SITE INFORMATION

General Site I	nformation:										
Site:		Elvis Tank Battery Release									
Company:		ConocoPhillips									
	nship and Range	Unit Letters F	Sec. 20	T 17S	R 32E						
Lease Numbe	r:		API No. 30-025-33584								
County:		Lea									
Release GPS:			2.82216°			-103.79091°					
Surface Owne		Federal									
Mineral Owne	r:	Enere Malianan NM (Lhu			the even Malianese	ar Rd. for 2.74 miles. Turn right on					
Directions:						d north for 0.37 miles. Arrive at					
Release Data:											
Date Released		5/17/2013									
Type Release:		Oil & Produced Water									
Source of Con		Tank Overflow									
Fluid Released Fluids Recover		4 bbls of oil, 473 bbls of produced water 2 bbls of oil, 398 bbls of produced water									
Official Comm				alei							
Name:	Marvin Soriwei					1. Llull, P.G.					
Company:	ConocoPhillips				Tetra Tech						
Address:	935 N. Eldridge Pk	wy.				Capital of Texas Hwy.					
-00/033.					Building 2,						
		0			Austin, Tex	as 78759					
	Houston, TX 7707	9									
City:		9			(512) 338-2	2861					
City: Phone number Fax:		9			(512) 338-2	2861					

85' below surface
No
Low
No
No

Recommended F	Remedial Action Le	evels (RRALs)		
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides
10 mg/kg	50 mg/kg	1,000 mg/kg	2,500 mg/kg	10,000 mg/kg

January 5, 2021

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Subject: Closure Request ConocoPhillips Elvis Tank Battery Release Unit Letter F, Section 20, Township 17 South, Range 32 East Lea County, New Mexico 1RP-3280 Incident ID# NTO1424038926

Sir or Madam:

On behalf of ConocoPhillips Company (COP), Tetra Tech, Inc. (Tetra Tech) submits the following Closure Request for review. The Elvis Tank Battery is located approximately 2.8 miles southwest of Maljamar in Lea County, New Mexico (Site). The site is located at coordinates are 32.82216°, -103.79091° in Unit Letter F, Section 20, Township 17 South, Range 32 East. The site location is shown in Figures 1 and 2.

BACKGROUND

According to the State of New Mexico C-141 Initial Report, on May 17, 2013, a release occurred at the Elvis Tank Battery. The release was due to the overflow of produced water tanks as resulted in 4 barrels (bbls) of oil and 473 bbls of produced water released onto the battery location, caliche road and adjacent pasture. Vacuum trucks recovered approximately 2 bbls of oil and 398 bbls of produced water. New Mexico Oil Conservation Division (NMOCD) was notified of the release on May 17, 2013. NMOCD received the initial C-141 on August 26, 2013 and it is associated with 1RP-3280. The NMOCD Incident ID for this release is NTO1424038926. The initial C-141 Form is included in Appendix A.

SITE CHARACTERIZATION

A site characterization was performed and no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.0029 New Mexico Administrative Code (NMAC). The Site is in an area of low karst potential.

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there are no water wells within ½ mile (800 meters) of the Site. The nearest wells are approximately 2,000 to 2,300 meters away with average depth to groundwater at 85 feet below ground surface (bgs). The site characterization data is included in Appendix B.

REGULATORY FRAMEWORK

Based upon the release footprint and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX), total petroleum hydrocarbons (TPH), and chlorides in soil.

ConocoPhillips

Based on the site characterization, the RRALs for the Site are as follows:

Constituent	RRAL
Chloride	10,000 mg/kg
TPH	2,500 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

SITE ASSESSMENT AND REMEDIATION WORK PLAN SUMMARY

Based on Tetra Tech internal documentation, at the request of COP, Tetra Tech personnel conducted a soil assessment of the release area in August 2013. This document is not found on the NMOCD online imaging database. Based on the results of the soil assessment and in accordance with NMOCD Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993, Tetra Tech drafted a remediation work plan. The Work Plan details site assessment activities conducted at the Site. The Tetra Tech Remediation Work Plan is included as Appendix C. The following is a summary of the site assessment activities.

On August 14, 2013, Tetra Tech personnel installed eleven (11) auger holes (AH-1 through AH-11) within the release footprint to assess the vertical extent of impacted soil. AH-1 through AH-3 were installed on the lease adjacent to the tank battery. AH-4 through AH-6 were installed within the lined tank battery firewall. AH-7 through AH-11 were installed in the western-adjacent pasture area (Figures 3A and 3B, Appendix C). Selected samples were sent to Pace Analytical to be analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. A copy of the laboratory analytical report and chain-of-custody documentation are included in Appendix C of the Work Plan included as Appendix C. The laboratory analytical results are summarized in Table 1 of Attachment C.

According to information provided in the Work Plan, Geoffrey Leking of the NMOCD, Steve Tischer and Debrah Gann of COP and Tom Elliot of Tetra Tech met to walk the site and discuss the release. It was agreed on that further delineation of the pasture was required and that soils with a chloride concentration of greater than 1,000 mg/kg would be removed as part of the remediation. The Work Plan proposed the excavation of the areas around AH-1, AH-2 and AH-9 to a depth of 1-foot bgs. The areas within the lined tank battery (AH-4, AH-5 and AH-6) were to be excavated to the top of the liner material. Areas within the release extent in the vicinity of AH-7 and AH-8 were to be excavated to 5 feet bgs and 4 feet bgs, respectively. Additionally, the Work Plan proposed trenches be installed to confirm and define the extent of subsurface chloride impact. Following the removal and proper disposal of impacted material, the excavated area was to be backfilled with clean soil to grade.

REMEDIATION ACTIVITIES SUMMARY

The NMOCD online imaging database contains documentation on this release consisting of the initial C-141 received by NMOCD, and a Site Closure Plan Report, dated August 21, 2014. Based on information provided in the Site Closure Plan, submitted to the NMOCD by Diamondback Disposal Services, Inc. (Diamondback), the above-mentioned Work Plan was approved by the NMOCD. No record of Work Plan approval was found in the NMOCD online imaging database. The Site Closure Plan Report detailing remedial activities performed by Diamondback is included as Attachment D.

According to the Site Closure Plan Report, Diamondback was contacted April 7, 2014 by Mr. Justin Wright, COP, to perform the remediation activities at the release site. Per the report, Diamondback began remediation of the release area on April 14, 2014.

In general accordance with the Tetra Tech Work Plan and as described in the Site Closure Plan Report, Diamondback excavated approximately 1,284 cubic yards of impacted soils from the release footprint as

Closure Request January 5, 2021

defined in figures from the Work Plan. Impacted soils were transported to an NMOCD-approved facility (R360) for proper disposal.

As written in the report, following an approval by NMOCD's Dr. Tomas Oberding, a high-density polyethylene (HDPE) liner cap was installed at the base of the extended battery area (Section 4 excavation) and backfilled with clean fill. The battery floor was brought to grade and berms were reconstructed.

On August 18, 2014, Diamondback personnel collected composite confirmation soil samples from the sidewalls and floors of the excavated areas (Sections 1 through 4), shown on the Closure Report figure, included in Appendix D. The existing Closure Report Figure 4 was modified from the original Tetra Tech figure included in the Work Plan. These soil samples were submitted to Cardinal Laboratory in Hobbs to be analyzed for TPH (EPA Method 8015M), BTEX (EPA Method 8021B) and chloride (SM4500Cl-B). All confirmation sample results associated with the confirmation sampling were below the stipulated 1,000 mg/kg for chloride and the BTEX and TPH RRALs cited in the Work Plan, except for the analytical results associated with sample SEC 4 FLOOR for chloride. Sample SEC 4 FLOOR was collected from the area of the extended battery. Table 1 summarizes the analytical results of the August 2014 confirmation sampling event.

As part of the submitted Closure Report, Diamondback proposed the backfilling of the excavated areas with clean granular soil, and contouring, crowning and seeding the area to promote vegetation growth. There is no further correspondence in the imaging database regarding the approval of the submitted Diamondback Closure Report.

Based on the review of post-2014 satellite imagery of the release area, it appears that the excavated areas were backfilled with clean soil. Satellite imagery from February 2017 indicates that the battery footprint was extended as described in the Site Closure Plan Report. The present-day battery berm exists in this described condition. Additionally, vegetation growth within the pasture portion of the release area appears to have returned to pre-release conditions.

