021 23:14	WG1648162
Total Xylenes	0.00556	<u>J</u>	0.000956	0.00706	1	04/08/2021 23:14	WG1648162
(S) Toluene-d8	108			75.0-131		04/08/2021 23:14	WG1648162
(S) Toluene-d8	110			75.0-131		04/09/2021 11:37	WG1648487
(S) 4-Bromofluorobenzene	90.9			67.0-138		04/08/2021 23:14	WG1648162
(S) 4-Bromofluorobenzene	93.9			67.0-138		04/09/2021 11:37	WG1648487
(S) 1,2-Dichloroethane-d4	86.3			70.0-130		04/08/2021 23:14	WG1648162
(S) 1,2-Dichloroethane-d4	105			70.0-130		04/09/2021 11:37	WG1648487

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	11.3		1.68	4.17	1	04/09/2021 02:55	WG1648012
C28-C40 Oil Range	11.4		0.286	4.17	1	04/09/2021 02:55	WG1648012
(S) o-Terphenyl	50.8			18.0-148		04/09/2021 02:55	WG1648012

16 of 41

Collected date/time: 04/06/21 13:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.2		1	04/08/2021 13:09	WG1647941

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	9150		103	224	10	04/09/2021 06:18	WG1648080

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.641		0.0243	0.112	1	04/09/2021 15:35	WG1648517
(S) a,a,a-Trifluorotoluene(FID)	97.8			77.0-120		04/09/2021 15:35	WG1648517

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00199		0.000580	0.00124	1	04/09/2021 11:56	WG1648487
Toluene	0.0227		0.00162	0.00621	1	04/09/2021 11:56	WG1648487
Ethylbenzene	0.0388		0.000916	0.00311	1	04/09/2021 11:56	WG1648487
Total Xylenes	0.0718		0.00109	0.00808	1	04/09/2021 11:56	WG1648487
(S) Toluene-d8	104			<i>75.0-131</i>		04/09/2021 11:56	WG1648487
(S) 4-Bromofluorobenzene	101			67.0-138		04/09/2021 11:56	WG1648487
(S) 1,2-Dichloroethane-d4	104			70.0-130		04/09/2021 11:56	WG1648487

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.14	<u>J</u>	1.81	4.49	1	04/09/2021 01:03	WG1648012
C28-C40 Oil Range	8.20		0.307	4.49	1	04/09/2021 01:03	WG1648012
(S) o-Terphenyl	47.4			18.0-148		04/09/2021 01:03	WG1648012

Cn

Collected date/time: 04/06/21 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.7		1	04/08/2021 12:55	WG1647942

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	7780		101	221	10	04/09/2021 06:28	WG1648080

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.131		0.0239	0.110	1	04/09/2021 16:04	WG1648517
(S) a,a,a-Trifluorotoluene(FID)	96.9			77.0-120		04/09/2021 16:04	WG1648517

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000994	<u>J</u>	0.000563	0.00121	1	04/09/2021 12:15	WG1648487
Toluene	0.00293	<u>J</u>	0.00157	0.00603	1	04/09/2021 12:15	WG1648487
Ethylbenzene	0.00349		0.000888	0.00301	1	04/09/2021 12:15	WG1648487
Total Xylenes	0.00604	<u>J</u>	0.00106	0.00783	1	04/09/2021 12:15	WG1648487
(S) Toluene-d8	107			75.0-131		04/09/2021 12:15	WG1648487
(S) 4-Bromofluorobenzene	93.9			67.0-138		04/09/2021 12:15	WG1648487
(S) 1,2-Dichloroethane-d4	103			70.0-130		04/09/2021 12:15	WG1648487

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	16.9		1.78	4.41	1	04/09/2021 01:16	WG1648012
C28-C40 Oil Range	15.3		0.302	4.41	1	04/09/2021 01:16	WG1648012
(S) o-Terphenyl	41 7			18 0-148		04/09/2021 01:16	WG1648012

Collected date/time: 04/06/21 14:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.0		1	04/08/2021 12:55	WG1647942

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	6960		100	217	10	04/09/2021 06:37	WG1648080

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.143		0.0236	0.109	1	04/08/2021 18:17	WG1648077
(S) a,a,a-Trifluorotoluene(FID)	89.4			77.0-120		04/08/2021 18:17	WG1648077

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00610		0.000548	0.00117	1	04/09/2021 12:33	WG1648487
Toluene	0.0460		0.00153	0.00587	1	04/08/2021 23:33	WG1648162
Ethylbenzene	0.0352		0.000865	0.00293	1	04/08/2021 23:33	WG1648162
Total Xylenes	0.0492		0.00103	0.00763	1	04/08/2021 23:33	WG1648162
(S) Toluene-d8	110			75.0-131		04/08/2021 23:33	WG1648162
(S) Toluene-d8	107			75.0-131		04/09/2021 12:33	WG1648487
(S) 4-Bromofluorobenzene	91.2			67.0-138		04/08/2021 23:33	WG1648162
(S) 4-Bromofluorobenzene	93.6			67.0-138		04/09/2021 12:33	WG1648487
(S) 1,2-Dichloroethane-d4	92.5			70.0-130		04/08/2021 23:33	WG1648162
(S) 1,2-Dichloroethane-d4	103			70.0-130		04/09/2021 12:33	WG1648487

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.30	<u>J</u>	1.75	4.35	1	04/09/2021 02:01	WG1648012
C28-C40 Oil Range	8.45		0.298	4.35	1	04/09/2021 02:01	WG1648012
(S) o-Terphenyl	51.6			18.0-148		04/09/2021 02:01	WG1648012

Collected date/time: 04/06/21 14:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.3		1	04/08/2021 12:55	WG1647942

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1270		47.8	104	5	04/09/2021 06:47	WG1648080

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	4.11		0.585	2.69	25	04/09/2021 16:32	WG1648517
(S) a,a,a-Trifluorotoluene(FID)	99.1			77.0-120		04/09/2021 16:32	WG1648517

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00203		0.000503	0.00108	1	04/09/2021 12:52	WG1648487
Toluene	0.0419		0.00140	0.00539	1	04/09/2021 12:52	WG1648487
Ethylbenzene	0.0350		0.000794	0.00269	1	04/09/2021 12:52	WG1648487
Total Xylenes	0.0676		0.000948	0.00700	1	04/09/2021 12:52	WG1648487
(S) Toluene-d8	108			<i>75.0-131</i>		04/09/2021 12:52	WG1648487
(S) 4-Bromofluorobenzene	96.8			67.0-138		04/09/2021 12:52	WG1648487
(S) 1,2-Dichloroethane-d4	103			70.0-130		04/09/2021 12:52	WG1648487

Sc

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	71.6		1.67	4.16	1	04/09/2021 03:22	WG1648012
C28-C40 Oil Range	59.8		0.285	4.16	1	04/09/2021 03:22	WG1648012
(S) o-Terphenyl	37.9			18.0-148		04/09/2021 03:22	WG1648012

20 of 41

Collected date/time: 04/06/21 14:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.8		1	04/08/2021 12:55	WG1647942

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1740		48.0	104	5	04/09/2021 06:56	WG1648080

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0633	<u>J</u>	0.0226	0.104	1	04/08/2021 18:39	WG1648077
(S) a,a,a-Trifluorotoluene(FID)	93.0			77.0-120		04/08/2021 18:39	WG1648077

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000508	0.00109	1	04/09/2021 13:11	WG1648487
Toluene	0.0384		0.00141	0.00544	1	04/08/2021 23:52	WG1648162
Ethylbenzene	0.0737		0.000801	0.00272	1	04/08/2021 23:52	WG1648162
Total Xylenes	0.167		0.000957	0.00707	1	04/08/2021 23:52	WG1648162
(S) Toluene-d8	110			75.0-131		04/08/2021 23:52	WG1648162
(S) Toluene-d8	109			75.0-131		04/09/2021 13:11	WG1648487
(S) 4-Bromofluorobenzene	89.3			67.0-138		04/08/2021 23:52	WG1648162
(S) 4-Bromofluorobenzene	93.1			67.0-138		04/09/2021 13:11	WG1648487
(S) 1,2-Dichloroethane-d4	99.3			70.0-130		04/08/2021 23:52	WG1648162
(S) 1,2-Dichloroethane-d4	104			70.0-130		04/09/2021 13:11	WG1648487

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.17	1	04/09/2021 11:53	WG1648012
C28-C40 Oil Range	2.01	<u>J</u>	0.286	4.17	1	04/09/2021 11:53	WG1648012
(S) o-Terphenyl	45.3			18.0-148		04/09/2021 11:53	WG1648012

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.9		1	04/08/2021 12:55	WG1647942

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	5630		102	223	10	04/09/2021 07:06	WG1648080

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.178		0.0241	0.111	1	04/08/2021 19:01	WG1648077
(S) a,a,a-Trifluorotoluene(FID)	92.5			77.0-120		04/08/2021 19:01	WG1648077

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000573	0.00123	1	04/09/2021 13:30	WG1648487
Toluene	0.00384	<u>J</u>	0.00159	0.00613	1	04/09/2021 00:11	WG1648162
Ethylbenzene	0.00261	<u>J</u>	0.000904	0.00306	1	04/09/2021 00:11	WG1648162
Total Xylenes	0.00929		0.00108	0.00797	1	04/09/2021 00:11	WG1648162
(S) Toluene-d8	111			<i>75.0-131</i>		04/09/2021 00:11	WG1648162
(S) Toluene-d8	108			75.0-131		04/09/2021 13:30	WG1648487
(S) 4-Bromofluorobenzene	93.7			67.0-138		04/09/2021 00:11	WG1648162
(S) 4-Bromofluorobenzene	93.3			67.0-138		04/09/2021 13:30	WG1648487
(S) 1,2-Dichloroethane-d4	87.8			70.0-130		04/09/2021 00:11	WG1648162
(S) 1,2-Dichloroethane-d4	106			70.0-130		04/09/2021 13:30	WG1648487

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.79	4.45	1	04/09/2021 02:28	WG1648012
C28-C40 Oil Range	14.6		0.305	4.45	1	04/09/2021 02:28	WG1648012
(S) o-Terphenyl	55.0			18.0-148		04/09/2021 02:28	WG1648012

Gl

Collected date/time: 04/06/21 15:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.9		1	04/08/2021 12:55	WG1647942

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	53.3		10.1	22.0	1	04/09/2021 07:15	WG1648080

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0239	0.110	1	04/08/2021 19:24	WG1648077
(S) a,a,a-Trifluorotoluene(FID)	91.8			77.0-120		04/08/2021 19:24	WG1648077

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000561	0.00120	1	04/09/2021 13:49	WG1648487
Toluene	0.00222	<u>J</u>	0.00156	0.00601	1	04/09/2021 00:30	WG1648162
Ethylbenzene	0.00132	<u>J</u>	0.000886	0.00300	1	04/09/2021 00:30	WG1648162
Total Xylenes	0.00409	<u>J</u>	0.00106	0.00781	1	04/09/2021 00:30	WG1648162
(S) Toluene-d8	111			75.0-131		04/09/2021 00:30	WG1648162
(S) Toluene-d8	108			75.0-131		04/09/2021 13:49	WG1648487
(S) 4-Bromofluorobenzene	93.6			67.0-138		04/09/2021 00:30	WG1648162
(S) 4-Bromofluorobenzene	95.0			67.0-138		04/09/2021 13:49	WG1648487
(S) 1,2-Dichloroethane-d4	90.6			70.0-130		04/09/2021 00:30	WG1648162
(S) 1,2-Dichloroethane-d4	104			70.0-130		04/09/2021 13:49	WG1648487

⁹Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.77	4.40	1	04/09/2021 02:41	WG1648012
C28-C40 Oil Range	6.23		0.302	4.40	1	04/09/2021 02:41	WG1648012
(S) o-Terphenyl	40.5			18.0-148		04/09/2021 02:41	WG1648012

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.4		1	04/08/2021 12:55	<u>WG1647942</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10.6	<u>J</u>	9.74	21.2	1	04/09/2021 07:25	WG1648080

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	04/08/2021 19:46	WG1648077
(S) a,a,a-Trifluorotoluene(FID)	92.9			77.0-120		04/08/2021 19:46	WG1648077

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000522	0.00112	1	04/09/2021 14:08	WG1648487
Toluene	0.00224	<u>J</u>	0.00145	0.00559	1	04/09/2021 00:49	WG1648162
Ethylbenzene	U		0.000824	0.00280	1	04/09/2021 00:49	WG1648162
Total Xylenes	0.00134	<u>J</u>	0.000984	0.00727	1	04/09/2021 00:49	WG1648162
(S) Toluene-d8	110			75.0-131		04/09/2021 00:49	WG1648162
(S) Toluene-d8	109			75.0-131		04/09/2021 14:08	WG1648487
(S) 4-Bromofluorobenzene	89.5			67.0-138		04/09/2021 00:49	WG1648162
(S) 4-Bromofluorobenzene	92.1			67.0-138		04/09/2021 14:08	WG1648487
(S) 1,2-Dichloroethane-d4	91.2			70.0-130		04/09/2021 00:49	WG1648162
(S) 1,2-Dichloroethane-d4	105			70.0-130		04/09/2021 14:08	WG1648487

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	11.0		1.71	4.24	1	04/08/2021 23:25	WG1648014
C28-C40 Oil Range	11.0		0.290	4.24	1	04/08/2021 23:25	WG1648014
(S) o-Terphenyl	40.9			18.0-148		04/08/2021 23:25	WG1648014

Cn

Collected date/time: 04/06/21 15:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.2		1	04/08/2021 12:55	WG1647942

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	33.7		9.37	20.4	1	04/09/2021 07:53	WG1648080

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	04/08/2021 20:08	WG1648077
(S) a,a,a-Trifluorotoluene(FID)	92.4			77.0-120		04/08/2021 20:08	WG1648077

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000484	0.00104	1	04/09/2021 14:27	WG1648487
Toluene	0.00164	<u>J</u>	0.00135	0.00518	1	04/09/2021 01:08	WG1648162
Ethylbenzene	U		0.000764	0.00259	1	04/09/2021 01:08	WG1648162
Total Xylenes	U		0.000912	0.00673	1	04/09/2021 01:08	WG1648162
(S) Toluene-d8	112			75.0-131		04/09/2021 01:08	WG1648162
(S) Toluene-d8	108			75.0-131		04/09/2021 14:27	WG1648487
(S) 4-Bromofluorobenzene	88.3			67.0-138		04/09/2021 01:08	WG1648162
(S) 4-Bromofluorobenzene	92.6			67.0-138		04/09/2021 14:27	WG1648487
(S) 1,2-Dichloroethane-d4	93.3			70.0-130		04/09/2021 01:08	WG1648162
(S) 1,2-Dichloroethane-d4	107			70.0-130		04/09/2021 14:27	WG1648487

	•	• •					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	26.4		1.64	4.07	1	04/08/2021 23:38	WG1648014
C28-C40 Oil Range	40.3		0.279	4.07	1	04/08/2021 23:38	WG1648014
(S) o-Terphenyl	35.1			18.0-148		04/08/2021 23:38	WG1648014

Collected date/time: 04/06/21 15:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.3		1	04/08/2021 12:55	WG1647942

Ss

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	11.2	<u>J</u>	9.36	20.3	1	04/09/2021 08:31	WG1648080

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0270	J	0.0221	0.102	1	04/08/2021 20:30	WG1648077
(S) a,a,a-Trifluorotoluene(FID)	93.3			77.0-120		04/08/2021 20:30	WG1648077

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000483	0.00103	1	04/09/2021 14:46	WG1648487
Toluene	U		0.00134	0.00517	1	04/09/2021 01:27	WG1648162
Ethylbenzene	U		0.000762	0.00259	1	04/09/2021 01:27	WG1648162
Total Xylenes	U		0.000910	0.00672	1	04/09/2021 01:27	WG1648162
(S) Toluene-d8	111			<i>75.0-131</i>		04/09/2021 01:27	WG1648162
(S) Toluene-d8	109			75.0-131		04/09/2021 14:46	WG1648487
(S) 4-Bromofluorobenzene	91.1			67.0-138		04/09/2021 01:27	WG1648162
(S) 4-Bromofluorobenzene	94.1			67.0-138		04/09/2021 14:46	WG1648487
(S) 1,2-Dichloroethane-d4	92.3			70.0-130		04/09/2021 01:27	WG1648162
(S) 1.2-Dichloroethane-d/	104			70 0 120		04/09/2021 14:46	WC1648487

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	91.4		1.64	4.07	1	04/08/2021 23:51	WG1648014
C28-C40 Oil Range	88.8		0.279	4.07	1	04/08/2021 23:51	WG1648014
(S) o-Terphenyl	34.9			18.0-148		04/08/2021 23:51	WG1648014

Collected date/time: 04/06/21 16:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.8		1	04/08/2021 12:55	WG1647942

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	4090		101	220	10	04/09/2021 08:41	WG1648080

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	4.98		0.654	3.01	25	04/09/2021 18:31	WG1648956
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		04/09/2021 18:31	WG1648956

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg	<u>quamer</u>	mg/kg	mg/kg	Bildiloii	date / time	Batch
Benzene	0.000662	<u>J</u>	0.000562	0.00120	1	04/09/2021 15:05	WG1648487
Toluene	0.00581	<u>J</u>	0.00156	0.00602	1	04/09/2021 15:05	WG1648487
Ethylbenzene	0.0132		0.000887	0.00301	1	04/09/2021 15:05	WG1648487
Total Xylenes	0.0370		0.00106	0.00782	1	04/09/2021 15:05	WG1648487
(S) Toluene-d8	109			75.0-131		04/09/2021 15:05	WG1648487
(S) 4-Bromofluorobenzene	100			67.0-138		04/09/2021 15:05	WG1648487
(S) 1,2-Dichloroethane-d4	102			70.0-130		04/09/2021 15:05	WG1648487

Gl

	<u> </u>	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	225		1.77	4.41	1	04/09/2021 00:04	WG1648014
C28-C40 Oil Range	160		0.302	4.41	1	04/09/2021 00:04	WG1648014
(S) o-Terphenyl	58.5			18.0-148		04/09/2021 00:04	WG1648014

Page 167 of 457

Total Solids by Method 2540 G-2011

L1335764-01,02,03,04,05,06,07,08,09,10

Method Blank (MB)

(MB) R3640025-1 O	4/08/21 13:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1335764-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1335764-04 04/	(OS) L1335764-04 04/08/21 13:09 • (DUP) R3640025-3 04/08/21 13:09						
	Original Resul	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	95.8	95.8	1	0.0298		10	

(LCS) R3640025-2 (04/08/21 13:09				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 168 of 457

Total Solids by Method 2540 G-2011

L1335764-11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3640023-1 (04/08/21 12:55				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.000				

Ss

L1335764-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1335764-11	04/09/2112:55	(DLID	D2640033 3	04/09/21 12:55
(US) LISSS/04-II	04/06/2112.55 • 1	שטעו) K304UUZ3-3	04/06/21 12.55

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	90.7	90.7	1	0.0299		10	

(LC	S) R3640023-2	04/08/21	12:55
-----	---------------	----------	-------

(LCS) R3640023-2 04/08	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 169 of 457

Wet Chemistry by Method 300.0

L1335764-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3639960-1 04/09/2	1 04:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1335764-08 Original Sample (OS) • Duplicate (DUP)

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	2630	2630	5	0.285		20

Cn

L1335764-18 Original Sample (OS) • Duplicate (DUP)

(OS) L1335764-18 04/09/21 07:53 • (DUP) R3639960-4 04/09/21 08:03

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	33.7	31.4	1	6.98		20

Laboratory Control Sample (LCS)

(LCS) R3639960-2 04/09/21 04:14

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	197	98.3	90.0-110	

L1335764-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1335764-18 04/09/21 07:53 • (MS) R3639960-5 04/09/21 08:12 • (MSD) R3639960-6 04/09/21 08:22

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	509	33.7	541	557	99.6	103	1	80.0-120			3.07	20

Page 170 of 457

L1335764-01,02,03,04,05,08,09,12,14,15,16,17,18,19 Volatile Organic Compounds (GC) by Method 8015D/GRO

Method Blank (MB)

(MB) R3639885-2 04/08	/21 15:48			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	97.7			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3639885-1 04/08	/21 15:04				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.45	99.1	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			112	77.0-120	

L1335764-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1335764-01_04/08/21 20:52 • (MS) R3639885-3_04/09/21 00:32 • (MSD) R3639885-4_04/09/21 00:54

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	1160	103	1260	1360	100	108	200	10.0-151			7.23	28	
(S)					113	114		77.0-120					

Page 171 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1335764-06,07,10,11,13

Method Blank (MB)

I (GC/FID) Low Fraction U 0.0217 0.100	(MB) R3640165-2 04/09/	21 06:31			
I (GC/FID) Low Fraction U 0.0217 0.100		MB Result	MB Qualifier	MB MDL	MB RDL
	Analyte	mg/kg		mg/kg	mg/kg
5) g-Trifluorotaluene(FID) 99.2 77.0-120	TPH (GC/FID) Low Fraction	U		0.0217	0.100
- · · · · · · · · · · · · · · · · · · ·	(S) a,a,a-Trifluorotoluene(FID)	99.2			77.0-120

(LCS) R3640165-1 04/09/	.CS) R3640165-1 04/09/21 05:27								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
TPH (GC/FID) Low Fraction	5.50	5.55	101	72.0-127					
(S) a,a,a-Trifluorotoluene(FID)			106	77.0-120					

Page 172 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1335764-20

Method Blank (MB)

(MB) R3640197-3 04/09/2	1 17:32			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120

(LCS) R3640197-2 04/09	CS) R3640197-2 04/09/21 16:47								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
TPH (GC/FID) Low Fraction	5.50	4.94	89.8	72.0-127					
(S) a,a,a-Trifluorotoluene(FID)			91.2	77.0-120					

Page 173 of 457

Volatile Organic Compounds (GC/MS) by Method 8260B <u>L1335764-01,02,03,04,08,09,12,14,15,16,17,18,19</u>

Method Blank (MB)

1 22:17			
MB Result	MB Qualifier	MB MDL	MB RDL
mg/kg		mg/kg	mg/kg
U		0.000737	0.00250
U		0.00130	0.00500
U		0.000880	0.00650
112			75.0-131
92.5			67.0-138
93.3			70.0-130
	MB Result mg/kg U U U 1112 92.5	MB Result MB Qualifier mg/kg U U U 112 92.5	MB Result mg/kg MB Qualifier mg/kg MB MDL mg/kg U 0.000737 0.00130 U 0.000880 112 92.5

⁴Cn

(LCS) R3639854-1 04/08	3/21 21:19				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Ethylbenzene	0.125	0.122	97.6	74.0-126	
Toluene	0.125	0.119	95.2	75.0-121	
Xylenes, Total	0.375	0.348	92.8	72.0-127	
(S) Toluene-d8			108	75.0-131	
(S) 4-Bromofluorobenzene			94.6	67.0-138	
(S) 1,2-Dichloroethane-d4			99.9	70.0-130	

Page 174 of 457

Volatile Organic Compounds (GC/MS) by Method 8260B

L1335764-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3640128-2 04/09/2	21 06:35				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	T
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	³ S:
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	108			75.0-131	C
(S) 4-Bromofluorobenzene	94.1			67.0-138	
(S) 1,2-Dichloroethane-d4	103			70.0-130	⁵ Sr

Laboratory Control Sample (LCS)

(LCS) R3640128-1 04/0	(LCS) R3640128-1 04/09/21 05:38											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	mg/kg	mg/kg	%	%	L							
Benzene	0.125	0.116	92.8	70.0-123	8							
Ethylbenzene	0.125	0.112	89.6	74.0-126								
Toluene	0.125	0.112	89.6	75.0-121								
Xylenes, Total	0.375	0.339	90.4	72.0-127								
(S) Toluene-d8			101	75.0-131	L							
(S) 4-Bromofluorobenzene	е		108	67.0-138								

(S) 1,2-Dichloroethane-d4

111

70.0-130

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Page 175 of 457

L1335764-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16

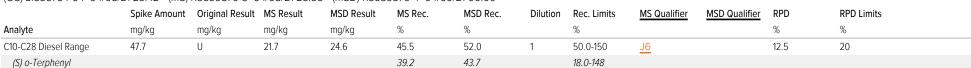
Method Blank (MB)

(MB) R3639879-1 04/08/21 23:15 MB Result MB Qualifier MB MDL MB RDL Analyte mg/kg mg/kg mg/kg C10-C28 Diesel Range U 1.61 4.00 U C28-C40 Oil Range 0.274 4.00 (S) o-Terphenyl 61.7 18.0-148

Cn

Laboratory Control Sample (LCS)

(LCS) R3639879-2 04/08/21 23:29 Spike Amount LCS Result LCS Rec. Rec. Limits LCS Qualifier Analyte mg/kg mg/kg % % C10-C28 Diesel Range 50.0 28.4 56.8 50.0-150 (S) o-Terphenyl 51.2 18.0-148



Gl

L1335734-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1335734-04 04/08/21 23:42 • (MS) R3639879-3 04/08/21 23:55 • (MSD) R3639879-4 04/09/21 00:09

Page 176 of 457

Semi-Volatile Organic Compounds (GC) by Method 8015

L1335764-17,18,19,20

Method Blank (MB)

(MB) R3639810-1 04/08	MB) R3639810-1 04/08/21 22:58						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
C10-C28 Diesel Range	U		1.61	4.00			
C28-C40 Oil Range	0.835	<u>J</u>	0.274	4.00			
(S) o-Terphenyl	54.2			18.0-148			

(LCS) R3639810-2 04/08/21 23:11								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
C10-C28 Diesel Range	50.0	26.5	53.0	50.0-150				
(S) o-Terphenyl			50.6	18.0-148				

1	OC) I 1225272 10	04/00/21 06:20 . /M	(C) D2620010 2	04/09/21 06:43 · (MSE	N D2620010 4	04/00/21 06:57
(U3) L1333272-16	04/03/21 00.30 • (IVI	13) K3033610-3	04/03/21 00.43 • (IVISL	J) K3033010-4	04/03/2100.37

(03) £1333272-10 04/03/21 00.30 · (W3) 1/3033010-3 · 04/03/21 00.43 · (W3) 1/3033010-4 · 04/03/21 00.37													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	50.0	3.27	36.7	28.8	66.9	51.3	1	50.0-150		<u>J3</u>	24.1	20	
(S) o-Terphenyl					55.3	47.9		18.0-148					

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

Pace Analy	tical National	12065 Lebanon Rd	Mount Julia	+ TNI 37122
race Analy	yticai Nationai	12003 Leballoli Ku	i Mourit Julie	l, IIN 3/122

, , , , , , , , , , , , , , , , , , , ,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

COPTETRA

Page 179 of 457 age: 1 of 2

TŁ

Tetra Tech, Inc.

901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946

1067

11335764

					Fax (432) 682-3946										0 0/2														
Client Name:	Site Manage	Chr	Christian Llull										ANALYSIS REQUEST (Circle or Specify Method No.)																
Project Name:	COP MCA 151 Flowline release	Contact Info: Email: christian.llull@tetratech.com Phone: (512) 338-1667							1	1	1	(C	irc	le	or 	Sp	ec	ify 	Me	tho	d	No.) 	T	1				
Project Location: (county, state)	Project #: 212C-MD-02471							11																					
Invoice to: Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701									1	1	5											list)							
Receiving Laboratory: Pace Analytical			nature:		Adria	an		-						MON	- MR	Se Hg	Se Hg									tached	П		
Comments: COPTE	TRA Acctnum												8260B	(35)	אט-טא	Ag As Ba Cd Cr Pb Se Hg	Cd Cr Pb				4 Provent	82/0C/625			The	ry (see at			
-		SAMPLING			MATRIX		PRESERVATIVE				SS	î		Ext to C	- OS	As Ba (As Ba		tiles	0,00	m .				- 1	hemist	lance		
	SAMPLE IDENTIFICATION	YEAR: 2021									INE	2)	ē.	105 (E	2 0		als Ag	tiles	Semi Volatiles		1. 82t	ml. v		stos)	Sulfate	ater	on Ba	~	
LAB USE ONLY	SAMPLE IDENTIFICATION	DATE	TIME	WATER	SOIL		HCL	ICE ICE	NONE		# CONTAINERS	FILTERED (Y/N)		TPH TX1005 (Ext to C35)	PAH 8270C	Total Metals	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	0.	RCI	GC/MS Vol.	GC/MS Semi. Vol. PCB's 8082 / 608	NORM	PLM (Asbestos)	Chloride Suu.u	General Water Chemistry (see attached list)	Anion/Cation Balance	TPH 8015R	НОГР
-61	- AH-21 (0'-1')	04/06/21	1200		Х			>	<		1	N	Х	1	X						T	T			X				100
-02	. AH-21 (1'-2')	04/06/21	1210		Х)	(1	N	X	3	X										X				
_03	• AH-21 (2'-3')	04/06/21	1220		Х			>	(1	N	х	1	X										х				
- or	- AH-23 (0'-1')	04/06/21	1230		X)	<		1	N	X		X										X				
-09	. AH-23 (1'-2')	04/06/21	1240		х)	(1	N	х		X										X				
-06	• AH-23 (2'-3')	04/06/21	1250		Х)	(1	N	X		X										X				
-07	. AH-23 (3'-4')	04/06/21	1300		X)	(1	N	X	1	X										X				
-08	. AH-27 (0'-1')	04/06/21	1330		Х		6)	ζ.		1	N	Х	1	X									10	X				
-09	• AH-27 (1'-2')	04/06/21	1340		Х)	K		1	N	X		Х										X				
~10	• AH-27 (2'-3')	04/06/21	1350		х)	X		1	N	х	1	Х							1			Х				
Relinquished by:	Date: Time: 47.21 12:00	Received by	AL	Date: Time: 4.7.21 12:00					LAB USE ONLY						Standard														
Relinquished by:	Date: Time: 4.7-21 16:00	Received by	Date: Time: 4.7.21 (620)						2	Sam	Sample Temperature				ure				Charges Authorized										
Relinquished by:	Date: Time:	Received by	il G	2	1	1	Date OU	6	les	0	Time:		Special Report Limits or TRRP Report																
		ORIGINA	COPY								-60		(Cir	cle)	HAN	D D	ELIV	ERE	D F	EDE	X	UPS	Tra	cking	#: _				
									2.4	+.	153	.5																	

Page 180 of 457
Page: 2 of 2

Tetra Tech, Inc.

901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946

61335764

						- : :		Ja, 500		7.5										U	10	4	- 1	0			
Client Name:	Site Manage	Site Manager: Christian Llull								ANALYSIS REQUEST (Circle or Specify Method No.)																	
Project Name:	COP MCA 151 Flowline release	Contact Info):	Email: christian.llull@tetratech.com								1.	r	((Circ	cle	or I I	Spe	ecit	y IV I I	leth	lod I I	No	.)	ı	ì.	
Project Location:	ct Location:				Phone: (512) 338-1667							1					П										
(county, state)	Lea County, New Mexico	Project #:		2120	J-ML	-024	4/1					1		П			Н			П		П					
Invoice to: Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701		ri.								$ \cdot $	6				Н					П	(st)						
Receiving Laboratory: Pace Analytical		Sampler Signature: Adrian] [- ORO - MRO)		Se Hg	20	П						tached					
Comments: COPTETE	RA Acctnum											8260B			Ag As Ba Cd Cr Pb Se Hg			4	8270C/625				S v (see at				
		SAME	SAMPLING			PRESERVAT METHOD					î	BTEX 1			As Ba		iles	08/62	1. 8270			1 1	e TDS	auce			
742.0	SAMPLE IDENTIFICATION		YEAR: 2021			t	Τ	TT			(V/N)	l l	M (G		s Ag	iles	Semi Volatiles	826	Semi. Vol.	2 / 60	stos)	0.0	Sulfate ater Che	n Bal			
LAB USE ONLY	SAMPLE IDENTIFICATION	DATE	TIME	WATER	WATER	WATER	HCL	HNO3	ICE		# CONTAINERS	FILTERED	BTEX 8021B		PAH 8270C	Total Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	۵.	RCI GC/MS Vol. 8260B / 624	GC/MS Ser	PCB's 8082 / 608	NORM PLM (Asbestos)	181	Chloride Sulfate TDS General Water Chemistry (see attached list)	Anion/Cation Balance	TPH 8015R	НОГР
-1)	, AH-27 (3'-4')	04/06/21	1400	_	X	T	Ť	Х		1	N	X	X		Ť	Ť						Х				100	
-12	. AH-27 (4'-5')	04/06/21	1410	П	Х	T	T	X	T	1	N	х	х	П		T	П					х		П		П	
-13	- AH-28 (0'-1')	04/06/21	1430	П	Х	T	T	X	T	1	N	х	X	П			П		Т			Х		П	\top	П	
-19	- AH-28 (1'-2')	04/06/21	1440	П	х			х	T	1	N	х	Х	П								Х		\Box		П	
-16	. AH-28 (2'-3')	04/06/21	1450	П	Х	T		X		1	N	Х	Х							П		Х				П	
-16	- AH-28 (3'-4')	04/06/21	1500	П	Х	T	T	X	T	1	N	X	Х									Х		П		П	
-17	- AH-28 (4'-5')	04/06/21	1510	П	Х			X		1	N	Х	X							П		Х		П			
-18	. AH-29 (0'-1')	04/06/21	1530		Х			X		1	N	Х	X									Х		П		П	
-19	- AH-29 (1'-2')	04/06/21	1540	П	Х	T		X		1	N	Х	X									Х		П		П	
-20	A4-21 (3-4)	4-6-21	1600		4			X		1	N	K	X									X					
Relinquished by:	Top 4.7.21 Riw		the	Date: Time: (2-w)							ك	LAB USE ONLY					Standard										
Relinquished by:	Date: Time: 47.21 (6:00	Received by	Date: 4.7.21					Time:			Samp	Sample Temperature				RUSH: Same Day 24 hr. 48 hr. 72 hr. Rush Charges Authorized											
Relinquished by: Date: Time:		Nin	Received by: Date: Time: Wish hile 04/08/21 08200							00	Special Report Limits or TRRP Report																
Correct bottles used	N VOA Zero Headspace: _Y_N et: _Y_N Pres.Correct/Check: _Y_N es: 8/3/2021 8:43:52 AM	ORIGINA	AL COPY					3-4-	.15	3.5		(Circ	le) H	AND	DELIV	/ERE	D F	EDEX	UP	S T	Trackin	ng #:					

Pace Analytical® ANALYTICAL REPORT

Ss

ConocoPhillips - Tetra Tech

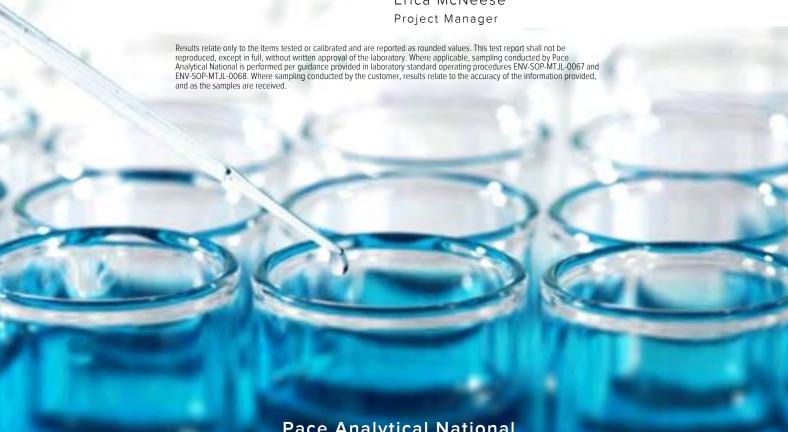
L1336950 Sample Delivery Group: Samples Received: 04/10/2021

Project Number: 212C-MD-02471

Description: COP MCA 151 Flowline Release

Report To: Christian Llull

901 West Wall


Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Enica Mc Neese

Erica McNeese Project Manager

Mount Juliet, TN 37122 12065 Lebanon Rd

615-758-5858

800-767-5859

www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
AH 30 (6"-1") L1336950-01	7
AH 30 (1'-2') L1336950-02	8
AH 30 (2'-3') L1336950-03	9
AH 31 (6"-1") L1336950-04	10
AH 31 (1'-2') L1336950-05	11
AH 32 (6"-1") L1336950-06	12
AH 32 (1'-2') L1336950-07	13
AH 32 (2'-3') L1336950-08	14
AH 32 (3'-4') L1336950-09	15
AH 33 (6"-1") L1336950-10	16
AH 33 (1'-2') L1336950-11	17
AH 33 (2'-3') L1336950-12	18
AH 33 (3'-4') L1336950-13	19
Qc: Quality Control Summary	20
Total Solids by Method 2540 G-2011	20
Wet Chemistry by Method 300.0	22
Volatile Organic Compounds (GC) by Method 8015D/GRO	23
Volatile Organic Compounds (GC/MS) by Method 8260B	26
Semi-Volatile Organic Compounds (GC) by Method 8015	28
GI: Glossary of Terms	29
Al: Accreditations & Locations	30

Sc: Sample Chain of Custody

31

SAMPLE SUMMARY

	0711111 22 1	3 0 11111	,,, ,,, ,			
AH 30 (6"-1") L1336950-01 Solid			Collected by Adrian	Collected date/time 04/07/21 11:00	Received da 04/10/21 10:2	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
method	Baten	Blidtion	date/time	date/time	rindiyse	Location
Total Solids by Method 2540 G-2011	WG1649745	1	04/12/21 09:09	04/12/21 09:15	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1649358	5	04/10/21 21:08	04/10/21 22:02	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1650162	50	04/10/21 16:46	04/13/21 07:31	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1649476	20	04/10/21 16:46	04/11/21 11:32	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1649461	20	04/11/21 09:26	04/12/21 17:56	JDG	Mt. Juliet, TN
			Collected by	Collected date/time		
AH 30 (1'-2') L1336950-02 Solid			Adrian	04/07/21 11:10	04/10/21 10:2	20
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1649745	1	04/12/21 09:09	04/12/21 09:15	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1649358	5	04/10/21 21:08	04/10/21 22:39	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1650162	1	04/10/21 16:46	04/13/21 07:54	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1649476	1	04/10/21 16:46	04/11/21 09:19	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1649461	1	04/11/21 09:26	04/12/21 14:53	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 30 (2'-3') L1336950-03 Solid			Adrian	04/07/21 11:20	04/10/21 10:2	20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1649745	1	04/12/21 09:09	04/12/21 09:15	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1649358	5	04/10/21 21:08	04/10/21 22:49	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1649653	1	04/10/21 16:46	04/11/21 23:26	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1649476	1	04/10/21 16:46	04/11/21 09:38	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1649461	1	04/11/21 09:26	04/12/21 15:32	AEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 31 (6"-1') L1336950-04 Solid			Adrian	04/07/21 11:30	04/10/21 10:2	20
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1649745	1	04/12/21 09:09	04/12/21 09:15	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1649358	1	04/10/21 21:08	04/10/21 22:58	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1650658	500	04/10/21 16:46	04/13/21 17:22	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1649476	20	04/10/21 16:46	04/11/21 11:51	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1649461	100	04/11/21 09:26	04/12/21 18:09	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 31 (1'-2') L1336950-05 Solid			Adrian	04/07/21 11:50	04/10/21 10:2	20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1649745	1	04/12/21 09:09	04/12/21 09:15	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1649358	1	04/10/21 21:08	04/10/21 23:08	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1650658	1	04/13/21 14:29	04/13/21 16:38	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1649476	1	04/10/21 16:46	04/11/21 09:57	DWR	Mt. Juliet, TN
0 11/1 11/1 0 11/						

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1649461

04/11/21 09:26

04/12/21 15:46

CAG

Mt. Juliet, TN

SAMPLE SUMMARY

AH 32 (6"-1") L1336950-06 Solid			Collected by Adrian	Collected date/time 04/07/21 12:00	Received da 04/10/21 10:2	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1649745	1	04/12/21 09:09	04/12/21 09:15	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1649358	10	04/10/21 21:08	04/10/21 23:36	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1650162	5000	04/10/21 16:46	04/13/21 10:52	ADM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1649476	20	04/10/21 16:46	04/11/21 12:10	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1650399	400	04/10/21 16:46	04/13/21 09:43	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1649461	100	04/11/21 09:26	04/12/21 18:22	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
AH 32 (1'-2') L1336950-07 Solid	Detel	Diletina	Adrian	04/07/21 12:10	04/10/21 10:2	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1649745	1	04/12/21 09:09	04/12/21 09:15	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1649358	10	04/10/21 21:08	04/10/21 23:46	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1649653	250	04/10/21 16:46	04/12/21 03:14	JAH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1649476	20	04/10/21 16:46	04/11/21 12:28	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1649461	10	04/11/21 09:26	04/12/21 17:17	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH 32 (2'-3') L1336950-08 Solid			Adrian	04/07/21 12:20	04/10/21 10:2	.0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1649745	1	04/12/21 09:09	04/12/21 09:15	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1649358	10	04/10/21 21:08	04/10/21 23:55	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1650658	1	04/13/21 14:29	04/13/21 17:00	DWR	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1649476	1	04/10/21 16:46	04/11/21 10:16	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1649461	1	04/11/21 09:26	04/12/21 14:35	JDG	Mt. Juliet, TN
AH 32 (3'-4') L1336950-09 Solid			Collected by Adrian	Collected date/time 04/07/2113:00	Received da 04/10/21 10:2	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Catal Califa ha Matha d OF AC C COM	1110101077		date/time	date/time	I/DU/	Mar I II - To
otal Solids by Method 2540 G-2011	WG1649745	1	04/12/21 09:09	04/12/21 09:15	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1649358	10	04/10/21 21:08	04/11/21 00:05	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1650162	1	04/10/21 16:46	04/13/21 09:22	ADM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1649476	1	04/10/21 16:46	04/11/21 10:35	DWR	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1649461	1	04/11/21 09:26	04/12/21 15:06	AEG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
AH 33 (6"-1") L1336950-10 Solid			Adrian	04/07/21 13:10	04/10/21 10:2	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1649747	1	04/12/21 09:02	04/12/21 09:07	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1649358	5	04/10/21 21:08	04/11/21 00:15	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1650162	2500	04/10/21 16:46	04/13/21 11:14	ADM	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1649476	20	04/10/21 16:46	04/11/21 12:47	DWR	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1650399	400	04/10/21 16:46	04/13/21 10:02	TPR	Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1649461

40

04/11/21 09:26

04/12/21 17:04

AEG

Mt. Juliet, TN

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	
AH 33 (1'-2') L1336950-11 Solid			Adrian	04/07/21 13:20	04/10/21 10:2	20
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1649747	1	04/12/21 09:02	04/12/21 09:07	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1649358	1	04/10/21 21:08	04/11/21 00:24	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1650658	2500	04/10/21 16:46	04/13/21 17:44	DWR	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1649476	20	04/10/21 16:46	04/11/21 13:06	DWR	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1650399	400	04/10/21 16:46	04/13/21 10:21	TPR	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1649461	100	04/11/21 09:26	04/12/21 17:43	AEG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
AH 33 (2'-3') L1336950-12 Solid			Adrian	04/07/21 14:00	04/10/21 10:2	20
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1649747	1	04/12/21 09:02	04/12/21 09:07	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1649358	1	04/10/21 21:08	04/11/21 00:34	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1650162	1	04/10/21 16:46	04/13/21 09:44	ADM	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1649476	1	04/10/21 16:46	04/11/21 10:54	DWR	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1649461	1	04/11/21 09:26	04/12/21 15:19	CAG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
AH 33 (3'-4') L1336950-13 Solid			Adrian	04/07/21 14:10	04/10/21 10:2	20
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1649747	1	04/12/21 09:02	04/12/21 09:07	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1649358	10	04/10/21 21:08	04/11/21 00:43	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1650162	1	04/10/21 16:46	04/13/21 10:06	ADM	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1649476	1	04/10/21 16:46	04/11/21 11:13	DWR	Mt. Juliet, T

WG1649461

1

Semi-Volatile Organic Compounds (GC) by Method 8015

04/11/21 09:26

04/12/21 15:59

JDG

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica McNeese Project Manager

Recrired by 0 CP 5/18/2021 6:32:30 PM

SAMPLE RESULTS - 01

Collected date/time: 04/07/21 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.4		1	04/12/2021 09:15	WG1649745

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1260	<u>J6</u>	48.7	106	5	04/10/2021 22:02	WG1649358

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	500		1.22	5.60	50	04/13/2021 07:31	WG1650162
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		04/13/2021 07:31	WG1650162

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.0105	0.0224	20	04/11/2021 11:32	WG1649476
Toluene	3.11		0.0291	0.112	20	04/11/2021 11:32	WG1649476
Ethylbenzene	12.5		0.0165	0.0560	20	04/11/2021 11:32	WG1649476
Total Xylenes	22.8		0.0197	0.146	20	04/11/2021 11:32	WG1649476
(S) Toluene-d8	101			75.0-131		04/11/2021 11:32	WG1649476
(S) 4-Bromofluorobenzene	113			67.0-138		04/11/2021 11:32	WG1649476
(S) 1,2-Dichloroethane-d4	117			70.0-130		04/11/2021 11:32	WG1649476

Sample Narrative:

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3080		34.1	84.8	20	04/12/2021 17:56	WG1649461
C28-C40 Oil Range	1610		5.81	84.8	20	04/12/2021 17:56	WG1649461
(S) o-Terphenyl	0.000	J7		18.0-148		04/12/2021 17:56	WG1649461

ConocoPhillips - Tetra Tech

Page 188 of 457

Collected date/time: 04/07/21 11:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.2		1	04/12/2021 09:15	WG1649745

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1190		47.8	104	5	04/10/2021 22:39	WG1649358

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0743	<u>J</u>	0.0226	0.104	1	04/13/2021 07:54	WG1650162
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		04/13/2021 07:54	WG1650162

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000504	0.00108	1	04/11/2021 09:19	WG1649476
Toluene	0.00251	<u>J</u>	0.00140	0.00540	1	04/11/2021 09:19	WG1649476
Ethylbenzene	0.00616		0.000796	0.00270	1	04/11/2021 09:19	WG1649476
Total Xylenes	0.0132		0.000950	0.00702	1	04/11/2021 09:19	WG1649476
(S) Toluene-d8	107			<i>75.0-131</i>		04/11/2021 09:19	WG1649476
(S) 4-Bromofluorobenzene	94.6			67.0-138		04/11/2021 09:19	WG1649476
(S) 1,2-Dichloroethane-d4	109			70.0-130		04/11/2021 09:19	WG1649476

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.66		1.67	4.16	1	04/12/2021 14:53	WG1649461
C28-C40 Oil Range	4.23	В	0.285	4.16	1	04/12/2021 14:53	WG1649461
(S) o-Terphenvl	55.7			18.0-148		04/12/2021 14:53	WG1649461

Cn

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.3		1	04/12/2021 09:15	WG1649745

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2420		49.3	107	5	04/10/2021 22:49	WG1649358

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.355		0.0232	0.107	1	04/11/2021 23:26	WG1649653
(S) a,a,a-Trifluorotoluene(FID)	92.3			77.0-120		04/11/2021 23:26	WG1649653

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

·	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000857	<u>J</u>	0.000534	0.00114	1	04/11/2021 09:38	WG1649476
Toluene	0.0310		0.00149	0.00571	1	04/11/2021 09:38	WG1649476
Ethylbenzene	0.0704		0.000842	0.00286	1	04/11/2021 09:38	WG1649476
Total Xylenes	0.193		0.00101	0.00743	1	04/11/2021 09:38	WG1649476
(S) Toluene-d8	102			75.0-131		04/11/2021 09:38	WG1649476
(S) 4-Bromofluorobenzene	103			67.0-138		04/11/2021 09:38	WG1649476
(S) 1,2-Dichloroethane-d4	113			70.0-130		04/11/2021 09:38	WG1649476

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.55	<u>J</u>	1.72	4.29	1	04/12/2021 15:32	WG1649461
C28-C40 Oil Range	10.0	В	0.294	4.29	1	04/12/2021 15:32	WG1649461
(S) o-Terphenyl	50.2			18.0-148		04/12/2021 15:32	WG1649461

Page 190 of 457

SAMPLE RESULTS - 04

Collected date/time: 04/07/21 11:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.5		1	04/12/2021 09:15	WG1649745

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	39.5		9.34	20.3	1	04/10/2021 22:58	WG1649358

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	1230		11.2	51.5	500	04/13/2021 17:22	WG1650658
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		04/13/2021 17:22	WG1650658

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.0170	<u>J</u>	0.00962	0.0206	20	04/11/2021 11:51	WG1649476
Toluene	3.38		0.0268	0.103	20	04/11/2021 11:51	WG1649476
Ethylbenzene	19.0		0.0151	0.0515	20	04/11/2021 11:51	WG1649476
Total Xylenes	37.5		0.0181	0.134	20	04/11/2021 11:51	WG1649476
(S) Toluene-d8	96.0			75.0-131		04/11/2021 11:51	WG1649476
(S) 4-Bromofluorobenzene	118			67.0-138		04/11/2021 11:51	WG1649476
(S) 1,2-Dichloroethane-d4	118			70.0-130		04/11/2021 11:51	WG1649476

Sample Narrative:

L1336950-04 WG1649476: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	11700		163	406	100	04/12/2021 18:09	WG1649461
C28-C40 Oil Range	8060		27.8	406	100	04/12/2021 18:09	WG1649461
(S) o-Terphenyl	0.000	<u>J7</u>		18.0-148		04/12/2021 18:09	WG1649461

Sample Narrative:

L1336950-04 WG1649461: Surrogate failure due to matrix interference

DATE/TIME:

04/14/21 14:59

Collected date/time: 04/07/21 11:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.9		1	04/12/2021 09:15	WG1649745

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	35.6		9.69	21.1	1	04/10/2021 23:08	WG1649358

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0697	J	0.0229	0.105	1	04/13/2021 16:38	WG1650658
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		04/13/2021 16:38	WG1650658

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000517	0.00111	1	04/11/2021 09:57	WG1649476
Toluene	0.00363	<u>J</u>	0.00144	0.00553	1	04/11/2021 09:57	WG1649476
Ethylbenzene	0.0125		0.000816	0.00277	1	04/11/2021 09:57	WG1649476
Total Xylenes	0.0280		0.000974	0.00720	1	04/11/2021 09:57	WG1649476
(S) Toluene-d8	104			75.0-131		04/11/2021 09:57	WG1649476
(S) 4-Bromofluorobenzene	97.9			67.0-138		04/11/2021 09:57	WG1649476
(S) 1,2-Dichloroethane-d4	114			70.0-130		04/11/2021 09:57	WG1649476

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	71.4		1.70	4.21	1	04/12/2021 15:46	WG1649461
C28-C40 Oil Range	46.3		0.289	4.21	1	04/12/2021 15:46	WG1649461
(S) o-Terphenyl	31.5			18.0-148		04/12/2021 15:46	WG1649461

Collected date/time: 04/07/21 12:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.4		1	04/12/2021 09:15	WG1649745

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3570		98.5	214	10	04/10/2021 23:36	WG1649358

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	4830		124	571	5000	04/13/2021 10:52	WG1650162
(S) a,a,a-Trifluorotoluene(FID)	95.0			77.0-120		04/13/2021 10:52	WG1650162

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

Volume Organic O	ompounds	(00/11/10) 5	y Mictiloa	02000				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Benzene	11.6		0.0107	0.0228	20	04/11/2021 12:10	WG1649476	
Toluene	324		0.594	2.28	400	04/13/2021 09:43	WG1650399	
Ethylbenzene	233		0.337	1.14	400	04/13/2021 09:43	WG1650399	
Total Xylenes	160		0.0201	0.148	20	04/11/2021 12:10	WG1649476	
(S) Toluene-d8	97.8			75.0-131		04/11/2021 12:10	WG1649476	
(S) Toluene-d8	97.9			75.0-131		04/13/2021 09:43	WG1650399	
(S) 4-Bromofluorobenzene	120			67.0-138		04/11/2021 12:10	WG1649476	
(S) 4-Bromofluorobenzene	112			67.0-138		04/13/2021 09:43	WG1650399	
(S) 1,2-Dichloroethane-d4	115			70.0-130		04/11/2021 12:10	WG1649476	
(S) 1.2-Dichloroethane-d4	120			70 0-130		04/13/2021 09:43	WG1650399	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	14600		172	428	100	04/12/2021 18:22	WG1649461
C28-C40 Oil Range	10300		29.3	428	100	04/12/2021 18:22	WG1649461
(S) o-Terphenyl	0.000	<u>J7</u>		18.0-148		04/12/2021 18:22	WG1649461

Gl

12 of 36

Page 193 of 457

SAMPLE RESULTS - 07

Collected date/time: 04/07/21 12:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.9		1	04/12/2021 09:15	WG1649745

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3850		97.0	211	10	04/10/2021 23:46	WG1649358

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	398		6.02	27.7	250	04/12/2021 03:14	WG1649653
(S) a,a,a-Trifluorotoluene(FID)	89.9			77.0-120		04/12/2021 03:14	<u>WG1649653</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.810		0.0104	0.0222	20	04/11/2021 12:28	WG1649476
Toluene	19.1		0.0288	0.111	20	04/11/2021 12:28	WG1649476
Ethylbenzene	10.9		0.0163	0.0554	20	04/11/2021 12:28	WG1649476
Total Xylenes	13.9		0.0195	0.144	20	04/11/2021 12:28	WG1649476
(S) Toluene-d8	108			75.0-131		04/11/2021 12:28	WG1649476
(S) 4-Bromofluorobenzene	96.3			67.0-138		04/11/2021 12:28	WG1649476
(S) 1,2-Dichloroethane-d4	116			70.0-130		04/11/2021 12:28	WG1649476

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1320		17.0	42.2	10	04/12/2021 17:17	WG1649461
C28-C40 Oil Range	1600		2.89	42.2	10	04/12/2021 17:17	WG1649461
(S) o-Terphenyl	0.000	J2		18.0-148		04/12/2021 17:17	WG1649461

Sample Narrative:

L1336950-07 WG1649461: Surrogate failure due to matrix interference

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.1		1	04/12/2021 09:15	WG1649745

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2490		97.7	212	10	04/10/2021 23:55	WG1649358

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	04/13/2021 17:00	WG1650658
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		04/13/2021 17:00	WG1650658

Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000525	0.00112	1	04/11/2021 10:16	WG1649476
Toluene	0.00264	<u>J</u>	0.00146	0.00562	1	04/11/2021 10:16	WG1649476
Ethylbenzene	0.00150	<u>J</u>	0.000829	0.00281	1	04/11/2021 10:16	WG1649476
Total Xylenes	0.00112	<u>J</u>	0.000989	0.00731	1	04/11/2021 10:16	WG1649476
(S) Toluene-d8	107			75.0-131		04/11/2021 10:16	WG1649476
(S) 4-Bromofluorobenzene	93.6			67.0-138		04/11/2021 10:16	WG1649476
(S) 1,2-Dichloroethane-d4	108			70.0-130		04/11/2021 10:16	WG1649476

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.93	<u>J</u>	1.71	4.25	1	04/12/2021 14:35	WG1649461
C28-C40 Oil Range	3.15	BJ	0.291	4.25	1	04/12/2021 14:35	WG1649461
(S) o-Ternhenvl	44.7			18 0-148		04/12/2021 14:35	WG1649461

Collected date/time: 04/07/21 13:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	87.9		1	04/12/2021 09:15	WG1649745

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	5000		105	228	10	04/11/2021 00:05	WG1649358

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0625	<u>J</u>	0.0247	0.114	1	04/13/2021 09:22	WG1650162
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		04/13/2021 09:22	WG1650162

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00187		0.000595	0.00127	1	04/11/2021 10:35	WG1649476
Toluene	0.00685		0.00166	0.00637	1	04/11/2021 10:35	WG1649476
Ethylbenzene	0.00463		0.000940	0.00319	1	04/11/2021 10:35	WG1649476
Total Xylenes	0.00399	<u>J</u>	0.00112	0.00829	1	04/11/2021 10:35	WG1649476
(S) Toluene-d8	108			75.0-131		04/11/2021 10:35	WG1649476
(S) 4-Bromofluorobenzene	93.1			67.0-138		04/11/2021 10:35	WG1649476
(S) 1,2-Dichloroethane-d4	110			70.0-130		04/11/2021 10:35	WG1649476

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.19	<u>J</u>	1.83	4.55	1	04/12/2021 15:06	WG1649461
C28-C40 Oil Range	5.32	В	0.312	4.55	1	04/12/2021 15:06	WG1649461
(S) o-Terphenyl	60.3			18.0-148		04/12/2021 15:06	WG1649461

Collected date/time: 04/07/21 13:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.0		1	04/12/2021 09:07	WG1649747

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1030		47.9	104	5	04/11/2021 00:15	WG1649358

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	3750		58.8	271	2500	04/13/2021 11:14	WG1650162
(S) a,a,a-Trifluorotoluene(FID)	97.3			77.0-120		04/13/2021 11:14	WG1650162

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

9		,	•					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Benzene	7.84		0.0101	0.0217	20	04/11/2021 12:47	WG1649476	
Toluene	237		0.563	2.17	400	04/13/2021 10:02	WG1650399	
Ethylbenzene	191		0.319	1.08	400	04/13/2021 10:02	WG1650399	
Total Xylenes	268		0.381	2.81	400	04/13/2021 10:02	WG1650399	
(S) Toluene-d8	114			75.0-131		04/11/2021 12:47	WG1649476	
(S) Toluene-d8	103			75.0-131		04/13/2021 10:02	WG1650399	
(S) 4-Bromofluorobenzene	132			67.0-138		04/11/2021 12:47	WG1649476	
(S) 4-Bromofluorobenzene	108			67.0-138		04/13/2021 10:02	WG1650399	
(S) 1,2-Dichloroethane-d4	114			70.0-130		04/11/2021 12:47	WG1649476	
(S) 1.2-Dichloroethane-d4	114			70.0-130		04/13/2021 10:02	WG1650399	

⁹Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9540		67.1	167	40	04/12/2021 17:04	WG1649461
C28-C40 Oil Range	5930		11.5	167	40	04/12/2021 17:04	WG1649461
(S) o-Terphenyl	0.000	J7		18.0-148		04/12/2021 17:04	WG1649461

Collected date/time: 04/07/21 13:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.7		1	04/12/2021 09:07	<u>WG1649747</u>

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	826		9.51	20.7	1	04/11/2021 00:24	WG1649358

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	4470		58.0	267	2500	04/13/2021 17:44	WG1650658
(S) a,a,a-Trifluorotoluene(FID)	90.3			77.0-120		04/13/2021 17:44	WG1650658

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

Volume Organic O	ompounds	(00/11/10) 5	y Mictiloa	02000				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Benzene	19.4		0.00998	0.0214	20	04/11/2021 13:06	WG1649476	
Toluene	388		0.556	2.14	400	04/13/2021 10:21	WG1650399	
Ethylbenzene	255		0.315	1.07	400	04/13/2021 10:21	WG1650399	
Total Xylenes	345		0.376	2.78	400	04/13/2021 10:21	WG1650399	
(S) Toluene-d8	107			75.0-131		04/11/2021 13:06	WG1649476	
(S) Toluene-d8	106			75.0-131		04/13/2021 10:21	WG1650399	
(S) 4-Bromofluorobenzene	111			67.0-138		04/11/2021 13:06	WG1649476	
(S) 4-Bromofluorobenzene	98.6			67.0-138		04/13/2021 10:21	WG1650399	
(S) 1,2-Dichloroethane-d4	112			70.0-130		04/11/2021 13:06	WG1649476	
(S) 1 2-Dichloroethane-d4	117			70 0-130		04/13/2021 10:21	WG1650399	

Semi-Volatile Organic Compounds (GC) by Method 8015

			-				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9520		167	414	100	04/12/2021 17:43	WG1649461
C28-C40 Oil Range	6250		28.3	414	100	04/12/2021 17:43	WG1649461
(S) o-Terphenyl	0.000	<u>J7</u>		18.0-148		04/12/2021 17:43	WG1649461

Gl

Collected date/time: 04/07/21 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.5		1	04/12/2021 09:07	WG1649747

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	675		9.53	20.7	1	04/11/2021 00:34	WG1649358

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.445		0.0225	0.104	1	04/13/2021 09:44	WG1650162
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		04/13/2021 09:44	WG1650162

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00164		0.000501	0.00107	1	04/11/2021 10:54	WG1649476
Toluene	0.0159		0.00139	0.00536	1	04/11/2021 10:54	WG1649476
Ethylbenzene	0.0111		0.000790	0.00268	1	04/11/2021 10:54	WG1649476
Total Xylenes	0.0181		0.000943	0.00697	1	04/11/2021 10:54	WG1649476
(S) Toluene-d8	107			75.0-131		04/11/2021 10:54	WG1649476
(S) 4-Bromofluorobenzene	92.6			67.0-138		04/11/2021 10:54	WG1649476
(S) 1,2-Dichloroethane-d4	114			70.0-130		04/11/2021 10:54	WG1649476

Sc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.97		1.67	4.14	1	04/12/2021 15:19	WG1649461
C28-C40 Oil Range	6.43	В	0.284	4.14	1	04/12/2021 15:19	WG1649461
(S) o-Terphenyl	68.3			18.0-148		04/12/2021 15:19	WG1649461

Collected date/time: 04/07/21 14:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	87.5		1	04/12/2021 09:07	WG1649747

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10400		105	229	10	04/11/2021 00:43	WG1649358

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.816		0.0248	0.114	1	04/13/2021 10:06	WG1650162
(S) a,a,a-Trifluorotoluene(FID)	97.9			77.0-120		04/13/2021 10:06	WG1650162

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00184		0.000600	0.00129	1	04/11/2021 11:13	WG1649476
Toluene	0.0202		0.00167	0.00643	1	04/11/2021 11:13	WG1649476
Ethylbenzene	0.0270		0.000948	0.00321	1	04/11/2021 11:13	WG1649476
Total Xylenes	0.0447		0.00113	0.00836	1	04/11/2021 11:13	WG1649476
(S) Toluene-d8	106			75.0-131		04/11/2021 11:13	WG1649476
(S) 4-Bromofluorobenzene	91.9			67.0-138		04/11/2021 11:13	WG1649476
(S) 1,2-Dichloroethane-d4	113			70.0-130		04/11/2021 11:13	WG1649476

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

•	J 1	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	73.6		1.84	4.57	1	04/12/2021 15:59	WG1649461
C28-C40 Oil Range	58.3		0.313	4.57	1	04/12/2021 15:59	WG1649461
(S) o-Terphenyl	40.0			18.0-148		04/12/2021 15:59	WG1649461

19 of 36

Page 200 of 457

Total Solids by Method 2540 G-2011

L1336950-01,02,03,04,05,06,07,08,09

(MB) R3641022-1 04	4/12/21 09:15			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

3 Ss

[†]Cn

L1336950-02 Original Sample (OS) • Duplicate (DUP)

- 1	(C)	11226050 02	0.4/12/21 00:1E		DOC 41000	0.4/12/21 00:1E
- (03	1 L133093U-UZ	04/12/21 09:15 •	IDUP	1 K3041UZZ-3	04/12/21 09.15

(/		,				
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	96.2	96.0	1	0.118		10

⁵Sr

Laboratory Control Sample (LCS)

(LCS) R3641022-2	04/12/21	09:15
------	--------------	----------	-------

(LCS) R3641022-2 04/12/2	21 09.13				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 201 of 457

Total Solids by Method 2540 G-2011

L1336950-10,11,12,13

Method Blank (MB))
----------------	-----	---

(MB) R3641020-1 04/12/2	1 09:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Ss

L1336950-13 Original Sample (OS) • Duplicate (DUP)

(OS) I 1336950-13	04/12/21 09:07 • (DUP) R3641020-3 04/12/21 09:0)7
(00) 1000000 10	01/12/21 03:07 (D01) 1000 11020 0 0 1/12/21 03:0	,,

(00, 2.000000 10 0 1, 12, 2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	87.5	87.1	1	0.498		10

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3641020-2 04/12/2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	100	85.0-115

Page 202 of 457

Wet Chemistry by Method 300.0

L1336950-01,02,03,04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R3640882-1 04/10/2	21 21:26			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1336950-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1336950-01	04/10/21 22:02 • (DUP) F	R3640882-3	04/10/21 22:11

,	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	1260	1350	5	7.07		20

[†]Cn

L1336232-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1336232-01 04/11/21 00:53 • (DUP) R3640882-6 04/11/21 01:02

(33) 21333232 31 3 1/11/21	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	12.4	11.1	1	11.3	ī	20

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3640882-2 04	1/10/21 21:36
---------------------	---------------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	197	98.3	90.0-110	

L1336950-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1336950-01 04/10/21 22:02 • (MS) R3640882-4 04/10/21 22:20 • (MSD) R3640882-5 04/10/21 22:30

(O3) L1330930-01 04/10/.	03) [1330330-01 04/10/21 22:02 • (1813) 133040802-4 04/10/21 22:20 • (18132) 133040802-3 04/10/21 22:30													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
Chloride	2650	1260	1840	1580	21.8	12.2	5	80.0-120	<u>J6</u>	<u>J6</u>	14.9	20		

Page 203 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1336950-03,07

Method Blank (MB)

(MB) R3640916-2 04/11/2	1 18:12				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	99.4			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3640916-1 04/11/21 17:28												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	mg/kg	mg/kg	%	%								
TPH (GC/FID) Low Fraction	5.50	5.60	102	72.0-127								
(S) a,a,a-Trifluorotoluene(FID)			106	77.0-120								

Page 204 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1336950-01,02,06,09,10,12,13

Method Blank (MB)

(MB) R3641198-2 04/13/2	21 04:20				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
H (GC/FID) Low Fraction	U		0.0217	0.100	
(S) ,a,a-Trifluorotoluene(FID)	108			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3641198-1 04/13/2	LCS) R3641198-1 04/13/21 03:27											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	mg/kg	mg/kg	%	%								
TPH (GC/FID) Low Fraction	5.50	5.33	96.9	72.0-127								
(S) a,a,a-Trifluorotoluene(FID)			98.3	77.0-120								

Page 205 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1336950-04,05,08,11

Method Blank (MB)

(MB) R3641391-2 04/13/2	114:32			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3641391-1 04/13/21 13:48 • (LCSD) R3641391-3 04/13/21 15:53													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%			
TPH (GC/FID) Low Fraction	5.50	5.36	4.85	97.5	88.2	72.0-127			9.99	20			
(S) a,a,a-Trifluorotoluene(FID)				97.6	97.0	77.0-120							

Page 206 of 457

L1336950-01,02,03,04,05,06,07,08,09,10,11,12,13 Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3640936-2 04/11/2	21 06:27						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
Benzene	U		0.000467	0.00100			
Ethylbenzene	U		0.000737	0.00250			
Toluene	U		0.00130	0.00500			
Xylenes, Total	U		0.000880	0.00650			
(S) Toluene-d8	107			75.0-131			
(S) 4-Bromofluorobenzene	96.9			67.0-138			
(S) 1,2-Dichloroethane-d4	109			70.0-130			

Laboratory Control Sample (LCS)

(LCS) R3640936-1 04/11/2	21 05:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.129	103	70.0-123	
Ethylbenzene	0.125	0.118	94.4	74.0-126	
Toluene	0.125	0.119	95.2	75.0-121	
Xylenes, Total	0.375	0.363	96.8	72.0-127	
(S) Toluene-d8			99.3	75.0-131	
(S) 4-Bromofluorobenzene			106	67.0-138	
(S) 1,2-Dichloroethane-d4			119	70.0-130	

L1336661-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L1336661-06 04/11/21 14:59 • (MS) R3640936-3 04/11/21 15:37 • (MSD) R3640936-4 04/11/21 15:56													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Benzene	0.990	0.197	1.06	1.21	87.2	102	8	10.0-149			13.2	37	
Ethylbenzene	0.990	7.55	9.18	9.44	165	191	8	10.0-160	$\underline{\vee}$	$\underline{\vee}$	2.79	38	
Toluene	0.990	0.304	1.20	1.31	90.5	102	8	10.0-156			8.76	38	
Xylenes, Total	2.97	7.24	10.4	10.9	106	123	8	10.0-160			4.69	38	
(S) Toluene-d8					102	102		75.0-131					
(S) 4-Bromofluorobenzene					99.4	94.6		67.0-138					
(S) 1,2-Dichloroethane-d4					117	117		70.0-130					

Page 207 of 457

Volatile Organic Compounds (GC/MS) by Method 8260B

L1336950-06,10,11

Method Blank (MB)

(MB) R3641144-3 04/13/21	06:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	107			75.0-131
(S) 4-Bromofluorobenzene	92.6			67.0-138
(S) 1,2-Dichloroethane-d4	110			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3641144-1 04/13/21	04:45 • (LCSD)	R3641144-2 (04/13/21 05:03							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Ethylbenzene	0.125	0.111	0.114	88.8	91.2	74.0-126			2.67	20
Toluene	0.125	0.118	0.127	94.4	102	75.0-121			7.35	20
Xylenes, Total	0.375	0.336	0.354	89.6	94.4	72.0-127			5.22	20
(S) Toluene-d8				102	106	75.0-131				
(S) 4-Bromofluorobenzene				94.1	94.4	67.0-138				
(S) 1,2-Dichloroethane-d4				114	112	70.0-130				

Page 208 of 457

Semi-Volatile Organic Compounds (GC) by Method 8015

L1336950-01,02,03,04,05,06,07,08,09,10,11,12,13

Method Blank (MB)

(MB) R3640858-1 04/12	/21 11:55			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	1.29	<u>J</u>	0.274	4.00
(S) o-Terphenyl	48.3			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3640858-2 04/12	2/21 12:09				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	36.2	72.4	50.0-150	
(S) o-Terphenyl			78.8	18.0-148	

L1336686-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1336686-03 04/12/21 12:50 • (MS) R3640858-3 04/12/21 13:04 • (MSD) R3640858-4 04/12/21 13:17

(03) 21333000 03 04/1	, ,	Original Result (dry)		,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	50.1	3.42	33.7	34.1	60.6	62.2	1	50.0-150			1.19	20	
(S) o-Terphenyl					58.6	58.9		18.0-148					

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

\bigcirc	:£:		\ :	4:
Qual	itier	L	escri)	ption

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PAGE:

29 of 36

D A	Athen Nieutenan	100CF alaman	- Dal Marria	. II: TN	U 27122
Pace Analy	yticai Nationai	12065 Lebanor	1 Ka Mount	: Juliet, 11	N 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

analysis Request of Chain of Custody Record

E099

Page 211 of 457

Page: 1 of 2

901 West Wall Street, Suite 100 TŁ Tetra Tech, Inc. Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946 ANALYSIS REQUEST Site Manager: Christian Llull Client Name: Conoco Phillips (Circle or Specify Method No.) Email: christian.llull@tetratech.com Contact Info: **Project Name:** COP MCA 151 Flowline release Phone: (512) 338-1667 **Project Location:** Lea County, New Mexico Project #: 212C-MD-02471 (county, state) Accounts Payable Invoice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 ORO - MRO) Receiving Laboratory: Pace Analytical Sampler Signature: Adrian eral Water Chemistry (see Comments: COPTETRA Acctnum TDS TX1005 (Ext to C35) 3C/MS Vol. 8260B / 624 PRESERVATIVE SAMPLING MATRIX Semi. Vol. 8 METHOD CONTAINERS YEAR: 2020 8015M (LAB# SAMPLE IDENTIFICATION NONE C/MS WATE LAB USE HNO3 DATE TIME SOIL 건 CE ONLY N X AH 30 (6"-1") 4/7/2021 X 1100 X X X 1 N AH 30 (1'-2') 4/7/2021 1110 X -0 AH 30 (2'-3') 4/7/2021 1120 X N X AH 31 (6"-1") N 4/7/2021 1130 X AH 31 (1'-2') 4/7/2021 X N 1150 X X X AH 32 (6"-1") 4/7/2021 1200 N X Х X X N AH 32 (1'-2') 4/7/2021 1210 X AH 32 (2'-3') X N 4/7/2021 1220 X AH 32 (3'-4') 4/7/2021 1300 N AH 33 (6"-1") 4/7/2021 1310 REMARKS: Relinquished by: Date: Time: Date: Received by: LAB USE Standard ONLY X RUSH: Same Day 24 h 48 hr. 72 hr. Received by: Sample Temperature Rush Charges Authorized Relinquished by: Special Report Limits or TRRP Report **PRIGINAL COPY** (Circle) HAND DELIVERED FEDEX UPS Tracking #:

Page 212 of 457
Page: 2 of 2

TE	Tetra Tech, Inc.				901	Midl. Te	and, I (43	Texa 2) 68	eet, S as 797 32-455 32-394	9	0						(-	1	33	36	9	50	0			
Client Name:	Conoco Phillips	Site Manage	er:	Chr	ristian	Llull		Ī														UES					
Project Name:	COP MCA 151 Flowline release	Contact Info):		ail: chr				tratec	n.com		l	Ī	1	Ci	rcle	0	rS	pe	cify	/ M	eth 	od 	No.	.) 	1	
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-MD	-0247	71																				
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701												_											ist)		1	
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		Adriar	1							- MRO		Se Hg	Se Hg								tached		Н	
Comments: COPTE	TRA Acctnum											8260B	5) IO - ORC		d Cr Pb	Cd Cr Pb				C/625	1	Ī		y (see at			10.3
		SAME	PLING	м	ATRIX	PR		RVA	ATIVE	3S	2	V 1	(Ext to C35)		As Ba C	As Ba	tiles		30B / 624	ol. 8270	80		out out	hemistr	lance		
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020		H.						CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TX1005 (Ext to C35) 8015M (GRO - DRO - ORO - MRO)	8270C	fotal Metals Ag As Ba Cd Cr Pb Se Hg	CLP Metals Ag	TCLP Volatiles		GC/MS Vol. 8260B / 624	GC/MS Semi. Vol. 8270C/625	CB's 8082 / 608	PLM (Asbestos)	Chloride 300.0	1 8	Anion/Cation Balance	115R	
(LAB USE)		DATE	TIME	WATER	SOIL	코	HNO3	핑	NONE	# CON	FILTE	BTEX	TPH T	PAH 8	Total M	TCLP	TCLPS	RCI	GC/MS	GC/MS	NORM	PLM (A	Chlorid	General	Anion/C	TPH 8015R	HOLD
711	AH 33 (1'-2')	4/7/2021	1320		Х			Х		1	N	х	Х										X				\Box
-13	AH 33 (2'-3')	4/7/2021	1400		Х			Х		1	N	Х	×										X				12
-13	AH 33 (3'-4')	4/7/2021	1410		Х			Х		1	Ν	Х	×			1	1		y.		1		Х				
7 414				Н		-		+				Н	$^{+}$	+	Н	+	+	+	Н	+	+	Н					300
									CO	C Sea	l Pre	sen	t/In	Tact	:	Y	ipt N			If A	ppl.	cab	le				
									Bo Co Su	ttles rrect ffici D Sor	arri bott ent v	ve : les olur	use use ne s	ct: d: ent:		YYYY	N N N	Pre	8.0	orre	ct/	spac	e: _ k: _	Y	N		
Relinquished by: Adrian	Date: Time: 6 arria 4.9.21 2.35	Received by	the	1	24	Dai	te:		ime:			-	LAE	US	SE	F	REMA	-	S: anda	ırd	-			-	_		-
Relinguished by	Date: Time: 49.21 14:35	Received by	A		4	Dai	2	/	ime: /G	13	S	Sam	ple Te	empe	ratur	9	X	_				24 norize		48 hr.	72 h	ir.	
Réfinquished by:	Date: Time:	Received by	he	1		U-) a	ime:	10:2	8	7						Sp	ecial	Repo	rt Lim	its or	TRRP	Repo	t		
		DRIGIN	L COPY						426	2 1 9		(Circ	cle) H	IANE	DE	LIVER	RED	FEI	DEX	UPS	ST	rackir	ng #:		_		

2 1336950

Group: Permian Operations and Construction	truction	
Sub Group: Hwy 80 Vertical		
Case Number:	Incident Date:	
Operations Contact (Invoice Approver):	ROBERT FLORES	
Environmental Contact: Jeanne Fitch	Jeanne Fitch Phone: (432) 894-7562	
Location Name: UNIVERSITY 7-43 1D SWD	WS	

NO INVOICE STAMP REQUIRED FOR THIS PROJECT

AFE(s):

TK 551 cleanout

	3)	2)	1)
			PAT1083826
Instructions:		Unit Number:	Department Number:

THIS FORM IS TO BE USED FOR ALL ENVIRONMENTAL REMEDIATION PROJECTS RESULTING FROM SPILLS OR RELEASES. A COMPLETED COPY MUST ACCOMPANY EACH INVOICE SUBMITTED FOR THE PROJECT. ATTACH A COPY IMMEDIATELY BEHIND THE INVOICE BEFORE ANY OTHER BACKUP

1336950

Pioneer Natural Resources Environmental Project Invoicing Form

Unit Number:	3)
Unit Number:	
	2)
PAT1079952 Department Number:	1)
	AFE(s):
NO INVOICE STAMP REQUIRED FOR THIS PROJECT	
anout	v302 cleanout
scription:	Location Description:
me: Brumley 59A TB	Location Name:
tal Contact: Jeanne Fitch Phone: (432) 894-7562	Environmental Contact:
Operations Contact (Invoice Approver): BEACH BEAUCHAMP	Operations Con
er: Incident Date:	Case Number:
Hwy 80 Vertical	Sub Group: H

THIS FORM IS TO BE USED FOR ALL ENVIRONMENTAL REMEDIATION PROJECTS RESULTING FROM SPILLS OR RELEASES. A COMPLETED COPY MUST ACCOMPANY EACH INVOICE SUBMITTED FOR THE PROJECT. ATTACH A COPY IMMEDIATELY BEHIND THE INVOICE BEFORE ANY OTHER BACKUP DOCUMENTATION.

C 1336980

Sub Group: Hwy 80 Vertical	ertical		
Case Number:		Incident Date:	
Operations Contact (Invoice Approver):	oice Approver): ROBERT FLORES	14	
Environmental Contact:	Jeanne Fitch Phone: (432) 894-7562	7562	
Location Name: UNIV	UNIVERSITY 7-43 1D SWD		
Location Description:			
TK 553 cleanout			
	NO INVOICE STAMP REC	NO INVOICE STAMP REQUIRED FOR THIS PROJECT	
AFE(s):			
1)	PAT1083827	Department Number:	
2)		Unit Number:	

Pioneer Natural Resources Environmental Project Invoicing Form 1336950

Sub Group: Midkiff Vertical	T .	- Apr	 American (the or
Case Number:	Incident Date:		
Operations Contact (Invoice Approver):	MIKE JONES		
Environmental Contact: Jeanne Fitch	Jeanne Fitch Phone: (432) 894-7562		1
Location Name: SDU Tr 67A			
Location Description:			
v301 cleanout			

NO INVOICE STAMP REQUIRED FOR THIS PROJECT

3)	2)	1)	AFE(s):
		PAT	
Instructions:	Unit Number:	Department Number:	

THIS FORM IS TO BE USED FOR ALL ENVIRONMENTAL REMEDIATION PROJECTS RESULTING FROM SPILLS OR RELEASES. A COMPLETED COPY MUST ACCOMPANY EACH INVOICE SUBMITTED FOR THE PROJECT. ATTACH A COPY IMMEDIATELY BEHIND THE INVOICE BEFORE ANY OTHER BACKUP DOCUMENTATION.

APPENDIX E Laboratory Analytical Data Confirmation Sampling

Pace Analytical® ANALYTICAL REPORT

Ss

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1339144 Samples Received: 04/15/2021

Project Number: 212C-MD-02471

Description: COP MCA 151 Flowline Release

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be

reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122

615-758-5858

800-767-5859

www.pacenational.com

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
FS-1 (2') L1339144-01	6
FS-2 (2') L1339144-02	7
ESW-1 L1339144-03	8
ESW-2 L1339144-04	9
ESW-3 L1339144-05	10
SSW-1 L1339144-06	11
WSW-1 L1339144-07	12
WSW-2 L1339144-08	13
WSW-3 L1339144-09	14
Qc: Quality Control Summary	15
Total Solids by Method 2540 G-2011	15
Wet Chemistry by Method 300.0	17
Volatile Organic Compounds (GC) by Method 8015D/GRO	18
Volatile Organic Compounds (GC/MS) by Method 8260B	19
Semi-Volatile Organic Compounds (GC) by Method 8015	20
GI: Glossary of Terms	21
Al: Accreditations & Locations	22

Sc: Sample Chain of Custody

23

SAMPLE SUMMARY

	0, 22 (,			
FS-1 (2') L1339144-01 Solid			Collected by Adrian Garcia	Collected date/time 04/13/21 10:00	Received da 04/15/21 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Total Solids by Method 2540 G-2011	WG1652759	1	04/16/21 08:27	04/16/21 08:37	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1653396	1	04/17/21 19:00	04/18/21 13:02	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1653324	1	04/16/21 11:29	04/17/21 00:29	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1653218	1	04/16/21 11:29	04/16/21 14:13	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1652748	1	04/15/21 20:09	04/16/21 10:43	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-2 (2') L1339144-02 Solid			Adrian Garcia	04/13/21 10:15	04/15/21 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T. 10 11 1 14 11 10540 0 004	W04050750		date/time	date/time		
Total Solids by Method 2540 G-2011	WG1652759	1	04/16/21 08:27	04/16/21 08:37	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1653396	1	04/17/21 19:00	04/18/21 13:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1653324	1	04/16/21 11:29	04/17/21 00:48	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1653218	1	04/16/21 11:29	04/16/21 14:32	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1652748	1	04/15/21 20:09	04/16/21 10:56	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
ESW-1 L1339144-03 Solid			Adrian Garcia	04/13/21 10:30	04/15/21 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1652759	1	04/16/21 08:27	04/16/21 08:37	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1653396	1	04/17/21 19:00	04/18/21 13:31	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1653324	1	04/16/21 11:29	04/17/21 01:18	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1653218	1	04/16/21 11:29	04/16/21 14:50	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1652748	1	04/15/21 20:09	04/16/21 11:09	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
ESW-2 L1339144-04 Solid			Adrian Garcia	04/13/21 10:45	04/15/21 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T. 10 H. 1 H. 1 10510 0 000			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1652759	1	04/16/21 08:27	04/16/21 08:37	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1653396	1	04/17/21 19:00	04/18/21 13:41	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1653324	1	04/16/21 11:29	04/17/21 01:40	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1653218	1	04/16/21 11:29	04/16/21 15:10	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1652748	1	04/15/21 20:09	04/16/21 16:36	TJD	Mt. Juliet, TN
			Collected by	Collected date/time		
ESW-3 L1339144-05 Solid			Adrian Garcia	04/13/21 11:00	04/15/21 08:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1652759	1	04/16/21 08:27	04/16/21 08:37	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1653396	1	04/17/21 19:00	04/18/21 14:10	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1653324	1	04/16/21 11:29	04/17/21 02:02	DWR	Mt. Juliet, TN
Valatila Onnania Cannania (CC/MC) ha Mathaul 0200D	WC1CE2210	4	0.4/10/21/11/20	0.4/40/24 45:20	1411	MA Lulian TNI

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1653218

WG1652748

1

04/16/21 11:29

04/15/21 20:09

JAH

CAG

Mt. Juliet, TN

Mt. Juliet, TN

04/16/21 15:29

04/16/21 12:27

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	to/timo
SSW-1 L1339144-06 Solid			Adrian Garcia	04/13/21 11:15	04/15/21 08:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
meanod	Baten	Bildtion	date/time	date/time	raidiyse	Location
Total Solids by Method 2540 G-2011	WG1652857	1	04/16/21 14:07	04/16/21 14:17	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1653396	1	04/17/21 19:00	04/18/21 14:20	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1653324	1	04/16/21 11:29	04/17/21 02:24	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1653218	1	04/16/21 11:29	04/16/21 15:48	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1652748	1	04/15/21 20:09	04/16/21 16:09	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-1 L1339144-07 Solid			Adrian Garcia	04/13/21 11:30	04/15/21 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T	W04050057		date/time	date/time	L/DIL/	
Total Solids by Method 2540 G-2011	WG1652857	1	04/16/21 14:07	04/16/21 14:17	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1653396	1	04/17/21 19:00	04/18/21 14:30	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1653324	1	04/16/21 11:29	04/17/21 02:46	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1653218	1	04/16/21 11:29	04/16/21 16:33	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1652748	1	04/15/21 20:09	04/16/21 11:48	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-2 L1339144-08 Solid			Adrian Garcia	04/13/21 11:45	04/15/21 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1652857	1	04/16/21 14:07	04/16/21 14:17	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1653396	1	04/17/21 19:00	04/18/21 14:40	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1653324	1	04/16/21 11:29	04/17/21 03:08	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1653218	1	04/16/21 11:29	04/16/21 16:52	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1652748	1	04/15/21 20:09	04/16/21 12:01	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-3 L1339144-09 Solid			Adrian Garcia	04/13/21 12:00	04/15/21 08:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T	W0405		date/time	date/time	L/DIL/	
Total Solids by Method 2540 G-2011	WG1652857	1	04/16/21 14:07	04/16/21 14:17	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1653396	1	04/17/21 19:00	04/18/21 14:49	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1653324	1	04/16/21 11:29	04/17/21 03:30	DWR	Mt. Juliet, TN

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1653218

WG1652748

1

04/16/21 11:29

04/15/21 20:09

04/16/21 17:11

04/16/21 16:22

JAH

TJD

Mt. Juliet, TN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Page 223 of 457

SAMPLE RESULTS - 01

Collected date/time: 04/13/21 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.2		1	04/16/2021 08:37	WG1652759

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.56	20.8	1	04/18/2021 13:02	WG1653396

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0569	<u>J</u>	0.0225	0.104	1	04/17/2021 00:29	WG1653324
(S) a,a,a-Trifluorotoluene(FID)	90.4			77.0-120		04/17/2021 00:29	WG1653324

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000539	<u>J</u>	0.000504	0.00108	1	04/16/2021 14:13	WG1653218
Toluene	0.00189	<u>J</u>	0.00140	0.00539	1	04/16/2021 14:13	WG1653218
Ethylbenzene	0.00189	<u>J</u>	0.000795	0.00270	1	04/16/2021 14:13	WG1653218
Total Xylenes	0.00992		0.000949	0.00701	1	04/16/2021 14:13	WG1653218
(S) Toluene-d8	109			<i>75.0-131</i>		04/16/2021 14:13	WG1653218
(S) 4-Bromofluorobenzene	99.6			67.0-138		04/16/2021 14:13	WG1653218
(S) 1,2-Dichloroethane-d4	106			70.0-130		04/16/2021 14:13	WG1653218

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

<u> </u>	J 1	` '	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	21.1		1.67	4.16	1	04/16/2021 10:43	WG1652748
C28-C40 Oil Range	25.7		0.285	4.16	1	04/16/2021 10:43	WG1652748
(S) o-Terphenyl	31.3			18.0-148		04/16/2021 10:43	WG1652748

Collected date/time: 04/13/21 10:15

Page 224 of 457

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.3		1	04/16/2021 08:37	WG1652759

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.55	20.8	1	04/18/2021 13:12	WG1653396

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0233	J	0.0225	0.104	1	04/17/2021 00:48	WG1653324
(S) a,a,a-Trifluorotoluene(FID)	85.0			77.0-120		04/17/2021 00:48	<u>WG1653324</u>

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000503	0.00108	1	04/16/2021 14:32	WG1653218
Toluene	U		0.00140	0.00538	1	04/16/2021 14:32	WG1653218
Ethylbenzene	0.00418		0.000793	0.00269	1	04/16/2021 14:32	WG1653218
Total Xylenes	0.0102		0.000947	0.00700	1	04/16/2021 14:32	WG1653218
(S) Toluene-d8	109			<i>75.0-131</i>		04/16/2021 14:32	WG1653218
(S) 4-Bromofluorobenzene	95.9			67.0-138		04/16/2021 14:32	WG1653218
(S) 1,2-Dichloroethane-d4	107			70.0-130		04/16/2021 14:32	WG1653218

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

•	J 1	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	15.2		1.67	4.15	1	04/16/2021 10:56	WG1652748
C28-C40 Oil Range	29.2		0.284	4.15	1	04/16/2021 10:56	WG1652748
(S) o-Terphenyl	29.3			18.0-148		04/16/2021 10:56	WG1652748