VISUAL SITE INSPECTION AND FIELD SOIL SCREENING

At the request of COP, on September 10, 2020 Tetra Tech personnel conducted a visual Site Inspection at the former release area to evaluate current conditions at the Site. The formerly impacted area was identified from the description in the C-141 and the figures from the Work Plan and Closure Report. Photographic documentation from the visual assessment (with stamped GPS coordinates) is included within Attachment D. A list of field observations describing the Site follow:

• No evidence of staining was noted in the pasture areas west of the battery.

Additionally, Tetra Tech conducted field soil screening for salinity to confirm the efficacy of remedial activities performed by Diamondback. Soils from four (4) locations within the former release footprint in the pasture were screened for using a salinity meter at a depth interval of 0 to 1-foot bgs. The field screening resulted in salinity concentrations ranging from 86 ppm to 103 ppm, which would indicate surface soil concentrations are below the current RRAL of 600 mg/kg for chloride in off-pad areas. The field soil screening results are summarized in Table 2. The soil screening sample locations are shown in Figure 4.

Closure Request January 5, 2021

CONCLUSION

Based on available assessment data, reported remediation work performed at the Site, confirmation sampling results, soil screening data and recent visual inspection at the formerly impacted surface area, ConocoPhillips requests closure for this release. The final C-141 form is enclosed in Attachment A.

Should you have any questions or comments regarding this report, please do not hesitate to contact me by telephone at 512-338-2861 or Greg at 432-687-8134.

Sincerely,

Christian M. Llull, P.G. Project Manager

Greg Pope, P.G. Program Manager

cc: Mr. Marvin Soriwei, RMR – ConocoPhillips Mr. Charles Beauvais, GPBU - ConocoPhillips

LIST OF ATTACHMENTS

Figures:

Figure 1 – Site Location/Overview Map

Figure 2 – Site Location/Topographic Map

Figure 3 – Approximate Release Extent

Figure 4 – Approximate Release Extent and Confirmation Screening Locations

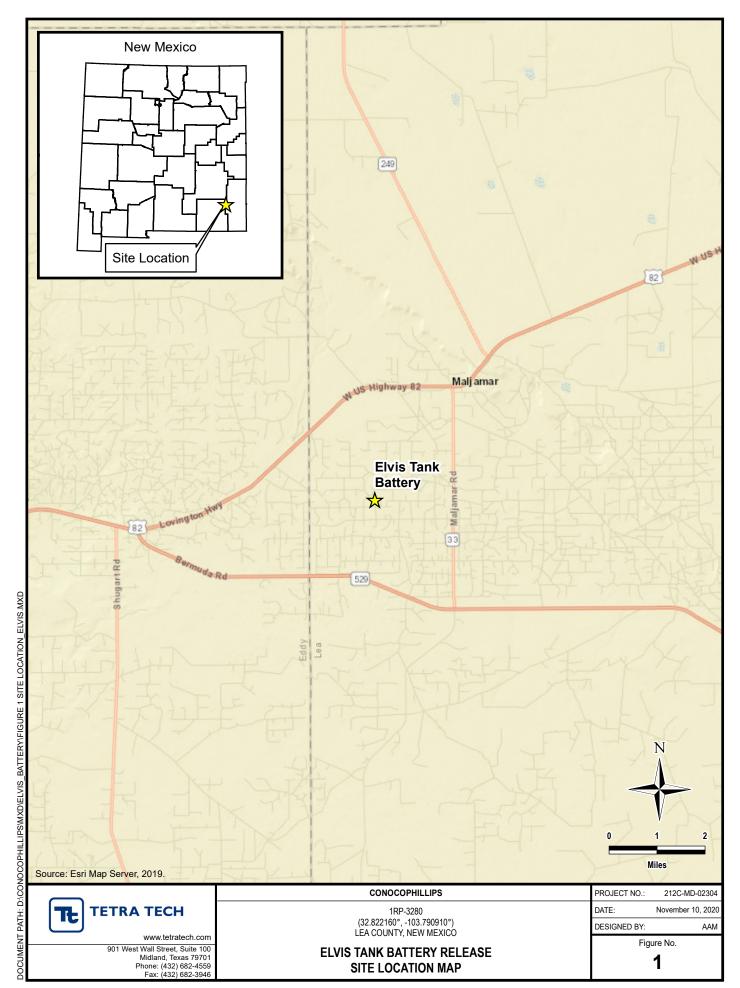
Tables:

Table 1 – Summary of Analytical Results – Confirmation Sampling Table 2 – Summary of Analytical Results – Soil Screening Confirmation

Appendices:

Appendix A – C-141 Forms

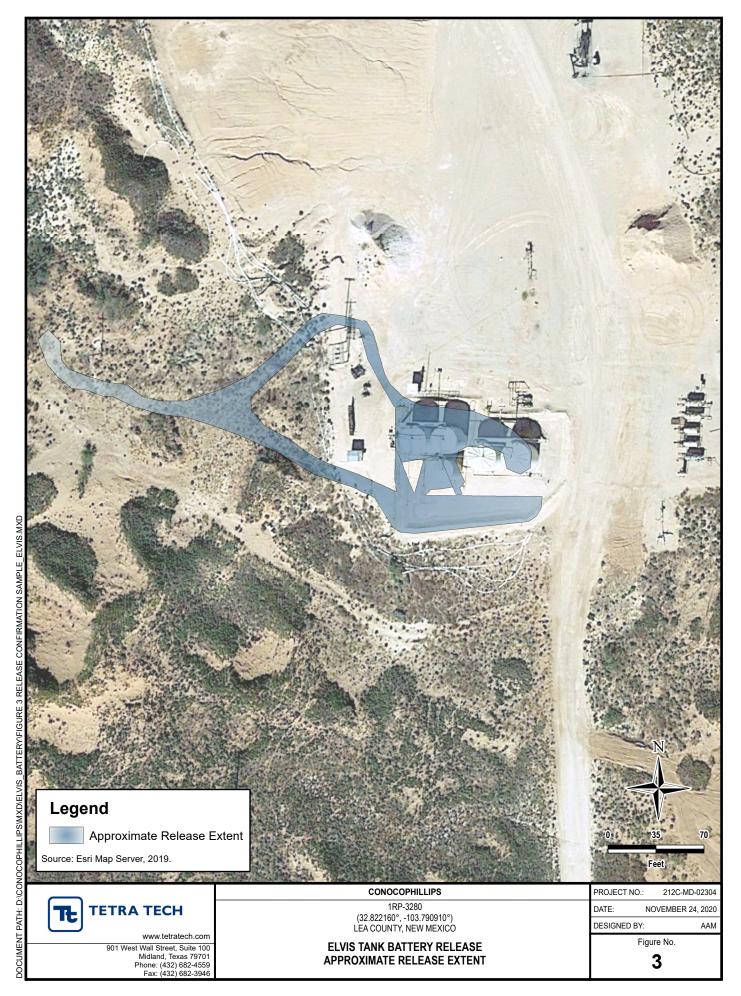
Appendix B – Site Characterization Data Appendix C – Tetra Tech Remediation Work Plan

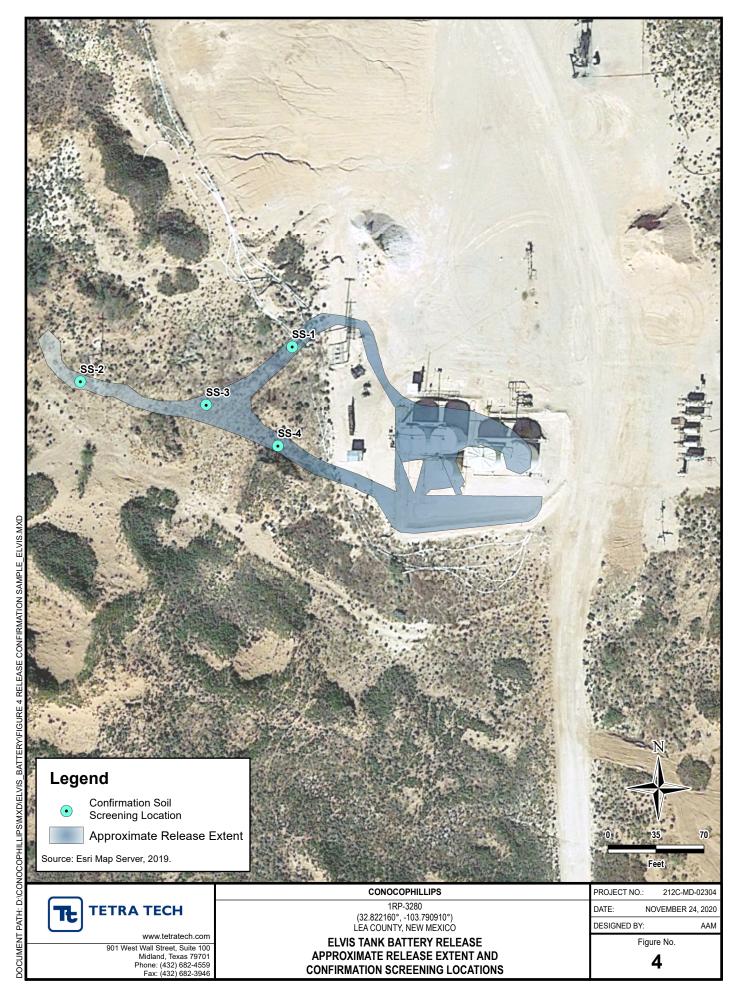

Appendix D – Diamondback Closure Report

Appendix E – Photographic Documentation


3

FIGURES


Released to Imaging: 11/30/2021 2:40:11 PM



Released to Imaging: 11/30/2021 2:40:11 PM

Released to Imaging: 11/30/2021 2:40:11 PM

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS **CONFIRMATION SAMPLING - 1RP-3280** CONOCOPHILLIPS **ELVIS TANK BATTERY 1RP-3280 RELEASE** LEA COUNTY, NM

								BTEX ²							TPH ³		
Sample ID	Sample Date	Chloride1		Benzene		Toluene		Ethylbenzen	0	Total Xylene		Total BTEX	GRO		DRO		Total TPH (GRO+DRO)
Sample ID	Sample Date			Belizene		Toldelle		Ethylbenzen	e	Total Xylene:	•	TOTALDIEX	C ₆ - C ₁₀		C ₁₀ - C ₂₈		
		mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	Q	mg/kg	Q	mg/kg
SEC 1 S. WALL	8/18/2014	816		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		-
SEC 1 N. WALL	8/18/2014	160		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		365		365
SEC 1 FLOOR	8/18/2014	64		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		-
							_		1		-			1		1	
SEC 2 S. WALL	8/18/2014	32		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		-
SEC 2 N. WALL	8/18/2014	48		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		-
SEC 2 FLOOR	8/18/2014	64		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		-
SEC 3 S. WALL	8/18/2014	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		_
SEC 3 N. WALL	8/18/2014	< 16.0	-	< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		
			-						_					_	-		-
SEC 3 FLOOR	8/18/2014	< 16.0		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		-
SEC 4 FLOOR	8/18/2014	2120		< 0.050		< 0.050		< 0.050		< 0.150		< 0.300	< 10.0		< 10.0		-

NOTES:

ppm

Released to Imaging: 11/30/2021 2:40:11 PM

ft. Feet

Below ground surface bgs

These iterative samples are located to encompass the original sample location that triggered removal, with further excavation in each area indicated in ().

1 2 3

J

QUALIFIERS:

*

SM4500CI-B

EPA Method 8021B

EPA Method 8015M

The identification of the analyte is acceptable; the reported value is an estimate.

Parts per million mg/kg Milligrams per kilogram

Total Petroleum Hydrocarbons TPH

GRO Gasoline range organics

DRO Diesel range organics

ORO Oil range organics

Page 12 of 147

TABLE 2 SUMMARY OF SOIL SCREENING RESULTS SOIL SCREENING CONFIRMATION 1RP-3280 CONOCOPHILLIPS ELVIS TANK BATTERY 1RP-3280 RELEASE LEA COUNTY, NM

		Sample Depth	Field Screening Results	
Sample ID	Sample Date		Chloride	Field Observations
		ft. bgs	ppm	
SS-1	9/10/2020	0-1	98	No Staining, No Odor
SS-2	9/10/2020	0-1	103	No Staining, No Odor
SS-3	9/10/2020	0-1	86	No Staining, No Odor
SS-4	9/10/2020	0-1	91	No Staining, No Odor

NOTES:

ft. Feet

bgs Below ground surface

ppm Parts per million

APPENDIX A C-141 Forms

Released to Imaging: 11/30/2021 2:40:11 PM

•

									HOBB	SOCD
District I 1625 N. French	Dr., Hobbs,	NM 88240				of New Mex	-		VIIG 9	6 2014 Form C-14 Revised August 8, 201
District II 811 S. First St.,				Energy Mi	neral	s and Natura	I Resources			-
District III 1000 Rio Brazo						ervation Div		Sub	mit I Copy	to appropriate District Office
District IV 1220 S. St. Fran						th St. Franc		Ł	RECE	
		a re, ivivi 8/303	ningi sa kini na sa sa s			Fe, NM 875				
			Rela	ease Notific	catio		orrective A	ction		
Marra						OPERA'			🛛 Initia	al Report 🔲 Final Rep
		onocoPhillip Complex La		ington, NM 882	60	Contact: Jo	hn Gates No.: 575-391-31	58	<u> </u>	
		Elvis Batter					e: Oil & Gas			
Surface Ow	ner: Feder	ral		Mineral C	Owner	: Federal	·····		API No	. 188612
				LOCA	ATIO	ON OF REI	LEASE			
Unit Letter	Section	Township	Range	Feet from the		th/South Line	Feet from the	East/V	est Line	County
	20	17	32					}		Lea
	L	·I	atitude:	32 49' 21.54"	 N	Lons	gitude: 103 47'	26.052	" W	•
						E OF REL				
Type of Rele	ase: Crude	Oil & Produ	ced Wate			Volume of	Release ~ 4 BBL	1		tecovered : ~2 bbls oil & ~398
Source of Re	lease: Relea	se overflower	from ton	of North West 5	00 bbl		ls ProducedWat		bbis wate	r Hour of Discovery
oil tank							Unknown Time (@~0730 Hours
Was Immedia	te Notico (Jiven?				occurrenc If YES, To				
· · · · · · · · · · · · · · · · · · ·			Yes [] No 📋 Not R	equire		eking NMOCD &	z Trishia	a Bad Bear	BLM
By Whom? J							lour: 05/17/13 @			
Was a Water	course Read		Yes 🛛	l No		If YES, Vo	olume Impacting t	he Wate	rcourse.	
Release origin pumps went o	nated from lown which	ern and Remed top of produce subsequently e with NMOC	ed water ta caused ta	anks inside batter inks to overflow.	y, The MSO :	tanks overflow shut in battery t	red out of top hatc to stop additional t	h onto b fluids fro	attery loca om being re	tion and caliche road. Transfer cleased. Spill site will be
Describe Are Majority of sp	a Affected a pill was con	and Cleanup A stained in surro	ction Tak	cen.* aliche location an	d road oil an	way with small	amount running y 398 bbls of wate	west off	location or ecovered.	nto sandy soil. Vacuum trucks
regulations al public health should their o	l operators or the envir perations h ment. In a	are required to onment. The ave failed to a ddition, NMO	o report an acceptanc dequately CD accep	id/or file certain r e of a C-141 repo investigate and r	eicase ort by f emedi	notifications and the NMOCD mate contamination	nd perform correc arked as "Final Re on that pose a thre	tive active eport" do eat to gro responsil	ons for rele bes not reli- bund water bility for co	want to NMOCD rules and mases which may endanger , eve the operator of liability , surface water, human health ompliance with any other DIVISION
Signature:	YM	in W		1			~	~		
Printed Name	John W. (Gates				Approved by	Environmental Sp	ecialist:		
Title: LEAD I	HSE					Approval Dat	e: 8-16-14	E	Expiration I	Date: 10-29-14
E-mail Addre	ss: John.	W.Gates@e	conocoj	phillips.com		Conditions of		y n		Attached
Date: 05/17. 3158	/13	•		Phone:575-391	•	Qeli Nac	rte Syplane nice Enerding Ograde Su by 10-29-	onen	mpr me	
						C-141				00112 217817 00112 217817 hto1929 038920 pto1929 03905
sed to Imag	ging: 11/.	30/2021 2:4	40:11 P	M			AUG	28	2014	F 70 1424 03403

Oil Conservation Division

Incident ID	nTO1424038926
District RP	1RP-3280
Facility ID	fTO1424038452
Application ID	pTO1424039056

Page 16 of 147

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following i	items must be included in the closure report.
\square A scaled site and sampling diagram as described in 19.15.29.1	11 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of	ations. The responsible party acknowledges they must substantially inditions that existed prior to the release or their final land use in
email: marvin.soriwei@conocophillips.com	Telephone: 8324862730
	·
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible 'or regulations.
Closure Approved by: Bradford Billings	Date:11/30/2021
Printed Name: Bradford Billings	Title: Envi.Spec.A