Cn

Page 225 of 457

SAMPLE RESULTS - 03

Total Solids by Method 2540 G-2011

Collected date/time: 04/13/21 10:30

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.5		1	04/16/2021 08:37	WG1652759

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.34	20.3	1	04/18/2021 13:31	WG1653396

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.102	1	04/17/2021 01:18	WG1653324
(S) a,a,a-Trifluorotoluene(FID)	91.1			77.0-120		04/17/2021 01:18	WG1653324

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	04/16/2021 14:50	WG1653218
Toluene	U		0.00134	0.00516	1	04/16/2021 14:50	WG1653218
Ethylbenzene	U		0.000760	0.00258	1	04/16/2021 14:50	WG1653218
Total Xylenes	U		0.000908	0.00670	1	04/16/2021 14:50	WG1653218
(S) Toluene-d8	108			<i>75.0-131</i>		04/16/2021 14:50	WG1653218
(S) 4-Bromofluorobenzene	92.3			67.0-138		04/16/2021 14:50	WG1653218
(S) 1,2-Dichloroethane-d4	104			70.0-130		04/16/2021 14:50	WG1653218

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.06	1	04/16/2021 11:09	WG1652748
C28-C40 Oil Range	10.4		0.278	4.06	1	04/16/2021 11:09	WG1652748
(S) o-Terphenyl	63.0			18.0-148		04/16/2021 11:09	WG1652748

Page 226 of 457

SAMPLE RESULTS - 04

Collected date/time: 04/13/21 10:45 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.8		1	04/16/2021 08:37	WG1652759

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.31	20.2	1	04/18/2021 13:41	WG1653396

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0601	J	0.0220	0.101	1	04/17/2021 01:40	WG1653324
(S) a,a,a-Trifluorotoluene(FID)	93.6			77.0-120		04/17/2021 01:40	WG1653324

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000478	0.00102	1	04/16/2021 15:10	WG1653218
Toluene	0.00189	<u>J</u>	0.00133	0.00512	1	04/16/2021 15:10	WG1653218
Ethylbenzene	0.00200	<u>J</u>	0.000754	0.00256	1	04/16/2021 15:10	WG1653218
Total Xylenes	0.00733		0.000901	0.00665	1	04/16/2021 15:10	WG1653218
(S) Toluene-d8	111			75.0-131		04/16/2021 15:10	WG1653218
(S) 4-Bromofluorobenzene	91.3			67.0-138		04/16/2021 15:10	WG1653218
(S) 1,2-Dichloroethane-d4	102			70.0-130		04/16/2021 15:10	WG1653218

Sc

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.05	1	04/16/2021 16:36	WG1652748
C28-C40 Oil Range	4.25		0.277	4.05	1	04/16/2021 16:36	WG1652748
(S) o-Terphenyl	49.2			18.0-148		04/16/2021 16:36	WG1652748

ConocoPhillips - Tetra Tech

Page 227 of 457

SAMPLE RESULTS - 05

Collected date/time: 04/13/21 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.6		1	04/16/2021 08:37	WG1652759

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.33	20.3	1	04/18/2021 14:10	WG1653396

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0949	<u>J</u>	0.0220	0.101	1	04/17/2021 02:02	WG1653324
(S) a,a,a-Trifluorotoluene(FID)	91.3			77.0-120		04/17/2021 02:02	WG1653324

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	04/16/2021 15:29	WG1653218
Toluene	0.00144	<u>J</u>	0.00134	0.00514	1	04/16/2021 15:29	WG1653218
Ethylbenzene	0.00378		0.000758	0.00257	1	04/16/2021 15:29	WG1653218
Total Xylenes	0.00962		0.000905	0.00668	1	04/16/2021 15:29	WG1653218
(S) Toluene-d8	111			75.0-131		04/16/2021 15:29	WG1653218
(S) 4-Bromofluorobenzene	101			67.0-138		04/16/2021 15:29	WG1653218
(S) 1,2-Dichloroethane-d4	101			70.0-130		04/16/2021 15:29	WG1653218

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.74	<u>J</u>	1.63	4.06	1	04/16/2021 12:27	WG1652748
C28-C40 Oil Range	10.1		0.278	4.06	1	04/16/2021 12:27	WG1652748
(S) o-Terphenyl	39.8			18.0-148		04/16/2021 12:27	WG1652748

Page 228 of 457

SAMPLE RESULTS - 06

Collected date/time: 04/13/21 11:15 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.6		1	04/16/2021 14:17	WG1652857

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.33	20.3	1	04/18/2021 14:20	WG1653396

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.101	1	04/17/2021 02:24	WG1653324
(S) a,a,a-Trifluorotoluene(FID)	92.3			77.0-120		04/17/2021 02:24	WG1653324

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	04/16/2021 15:48	WG1653218
Toluene	U		0.00134	0.00514	1	04/16/2021 15:48	WG1653218
Ethylbenzene	U		0.000758	0.00257	1	04/16/2021 15:48	WG1653218
Total Xylenes	U		0.000905	0.00668	1	04/16/2021 15:48	WG1653218
(S) Toluene-d8	109			75.0-131		04/16/2021 15:48	WG1653218
(S) 4-Bromofluorobenzene	91.4			67.0-138		04/16/2021 15:48	WG1653218
(S) 1,2-Dichloroethane-d4	108			70.0-130		04/16/2021 15:48	WG1653218

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

<u> </u>	,	•	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.06	1	04/16/2021 16:09	WG1652748
C28-C40 Oil Range	2.94	<u>J</u>	0.278	4.06	1	04/16/2021 16:09	WG1652748
(S) o-Terphenyl	54.0			18.0-148		04/16/2021 16:09	WG1652748

Page 229 of 457

SAMPLE RESULTS - 07

Total Solids by Method 2540 G-2011

Collected date/time: 04/13/21 11:30

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.7		1	04/16/2021 14:17	WG1652857

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.32	20.3	1	04/18/2021 14:30	WG1653396

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.101	1	04/17/2021 02:46	WG1653324
(S) a,a,a-Trifluorotoluene(FID)	92.1			77.0-120		04/17/2021 02:46	WG1653324

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000479	0.00103	1	04/16/2021 16:33	WG1653218
Toluene	U		0.00133	0.00513	1	04/16/2021 16:33	WG1653218
Ethylbenzene	U		0.000757	0.00257	1	04/16/2021 16:33	WG1653218
Total Xylenes	U		0.000903	0.00667	1	04/16/2021 16:33	WG1653218
(S) Toluene-d8	105			<i>75.0-131</i>		04/16/2021 16:33	WG1653218
(S) 4-Bromofluorobenzene	93.3			67.0-138		04/16/2021 16:33	WG1653218
(S) 1,2-Dichloroethane-d4	107			70.0-130		04/16/2021 16:33	WG1653218

Semi-Volatile Organic Compounds (GC) by Method 8015

•	J 1	`	/ /				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.05	1	04/16/2021 11:48	WG1652748
C28-C40 Oil Range	3.65	<u>J</u>	0.278	4.05	1	04/16/2021 11:48	WG1652748
(S) o-Terphenyl	37.9			18.0-148		04/16/2021 11:48	WG1652748

Page 230 of 457

SAMPLE RESULTS - 08

Total Solids by Method 2540 G-2011

Collected date/time: 04/13/21 11:45

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.6		1	04/16/2021 14:17	WG1652857

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.43	20.5	1	04/18/2021 14:40	WG1653396

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0593	<u>J</u>	0.0222	0.103	1	04/17/2021 03:08	WG1653324
(S) a,a,a-Trifluorotoluene(FID)	92.6			77.0-120		04/17/2021 03:08	WG1653324

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000490	0.00105	1	04/16/2021 16:52	WG1653218
Toluene	U		0.00137	0.00525	1	04/16/2021 16:52	WG1653218
Ethylbenzene	U		0.000774	0.00263	1	04/16/2021 16:52	WG1653218
Total Xylenes	0.00541	<u>J</u>	0.000924	0.00683	1	04/16/2021 16:52	WG1653218
(S) Toluene-d8	110			<i>75.0-131</i>		04/16/2021 16:52	WG1653218
(S) 4-Bromofluorobenzene	94.4			67.0-138		04/16/2021 16:52	WG1653218
(S) 1,2-Dichloroethane-d4	107			70.0-130		04/16/2021 16:52	WG1653218

Semi-Volatile Organic Compounds (GC) by Method 8015

`	J 1	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.10	1	04/16/2021 12:01	WG1652748
C28-C40 Oil Range	8.30		0.281	4.10	1	04/16/2021 12:01	WG1652748
(S) o-Terphenyl	47.8			18.0-148		04/16/2021 12:01	WG1652748

Page 231 of 457

SAMPLE RESULTS - 09

Collected date/time: 04/13/21 12:00 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.7		1	04/16/2021 14:17	WG1652857

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.41	20.5	1	04/18/2021 14:49	WG1653396

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	04/17/2021 03:30	WG1653324
(S) a,a,a-Trifluorotoluene(FID)	91.4			77.0-120		04/17/2021 03:30	WG1653324

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000489	0.00105	1	04/16/2021 17:11	WG1653218
Toluene	U		0.00136	0.00523	1	04/16/2021 17:11	WG1653218
Ethylbenzene	0.00152	<u>J</u>	0.000771	0.00262	1	04/16/2021 17:11	WG1653218
Total Xylenes	0.00413	<u>J</u>	0.000921	0.00680	1	04/16/2021 17:11	WG1653218
(S) Toluene-d8	111			75.0-131		04/16/2021 17:11	WG1653218
(S) 4-Bromofluorobenzene	94.1			67.0-138		04/16/2021 17:11	WG1653218
(S) 1,2-Dichloroethane-d4	104			70.0-130		04/16/2021 17:11	WG1653218

[°]Qc

Semi-Volatile Organic Compounds (GC) by Method 8015

•	J 1	`	/ /				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.09	1	04/16/2021 16:22	WG1652748
C28-C40 Oil Range	3.36	<u>J</u>	0.280	4.09	1	04/16/2021 16:22	WG1652748
(S) o-Terphenyl	52.3			18.0-148		04/16/2021 16:22	WG1652748

Page 232 of 457

Total Solids by Method 2540 G-2011

L1339144-01,02,03,04,05

 (MB) R3642889-1
 04/16/21 08:37

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 %
 %

 Total Solids
 0.00100

²Tc

L1339144-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1339144-01 04/16/21 08:37 • (DUP) R3642889-3 04/16/21 08:37

. ,	Original Resu	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	96.2	95.9	1	0.386		10

⁴Cn

Ss

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3642889-2 04/16/21 08:37

(200) 10042000 2 04/10/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

Page 233 of 457

Total Solids by Method 2540 G-2011

L1339144-06,07,08,09

Method Blank	(MR)
MCthod Didnik	(IVID)

(MB) R3642997-1 04/10	5/21 14:1/				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.00100				

Ss

L1339131-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1339131-02 04/16/21 14:17 • (DUP) R3642997-3 04/16/21 14:17

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	82.7	82.0	1	0.894		10

[†]Cn

Laboratory Control Sample (LCS)

(I CS) P3642997-2 04/16/21 14:17

(LC3) K3042337-2 04/10/		ount LCS Resu	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	100	85.0-115

Page 234 of 457

Wet Chemistry by Method 300.0

L1339144-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3643426-1 04/18/	21 09:42			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1337668-81 Original Sample (OS) • Duplicate (DUP)

(OS) L1337668-81 04/18/21 10:37 • (DUP) R3643426-3 04/18/21 10:46

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	118	116	1	2.02		20

Cn

L1339144-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1339144-02 04/18/2 ⁻¹	113:12 • (DUP) R Original Result (dry)		04/18/21 13 Dilution		DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3643426-2 04/18/21 09:51

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	193	96.5	90.0-110	

L1337668-81 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1337668-81 04/18/21 10:37 • (MS) P3643426-4 04/18/21 10:55 • (MSD) P3643426-5 04/18/21 11:05

(00) 21007 000 01 0	00/2100/000 01 01/10/21 10.07 (M0/100 10 120 1 01/10/21 10.00 (M0/21 10.00 10 120 0 0 1/10/21 10.00												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	500	118	613	649	98.8	106	1	80.0-120			5.75	20	

Page 235 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1339144-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3643188-2 04/16/2	21 23:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	96.0			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3643188-1 04/16/2	21 22:27				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.79	123	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			117	77.0-120	

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Page 236 of 457

L1339144-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3643216-3 04/16/2	1 11:57						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
Benzene	U		0.000467	0.00100			
Ethylbenzene	U		0.000737	0.00250			
Toluene	U		0.00130	0.00500			
Xylenes, Total	U		0.000880	0.00650			
(S) Toluene-d8	106			75.0-131			
(S) 4-Bromofluorobenzene	95.7			67.0-138			
(S) 1,2-Dichloroethane-d4	102			70.0-130			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3643216-1 04/16/2	1 10:42 • (LCSD)) R3643216-2	04/16/21 11:01								E
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	- 1
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	L
Benzene	0.125	0.120	0.119	96.0	95.2	70.0-123			0.837	20	Ī
Ethylbenzene	0.125	0.124	0.124	99.2	99.2	74.0-126			0.000	20	
Toluene	0.125	0.119	0.118	95.2	94.4	75.0-121			0.844	20	[
Xylenes, Total	0.375	0.363	0.352	96.8	93.9	72.0-127			3.08	20	
(S) Toluene-d8				98.8	99.5	75.0-131					L
(S) 4-Bromofluorobenzene				99.6	103	67.0-138					
(S) 1,2-Dichloroethane-d4				118	118	70.0-130					

L1339164-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1339164-07	04/16/21 19:42 • (MS) R3	3643216-4 04/	16/21 20:58 • (N	MSD) R3643216	-5 04/16/21 21:	:1/
	Spike Amount	Original Result	MCD IIII	MSD Result	146 B	

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.118	U	0.0447	0.0994	38.0	84.5	1	10.0-149		<u>J3</u>	76.0	37
Ethylbenzene	0.118	U	0.0631	0.118	53.6	100	1	10.0-160		<u>J3</u>	60.4	38
Toluene	0.118	U	0.0509	0.105	43.3	89.6	1	10.0-156		<u>J3</u>	69.8	38
Xylenes, Total	0.353	U	0.223	0.341	63.3	96.7	1	10.0-160		<u>J3</u>	41.7	38
(S) Toluene-d8					106	101		75.0-131				
(S) 4-Bromofluorobenzene					104	99.1		67.0-138				
(S) 1,2-Dichloroethane-d4					109	112		70.0-130				

Page 237 of 457

Semi-Volatile Organic Compounds (GC) by Method 8015

L1339144-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3642556-1 04/16	/21 03:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	54.5			18.0-148

²Tc

Laboratory Control Sample (LCS)

(LCS) R3642556-2 04/16/	CS) R3642556-2 04/16/21 03:57							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
C10-C28 Diesel Range	50.0	39.0	78.0	50.0-150				
(S) o-Terphenyl			61.7	18.0-148				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description

J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.

Ss

D A I	at a a L K Laat a la a L	10005 -	Dal Marinet	1. 1: - + TNL 07400
Pace Analy	ticai Nationai	12065 Lebanon	Ra Mount .	Juliet, TN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Page 240 of 457
Page: 1 of 1

TE	Tetra Tech, Inc.					Midla Tel	and, (432	I Street, Texas 7 2) 682-4 2) 682-3	9701 559	100																Commence of the second	
Client Name:	Conoco Phillips	Site Manage	er:	Chri	istian	Llull		rely i														EST				11/2	
Project Name:	MCA 151 Flowline Release	Contact Info):		ail: chi			@tetrat	ech.co	om	1	1	1-1	(C	irc	le d	or s	Spe	eci	fy I	Viet	ho	d N	lo.)	I		į.
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-MD	-0236	66																				
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	701			450						٦		<u></u>											list)			
Receiving Laboratory:	Pace Analytical	Sampler Sig	gnature:	- 3	Adriar	Gar	cia			sån.	٦		- MRC	Se Hg	Se Hg									attached list)			
Comments: COPTETE	RA Acctnum							and the same of th	0		10000	X 8260B	30 - ORO	d Cr Pb	Cd Cr Pb			4	8270C/625				S	ees)			
		SAME	PLING	MA	ATRIX	PR		RVATIV			(x)		30 - DF	As Ba C	As Ba	-	tiles	8260B / 624					e TDS	hemistr	ance		
LAB#	SAMPLE IDENTIFICATION	YEAR: 2021		1	4	\Box	Ī		- NE			1B 05 (E)	M (G	S Ag /	als Ag	tiles	i Vola		mi. Vo	2/60		stos)	Sulfate	ater C	on Bail		
	1339144	DATE	TIME	WATER	SOIL	HCL	HNO3	NONE	# CONTAINERS		FILLERED (Y/N)	FPH TX1005 (Ext to	TPH 8015M (GRO - DRO - ORO - MRO)	Total Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	rCLP Volatiles	TCLP Semi Volatiles	GC/MS Vol.	GC/MS Semi. Vol.	PCB's 8082 / 608	NORM	PLM (Asbestos) Chloride 300.0	Chloride	General Water Chemistry	Anion/Cation Balance TPH 8015R		НОГР
-11	FS-1 (2')	04/13/21	1000		X			X		_		X	Х	T								X					Ť
rel	FS-2 (2')	04/13/21	1015		X	-		х		2	N	x	х			П	-2			18.0		×		-			
-13	ESW-1	04/13/21	1030		х			Х			N :	х	X	T			1000	The second	1	П		×		П	3		
-44	ESW-2	04/13/21	1045		Х			х			N :	x	Х	T						П		X		П	T		
705	ESW-3	04/13/21	1100		Х			х			N I	х	Х	T					-		П	×		П			
-4	SSW-1	04/13/21	1115	9	X	4		x			N :	х	Х							П	П	x					13
47	WSW-1	04/13/21	1130		Х	- 4		Х	EM.		N	X	Х								П	X	:	C.A.			
-68	WSW-2	04/13/21	1145		Х			X			N .	X	Х									X					
-09	WSW-3	04/13/21	1200		Х			x			N.	X	Х			60						X	1	1	7.4		
Relinquished by: Relinquished by:	Date: Time: 14 Apr 21 10:47 Date: Time:	Received by	X	4	4-	Dat 4 .	<i>L/</i>		Tin	<u>න</u> ne:	S	Sampl	AB U ONL	Y erati	ıre	[x		l: Sa			24 hr.) ⁴⁸	hr. 7	72 hr.		
Relinquished by:	9-14-21 17:05 Date: Time:	Received by	ia T	m	n	Dat	e:	121	Tin {	100 ne:		as	AZ)	~]					Author		RP R	Report			

Pace Analytical National Center for Testing & In Cooler Receipt Form	novation	
Client: COV TETRA	1.13361	44
Cooler Received/Opened On: 4 / [5 / 21 Temperatur Received By: Olivia Turner	e: 0.5	
Signature: Olina luna		
Receipt Check List NP	Yes	le Ne
COC Seal Present / Intact?	Tes	No
COC Signed / Accurate?		(5) (A (5) (5) (A)
Bottles arrive intact?		
Correct bottles used?		Lails
ufficient volume sent?		
Applicable		-
OA Zero headspace?		
reservation Correct / Checked?		

Pace Analytical® ANALYTICAL REPORT

Ss

Cn

Sr

Qc

Gl

Αl

ConocoPhillips - Tetra Tech

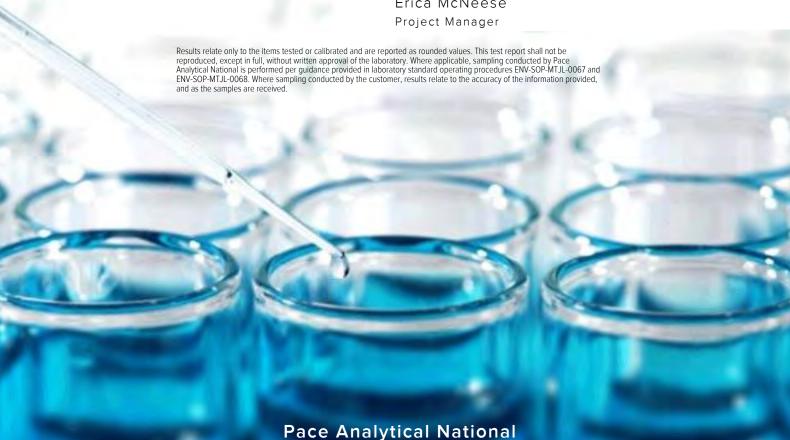
L1339853 Sample Delivery Group: Samples Received: 04/16/2021

Project Number: 212C-MD-02471

Description: COP MCA 151 Flowline Release

Report To: Christian Llull

901 West Wall


Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Enica Mc Neese

Erica McNeese Project Manager

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
FS-4 (2') L1339853-01	7
FS-5 (2') L1339853-02	8
FS-6 (4') L1339853-03	9
ESW-4 L1339853-04	10
ESW-5 L1339853-05	11
ESW-6 L1339853-06	12
ESW-7 L1339853-07	13
WSW-4 L1339853-08	14
WSW-5 L1339853-09	15
WSW-6 L1339853-10	16
WSW-7 L1339853-11	17
Qc: Quality Control Summary	18
Total Solids by Method 2540 G-2011	18
Wet Chemistry by Method 300.0	20
Volatile Organic Compounds (GC) by Method 8015D/GRO	21
Volatile Organic Compounds (GC/MS) by Method 8260B	23
Semi-Volatile Organic Compounds (GC) by Method 8015	24
GI: Glossary of Terms	25
Al: Accreditations & Locations	26

Sc: Sample Chain of Custody

27

SAMPLE SUMMARY

	SAIVII LL V		/I//I/ I			
FS-4 (2') L1339853-01 Solid			Collected by Adrian Garcia	Collected date/time 04/14/21 10:00	Received da 04/16/21 11:3	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Total Solids by Method 2540 G-2011	WG1653651	1	04/17/21 20:22	04/17/21 20:51	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1654353	1	04/19/21 15:10	04/19/21 17:10	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1654169	1	04/17/21 16:48	04/19/21 03:43	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1654066	1	04/17/21 16:48	04/18/21 16:33	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1653571	1	04/17/21 08:29	04/17/21 17:39	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	nte/time
FS-5 (2') L1339853-02 Solid			Adrian Garcia	04/14/21 10:15	04/16/21 11:3	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1653651	1	04/17/21 20:22	04/17/21 20:51	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1654353	1	04/19/21 15:10	04/19/21 18:10	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1654670	1	04/17/21 16:48	04/20/21 00:41	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1654066	1	04/17/21 16:48	04/18/21 16:53	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1653571	1	04/17/21 08:29	04/17/21 17:51	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
FS-6 (4') L1339853-03 Solid			Adrian Garcia	04/14/21 10:30	04/16/21 11:3	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1653651	1	04/17/21 20:22	04/17/21 20:51	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1654353	1	04/19/21 15:10	04/19/21 18:20	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1654169	1	04/17/21 16:48	04/19/21 04:27	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1654066	1	04/17/21 16:48	04/18/21 17:12	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1653571	1	04/17/21 08:29	04/17/21 18:04	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	nte/time
ESW-4 L1339853-04 Solid			Adrian Garcia	04/14/21 10:45	04/16/21 11:3	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T			date/time	date/time		10 1 · · · ·
Total Solids by Method 2540 G-2011	WG1653651	1	04/17/21 20:22	04/17/21 20:51	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1654353	1	04/19/21 15:10	04/19/21 18:29	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1654670	1	04/17/21 16:48	04/20/21 01:09	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1654066	1	04/17/21 16:48	04/18/21 17:31	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1653571	1	04/17/21 08:29	04/17/21 18:16	CAG	Mt. Juliet, TN
			Collected by	Collected date/time		
ESW-5 L1339853-05 Solid			Adrian Garcia	04/14/21 11:00	04/16/21 11:3	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1653651	1	04/17/21 20:22	04/17/21 20:51	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1654353	1	04/19/21 15:10	04/19/21 18:48	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1654169	1	04/17/21 16:48	04/19/21 05:11	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1654066	1	04/17/21 16:48	04/18/21 17:50	JHH	Mt. Juliet, TN
0 17/1 11 0 1 0 1 1 100/5		_				

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1653571

04/17/21 08:29

04/17/21 18:29

CAG

Mt. Juliet, TN

SAMPLE SUMMARY

	9 7 22					
ESW-6 L1339853-06 Solid			Collected by Adrian Garcia	Collected date/time 04/14/21 11:15	Received da 04/16/21 11:3	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1653651	1	04/17/21 20:22	04/17/21 20:51	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1654353	1	04/19/21 15:10	04/19/21 18:58	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1654169	1	04/17/21 16:48	04/19/21 05:33	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1654066	1	04/17/21 16:48	04/18/21 18:09	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1653571	1	04/17/21 08:29	04/17/21 18:42	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
ESW-7 L1339853-07 Solid			Adrian Garcia	04/14/21 11:30	04/16/21 11:3	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T-1-1 C-13-1- h., M-11 1 25 40 C 2044	WC4CE2CE4	1	date/time	date/time	KDM	MA Lutter TNI
Total Solids by Method 2540 G-2011	WG1653651	1	04/17/21 20:22	04/17/21 20:51	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1654353	1	04/19/21 15:10	04/19/21 19:07	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG1654169 WG1654066	1 1	04/17/21 16:48 04/17/21 16:48	04/19/21 05:55 04/18/21 18:28	DWR JHH	Mt. Juliet, TN Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1653571	1	04/17/21 16:46	04/16/21 18:54	CAG	Mt. Juliet, TN
Senii-volatile Organic Compounds (GC) by Method 8015	WG1033371	'	04/1//21 00.29	04/1//21 10.54	CAG	wit. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-4 L1339853-08 Solid			Adrian Garcia	04/14/21 11:45	04/16/21 11:3	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1653651	1	04/17/21 20:22	04/17/21 20:51	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1654353	1	04/19/21 15:10	04/19/21 19:17	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1654169	1	04/17/21 16:48	04/19/21 06:17	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1654066	1	04/17/21 16:48	04/18/21 18:47	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1653571	1	04/17/21 08:29	04/17/21 19:07	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-5 L1339853-09 Solid			Adrian Garcia	04/14/21 12:00	04/16/21 11:3	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1653651	1	04/17/21 20:22	04/17/21 20:51	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1654353	1	04/19/21 15:10	04/19/21 19:26	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1654169	1	04/17/21 16:48	04/19/21 06:49	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1654066	1	04/17/21 16:48	04/18/21 19:06	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1653571	1	04/17/21 08:29	04/18/21 06:53	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-6 L1339853-10 Solid			Adrian Garcia	04/14/21 12:15	04/16/21 11:3	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1653652	1	04/17/21 19:29	04/17/21 20:04	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1654353	1	04/19/21 15:10	04/19/21 19:36	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1654169	1	04/17/21 16:48	04/19/21 07:11	DWR	Mt. Juliet, TN
V-1-til- 0i- C	WC1CE 10CC	4	0.4/47/04.40.40	0.4/40/24.40-26		MA Lutha TNI

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1654066

WG1653571

04/17/21 16:48

04/17/21 08:29

JHH

CAG

Mt. Juliet, TN

Mt. Juliet, TN

04/18/21 19:26

04/17/21 19:19

Collected date/time Received date/time

SAMPLE SUMMARY

Collected by

WSW-7 L1339853-11 Solid				04/14/21 12:30	04/16/21 11:30)
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1653652	1	04/17/21 19:29	04/17/21 20:04	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1654353	1	04/19/21 15:10	04/19/21 20:05	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1654169	1	04/17/21 16:48	04/19/21 07:47	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1654066	1	04/17/21 16:48	04/18/21 19:45	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1653571	1	04/17/21 08:29	04/18/21 06:41	CAG	Mt. Juliet. TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica McNeese Project Manager

SAMPLE RESULTS - 01

Collected date/time: 04/14/21 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.1		1	04/17/2021 20:51	WG1653651

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	11.3	<u>J</u>	9.47	20.6	1	04/19/2021 17:10	WG1654353

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	04/19/2021 03:43	WG1654169
(S) a,a,a-Trifluorotoluene(FID)	93.5			77.0-120		04/19/2021 03:43	WG1654169

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000495	0.00106	1	04/18/2021 16:33	WG1654066
Toluene	U		0.00138	0.00530	1	04/18/2021 16:33	WG1654066
Ethylbenzene	U		0.000781	0.00265	1	04/18/2021 16:33	WG1654066
Total Xylenes	0.00501	<u>J</u>	0.000932	0.00689	1	04/18/2021 16:33	WG1654066
(S) Toluene-d8	107			75.0-131		04/18/2021 16:33	WG1654066
(S) 4-Bromofluorobenzene	98.7			67.0-138		04/18/2021 16:33	WG1654066
(S) 1,2-Dichloroethane-d4	93.6			70.0-130		04/18/2021 16:33	WG1654066

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.12	1	04/17/2021 17:39	WG1653571
C28-C40 Oil Range	5.24		0.282	4.12	1	04/17/2021 17:39	WG1653571
(S) o-Terphenyl	58.9			18.0-148		04/17/2021 17:39	WG1653571

Page 249 of 457

SAMPLE RESULTS - 02

Collected date/time: 04/14/21 10:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.6		1	04/17/2021 20:51	WG1653651

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.53	20.7	1	04/19/2021 18:10	WG1654353

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	04/20/2021 00:41	WG1654670
(S) a,a,a-Trifluorotoluene(FID)	99.4			77.0-120		04/20/2021 00:41	WG1654670

Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Decult (dm.)	Ouglities.	MDL (dm.)	DDI (4m.)	Dilution	Amalusia	Datah
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000500	0.00107	1	04/18/2021 16:53	WG1654066
Toluene	U		0.00139	0.00536	1	04/18/2021 16:53	WG1654066
Ethylbenzene	0.000928	<u>J</u>	0.000790	0.00268	1	04/18/2021 16:53	WG1654066
Total Xylenes	0.00501	<u>J</u>	0.000943	0.00696	1	04/18/2021 16:53	WG1654066
(S) Toluene-d8	109			75.0-131		04/18/2021 16:53	WG1654066
(S) 4-Bromofluorobenzene	101			67.0-138		04/18/2021 16:53	WG1654066
(S) 1,2-Dichloroethane-d4	92.7			70.0-130		04/18/2021 16:53	WG1654066

Semi-Volatile Organic Compounds (GC) by Method 8015

•	<u> </u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.36	<u>J</u>	1.67	4.14	1	04/17/2021 17:51	WG1653571
C28-C40 Oil Range	3.57	<u>J</u>	0.284	4.14	1	04/17/2021 17:51	WG1653571
(S) o-Terphenyl	55.1			18.0-148		04/17/2021 17:51	WG1653571

Regeired by OCD: 5/18/2021 6:32:30 PM

SAMPLE RESULTS - 03

Collected date/time: 04/14/21 10:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.5		1	04/17/2021 20:51	WG1653651

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12.2	J	9.63	20.9	1	04/19/2021 18:20	WG1654353

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1	04/19/2021 04:27	WG1654169
(S) a,a,a-Trifluorotoluene(FID)	93.0			77.0-120		04/19/2021 04:27	<u>WG1654169</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000511	0.00109	1	04/18/2021 17:12	WG1654066
Toluene	U		0.00142	0.00547	1	04/18/2021 17:12	WG1654066
Ethylbenzene	U		0.000807	0.00274	1	04/18/2021 17:12	WG1654066
Total Xylenes	0.00242	<u>J</u>	0.000963	0.00711	1	04/18/2021 17:12	WG1654066
(S) Toluene-d8	109			75.0-131		04/18/2021 17:12	WG1654066
(S) 4-Bromofluorobenzene	101			67.0-138		04/18/2021 17:12	WG1654066
(S) 1,2-Dichloroethane-d4	94.9			70.0-130		04/18/2021 17:12	WG1654066

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.95	<u>J</u>	1.69	4.19	1	04/17/2021 18:04	WG1653571
C28-C40 Oil Range	3.89	<u>J</u>	0.287	4.19	1	04/17/2021 18:04	WG1653571
(S) o-Terphenyl	58.4			18.0-148		04/17/2021 18:04	WG1653571

ConocoPhillips - Tetra Tech

Page 251 of 457

SAMPLE RESULTS - 04

Collected date/time: 04/14/21 10:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.2		1	04/17/2021 20:51	WG1653651

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.36	20.4	1	04/19/2021 18:29	WG1654353

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	04/20/2021 01:09	WG1654670
(S) a,a,a-Trifluorotoluene(FID)	98.8			77.0-120		04/20/2021 01:09	<u>WG1654670</u>

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
enzene	U		0.000484	0.00104	1	04/18/2021 17:31	WG1654066
oluene	U		0.00135	0.00518	1	04/18/2021 17:31	WG1654066
thylbenzene	0.000932	<u>J</u>	0.000763	0.00259	1	04/18/2021 17:31	WG1654066
otal Xylenes	0.00331	<u>J</u>	0.000911	0.00673	1	04/18/2021 17:31	WG1654066
(S) Toluene-d8	108			75.0-131		04/18/2021 17:31	WG1654066
(S) 4-Bromofluorobenzene	99.8			67.0-138		04/18/2021 17:31	WG1654066
(S) 1,2-Dichloroethane-d4	93.4			70.0-130		04/18/2021 17:31	WG1654066

Semi-Volatile Organic Compounds (GC) by Method 8015

•	1	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.07	1	04/17/2021 18:16	WG1653571
C28-C40 Oil Range	2.45	<u>J</u>	0.279	4.07	1	04/17/2021 18:16	WG1653571
(S) o-Terphenyl	55.4			18.0-148		04/17/2021 18:16	WG1653571

Page 252 of 457

SAMPLE RESULTS - 05

Collected date/time: 04/14/21 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.2		1	04/17/2021 20:51	WG1653651

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.37	20.4	1	04/19/2021 18:48	WG1654353

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	04/19/2021 05:11	WG1654169
(S) a,a,a-Trifluorotoluene(FID)	93.0			77.0-120		04/19/2021 05:11	WG1654169

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	<u>—</u>
Senzene	U		0.000484	0.00104	1	04/18/2021 17:50	WG1654066
uene	U		0.00135	0.00518	1	04/18/2021 17:50	WG1654066
hylbenzene	U		0.000764	0.00259	1	04/18/2021 17:50	WG1654066
otal Xylenes	0.00147	<u>J</u>	0.000912	0.00673	1	04/18/2021 17:50	WG1654066
(S) Toluene-d8	107			75.0-131		04/18/2021 17:50	WG1654066
(S) 4-Bromofluorobenzene	100			67.0-138		04/18/2021 17:50	WG1654066
(S) 1,2-Dichloroethane-d4	93.9			70.0-130		04/18/2021 17:50	WG1654066

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.07	1	04/17/2021 18:29	WG1653571
C28-C40 Oil Range	4.51		0.279	4.07	1	04/17/2021 18:29	WG1653571
(S) o-Terphenyl	61.6			18.0-148		04/17/2021 18:29	WG1653571

Gl

Page 253 of 457

SAMPLE RESULTS - 06

L1339853

Collected date/time: 04/14/21 11:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.0		1	04/17/2021 20:51	WG1653651

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.48	20.6	1	04/19/2021 18:58	WG1654353

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	04/19/2021 05:33	WG1654169
(S) a,a,a-Trifluorotoluene(FID)	93.0			77.0-120		04/19/2021 05:33	WG1654169

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000496	0.00106	1	04/18/2021 18:09	WG1654066
Toluene	U		0.00138	0.00531	1	04/18/2021 18:09	WG1654066
Ethylbenzene	0.000902	<u>J</u>	0.000782	0.00265	1	04/18/2021 18:09	WG1654066
Total Xylenes	0.00287	<u>J</u>	0.000934	0.00690	1	04/18/2021 18:09	WG1654066
(S) Toluene-d8	107			75.0-131		04/18/2021 18:09	WG1654066
(S) 4-Bromofluorobenzene	101			67.0-138		04/18/2021 18:09	WG1654066
(S) 1,2-Dichloroethane-d4	94.1			70.0-130		04/18/2021 18:09	WG1654066

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	J 1	. ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.12	1	04/17/2021 18:42	WG1653571
C28-C40 Oil Range	7.49		0.282	4.12	1	04/17/2021 18:42	WG1653571
(S) o-Terphenyl	58.9			18.0-148		04/17/2021 18:42	WG1653571

ConocoPhillips - Tetra Tech

Page 254 of 457

SAMPLE RESULTS - 07

Collected date/time: 04/14/21 11:30 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.7		1	04/17/2021 20:51	WG1653651

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.51	20.7	1	04/19/2021 19:07	WG1654353

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	04/19/2021 05:55	WG1654169
(S) a,a,a-Trifluorotoluene(FID)	93.3			77.0-120		04/19/2021 05:55	WG1654169

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	·
Benzene	U		0.000499	0.00107	1	04/18/2021 18:28	WG1654066
Toluene	U		0.00139	0.00534	1	04/18/2021 18:28	WG1654066
Ethylbenzene	U		0.000787	0.00267	1	04/18/2021 18:28	WG1654066
Total Xylenes	0.00129	<u>J</u>	0.000940	0.00694	1	04/18/2021 18:28	WG1654066
(S) Toluene-d8	109			75.0-131		04/18/2021 18:28	WG1654066
(S) 4-Bromofluorobenzene	103			67.0-138		04/18/2021 18:28	WG1654066
(S) 1,2-Dichloroethane-d4	92.3			70.0-130		04/18/2021 18:28	WG1654066

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.09	<u>J</u>	1.66	4.14	1	04/17/2021 18:54	WG1653571
C28-C40 Oil Range	7.15		0.283	4.14	1	04/17/2021 18:54	WG1653571
(S) o-Terphenyl	58.5			18.0-148		04/17/2021 18:54	WG1653571

ConocoPhillips - Tetra Tech

13 of 28

Page 255 of 457

SAMPLE RESULTS - 08

Collected date/time: 04/14/21 11:45 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.7		1	04/17/2021 20:51	WG1653651

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.32	20.3	1	04/19/2021 19:17	WG1654353

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.101	1	04/19/2021 06:17	WG1654169
(S) a,a,a-Trifluorotoluene(FID)	93.6			77.0-120		04/19/2021 06:17	WG1654169

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000479	0.00103	1	04/18/2021 18:47	WG1654066
Toluene	U		0.00133	0.00513	1	04/18/2021 18:47	WG1654066
Ethylbenzene	U		0.000756	0.00257	1	04/18/2021 18:47	WG1654066
Total Xylenes	U		0.000903	0.00667	1	04/18/2021 18:47	WG1654066
(S) Toluene-d8	110			75.0-131		04/18/2021 18:47	WG1654066
(S) 4-Bromofluorobenzene	102			67.0-138		04/18/2021 18:47	WG1654066
(S) 1,2-Dichloroethane-d4	93.9			70.0-130		04/18/2021 18:47	WG1654066

Semi-Volatile Organic Compounds (GC) by Method 8015

<u> </u>	,	•	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.05	1	04/17/2021 19:07	WG1653571
C28-C40 Oil Range	3.89	<u>J</u>	0.278	4.05	1	04/17/2021 19:07	WG1653571
(S) o-Terphenyl	58.9			18.0-148		04/17/2021 19:07	WG1653571

Gl

14 of 28

Page 256 of 457

SAMPLE RESULTS - 09

Total Solids by Method 2540 G-2011

Collected date/time: 04/14/21 12:00

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.0		1	04/17/2021 20:51	WG1653651

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10.6	<u>J</u>	9.29	20.2	1	04/19/2021 19:26	WG1654353

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	04/19/2021 06:49	WG1654169
(S) a,a,a-Trifluorotoluene(FID)	93.0			77.0-120		04/19/2021 06:49	<u>WG1654169</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	· ·	-					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000476	0.00102	1	04/18/2021 19:06	WG1654066
Toluene	U		0.00133	0.00510	1	04/18/2021 19:06	WG1654066
Ethylbenzene	U		0.000752	0.00255	1	04/18/2021 19:06	WG1654066
Total Xylenes	U		0.000898	0.00663	1	04/18/2021 19:06	WG1654066
(S) Toluene-d8	109			75.0-131		04/18/2021 19:06	WG1654066
(S) 4-Bromofluorobenzene	101			67.0-138		04/18/2021 19:06	WG1654066
(S) 1,2-Dichloroethane-d4	94.3			70.0-130		04/18/2021 19:06	WG1654066

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	` `	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.66	<u>J</u>	1.63	4.04	1	04/18/2021 06:53	WG1653571
C28-C40 Oil Range	5.78		0.277	4.04	1	04/18/2021 06:53	WG1653571
(S) o-Terphenyl	61.1			18.0-148		04/18/2021 06:53	WG1653571

Ss

Gl

Page 257 of 457

SAMPLE RESULTS - 10

Total Solids by Method 2540 G-2011

Collected date/time: 04/14/21 12:15

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.4		1	04/17/2021 20:04	<u>WG1653652</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	15.8	<u>J</u>	9.75	21.2	1	04/19/2021 19:36	WG1654353

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	04/19/2021 07:11	WG1654169
(S) a,a,a-Trifluorotoluene(FID)	94.0			77.0-120		04/19/2021 07:11	WG1654169

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000523	0.00112	1	04/18/2021 19:26	WG1654066
Toluene	U		0.00146	0.00560	1	04/18/2021 19:26	WG1654066
Ethylbenzene	0.00112	<u>J</u>	0.000825	0.00280	1	04/18/2021 19:26	WG1654066
Total Xylenes	0.00397	<u>J</u>	0.000985	0.00728	1	04/18/2021 19:26	WG1654066
(S) Toluene-d8	107			75.0-131		04/18/2021 19:26	WG1654066
(S) 4-Bromofluorobenzene	101			67.0-138		04/18/2021 19:26	WG1654066
(S) 1,2-Dichloroethane-d4	94.3			70.0-130		04/18/2021 19:26	WG1654066

Gl

	9 1	` '	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.90	<u>J</u>	1.71	4.24	1	04/17/2021 19:19	WG1653571
C28-C40 Oil Range	7.17		0.290	4.24	1	04/17/2021 19:19	WG1653571
(S) o-Terphenyl	59.4			18.0-148		04/17/2021 19:19	WG1653571

Page 258 of 457

SAMPLE RESULTS - 11

Total Solids by Method 2540 G-2011

Collected date/time: 04/14/21 12:30

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.8		1	04/17/2021 20:04	<u>WG1653652</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.50	20.7	1	04/19/2021 20:05	WG1654353

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	04/19/2021 07:47	WG1654169
(S) a,a,a-Trifluorotoluene(FID)	93.3			77.0-120		04/19/2021 07:47	<u>WG1654169</u>

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000498	0.00107	1	04/18/2021 19:45	WG1654066
Toluene	U		0.00139	0.00533	1	04/18/2021 19:45	WG1654066
Ethylbenzene	U		0.000786	0.00266	1	04/18/2021 19:45	WG1654066
Total Xylenes	U		0.000938	0.00693	1	04/18/2021 19:45	WG1654066
(S) Toluene-d8	110			<i>75.0-131</i>		04/18/2021 19:45	WG1654066
(S) 4-Bromofluorobenzene	101			67.0-138		04/18/2021 19:45	WG1654066
(S) 1,2-Dichloroethane-d4	95.1			70.0-130		04/18/2021 19:45	WG1654066

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.27	<u>J</u>	1.66	4.13	1	04/18/2021 06:41	WG1653571
C28-C40 Oil Range	6.90		0.283	4.13	1	04/18/2021 06:41	WG1653571
(S) o-Terphenyl	69.2			18.0-148		04/18/2021 06:41	WG1653571

Gl

Page 259 of 457

Total Solids by Method 2540 G-2011

L1339853-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3643344-1 C)4/17/21 20:51			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1339853-07 Original Sample (OS) • Duplicate (DUP)

	\sim	1400000000	04/17/21 20:51 • (DOC 400 44 0	0.4/47/04.00.04
- (()	111339853-07	04/1/// / / / / / / 61 • 1	או זו וו	1 R 3043344-3	04/1/// / / / / / / 51
- 1	\sim	L10000000	0 1/11/21 20.01	,00.	, 1100 100 1 1 0	0 1/11/21 20.01