APPENDIX B Site Characterization Data

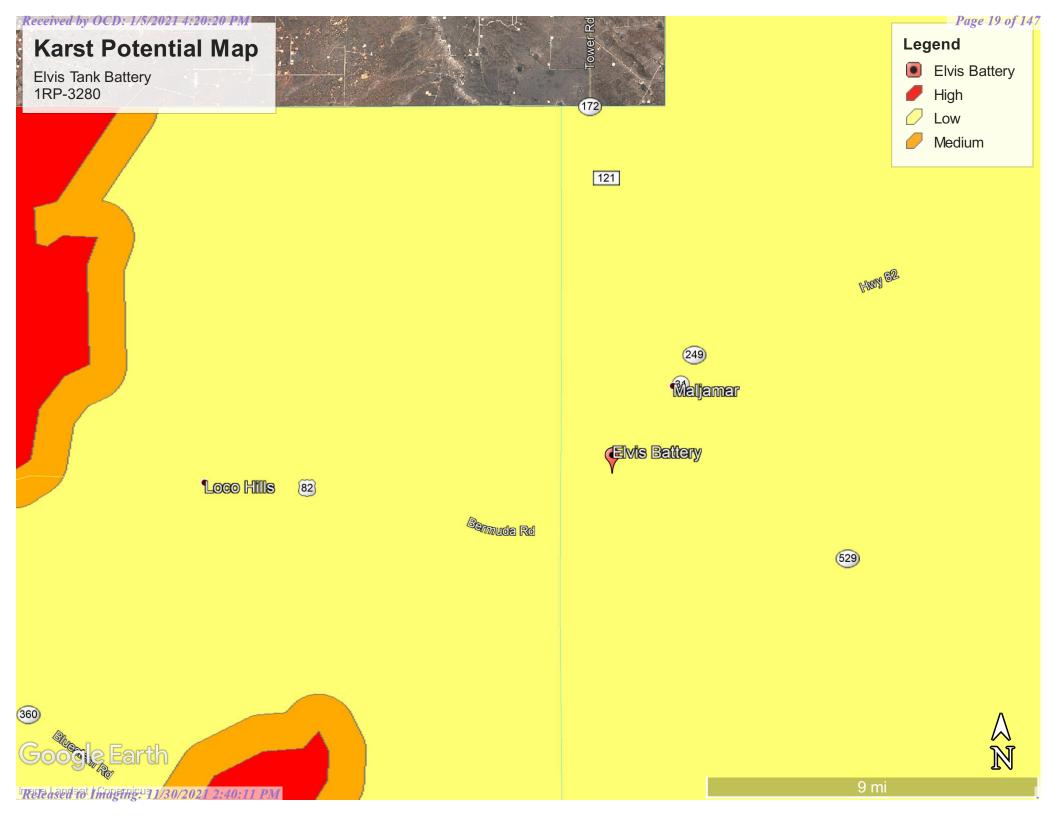
New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(•••					2=NE 3	3=SW 4=SE gest) (N/) AD83 UTM in me	eters)	(1	n feet)	
	POD Sub-			Q								-	•	Water
POD Number	Code basin C	-						-	Х	Y	Distance		Water	Column
RA 12042 POD1	RA	LE	2	2	1	28	17S	32E	614891	3631181 🌍	2003	400		
RA 10175	RA	LE		2	1	28	17S	32E	614814	3631005* 🌍	2037	158		
RA 12522 POD1	RA	LE	3	3	4	21	17S	32E	614941	3631122 🌍	2076	100		
RA 12020 POD1	RA	LE	2	2	1	28	17S	32E	614828	3630954 🌍	2078	120	81	39
RA 12522 POD2	RA	LE	2	2	1	28	17S	32E	614949	3631098 🌍	2096	100		
RA 12522 POD3	RA	LE	4	4	3	28	17S	32E	614980	3631093 🌍	2125	100		
RA 12521 POD1	RA	LE	3	3	4	21	17S	32E	615127	3631271 🌍	2167	105	92	13
RA 12020 POD3	RA	LE	2	1	2	28	17S	32E	615152	3631019 🌍	2310	112	83	29
										Avera	ge Depth to	Water:	85	feet
											Minimum	Depth:	81	feet
											Maximum	Depth:	92	feet
Record Count: 8														

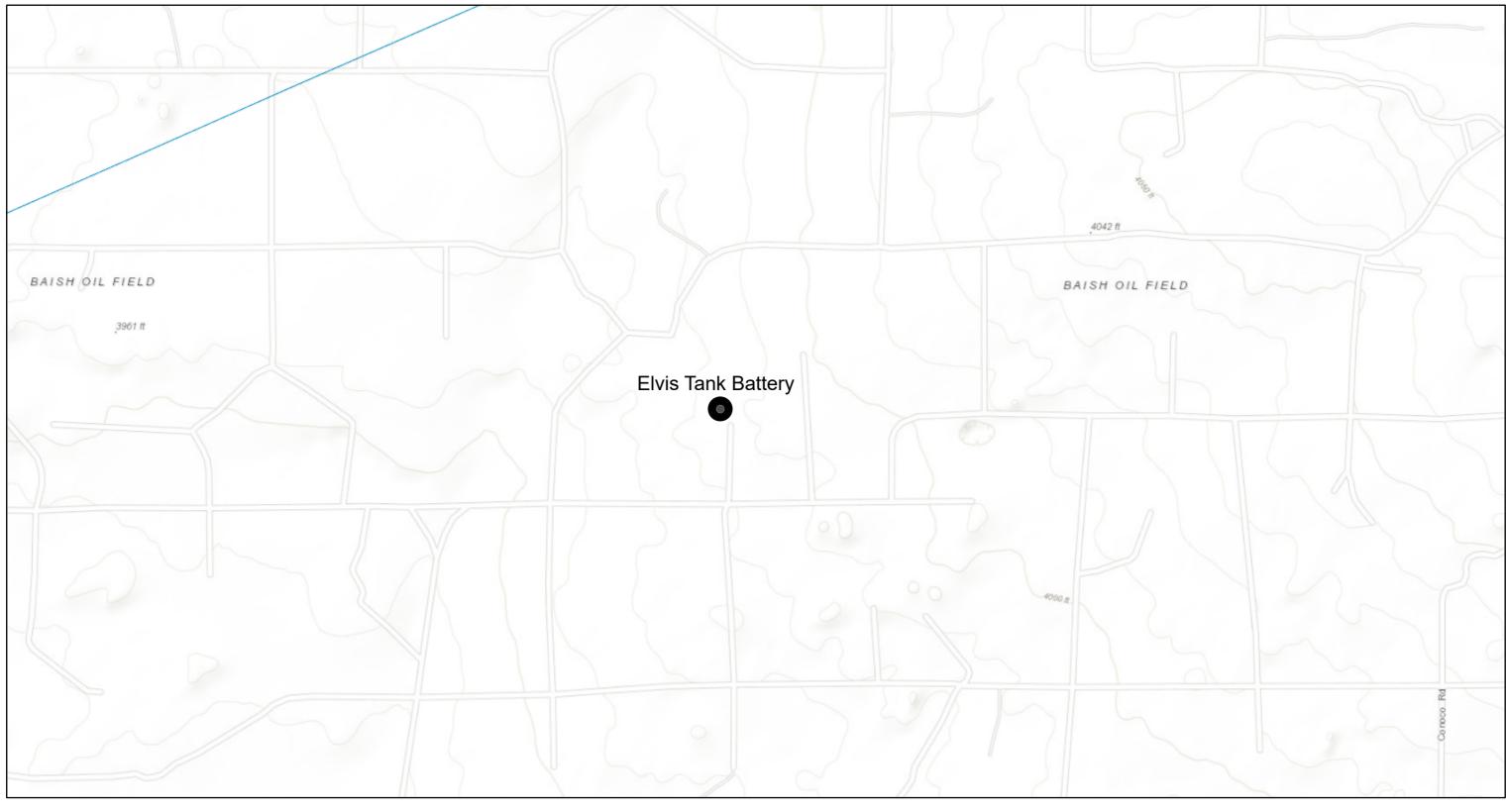
UTMNAD83 Radius Search (in meters):