(03) 21333033 07 04/17/2	120.51 - (DOI)	1130-33-1-3	7-7/1//212	3.51		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	96.7	96.6	1	0.106		10

Laboratory Control Sample (LCS)

(LCS)	R3643344-2	04/17/21	20:51
-------	------------	----------	-------

(LCS) R3043344-2 04/1//2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

Page 260 of 457

Total Solids by Method 2540 G-2011

L1339853-10,11

(MB) R36	643343-1 04/17/2°	1 20:04			
		MB Result	MB Qualifier	MB MDL	MB RDL
Analyte		%		%	%
Total Solid	s	0.00100			

³Ss

L1339975-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1339975-01 04/17/21 20:04 • (DUP) R3643343-3 04/17/21 20:04

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	74.3	73.6	1	0.923		10

600

Laboratory Control Sample (LCS)

(LCS) R3643343-2 04/17/21 20:04

(LC3) R3043343-2 04/1//2	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

⁹Sc

Page 261 of 457

Wet Chemistry by Method 300.0

L1339853-01,02,03,04,05,06,07,08,09,10,11

Method Blank (MB)

(MB) R3643958-1 04/19/	21 16:03			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	П		9.20	20.0

L1339853-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1339853-0	04/19/21 17:10	(DUP) R3643958-3	04/19/21 17:19
-----------------	----------------	------------------	----------------

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	11.3	11.9	1	4.79	J	20

L1339853-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1339853-04 04/19/21 18:29 • (DLIP) R3643958-6 04/19/21 18:39

(00) 21000000 0 1 0 1/10/2	Original Result (dry)		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3643958-2 04/19/21 16:12

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	206	103	90.0-110	

L1339853-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1339853-01 04/19/21 17:10 • (MS) R3643958-4 04/19/21 17:29 • (MSD) R3643958-5 04/19/21 17:38

(03) [1339633-01 04/	13/21 17.10 • (1013) 1	(3043330-4 04	113/21 17.23 • (1	VISD) KS04595	00-3 04/13/21	17.50						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	515	11.3	541	531	103	101	1	80.0-120			1.90	20

DATE/TIME:

04/20/21 14:34

Page 262 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1339853-01,03,05,06,07,08,09,10,11

Method Blank (MB)

(MB) R3643715-2 04/19/2	21 02:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	98.8			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3643715-1 04/19/2	1 01:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.23	95.1	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			105	77.0-120	

L1339980-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1339980-02 04/19/21 08:31 • (MS) R3643715-3 04/19/21 11:58 • (MSD) R3643715-4 04/19/21 12:48

, ,	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg				%	%		%			%	%
TPH (GC/FID) Low Fraction	138	37.4	201	192	107	101	25	10.0-151			4.52	28
(S) a,a,a-Trifluorotoluene(FID)					114	112		77.0-120				

Page 263 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1339853-02,04

Method Blank (MB)

(MB) R3643942-1 04/19/2	21 21:03				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	99.8			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3643942-2 04/19/	/21 21:59				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.81	106	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			111	77.0-120	

Page 264 of 457

Volatile Organic Compounds (GC/MS) by Method 8260B

L1339853-01,02,03,04,05,06,07,08,09,10,11

Method Blank (MB)

(MB) R3643416-2 04/18/2	1 13:44				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	² Tc
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	³ Ss
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	109			75.0-131	Cn
(S) 4-Bromofluorobenzene	101			67.0-138	
(S) 1,2-Dichloroethane-d4	91.6			70.0-130	⁵ Sr

Laboratory Control Sample (LCS)

(LCS) R3643416-1 04/18/	21 12:28				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.00500	0.00517	103	70.0-123	
Ethylbenzene	0.00500	0.00590	118	74.0-126	
Toluene	0.00500	0.00561	112	75.0-121	
Xylenes, Total	0.0150	0.0171	114	72.0-127	
(S) Toluene-d8			109	75.0-131	
(S) 4-Bromofluorobenzene			100	67.0-138	
(S) 1,2-Dichloroethane-d4			97.9	70.0-130	

Page 265 of 457

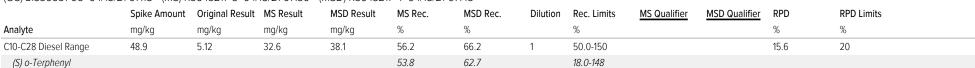
Semi-Volatile Organic Compounds (GC) by Method 8015

L1339853-01,02,03,04,05,06,07,08,09,10,11

Method Blank (MB)

(MB) R3643217-1 04/17	/21 17:14				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	53.9			18.0-148	

Laboratory Control Sample (LCS)


(LCS) R3643217-2 04/17	7/21 17:26				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	34.1	68.2	50.0-150	
(S) o-Terphenyl			65.5	18.0-148	

(OS) L1336651-06 04/18/21 07:18 • (MS) R3643217-3 04/18/21 07:30 • (MSD) R3643217-4 04/18/21 07:43

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

Pace Analytical	Mational	12065 Lebanon	ı Rd Mount Tuli	iet TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Client Name:	Tetta Tech, In	nc.			901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946															(13	339	8<7	2
	Corloco Phillips	Site M	anager:	C	hristia	n Llull	(100)	0.00	- 10		Т	_	_		_	MAIA	ve	10.1	250	UES		,,,	0) >	,
Project Name	WCA 151 Flowline Release	Conto	41-4		Email: christian.llull@tetratech.com								(Circ								No.)		0
Project Locati (county, state)	ion: Lea County, New Mexico	Contac	Contact Info:				Phone: (512) 338-1667							1	11	1	İ		1	11	1	ΙÍ	11	
nvoice to:	Accounts Payable	Project	#:	21	2C-M	D-0247	71													П				
	901 West Wall Street, Suite 100 Midland	Texas 79701							-	9"	1		П				1							
Receiving Labo	oratory: Pace Analytical		r Signature:		Adris	an Gar	ala.		_	_	+	MRO)		P P						П		ed list)		
comments:	COPTETRA Acctnum		-		Autie	in Gan	ala				8	ORO-M		Cd Cr Pb Se Hg			7	2				attached		12
Vr =			AMPLING	1		IPRE	SERVA	TIVE	_	_	X 8260B	- 10		Ba Cd Cr			624	70C/62		П	TDS	stry (see		
LAB#	SAMPLE IDENTIFICATION		021	M	ATRIX		PRESERVA METHO			(N)	BTEX	GRO -		Ag As B		atiles	/809/	ol. 82	80		10	Chemi		
ONLY)	EL IDENTIFICATION	DATE		WATER	_		5	A L	CONTAINERS	FILTERED (Y/N)	X 8021B	TX1005 8015M (8270C	Total Metals Ag As Ba (TCLP Metals Ag As Ba	rCLP Volatiles	Semi Volatiles	GC/MS Vol. 8260B / 624	GC/MS Semi. Vol. 8270C/625	CB's 8082 / 608	PLM (Asbestos)	Chloride 300.0 Chloride Sulfate	Seneral Water Chemistry	TPH 8015R	
N	FS-4 (2')	04/14/2	-	3	SOIL	되 되		NONE	#	E	BTEX	TPH TPH	PAH	TCLF	TCLF	TCLP RCI	GCAN	GC/N	PCB's NORM	PLM	Chloride	Gene	TPH	НОГР
-	FS-5 (2')	04/14/2	1000	+	X	1	X		1	N	X	Х		1 6		46	-		- 0	100	X		E/10	W C
-	FS-6 (4')	04/14/2	70.0	_	X	+	X	+	1	N	X	X						Ш	1		X			-
	ESW-4	04/14/2	1000	\rightarrow	X	+	X	\perp	1	N	Х	X									X			-
-	ESW-5	04/14/2	1010	+	X	++	X	\sqcup	1	N	Х	X					-				X			1
	ESW-6	04/14/2	1.00	+	X	1	X	\sqcup	1	N	Х	Х									X			-
1.00	ESW-7	04/14/21	1110	+	X		X	\sqcup	1	N	Х	X									X			
	WSW-4	04/14/21	1.100		X		X	Н	1	N	Х	X									X			-
	WSW-5	04/14/21	1140		×	-	X		1	N	Х	Х		-	64		1	G)			X			-
It lished by	WSW-6	04/14/21			×	1	X		1	N	Х	X									X		H	1
and and	modrew Garcia Date: Time:	Received	1215			Date:	X		1 Time:	N	X	X AB	Her		REM	IARK	(S:	2.0			X			
uished by: uished by:	Date: Time: 4-15-21 163	Received b	y wil		/	5-2 Date:		1	rime:			ON le Terr	LY			_	anda USH:		e Day	24 h	<u></u>	hr. 72	2 hr.	eV-
eal Present/	Sample Receipt Checklist Intact: Y N If Applicable	Received by				5-2 Date:	,	1	ime:		001	143	30	4	_	_				orized s or TF		eport		
arrive int	te: N VOA Zero Headspace: Y N Pres.Correct/Check: Y N sent: X N	ORIGINA	AL COPY		1				-	\rightarrow	Circl	D) HV	ND D	EL IVE	DED	rr.	DEV	110	, T	acking	1 #-	_		

Analysis Request of Chain of Custody Record

Page 269 of 457
Page: 2 of 2

TŁ	Tetra Tech,	Inc.				901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946																		UB	39	85	3
Client Name:	Conoco Phillips		Site Manage	er:	Chris	Christian Llull												NAI									
Project Name:	MCA 151 Flowline Release		Contact Info	o:		Email: christian.llull@tetratech.com Phone: (512) 338-1667							1	11	((iro	le	or S	pe 	CII	y №	letr	lod	No	.)	1.1	1
Project Location: (county, state)	Lea County, New Mexico		Project #:	2120	C-MD-	-0247	71																				
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 M	lidland, Texas 7970	701								6										(ist)	tion.					
Receiving Laboratory:	Pace Analytical	e Analytical Sampler Signatur												ORO - MRO)		Se Hg	,		15					ached			
Comments: COPTE	FRA Acctnum					1	100	D				8260B	1.		Total Metals Ag As Ba Cd Cr Pb Se Hg		g 75	-	8270C/625				S (See att				
			SAMPLING						RVAT				׾ċ	GRO - DRO		As Ba C		atiles	8260B / 624	ol. 8270	98		П	tte TDS	lance		
LAB#	SAMPLE IDENTIFICATION	ı	YEAR: 2021		-						AINEF		8021B BTE	8015M (G	00.	als Ag	latiles	mi Vola	Vol. 826	emi. V	382 / 60	oestos)	300.0	Sulfate Water Che	tion Ba	SH	
(LAB USE)			DATE	TIME	WATER	SOIL	HCL	HNO3	ICE		# CONTAINERS	FILTERED (Y/N)	BTEX 80		PAH 8270C	TCLP Me	TCLP Volatiles	TCLP Semi Volatiles	SX	GC/MS Semi. Vol.	PCB's 8082 / 608	NORM PLM (Asbestos)	Chloride 300.0	Chloride Sulfate TDS General Water Chemistry (see attached list)	Anion/Cation Balance	TPH 8015R	НОГО
	WSW-7		04/14/21	1230		X	127		Х		1	N	Х	Х		I	×	-					Х	T			
		10			H	+	H	-	+				+	+	+	+	+	H	+	+	H	+	Н	+	\vdash		+
					\Box								\dagger			1	t		t	İ		\pm		1			
					П	1			-	-			1	1		1	L		-	-		\perp		+			+
					H	+	Н		+	+			+	+	+	+	+		+	+	H	+	H	+	H	H	+
3 7 29						\perp													I		П	1				П	\perp
16					H	+	H		+	+	\vdash		+	+	Н	+	+	H	+	+	H	+	H	+	+	H	+
Relinquished by:	Date:	Time:	Received by	:			Dat	e:			Time:		ı	AB		E	RE	MAR	KS:			_	ш				
Relinquished by: And	2 15 Apr		1400	lol	1	4-13		1		1	Time:	٥	-	ON ole Ter				X F				a 24		≯ 8 hr.	72	hr.	2r
Relinquished by:	Date:	Time:	Received by	AL COPY		4	Dat //		21		Time:)	2,0	N	31	_		D F				mits or			ort		

Pace Analytical® ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1342287

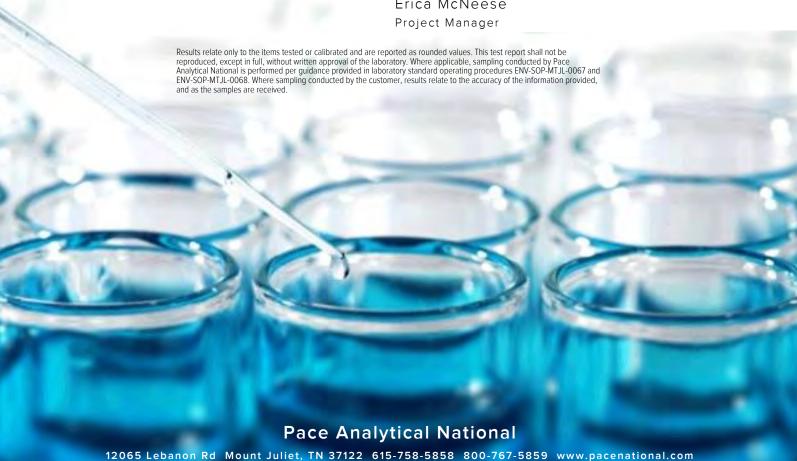
Samples Received: 04/22/2021

Project Number: 212C-MD-02471

Description: COP MCA 151 Flowline Release

Report To: Christian Llull

901 West Wall


Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Enicay Nesse

Erica McNeese Project Manager

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	6
Sr: Sample Results	7
FS-13 (6') L1342287-01	7
FS-14 (4') L1342287-02	8
ESW-11 (2') L1342287-03	9
ESW-12 (2') L1342287-04	10
ESW-13 L1342287-05	11
ESW-14 L1342287-06	12
ESW-15 L1342287-07	13
ESW-16 L1342287-08	14
WSW-13 L1342287-09	15
WSW-14 L1342287-10	16
WSW-15 L1342287-11	17
WSW-16 L1342287-12	18
Qc: Quality Control Summary	19
Total Solids by Method 2540 G-2011	19
Wet Chemistry by Method 300.0	21
Volatile Organic Compounds (GC) by Method 8015D/GRO	22
Volatile Organic Compounds (GC/MS) by Method 8260B	24
Semi-Volatile Organic Compounds (GC) by Method 8015	25
GI: Glossary of Terms	26
Al: Accreditations & Locations	27

Sc: Sample Chain of Custody

28

SAMPLE SUMMARY

	JAMII LL V	J () (V) ()	/I//I/ I			
FS-13 (6') L1342287-01 Solid			Collected by John Thurston	Collected date/time 04/21/21 11:15	Received da 04/22/21 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1657015	1	04/23/21 10:47	04/23/2110:54	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657277	1	04/23/21 01:05	04/23/21 06:20	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1657763	1	04/22/21 13:51	04/25/21 00:41	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657216	1	04/22/21 13:51	04/23/21 05:07	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657255	1	04/23/21 00:03	04/23/21 17:40	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-14 (4') L1342287-02 Solid			John Thurston	04/21/21 11:22	04/22/21 09	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1657015	1	04/23/21 10:47	04/23/21 10:54	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657277	1	04/23/21 01:05	04/23/21 06:30	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1657763	1	04/22/21 13:51	04/25/21 01:03	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657216	1	04/22/21 13:51	04/23/21 05:26	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657255	20	04/23/21 00:03	04/23/21 21:35	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
ESW-11 (2') L1342287-03 Solid			John Thurston	04/21/21 11:29	04/22/21 09	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1657015	1	04/23/2110:47	04/23/2110:54	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657277	1	04/23/21 01:05	04/23/21 06:39	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1657763	1	04/22/21 13:51	04/25/21 01:25	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657216	1	04/22/21 13:51	04/23/21 05:45	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657255	1	04/23/21 00:03	04/23/21 17:53	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
ESW-12 (2') L1342287-04 Solid			John Thurston	04/21/21 11:36	04/22/21 09	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1657019	1	04/23/2112:03	04/23/21 12:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657277	1	04/23/21 01:05	04/23/21 06:49	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1657763	1	04/22/21 13:51	04/25/21 01:46	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657216	1	04/22/21 13:51	04/23/21 06:04	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657255	1	04/23/21 00:03	04/23/21 18:32	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
ESW-13 L1342287-05 Solid			John Thurston	04/21/21 11:43	04/22/21 09	:15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1657019	1	04/23/2112:03	04/23/2112:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657277	1	04/23/21 01:05	04/23/21 07:27	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1657763	1	04/22/21 13:51	04/25/21 02:08	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657216	1	04/22/21 13:51	04/23/21 06:23	ACG	Mt. Juliet, TN
0 11/1 11 0 1 0 1 0 1 1 100/5					0.1.0	

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1657255

04/23/21 00:03

04/25/21 15:58

CAG

Mt. Juliet, TN

SAMPLE SUMMARY

	JAIVII LL V		/I//I/ I			
ESW-14 L1342287-06 Solid			Collected by John Thurston	Collected date/time 04/21/21 11:50	Received da 04/22/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1657019	1	04/23/21 12:03	04/23/2112:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657277	1	04/23/21 01:05	04/23/21 07:55	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658519	1	04/22/21 13:51	04/26/21 08:49	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657216	1	04/22/21 13:51	04/23/21 06:42	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657255	1	04/23/21 00:03	04/23/21 18:58	CAG	Mt. Juliet, TN
			Collected by John Thurston	Collected date/time		
ESW-15 L1342287-07 Solid			JOHN MUSION	04/21/21 11:57	04/22/21 09:	.10
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1657019	1	04/23/21 12:03	04/23/2112:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657277	1	04/23/21 01:05	04/23/21 08:05	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1657763	1	04/22/21 13:51	04/25/21 02:52	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657216	1	04/22/21 13:51	04/23/21 07:01	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657255	1	04/23/21 00:03	04/23/21 19:11	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
ESW-16 L1342287-08 Solid			John Thurston	04/21/21 12:04	04/22/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1657019	1	04/23/21 12:03	04/23/2112:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657277	1	04/23/21 01:05	04/23/21 08:14	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658519	1	04/22/21 13:51	04/26/21 09:17	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657216	1	04/22/21 13:51	04/23/21 07:20	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657255	10	04/23/21 00:03	04/25/21 16:24	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-13 L1342287-09 Solid			John Thurston	04/21/21 12:11	04/22/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1657019	1	04/23/21 12:03	04/23/2112:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657277	1	04/23/21 01:05	04/23/21 08:33	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1657763	1	04/22/21 13:51	04/25/21 03:36	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657216	1	04/22/21 13:51	04/23/21 07:40	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657255	1	04/23/21 00:03	04/23/21 19:24	CAG	Mt. Juliet, TN
			Collected by	Collected date/time		
WSW-14 L1342287-10 Solid			John Thurston	04/21/21 12:18	04/22/21 09:	15
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1657019	1	04/23/2112:03	04/23/2112:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657277	1	04/23/21 01:05	04/23/21 08:43	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1657763	1	04/22/21 13:51	04/25/21 03:58	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657216	1	04/22/21 13:51	04/23/21 07:59	ACG	Mt. Juliet, TN
	11101057055					

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1657255

04/23/21 00:03

04/23/2119:37

CAG

Mt. Juliet, TN

SAMPLE SUMMARY

WSW-15 L1342287-11 Solid			Collected by John Thurston	Collected date/time 04/21/21 12:20	Received da: 04/22/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1657019	1	04/23/21 12:03	04/23/2112:09	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657277	1	04/23/21 01:05	04/23/21 08:52	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1657763	1	04/22/21 13:51	04/25/21 04:20	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657216	1	04/22/21 13:51	04/23/21 08:18	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657255	1	04/23/21 00:03	04/23/2119:50	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	to/timo
			Collected by	Collected date/time	Neceiveu ua	te/time
WSW-16 L1342287-12 Solid			John Thurston	04/21/21 12:27	04/22/21 09:	
WSW-16 L1342287-12 Solid Method	Batch	Dilution	,			
	Batch WG1657019	Dilution 1	John Thurston Preparation	04/21/21 12:27 Analysis	04/22/21 09:	15
Method Total Solids by Method 2540 G-2011			John Thurston Preparation date/time	04/21/21 12:27 Analysis date/time	04/22/21 09: Analyst	15 Location
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1657019		John Thurston Preparation date/time 04/23/2112:03	04/21/21 12:27 Analysis date/time 04/23/21 12:09	04/22/21 09: Analyst	Location Mt. Juliet, TN
Method	WG1657019 WG1657277		John Thurston Preparation date/time 04/23/2112:03 04/23/21 01:05	04/21/21 12:27 Analysis date/time 04/23/21 12:09 04/23/21 09:02	04/22/21 09: Analyst KDW MCG	Location Mt. Juliet, TN Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica McNeese Project Manager

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.9		1	04/23/2021 10:54	WG1657015

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	9.94	<u>J</u>	9.80	21.3	1	04/23/2021 06:20	WG1657277

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	04/25/2021 00:41	WG1657763
(S) a,a,a-Trifluorotoluene(FID)	89.9			77.0-120		04/25/2021 00:41	<u>WG1657763</u>

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000528	0.00113	1	04/23/2021 05:07	WG1657216
Toluene	U		0.00147	0.00565	1	04/23/2021 05:07	WG1657216
Ethylbenzene	U		0.000833	0.00282	1	04/23/2021 05:07	WG1657216
Total Xylenes	U		0.000994	0.00734	1	04/23/2021 05:07	WG1657216
(S) Toluene-d8	109			75.0-131		04/23/2021 05:07	WG1657216
(S) 4-Bromofluorobenzene	94.8			67.0-138		04/23/2021 05:07	WG1657216
(S) 1,2-Dichloroethane-d4	82.1			70.0-130		04/23/2021 05:07	WG1657216

Semi-Volatile Organic Compounds (GC) by Method 8015

	J 1	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.26	1	04/23/2021 17:40	WG1657255
C28-C40 Oil Range	2.34	BJ	0.292	4.26	1	04/23/2021 17:40	WG1657255
(S) o-Terphenyl	71.8			18.0-148		04/23/2021 17:40	WG1657255

Gl

7 of 30

Collected date/time: 04/21/21 11:22

Page 277 of 457

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.1		1	04/23/2021 10:54	WG1657015

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	17.5	<u>J</u>	9.67	21.0	1	04/23/2021 06:30	WG1657277

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	04/25/2021 01:03	WG1657763
(S) a,a,a-Trifluorotoluene(FID)	89.7			77.0-120		04/25/2021 01:03	WG1657763

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000515	0.00110	1	04/23/2021 05:26	WG1657216
Toluene	U		0.00143	0.00551	1	04/23/2021 05:26	WG1657216
Ethylbenzene	U		0.000813	0.00276	1	04/23/2021 05:26	WG1657216
Total Xylenes	U		0.000970	0.00717	1	04/23/2021 05:26	WG1657216
(S) Toluene-d8	110			<i>75.0-131</i>		04/23/2021 05:26	WG1657216
(S) 4-Bromofluorobenzene	94.6			67.0-138		04/23/2021 05:26	WG1657216
(S) 1,2-Dichloroethane-d4	83.7			70.0-130		04/23/2021 05:26	WG1657216

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	223		33.8	84.1	20	04/23/2021 21:35	WG1657255
C28-C40 Oil Range	454		5.76	84.1	20	04/23/2021 21:35	WG1657255
(S) o-Terphenyl	0.000	J7		18.0-148		04/23/2021 21:35	WG1657255

SAMPLE RESULTS - 03

Collected date/time: 04/21/21 11:29

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.6		1	04/23/2021 10:54	WG1657015

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.43	20.5	1	04/23/2021 06:39	WG1657277

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	04/25/2021 01:25	WG1657763
(S) a,a,a-Trifluorotoluene(FID)	90.1			77.0-120		04/25/2021 01:25	WG1657763

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte Mg/kg <									_
Benzene U 0.000490 0.00105 1 04/23/2021 05:45 WG1657216 Toluene U 0.00136 0.00525 1 04/23/2021 05:45 WG1657216 Ethylbenzene U 0.000774 0.00262 1 04/23/2021 05:45 WG1657216 Total Xylenes U 0.000924 0.00682 1 04/23/2021 05:45 WG1657216 (S) Toluene-d8 109 75.0-131 04/23/2021 05:45 WG1657216		Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Toluene U 0.00136 0.00525 1 04/23/2021 05:45 WG1657216 Ethylbenzene U 0.000774 0.00262 1 04/23/2021 05:45 WG1657216 Total Xylenes U 0.000924 0.00682 1 04/23/2021 05:45 WG1657216 (S) Toluene-d8 109 75.0-131 04/23/2021 05:45 WG1657216	Analyte	mg/kg		mg/kg	mg/kg		date / time		
Ethylbenzene U 0.000774 0.00262 1 04/23/2021 05:45 WG1657216 Total Xylenes U 0.000924 0.00682 1 04/23/2021 05:45 WG1657216 (S) Toluene-d8 109 75.0-131 04/23/2021 05:45 WG1657216	Benzene	U		0.000490	0.00105	1	04/23/2021 05:45	WG1657216	
Total Xylenes U 0.000924 0.00682 1 04/23/2021 05:45 WG1657216 (S) Toluene-d8 109 75.0-131 04/23/2021 05:45 WG1657216	Toluene	U		0.00136	0.00525	1	04/23/2021 05:45	WG1657216	
(S) Toluene-d8 109 75.0-131 04/23/2021 05:45 WG1657216	Ethylbenzene	U		0.000774	0.00262	1	04/23/2021 05:45	WG1657216	
19	Total Xylenes	U		0.000924	0.00682	1	04/23/2021 05:45	WG1657216	
(S) 4-Bromofluorobenzene 96.4 67.0-138 04/23/2021 05:45 <u>WG1657216</u>	(S) Toluene-d8	109			75.0-131		04/23/2021 05:45	WG1657216	
	(S) 4-Bromofluorobenzene	96.4			67.0-138		04/23/2021 05:45	WG1657216	
(S) 1,2-Dichloroethane-d4 84.6 70.0-130 04/23/2021 05:45 <u>WG1657216</u>	(S) 1,2-Dichloroethane-d4	84.6			70.0-130		04/23/2021 05:45	WG1657216	

Semi-Volatile Organic Compounds (GC) by Method 8015

	9 1	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.10	1	04/23/2021 17:53	WG1657255
C28-C40 Oil Range	3.25	<u>B J</u>	0.281	4.10	1	04/23/2021 17:53	WG1657255
(S) o-Terphenyl	66.1			18.0-148		04/23/2021 17:53	WG1657255

Gl

Page 279 of 457

SAMPLE RESULTS - 04

Collected date/time: 04/21/21 11:36

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.0		1	04/23/2021 12:09	WG1657019

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	14.9	<u>J</u>	9.49	20.6	1	04/23/2021 06:49	WG1657277

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	04/25/2021 01:46	WG1657763
(S) a,a,a-Trifluorotoluene(FID)	89.5			77.0-120		04/25/2021 01:46	WG1657763

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000496	0.00106	1	04/23/2021 06:04	WG1657216
Toluene	U		0.00138	0.00531	1	04/23/2021 06:04	WG1657216
Ethylbenzene	U		0.000783	0.00266	1	04/23/2021 06:04	WG1657216
Total Xylenes	U		0.000935	0.00691	1	04/23/2021 06:04	WG1657216
(S) Toluene-d8	107			<i>75.0-131</i>		04/23/2021 06:04	WG1657216
(S) 4-Bromofluorobenzene	95.4			67.0-138		04/23/2021 06:04	WG1657216
(S) 1,2-Dichloroethane-d4	83.8			70.0-130		04/23/2021 06:04	WG1657216

Gl

•	,	,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	19.1		1.66	4.12	1	04/23/2021 18:32	WG1657255
C28-C40 Oil Range	43.9		0.283	4.12	1	04/23/2021 18:32	WG1657255
(S) o-Terphenyl	35.4			18.0-148		04/23/2021 18:32	WG1657255

Page 280 of 457

SAMPLE RESULTS - 05

Collected date/time: 04/21/21 11:43

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.2		1	04/23/2021 12:09	WG1657019

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	13.9	<u>J</u>	9.28	20.2	1	04/23/2021 07:27	WG1657277

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	04/25/2021 02:08	WG1657763
(S) a,a,a-Trifluorotoluene(FID)	91.8			77.0-120		04/25/2021 02:08	WG1657763

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000475	0.00102	1	04/23/2021 06:23	WG1657216
oluene	U		0.00132	0.00508	1	04/23/2021 06:23	WG1657216
thylbenzene	0.00196	<u>J</u>	0.000750	0.00254	1	04/23/2021 06:23	WG1657216
tal Xylenes	0.00436	<u>J</u>	0.000895	0.00661	1	04/23/2021 06:23	WG1657216
(S) Toluene-d8	109			75.0-131		04/23/2021 06:23	WG1657216
(S) 4-Bromofluorobenzene	94.1			67.0-138		04/23/2021 06:23	WG1657216
(S) 1,2-Dichloroethane-d4	82.8			70.0-130		04/23/2021 06:23	WG1657216

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	16.2		1.62	4.03	1	04/25/2021 15:58	WG1657255
C28-C40 Oil Range	15.4		0.276	4.03	1	04/25/2021 15:58	WG1657255
(S) o-Terphenyl	35.1			18.0-148		04/25/2021 15:58	WG1657255

Page 281 of 457

SAMPLE RESULTS - 06

Collected date/time: 04/21/21 11:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	83.6		1	04/23/2021 12:09	WG1657019

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	34.0		11.0	23.9	1	04/23/2021 07:55	WG1657277

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0363	<u>J</u>	0.0260	0.120	1	04/26/2021 08:49	WG1658519
(S) a,a,a-Trifluorotoluene(FID)	99.1			77.0-120		04/26/2021 08:49	WG1658519

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000651	0.00139	1	04/23/2021 06:42	WG1657216
uene	U		0.00181	0.00697	1	04/23/2021 06:42	WG1657216
nylbenzene	U		0.00103	0.00349	1	04/23/2021 06:42	WG1657216
ll Xylenes	U		0.00123	0.00906	1	04/23/2021 06:42	WG1657216
) Toluene-d8	110			75.0-131		04/23/2021 06:42	WG1657216
6) 4-Bromofluorobenzene	95.8			67.0-138		04/23/2021 06:42	WG1657216
5) 1,2-Dichloroethane-d4	82.0			70.0-130		04/23/2021 06:42	WG1657216

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.93	4.79	1	04/23/2021 18:58	WG1657255
C28-C40 Oil Range	2.08	<u>B J</u>	0.328	4.79	1	04/23/2021 18:58	WG1657255
(S) o-Terphenyl	56.9			18.0-148		04/23/2021 18:58	WG1657255

Page 282 of 457

SAMPLE RESULTS - 07

Total Solids by Method 2540 G-2011

Collected date/time: 04/21/21 11:57

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.8		1	04/23/2021 12:09	WG1657019

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	11.0	<u>J</u>	9.60	20.9	1	04/23/2021 08:05	WG1657277

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	04/25/2021 02:52	WG1657763
(S) a,a,a-Trifluorotoluene(FID)	90.0			77.0-120		04/25/2021 02:52	WG1657763

Qc

GI

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000508	0.00109	1	04/23/2021 07:01	WG1657216
Toluene	U		0.00141	0.00544	1	04/23/2021 07:01	WG1657216
Ethylbenzene	U		0.000801	0.00272	1	04/23/2021 07:01	WG1657216
Total Xylenes	U		0.000957	0.00707	1	04/23/2021 07:01	WG1657216
(S) Toluene-d8	109			75.0-131		04/23/2021 07:01	WG1657216
(S) 4-Bromofluorobenzene	96.0			67.0-138		04/23/2021 07:01	WG1657216
(S) 1,2-Dichloroethane-d4	83.9			70.0-130		04/23/2021 07:01	WG1657216

Semi-Volatile Organic Compounds (GC) by Method 8015

	J 1	· ·	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.81	<u>J</u>	1.68	4.17	1	04/23/2021 19:11	WG1657255
C28-C40 Oil Range	5.25	В	0.286	4.17	1	04/23/2021 19:11	WG1657255
(S) o-Terphenyl	64.4			18.0-148		04/23/2021 19:11	WG1657255

13 of 30

Page 283 of 457

SAMPLE RESULTS - 08

Collected date/time: 04/21/21 12:04 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.9		1	04/23/2021 12:09	WG1657019

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	53.5		9.39	20.4	1	04/23/2021 08:14	WG1657277

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0686	<u>J</u>	0.0222	0.102	1	04/26/2021 09:17	WG1658519
(S) a,a,a-Trifluorotoluene(FID)	98.6			77.0-120		04/26/2021 09:17	WG1658519

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	5	0 115	14D1 (1)	DD1 (1)	D.11		B : 1
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000781	<u>J</u>	0.000487	0.00104	1	04/23/2021 07:20	WG1657216
Toluene	U		0.00135	0.00521	1	04/23/2021 07:20	WG1657216
Ethylbenzene	0.00321		0.000768	0.00260	1	04/23/2021 07:20	WG1657216
Total Xylenes	0.0270		0.000917	0.00677	1	04/23/2021 07:20	WG1657216
(S) Toluene-d8	109			75.0-131		04/23/2021 07:20	WG1657216
(S) 4-Bromofluorobenzene	96.3			67.0-138		04/23/2021 07:20	WG1657216
(S) 1,2-Dichloroethane-d4	84.9			70.0-130		04/23/2021 07:20	WG1657216

Gl

•	J 1	\ /	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	49.2		16.4	40.8	10	04/25/2021 16:24	WG1657255
C28-C40 Oil Range	261		2.80	40.8	10	04/25/2021 16:24	WG1657255
(S) o-Terphenyl	49.1			18.0-148		04/25/2021 16:24	WG1657255

Page 284 of 457

SAMPLE RESULTS - 09

Collected date/time: 04/21/21 12:11

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	80.7		1	04/23/2021 12:09	WG1657019

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	37.6		11.4	24.8	1	04/23/2021 08:33	WG1657277

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0269	0.124	1	04/25/2021 03:36	WG1657763
(S) a,a,a-Trifluorotoluene(FID)	90.7			77.0-120		04/25/2021 03:36	<u>WG1657763</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000691	0.00148	1	04/23/2021 07:40	WG1657216
Toluene	U		0.00192	0.00740	1	04/23/2021 07:40	WG1657216
Ethylbenzene	U		0.00109	0.00370	1	04/23/2021 07:40	WG1657216
Total Xylenes	U		0.00130	0.00962	1	04/23/2021 07:40	WG1657216
(S) Toluene-d8	107			75.0-131		04/23/2021 07:40	WG1657216
(S) 4-Bromofluorobenzene	94.6			67.0-138		04/23/2021 07:40	WG1657216
(S) 1,2-Dichloroethane-d4	83.6			70.0-130		04/23/2021 07:40	WG1657216

Gl

	J ,	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.99	4.96	1	04/23/2021 19:24	WG1657255
C28-C40 Oil Range	0.624	BJ	0.340	4.96	1	04/23/2021 19:24	WG1657255
(S) o-Terphenyl	45.2			18.0-148		04/23/2021 19:24	WG1657255

Collected date/time: 04/21/21 12:18

Page 285 of 457

SAMPLE RESULTS - 10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	80.7		1	04/23/2021 12:09	WG1657019

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	38.2		11.4	24.8	1	04/23/2021 08:43	WG1657277

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0269	0.124	1	04/25/2021 03:58	WG1657763
(S) a,a,a-Trifluorotoluene(FID)	89.8			77.0-120		04/25/2021 03:58	WG1657763

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000690	0.00148	1	04/23/2021 07:59	WG1657216
Toluene	U		0.00192	0.00739	1	04/23/2021 07:59	WG1657216
Ethylbenzene	U		0.00109	0.00369	1	04/23/2021 07:59	WG1657216
Total Xylenes	U		0.00130	0.00960	1	04/23/2021 07:59	WG1657216
(S) Toluene-d8	109			75.0-131		04/23/2021 07:59	WG1657216
(S) 4-Bromofluorobenzene	96.8			67.0-138		04/23/2021 07:59	WG1657216
(S) 1,2-Dichloroethane-d4	85.7			70.0-130		04/23/2021 07:59	WG1657216

Semi-Volatile Organic Compounds (GC) by Method 8015

	•	•	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.99	4.95	1	04/23/2021 19:37	WG1657255
C28-C40 Oil Range	0.907	BJ	0.339	4.95	1	04/23/2021 19:37	WG1657255
(S) o-Terphenyl	56.5			18.0-148		04/23/2021 19:37	WG1657255

Gl

Page 286 of 457

SAMPLE RESULTS - 11

L1342287

Collected date/time: 04/21/21 12:20 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	79.9		1	04/23/2021 12:09	WG1657019

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	45.6		11.5	25.0	1	04/23/2021 08:52	WG1657277

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0271	0.125	1	04/25/2021 04:20	WG1657763
(S) a,a,a-Trifluorotoluene(FID)	89.7			77.0-120		04/25/2021 04:20	<u>WG1657763</u>

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00109	<u>J</u>	0.000702	0.00150	1	04/23/2021 08:18	WG1657216
Toluene	0.00997		0.00195	0.00752	1	04/23/2021 08:18	WG1657216
Ethylbenzene	0.00673		0.00111	0.00376	1	04/23/2021 08:18	WG1657216
Total Xylenes	0.0115		0.00132	0.00977	1	04/23/2021 08:18	WG1657216
(S) Toluene-d8	109			75.0-131		04/23/2021 08:18	WG1657216
(S) 4-Bromofluorobenzene	96.5			67.0-138		04/23/2021 08:18	WG1657216
(S) 1,2-Dichloroethane-d4	83.3			70.0-130		04/23/2021 08:18	WG1657216

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		2.01	5.00	1	04/23/2021 19:50	WG1657255
C28-C40 Oil Range	2.36	<u>B J</u>	0.343	5.00	1	04/23/2021 19:50	WG1657255
(S) o-Terphenyl	56.0			18 0-148		04/23/2021 19:50	WG1657255

Page 287 of 457

SAMPLE RESULTS - 12

Collected date/time: 04/21/21 12:27 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	82.1		1	04/23/2021 12:09	WG1657019

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	32.5		11.2	24.4	1	04/23/2021 09:02	WG1657277

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0264	0.122	1	04/25/2021 04:42	WG1657763
(S) a,a,a-Trifluorotoluene(FID)	90.0			77.0-120		04/25/2021 04:42	<u>WG1657763</u>

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg	<u>quamer</u>	mg/kg	mg/kg	2	date / time	<u> </u>
Benzene	U		0.000671	0.00144	1	04/23/2021 08:37	WG1657216
Toluene	U		0.00187	0.00718	1	04/23/2021 08:37	WG1657216
Ethylbenzene	U		0.00106	0.00359	1	04/23/2021 08:37	WG1657216
Total Xylenes	U		0.00126	0.00933	1	04/23/2021 08:37	WG1657216
(S) Toluene-d8	108			<i>75.0-131</i>		04/23/2021 08:37	WG1657216
(S) 4-Bromofluorobenzene	94.6			67.0-138		04/23/2021 08:37	WG1657216
(S) 1,2-Dichloroethane-d4	83.6			70.0-130		04/23/2021 08:37	WG1657216

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.96	4.87	1	04/23/2021 20:03	WG1657255
C28-C40 Oil Range	U		0.334	4.87	1	04/23/2021 20:03	WG1657255
(S) o-Terphenyl	58.2			18.0-148		04/23/2021 20:03	WG1657255

Gl

18 of 30

Page 288 of 457

Total Solids by Method 2540 G-2011

L1342287-01,02,03

Method	Blank ((MB)
--------	---------	------

(MB) R36	346013-1 04/23/2	21 10:54			
		MB Result	MB Qualifier	MB MDL	MB RDL
Analyte		%		%	%
Total Solid	ls	0.000			

Ss

L1342219-01 Original Sample (OS) • Duplicate (DUP)

(OC) 1 12 12 210 01	04/22/2110·E4	(DUP) R3646013-3	04/22/21 10·E4
1031 L1342219-01	04/23/21 10.34	10071 3040013-3	04/23/21 10.54
(00) 110 12210 01	0 1/20/21 10.01	(201)1100100	0 1/20/21 10.01

(00) 210 12210 01 0 1/20/2		sult DUP Result		DUP RPD	DUP Qualifier	DUP RPD Limits
lyte	%	%		%		%
otal Solids	96.5	96.5	1	0.00135		10

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3646013-2 04/23/21 10:54

LCS) R3646013-2 04/23/2	21 10:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 289 of 457

Total Solids by Method 2540 G-2011

L1342287-04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3646016	6-1 04/23/21 12:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1342287-12 Original Sample (OS) • Duplicate (DUP)

(OC) 1 12 12 20 7 12	04/22/21/200	(DI ID) DOC (CO(C)	04/22/24/200
(OS) L1342287-12	U4/Z3/Z1 IZ.U9 • I	10041 K3040010-3	U4/23/21 IZ.U9

(00) 2.0 .2207 .2 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0 ., 20, 2.	2.00		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	82.1	82.6	1	0.537		10

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3646016-2 04/23/2112:09

(100) 10040010-2 04/23/		LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 290 of 457

Wet Chemistry by Method 300.0

L1342287-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3645639-1 04/23/2	21 06:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

(OS) L1342287-04	04/23/21 06:49 •	(DUP) R3645639-3	04/23/21 06:58

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	14.9	14.7	1	1.22	J	20

L1342287-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1342287-08 04/23/21 08:14 • (DUP) R3645639-6 04/23/21 08:24

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	53.5	56.7	1	5.83		20

Laboratory Control Sample (LCS)

(LCS) R3645639-2 04/23/21 06:11

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	209	104	90.0-110	

L1342287-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1342287-04 04/23/21 06:49 • (MS) R3645639-4 04/23/21 07:08 • (MSD) R3645639-5 04/23/21 07:17

(03) 1342207-04 0)-1/23/21 00.43 ° (IVIS	113043033-4	0-1/23/2107.00) • (IVISD) 1\SO4	13033-3 0-1/2	3/2107.17							
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	516	14.9	521	522	98.3	98.3	1	80.0-120			0.0825	20	

Page 291 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1342287-01,02,03,04,05,07,09,10,11,12

Method Blank (MB)

(MB) R3646228-2 04/24/2	21 21:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	95.6			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3646228-1 04/24	/21 20:17				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.56	119	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			114	77.0-120	

Page 292 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1342287-06,08

Method Blank (MB)

(MB) R3646465-2 04/26	/21 05:20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3646465-1 04/26/	/21 04:16				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.53	101	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			111	77.0-120	

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Page 293 of 457

L1342287-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3646244-2 04/23/2	21 04:48				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	1
Benzene	U		0.000467	0.00100	H
Ethylbenzene	U		0.000737	0.00250	3
Toluene	U		0.00130	0.00500	L
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	110			75.0-131	
(S) 4-Bromofluorobenzene	95.0			67.0-138	
(S) 1,2-Dichloroethane-d4	81.8			70.0-130	5

Laboratory Control Sample (LCS)

(LCS) R3646244-1 04/23/	/21 03:51				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	L
Benzene	0.125	0.117	93.6	70.0-123	
Ethylbenzene	0.125	0.131	105	74.0-126	
Toluene	0.125	0.129	103	75.0-121	
Xylenes, Total	0.375	0.398	106	72.0-127	
(S) Toluene-d8			105	75.0-131	
(S) 4-Bromofluorobenzene			98.9	67.0-138	
(S) 1.2-Dichloroethane-d4			83.7	70.0-130	

L1342287-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1342287-04 04/23/2	21 06:04 • (MS)	R3646244-3 (04/23/21 11:28 •	(MSD) R36462	244-4 04/23/2	1 11:47						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.133	U	0.113	0.120	84.8	90.4	1	10.0-149			6.39	37
Ethylbenzene	0.133	U	0.132	0.135	99.2	102	1	10.0-160			2.39	38
Toluene	0.133	U	0.131	0.135	98.4	102	1	10.0-156			3.20	38
Xylenes, Total	0.398	U	0.390	0.400	97.9	100	1	10.0-160			2.42	38
(S) Toluene-d8					109	108		75.0-131				
(S) 4-Bromofluorobenzene					97.2	95.7		67.0-138				
(S) 1,2-Dichloroethane-d4					85.6	84.0		70.0-130				

Page 294 of 457

Semi-Volatile Organic Compounds (GC) by Method 8015

L1342287-01,02,03,04,05,06,07,08,09,10,11,12

Method Blank (MB)

(MB) R3645574-1 04/23	/21 08:18			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	0.865	<u>J</u>	0.274	4.00
(S) o-Terphenyl	76.0			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3645574-2 04/2	3/21 08:31				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	42.2	84.4	50.0-150	
(S) o-Terphenyl			53.8	18.0-148	

L1342287-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1342287-03 04/23/21 17:53 • (MS) R3645574-3 04/23/21 18:06 • (MSD) R3645574-4 04/23/21 18:19

(03) 11342207-03 04/23	Spike Amount (dry)			. ,	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	50.9	U	34.5	37.4	67.8	73.3	1	50.0-150			7.98	20
(S) o-Terphenyl					34.1	37.3		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qua	lifier	С	Description

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

Pace Analy	tical National	12065 Lebanon Rd	Mount Julia	+ TNI 37122
race Analy	yticai Nationai	12003 Leballoli Ku	i Mourit Julie	l, IIN 3/122

, , , , , , , , , , , , , , , , , , , ,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Page 297 of 457

Analysis Request of Chain of Custody Record

eased to Imaging: 8/3/2021 8:43:52 AM

Page: 1 of 2 901 West Wall Street, Suite 100 Midland, Texas 79701 Tetra Tech, Inc. D123 Tel (432) (134 2287 682-4559 Fax (432) 682-3946 Client Name: Conoco Phillips **ANALYSIS REQUEST** Site Manager: Christian Hull (Circle or Specify Method No.) Email: christian.llull@tetratech.com MCA 151 Project Name: Contact Info: Phone: (512) 338-1667 Project Location: Lea County, New Mexico Project #: 212C-MD-02471 (county, state) Accounts Payable Invoice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 Receiving Laboratory: Pace Analytical Se Hg Sampler Signature: John Thurston Comments: COPTETRA Acctnum LDS PRESERVATIVE Ag As Ba SAMPLING MATRIX METHOD Vol. 8082 / 608 YEAR: 2021 LAB# SAMPLE IDENTIFICATION LAB USE NONE DATE TIME ONLY CE FS-13 (6') 4/21/2021 11:15 X N FS-14 (4') 4/21/2021 11:22 X N ESW-11 (2') 4/21/2021 11:29 X N ESW-12 (2') 4/21/2021 11:36 X 1 N **ESW-13** 4/21/2021 11:43 X 1 Ν ESW-14 4/21/2021 11:50 X X 1 N ESW-15 4/21/2021 11:57 X X 1 N **ESW-16** 4/21/2021 12:04 X X 1 N WSW-13 4/21/2021 12:11 X X 1 X N WSW-14 4/21/2021 12:18 N Relinguished by: Date: Time: Received by: Date: REMARKS: Time LAB USE 4/20/21 1500 Standard ONLY 21 Relinquished by: Date Time: X RUSH: Same Day 24 hr. 48 hr. 72 hr. Sample Temperature Rush Charges Authorized Relinquished by: Date: Time: Received by: Date: Time: Special Report Limits or TRRP Report ORIGINAL COPY (Circle) HAND DELIVERED FEDEX UPS Tracking #: 3.3±0=3.3 8088 37

Analysis Request of Chain of Custody Record

TE	Tetra T	ech, I	nc.			N		d, Te	xas	Street, 79701 (432)	Т	el (432	- 1						N.	W.,			UN				-11	
Client Name:	Conoco Phillips			Site Manage	ri .	Chris	tian L	Juli	JB (4)	S. Sander				AN	ALY	SIS	RE				X.	16.		.1			eş e	7
Project Name:	MCA 151			Contact Info		Emai				@tetrate	ech.	com		1	1	1	(CI	rci	e or	2	pec	iry	Met	tno	I I	0.)	1	
Project Location: (county, state)	Lea County, New Mex	tico		Project #:		2120	-MD-	0247	1	100	100	, i											1-9		PR-1	· Y		
Invoice to:	Accounts Payable 901 West Wall Street,	Suite 100 Midla	nd, Texas 79701						-1.		0	:									ŧ				t)	Cal.		
Receiving Laboratory:	Pace Analytical	Kalle & L		Sampler Sig	nature:	J	ohn T	Thurs	ton		ø	1 -	21 15		MRO)		Se Hg								ched list)	The state of		
Comments: COPTET	RA Acctnum						A							8260B	O - ORO - MRO)		2 2				C/625		41	U	(see attached			
				SAME	PLING	MA	TRIX	PR		RVATI THOD	VE	SS.	(Z	×	GRO - DRO		As Ba Cd Cr As Ba Cd Cr		tilles	8260B / 624	ol. 8270C	88		the TDS	E	lance		
LAB#	SAMPLE IDE	NTIFICATION		YEAR: 2021								AINEF	ED (Y/N)	(8021B BTE	8015M (G	200	als Ag As tals Ag As	latiles	Semi Volatiles		Semi. Vol.	8082 / 608	estos)	Suffate	Water C	tion Balan		
(LAB USE)				DATE	TIME	WATER	SOIL	HCL	NO	NONE	- i	# CONTAINERS	FILTERED	STEX 80		PAH 8270C	rotal Metals		rclp Se	3C/MS Vol.	3C/MS S	PCB's 80	PLM (Asbestos)	Chloride	Seneral	Anion/Cation		HOLD
HIPHOLOGICAL TO THE STATE OF TH	WSI	W-15		4/21/2021	12:20	100	X			Х		1	N	Х	X									X				7
y aller year	wsı	N-16		4/21/2021	12:27		X			X	-	1	N	Х	X		5	24		He.			9	X				1
						+	+	+						H	-		+		+	+		+	+	+	\blacksquare	+	H	-
						- 5		170							1		1					\pm		-			\parallel	1
	-25						-			+	Н	_		H	+	H	+	\mathbb{H}	+	+	H							-
	New Control				· A					90 43			. 37															
						++	+	+		+	Н	_		H	-	H	+	H	+	\vdash	H					2 14	2	b'd
Relinquished by:	5 4 %	Date: Ti	me:	Received by		1		Da	te:	Tim	e:							RE	MARI	S:					1		Щ	\dashv
2750		4/ 20/ 21	1500			1								131	ON	US	E		S	tand	ard							
Relinquished by:		Date: Ti	me;	Received by				Da	te:	Tim	e:			Samp	le Te	mpera	ture		_				y 24 h			72 hr.		
Relinquished by:		Date: Ti	me:	Received by		1		Da	te:	Tim	e:							1					nits or T			1		
				ORIGINA	AL COPY									(Circ	le) H	AND	DELIV	ERE	FE	DEX	UP	'S T	Trackin	g#:_				

Pace Analytical National Center for Testing & Inno	vation	
Cooler Receipt Form	and the same of	- X 15/2
Client:	431	12287
Cooler Received/Opened On: 4 / 20 / 21 Temperature:	3.3	
Received By: K HOLDERBAUM		
Signature: K. Dolder		
Receipt Check List	Yes	No
COC Seal Present / Intact?		
COC Signed / Accurate?	1	
Bottles arrive intact?		
Correct bottles used?	/	
Sufficient volume sent?	(
If Applicable	-	
VOA Zero headspace?	1	
Preservation Correct / Checked?	4	

Pace Analytical® ANALYTICAL REPORT

April 23, 2021

Ss

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1342396

Samples Received: 04/22/2021

Project Number: Description: MCA 151

Report To:

Christian Llull

212C-MD-02471

901 West Wall

Suite 100

Midland, TX 79701

Project Manager

Entire Report Reviewed By:

Chris McCord

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
FS-3 (4') L1342396-01	5
Qc: Quality Control Summary	6
Total Solids by Method 2540 G-2011	6
Wet Chemistry by Method 300.0	7
Volatile Organic Compounds (GC) by Method 8015D/GRO	8
Volatile Organic Compounds (GC/MS) by Method 8260B	9
Semi-Volatile Organic Compounds (GC) by Method 8015	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

Collected date/time Received date/time

SAMPLE SUMMARY

Collected by

FS-3 (4') L1342396-01 Solid			John Thurston	04/20/21 09:35	04/22/21 11:00	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1657127	1	04/23/21 08:11	04/23/21 08:19	CMK	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 01:35	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1657068	1	04/22/21 15:19	04/23/21 13:58	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657084	1	04/22/21 15:19	04/22/21 16:41	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657255	1	04/23/21 00:03	04/23/21 08:44	DMG	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord

SAMPLE RESULTS - 01

Collected date/time: 04/20/21 09:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.1		1	04/23/2021 08:19	WG1657127

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	30.4		9.78	21.3	1	04/23/2021 01:35	WG1657237

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1	04/23/2021 13:58	WG1657068
(S) a,a,a-Trifluorotoluene(FID)	92.5			77.0-120		04/23/2021 13:58	WG1657068

Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000526	0.00113	1	04/22/2021 16:41	WG1657084
Toluene	U		0.00146	0.00563	1	04/22/2021 16:41	WG1657084
Ethylbenzene	U		0.000830	0.00281	1	04/22/2021 16:41	WG1657084
Total Xylenes	0.00274	<u>J</u>	0.000991	0.00732	1	04/22/2021 16:41	WG1657084
(S) Toluene-d8	85.9			<i>75.0-131</i>		04/22/2021 16:41	WG1657084
(S) 4-Bromofluorobenzene	109			67.0-138		04/22/2021 16:41	WG1657084
(S) 1,2-Dichloroethane-d4	110			70.0-130		04/22/2021 16:41	WG1657084

Sc

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.25	1	04/23/2021 08:44	WG1657255
C28-C40 Oil Range	2.37	BJ	0.291	4.25	1	04/23/2021 08:44	WG1657255
(S) o-Terphenyl	70.5			18.0-148		04/23/2021 08:44	WG1657255

Cn

Page 305 of 457

Total Solids by Method 2540 G-2011

L1342396-01

Method Blank (MB)

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 %
 %

 Total Solids
 0.00100

3 Ss

L1342519-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1342519-01 04/23/21 08:19 • (DUP) R3645882-3 04/23/21 08:19

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	71.3	72.1	1	1.22		10

⁵Sr

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3645882-2 04/23/21 08:19

LC3) R3043862-2 04/23/	Spike Amount LCS	.CS Result	LCS Rec.	Rec. Limits
Analyte	% %	6	%	%
Total Solids	50.0 50.	50.0	100	85.0-115

Page 306 of 457

Wet Chemistry by Method 300.0

L1342396-01

Method Blank (MB)

(MB) R3645638-1 04/22/	21 23:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

Ss

L1342396-01 Original Sample (OS) • Duplicate (DUP)

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	30.4	28.8	1	5.46		20

[†]Cn

L1342401-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1342401-07 04/23/21 03:19 • (DUP) R3645638-4 04/23/21 03:29

(-	5, 2,6 ,2 ,6 , 6 , 7 , 6 ,, 2 6, 2	Original Result			DUP RPD	DUP Qualifier	JP RPD mits
An	alyte	mg/kg	mg/kg		%		
Ch	loride	U	U	1	0.000		

Laboratory Control Sample (LCS)

(LCS) R3645638-2 04/23/21 00:01

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	213	107	90.0-110	

L1342401-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1342401-07 04/23/21 03:19 • (MS) R3645638-5 04/23/21 03:38 • (MSD) R3645638-6 04/23/21 03:48

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	500	U	507	498	101	99.6	1	80.0-120			1.78	20

Page 307 of 457

L1342396-01

Volatile Organic Compounds (GC) by Method 8015D/GRO

Method Blank (MB)

(MB) R3645824-2 04/23	/21 11:28				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	97.9			77.0-120	

¹Cn

Laboratory Control Sample (LCS)

(LCS) R3645824-1 04/23/2	(LCS) R3645824-1 04/23/2110:44							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
TPH (GC/FID) Low Fraction	5.50	5.19	94.4	72.0-127				
(S) a,a,a-Trifluorotoluene(FID)			107	77.0-120				

Page 308 of 457

Volatile Organic Compounds (GC/MS) by Method 8260B

L1342396-01

Method Blank (MB)

(MB) R3645371-3 04/22/21	15:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	99.8			75.0-131
(S) 4-Bromofluorobenzene	101			67.0-138
(S) 1,2-Dichloroethane-d4	110			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3645371-1	1 04/22/21 14:34 • (LCSD) R3645371-2 04/22/21 14:53	
------------------	---	--

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	ľ
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	L
Benzene	0.125	0.126	0.122	101	97.6	70.0-123			3.23	20	8
Ethylbenzene	0.125	0.111	0.108	88.8	86.4	74.0-126			2.74	20	
Toluene	0.125	0.103	0.105	82.4	84.0	75.0-121			1.92	20	9
Xylenes, Total	0.375	0.320	0.332	85.3	88.5	72.0-127			3.68	20	ľ
(S) Toluene-d8				86.3	86.3	75.0-131					L
(S) 4-Bromofluorobenzene				87.1	88.9	67.0-138					
(S) 1,2-Dichloroethane-d4				109	112	70.0-130					

ConocoPhillips - Tetra Tech

Page 309 of 457

Semi-Volatile Organic Compounds (GC) by Method 8015

L1342396-01

Method Blank (MB)

(MB) R3645574-1 04/23	3/21 08:18			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	0.865	<u>J</u>	0.274	4.00
(S) o-Terphenyl	76.0			18.0-148

²Tc

Laboratory Control Sample (LCS)

(LCS) R3645574-2 04/23	3/21 08:31			%	
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	42.2	84.4	50.0-150	
(S) o-Terphenyl			53.8	18.0-148	

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	ifier	\Box	escri)	ption

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable: the reported value is an estimate.

Pace Analytical National	12065 Lebanon Rd Mount Julie	ot TN 37122
i ace Analytical National		5L, IIN 0/122

		<u> </u>	
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Page 312 of 457
Page: 1 of 1

TE	Tetra Tech, Inc.					Midla Tel	and, (43	all Stre , Texa 32) 682 32) 683	s 797 2-455	701 59	00	Ī									L	31	12	39(P		
Client Name:	Conoco Phillips	Site Manage	er:	Chris	stian	Llull						Γ									REQI						П
Project Name:	MCA 151	Contact Info	o:					ıll@tet 1667	rated	ch.con	n	1	1	1	CI	rcle	10 9	S	pec	cify	/ IVI	eth	od 	No.) 	1	П
Project Location: (county, state)	Lea County, New Mexico	Project #:		2120	C-MD	-024	71				4-6	11															П
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	701			1 1	U				-X		11								Ĭ,				ist)			П
Receiving Laboratory:	Pace Analytical	Sampler Sig	gnature:	J	ohn '	Thurs	ston		5.00 X			11	O-MRO		Se Hg	Se Hg								(see attached list)			
Comments: COPTET	RA Acctnum				N.	A						8260B	35) RO - ORO -		d Cr Pb	Cd Cr Pb	8			8270C/625		100					
		SAME	PLING	MA	TRIX	PR		ERVA			(N/N)	X	(Ext to C35)		Ag As Ba Cd Cr Pb Se Hg	As Ba	atiles				80			the TDS	lance		
LAB# (LAB USE)	SAMPLE IDENTIFICATION	YEAR: 2021 DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE		CONTAINERS	FILTERED (Y		PH TX1005 (E		otal Metals Ag	P Metals	rcLP Semi Volatiles		GC/MS Vol. 82	GC/MS Semi. Vol.	CB's 8082 / 608	PLM (Asbestos)	30	General Water Chemistry	Anion/Cation Balance	PH 8015R	НОГР
, ,,,,,	FS-3 (4')	4/20/2021	9:35	_	X	I	I	X	+	1	N	m X	X	P/	To	FF	1	RC	Ö	9 6	ĭŽ	교	X	5 0	A	=	Ĭ
4707		A								-	O L						16				1	2.5				Ť	Ĭ
			1.4				2							F												SE	12
		+		+	+			H	+			H	-	-	3		3/1/2			+	+		+	+	3 1	-	H
	Tak				4			\vdash	\dagger							1	\pm			1				\pm		\pm	
			at z		2.50					B	OC SCOTTE	gned es ar et bo cient	/Acc rive ttle vol	into into into into into into into into	te: tact sed: ser	ict:	Rec	N N N N	VO		If ero		ispa	ole ce: _ ck: _			
Relinquished by:	Date: Time: 4/21/21 0900	Received by	2	7	1-2	2/-		1		2:0	۵		LAE	US		F	EMA	Sta	anda	1					. T. T.		
Relipquished by:	Date: Time: 4-21-21 14:00		4	4-	21	-2	ate:			: د	۵	10	ple Te		8	е	[X				ne Day			48 hr.	72 hr	14	12
Relinquished by:	Date: Time:	B. Ba	1		4	12:	ate:	/	ime:	100) D			93				Spe	ecial I	Repo	rt Limi	its or	TRRP	Repor	t		
		ORIGINA	AL COPY		1		1			3867		(Cir	cle) I	IANE	DE	LIVER	RED	FED	DEX	UP	S T	racki	ng #:				

Pace Analytical® ANALYTICAL REPORT

April 28, 2021

Ss

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1342401

Samples Received: 04/22/2021

Project Number: 212C-MD-02471

Description: MCA 151

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be

reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
FS-7 (4") L1342401-01	8
FS-8 (4') L1342401-02	9
FS-9 (3') L1342401-03	10
FS-10 (3') L1342401-04	11
FS-11 (3') L1342401-05	12
FS-12 (3') L1342401-06	13
WSW-8 L1342401-07	14
WSW-9 L1342401-08	15
WSW-10 L1342401-09	16
WSW-11 L1342401-10	17
WSW-12 L1342401-11	18
ESW-8 L1342401-12	19
ESW-9 L1342401-13	20
ESW-10 L1342401-14	21
ESW-11 L1342401-15	22
ESW-12 L1342401-16	23
Qc: Quality Control Summary	24
Total Solids by Method 2540 G-2011	24
Wet Chemistry by Method 300.0	27
Volatile Organic Compounds (GC) by Method 8015D/GRO	28
Volatile Organic Compounds (GC/MS) by Method 8260B	31
Semi-Volatile Organic Compounds (GC) by Method 8015	32
GI: Glossary of Terms	33
Al: Accreditations & Locations	34

Sc: Sample Chain of Custody

35

	07 11111 EE (3 0 11111	,,, ,,, ,			
FS-7 (4') L1342401-01 Solid			Collected by John Thurston	Collected date/time 04/20/2110:00	Received da 04/22/21 11:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	•	
Total Solids by Method 2540 G-2011	WG1657461	1	04/23/21 14:22	04/23/2114:31	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 01:54	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658115	1	04/22/21 21:27	04/24/21 13:42	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/2112:36	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657256	1	04/23/21 07:04	04/24/21 00:00	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-8 (4') L1342401-02 Solid			John Thurston	04/20/21 10:10	04/22/21 11:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1657461	1	04/23/2114:22	04/23/21 14:31	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 02:03	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658115	1	04/22/21 21:27	04/24/21 14:04	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/21 12:55	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657256	1	04/23/21 07:04	04/24/21 00:14	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-9 (3') L1342401-03 Solid			John Thurston	04/20/2110:20	04/22/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1657461	1	04/23/2114:22	04/23/2114:31	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 02:13	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658115	1	04/22/21 21:27	04/24/21 14:27	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/21 13:15	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657256	1	04/23/21 07:04	04/24/21 02:41	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-10 (3') L1342401-04 Solid			John Thurston	04/20/2110:30	04/22/21 11:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,	
Total Solids by Method 2540 G-2011	WG1657461	1	04/23/21 14:22	04/23/2114:31	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 02:51	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658115	1	04/22/21 21:27	04/24/21 14:49	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/2113:34	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657256	1	04/23/21 07:04	04/24/21 03:08	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-11 (3') L1342401-05 Solid			John Thurston	04/20/2110:40	04/22/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1657461	1	04/23/21 14:22	04/23/21 14:31	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657137	1	04/22/21 22:40	04/23/21 03:00	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658115	1	04/22/21 21:27	04/24/21 15:11	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/2113:53	ACG	Mt. Juliet, TN
Country of the Countr	1101007000		V ., [_ 1, _ 1	0 ., 20, 21 10.00	7.00	Junet, III

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1657256

04/23/21 07:04

04/24/21 00:27

CAG

Mt. Juliet, TN

	0, 22 .	301111	,,, ,,, ,			
FS-12 (3') L1342401-06 Solid			Collected by John Thurston	Collected date/time 04/20/2110:50	Received date 04/22/21 11:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,,,,	
Total Solids by Method 2540 G-2011	WG1657464	1	04/23/21 14:14	04/23/2114:20	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 03:10	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658115	1.01	04/22/21 21:27	04/24/21 15:33	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/21 14:12	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657256	1	04/23/21 07:04	04/24/21 00:40	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-8 L1342401-07 Solid			John Thurston	04/20/21 11:00	04/22/21 11:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1657464	1	04/23/21 14:14	04/23/21 14:20	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 03:19	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658115	1	04/22/21 21:27	04/24/21 15:55	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/21 14:31	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657256	1	04/23/21 07:04	04/24/21 00:54	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-9 L1342401-08 Solid			John Thurston	04/20/21 11:10	04/22/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1657464	1	04/23/21 14:14	04/23/2114:20	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 03:57	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658115	1	04/22/21 21:27	04/24/21 16:17	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/21 14:50	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657256	1	04/23/21 07:04	04/24/21 01:07	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-10 L1342401-09 Solid			John Thurston	04/20/21 11:20	04/22/21 11:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1657464	1	04/23/21 14:14	04/23/2114:20	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 04:07	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658115	1	04/22/21 21:27	04/24/21 16:39	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/21 15:09	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657256	1	04/23/21 07:04	04/24/21 01:21	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-11 L1342401-10 Solid			John Thurston	04/20/21 11:30	04/22/21 11:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1657464	1	04/23/21 14:14	04/23/21 14:20	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 04:16	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658115	1	04/22/21 21:27	04/24/21 17:01	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/21 15:28	ACG	Mt. Juliet, TN
C 1// 1 11 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1						20

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1657256

04/23/21 07:04

04/24/21 01:34

CAG

Mt. Juliet, TN

	07 (1111 22)	J () 11111	,,,,,,,,					
			Collected by		Received date/time			
WSW-12 L1342401-11 Solid			John Thurston	04/20/21 11:30	04/22/21 11:0	0		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location		
			date/time	date/time				
Total Solids by Method 2540 G-2011	WG1657464	1	04/23/21 14:14	04/23/21 14:20	KDW	Mt. Juliet, TN		
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 04:45	MCG	Mt. Juliet, TN		
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658559	1	04/22/21 21:27	04/26/21 04:42	ACG	Mt. Juliet, TN		
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/21 15:47	ACG	Mt. Juliet, TN		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657256	1	04/23/21 07:04	04/24/21 01:48	CAG	Mt. Juliet, TN		
			Collected by	Collected date/time	Received dat	e/time		
ESW-8 L1342401-12 Solid			John Thurston	04/20/21 11:35	04/22/21 11:0	0		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location		
Total Solids by Method 2540 G-2011	WG1657464	1	04/23/21 14:14	04/23/21 14:20	KDW	Mt. Juliet, TN		
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 04:54	MCG	Mt. Juliet, TN		
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658115	1	04/22/21 21:27	04/24/21 17:45	DWR	Mt. Juliet, TN		
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/21 16:06	ACG	Mt. Juliet, TN		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657256	1	04/23/21 07:04	04/24/21 02:28	CAG	Mt. Juliet, TN		
			Collected by	Collected date/time	Received dat	re/time		
ESW-9 L1342401-13 Solid			John Thurston	04/20/21 11:40	04/22/21 11:0			
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location		
Total Solids by Method 2540 G-2011	WG1657464	1	04/23/21 14:14	04/23/21 14:20	KDW	Mt. Juliet, TN		
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 05:04	MCG	Mt. Juliet, TN		
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658115	1	04/22/21 21:27	04/24/21 18:07	DWR	Mt. Juliet, TN		
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/21 16:25	ACG	Mt. Juliet, TN		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657256	1	04/23/21 07:04	04/24/21 02:01	CAG	Mt. Juliet, TN		
			Collected by	Collected date/time	Received dat	e/time		
ESW-10 L1342401-14 Solid			John Thurston	04/20/21 11:45	04/22/21 11:0	0		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location		
			date/time	date/time				
Total Solids by Method 2540 G-2011	WG1657464	1	04/23/21 14:14	04/23/21 14:20	KDW	Mt. Juliet, TN		
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 05:13	MCG	Mt. Juliet, TN		
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658115	1	04/22/21 21:27	04/24/21 18:29	DWR	Mt. Juliet, TN		
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/21 16:44	ACG	Mt. Juliet, TN		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657256	1	04/23/21 07:04	04/24/21 02:15	CAG	Mt. Juliet, TN		
			Collected by	Collected date/time	Received dat	e/time		
ESW-11 L1342401-15 Solid			John Thurston	04/20/21 11:50	04/22/21 11:0	0		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location		
Total Solids by Method 2540 G-2011	WG1657464	1	04/23/21 14:14	04/23/2114:20	KDW	Mt. Juliet, TN		
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 05:23	MCG	Mt. Juliet, TN		
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658115	1	04/22/21 21:27	04/24/21 19:11	DWR	Mt. Juliet, TN		
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/21 17:03	ACG	Mt. Juliet, TN		
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657256	1	04/23/21 07:04	04/24/21 03:22	CAG	Mt. Juliet, TN		

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1657256

04/23/21 07:04

04/26/21 11:17

CAG

Mt. Juliet, TN

ESW-12 L1342401-16 Solid			Collected by John Thurston	Collected date/time 04/20/2111:55	Received da 04/22/21 11:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1657465	1	04/23/21 14:33	04/23/21 14:42	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1657237	1	04/22/21 22:40	04/23/21 05:33	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1658060	1	04/22/21 21:27	04/24/21 06:44	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1657605	1	04/22/21 21:27	04/23/21 17:22	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1657256	1	04/23/21 07:04	04/25/21 16:50	CAG	Mt. Juliet, TN

Chris McCord Project Manager

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

SAMPLE RESULTS - 01

Collected date/time: 04/20/21 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.3		1	04/23/2021 14:31	WG1657461

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.65	21.0	1	04/23/2021 01:54	WG1657237

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	04/24/2021 13:42	WG1658115
(S) a,a,a-Trifluorotoluene(FID)	90.1			77.0-120		04/24/2021 13:42	<u>WG1658115</u>

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000513	0.00110	1	04/23/2021 12:36	WG1657605
Toluene	U		0.00143	0.00549	1	04/23/2021 12:36	WG1657605
Ethylbenzene	U		0.000809	0.00275	1	04/23/2021 12:36	WG1657605
Total Xylenes	U		0.000966	0.00714	1	04/23/2021 12:36	WG1657605
(S) Toluene-d8	105			75.0-131		04/23/2021 12:36	WG1657605
(S) 4-Bromofluorobenzene	101			67.0-138		04/23/2021 12:36	WG1657605
(S) 1,2-Dichloroethane-d4	101			70.0-130		04/23/2021 12:36	WG1657605

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.42	<u>J</u>	1.69	4.20	1	04/24/2021 00:00	WG1657256
C28-C40 Oil Range	3.43	<u>J</u>	0.287	4.20	1	04/24/2021 00:00	WG1657256
(S) o-Terphenyl	49.8			18.0-148		04/24/2021 00:00	WG1657256

SAMPLE RESULTS - 02

Collected date/time: 04/20/21 10:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.4		1	04/23/2021 14:31	WG1657461

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.75	21.2	1	04/23/2021 02:03	WG1657237

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	04/24/2021 14:04	WG1658115
(S) a,a,a-Trifluorotoluene(FID)	90.7			77.0-120		04/24/2021 14:04	WG1658115

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000523	0.00112	1	04/23/2021 12:55	WG1657605
Toluene	U		0.00145	0.00560	1	04/23/2021 12:55	WG1657605
Ethylbenzene	0.000867	<u>J</u>	0.000825	0.00280	1	04/23/2021 12:55	WG1657605
Total Xylenes	0.00302	<u>J</u>	0.000985	0.00727	1	04/23/2021 12:55	WG1657605
(S) Toluene-d8	106			75.0-131		04/23/2021 12:55	WG1657605
(S) 4-Bromofluorobenzene	101			67.0-138		04/23/2021 12:55	WG1657605
(S) 1,2-Dichloroethane-d4	100			70.0-130		04/23/2021 12:55	WG1657605

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.19		1.71	4.24	1	04/24/2021 00:14	WG1657256
C28-C40 Oil Range	6.89		0.290	4.24	1	04/24/2021 00:14	WG1657256
(S) o-Terphenyl	56.7			18.0-148		04/24/2021 00:14	WG1657256

Collected date/time: 04/20/21 10:20

Page 322 of 457

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.7		1	04/23/2021 14:31	WG1657461

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	26.1		9.82	21.3	1	04/23/2021 02:13	WG1657237

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	04/24/2021 14:27	WG1658115
(S) a,a,a-Trifluorotoluene(FID)	89.9			77.0-120		04/24/2021 14:27	WG1658115

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000530	0.00113	1	04/23/2021 13:15	WG1657605
Toluene	U		0.00147	0.00567	1	04/23/2021 13:15	WG1657605
Ethylbenzene	U		0.000836	0.00284	1	04/23/2021 13:15	WG1657605
Total Xylenes	U		0.000998	0.00737	1	04/23/2021 13:15	WG1657605
(S) Toluene-d8	109			75.0-131		04/23/2021 13:15	WG1657605
(S) 4-Bromofluorobenzene	102			67.0-138		04/23/2021 13:15	WG1657605
(S) 1,2-Dichloroethane-d4	101			70.0-130		04/23/2021 13:15	WG1657605

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	20.0		1.72	4.27	1	04/24/2021 02:41	WG1657256
C28-C40 Oil Range	28.9		0.292	4.27	1	04/24/2021 02:41	WG1657256
(S) o-Terphenyl	53.0			18.0-148		04/24/2021 02:41	WG1657256

ConocoPhillips - Tetra Tech

Page 323 of 457

SAMPLE RESULTS - 04

Collected date/time: 04/20/21 10:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.5		1	04/23/2021 14:31	WG1657461

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	102		9.54	20.7	1	04/23/2021 02:51	WG1657237

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	04/24/2021 14:49	WG1658115
(S) a,a,a-Trifluorotoluene(FID)	90.9			77.0-120		04/24/2021 14:49	<u>WG1658115</u>

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000501	0.00107	1	04/23/2021 13:34	WG1657605
Toluene	U		0.00140	0.00537	1	04/23/2021 13:34	WG1657605
Ethylbenzene	U		0.000791	0.00268	1	04/23/2021 13:34	WG1657605
Total Xylenes	0.00217	<u>J</u>	0.000945	0.00698	1	04/23/2021 13:34	WG1657605
(S) Toluene-d8	111			<i>75.0-131</i>		04/23/2021 13:34	WG1657605
(S) 4-Bromofluorobenzene	103			67.0-138		04/23/2021 13:34	WG1657605
(S) 1,2-Dichloroethane-d4	103			70.0-130		04/23/2021 13:34	WG1657605

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

•	1	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	54.1		1.67	4.15	1	04/24/2021 03:08	WG1657256
C28-C40 Oil Range	65.8		0.284	4.15	1	04/24/2021 03:08	WG1657256
(S) o-Terphenyl	54.7			18.0-148		04/24/2021 03:08	WG1657256

SAMPLE RESULTS - 05

Collected date/time: 04/20/21 10:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.0		1	04/23/2021 14:31	WG1657461

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	16.3	<u>J</u>	9.89	21.5	1	04/23/2021 03:00	WG1657237

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0233	0.108	1	04/24/2021 15:11	WG1658115
(S) a,a,a-Trifluorotoluene(FID)	90.7			77.0-120		04/24/2021 15:11	WG1658115

Volatile Organic Compounds (GC/MS) by Method 8260B

	Decult (des)	Ovalifian	MDL (dm.)	DDI (4m.)	Dilution	Amalusis	Datah
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000537	0.00115	1	04/23/2021 13:53	WG1657605
Toluene	U		0.00149	0.00575	1	04/23/2021 13:53	WG1657605
Ethylbenzene	0.00218	<u>J</u>	0.000848	0.00287	1	04/23/2021 13:53	WG1657605
Total Xylenes	0.00586	<u>J</u>	0.00101	0.00747	1	04/23/2021 13:53	WG1657605
(S) Toluene-d8	108			75.0-131		04/23/2021 13:53	WG1657605
(S) 4-Bromofluorobenzene	109			67.0-138		04/23/2021 13:53	WG1657605
(S) 1,2-Dichloroethane-d4	98.6			70.0-130		04/23/2021 13:53	WG1657605

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	` `	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
C10-C28 Diesel Range	3.01	<u>J</u>	1.73	4.30	1	04/24/2021 00:27	WG1657256	
C28-C40 Oil Range	5.90		0.295	4.30	1	04/24/2021 00:27	WG1657256	
(S) o-Terphenyl	63.3			18.0-148		04/24/2021 00:27	WG1657256	

ConocoPhillips - Tetra Tech

Page 325 of 457

SAMPLE RESULTS - 06

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.4		1	04/23/2021 14:20	WG1657464

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	60.6		9.65	21.0	1	04/23/2021 03:10	WG1657237

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1.01	04/24/2021 15:33	WG1658115
(S) a,a,a-Trifluorotoluene(FID)	91.1			77.0-120		04/24/2021 15:33	WG1658115

Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000512	0.00110	1	04/23/2021 14:12	WG1657605
Toluene	U		0.00143	0.00548	1	04/23/2021 14:12	WG1657605
Ethylbenzene	U		0.000808	0.00274	1	04/23/2021 14:12	WG1657605
Total Xylenes	0.00281	<u>J</u>	0.000965	0.00713	1	04/23/2021 14:12	WG1657605
(S) Toluene-d8	108			75.0-131		04/23/2021 14:12	WG1657605
(S) 4-Bromofluorobenzene	104			67.0-138		04/23/2021 14:12	WG1657605
(S) 1,2-Dichloroethane-d4	99.4			70.0-130		04/23/2021 14:12	WG1657605

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	· /	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.57		1.69	4.19	1	04/24/2021 00:40	WG1657256
C28-C40 Oil Range	12.0		0.287	4.19	1	04/24/2021 00:40	WG1657256
(S) o-Terphenyl	58.9			18.0-148		04/24/2021 00:40	WG1657256

13 of 36

Page 326 of 457

SAMPLE RESULTS - 07

Collected date/time: 04/20/21 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.9		1	04/23/2021 14:20	WG1657464

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.30	20.2	1	04/23/2021 03:19	WG1657237

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	04/24/2021 15:55	WG1658115
(S) a,a,a-Trifluorotoluene(FID)	91.1			77.0-120		04/24/2021 15:55	<u>WG1658115</u>

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

			_				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000477	0.00102	1	04/23/2021 14:31	WG1657605
Toluene	U		0.00133	0.00511	1	04/23/2021 14:31	WG1657605
Ethylbenzene	0.00107	<u>J</u>	0.000753	0.00255	1	04/23/2021 14:31	WG1657605
Total Xylenes	0.00278	<u>J</u>	0.000899	0.00664	1	04/23/2021 14:31	WG1657605
(S) Toluene-d8	115			75.0-131		04/23/2021 14:31	WG1657605
(S) 4-Bromofluorobenzene	109			67.0-138		04/23/2021 14:31	WG1657605
(S) 1,2-Dichloroethane-d4	101			70.0-130		04/23/2021 14:31	WG1657605

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.79	<u>J</u>	1.63	4.04	1	04/24/2021 00:54	WG1657256
C28-C40 Oil Range	4.71		0.277	4.04	1	04/24/2021 00:54	WG1657256
(S) o-Terphenyl	65.0			18.0-148		04/24/2021 00:54	WG1657256

Page 327 of 457

SAMPLE RESULTS - 08

Collected date/time: 04/20/21 11:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.6		1	04/23/2021 14:20	<u>WG1657464</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.33	20.3	1	04/23/2021 03:57	WG1657237

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.101	1	04/24/2021 16:17	WG1658115
(S) a,a,a-Trifluorotoluene(FID)	90.3			77.0-120		04/24/2021 16:17	WG1658115

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	04/23/2021 14:50	WG1657605
Toluene	U		0.00134	0.00514	1	04/23/2021 14:50	WG1657605
Ethylbenzene	U		0.000758	0.00257	1	04/23/2021 14:50	WG1657605
Total Xylenes	U		0.000905	0.00668	1	04/23/2021 14:50	WG1657605
(S) Toluene-d8	107			75.0-131		04/23/2021 14:50	WG1657605
(S) 4-Bromofluorobenzene	99.0			67.0-138		04/23/2021 14:50	WG1657605
(S) 1,2-Dichloroethane-d4	99.7			70.0-130		04/23/2021 14:50	WG1657605

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.06	1	04/24/2021 01:07	WG1657256
C28-C40 Oil Range	3.53	<u>J</u>	0.278	4.06	1	04/24/2021 01:07	WG1657256
(S) o-Terphenyl	58.1			18.0-148		04/24/2021 01:07	WG1657256

Page 328 of 457

SAMPLE RESULTS - 09

Collected date/time: 04/20/21 11:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.7		1	04/23/2021 14:20	WG1657464

Ss

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10.3	<u>J</u>	9.32	20.3	1	04/23/2021 04:07	WG1657237

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.101	1	04/24/2021 16:39	WG1658115
(S) a,a,a-Trifluorotoluene(FID)	91.1			77.0-120		04/24/2021 16:39	WG1658115

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000479	0.00103	1	04/23/2021 15:09	WG1657605
Toluene	U		0.00133	0.00513	1	04/23/2021 15:09	WG1657605
Ethylbenzene	U		0.000756	0.00256	1	04/23/2021 15:09	WG1657605
Total Xylenes	U		0.000902	0.00667	1	04/23/2021 15:09	WG1657605
(S) Toluene-d8	108			75.0-131		04/23/2021 15:09	WG1657605
(S) 4-Bromofluorobenzene	102			67.0-138		04/23/2021 15:09	WG1657605
(S) 1,2-Dichloroethane-d4	97.6			70.0-130		04/23/2021 15:09	WG1657605

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	· ·	` `	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.87	<u>J</u>	1.63	4.05	1	04/24/2021 01:21	WG1657256
C28-C40 Oil Range	4.30		0.277	4.05	1	04/24/2021 01:21	WG1657256
(S) o-Terphenyl	68.7			18.0-148		04/24/2021 01:21	WG1657256

16 of 36

Collected date/time: 04/20/21 11:30

Page 329 of 457

SAMPLE RESULTS - 10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.8		1	04/23/2021 14:20	WG1657464

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	20.5		9.41	20.5	1	04/23/2021 04:16	WG1657237

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	04/24/2021 17:01	WG1658115
(S) a,a,a-Trifluorotoluene(FID)	91.8			77.0-120		04/24/2021 17:01	WG1658115

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000488	0.00105	1	04/23/2021 15:28	WG1657605
Toluene	U		0.00136	0.00523	1	04/23/2021 15:28	WG1657605
Ethylbenzene	U		0.000770	0.00261	1	04/23/2021 15:28	WG1657605
Total Xylenes	0.00125	<u>J</u>	0.000920	0.00679	1	04/23/2021 15:28	WG1657605
(S) Toluene-d8	107			75.0-131		04/23/2021 15:28	WG1657605
(S) 4-Bromofluorobenzene	102			67.0-138		04/23/2021 15:28	WG1657605
(S) 1,2-Dichloroethane-d4	102			70.0-130		04/23/2021 15:28	WG1657605

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.73	<u>J</u>	1.65	4.09	1	04/24/2021 01:34	WG1657256
C28-C40 Oil Range	3.57	<u>J</u>	0.280	4.09	1	04/24/2021 01:34	WG1657256
(S) o-Terphenyl	60.9			18.0-148		04/24/2021 01:34	WG1657256

Page 330 of 457

SAMPLE RESULTS - 11

L1342401

Total Solids by Method 2540 G-2011

Collected date/time: 04/20/21 11:30

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	88.5		1	04/23/2021 14:20	WG1657464

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		10.4	22.6	1	04/23/2021 04:45	WG1657237

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0348	J	0.0245	0.113	1	04/26/2021 04:42	WG1658559
(S) a,a,a-Trifluorotoluene(FID)	94.8			77.0-120		04/26/2021 04:42	WG1658559

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

			-				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000589	0.00126	1	04/23/2021 15:47	WG1657605
Toluene	U		0.00164	0.00630	1	04/23/2021 15:47	WG1657605
Ethylbenzene	U		0.000929	0.00315	1	04/23/2021 15:47	WG1657605
Total Xylenes	0.00139	<u>J</u>	0.00111	0.00819	1	04/23/2021 15:47	WG1657605
(S) Toluene-d8	106			75.0-131		04/23/2021 15:47	WG1657605
(S) 4-Bromofluorobenzene	101			67.0-138		04/23/2021 15:47	WG1657605
(S) 1,2-Dichloroethane-d4	100			70.0-130		04/23/2021 15:47	WG1657605

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.82	4.52	1	04/24/2021 01:48	WG1657256
C28-C40 Oil Range	2.57	<u>J</u>	0.310	4.52	1	04/24/2021 01:48	WG1657256
(S) o-Terphenyl	63.8			18.0-148		04/24/2021 01:48	WG1657256

Page 331 of 457

SAMPLE RESULTS - 12

Total Solids by Method 2540 G-2011

Collected date/time: 04/20/21 11:35

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.3		1	04/23/2021 14:20	WG1657464

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.36	20.3	1	04/23/2021 04:54	WG1657237

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	04/24/2021 17:45	WG1658115
(S) a,a,a-Trifluorotoluene(FID)	89.9			77.0-120		04/24/2021 17:45	<u>WG1658115</u>

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000483	0.00103	1	04/23/2021 16:06	WG1657605
Toluene	U		0.00135	0.00517	1	04/23/2021 16:06	WG1657605
Ethylbenzene	U		0.000763	0.00259	1	04/23/2021 16:06	WG1657605
Total Xylenes	U		0.000911	0.00673	1	04/23/2021 16:06	WG1657605
(S) Toluene-d8	100			75.0-131		04/23/2021 16:06	WG1657605
(S) 4-Bromofluorobenzene	114			67.0-138		04/23/2021 16:06	WG1657605
(S) 1,2-Dichloroethane-d4	101			70.0-130		04/23/2021 16:06	WG1657605

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	J 1	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.66		1.64	4.07	1	04/24/2021 02:28	WG1657256
C28-C40 Oil Range	6.92		0.279	4.07	1	04/24/2021 02:28	WG1657256
(S) o-Terphenyl	64.3			18.0-148		04/24/2021 02:28	WG1657256

19 of 36

Page 332 of 457

SAMPLE RESULTS - 13

Collected date/time: 04/20/21 11:40 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.8		1	04/23/2021 14:20	WG1657464

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.41	20.4	1	04/23/2021 05:04	WG1657237

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	04/24/2021 18:07	WG1658115
(S) a,a,a-Trifluorotoluene(FID)	90.0			77.0-120		04/24/2021 18:07	<u>WG1658115</u>

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000488	0.00104	1	04/23/2021 16:25	WG1657605
Toluene	U		0.00136	0.00522	1	04/23/2021 16:25	WG1657605
Ethylbenzene	U		0.000770	0.00261	1	04/23/2021 16:25	WG1657605
Total Xylenes	U		0.000919	0.00679	1	04/23/2021 16:25	WG1657605
(S) Toluene-d8	110			75.0-131		04/23/2021 16:25	WG1657605
(S) 4-Bromofluorobenzene	114			67.0-138		04/23/2021 16:25	WG1657605
(S) 1,2-Dichloroethane-d4	99.4			70.0-130		04/23/2021 16:25	WG1657605

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.66	<u>J</u>	1.65	4.09	1	04/24/2021 02:01	WG1657256
C28-C40 Oil Range	6.35		0.280	4.09	1	04/24/2021 02:01	WG1657256
(S) o-Terphenyl	62.1			18.0-148		04/24/2021 02:01	WG1657256

Cn

ConocoPhillips - Tetra Tech

20 of 36

Page 333 of 457

SAMPLE RESULTS - 14

Total Solids by Method 2540 G-2011

Collected date/time: 04/20/21 11:45

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.5		1	04/23/2021 14:20	WG1657464