Easting (X): 613176.86

Northing (Y): 3632218.24

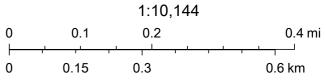

Radius: 2500

*UTM location was derived from PLSS - see Help


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

10/28/20 4:01 PM

Page 18 of 147



Elvis Tank Battery

3/25/2020, 9:36:36 AM

- Override 1
- OSE Water-bodies
- PLJV Probable Playas
 - OSE Streams

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community

APPENDIX C Tetra Tech Remediation Work Plan

SITE INFORMATION

W. -D .

		Re	port Type:	Work Pl	an						
General Site In	nformation:			de la strat da brit	WARRAN WAR	TRANSPORT REPORT					
Site:		Elvis Tanl	lvis Tank Battery								
Company:	1.0 C 1.0 C	ConocoPI	hillips								
	ship and Range	Unit A	Sec 20	T17S	R32E						
Lease Number	1	API No. 18	and and a second se								
County:		Lea Coun	and a state of the								
GPS:			32.82238° N	4		103.79107° W					
Surface Owner		Federal									
Mineral Owner Directions:				- 00 0100	0.0	to a paved road heade					
		north for ap	prox. 0.3 miles an	d turn miles for	r 0.2 miles. T	nd continue west for 0. urn south for approx. 0 iles and arrive at the lo	.1 miles and				
Release Data:											
Date Released:		5/17/2013									
Type Release:			and Produced Water								
Source of Conta		Overfill of	Oil / 473 bbls Produced Water								
Fluid Released. Fluids Recover			398 bbls Produ								
Official Comm			396 DDIS F1000	ceu waler							
Contraction of the local division of the loc	(h)										
Name:	John Gates		_		Ike Tavare						
Company:	Conoco Phillips				Tetra Tech						
Address:	29 Vacuum Lane			NAME:	4000 N. Bi	g Spring St.					
City:	Lovington, New Mo	exico			Midland, T	exas					
Phone number:	575-391-3158			(432) 682-4559							
Fax:											
Email: john.w.gates@conocophillips.com ike.tavarez@tetratech.com											

Ranking Criteria

Depth to Groundwater:	Ranking Score	Site Data
<50 ft	20	
50-99 ft	10	
>100 ft.	0	0
WellHead Protection:	Ranking Score	Site Data
Water Source <1,000 ft., Private <200 ft.	20	
Water Source >1,000 ft., Private >200 ft.	0	0
Surface Body of Water:	Ranking Score	Site Data
<200 ft.	20	
200 ft - 1,000 ft.	10	
>1,000 ft.	0	0
a construction of the second		
Total Ranking Score:	0	

Total Ranking Score:

Acceptable Soil RRAL (mg/kg)		
Benzene	Total BTEX	ТРН
10	50	5,000

January 31, 2014

Mr. Geoffrey Leking Environmental Engineer Specialist Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Work Plan for the ConocoPhillips Operating LLC., Elvis Tank Battery, Unit A, Section 20, Township 17 South, Range 32 East, Lea County, New Mexico.

Mr. Leking:

Tetra Tech, Inc. (Tetra Tech) was contacted by ConocoPhillips (COP) to assess a spill from the Elvis Tank Battery located in Unit A, Section 20, Township 17 South, Range 32 East, Lea County, New Mexico (Site). The spill site coordinates are N 32.82238^o, W 103.79107^o. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on May 17, 2013, and released approximately Four hundred and seventy three (473) barrels of produced water and four (4) barrels of oil from overflowing the top of a tank due to transfer pumps going down. To alleviate the problem, COP returned the transfer pumps into service. Three hundred and ninety eight (398) barrels of produced water and two (2) barrels of oil were recovered. The spill initiated within the lined tank battery before spilling onto the caliche road and into the pasture. The initial C-141 form is enclosed in Appendix A.

Groundwater

According the USGS and NMOCD databases there are no wells listed in Section 20. COP located a water well in T-17-S, R-32-E, Section 21, Lea County, NM drilled by Scarborough Drilling and completed on 5-15-2007. However, this well (EW-1) was drilled only to 125 feet and the well log description indicates that the sediments were damp, not wet, and no water level was indicated. According to the NMOCD groundwater map the depth to groundwater is approximately 140' below surface. The groundwater data is shown in Appendix B.

> Tetra Tech 4000 North Big Spring, Midland, TX 79705 Tel 432.682.4559 Fax 432.682.3946 www.tetratech.com

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 5000 mg/kg.

Soil Assessment and Analytical Results

On August 14, 2013, Tetra Tech personnel inspected and sampled the spill area. Eleven (11) auger holes (AH-1 through AH-11) were installed using a stainless steel hand auger to assess the impacted soils. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The sampling results are summarized in Table 1. The auger hole locations are shown on Figure 3.

Referring to Table 1, there were no BTEX impacts detected above the RRAL, however a TPH impact was detected in the subsurface soils above the RRAL. Auger hole (AH-2), showed a TPH concentration to the soils of 5,555 mg/kg at 0-1' and declined to 40 mg/kg at 1.5-2.0' below surface. All other auger hole samples were below the RRAL for BTEX and TPH.

In addition, a chloride impact was detected in auger holes (AH-1, AH-4, AH-5, AH-6, AH-7, AH-8, AH-9, AH-10 and AH-11). On the pad, auger hole (AH-1) showed a chloride impact of 7,910 mg/kg at 0-1' and declined significantly to 488 mg/kg and 217 mg/kg at 1.-5' and 2.5-3.0' respectively. In the pasture, auger holes (AH-4, AH-5 and AH-6) showed chloride levels of 10,000 mg/kg, 11,900mg/kg and 1,480 mg/kg respectively at 0-1' below surface and were not defined; however the facility liner is present within this area at approximately 1.5' below surface. Auger holes (AH-7 and AH-8) showed maximum chloride levels of 13,600 mg/kg at 3.5-4.0' and 8,340 mg/kg at 2.5-3.0' below surface and declined to 8,380 mg/kg at 4.5-5.0' and 3.5-4.0' respectively. Auger hole (AH-9) showed a chloride level of 1,360 mg/kg at 0-1.0' and declined to 20.3 mg/kg 1.5-2.0' below surface. Auger holes (AH-10 and AH-11) showed a chloride impact at 3.5-4.0' of 1,310 mg/kg and 1,370 mg/kg, respectably. These areas were not vertically defined.

Work Plan

On November 18, 2013, NMOCD staff Mr. Geoffrey Leking, COP staff Steve Tischer and Debrah Gann and Tetra Tech staff Tom Elliott met to discuss the site. The site was walked and it was agreed upon to that further delineation was required in the pasture (sanddune complex) by either placing borings or trenches and that all elevated chlorides >1000 mg/kg would be removed.

COP proposes to remove impacted material as highlighted (green) in Table 1 and shown on Figure 4. The areas of AH-1, AH-2 and AH-9 will be excavated to a depth of approximately 1.0' below surface to remove the impacted soil. The areas of AH-4, AH-5 and AH-6 will be excavated to the top of the liner to remove the impacted material. The area of AH-7 will be excavated to approximately 5.0' below surface and AH-8 excavated to approximately 4.0' below surface.

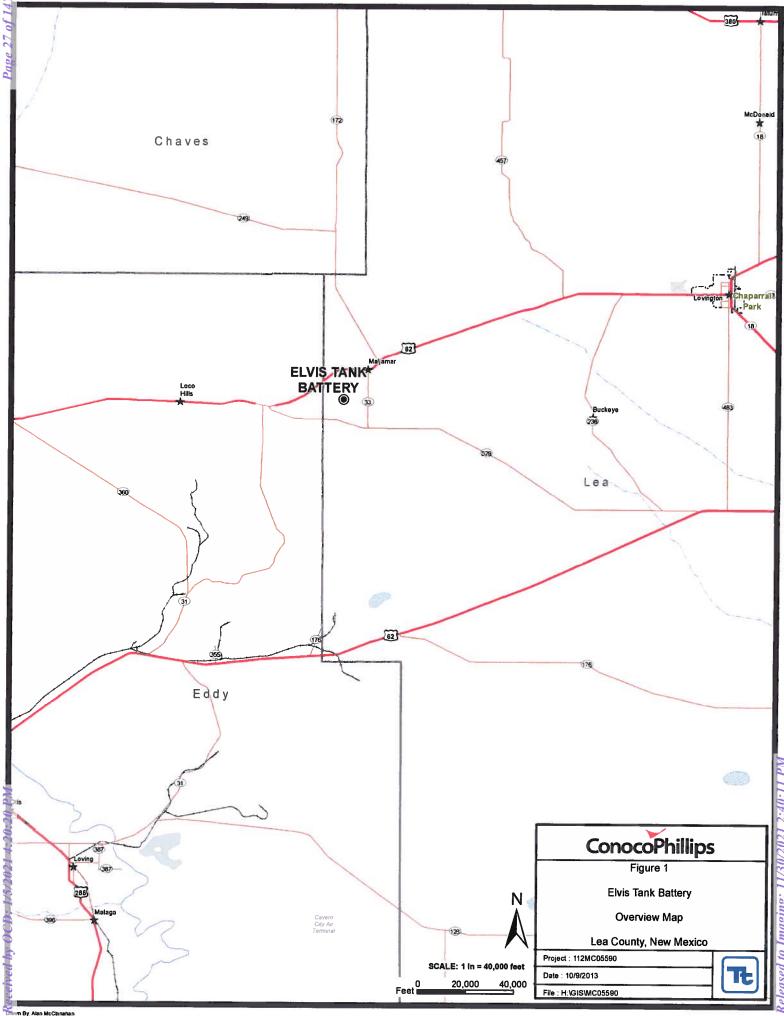
In the area of AH-7, AH-8, AH-10 and AH-11 backhoe trenches will be installed to confirm and define the chloride extents. Based on the results, the areas will be excavated to the appropriate depth. If deeper impacts are detected, a liner or a 1.0' clay cap will be installed at a depth of 4.0' below surface in AH-7, AH-8, AH-10 and AH-11. All of the impacted material will be transported to proper disposal and the excavations will be backfilled with clean soil to grade. If the impacted soil is not vertically defined, Tetra Tech will install a borehole to define the extents.