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	23.2		9.34	20.3	1	04/23/2021 05:13	WG1657237

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.101	1	04/24/2021 18:29	WG1658115
(S) a,a,a-Trifluorotoluene(FID)	91.1			77.0-120		04/24/2021 18:29	WG1658115

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000481	0.00103	1	04/23/2021 16:44	WG1657605
Toluene	U		0.00134	0.00515	1	04/23/2021 16:44	WG1657605
Ethylbenzene	U		0.000759	0.00257	1	04/23/2021 16:44	WG1657605
Total Xylenes	U		0.000906	0.00669	1	04/23/2021 16:44	WG1657605
(S) Toluene-d8	107			75.0-131		04/23/2021 16:44	WG1657605
(S) 4-Bromofluorobenzene	102			67.0-138		04/23/2021 16:44	WG1657605
(S) 1,2-Dichloroethane-d4	102			70.0-130		04/23/2021 16:44	WG1657605

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.06	1	04/24/2021 02:15	WG1657256
C28-C40 Oil Range	5.21		0.278	4.06	1	04/24/2021 02:15	WG1657256
(S) o-Terphenyl	75.7			18.0-148		04/24/2021 02:15	WG1657256

Page 334 of 457

SAMPLE RESULTS - 15

Total Solids by Method 2540 G-2011

Collected date/time: 04/20/21 11:50

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.3		1	04/23/2021 14:20	WG1657464

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.45	20.6	1	04/23/2021 05:23	WG1657237

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0908	<u>J</u>	0.0223	0.103	1	04/24/2021 19:11	WG1658115
(S) a,a,a-Trifluorotoluene(FID)	91.7			77.0-120		04/24/2021 19:11	<u>WG1658115</u>

[°]Qc

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000493	0.00106	1	04/23/2021 17:03	WG1657605
Toluene	U		0.00137	0.00528	1	04/23/2021 17:03	WG1657605
Ethylbenzene	0.00274		0.000778	0.00264	1	04/23/2021 17:03	WG1657605
Total Xylenes	0.0145		0.000929	0.00686	1	04/23/2021 17:03	WG1657605
(S) Toluene-d8	110			<i>75.0-131</i>		04/23/2021 17:03	WG1657605
(S) 4-Bromofluorobenzene	103			67.0-138		04/23/2021 17:03	WG1657605
(S) 1,2-Dichloroethane-d4	103			70.0-130		04/23/2021 17:03	WG1657605

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	81.0		1.65	4.11	1	04/24/2021 03:22	WG1657256
C28-C40 Oil Range	251		1.41	20.6	5	04/26/2021 11:17	WG1657256
(S) o-Terphenyl	56.1			18.0-148		04/26/2021 11:17	WG1657256
(S) o-Terphenyl	61.7			18.0-148		04/24/2021 03:22	WG1657256

22 of 36

Page 335 of 457

SAMPLE RESULTS - 16

Collected date/time: 04/20/21 11:55

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.7		1	04/23/2021 14:42	WG1657465

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10.3	<u>J</u>	9.42	20.5	1	04/23/2021 05:33	WG1657237

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	04/24/2021 06:44	WG1658060
(S) a,a,a-Trifluorotoluene(FID)	98.8			77.0-120		04/24/2021 06:44	WG1658060

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000489	0.00105	1	04/23/2021 17:22	WG1657605
Toluene	U		0.00136	0.00523	1	04/23/2021 17:22	WG1657605
Ethylbenzene	U		0.000772	0.00262	1	04/23/2021 17:22	WG1657605
Total Xylenes	U		0.000921	0.00680	1	04/23/2021 17:22	WG1657605
(S) Toluene-d8	107			<i>75.0-131</i>		04/23/2021 17:22	WG1657605
(S) 4-Bromofluorobenzene	102			67.0-138		04/23/2021 17:22	WG1657605
(S) 1,2-Dichloroethane-d4	101			70.0-130		04/23/2021 17:22	WG1657605

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	16.5		1.65	4.09	1	04/25/2021 16:50	WG1657256
C28-C40 Oil Range	30.4		0.280	4.09	1	04/25/2021 16:50	WG1657256
(S) o-Terphenyl	45.2			18.0-148		04/25/2021 16:50	WG1657256

Gl

Page 336 of 457

Total Solids by Method 2540 G-2011

L1342401-01,02,03,04,05

Method Blank (M	IB)
-----------------	-----

(MB) R3646024	4-1 04/23/21 14:31			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1342401-02 Original Sample (OS) • Duplicate (DUP)

- 1	2	I 13/12/1∩1₋∩2	04/23/21 14:31 •	יםו וח)	1 D3646034-3	0.4/23/2114.31
١.	\cup_{j}	LIJTZTOI-02	UT/23/21 IT.31 • 1	(001)	113040024-3	07/23/21 17.31

(00) 2.0 .2 .0 .0 2 0 20,2	Original Result				DUP RPD	DUP Qualifier	DUP RPD Limits
te	%	%	%		%		%
al Solids	94.4	94.4	94.6	1	0.192		10

Laboratory Control Sample (LCS)

(LCS) R3646024-2 04/23/2114:31

(LCS) RS646024-2 04/23/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 337 of 457

Total Solids by Method 2540 G-2011

L1342401-06,07,08,09,10,11,12,13,14,15

(MB) R3646021-1 04/23/2114:20						
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	%		%	%		
Total Solids	0.00200					

L1342401-13 Original Sample (OS) • Duplicate (DUP)

(OS) L1342401-13 04/23/21 14:20 • (DUP) R3646021-3 04/23/21 14:20

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	97.8	99.2	1	1.41		10

Laboratory Control Sample (LCS)

(LCS) R3646021-2 04/23/21 14:20

[†]Cn

Page 338 of 457

Total Solids by Method 2540 G-2011

L1342401-16

Method Blank (MB)

(MB) R3646027-1	04/23/21 14:42			
,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

²To

³Ss

L1342411-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1342411-03 04/23/21 14:42 • (DUP) R3646027-3 04/23/21 14:42

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	85.0	84.4	1	0.739		10

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3646027-2 04/23/21 14:42

(LCS) K3040027-2 04/23/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 339 of 457

Wet Chemistry by Method 300.0

L1342401-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16

Method Blank (MB)

(MB) R3645638-1 04/22	MB) R3645638-1 04/22/21 23:52								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
Chloride	U		9.20	20.0					

(OS) L1342396-01	04/23/21 01:35 •	(DUP) R3645638-3	04/23/21 01:44
------------------	------------------	------------------	----------------

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	30.4	28.8	1	5.46		20

Cn

L1342401-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1342401-07 04/23/21 03:19 • (DUP) R3645638-4 04/23/21 03:29

(00) 210 12 101 07 0 1/20/2	Original Result (dry)		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3645638-2 04/23/21 00:01

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	213	107	90.0-110	

L1342401-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1342401-07 04/23/21 03:19 • (MS) R3645638-5 04/23/21 03:38 • (MSD) R3645638-6 04/23/21 03:48

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	505	U	513	503	101	99.6	1	80.0-120			1.78	20

Page 340 of 457

L1342401-16

Volatile Organic Compounds (GC) by Method 8015D/GRO

Method Blank (MB)

(MB) R3646238-2 04/24	/21 05:41			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3646238-1 04/24/	21 04:34				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.99	90.7	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			106	77.0-120	

L1342401-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1342401-16 04/24/21 06:44 • (MS) R3646238-3 04/24/21 16:43 • (MSD) R3646238-4 04/24/21 18:58

` '	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.63	U	1.60	1.68	28.4	30.1	1	10.0-151			5.00	28
(S) a,a,a-Trifluorotoluene(FID)					102	102		77.0-120				

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Page 341 of 457

L1342401-01,02,03,04,05,06,07,08,09,10,12,13,14,15

Method Blank (MB)

(MB) R3646246-2 04/24	/21 10:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	95.4			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3646246-1 04/24/	/21 10:08				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.00	109	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			112	77.0-120	

Page 342 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1342401-11

Method Blank (MB)

(MB) R3646470-2 04/26/	21 03:43			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	97.0			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3646470-1 04/26/	/21 02:39				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.62	84.0	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			103	77.0-120	

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Page 343 of 457

L1342401-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16

Method Blank (MB)

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

(MB) R3646206-3 04/23/	21 10:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	112			75.0-131
(S) 4-Bromofluorobenzene	102			67.0-138
(S) 1,2-Dichloroethane-d4	101			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3646206-1 04	l/23/21 09:36 • (LCS	SD) R3646206	5-2 04/23/21 09	9:55						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.125	0.112	0.110	89.6	88.0	70.0-123			1.80	20
Ethylbenzene	0.125	0.130	0.127	104	102	74.0-126			2.33	20
Toluene	0.125	0.125	0.121	100	96.8	75.0-121			3.25	20
Xylenes, Total	0.375	0.391	0.379	104	101	72.0-127			3.12	20
(S) Toluene-d8				107	109	75.0-131				

67.0-138

70.0-130

L1341170-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

101

103

102

104

(OS) L1341170-01 04/23/21 18:00 • (MS) R3646206-4 04/23/21 19:54 • (MSD) R3646206-5 04/23/21 20:14

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	4.00	0.0767	1.71	3.67	40.9	89.9	40	10.0-149		<u>J3</u>	72.7	37
Ethylbenzene	4.00	3.00	3.93	6.41	23.3	85.3	40	10.0-160		<u>J3</u>	47.9	38
Toluene	4.00	2.77	3.61	5.99	20.8	80.4	40	10.0-156		<u>J3</u>	49.7	38
Xylenes, Total	12.0	25.6	22.7	28.9	0.000	27.2	40	10.0-160	<u>J6</u>		24.1	38
(S) Toluene-d8					107	107		75.0-131				
(S) 4-Bromofluorobenzene					109	107		67.0-138				
(S) 1,2-Dichloroethane-d4					102	104		70.0-130				

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Page 344 of 457

L1342401-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16

Method Blank (MB)

(MB) R3646217-1 04/23/21 22:53 MB Result MB Qualifier MB MDL MB RDL Analyte mg/kg mg/kg mg/kg C10-C28 Diesel Range U 1.61 4.00 U C28-C40 Oil Range 0.274 4.00 (S) o-Terphenyl 61.7 18.0-148

Laboratory Control Sample (LCS)

(LCS) R3646217-2 04/23/21 23:06 Spike Amount LCS Result LCS Rec. Rec. Limits LCS Qualifier Analyte mg/kg mg/kg % % C10-C28 Diesel Range 50.0 32.2 64.4 50.0-150 (S) o-Terphenyl 56.2 18.0-148

Gl

L1340727-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1340727-01 04/25/21 18:09 • (MS) R3646421-1 04/25/21 18:22 • (MSD) R3646421-2 04/25/21 18:35

(03) 21340727 01 04/2	` '	Original Result (dry)		,		MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	55.5	11.3	58.9	62.7	85.7	93.1	1	50.0-150			6.36	20
(S) o-Terphenyl					23.5	30.7		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

J	The identification of the analyte is acceptable; the reported value is an estimate.	
J3	The associated batch QC was outside the established quality control range for precision.	
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.	

Pace Analytical National	12065 Lebanon Rd Mount Julie	ot TN 37122
i ace Analytical National		5L, IIN 0/122

, , , , , , , , , , , , , , , , , , , ,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Page 347 of 457
Page: 1 of 2

Tt.	Tetra Tec	h, Inc.				901	Midla Tel	nd, (432	Street Texas 7 2) 682-4 2) 682-3	79701 1559	100				19	V		Y Thy			l	13	42	24	01	
Client Name:	Conoco Phillips		Site Manage	er:	Chi	ristian	Llull					٦									QU				i.	Earl S
Project Name:	MCA 151		Contact Info	: 0		ail: ch			@tetra 667	tech.co	om.	No.	1	11	(C	irc	e o	r Sp	pec	ify 	Me	tho	d N	0.)	iΙ	1
Project Location: (county, state)	Lea County, New Mexico		Project #:	ŘĠ	212	2C-MD	-0247	1	-5								F				П		П			
invoice to:	Accounts Payable 901 West Wall Street, Suite	100 Midland, Texas 7970		124				4.5				٦	1	0		П					П			list)		
Receiving Laboratory:	Pace Analytical	J 192	Sampler Sig	nature:		John	Thurs	ton			will be			- ORO - MRO)	Se Hg	Se Hg			3					attached		800
Comments: COPTET	RA Acctnum				1	NE.			越				3260B		d Cr Pb	Cd Cr Pb			100/0	070/0				ees)		
			SAMP	LING	M	ATRIX	PRI		RVATIV		2	(A/N)	BTEX	GRO - DRO	As Ba C	As Ba C	tiles		30B / 624	91. 6270			te TDS	hemistry		
LAB#	SAMPLE IDENTIFIC	CATION	YEAR: 2021		WATER)3	빌	CONTAINERS		I HED	X 8021B BTEX 82	8015M (otal Metals Ag As Ba Cd Cr Pb Se Hg	CLP Metals Ag	CLP Volatiles		GC/MS Vol. 8260B / 624	s 8082 / 608	Σ	PLM (Asbestos) Chloride 300.0	ide Sulfate	General Water Chemistry Anion/Cation Balance	PH 8015R	0
(ONLY)			DATE	TIME	WA	SOIL	HCL		NONE	- 4		-	BTEX		PAH	TOLF	TCLP	RCI	GCA	PCB's	NORM	-	-	Gene	TPH	JIP C
-01	FS-7 (4')		4/20/2021	10:00		Х	11	\rightarrow	X	757	-	N.	Х	X	ğ.	Н	_					X			1	-01
-02	FS-8 (4')		4/20/2021	10:10		X		-	X	1		N	Х	X								X	13	9	1	12
-03	FS-9 (3')		4/20/2021	10:20	À	Х			Х	1		N	X	X	30 CE				199		Ш	X				03
-o4	FS-10 (3')	199	4/20/2021	10:30	\perp	X			X	1		N	Х	X							Ш	X			1	7 773
-05	FS-11 (3')		4/20/2021	10:40		Х			X	1		N	Х	X					1			X				3
-00	FS-12 (3')		4/20/2021	10:50		X			X	1		N	X	Х	2 1							X				
-07	WSW-8		4/20/2021	11:00		Х			x	1		N	X	X				1				X				9
-08	WSW-9		4/20/2021	11:10		Х			X	1		N	Х	X		П					П	X			П	
-09	WSW-10		4/20/2021	11:20		X	П		x	1		N	Х	X	1							Х				
-10	WSW-11		4/20/2021	11:30		Х			X	1		N	Х	Х						0.00		Х			П	
Relinquished by:	Dat 4/2	te: Time: 1/21 0900	Received by	Z C		1		te:	Tim	ne: 3.0	20		1	AB I			REM	_	s: andard	d						
Relinquished by:	(1) 4-21-		Received by:	4			Da 2/-	ite:	Tim			ı		le Tem			_	_			Day (Author)48 h	ir. 72	hr.	, j
Relinquished by.	Dat	te: Time:	Received by:		7			ite:	Tim	1 1 0 0 8 C			hi'	Ho?	30			_				or TRF	RP Re	port		
			ORIGINA				/	1					Circ	le) HA	ND DI	ELIVE	RED	FED	EX	UPS	Tra	cking i	#:			

Page 348 of 457 Page: 2 of 2

Totro

Tetra Tech, Inc.

901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946

4342401

		Terra Teerry Tries								682-39								-			Ĺ	1	09	,0	10	1		
Client Name:		Conoco Phillips	Site Manage	er:	Ch	ristian	Llu	ıll					Γ			10	lu a l			LYS					LNL			
Project Name:		MCA 151	Contact Info	:		nail: cl				tetrated	ch.cor	m	1	11	1	(C	irci	e c	or s	pe	CITY	/ IVI	letr	100	No.).)		
Project Location (county, state)	n:	Lea County, New Mexico	Project #:	Time He	212	2C-MI	D-0	2471					1														П	
Invoice to:		Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701	44-5												5										liot)	lioty	П	
Receiving Labor	ratory:	Pace Analytical	Sampler Sig	nature:		John	Th	urstor	n						- MHC	Se Hg	Se Hg								(see attached list)	llatinos		58
Comments: (COPTETR	A Acctnum		-									8260B	(2)	8015M (GHO - DHO - OHO - MHO)	od Cr Pb	Cd Cr Pb			4)C/625	1						
			SAMP	LING	M	ATRI	x F		ER\ ETH	/ATIVE	RS	(Z)	BTEX	Ext to C3	HO - D	As Ba (g As Ba		atiles	60B / 62	ol. 8270	80			ate TE	alance		
LAB#		SAMPLE IDENTIFICATION	YEAR: 2021		-	uė.			Γ		AINE	C) G	218	900	W C	als Ag	tals A	atiles	ni Voi	ol. 82	emi. V	82 / 6	estos	0.008	Sulfate	ion Ba	œ	
(LAB USE)			DATE	TIME	WATER	SOIL		HCL	CE	NONE	# CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH TX1005 (Ext to C35)	TPH 8015M	Fotal Met	rCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	ICLP Semi Volatiles	GC/MS Vol. 8260B / 624	GC/MS Semi. Vol. 8270C/625	PCB's 8082 / 608	PLM (Asbestos)	Chloride 300.0	Chloride Sulfate TDS	Anion/Cation Balance	FPH 8015R	НОГР
-11		WSW-12	4/20/2021	11:30		Х			Х		-1	N	Х	2.9	X				T				1	Х				
-12		ESW-8	4/20/2021	11:35	1	х			X		1	N	Х		x			7	300					Х				
-13		ESW-9	4/20/2021	11:40		Х		-	X		1	N	х	7	X		П	\top	1		П	T	\top	Х	24	Ne		PA PE
-14		ESW-10	4/20/2021	11:45		X			X	1-	1	N	Х		X			A.				T		X				1
-15		ESW-11	4/20/2021	11:50		Х			Х		1.	N	Х		х		- 2	CAL E	50					Х		T		
-16	gi Light	ESW-12	4/20/2021	11:55		Х			X		1	N	Х		X		П						18	х				
Relinquished by: Relinquished by: Relinquished by:	COC S: Bottle Correc Suffic RAD So	Sample Receipt Checklist eal Present/Intact: Y.N VOA Zaro Headspace: es arrive intact: Y.N Pres.Correct/Check: ct bottles used: cient volume sent: Y.N Date: IIme: 4/21/21 0900 Date: Time: Date: Time:	Y_N	1		4-2		Date		Time:	1.5	מ		mple '	NL Temp	peratu	ıre	REM	S X R	Standa RUSH:	Sam	es Aut	thorize	ed)48 hr.		hr.	
			B. Ba			4	12	242	1	Č	280	Special Report Limits or TRF				10	-16	ort										

Pace Analytical® ANALYTICAL REPORT

Ss

ConocoPhillips - Tetra Tech

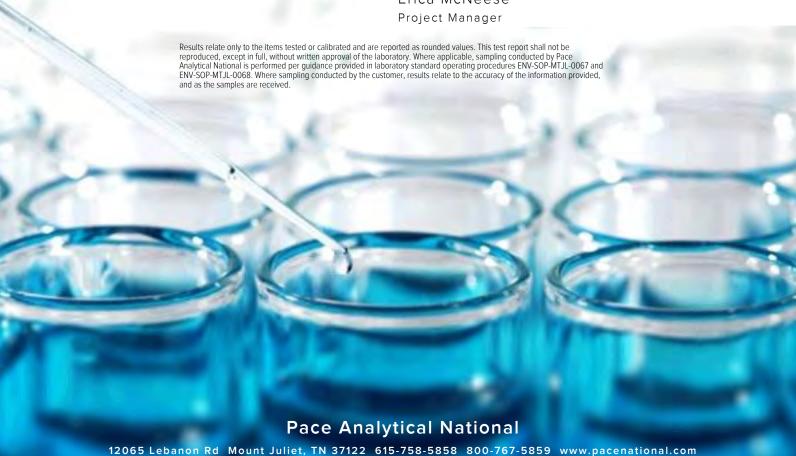
L1344804 Sample Delivery Group: Samples Received: 04/28/2021

Project Number: 212C-MD-02471

Description: COP MCA 151 Flowline Release

Report To: Christian Llull

901 West Wall


Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Enicay Nesse

Erica McNeese Project Manager

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
FS-15 (6') L1344804-01	5
FS-10 (4') L1344804-02	6
ESW-16 (4') L1344804-03	7
Qc: Quality Control Summary	8
Total Solids by Method 2540 G-2011	8
Wet Chemistry by Method 300.0	9
Volatile Organic Compounds (GC) by Method 8015D/GRO	10
Volatile Organic Compounds (GC/MS) by Method 8260B	11
Semi-Volatile Organic Compounds (GC) by Method 8015	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

SAMPLE SUMMARY

EC 15 (C)\ 1.12.14.00.4.01. Calid			Collected by John Thurston	Collected date/time 04/27/21 11:15	Received da 04/28/21 09:	
FS-15 (6') L1344804-01 Solid Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1660692	1	04/28/21 15:39	04/28/21 15:47	KDW	Mt. Juliet, Ti
Wet Chemistry by Method 300.0	WG1660739	5	04/28/21 21:54	04/29/21 06:19	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1661028	1	04/28/21 20:25	04/29/21 14:12	JAH	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1660921	1	04/28/21 20:25	04/29/21 01:28	TPR	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1660554	1	04/28/21 21:01	04/29/21 06:25	CAG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-10 (4') L1344804-02 Solid			John Thurston	04/27/21 11:22	04/28/21 09:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1660692	1	04/28/21 15:39	04/28/21 15:47	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1660739	1	04/28/21 21:54	04/29/21 06:29	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1661028	1	04/28/21 20:25	04/29/21 14:34	JAH	Mt. Juliet, Tl
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1660921	1	04/28/21 20:25	04/29/21 01:47	TPR	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1660554	1	04/28/21 21:01	04/29/21 06:39	CAG	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
ESW-16 (4') L1344804-03 Solid			John Thurston	04/27/21 11:29	04/28/21 09:	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1660692	1	04/28/21 15:39	04/28/21 15:47	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1660739	1	04/28/21 21:54	04/29/21 06:38	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1661028	1	04/28/21 20:25	04/29/21 14:56	JAH	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1660921	1	04/28/21 20:25	04/29/21 02:06	TPR	Mt. Juliet, T

WG1660554

1

04/28/21 21:01

04/29/21 06:52

CAG

Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method 8015

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica McNeese Project Manager

SAMPLE RESULTS - 01

Page 353 of 457

Collected date/time: 04/27/21 11:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.3		1	04/28/2021 15:47	WG1660692

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	958		51.5	112	5	04/29/2021 06:19	WG1660739

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0243	0.112	1	04/29/2021 14:12	WG1661028
(S) a,a,a-Trifluorotoluene(FID)	92.4			77.0-120		04/29/2021 14:12	WG1661028

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	5 1.71 \			221 (1.)	B		5
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.00140		0.000579	0.00124	1	04/29/2021 01:28	WG1660921
Toluene	0.00651		0.00161	0.00620	1	04/29/2021 01:28	WG1660921
Ethylbenzene	0.00347		0.000913	0.00310	1	04/29/2021 01:28	WG1660921
Total Xylenes	0.0145		0.00109	0.00806	1	04/29/2021 01:28	WG1660921
(S) Toluene-d8	110			75.0-131		04/29/2021 01:28	WG1660921
(S) 4-Bromofluorobenzene	128			67.0-138		04/29/2021 01:28	WG1660921
(S) 1,2-Dichloroethane-d4	110			70.0-130		04/29/2021 01:28	WG1660921

Semi-Volatile Organic Compounds (GC) by Method 8015

•	J 1	\ /	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.80	4.48	1	04/29/2021 06:25	WG1660554
C28-C40 Oil Range	U		0.307	4.48	1	04/29/2021 06:25	WG1660554
(S) o-Terphenyl	29.3			18.0-148		04/29/2021 06:25	WG1660554

Gl

Page 354 of 457

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.8		1	04/28/2021 15:47	<u>WG1660692</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	180		9.81	21.3	1	04/29/2021 06:29	WG1660739

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0421	<u>J</u>	0.0231	0.107	1	04/29/2021 14:34	WG1661028
(S) a,a,a-Trifluorotoluene(FID)	93.3			77.0-120		04/29/2021 14:34	WG1661028

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

•							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000528	0.00113	1	04/29/2021 01:47	WG1660921
Toluene	0.00175	<u>J</u>	0.00147	0.00566	1	04/29/2021 01:47	WG1660921
Ethylbenzene	0.00988		0.000834	0.00283	1	04/29/2021 01:47	WG1660921
Total Xylenes	0.0423		0.000996	0.00735	1	04/29/2021 01:47	WG1660921
(S) Toluene-d8	103			<i>75.0-131</i>		04/29/2021 01:47	WG1660921
(S) 4-Bromofluorobenzene	101			67.0-138		04/29/2021 01:47	WG1660921
(S) 1,2-Dichloroethane-d4	104			70.0-130		04/29/2021 01:47	WG1660921

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	` `	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.19	<u>B J</u>	1.72	4.26	1	04/29/2021 06:39	WG1660554
C28-C40 Oil Range	2.75	BJ	0.292	4.26	1	04/29/2021 06:39	WG1660554
(S) o-Terphenyl	82.4			18.0-148		04/29/2021 06:39	WG1660554

ConocoPhillips - Tetra Tech

Page 355 of 457

SAMPLE RESULTS - 03

Collected date/time: 04/27/21 11:29

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.0		1	04/28/2021 15:47	WG1660692

²Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	91.8		9.39	20.4	1	04/29/2021 06:38	WG1660739

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	04/29/2021 14:56	WG1661028
(S) a,a,a-Trifluorotoluene(FID)	89.6			77.0-120		04/29/2021 14:56	WG1661028

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	0.000573	<u>J</u>	0.000486	0.00104	1	04/29/2021 02:06	WG1660921
Toluene	U		0.00135	0.00521	1	04/29/2021 02:06	WG1660921
Ethylbenzene	0.00469		0.000767	0.00260	1	04/29/2021 02:06	WG1660921
Total Xylenes	0.0409		0.000916	0.00677	1	04/29/2021 02:06	WG1660921
(S) Toluene-d8	105			75.0-131		04/29/2021 02:06	WG1660921
(S) 4-Bromofluorobenzene	115			67.0-138		04/29/2021 02:06	WG1660921
(S) 1,2-Dichloroethane-d4	105			70.0-130		04/29/2021 02:06	WG1660921

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.57	<u>B J</u>	1.64	4.08	1	04/29/2021 06:52	WG1660554
C28-C40 Oil Range	3.92	<u>B J</u>	0.280	4.08	1	04/29/2021 06:52	WG1660554
(S) o-Terphenyl	35.3			18.0-148		04/29/2021 06:52	WG1660554

Page 356 of 457

Total Solids by Method 2540 G-2011

L1344804-01,02,03

Method Blank (MB)	Me	thod	Blanl	k (MB
-------------------	----	------	-------	-------

(MB) R3648113-1 04	1/28/21 15:47			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Ss

L1343559-01 Original Sample (OS) • Duplicate (DUP)

(OS)	N 1343559-01	04/28/21 15:47 •	(DLIP) R3648113-3	04/28/21 15:47
	, =10 10000 01	0 1/20/21 10.17	(00.	, 1100 10110 0	0 1/20/21 10.17

(00) 2.0 .0000 01 0 1/20/2	Original Result				DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%			%		%
Total Solids	59.0	60.2	2	1	2.08		10

Laboratory Control Sample (LCS)

(LCS) R3648113-2 04/28/21 15:47

(LCS) R3648113-2 04/28/2	21 15:47				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	99.9	85.0-115	

Page 357 of 457

Wet Chemistry by Method 300.0

L1344804-01,02,03

Method Blank (MB)

(MB) R3648149-1 04/29/2	21 02:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1342521-01 Original Sample (OS) • Duplicate (DUP)

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	7750	8050	100	3.82		20

Cn

L1342525-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1342525-01 04/29/21 04:25 • (DUP) R3648149-4 04/29/21 04:35

(00) 11042020 01 04/20/2	Original Result (dry)			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	12000	13100	100	8.90		20

Laboratory Control Sample (LCS)

(LCS) R3648149-2 04/29/21 02:12

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	199	99.6	90.0-110	

L1342525-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1342525-01 04/29/21 04:25 • (MS) R3648149-5 04/29/21 04:44 • (MSD) R3648149-6 04/29/21 04:54

(O3) LI342323-01 O4/2:	(O3) L1342323-01 04/23/21 04.23 • (N13) K3046143-3 04/23/21 04.44 • (N13D) K3046143-0 04/23/21 04.34											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	538	12000	13600	12200	305	38.7	100	80.0-120	V	V	11.1	20

Page 358 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1344804-01,02,03

Method Blank (MB)

(LCS) R3648296-1 04/29	9/21 12:28				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.34	97.1	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			105	77.0-120	

Page 359 of 457

Volatile Organic Compounds (GC/MS) by Method 8260B

L1344804-01,02,03

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3648020-2 04/28/	/21 22:08				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	107			75.0-131	
(S) 4-Bromofluorobenzene	103			67.0-138	
(S) 1,2-Dichloroethane-d4	104			70.0-130	

Laboratory Control Sample (LCS)

				5	100 0 100
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
nalyte	mg/kg	mg/kg	%	%	
enzene	0.125	0.120	96.0	70.0-123	
hylbenzene	0.125	0.136	109	74.0-126	
oluene	0.125	0.131	105	75.0-121	
/lenes, Total	0.375	0.404	108	72.0-127	
(S) Toluene-d8			106	75.0-131	
(S) 4-Bromofluorobenzene			103	67.0-138	

107

70.0-130

Page 360 of 457

L1344804-01,02,03

Semi-Volatile Organic Compounds (GC) by Method 8015

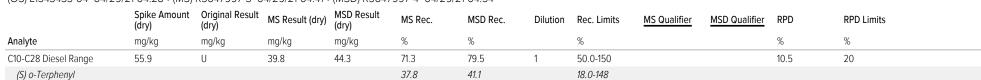
Method Blank (MB)

(MB) R3647997-1 04/29/21 03:23				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	1.65	<u>J</u>	1.61	4.00
C28-C40 Oil Range	3.24	<u>J</u>	0.274	4.00
(S) o-Terphenyl	78.2			18.0-148

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3647997-2 04/29)/21 03:36				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	41.3	82.6	50.0-150	
(S) o-Terphenyl			50.9	18.0-148	



GI

(OS) L1343433-04 04/29/21 04:28 • (MS) R3647997-3 04/29/21 04:41 • (MSD) R3647997-4 04/29/21 04:54

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Pace Analytical National	12065 Lebanon Rd	Mount Juliet	TN 37122
i ace Analytical National		Mount Junet,	111 0/122

, , , , , , , , , , , , , , , , , , , ,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Analysis Request of Chain of Custody Record

Analysis Request o	f Chain of Custody Record																				P	age :	_1	of	1	
TE	Tetra Tech, Inc.				901	Tel	nd, 7 (432)	Street exas 7 682-4) 682-3	7970 1559	1								C1	79				u	344	108	
Client Name:	Conoco Phillips	Site Manage	er:	Ch	ristian	Llull					T										UES					
Project Name:	MCA 151	Contact Info):			ristian. 512) 33			ech.d	com		1		(0	irc	le d	or (Spe 	ecif	y M	leth	od	No.)	11	
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	2C-MD	-02471																				
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	1											6										ist)			
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		John '	Thursto	on		1				- ORO - MRO)	DA HO	Se Hg								(see attached list)			
Comments: COPTETE	RA Acctnum							-			3260B	. (9	DRO - ORO	d Cr Ph	a Cd Cr Pb Se Hg			4	8270C/625			U.				
		SAME	LING	M	ATRIX			VATIV		SS SS	BTEX	(Ext to C35)	GRO - DF	Ad As Ba C	As Ba		tiles	OB / 62		89		at TDS	E	ance		
LAB#	SAMPLE IDENTIFICATION	YEAR: 2021					T	П	٦	INE	5	m 0	~			tiles	ii Vola	. 826	mi. Vo	8082 / 608	stos)	300.0	Water C	on Bal		
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	ICE ICE	NONE		# CONTAINERS	TEX 8021B	PH TX1005	TPH 8015M	otal Metals	CLP Meta	CLP Volati	TCLP Semi	MS	C/MS Ser	CB's 808	LM (Asbe	thloride 30	13	Anion/Cation Balar	2100111	HOLD
	FS-15 (6')	4/27/2021	11:15		X		X		+		1 X	-	X	1 1-	-		- 1		0	1 2	10	X		4 F		-
	FS-10 (4')	4/27/2021	11:22		Х		X		+	1 1	1 X		X	+	1		+	1				X				•
	ESW-16 (4')	4/27/2021	11:29		Х		X		İ	1	X		X									X				-
									+		+			+	-		-	+	H	-						
No. of Land				1		+ +-	+	++	+		+	H	+	+	+	\vdash	+									
	and the same of th		COC Sea	1 Pr	esent		ct:	Y -	N	Checkl	If AK	pli	cabl	е												
			COC Sig Bottles Correct Suffici RAD Scr	arr bot ent	ive i tles volum	ntact used: ne sen	: _ t: _	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N I	VOA Ze Pres.C	ro He	ads;	oace heck	: _	Y	M										
elinquished by:	Date: Time: 1500	Received by:				Date:		Time:	_				AB L			REI	MAR	KS: Stand	lard							
elinquished by:	Date: Time:	Received by:				Date:		Time:			Sa		Temp		ure	[-	1	8 hr.	72 hr.	01	4
elinquished by:	Date: Time:	Received by:	10			Date:		Time:			+										horized					
		A-		_	-	1/28	3	09	75	5								Specia	l Rep	ort Lim	nits or "	RRP	Repor	t		
		ORIGINA	LCOPY		/						(C	rcle)	HAN	ND D				EDEX) UP	ST	rackin	g#:_			_	
															A	76	8									

Released to Imaging: 8/3/2021 8:43:52 AM

4.0±054.0

Pace Analytical® ANALYTICAL REPORT

Ss

ConocoPhillips - Tetra Tech

L1347411 Sample Delivery Group:

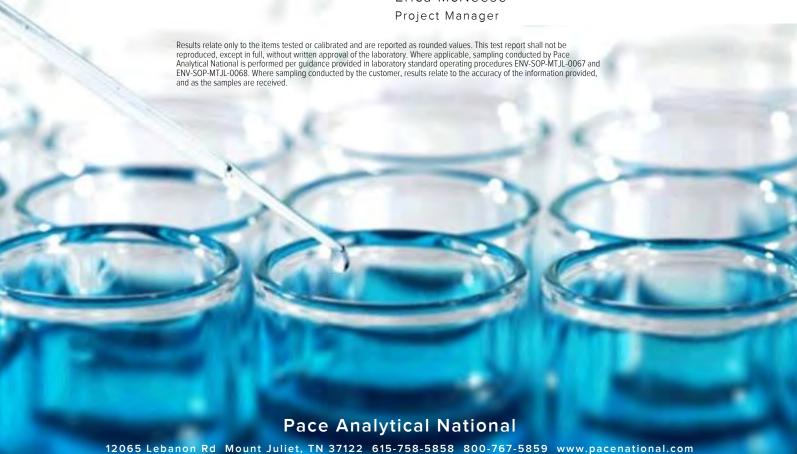
Samples Received: 05/04/2021

Project Number: 212C-MD-02471

Description: COP MCA 151 Flowline Release

Report To: Christian Llull

901 West Wall


Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Enicay Nesse

Erica McNeese Project Manager

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
FS-16 (4') L1347411-01	8
FS-17 (4') L1347411-02	9
FS-18 (4') L1347411-03	10
FS-19 (3') L1347411-04	11
NSW-1 L1347411-05	12
WSW-17 L1347411-06	13
WSW-18 L1347411-07	14
WSW-19 L1347411-08	15
WSW-20 L1347411-09	16
WSW-21 L1347411-10	17
WSW-22 L1347411-11	18
WSW-23 L1347411-12	19
ESW-17 L1347411-13	20
ESW-18 L1347411-14	21
ESW-19 L1347411-15	22
ESW-20 L1347411-16	23
ESW-21 L1347411-17	24
ESW-22 L1347411-18	25
ESW-23 L1347411-19	26
Qc: Quality Control Summary	27
Total Solids by Method 2540 G-2011	27
Wet Chemistry by Method 300.0	30
Volatile Organic Compounds (GC) by Method 8015D/GRO	31
Volatile Organic Compounds (GC/MS) by Method 8260B	32
Semi-Volatile Organic Compounds (GC) by Method 8015	34
GI: Glossary of Terms	35
Al: Accreditations & Locations	36

Sc: Sample Chain of Custody

37

	JAIVII LL V		/I//I/ I			Ü
FS-16 (4') L1347411-01 Solid			Collected by John Thurston	Collected date/time 05/03/21 09:10	Received da 05/04/2112:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664632	1	05/05/21 10:48	05/05/21 10:58	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/06/21 22:38	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/21 18:55	05/07/21 01:52	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 11:46	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 15:06	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-17 (4') L1347411-02 Solid			John Thurston	05/03/21 09:15	05/04/2112:	00
Method	Batch	Dilution	Preparation date/time	Analysis	Analyst	Location
Tatal Calida Inc. Mathead 25 40 C 2044	WC4CC 4C22	4		date/time	KDM	MA Lulias TNI
Total Solids by Method 2540 G-2011	WG1664632	1	05/05/21 10:48	05/05/21 10:58	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/06/21 22:47	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/21 18:55	05/07/21 02:14	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 12:05	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 10:49	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-18 (4') L1347411-03 Solid			John Thurston	05/03/21 09:20	05/04/2112:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664632	1	05/05/21 10:48	05/05/21 10:58	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	100	05/06/21 17:14	05/06/21 23:06	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/21 18:55	05/07/21 02:37	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 12:24	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 14:52	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-19 (3') L1347411-04 Solid			John Thurston	05/03/21 09:25	05/04/2112:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664632	1	05/05/21 10:48	05/05/21 10:58	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/06/21 23:16	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/21 18:55	05/07/21 02:59	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 12:43	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 11:03	JDG	Mt. Juliet, TN
			Collected by	Collected date/time		
NSW-1 L1347411-05 Solid			John Thurston	05/03/21 09:30	05/04/2112:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664632	1	05/05/21 10:48	05/05/21 10:58	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/06/21 23:25	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/21 18:55	05/07/21 03:21	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 13:02	JAH	Mt. Juliet, TN
0 11/1 11/1 0 1 1 0 1 1 1 1 1 1 1 1 1 1	1404004000	_			10.0	

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1664369

05/05/21 19:13

05/06/21 11:16

JDG

	07 (1111)	J () 11111	,,,,,,,,			
WSW-17 L1347411-06 Solid			Collected by John Thurston	Collected date/time 05/03/21 09:35	Received da 05/04/2112:	
	Datch	Dilution	Droporation	Analysis	Analyst	Location
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Calida hu Mathaul 2F 40 C 2011	WC1CC 4C22	1			KDM	MA Julios TNI
Total Solids by Method 2540 G-2011	WG1664632	1	05/05/21 10:48	05/05/21 10:58	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/06/21 23:35	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/2118:55	05/07/21 03:43	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 13:21	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 11:30	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-18 L1347411-07 Solid			John Thurston	05/03/21 09:40	05/04/21 12:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664632	1	05/05/21 10:48	05/05/21 10:58	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/06/21 23:45	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/21 18:55	05/07/21 04:05	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 13:40	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 11:43	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-19 L1347411-08 Solid			John Thurston	05/03/21 09:45	05/04/21 12:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664632	1	05/05/21 10:48	05/05/21 10:58	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/07/21 00:13	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/21 18:55	05/07/21 06:26	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 13:59	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 11:57	JDG	Mt. Juliet, TN
			Callandadla	Callantad databas	Deceived de	t = /time =
			Collected by	Collected date/time		
WSW-20 L1347411-09 Solid			John Thurston	05/03/21 09:50	05/04/21 12:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664633	1	05/05/21 10:38	05/05/21 10:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/07/21 00:23	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1.01	05/04/21 18:55	05/07/21 06:48	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 14:18	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 12:37	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-21 L1347411-10 Solid			John Thurston	05/03/21 09:55	05/04/2112:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664633	1	05/05/21 10:38	05/05/21 10:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/07/21 00:32	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/21 18:55	05/07/21 08:21	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 14:37	JAH	Mt. Juliet, TN
0 11/1 11 0 1 0 1 0 1 1 (00) 1 11 11 10:						

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1664369

05/05/21 19:13

05/06/21 12:50

JDG

	07 (IVII LL (3 0 11111	,,, ,,, ,			
			Collected by	Collected date/time		
WSW-22 L1347411-11 Solid			John Thurston	05/03/2110:30	05/04/21 12:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664633	1	05/05/21 10:38	05/05/21 10:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/07/21 00:42	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/21 18:55	05/07/21 08:54	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 14:56	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 15:19	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
WSW-23 L1347411-12 Solid			John Thurston	05/03/2110:35	05/04/21 12:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664633	1	05/05/21 10:38	05/05/21 10:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/07/21 00:51	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/21 18:55	05/07/21 09:19	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 15:15	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 13:04	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
ESW-17 L1347411-13 Solid			John Thurston	05/03/2110:40	05/04/2112:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664633	1	05/05/21 10:38	05/05/21 10:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/07/21 01:29	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/21 18:55	05/07/21 09:41	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 15:34	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 13:18	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
ESW-18 L1347411-14 Solid			John Thurston	05/03/2110:45	05/04/2112:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664633	1	05/05/21 10:38	05/05/21 10:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/07/21 01:39	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1.01	05/04/21 18:55	05/07/21 11:23	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1.01	05/04/21 18:55	05/05/21 15:53	JAH	Mt. Juliet, Th
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 13:31	JDG	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
ESW-19 L1347411-15 Solid			John Thurston	05/03/2110:50	05/04/2112:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664633	1	05/05/21 10:38	05/05/21 10:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/07/21 02:07	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/21 18:55	05/07/21 11:46	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 16:12	JAH	Mt. Juliet, TN
C : 1/ :: O : O (CO) M : 10015	11101001000		05/05/04 40 40		10.0	

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1664369

05/05/21 19:13

05/06/21 13:45

JDG

			Collected by	Collected date/time		
ESW-20 L1347411-16 Solid			John Thurston	05/03/21 10:55	05/04/2112:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664633	1	05/05/21 10:38	05/05/21 10:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/07/21 02:17	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1.01	05/04/21 18:55	05/07/2112:08	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 16:31	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 13:58	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
ESW-21 L1347411-17 Solid			John Thurston	05/03/21 11:00	05/04/2112:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664633	1	05/05/21 10:38	05/05/21 10:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/07/21 02:26	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/21 18:55	05/07/21 12:30	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664578	1	05/04/21 18:55	05/05/21 16:50	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 14:12	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
ESW-22 L1347411-18 Solid			John Thurston	05/03/21 11:05	05/04/21 12:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664633	1	05/05/21 10:38	05/05/21 10:47	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/07/21 02:36	GB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1664585	1	05/04/21 18:55	05/07/21 12:52	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1664809	1	05/04/21 18:55	05/05/21 14:27	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1664369	1	05/05/21 19:13	05/06/21 14:25	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
ESW-23 L1347411-19 Solid			John Thurston	05/03/21 11:10	05/04/21 12:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Tatal Calida by Mathad 2540 C 2041	WC1CC 4C2 4	1	date/time	date/time	KDW	M4 Indias TN
Total Solids by Method 2540 G-2011	WG1664634	1	05/05/21 10:00	05/05/21 10:11	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1665381	1	05/06/21 17:14	05/07/21 02:59	GB	Mt. Juliet, TN

WG1664585

WG1664809

WG1664369

1

1

05/04/2118:55

05/04/21 18:55

05/05/21 19:13

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 8015

JAH

JAH

JDG

05/07/21 13:14

05/05/21 14:46

05/06/21 14:39

Mt. Juliet, TN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica McNeese Project Manager

Collected date/time: 05/03/21 09:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.4		1	05/05/2021 10:58	<u>WG1664632</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	11.9	<u>J</u>	9.95	21.6	1	05/06/2021 22:38	WG1665381

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0421	<u>J</u>	0.0235	0.108	1	05/07/2021 01:52	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 01:52	WG1664585