The proposed excavation depths may not be reached due to wall cave ins and safety concerns for onsite personnel. In addition, impacted soil around oil and gas equipment, structures or lines may not be feasible or practicable to be removed due to safely concerns. As such, Tetra Tech will excavate the soils to the maximum extent practicable.

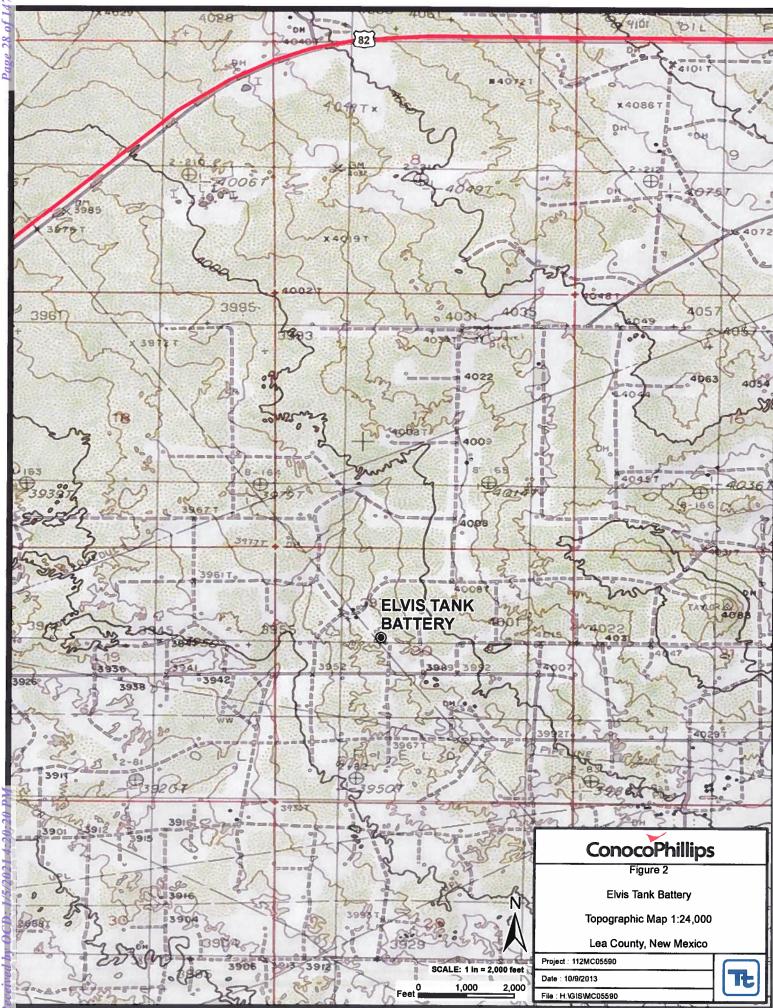
Upon completion, a final report will be submitted to the NMOCD. If you have any questions or comments concerning the assessment or the proposed remediation activities for this site, please call me at (432) 682-4559.