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000544	0.00116	1	05/05/2021 11:46	WG1664578
Toluene	U		0.00151	0.00582	1	05/05/2021 11:46	WG1664578
Ethylbenzene	0.00166	<u>J</u>	0.000858	0.00291	1	05/05/2021 11:46	WG1664578
Total Xylenes	0.00426	<u>J</u>	0.00102	0.00757	1	05/05/2021 11:46	WG1664578
(S) Toluene-d8	105			75.0-131		05/05/2021 11:46	WG1664578
(S) 4-Bromofluorobenzene	94.6			67.0-138		05/05/2021 11:46	WG1664578
(S) 1,2-Dichloroethane-d4	91.8			70.0-130		05/05/2021 11:46	WG1664578

Gl

•	J 1	(/	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	12.1		1.74	4.33	1	05/06/2021 15:06	WG1664369
C28-C40 Oil Range	17.7		0.296	4.33	1	05/06/2021 15:06	WG1664369
(S) o-Terphenyl	64.0			18.0-148		05/06/2021 15:06	WG1664369

Page 372 of 457

Collected date/time: 05/03/21 09:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.7		1	05/05/2021 10:58	WG1664632

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.92	21.6	1	05/06/2021 22:47	WG1665381

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1	05/07/2021 02:14	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 02:14	<u>WG1664585</u>

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000540	0.00116	1	05/05/2021 12:05	WG1664578
Toluene	U		0.00150	0.00578	1	05/05/2021 12:05	WG1664578
Ethylbenzene	U		0.000852	0.00289	1	05/05/2021 12:05	WG1664578
Total Xylenes	U		0.00102	0.00752	1	05/05/2021 12:05	WG1664578
(S) Toluene-d8	107			75.0-131		05/05/2021 12:05	WG1664578
(S) 4-Bromofluorobenzene	94.9			67.0-138		05/05/2021 12:05	WG1664578
(S) 1,2-Dichloroethane-d4	92.4			70.0-130		05/05/2021 12:05	WG1664578

Gl

`	J 1	\ /	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.31	1	05/06/2021 10:49	WG1664369
C28-C40 Oil Range	4.44		0.295	4.31	1	05/06/2021 10:49	WG1664369
(S) o-Terphenyl	57.4			18.0-148		05/06/2021 10:49	WG1664369

Collected date/time: 05/03/21 09:20 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	87.2		1	05/05/2021 10:58	WG1664632

Page 373 of 457

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	4980		1050	2290	100	05/06/2021 23:06	WG1665381

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0342	<u>J</u>	0.0249	0.115	1	05/07/2021 02:37	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 02:37	WG1664585

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000604	0.00129	1	05/05/2021 12:24	WG1664578
Toluene	0.00336	<u>J</u>	0.00168	0.00647	1	05/05/2021 12:24	WG1664578
Ethylbenzene	0.00349		0.000953	0.00323	1	05/05/2021 12:24	WG1664578
Total Xylenes	0.0135		0.00114	0.00841	1	05/05/2021 12:24	WG1664578
(S) Toluene-d8	106			<i>75.0-131</i>		05/05/2021 12:24	WG1664578
(S) 4-Bromofluorobenzene	93.2			67.0-138		05/05/2021 12:24	WG1664578
(S) 1,2-Dichloroethane-d4	89.4			70.0-130		05/05/2021 12:24	WG1664578

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.84		1.85	4.59	1	05/06/2021 14:52	WG1664369
C28-C40 Oil Range	6.99		0.314	4.59	1	05/06/2021 14:52	WG1664369
(S) o-Ternhenyl	54.3			18 0-148		05/06/2021 14:52	WG1664369

Page 374 of 457

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.7		1	05/05/2021 10:58	WG1664632

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.61	20.9	1	05/06/2021 23:16	WG1665381

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.104	1	05/07/2021 02:59	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	115			77.0-120		05/07/2021 02:59	WG1664585

[°]Qc

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000509	0.00109	1	05/05/2021 12:43	WG1664578
Toluene	U		0.00142	0.00545	1	05/05/2021 12:43	WG1664578
Ethylbenzene	U		0.000803	0.00272	1	05/05/2021 12:43	WG1664578
Total Xylenes	U		0.000959	0.00708	1	05/05/2021 12:43	WG1664578
(S) Toluene-d8	106			75.0-131		05/05/2021 12:43	WG1664578
(S) 4-Bromofluorobenzene	94.4			67.0-138		05/05/2021 12:43	WG1664578
(S) 1,2-Dichloroethane-d4	91.3			70.0-130		05/05/2021 12:43	WG1664578

Semi-Volatile Organic Compounds (GC) by Method 8015

	J 1	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.18	1	05/06/2021 11:03	WG1664369
C28-C40 Oil Range	4.80		0.286	4.18	1	05/06/2021 11:03	WG1664369
(S) o-Terphenyl	67.3			18.0-148		05/06/2021 11:03	WG1664369

Page 375 of 457

SAMPLE RESULTS - 05

Collected date/time: 05/03/21 09:30 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.8		1	05/05/2021 10:58	<u>WG1664632</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.50	20.7	1	05/06/2021 23:25	WG1665381

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	05/07/2021 03:21	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 03:21	WG1664585

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000498	0.00107	1	05/05/2021 13:02	WG1664578
Toluene	U		0.00139	0.00533	1	05/05/2021 13:02	WG1664578
Ethylbenzene	U		0.000786	0.00267	1	05/05/2021 13:02	WG1664578
Total Xylenes	U		0.000938	0.00693	1	05/05/2021 13:02	WG1664578
(S) Toluene-d8	107			75.0-131		05/05/2021 13:02	WG1664578
(S) 4-Bromofluorobenzene	95.3			67.0-138		05/05/2021 13:02	WG1664578
(S) 1,2-Dichloroethane-d4	92.1			70.0-130		05/05/2021 13:02	WG1664578

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	,	• • •					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	05/06/2021 11:16	WG1664369
C28-C40 Oil Range	4.43		0.283	4.13	1	05/06/2021 11:16	WG1664369
(S) o-Terphenyl	63.8			18.0-148		05/06/2021 11:16	WG1664369

PAGE:

Page 376 of 457

SAMPLE RESULTS - 06

Collected date/time: 05/03/21 09:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.3		1	05/05/2021 10:58	WG1664632

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	367		9.86	21.4	1	05/06/2021 23:35	WG1665381

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0233	0.107	1	05/07/2021 03:43	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 03:43	WG1664585

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000534	0.00114	1	05/05/2021 13:21	WG1664578
Toluene	U		0.00149	0.00572	1	05/05/2021 13:21	WG1664578
Ethylbenzene	U		0.000842	0.00286	1	05/05/2021 13:21	WG1664578
Total Xylenes	U		0.00101	0.00743	1	05/05/2021 13:21	WG1664578
(S) Toluene-d8	107			75.0-131		05/05/2021 13:21	WG1664578
(S) 4-Bromofluorobenzene	94.7			67.0-138		05/05/2021 13:21	WG1664578
(S) 1,2-Dichloroethane-d4	93.3			70.0-130		05/05/2021 13:21	WG1664578

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.29	1	05/06/2021 11:30	WG1664369
C28-C40 Oil Range	2.38	<u>J</u>	0.294	4.29	1	05/06/2021 11:30	WG1664369
(S) o-Terphenyl	53.4			18.0-148		05/06/2021 11:30	WG1664369

Page 377 of 457

SAMPLE RESULTS - 07

Total Solids by Method 2540 G-2011

Collected date/time: 05/03/21 09:40

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.7		1	05/05/2021 10:58	WG1664632

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	139		9.71	21.1	1	05/06/2021 23:45	WG1665381

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1	05/07/2021 04:05	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 04:05	WG1664585

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000519	0.00111	1	05/05/2021 13:40	WG1664578
Toluene	U		0.00144	0.00556	1	05/05/2021 13:40	WG1664578
Ethylbenzene	U		0.000819	0.00278	1	05/05/2021 13:40	WG1664578
Total Xylenes	U		0.000978	0.00722	1	05/05/2021 13:40	WG1664578
(S) Toluene-d8	104			75.0-131		05/05/2021 13:40	WG1664578
(S) 4-Bromofluorobenzene	93.8			67.0-138		05/05/2021 13:40	WG1664578
(S) 1,2-Dichloroethane-d4	94.2			70.0-130		05/05/2021 13:40	WG1664578

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.22	1	05/06/2021 11:43	WG1664369
C28-C40 Oil Range	2.45	<u>J</u>	0.289	4.22	1	05/06/2021 11:43	WG1664369
(S) o-Terphenyl	50.3			18.0-148		05/06/2021 11:43	WG1664369

Gl

Page 378 of 457

SAMPLE RESULTS - 08

Collected date/time: 05/03/21 09:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.2		1	05/05/2021 10:58	WG1664632

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	489		9.56	20.8	1	05/07/2021 00:13	WG1665381

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0237	<u>J</u>	0.0226	0.104	1	05/07/2021 06:26	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 06:26	WG1664585

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000504	0.00108	1	05/05/2021 13:59	WG1664578
Toluene	U		0.00140	0.00539	1	05/05/2021 13:59	WG1664578
Ethylbenzene	0.00205	<u>J</u>	0.000795	0.00270	1	05/05/2021 13:59	WG1664578
Total Xylenes	0.00681	<u>J</u>	0.000949	0.00701	1	05/05/2021 13:59	WG1664578
(S) Toluene-d8	106			75.0-131		05/05/2021 13:59	WG1664578
(S) 4-Bromofluorobenzene	94.5			67.0-138		05/05/2021 13:59	WG1664578
(S) 1,2-Dichloroethane-d4	93.2			70.0-130		05/05/2021 13:59	WG1664578

•	J 1	`	/ /				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.74	<u>J</u>	1.67	4.16	1	05/06/2021 11:57	WG1664369
C28-C40 Oil Range	2.70	<u>J</u>	0.285	4.16	1	05/06/2021 11:57	WG1664369
(S) o-Terphenyl	50.8			18.0-148		05/06/2021 11:57	WG1664369

Page 379 of 457

SAMPLE RESULTS - 09

Collected date/time: 05/03/21 09:50 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.9		1	05/05/2021 10:47	WG1664633

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	11.1	<u>J</u>	9.69	21.1	1	05/07/2021 00:23	WG1665381

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0231	0.106	1.01	05/07/2021 06:48	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 06:48	WG1664585

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000517	0.00111	1	05/05/2021 14:18	WG1664578
Toluene	U		0.00144	0.00554	1	05/05/2021 14:18	WG1664578
Ethylbenzene	U		0.000816	0.00277	1	05/05/2021 14:18	WG1664578
Total Xylenes	0.00421	<u>J</u>	0.000974	0.00720	1	05/05/2021 14:18	WG1664578
(S) Toluene-d8	105			75.0-131		05/05/2021 14:18	WG1664578
(S) 4-Bromofluorobenzene	95.8			67.0-138		05/05/2021 14:18	WG1664578
(S) 1,2-Dichloroethane-d4	92.5			70.0-130		05/05/2021 14:18	WG1664578

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	J 1	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.21	1	05/06/2021 12:37	WG1664369
C28-C40 Oil Range	2.84	<u>J</u>	0.289	4.21	1	05/06/2021 12:37	WG1664369
(S) o-Terphenyl	54.1			18.0-148		05/06/2021 12:37	WG1664369

Released to Imaging: %/37/2021 8:43:52 AM ConocoPhillips - Tetra Tech 212C-MD-02471

Page 380 of 457

SAMPLE RESULTS - 10

Total Solids by Method 2540 G-2011

Collected date/time: 05/03/21 09:55

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.2		1	05/05/2021 10:47	WG1664633

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	347		9.77	21.2	1	05/07/2021 00:32	WG1665381

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0712	<u>J</u>	0.0230	0.106	1	05/07/2021 08:21	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	112			77.0-120		05/07/2021 08:21	<u>WG1664585</u>

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000525	0.00112	1	05/05/2021 14:37	WG1664578
Toluene	U		0.00146	0.00562	1	05/05/2021 14:37	WG1664578
Ethylbenzene	U		0.000828	0.00281	1	05/05/2021 14:37	WG1664578
Total Xylenes	0.00279	<u>J</u>	0.000988	0.00730	1	05/05/2021 14:37	WG1664578
(S) Toluene-d8	106			75.0-131		05/05/2021 14:37	WG1664578
(S) 4-Bromofluorobenzene	96.8			67.0-138		05/05/2021 14:37	WG1664578
(S) 1,2-Dichloroethane-d4	95.0			70.0-130		05/05/2021 14:37	WG1664578

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.91	<u>J</u>	1.71	4.25	1	05/06/2021 12:50	WG1664369
C28-C40 Oil Range	4.60		0.291	4.25	1	05/06/2021 12:50	WG1664369
(S) o-Terphenyl	59.7			18.0-148		05/06/2021 12:50	WG1664369

ConocoPhillips - Tetra Tech

Page 381 of 457

SAMPLE RESULTS - 11

Total Solids by Method 2540 G-2011

Collected date/time: 05/03/21 10:30

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.1		1	05/05/2021 10:47	WG1664633

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.29	20.2	1	05/07/2021 00:42	WG1665381

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	05/07/2021 08:54	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 08:54	WG1664585

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000476	0.00102	1	05/05/2021 14:56	WG1664578
Toluene	U		0.00132	0.00509	1	05/05/2021 14:56	WG1664578
Ethylbenzene	U		0.000751	0.00255	1	05/05/2021 14:56	WG1664578
Total Xylenes	U		0.000896	0.00662	1	05/05/2021 14:56	WG1664578
(S) Toluene-d8	106			75.0-131		05/05/2021 14:56	WG1664578
(S) 4-Bromofluorobenzene	96.1			67.0-138		05/05/2021 14:56	WG1664578
(S) 1,2-Dichloroethane-d4	93.2			70.0-130		05/05/2021 14:56	WG1664578

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

•	J 1	, ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.04	1	05/06/2021 15:19	WG1664369
C28-C40 Oil Range	7.30		0.277	4.04	1	05/06/2021 15:19	WG1664369
(S) o-Terphenyl	59.2			18.0-148		05/06/2021 15:19	WG1664369

Collected date/time: 05/03/21 10:35

Page 382 of 457

SAMPLE RESULTS - 12

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.1		1	05/05/2021 10:47	WG1664633

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.38	20.4	1	05/07/2021 00:51	WG1665381

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	05/07/2021 09:19	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 09:19	WG1664585

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000486	0.00104	1	05/05/2021 15:15	WG1664578
Toluene	U		0.00135	0.00520	1	05/05/2021 15:15	WG1664578
Ethylbenzene	U		0.000766	0.00260	1	05/05/2021 15:15	WG1664578
Total Xylenes	U		0.000915	0.00676	1	05/05/2021 15:15	WG1664578
(S) Toluene-d8	106			75.0-131		05/05/2021 15:15	WG1664578
(S) 4-Bromofluorobenzene	95.9			67.0-138		05/05/2021 15:15	WG1664578
(S) 1,2-Dichloroethane-d4	95.0			70.0-130		05/05/2021 15:15	WG1664578

Semi-Volatile Organic Compounds (GC) by Method 8015

	,	•	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.08	1	05/06/2021 13:04	WG1664369
C28-C40 Oil Range	4.06	<u>J</u>	0.279	4.08	1	05/06/2021 13:04	WG1664369
(S) o-Terphenyl	58.7			18.0-148		05/06/2021 13:04	WG1664369

Gl

Page 383 of 457

SAMPLE RESULTS - 13

Collected date/time: 05/03/21 10:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.9		1	05/05/2021 10:47	WG1664633

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	694		9.59	20.9	1	05/07/2021 01:29	WG1665381

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0366	<u>J</u>	0.0226	0.104	1	05/07/2021 09:41	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 09:41	WG1664585

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000507	0.00109	1	05/05/2021 15:34	WG1664578
Toluene	U		0.00141	0.00543	1	05/05/2021 15:34	WG1664578
Ethylbenzene	U		0.000800	0.00271	1	05/05/2021 15:34	WG1664578
Total Xylenes	U		0.000955	0.00706	1	05/05/2021 15:34	WG1664578
(S) Toluene-d8	106			75.0-131		05/05/2021 15:34	WG1664578
(S) 4-Bromofluorobenzene	95.9			67.0-138		05/05/2021 15:34	WG1664578
(S) 1,2-Dichloroethane-d4	94.8			70.0-130		05/05/2021 15:34	WG1664578

Semi-Volatile Organic Compounds (GC) by Method 8015

	,	•	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.17	1	05/06/2021 13:18	WG1664369
C28-C40 Oil Range	3.47	<u>J</u>	0.286	4.17	1	05/06/2021 13:18	WG1664369
(S) o-Terphenyl	62.4			18.0-148		05/06/2021 13:18	WG1664369

Cn

Gl

Page 384 of 457

SAMPLE RESULTS - 14

Total Solids by Method 2540 G-2011

Collected date/time: 05/03/21 10:45

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.0		1	05/05/2021 10:47	WG1664633

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	27.2		9.69	21.1	1	05/07/2021 01:39	WG1665381

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0450	<u>J</u>	0.0231	0.106	1.01	05/07/2021 11:23	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 11:23	WG1664585

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000522	0.00112	1.01	05/05/2021 15:53	WG1664578
oluene	U		0.00145	0.00559	1.01	05/05/2021 15:53	WG1664578
thylbenzene	U		0.000823	0.00280	1.01	05/05/2021 15:53	WG1664578
ital Xylenes	U		0.000983	0.00726	1.01	05/05/2021 15:53	WG1664578
(S) Toluene-d8	105			75.0-131		05/05/2021 15:53	WG1664578
(S) 4-Bromofluorobenzene	94.6			67.0-138		05/05/2021 15:53	WG1664578
S) 1,2-Dichloroethane-d4	95.1			70.0-130		05/05/2021 15:53	WG1664578

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.21	1	05/06/2021 13:31	WG1664369
C28-C40 Oil Range	4.59		0.289	4.21	1	05/06/2021 13:31	WG1664369
(S) o-Terphenyl	68.1			18.0-148		05/06/2021 13:31	WG1664369

Page 385 of 457

SAMPLE RESULTS - 15

Total Solids by Method 2540 G-2011

Collected date/time: 05/03/21 10:50

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.8		1	05/05/2021 10:47	WG1664633

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.70	21.1	1	05/07/2021 02:07	WG1665381

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.105	1	05/07/2021 11:46	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	115			77.0-120		05/07/2021 11:46	WG1664585

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000518	0.00111	1	05/05/2021 16:12	WG1664578
Toluene	U		0.00144	0.00554	1	05/05/2021 16:12	WG1664578
Ethylbenzene	U		0.000817	0.00277	1	05/05/2021 16:12	WG1664578
Total Xylenes	U		0.000976	0.00721	1	05/05/2021 16:12	WG1664578
(S) Toluene-d8	106			75.0-131		05/05/2021 16:12	WG1664578
(S) 4-Bromofluorobenzene	95.0			67.0-138		05/05/2021 16:12	WG1664578
(S) 1,2-Dichloroethane-d4	95.6			70.0-130		05/05/2021 16:12	WG1664578

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.22	1	05/06/2021 13:45	WG1664369
C28-C40 Oil Range	3.11	<u>J</u>	0.289	4.22	1	05/06/2021 13:45	WG1664369
(S) o-Terphenyl	55.9			18.0-148		05/06/2021 13:45	WG1664369

Page 386 of 457

SAMPLE RESULTS - 16

Collected date/time: 05/03/21 10:55

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.5		1	05/05/2021 10:47	WG1664633

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12.6	<u>J</u>	9.64	20.9	1	05/07/2021 02:17	WG1665381

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.106	1.01	05/07/2021 12:08	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 12:08	WG1664585

Volatile Organic Compounds (GC/MS) by Method 8260B

_							
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000511	0.00109	1	05/05/2021 16:31	WG1664578
Toluene	U		0.00142	0.00547	1	05/05/2021 16:31	WG1664578
Ethylbenzene	U		0.000807	0.00274	1	05/05/2021 16:31	WG1664578
Total Xylenes	U		0.000963	0.00712	1	05/05/2021 16:31	WG1664578
(S) Toluene-d8	105			<i>75.0-131</i>		05/05/2021 16:31	WG1664578
(S) 4-Bromofluorobenzene	94.6			67.0-138		05/05/2021 16:31	WG1664578
(S) 1,2-Dichloroethane-d4	94.8			70.0-130		05/05/2021 16:31	WG1664578

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.19	1	05/06/2021 13:58	WG1664369
C28-C40 Oil Range	4.37		0.287	4.19	1	05/06/2021 13:58	WG1664369
(S) o-Terphenyl	62.9			18.0-148		05/06/2021 13:58	WG1664369

ConocoPhillips - Tetra Tech

Page 387 of 457

SAMPLE RESULTS - 17

Collected date/time: 05/03/21 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.6		1	05/05/2021 10:47	WG1664633

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10.0	<u>J</u>	9.52	20.7	1	05/07/2021 02:26	WG1665381

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	05/07/2021 12:30	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 12:30	WG1664585

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000500	0.00107	1	05/05/2021 16:50	WG1664578
Toluene	U		0.00139	0.00535	1	05/05/2021 16:50	WG1664578
Ethylbenzene	U		0.000789	0.00268	1	05/05/2021 16:50	WG1664578
Total Xylenes	U		0.000942	0.00696	1	05/05/2021 16:50	WG1664578
(S) Toluene-d8	106			75.0-131		05/05/2021 16:50	WG1664578
(S) 4-Bromofluorobenzene	93.8			67.0-138		05/05/2021 16:50	WG1664578
(S) 1,2-Dichloroethane-d4	96.1			70.0-130		05/05/2021 16:50	WG1664578

Gl

`	'	` `	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.67	4.14	1	05/06/2021 14:12	WG1664369
C28-C40 Oil Range	3.60	<u>J</u>	0.284	4.14	1	05/06/2021 14:12	WG1664369
(S) o-Terphenyl	54.0			18.0-148		05/06/2021 14:12	WG1664369

Page 388 of 457

SAMPLE RESULTS - 18

Collected date/time: 05/03/21 11:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.2		1	05/05/202110:47	WG1664633

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	12.1	<u>J</u>	9.67	21.0	1	05/07/2021 02:36	WG1665381

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	05/07/2021 12:52	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 12:52	WG1664585

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000514	0.00110	1	05/05/2021 14:27	WG1664809
Toluene	U		0.00143	0.00551	1	05/05/2021 14:27	WG1664809
Ethylbenzene	0.00154	<u>J</u>	0.000812	0.00275	1	05/05/2021 14:27	WG1664809
Total Xylenes	U		0.000969	0.00716	1	05/05/2021 14:27	WG1664809
(S) Toluene-d8	116			75.0-131		05/05/2021 14:27	WG1664809
(S) 4-Bromofluorobenzene	107			67.0-138		05/05/2021 14:27	WG1664809
(S) 1,2-Dichloroethane-d4	89.6			70.0-130		05/05/2021 14:27	WG1664809

Semi-Volatile Organic Compounds (GC) by Method 8015

	3 1	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.20	1	05/06/2021 14:25	WG1664369
C28-C40 Oil Range	2.78	<u>J</u>	0.288	4.20	1	05/06/2021 14:25	WG1664369
(S) o-Terphenyl	49.8			18.0-148		05/06/2021 14:25	WG1664369

Page 389 of 457

SAMPLE RESULTS - 19

Collected date/time: 05/03/21 11:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.4		1	05/05/2021 10:11	<u>WG1664634</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	10.2	<u>J</u>	9.65	21.0	1	05/07/2021 02:59	WG1665381

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	05/07/2021 13:14	WG1664585
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/07/2021 13:14	WG1664585

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000512	0.00110	1	05/05/2021 14:46	WG1664809
oluene	U		0.00143	0.00548	1	05/05/2021 14:46	WG1664809
Ethylbenzene	U		0.000808	0.00274	1	05/05/2021 14:46	WG1664809
otal Xylenes	U		0.000965	0.00713	1	05/05/2021 14:46	WG1664809
(S) Toluene-d8	105			75.0-131		05/05/2021 14:46	WG1664809
(S) 4-Bromofluorobenzene	103			67.0-138		05/05/2021 14:46	WG1664809
(S) 1,2-Dichloroethane-d4	88.1			70.0-130		05/05/2021 14:46	WG1664809

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.19	1	05/06/2021 14:39	WG1664369
C28-C40 Oil Range	8.66		0.287	4.19	1	05/06/2021 14:39	WG1664369
(S) o-Terphenyl	42.0			18.0-148		05/06/2021 14:39	WG1664369

Page 390 of 457

Total Solids by Method 2540 G-2011

L1347411-01,02,03,04,05,06,07,08

Method	Blank	(MB)
111000	Diamit	(111)

(MB) R3650956-1 05/05/2110:58									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	%		%	%					
Total Solids	0.000								

Ss

L1347392-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1347392-02 05/05/21 10:58 • (DUP) R3650956-3 05/05/21 10:58

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	81.4	80.9	1	0.535		10

[†]Cn

(LCS) R3650956-2 05/05	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 391 of 457

Total Solids by Method 2540 G-2011

L1347411-09,10,11,12,13,14,15,16,17,18

Method Blank (M	IB)
-----------------	-----

(MB) R3650954-1 05	5/05/21 10:47			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00200			

TC

³Ss

L1347411-14 Original Sample (OS) • Duplicate (DUP)

(OS)	1 1347411-14	05/05/21 10:47 •	(DL JP) R3650954-3	05/05/21 10:47
(00)		00/00/21 10.1/	(00.	, 110000000	00/00/21 10.17

(Original Result	•				DUP Qualifier	DUP RPD Limits
Analyte	%	%			%		%
Total Solids	95.0	95.3	1	1	0.318		10

⁴Cn

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3650954-2 05/05/2110:47

(LCS) R3650954-2 05/05	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	99.9	85.0-115

Page 392 of 457

Total Solids by Method 2540 G-2011

L1347411-19

(MB	3) R3650941-1 05/05	/21 10:11			
		MB Result	MB Qualifier	MB MDL	MB RDL
Anal	llyte	%		%	%
Tota	al Solids	0.00100			

³Ss

L1345875-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1345875-02	OE/OE/21 10:11	חוום/) D26E00/11/2	OE/OE/21 10:11
(US) LIS436/3-UZ	03/03/2110.11•	(レしト) K3030341-3	03/03/21 10.11

,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	79.4	79.7	1	0.379		10

⁶Qc

Laboratory Control Sample (LCS)

(LCS) R3650941-2 05/05/21 10:11

Sc

Page 393 of 457

Wet Chemistry by Method 300.0

L1347411-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19

Method Blank (MB)

(MB) R3651591-1 05/06/2	1 21:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

(OS) L1347411-02	05/06/21 22:47	• (DUP) R3651591-3	05/06/21 22:57

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Chloride	U	U	1	0.000		20	

(OS) L1347411-12 05/07/21 00:51 • (DUP) R3651591-4 05/07/21 01:01

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3651591-2 05/06/21 22:03

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	193	96.7	90.0-110	

L1347411-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1347411-12 05/07/21 00:51 • (MS) R3651591-5 05/07/21 01:10 • (MSD) R3651591-6 05/07/21 01:20

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	510	U	468	462	91.7	90.6	1	80.0-120			1.21	20

Page 394 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1347411-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19

Method Blank (MB)

(MB) R3651712-2 05/06/2	21 23:52			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	118			77.0-120

(LCS) R3651712-1 05/06/	21 23:02				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.59	83.5	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			104	77.0-120	

Page 395 of 457

L1347411-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17 Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3651041-2 05/05/2	21 08:41			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	107			75.0-131
(S) 4-Bromofluorobenzene	94.1			67.0-138
(S) 1,2-Dichloroethane-d4	92.5			70.0-130

(LCS) R3651041-1 05/05	5/21 07:44				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.118	94.4	70.0-123	
Ethylbenzene	0.125	0.117	93.6	74.0-126	
Toluene	0.125	0.115	92.0	75.0-121	
Xylenes, Total	0.375	0.338	90.1	72.0-127	
(S) Toluene-d8			104	75.0-131	
(S) 4-Bromofluorobenzene	è		96.0	67.0-138	
(S) 1,2-Dichloroethane-d4			96.6	70.0-130	

Page 396 of 457

Volatile Organic Compounds (GC/MS) by Method 8260B

L1347411-18,19

Method Blank (MB)

(MB) R3651121-2 05/05/21	12:24			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	108			75.0-131
(S) 4-Bromofluorobenzene	102			67.0-138
(S) 1,2-Dichloroethane-d4	88.9			70.0-130

(LCS) R3651121-1 05/0	5/21 11:28				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.119	95.2	70.0-123	
Ethylbenzene	0.125	0.112	89.6	74.0-126	
Toluene	0.125	0.128	102	75.0-121	
Xylenes, Total	0.375	0.336	89.6	72.0-127	
(S) Toluene-d8			109	75.0-131	
(S) 4-Bromofluorobenze	ne		95.7	67.0-138	
(S) 1,2-Dichloroethane-a	14		93.8	70.0-130	

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Page 397 of 457

L1347411-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19

Method Blank (MB)

(MB) R3651297-1 05/06	6/21 10:09			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	53.2			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3651297-2 05/0	6/21 10:22				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	27.7	55.4	50.0-150	
(S) o-Terphenyl			65.6	18.0-148	

L1347411-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1347411-08 05/06/21 11:57 • (MS) R3651297-3 05/06/21 12:10 • (MSD) R3651297-4 05/06/21 12:24

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	50.8	1.74	32.7	34.0	61.0	63.3	1	50.0-150			3.74	20
(S) o-Terphenyl					54.8	56.9		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

PAGE:

Pace Analytical National	12065 Lebanon Rd	Mount Juliet	TN 37122
i ace Analytical National		Mount Junet,	111 0/122

, , , , , , , , , , , , , , , , , , , ,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Analysis Request of Chain of Custody Record

F102

Page 400 of 457
Page: _1 of 2

- 1
1000
w 1

Tetra Tech, Inc.

901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946

	retta reen, me.		Ore:	200					682-3																		
Client Name:	Conoco Phillips	Site Manage	r:	Ch	ristian	Llul	ı					Γ										UES					
Project Name:	MCA 151	Contact Info	:		nail: ch					ech.co	m	1	1	1	(Ci	rcle	e o	rS 	pe 	cify	M	etho	bd 	No.)	Ĺ	ı
Project Location: (county, state)	Lea County, New Mexico	Project #:		212C-MD-02471								1										П					
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701			4			T.	1				1		6										ist)			
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		John	Thu	rstor	n						O-MHC	Se Hg	Se Hg						П		(see attached list)			
Comments: COPTE	TRA Acctnum			Market Hiller								8260B	35)	8015M (GHO - DHO - OHO - MHO)	Cd Cr Pb	Cd Cr Pb			4.	C/625			9	istry (see at			
		SAMP	LING	M	ATRIX	x P		ER\ ETH	/ATIV		(N)	BTEX	Ext to C	HO - D	As Ba (g As Ba	ofile	duico	60B / 62	ol. 8270	80		9	Chem	alance		
LAB#	SAMPLE IDENTIFICATION	YEAR: 2021					-	F	H	- N	3	9	002 (2 0	ls Ag	A SIE	tiles	-	l. 82	J. 10	N	stos	0.00	sunate ater Che	on Be	-	
(LAB USE)	L1347411	DATE	TIME	WATER	SOIL	HCI	HNO3	ICE	NONE	# CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH TX1005 (Ext to C35)	PAH 8270	Total Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Meta	TCLP Volatiles	RCI	GC/MS Vol. 8260B / 624	GC/MS Semi. Vol. 8270C/625	PCB'S 8082 / 608 NORM	PLM (Asbestos)	Chloride 300.0	General Water Chemistry	Anion/Cation Balar TPH 8015R	500	НОГР
_41	FS-16 (4')	5/3/2021	9:10	T	Х		0	Х		1	N	Х	T	X	1								х				
-11	FS-17 (4')	5/3/2021	9:15		X			х		1	N	х		x				T	П		1		X	100	100		
-67	FS-18 (4')	5/3/2021	9:20		Х			Х		1	N	Х		x		M	1		П	\Box	T		Х		200		
-24	FS-19 (3')	5/3/2021	9:25		Х		T	х	П	1	N	Х		x	T	\Box	1	\top	П		\top	\Box	х	\top	\top	\Box	
-65	NSW-1	5/3/2021	9:30		Х			X		1	N	Х		X			\top	T	П		T	П	х	\top			
-16	WSW-17	5/3/2021	9:35		Х	T		х	4	1	N	Х		x		П			П	\sqcap	T		х	\Box		\top	
-67	WSW-18	5/3/2021	9:40		х	T		х	П	1	N	Х		х		П		3	П	П	\top	П	х	\Box			
85	WSW-19	5/3/2021	9:45	9	Х	T		X		-1	N	Х		x		П	1		П				х	П			
209	WSW-20	5/3/2021	9:50		Х	T		Х	П	1	N	Х		X					П	П			х	\Box	1		
-19	WSW-21	5/3/2021	9:55		Х	T		Х	П	1	N	х		х			T		П	П			х	\Box			
Relinquished by: Andrew Go	Date: Time: areia 03 May 21 2:30pm	Received by:				I	Date	:	Tim	e:				B U		F	REM	Sta	(S: tanda	ard		A	31	4-1	2:	=/.	2
Relinquished by:	Date: Time:	Received by:	A Company			[Date:		Tim	e:		San	nple 1	Temp	eratur	re		_		Same			1.)4	8 hr.	72 hr.		
Relinquished by:	Date: Time:	Received by: Olivi ORIGINA	97	Ce	en	9	Date:	12	Tim	e: 2 ⁶	G												RRP	Report			
		ORIGINA	L COPY	70	K	-	2-	70	3	6	60	(Cir	cle)	HAN	D DE	LIVE	RED	FEI	DE	UPS	Т	racking	j#:				3

Analysis Request of Chain of Custody Record

Page 401 of 457
Page: 2 of 2

																										Y	
TE	Tetra Tech, Inc.				901	Midla	and, (43	Tex 2) 68	reet, S as 79 82-45 82-39	59	00																
Client Name:	Conoco Phillips	Site Manage	er:	Ch	ristian	Llull						Г										QUE					
Project Name:	MCA 151	Contact Info):		nail: ch					ch.com	1	lı	1		Cir	cle	0	r S	ipe 	cif	у N 	/let	hoo	IN L	0.)	11	1
Project Location: (county, state)	Lea County, New Mexico	Project #:		21:	2C-MD	0-024	71										1										
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701			1		- 2	4						6												1 list)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		John	Thur	ston						M. M.		Se Hg	Se Hi					П				tacher		
Comments: COPTET	RA Acctnum											8260B	TX1005 (Ext to C35)		rotal Metals Ag As Ba Cd Cr Pb Se Hg	Cd Cr Pb			24	8270C/625				TDS	General Water Chemistry (see attached list)		
		SAME	LING	М	ATRIX	PR		THO	ATIVE		î	ВТЕХ	xt to C		As Ba	Ag As Ba		sain	9/80g	ol. 827	88			Te	Shemis	BILCO	
LAB#	SAMPLE IDENTIFICATION	YEAR: 2021		E.		T				CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH TX1005 (Ext to C35)	PAH 8270C	Metals Ag	Metals Ag	TCLP Volatiles	ICLP Semi Volatiles	GC/MS Vol. 8260B / 624	GC/MS Semi. Vol.	PCB's 8082 / 608	NORM (Ashestos)	de 300.0	de Sulfate	al Water C	Anion/Cation Balance TPH 8015R	
(LAB USE)	L1347411	DATE	TIME	WATER	SOIL	HCL	HNO3	ICE	NON	00 #	FILTE	BTEX	TPH	PAH	Total	TCLP	TCLP	RC F	GC/M	GC/M	PCB's	NORM PI M (A	Chloride	Chloride	Gener	TPH 8	HOLD
-11	WSW-22	5/3/2021	10:30	4	Х	-		Х		1	N	Х)				-						X				
72	WSW-23	5/3/2021	10:35	1	Х			Х		1	N	Х)		. E			1					X			OF COST	
717 -	ESW-17	5/3/2021	10:40		Х		11.	Х		1	N	Х)	(1						X			Ш	
74	ESW-18	5/3/2021	10:45		Х			Х		1	N	Х)										X				
75	ESW-19	5/3/2021	10:50		Х			Х		1	N	Х)	(X			Ш	
16	ESW-20	5/3/2021	10:55		X			Х		1	N	X)										X	Ш			
77	ESW-21	5/3/2021	11:00		Х		100	Х		1	N	х)	(X				A
78	ESW-22	5/3/2021	11:05		Х			Х		1	N	X)	(×	Ш			11.5
-19	ESW-23	5/3/2021	11:10		Х			Х		1	N	Х)	(X				
												Ш				4		\perp						\Box	\perp	\perp	
Relinquished by: Andrew Go	Date: Time: area 03May21 2:30 pm	Received by	:	1		D	ate:		Time				LAI	NLY				_	Stand	dard				1		1-2	71
Relinquished by:	Date: Time:	Received by	:			D	ate:		Time			San	iple T	empe	eratur	e		_				Day 2	24 hr. ized)481	hr. 7	2 hr.	
Relinquished by:	Date: Time:	Received by	:			D	ate:	10	Time	W.	00						Ε	S	Specia	al Re	port L	imits	or TR	RP R	eport		

ORIGINAL COPY

(Circle) HAND DELIVERED

UPS Tracking #:

FEDEX

Pace Analytical National Center for Testing & Inr Cooler Receipt Form	ovation	
Client: COPTETM+	6134	7411
Cooler Received/Opened On: 5 / 4 / 21 Temperatur	e: 1-2	Carlo Carlo
Received By: Olivia Turner		
Signature: Olivin Levy		
Receipt Check List NP	Yes	No
COC Seal Present / Intact?		
COC Signed / Accurate?		
Bottles arrive intact?		
Correct bottles used?		
Sufficient volume sent?		
If Applicable		
VOA Zero headspace?		4
Preservation Correct / Checked?		
	The at the	

Pace Analytical® ANALYTICAL REPORT

Ss

ConocoPhillips - Tetra Tech

L1349460 Sample Delivery Group: Samples Received: 05/07/2021

Project Number: 212C-MD-02471

Description: MCA 151

Site: LEA COUNTY, NEW MEXICO

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Project Manager

Entire Report Reviewed By:

Chris McCord

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
ESW-24 L1349460-01	6
WSW-24 L1349460-02	7
FS-20 (2') L1349460-03	8
FS-20 (4') L1349460-04	9
FS-21 (2') L1349460-05	10
FS-21 (4') L1349460-06	11
FS-22 (2') L1349460-07	12
FS-22 (4') L1349460-08	13
FS-23 (2') L1349460-09	14
FS-23 (4') L1349460-10	15
Qc: Quality Control Summary	16
Total Solids by Method 2540 G-2011	16
Wet Chemistry by Method 300.0	18
Volatile Organic Compounds (GC) by Method 8015D/GRO	19
Volatile Organic Compounds (GC/MS) by Method 8260B	22
Semi-Volatile Organic Compounds (GC) by Method 8015	23
GI: Glossary of Terms	24
Al: Accreditations & Locations	25

Sc: Sample Chain of Custody

26

SAMPLE SUMMARY

	JAIVII LL		/I//I/ I			
ESW-24 L1349460-01 Solid			Collected by John Thurston	Collected date/time 05/05/2110:30	Received da 05/07/21 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1667267	1	05/10/21 10:58	05/10/21 11:05	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1666535	1	05/09/21 16:01	05/10/21 01:56	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1666980	1	05/07/21 19:55	05/09/21 18:33	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1666952	1	05/07/21 19:55	05/08/21 23:31	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1667240	1	05/10/21 07:09	05/10/21 14:16	TJD	Mt. Juliet, TN
			Collected by	Collected date/time		
WSW-24 L1349460-02 Solid			John Thurston	05/05/21 10:35	05/07/21 09	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1667267	1	05/10/21 10:58	05/10/21 11:05	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1666535	1	05/09/21 16:01	05/10/21 02:06	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1666980	1	05/07/21 19:55	05/09/21 19:21	ACG	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1666952	1	05/07/21 19:55	05/08/21 23:49	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1667240	1	05/10/21 07:09	05/10/21 16:52	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-20 (2') L1349460-03 Solid			John Thurston	05/05/21 10:40	05/07/21 09	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1667269	1	05/10/21 12:57	05/10/21 13:04	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1666535	10	05/09/21 16:01	05/10/21 02:25	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1667371	1	05/07/21 19:55	05/10/21 08:07	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1666952	1	05/07/21 19:55	05/09/21 00:08	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1667240	1	05/10/21 07:09	05/10/21 14:42	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-20 (4') L1349460-04 Solid			John Thurston	05/05/21 10:45	05/07/21 09	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1667269	1	05/10/21 12:57	05/10/21 13:04	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1666535	20	05/09/21 16:01	05/10/21 02:34	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1667371	1	05/07/21 19:55	05/10/21 08:29	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1666952	1	05/07/21 19:55	05/09/21 00:27	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1667240	1	05/10/21 07:09	05/10/21 15:08	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-21 (2') L1349460-05 Solid			John Thurston	05/05/21 10:50	05/07/21 09	:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1667269	1	05/10/21 12:57	05/10/21 13:04	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1666535	1	05/09/21 16:01	05/10/21 02:44	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1667371	1.01	05/07/21 19:55	05/10/21 08:51	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1666952	1	05/07/21 19:55	05/09/21 00:47	DWR	Mt. Juliet, TN
		_				

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1667240

05/10/21 07:09

05/10/21 16:39

TJD

Mt. Juliet, TN

SAMPLE SUMMARY

	0711111	J ()	*17 (1 (1			
FS-21 (4') L1349460-06 Solid			Collected by John Thurston	Collected date/time 05/05/21 10:55	Received da 05/07/21 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
metriou	Batch	Dilution	date/time	date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1667269	1	05/10/21 12:57	05/10/21 13:04	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1666535	5	05/09/21 16:01	05/10/21 02:53	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1667371	1	05/07/21 19:55	05/10/21 09:15	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1666952	1	05/07/21 19:55	05/09/21 01:06	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1667240	1	05/10/21 07:09	05/10/21 15:34	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-22 (2') L1349460-07 Solid			John Thurston	05/05/21 11:00	05/07/21 09	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1667269	1	05/10/21 12:57	05/10/21 13:04	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1666535	20	05/09/21 16:01	05/10/21 03:03	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1667371	1	05/07/21 19:55	05/10/21 09:37	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1666952	1	05/07/21 19:55	05/09/21 01:25	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1667240	1	05/10/21 07:09	05/10/21 15:21	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-22 (4') L1349460-08 Solid			John Thurston	05/05/21 11:05	05/07/21 09	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1667269	1	05/10/21 12:57	05/10/21 13:04	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1666535	1	05/09/21 16:01	05/10/21 03:13	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1667371	1	05/07/21 19:55	05/10/21 09:59	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1666952	1	05/07/21 19:55	05/09/21 01:44	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1667240	1	05/10/21 07:09	05/10/21 14:55	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
FS-23 (2') L1349460-09 Solid			John Thurston	05/05/21 11:10	05/07/21 09	45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1667269	1	05/10/21 12:57	05/10/21 13:04	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1666535	1	05/09/21 16:01	05/10/21 03:41	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1667217	1	05/07/21 19:55	05/09/21 21:14	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1666952	1	05/07/21 19:55	05/09/21 02:03	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1667240	1	05/10/21 07:09	05/10/21 15:47	TJD	Mt. Juliet, TN
			Collected by	Collected date/time		
FS-23 (4') L1349460-10 Solid			John Thurston	05/05/21 11:15	05/07/21 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1667269	1	05/10/21 12:57	05/10/21 13:04	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1666535	1	05/09/21 16:01	05/10/21 03:51	ST	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1667217	1	05/07/21 19:55	05/09/21 21:38	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1666952	1	05/07/21 19:55	05/09/21 02:22	DWR	Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1667240

05/10/21 07:09

05/10/21 14:29

TJD

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Page 408 of 457

SAMPLE RESULTS - 01

Collected date/time: 05/05/21 10:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.1		1	05/10/2021 11:05	WG1667267

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.48	20.6	1	05/10/2021 01:56	WG1666535