Respectfully submitted, TETRA TECH

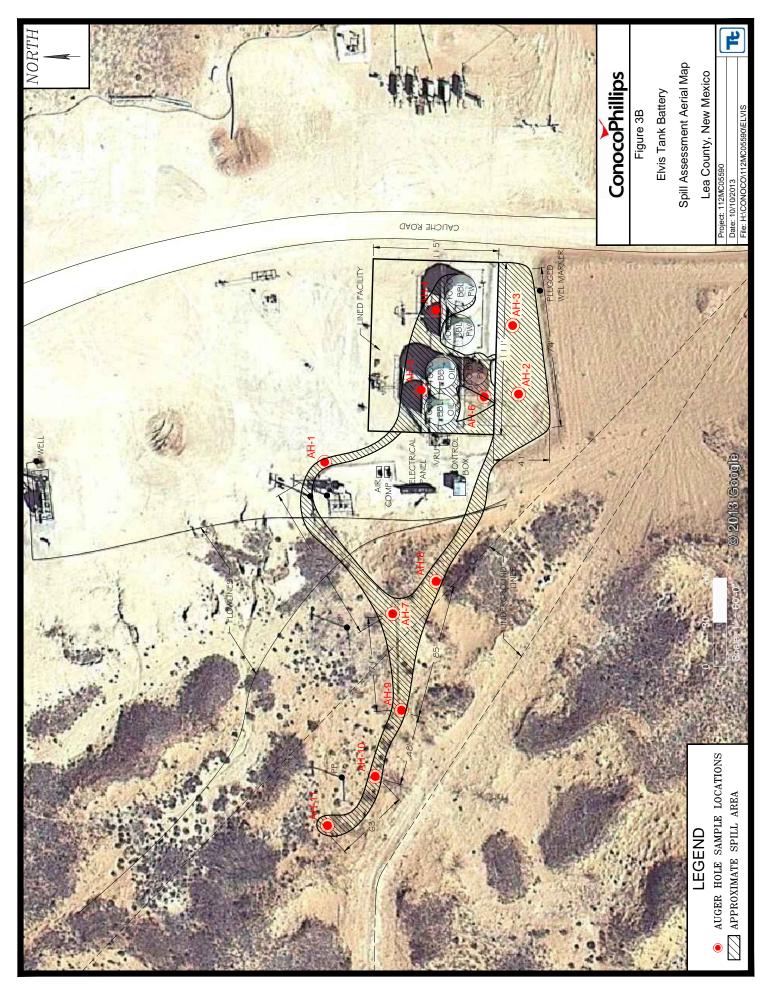
Tom Elliott Project Manager

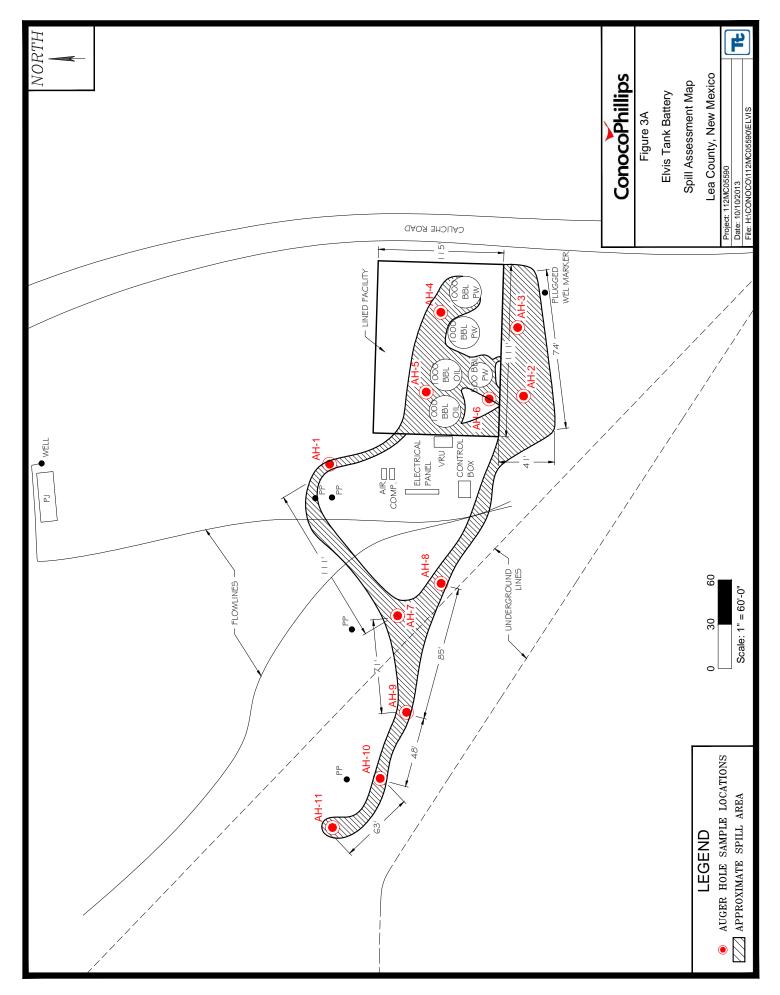

cc: Steve Tischer – COP Jim Amos - BLM

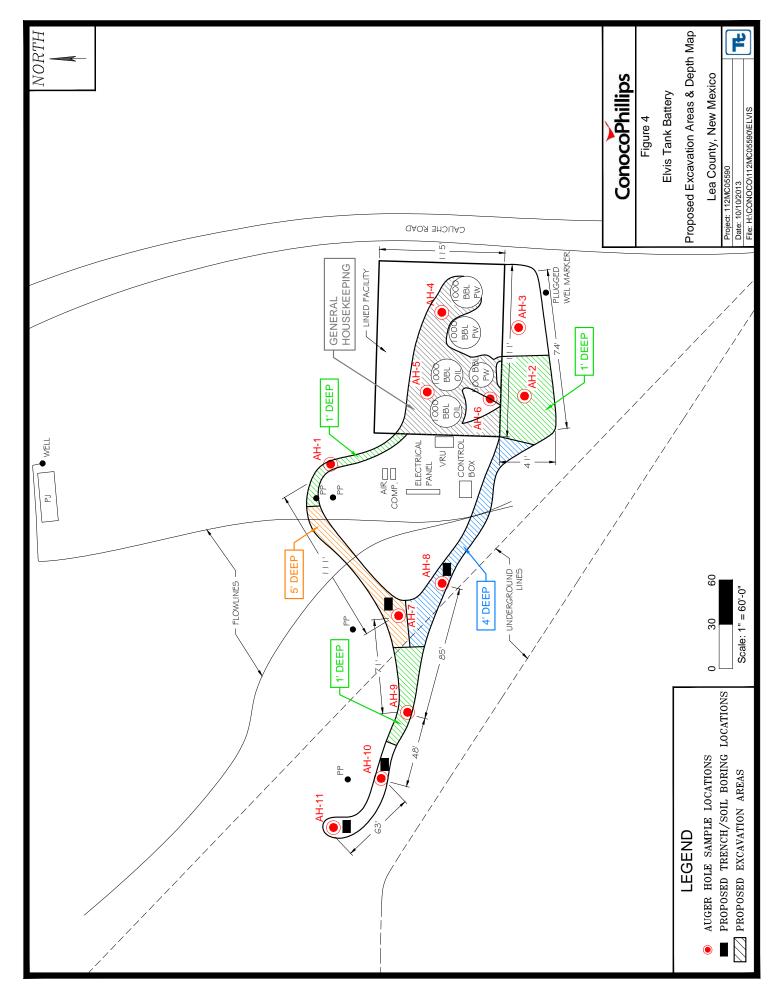
Received by OCD: 1/5/2021 4:20:20 PM


FIGURES

•

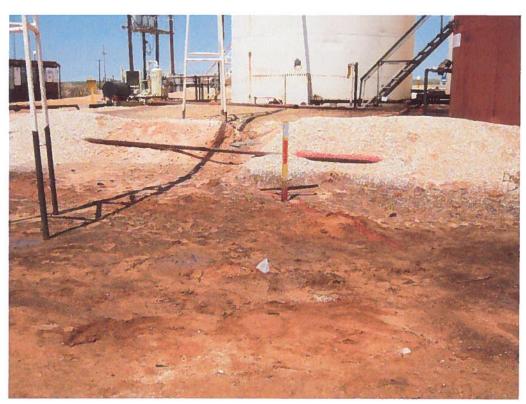

Released to Imaging: 11/30/2021 2:40:11 PM



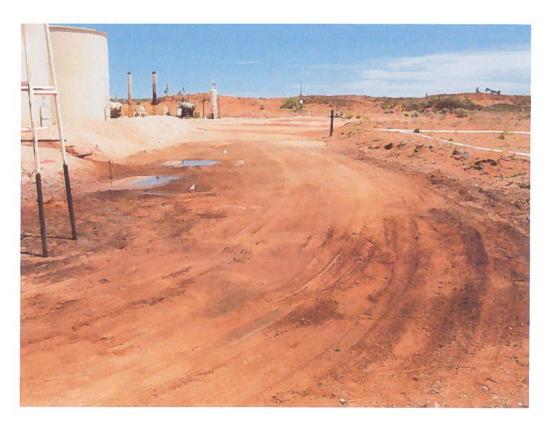

celeased to Imaging: 11/30/202

Dinm By: Alan McClanshan

Received by OCD: 1/5/2021 4:20:20 PM

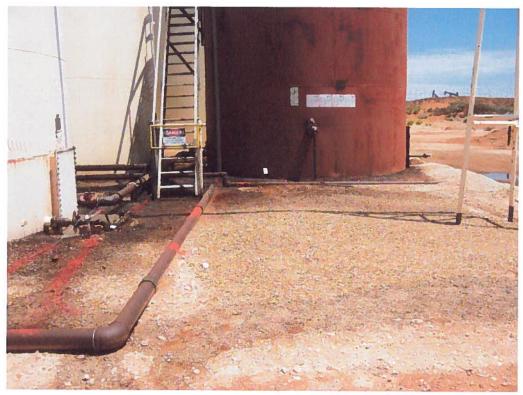

Page 32 of 147

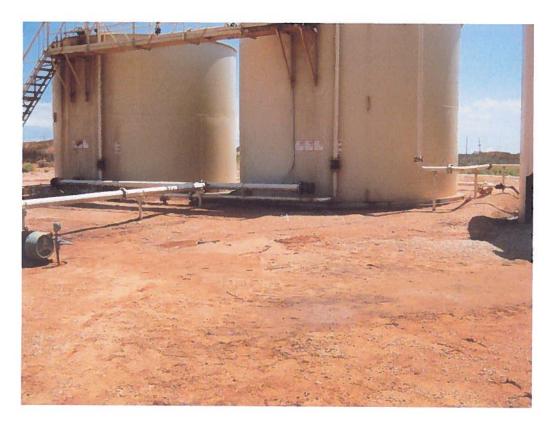
PHOTOGRAPHS


•

Released to Imaging: 11/30/2021 2:40:11 PM

ConocoPhillips Elvis TB Lea County, New Mexico

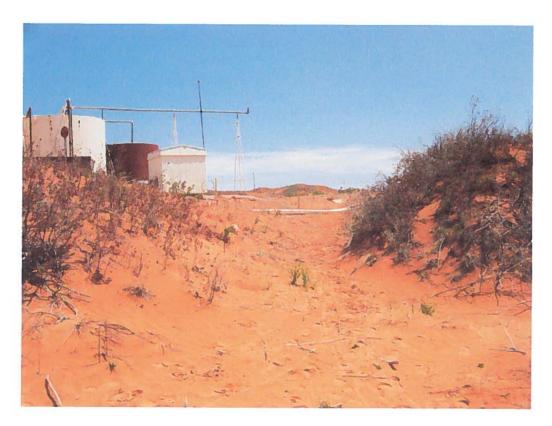

View North – Area of AH-2


View East – Area of AH-2 and AH-3

Received by OCD: 1/5/2021 4:20:20 PM

ConocoPhillips Elvis TB Lea County, New Mexico

View East - Area of AH-6



View Southeast – Area of AH-5

TETRA TECH

View West - Area of AH-7

View East - Area of AH-8

Received by OCD: 1/5/2021 4:20:20 PM

Page 36 of 147

TABLES

•

Released to Imaging: 11/30/2021 2:40:11 PM

TABLE 1 Conoco Philips Elvis Tank Battery Lea County, New Mexico

		BEB		Soil S	Soil Status			BTEX				TPH		
Sample Location	Date	Sample	Depth (ft)	In Citu	Period	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	GRO	DRO	Total	Chloride
		action (m)			removed	(mg/kg)	(mg/kg)	(mg/kg)		(mg/kg)	(mg/kg)	(mg/kg)	(me/ke)	(me/ke)
OCD CI	OCD Cleanup Guidelines for Groundwater >150 ft.	es for Groun	dwater >150	÷		10				50	5	õ	5,000	0
AH-1	8/14/2013	0-1	0	×		<0.0012	<0.0012	<0.0012	<0.0035	<0.0035	0.40	705	705	7.910
	8/14/2013	1.5-2.0	0	×		1	1	1	ł	1	1			488
	8/14/2013	2.5-3.0	0	×		1	1		1		!	!	1	217
	8/14/2013	3.5-4.0	0	×		!		1	1	1		1		18.9
	8/14/2013	4.5-5.0	0	×		1	1	1	1	1	1	1	:	48.7
	8/14/2013	5.5-6.0	0	×		1	1	1	1	1		1	1	374
	8/14/2013	6.5-7.0	0	×		1		1	1	1		1	1	357
	8/14/2013	7.5-8.0	0	×		1	I	ł	1				1	463
	8/14/2013	8.5-9.0	0	×		1	-	I	1	1	1	1	1	629
	8/14/2013	9.5-10.0	0	×		1	1	1	1	1		1	1	324
					F			The second s						
AH-2	8/14/2013	0-1	0	×		<0.0052	6.6	<0.0052	9.9	16.5	265	5,290	5,555	637
	8/14/2013	1.5-2.0	•	×		1	1	1	1	1	1.2	38.4	40	400
	8/14/2013	2.5-3.0	0	×		1	!	ł	1	I	1	1	1	333
	8/14/2013	3.5-4.0	0	×		!	1	1	1	1	1	1	1	192
	8/14/2013	4.5-5.0	0	×	_		1	1	1	1	1	1	1	574
AH-3	CLOC/ 1/ 2		c	×										
	8/14/2013	1.5-2.0	0	×		TCOD.D	00		4.4 V	2.88	163	1,670	1,833	399
	8/14/2013	2.5-3.0	0	×		1								2./I 2.05
	8/14/2013	3.5-4.0	0	×			1	1	1	1		1	1	505
	8/14/2013	4.5-5.0	0	×		ł	1	1	1	1	1	1	1	195
AH-4 (Liner Present)	8/14/2013	0-1	0	×		<0.0011	<0.0011	<0.0011	<0.0033	<0.0033	2.0	3,770	3,772	10,000
AH-5 (Liner Present)	8/14/2013	0-1	0	×		<0.0055	<0.0055	<0.0055	<0.017	<0.0055	1.0	1,300	1,301	11,900
AH-6 (I iner Precent)	2100/01/2	0-1	0	×		0.0000	0.0							
	CT02/+T/0		>	<		8500.0>	0.48	0.13	14.0	14.6	301	3,550	3,851	1,480
					Servin L	and a state of the								

Conoco Philips Elvis Tank Battery Lea County, New Mexico TABLE 1

Date Sample perificiti (mg/kg) Sample (mg/kg) Remotion (mg/kg)			-	Excavation -	Soll Status	ratus			DICA				TPH		
Image: consideration for a field of the field	Sample Location	Date		Depth (ft)		Removed	Benzene	Toluene	Ethylbenzene	_	Total BTEX	GRO	DRO	Total	Chloride