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	05/09/2021 18:33	WG1666980
(S) a,a,a-Trifluorotoluene(FID)	117			77.0-120		05/09/2021 18:33	WG1666980

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000495	0.00106	1	05/08/2021 23:31	WG1666952
Toluene	U		0.00138	0.00530	1	05/08/2021 23:31	WG1666952
Ethylbenzene	U		0.000781	0.00265	1	05/08/2021 23:31	WG1666952
Total Xylenes	U		0.000933	0.00689	1	05/08/2021 23:31	WG1666952
(S) Toluene-d8	106			75.0-131		05/08/2021 23:31	WG1666952
(S) 4-Bromofluorobenzene	96.5			67.0-138		05/08/2021 23:31	WG1666952
(S) 1,2-Dichloroethane-d4	97.0			70.0-130		05/08/2021 23:31	WG1666952

Semi-Volatile Organic Compounds (GC) by Method 8015

•	J 1	`	/ /				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.12	1	05/10/2021 14:16	WG1667240
C28-C40 Oil Range	0.509	<u>J</u>	0.282	4.12	1	05/10/2021 14:16	WG1667240
(S) o-Terphenyl	65.3			18.0-148		05/10/2021 14:16	WG1667240

Page 409 of 457

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

Collected date/time: 05/05/21 10:35

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.3		1	05/10/2021 11:05	<u>WG1667267</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.27	20.1	1	05/10/2021 02:06	WG1666535

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0219	0.101	1	05/09/2021 19:21	WG1666980
(S) a,a,a-Trifluorotoluene(FID)	118			77.0-120		05/09/2021 19:21	WG1666980

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000474	0.00101	1	05/08/2021 23:49	WG1666952
oluene	U		0.00132	0.00507	1	05/08/2021 23:49	WG1666952
Ethylbenzene	U		0.000748	0.00254	1	05/08/2021 23:49	WG1666952
otal Xylenes	U		0.000893	0.00659	1	05/08/2021 23:49	WG1666952
(S) Toluene-d8	104			75.0-131		05/08/2021 23:49	WG1666952
(S) 4-Bromofluorobenzene	93.6			67.0-138		05/08/2021 23:49	WG1666952
(S) 1,2-Dichloroethane-d4	94.9			70.0-130		05/08/2021 23:49	WG1666952

Semi-Volatile Organic Compounds (GC) by Method 8015

	J 1	` `	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.92	<u>J</u>	1.62	4.03	1	05/10/2021 16:52	WG1667240
C28-C40 Oil Range	10.1		0.276	4.03	1	05/10/2021 16:52	WG1667240
(S) o-Terphenyl	70.6			18.0-148		05/10/2021 16:52	WG1667240

Gl

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	88.1		1	05/10/2021 13:04	WG1667269

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	5310		104	227	10	05/10/2021 02:25	WG1666535

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0442	J	0.0246	0.114	1	05/10/2021 08:07	WG1667371
(S) a,a,a-Trifluorotoluene(FID)	113			77.0-120		05/10/2021 08:07	WG1667371

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000594	0.00127	1	05/09/2021 00:08	WG1666952
Toluene	U		0.00165	0.00636	1	05/09/2021 00:08	WG1666952
Ethylbenzene	U		0.000937	0.00318	1	05/09/2021 00:08	WG1666952
Total Xylenes	0.00131	<u>J</u>	0.00112	0.00826	1	05/09/2021 00:08	WG1666952
(S) Toluene-d8	109			75.0-131		05/09/2021 00:08	WG1666952
(S) 4-Bromofluorobenzene	95.9			67.0-138		05/09/2021 00:08	WG1666952
(S) 1,2-Dichloroethane-d4	87.9			70.0-130		05/09/2021 00:08	WG1666952

Semi-Volatile Organic Compounds (GC) by Method 8015

•	J 1	`	/ /				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.83	4.54	1	05/10/2021 14:42	WG1667240
C28-C40 Oil Range	2.69	<u>J</u>	0.311	4.54	1	05/10/2021 14:42	WG1667240
(S) o-Terphenyl	66.7			18.0-148		05/10/2021 14:42	WG1667240

[°]Qc

8 of 26

Collected date/time: 05/05/21 10:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	85.7		1	05/10/2021 13:04	<u>WG1667269</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	7680		215	467	20	05/10/2021 02:34	WG1666535

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0253	0.117	1	05/10/2021 08:29	WG1667371
(S) a,a,a-Trifluorotoluene(FID)	116			77.0-120		05/10/2021 08:29	WG1667371

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000623	0.00133	1	05/09/2021 00:27	WG1666952
Toluene	U		0.00173	0.00667	1	05/09/2021 00:27	WG1666952
Ethylbenzene	U		0.000983	0.00334	1	05/09/2021 00:27	WG1666952
Total Xylenes	U		0.00117	0.00867	1	05/09/2021 00:27	WG1666952
(S) Toluene-d8	108			75.0-131		05/09/2021 00:27	WG1666952
(S) 4-Bromofluorobenzene	98.1			67.0-138		05/09/2021 00:27	WG1666952
(S) 1,2-Dichloroethane-d4	93.8			70.0-130		05/09/2021 00:27	WG1666952

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.49	<u>J</u>	1.88	4.67	1	05/10/2021 15:08	WG1667240
C28-C40 Oil Range	2.18	<u>J</u>	0.320	4.67	1	05/10/2021 15:08	WG1667240
(S) o-Terphenyl	49.5			18.0-148		05/10/2021 15:08	WG1667240

9 of 26

Page 412 of 457

SAMPLE RESULTS - 05

Total Solids by Method 2540 G-2011

Collected date/time: 05/05/21 10:50

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.6		1	05/10/2021 13:04	WG1667269

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	49.2		9.53	20.7	1	05/10/2021 02:44	WG1666535

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0227	0.105	1.01	05/10/2021 08:51	WG1667371
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		05/10/2021 08:51	WG1667371

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000500	0.00107	1	05/09/2021 00:47	WG1666952
Toluene	U		0.00139	0.00536	1	05/09/2021 00:47	WG1666952
Ethylbenzene	U		0.000789	0.00268	1	05/09/2021 00:47	WG1666952
Total Xylenes	U		0.000943	0.00696	1	05/09/2021 00:47	WG1666952
(S) Toluene-d8	103			<i>75.0-131</i>		05/09/2021 00:47	WG1666952
(S) 4-Bromofluorobenzene	93.9			67.0-138		05/09/2021 00:47	WG1666952
(S) 1,2-Dichloroethane-d4	91.4			70.0-130		05/09/2021 00:47	WG1666952

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	25.2		1.67	4.14	1	05/10/2021 16:39	WG1667240
C28-C40 Oil Range	22.8		0.284	4.14	1	05/10/2021 16:39	WG1667240
(S) o-Ternhenvl	47.1			18 0-148		05/10/2021 16:39	WG1667240

Collected date/time: 05/05/21 10:55

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.4		1	05/10/2021 13:04	<u>WG1667269</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	132		50.3	109	5	05/10/2021 02:53	WG1666535

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	05/10/2021 09:15	WG1667371
(S) a,a,a-Trifluorotoluene(FID)	115			77.0-120		05/10/2021 09:15	WG1667371

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000555	0.00119	1	05/09/2021 01:06	WG1666952
Toluene	U		0.00154	0.00594	1	05/09/2021 01:06	WG1666952
Ethylbenzene	U		0.000876	0.00297	1	05/09/2021 01:06	WG1666952
Total Xylenes	U		0.00105	0.00772	1	05/09/2021 01:06	WG1666952
(S) Toluene-d8	101			75.0-131		05/09/2021 01:06	WG1666952
(S) 4-Bromofluorobenzene	93.0			67.0-138		05/09/2021 01:06	WG1666952
(S) 1,2-Dichloroethane-d4	93.6			70.0-130		05/09/2021 01:06	WG1666952

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.53	<u>J</u>	1.76	4.38	1	05/10/2021 15:34	WG1667240
C28-C40 Oil Range	5.61		0.300	4.38	1	05/10/2021 15:34	WG1667240
(S) o-Terphenyl	53.7			18.0-148		05/10/2021 15:34	WG1667240

DATE/TIME: SDG: L1349460

Collected date/time: 05/05/21 11:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	88.2		1	05/10/2021 13:04	WG1667269

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	7590		209	453	20	05/10/2021 03:03	WG1666535

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0307	<u>J</u>	0.0246	0.113	1	05/10/2021 09:37	WG1667371
(S) a,a,a-Trifluorotoluene(FID)	114			77.0-120		05/10/2021 09:37	WG1667371

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000592	0.00127	1	05/09/2021 01:25	WG1666952
Toluene	U		0.00165	0.00634	1	05/09/2021 01:25	WG1666952
Ethylbenzene	U		0.000934	0.00317	1	05/09/2021 01:25	WG1666952
Total Xylenes	0.00165	<u>J</u>	0.00111	0.00824	1	05/09/2021 01:25	WG1666952
(S) Toluene-d8	105			75.0-131		05/09/2021 01:25	WG1666952
(S) 4-Bromofluorobenzene	93.9			67.0-138		05/09/2021 01:25	WG1666952
(S) 1,2-Dichloroethane-d4	94.6			70.0-130		05/09/2021 01:25	WG1666952

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.22		1.82	4.53	1	05/10/2021 15:21	WG1667240
C28-C40 Oil Range	5.35		0.311	4.53	1	05/10/2021 15:21	WG1667240
(S) o-Terphenyl	50.8			18.0-148		05/10/2021 15:21	WG1667240

Collected date/time: 05/05/21 11:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.4		1	05/10/2021 13:04	WG1667269

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.96	21.7	1	05/10/2021 03:13	WG1666535

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0235	0.108	1	05/10/2021 09:59	WG1667371
(S) a,a,a-Trifluorotoluene(FID)	115			77.0-120		05/10/2021 09:59	WG1667371

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000544	0.00117	1	05/09/2021 01:44	WG1666952
Toluene	U		0.00151	0.00583	1	05/09/2021 01:44	WG1666952
Ethylbenzene	U		0.000859	0.00291	1	05/09/2021 01:44	WG1666952
Total Xylenes	U		0.00103	0.00757	1	05/09/2021 01:44	WG1666952
(S) Toluene-d8	108			75.0-131		05/09/2021 01:44	WG1666952
(S) 4-Bromofluorobenzene	98.0			67.0-138		05/09/2021 01:44	WG1666952
(S) 1,2-Dichloroethane-d4	91.1			70.0-130		05/09/2021 01:44	WG1666952

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

•	J 1	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.75	<u>J</u>	1.74	4.33	1	05/10/2021 14:55	WG1667240
C28-C40 Oil Range	2.04	<u>J</u>	0.297	4.33	1	05/10/2021 14:55	WG1667240
(S) o-Terphenyl	66.9			18.0-148		05/10/2021 14:55	WG1667240

13 of 26

Collected date/time: 05/05/21 11:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.7		1	05/10/2021 13:04	<u>WG1667269</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.51	20.7	1	05/10/2021 03:41	WG1666535

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0505	ВЈ	0.0224	0.103	1	05/09/2021 21:14	WG1667217
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		05/09/2021 21:14	WG1667217

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

		-					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000499	0.00107	1	05/09/2021 02:03	WG1666952
Toluene	U		0.00139	0.00534	1	05/09/2021 02:03	WG1666952
Ethylbenzene	U		0.000787	0.00267	1	05/09/2021 02:03	WG1666952
Total Xylenes	U		0.000940	0.00694	1	05/09/2021 02:03	WG1666952
(S) Toluene-d8	99.1			75.0-131		05/09/2021 02:03	WG1666952
(S) 4-Bromofluorobenzene	92.8			67.0-138		05/09/2021 02:03	WG1666952
(S) 1,2-Dichloroethane-d4	97.1			70.0-130		05/09/2021 02:03	WG1666952

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	J 1	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.48	<u>J</u>	1.66	4.14	1	05/10/2021 15:47	WG1667240
C28-C40 Oil Range	4.12	<u>J</u>	0.283	4.14	1	05/10/2021 15:47	WG1667240
(S) o-Terphenyl	68.1			18.0-148		05/10/2021 15:47	WG1667240

Collected date/time: 05/05/21 11:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.5		1	05/10/2021 13:04	WG1667269

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	38.0		9.34	20.3	1	05/10/2021 03:51	WG1666535

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0490	<u>B J</u>	0.0220	0.102	1	05/09/2021 21:38	WG1667217
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		05/09/2021 21:38	WG1667217

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U	<u>J3</u>	0.000481	0.00103	1	05/09/2021 02:22	WG1666952
Toluene	U	<u>J3</u>	0.00134	0.00515	1	05/09/2021 02:22	WG1666952
Ethylbenzene	U		0.000760	0.00258	1	05/09/2021 02:22	WG1666952
Total Xylenes	U		0.000907	0.00670	1	05/09/2021 02:22	WG1666952
(S) Toluene-d8	107			75.0-131		05/09/2021 02:22	WG1666952
(S) 4-Bromofluorobenzene	98.9			67.0-138		05/09/2021 02:22	WG1666952
(S) 1,2-Dichloroethane-d4	94.4			70.0-130		05/09/2021 02:22	WG1666952

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.06	1	05/10/2021 14:29	WG1667240
C28-C40 Oil Range	0.920	<u>J</u>	0.278	4.06	1	05/10/2021 14:29	WG1667240
(S) o-Terphenyl	63.4			18.0-148		05/10/2021 14:29	WG1667240

Page 418 of 457

Total Solids by Method 2540 G-2011

L1349460-01,02

Method	Blank ((MB)
--------	---------	------

(MB) R3652749-1	05/10/21 11:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

³Ss

L1349460-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1349460-01 05/10/21 11:05 • (DUP) R3652749-3 05/10/21 11:05

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	97.1	97.0	1	0.0650		10

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3652749-2 05/10/21 11:05

(LCS) R3032749-2 03/10/	Spike Amount	nt LCS Result	LCS Rec.	Rec. Limits
Analyte	%	%	%	%
Total Solids	50.0	50.0	100	85.0-115

Page 419 of 457

Total Solids by Method 2540 G-2011

L1349460-03,04,05,06,07,08,09,10

(ME	B) R3652784-1 05	5/10/21 13:04			
		MB Result	MB Qualifier	MB MDL	MB RDL
Ana	alyte	%		%	%
Tota	tal Solids	0.00100			

L1349487-02 Original Sample (OS) • Duplicate (DUP)

(OS) I 13/19/127_02	05/10/2113.04	(DUP) R3652784-3	05/10/21 13·0/
(03) [1373707-02	03/10/21 13.04	(DOI) 13032707-3	03/10/21 13.07

(= 0, = 0.000	Original Result	, ,		tion DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	93.1	93.4	1	0.323		10

Laboratory Control Sample (LCS)

// CS\ D3652784_2 \ 05/10/21 13:04

(LCS) R3652784-2 05/10/.	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

Page 420 of 457

Wet Chemistry by Method 300.0

L1349460-01,02,03,04,05,06,07,08,09,10

Method Blank (MB)

(MB) R3652508-1 05/09	9/21 22:40			
	MB Result	MB Qualifier	MB MDL	MB RDI
Analyte	mg/kg		mg/kg	mg/kg
Chloride	11		9.20	20.0

(OS) L1348898-03	05/10/21 00:40	• (DUP) R3652508-3	05/10/21 00:50
------------------	----------------	--------------------	----------------

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	163	167	1	2.93		20

(OS) 13/19/160-02 05/10/21 02:06 • (DLIP) R3652508-6 05/10/21 02:15

		Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Α	nalyte	mg/kg	mg/kg		%		%
C	hloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3652508-2 05/09/2122:50

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	203	101	90.0-110	

L1348898-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1348898-03 05/10/21 00:40 • (MS) R3652508-4 05/10/21 00:59 • (MSD) R3652508-5 05/10/21 01:09

(03) 11348898-03 03	(O3) E1348630-03 O3/10/21 00.40 • (M3) K3032300-4 O3/10/21 00.33 • (M3D) K3032300-3 O3/10/21 01.03											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	513	163	714	721	108	109	1	80.0-120			0.889	20

Page 421 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1349460-01,02

Method Blank (MB)

(MB) R3652259-2 05/09/2112:13							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
TPH (GC/FID) Low Fraction	U		0.0217	0.100			
(S) a,a,a-Trifluorotoluene(FID)	119			77.0-120			

Laboratory Control Sample (LCS)

(LCS) R3652259-1 05/09	/21 11:29				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.83	87.8	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			107	77.0-120	

L1349408-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1349408-01 05/09/2116:20 • (MS) R3652259-3 05/09/2122:50 • (MSD) R3652259-4 05/09/2123:12

(00) 210 13 100 01 00/03/	2110.20 (1110)1	100022000	0/00/2122.00	(11100) 110002	200 1 00/00/	2120.12							_
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	_ '
TPH (GC/FID) Low Fraction	193	U	156	156	80.9	80.9	25	10.0-151			0.000	28	
(S) a,a,a-Trifluorotoluene(FID)					109	108		77.0-120					

Page 422 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1349460-09,10

Method Blank (MB)

(MB) R3652935-2 05/09	(MB) R3652935-2 05/09/2112:23									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
TPH (GC/FID) Low Fraction	0.0460	<u>J</u>	0.0217	0.100						
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120						

Laboratory Control Sample (LCS)

(LCS) R3652935-1 05/09	/21 11:35				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.46	99.3	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			108	77.0-120	

L1349146-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1349146-03 05/09/21 20:02 • (MS) R3652935-3 05/09/21 22:02 • (MSD) R3652935-4 05/09/21 22:25

(00) 210 10110 00 00/00/2	1 20.02 (1110)	1100020000	0,00,2122.02	(11102) 110002	2000 1 00/00/	2122.20							_
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	5.50	0.0903	6.99	7.19	125	129	1	10.0-151			2.82	28	
(S) a,a,a-Trifluorotoluene(FID)					115	117		77.0-120					

Page 423 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1349460-03,04,05,06,07,08

Method Blank (MB)

(MB) R3652545-3 05/10/	MB) R3652545-3 05/10/21 02:13								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
TPH (GC/FID) Low Fraction	U		0.0217	0.100					
(S) a,a,a-Trifluorotoluene(FID)	118			77.0-120					

Laboratory Control Sample (LCS)

(LCS) R3652545-2 05/10	CS) R3652545-2 05/10/21 01:07									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
TPH (GC/FID) Low Fraction	5.50	5.82	106	72.0-127						
(S) a,a,a-Trifluorotoluene(FID)			108	77.0-120						

L1349083-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1349083-06	05/10/21 07:45	• (MS) R3652545-6	05/10/21 14:06	(MSD) R3652545-7	05/10/21 14:28

(00) Elo 10000 00 00/10/21/07:10 (110) (0002010 0 00/10/21/11:20												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	190	U	176	188	92.6	98.9	34.5	10.0-151			6.59	28
(S) a,a,a-Trifluorotoluene(FID)					106	111		77.0-120				

Page 424 of 457

Volatile Organic Compounds (GC/MS) by Method 8260B L1349460-01,02,03,04,05,06,07,08,09,10

67.0-138

70.0-130

Method Blank (MB)

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

(S) 1,2-Dichloroethane-d4

(MB) R3652789-3 05/08	(MB) R3652789-3 05/08/21 23:11											
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/kg		mg/kg	mg/kg								
Benzene	U		0.000467	0.00100								
Ethylbenzene	U		0.000737	0.00250								
Toluene	U		0.00130	0.00500								
Xylenes, Total	U		0.000880	0.00650								
(S) Toluene-d8	106			75.0-131								

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3652789-1 05/08/21 21:55 • (LCSD) R3652789-2 05/08/21 22:14

93.9

93.1

(200) . (0002) 00	,	•			1 00D D	D 1: ::	1.00.0 1:0	1.000.0 1:0	DDD	DDD 1: ::
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.125	0.109	0.121	87.2	96.8	70.0-123			10.4	20
Ethylbenzene	0.125	0.107	0.113	85.6	90.4	74.0-126			5.45	20
Toluene	0.125	0.103	0.103	82.4	82.4	75.0-121			0.000	20
Xylenes, Total	0.375	0.305	0.325	81.3	86.7	72.0-127			18.5	20
(S) Toluene-d8				98.4	96.0	75.0-131				
(S) 4-Bromofluorobenzene				97.8	93.9	67.0-138				

70.0-130

107

PAGE:

22 of 26

L1349460-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1349460-10 05/09/21 02:22 • (MS) R3652789-4 05/09/21 05:52 • (MSD) R3652789-5 05/09/21 06:11

' '	,												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Benzene	0.129	U	0.0515	0.0321	40.0	24.9	1	10.0-149		<u>J3</u>	46.6	37	
Ethylbenzene	0.129	U	0.0499	0.0352	38.7	27.4	1	10.0-160			34.4	38	
Toluene	0.129	U	0.0490	0.0328	38.0	25.4	1	10.0-156		<u>J3</u>	39.6	38	
Xylenes, Total	0.386	U	0.155	0.109	40.0	28.3	1	10.0-160			34.4	38	
(S) Toluene-d8					100	98.9		75.0-131					
(S) 4-Bromofluorobenzene					93.4	92.2		67.0-138					
(S) 1,2-Dichloroethane-d4					93.9	90.0		70.0-130					

Page 425 of 457

L1349460-01,02,03,04,05,06,07,08,09,10 Semi-Volatile Organic Compounds (GC) by Method 8015

Method Blank (MB)

(S) o-Terphenyl

(MB) R3652677-1 05/10	MB) R3652677-1 05/10/21 12:58							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
C10-C28 Diesel Range	U		1.61	4.00				
C28-C40 Oil Range	U		0.274	4.00				
(S) o-Terphenyl	57.7			18.0-148				

Laboratory Control Sample (LCS)

(LCS) R3652677-2 05/10	CS) R3652677-2 05/10/21 13:11									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
C10-C28 Diesel Range	50.0	37.2	74.4	50.0-150						
(S) o-Terphenyl			50.6	18.0-148						

L1349083-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) | 12/40/08 08 05/10/21 13:27 - (MS) | D3652677 3 05/10/21 13:50 - (MS)) | D3652677 4 05/10/21 14:03

(OS) L1349083-08 05/10/21 13:37 • (MS) R3652677-3 05/10/21 13:50 • (MSD) R3652677-4 05/10/21 14:03												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	84.0	U	53.8	57.0	64.0	68.2	1	50.0-150			5.77	20

43.7

42.9

18.0-148

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	lifior	\Box	escri)	ntion
Qual	illei	ᆫ	VE2CII	Puon

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.

D A	Athen Nieutenan	100CF alara a	- Dal Marria	11: 44	TNI 07100
Pace Analy	/ticai ivationai	12065 Lebanor	i ka Mount	. Juliet,	111/3/12/

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ^{1 6}	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Analysis Request of Chain of Custody Record

Page: 1 of 1 901 West Wall Street, Suite 100 61349460 Tetra Tech, Inc. Midland, Texas 79701 J179 Tel (432) 682-4559 Fax (432) 682-3946 ANALYSIS REQUEST Client Name: Conoco Phillips Site Manager: Christian Llull (Circle or Specify Method No.) Email: christian.llull@tetratech.com Project Name: MCA 151 Contact Info: Phone: (512) 338-1667 **Project Location:** Lea County, New Mexico Project #: 212C-MD-02471 (county, state) Accounts Payable Invoice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 Receiving Laboratory: Pace Analytical Sampler Signature: John Thurston COPTETRA Acctnum Comments: otal Metals Ag As Ba PRESERVATIVE SAMPLING MATRIX CONTAINERS METHOD Vol. PLM (Asbestos) YEAR: 2021 LAB# SAMPLE IDENTIFICATION GC/MS Vol. LAB USE SOIL HNO DATE TIME 로 SE ONLY ESW-24 X 10:30 5/5/2021 **WSW-24** X X 5/5/2021 10:35 FS-20 (2') X X X X 5/5/2021 10:40 FS-20 (4') X X X 5/5/2021 10:45 FS-21 (2') X X X X 5/5/2021 10:50 1 N X FS-21 (4') 5/5/2021 10:55 X 1 X X FS-22 (2') X X 5/5/2021 11:00 X FS-22 (4') X X 11:05 X 5/5/2021 1 N X Х -09 FS-23 (2") 11:10 Х X 5/5/2021 N X FS-23 (4') 11:15 N 5/5/2021 Relinguished by: REMARKS: Received by Date: Time: LAB USE Standard 1600 ONLY X RUSH: Same Day 24 hr. Relinguished by: 48 hr. 72 hr. Sample Temperature Sample Receipt Checklist COC Seal Present/Intact: Y If Applicable Rush Charges Authorized COC Signed/Accurate: VOA Zero Headspace: ceived by: Date: Bottles arrive intact: Time: N Pres.Correct/Check: Y N Special Report Limits or TRRP Report Correct bottles used: Sufficient volume sent: RAD Screen <0.5 mR/hr: (Circle) HAND DELIVERED FEDEX UPS Tracking #:

Pace Analytical® ANALYTICAL REPORT

May 14, 2021

Ss

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1352205 Samples Received: 05/13/2021

Project Number: 212C-MD-02471

Description: MCA 151

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
NSW-2 L1352205-01	5
Qc: Quality Control Summary	6
Total Solids by Method 2540 G-2011	6
Wet Chemistry by Method 300.0	7
Volatile Organic Compounds (GC) by Method 8015D/GRO	8
Volatile Organic Compounds (GC/MS) by Method 8260B	9
Semi-Volatile Organic Compounds (GC) by Method 8015	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

SAMPLE SUMMARY

NSW-2 L1352205-01 Solid			Collected by John Thurston	Collected date/time 05/11/21 13:30	Received date/time 05/13/21 10:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1670073	1	05/13/21 14:08	05/13/21 14:17	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1670404	1	05/13/21 19:00	05/14/21 04:50	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1670225	1	05/13/21 13:34	05/13/21 19:37	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1670295	1	05/13/21 13:34	05/13/21 17:18	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1670103	1	05/13/21 16:40	05/13/21 22:41	TJD	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

2

Page 433 of 457

SAMPLE RESULTS - 01

L1352205

Collected date/time: 05/11/21 13:30 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.3		1	05/13/2021 14:17	WG1670073

²T₀

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	34.2		9.36	20.3	1	05/14/2021 04:50	WG1670404

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	05/13/2021 19:37	WG1670225
(S) a,a,a-Trifluorotoluene(FID)	92.2			77.0-120		05/13/2021 19:37	WG1670225

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000483	0.00103	1	05/13/2021 17:18	WG1670295
Toluene	U		0.00135	0.00517	1	05/13/2021 17:18	WG1670295
Ethylbenzene	U		0.000763	0.00259	1	05/13/2021 17:18	WG1670295
Total Xylenes	0.00155	<u>J</u>	0.000911	0.00673	1	05/13/2021 17:18	WG1670295
(S) Toluene-d8	108			<i>75.0-131</i>		05/13/2021 17:18	WG1670295
(S) 4-Bromofluorobenzene	115			67.0-138		05/13/2021 17:18	WG1670295
(S) 1,2-Dichloroethane-d4	115			70.0-130		05/13/2021 17:18	WG1670295

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	<u> </u>	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.64	4.07	1	05/13/2021 22:41	WG1670103
C28-C40 Oil Range	2.66	BJ	0.279	4.07	1	05/13/2021 22:41	WG1670103
(S) o-Terphenyl	61.1			18.0-148		05/13/2021 22:41	WG1670103

ConocoPhillips - Tetra Tech

Page 434 of 457

Total Solids by Method 2540 G-2011

L1352205-01

Method Blank (MB)

(MB) R365446	54-1 05/13/21	l 14:17			
I		MB Result	MB Qualifier	MB MDL	MB RDL
Analyte		%		%	%
Total Solids		0.00100			

³Ss

[†]Cn

L1352063-01 Original Sample (OS) • Duplicate (DUP)

(00, 000 000 000 000 000 000 000 000 000	Original Result				DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%	%		%		%
Total Solids	87.3	8	36.7	1	0.588		10

Šr

)5/13/21 14:17	05/) R3654464-2	(LCS)
--	----------------	-----	--------------	-------

Page 435 of 457

Wet Chemistry by Method 300.0

L1352205-01

Method Blank (MB)

(MB) R3654380-1 05/14/	21 01:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

(OS) L1349835-06	05/14/21 02:27	• (DUP) R3654380-3	05/14/21 02:36

(20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	11.0	1	0.000		20

[†]Cn

L1352208-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1352208-01 05/14/2	21 05:47 • (DUP) Original Result (dry)			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3654380-2 05/14/21 01:39

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	191	95.4	90.0-110	

L1349835-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1349835-18 05/14/21 05:18 • (MS) P3654380-4 05/14/21 05:28 • (MSD) P3654380-5 05/14/21 05:37

(O3) E1373033-10 O3/14/21 O3.10 (MIS) K3037300-4 O3/14/21 O3.20 (MISD) K3037300-3 O3/14/21 O3.37													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	500	488	1280	1290	158	161	1	80.0-120	E J5	E J5	1.08	20	

Page 436 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1352205-01

Method Blank (MB)

MB) R3654344-2 05/13	/21 17:15			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
PH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	97.4			77.0-120

(LCS) R3654344-1 05/13/	(LCS) R3654344-1 05/13/21 16:31												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	mg/kg	mg/kg	%	%									
TPH (GC/FID) Low Fraction	5.50	6.19	113	72.0-127									
(S) a,a,a-Trifluorotoluene(FID)			116	77.0-120									

Page 437 of 457

Volatile Organic Compounds (GC/MS) by Method 8260B

118

70.0-130

L1352205-01

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3654351-2 05/13/21	1 14:50				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	116			75.0-131	
(S) 4-Bromofluorobenzene	108			67.0-138	
(S) 1,2-Dichloroethane-d4	100			70.0-130	

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.112	89.6	70.0-123	
Ethylbenzene	0.125	0.113	90.4	74.0-126	
Toluene	0.125	0.116	92.8	75.0-121	
Kylenes, Total	0.375	0.336	89.6	72.0-127	
(S) Toluene-d8			106	75.0-131	
(S) 4-Bromofluorobenzen	е		118	67.0-138	

Page 438 of 457

L1352205-01

Semi-Volatile Organic Compounds (GC) by Method 8015

Method Blank (MB)

(MB) R3654303-1 05/13	3/21 22:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	0.502	<u>J</u>	0.274	4.00
(S) o-Terphenyl	58.9			18 0-148

²Tc

(LCS) R3654303-2 05/13	3/21 22:29				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	41.4	82.8	50.0-150	
(S) o-Terphenyl			58.9	18.0-148	

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	lifior	\Box	escri)	ntion
Qual	illei	ᆫ	VE2CII	Puon

В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.

Pace Analytical National	12065 Lebanon Rd Mount Julie	ot TN 37122
i ace Analytical National		5L, IIN 0/122

, , , , , , , , , , , , , , , , , , , ,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Analysis Request of Chain of Custody Record

A133

Page 441 of 457

Page: 1 of 1

TE	Tetra Tech, Inc.				901	Mid	lland, el (43	Tex (32) 6	reet, S kas 797 82-455 82-394	701 59	10	. A		50.				L1352205								
Client Name:	Conoco Phillips	Site Manage	r:	·Ch	ristian	Llull									· C:						QUE		д М	01		9
Project Name:	MCA 151	Contact Info	:		ail: chi one: (5				etratec	h.com			-	1				ор 		y .	Met			0.,	11	1
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	2C-MD	-024	171	T.M.							7		7 21	100								
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	1											ó											list)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		John '	Thur	rston			-			M. O		Se Hg	Se Hç							1	(see attached list)		
Comments: COPTET	RA Acctnum										1	8260B	(5)		d Cr Pb	Cd Cr Pi			74 0C/625	1 2	1		TDS			
		SAMF	LING	М	ATRIX	PI		ERV	ATIVE OD		(Y/N)	BTEX	(Ext to C35)		Metals Ag As Ba Cd Cr Pb Se Hg	Ag As Ba Cd Cr Pb Se Hg	atiles	in C	GC/MS Semi: Vol. 8270C/625	808		6	Sulfate TI	eral Water Chemistry		4.3
LAB#	SAMPLE IDENTIFICATION	YEAR: 2021		-				1		AINE	ED	8021B	TX1005 (8270C			emi Vo		Semi.	8082 / 608		spestos)	Sul	eral Water	5R	41.
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO3	ICE	NONE	# CONTAINERS	FILTERED	BTEX 8	XT HOT	PAH 82	Total Me	TCLP Metals	ا م	RCI	GC/MS 8	PCB's 8	2	PLM (As	Chloride	General Anion/Ca	TPH 801	НОГР
	NSW-2	5/11/2021	13:30		Х			Х		1	N	Х	,	١.								×			1	01
																					H	+				
				+				E															4 * a			
								-																		
		<u> </u>					7							- 19							7			Ž.		
3/12		September 1		4	57			-									10			1			100	7	11	
ATOM STATE OF THE		1 27 3 2	1 2					7	*		7			5	A F	1	+		1. 1.75 A			+	\vdash		1.25	+
					Н	10-1-0		-							H	+	+		+	+		100		177		
Relinquished by:	Date: Time: 5/12/21 0900	Received by	net	a	Hos	5	ate:	21	Time:	000				B U		F	REMA	Sta				_				
Relinquished by:	Date: Time:	Received by		4		Da	ate:		Γime:			Sar	nple T	empe	eratur	е	X	RUS	H: S	ame [Day(24 hr.)48 t	hr. 72	hr.	
		44				0						4						Rus	h Cha	rges A	Authori	ized				
Relinquished by:	Date; Time:	Received by	r.			Da	ate:		Time:								Е	Spe	cial Re	port I	Limits	or TR	RP Re	port		
		ORIGIN	AL COPY	1	7 177			A	76	10	2	(Ci	rcle)	HAN	D DEI	IVEF	RED(FEDE) (JPS	Trac	king	#:			
Released to Imagin	g: 8/3/2021 8:43:52 AM								1,8	100	5	1							*							

Pace Analytical National Center for Testing & Innov	ration	
Cooler Receipt Form		
Client: OPTETPA	4352	105
Cooler Received/Opened On: 5 / 13 / 21 Temperature:	1.8	
Received By: Robert Patton		
Signature: Signature:	Yes	No
Receipt Check List	Tes	140
COC Seal Present / Intact?	and the same of th	nation of
COC Signed / Accurate?		ALC: UNIT
Bottles arrive intact?		排門的數理
Correct bottles used?		
Sufficient volume sent?	SERVICE PRODUCTS	建 转为10.7%
If Applicable 1997	1910-8-1000-1100-1	
VOA Zero headspace?	PORT 1972 15 25	機物學談
Preservation Correct / Checked?		

Pace Analytical® ANALYTICAL REPORT

May 14, 2021

Ss

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1352208

Description:

Samples Received: 05/13/2021

Project Number: 212C-MD-02471

Report To: Christian Llull

901 West Wall

Suite 100

MCA 151

Midland, TX 79701

Project Manager

Entire Report Reviewed By:

Chris McCord

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
ESW-17 (2') L1352208-01	5
Qc: Quality Control Summary	6
Total Solids by Method 2540 G-2011	6
Wet Chemistry by Method 300.0	7
Volatile Organic Compounds (GC) by Method 8015D/GRO	8
Volatile Organic Compounds (GC/MS) by Method 8260B	9
Semi-Volatile Organic Compounds (GC) by Method 8015	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

Ss

SAMPLE SUMMARY

ESW-17 (2') L1352208-01 Solid			Collected by John Thurston	Collected date/time 05/11/21 10:30	e Received da 05/13/21 10:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1670073	1	05/13/21 14:08	05/13/21 14:17	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1670404	1	05/13/21 19:00	05/14/21 05:47	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1670225	1	05/13/21 13:34	05/13/21 19:59	AV	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1670295	1	05/13/21 13:34	05/13/21 17:37	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1670103	1	05/13/21 16:40	05/13/21 22:54	TJD	Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.5		1	05/13/2021 14:17	WG1670073

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.34	20.3	1	05/14/2021 05:47	WG1670404

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.101	1	05/13/2021 19:59	WG1670225
(S) a,a,a-Trifluorotoluene(FID)	92.2			77.0-120		05/13/2021 19:59	WG1670225

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000481	0.00103	1	05/13/2021 17:37	WG1670295
Toluene	U		0.00134	0.00515	1	05/13/2021 17:37	WG1670295
Ethylbenzene	U		0.000759	0.00257	1	05/13/2021 17:37	WG1670295
Total Xylenes	U		0.000906	0.00669	1	05/13/2021 17:37	WG1670295
(S) Toluene-d8	113			75.0-131		05/13/2021 17:37	WG1670295
(S) 4-Bromofluorobenzene	108			67.0-138		05/13/2021 17:37	WG1670295
(S) 1,2-Dichloroethane-d4	95.4			70.0-130		05/13/2021 17:37	WG1670295

Gl

Semi-Volatile Organic Compounds (GC) by Method 8015

	9	`	, ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.63	4.06	1	05/13/2021 22:54	WG1670103
C28-C40 Oil Range	3.62	BJ	0.278	4.06	1	05/13/2021 22:54	WG1670103
(S) o-Terphenyl	55.7			18.0-148		05/13/2021 22:54	WG1670103

PAGE:

%

0.00100

QUALITY CONTROL SUMMARY

Page 448 of 457

L1352208-01

Total Solids by Method 2540 G-2011

Analyte

Total Solids

	Method Blank (MB)								
	(MB) R3654464-1 05/13/2	1 14:17							
ı		MB Result	MB Qualifier	MB MDL	MB RDL				

%

L1352063-01 Original Sample (OS) • Duplicate (DUP)

%

(OS) L1352063-01	05/13/21 14:17	(DLIP) R3654464-3	05/13/21 14:17

(00) 21002000 01 00/10/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
e	%	%		%		%
otal Solids	87.3	86.7	1	0.588		10

^⁴Cn

Ss

17

(LC3) K3034404-2 03/13/	Spike Amount LCS Res	esult LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	% %	%	%	
Total Solids	50.0 50.0	100	85.0-115	

Page 449 of 457

Wet Chemistry by Method 300.0

L1352208-01

Method Blank (MB)

(MB) R3654380-1 05/14	1/21 01:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1349835-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1349835-06 05/14/21 02:27 •	(DUP) R3654380-3 05/14/21 02:36
-----------------------------------	---------------------------------

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	11.0	1	0.000		20

[†]Cn

L1352208-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1352208-01 05/14/21 05:47 • (DUP) R3654380-6 05/14/21 05:56

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

Laboratory Control Sample (LCS)

(LCS) R3654380-2 05/14/21 01:39

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	191	95.4	90.0-110	

L1349835-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1349835-18 05/14/21 05:18 • (MS) P3654380-4 05/14/21 05:28 • (MSD) P3654380-5 05/14/21 05:37

(03) 11343633-16 03/14/21	1 03.10 • (IVIS) K.	3034300-4 03	0/14/21 03.20	(NOD) KOOJ430	30-3 03/14/21	03.37						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	500	488	1280	1290	158	161	1	80.0-120	E J5	E J5	1.08	20

Page 450 of 457

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1352208-01

Method Blank (MB)

(MB) R3654344-2 05/13/2	21 17:15			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	97.4			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3654344-1 05/13/	21 16:31				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.19	113	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			116	77.0-120	

⁴Cn

Page 451 of 457

Volatile Organic Compounds (GC/MS) by Method 8260B

L1352208-01

Method Blank (MB)

(MB) R3654351-2 05/13/2	1 14:50				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	L
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	To the second second second second second second second second second second second second second second second
(S) Toluene-d8	116			75.0-131	
(S) 4-Bromofluorobenzene	108			67.0-138	
(S) 1,2-Dichloroethane-d4	100			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3654351-1 05/13/2	21 13:54				F	•
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	1
Analyte	mg/kg	mg/kg	%	%	L	
Benzene	0.125	0.112	89.6	70.0-123		200
Ethylbenzene	0.125	0.113	90.4	74.0-126		
Toluene	0.125	0.116	92.8	75.0-121		
Xylenes, Total	0.375	0.336	89.6	72.0-127		
(S) Toluene-d8			106	75.0-131		
(S) 4-Bromofluorobenzene			118	67.0-138		
(S) 1.2-Dichloroethane-d4			118	70 0-130		

L1350655-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	25.0	167	134	138	0.000	0.000	200	10.0-149	$\underline{\vee}$	V	2.94	37
Ethylbenzene	25.0	U	23.6	20.4	94.4	81.6	200	10.0-160			14.5	38
Toluene	25.0	U	22.9	19.6	91.6	78.4	200	10.0-156			15.5	38
Xylenes, Total	75.0	U	70.2	59.3	93.6	79.1	200	10.0-160			16.8	38
(S) Toluene-d8					106	107		75.0-131				
(S) 4-Bromofluorobenzene					121	115		67.0-138				
(S) 1.2-Dichloroethane-d4					120	119		70.0-130				

Page 452 of 457

L1352208-01

Semi-Volatile Organic Compounds (GC) by Method 8015

Method Blank (MB)

(MB) R3654303-1 05/13	3/21 22:16			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	0.502	<u>J</u>	0.274	4.00
(S) o-Terphenyl	58.9			18 0-148

²Tc

⁴Cn

(LCS) R3654303-2 05/13	3/21 22:29				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	41.4	82.8	50.0-150	
(S) o-Terphenvl			58.9	18.0-148	

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
V	The sample concentration is too high to evaluate accurate spike recoveries.

D A I	at a a L K Laat a la a L	10005 -	Dal Marinet	1. 1: - + TNL 07400
Pace Analy	ticai Nationai	12065 Lebanon	Ra Mount .	Juliet, TN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

A134

Page 455 of 457

Analysis Request of Chain of Custody Record

Page: 1 of 1 901 West Wall Street, Suite 100 Midland, Texas 79701 Tetra Tech, Inc. L1352208 Tel (432) 682-4559 Fax (432) 682-3946 ANALYSIS REQUEST Christian Llull Site Manager: Conoco Phillips Client Name: (Circle or Specify Method No.) Email: christian.llull@tetratech.com Contact Info: MCA 151 Project Name: Phone: (512) 338-1667 Project Location: 212C-MD-02471 Project #: Lea County, New Mexico (county, state) Accounts Payable Invoice to: 901 West Wall Street, Suite 100 Midland, Texas 79701 Se Hg John Thurston Sampler Signature: Pace Analytical Receiving Laboratory: otal Metals Ag As Ba Cd Cr Pb (see COPTETRA Acctnum Comments: neral Water Chemistry PRESERVATIVE (Ext to (SAMPLING MATRIX # CONTAINERS FILTERED (Y/N) Semi. Vol. Sulfate METHOD /Cation Balar CB's 8082 / 608 Chloride 300.0 YEAR: 2021 3C/MS Vol. SAMPLE IDENTIFICATION LAB# LAB USE TIME DATE SE ONLY N Х X 5/11/2021 10:30 ESW-17 (2') -01 REMARKS: Date: Date: Time: Received by: LAB USE Relinquished by: 1000 5-13-21 Standard ONLY 1200 X RUSH: Same Day 24 hr. 48 hr. 72 hr. Date: Time: Time: Received by: Relinquished by: Sample Temperature Rush Charges Authorized Received by: Time: Date: Time: Relinquished by: Special Report Limits or TRRP Report (Circle) HAND DELIVERED ORIGINAL COPY

Pace Analytical National Center for Testing & Innov	<i>r</i> ation	
Cooler Receipt Form		
Client: COPTETRA	11352	208
Cooler Received/Opened On: 5 / 13 / 21 Temperature:	1.8	
Received By: Robert Patton		
Signature: South file		
		No.
Receipt Check List NP	Yes	No
COC Seal Present / Intact?		
COC Signed / Accurate?		
Bottles arrive intact?		
Correct bottles used?		製造が予め
Sufficient volume sent?		Machine supplied to the sup-
If Applicable	AND PURPLES.	公司的
VOA Zero headspace?		Account Parketing
Preservation Correct / Checked?	医原源院检查	問題的語言是

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 28715

CONDITIONS

Operator:	OGRID:	
CONOCOPHILLIPS COMPANY	217817	
600 W. Illinois Avenue	Action Number:	
Midland, TX 79701	28715	
	Action Type:	
	[C-141] Release Corrective Action (C-141)	

CONDITIONS

Created By	Condition	Condition Date
chensley	None	8/3/2021