Cleaning Guidelines for Goundwater >150.L. 10 $1 = 1 = 0.051$ 00 $1 = 0.051$ 0.015 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>(mg/kg)</th> <th>(mg/kg)</th> <th>(mg/kg)</th> <th>(mg/kg)</th> <th>(mg/kg)</th> <th>(mg/kg)</th> <th>(mg/kg)</th> <th>(mg/kg)</th> <th>(mg/kg)</th>							(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
8/14/2013 0/1 0 X 00051 00051 00051 00051 00051 0015 011 012 032 033 8/14/2013 15/20 0 X m	OCD Cle	anup Guideline	es for Ground	dwater >150	ť		10				50			5,000	
g/4/2013 $15-2.0$ 0 X $$	AH-7	8/14/2013	0-1	0	×		<0.0051	<0.0051	<0.0051	<0.015	<0.015	1.2	392	393	4.400
$k_1 4/7013$ 253.0 0 X \cdots <		8/14/2013	1.5-2.0	0	×		1	1	ł	1	1	1	1	1	4,900
8/14/2013 $35-40$ 0 X $ -$ <	1	8/14/2013	2.5-3.0	0	×		1	1	1	I	1	1	1	1	5,870
$k/14/2013$ $4.5-50$ 0 X \dots <t< td=""><td></td><td>8/14/2013</td><td>3.5-4.0</td><td>0</td><td>×</td><td></td><td>1</td><td>-</td><td>1</td><td>i</td><td>1</td><td>1</td><td>1</td><td>1</td><td>13,600</td></t<>		8/14/2013	3.5-4.0	0	×		1	-	1	i	1	1	1	1	13,600
$k_1 4/2013$ $0 - 1$ 0 X c_0001 c_0001 c_00031 c_0031 0.42 561 57 $k_1 4/7013$ $1.5 - 2.0$ 0 X $$ $-$	rench or Soil Boring	8/14/2013	4.5-5.0	0	×		1	1	-	1	i	1	1	I	8,380
8 $1/4/2013$ 15-2.0 0 X	AH-8	8/14/2013	0-1	0	×		<0.001	<0.001	<0.001	<0.0021	10000	040	66.1	3	000 0
\$	* . <u> </u>	8/14/2013	1.5-2.0	0	×	T	1	1	1	1	10000	74-10	101	5 1	215
$g_14/2013$ $5.4.0$ X T		8/14/2013	2.5-3.0	0	×		1	1	1	1	1	1	1	1	8.340
8/14/2013 0-1 0 X 732 732 8/14/2013 15-2.0 0 X	rench or Soil Boring	8/14/2013	3.5-4.0	0	×		1	ł	1	1	1	1	1	1	4,350
$8/14/2013$ 0^{-1} 0 X 0.0062 $c0.0062$ $c0.0062$ $c0.019$ 16 730 732 $8/14/2013$ $1.5-2.0$ 0 X \cdots	and the second se				:		A COLOR								
$8/14/2013$ $1.5 \cdot 2.0$ 0 X \cdots	AH-9	8/14/2013	0-1	0	×		<0.0062	<0.0062	<0.0062	<0.019	<0.019	1.6	730	732	1,360
8/14/2013 2.5-3.0 0 X -		8/14/2013	1.5-2.0	•	×		I	1	1		ł	1	I	I	20.3
8/14/2013 3.5-4.0 0 X -		8/14/2013	2.5-3.0	•	×		1	!	1	I		:	1	1	90.06
8/14/2013 0-1 0 X		8/14/2013	3.5-4.0	•	×			1	1	ł	1	ł	1	1	208
Number of the state Numer of the state Number of the state </td <td>AH-10</td> <td>8/14/2013</td> <td></td> <td>c</td> <td> , ,</td> <td></td> <td>100007</td> <td>-0 00E4</td> <td>0.0011</td> <td>2005</td> <td></td> <td></td> <td>0100</td> <td></td> <td></td>	AH-10	8/14/2013		c	, ,		100007	-0 00E4	0.0011	2005			0100		
8/14/2013 2.5-3.0 0 X -		8/14/2013	1.5-2.0	0	×		10000	Tropins	Tropio	CTOOL	CTD.D.	07.05	0/60	0/66	7.1
8/14/2013 3.5-4.0 0 X -		8/14/2013	2.5-3.0	0	×		1			1	1				875 875
6/26/2013 0-1 0 X <0.0010 <0.0010 <0.0010 <0.0031 0.25 4910 4910 8/14/2013 1.5-2.0 0 X	rench or Soil Boring	8/14/2013	3.5-4.0	0	×		1	1	1	1	1	1	1	1	1.310
6/26/2013 0-1 0 X <0.0010 <0.0010 <0.0031 0.25 4910 4910 4910 8/14/2013 1.5-2.0 0 X <td></td>															
8/14/2013 1.5-2.0 0 X	AH-11	6/26/2013	5	•	×		<0.0010	<0.0010	<0.0010	<0.0031	<0.0031	0.25	4910	4910	282
8/14/2013 2.5-3.0 0 X		8/14/2013	1.5-2.0	0	×		1	1	1	:	-	1	1	ł	99.8
8/14/2013 3.5-4.0 0 X	- I	8/14/2013	2.5-3.0	0	×		1	1			I	ł	I	1	701
	ench or Soil Boring	8/14/2013	3.5-4.0	0	×		1	1	1	ł	1	1	1	1	1,370

(-) Not Analyzed (BEB) Below Excavation Bottom Proposed Excavation Depths Trench or Soil Boring Proposed Trench or soil boring to defir

Received by OCD: 1/5/2021 4:20:20 PM

Page 39 of 147

APPENDIX A

Released to Imaging: 11/30/2021 2:40:11 PM

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr.

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

1220 S. St. Fran	icis Dr., Sant	a Fe, NM 8750	5	Sa	anta Fe	e, NM 875	05			
			Rele	ease Notific	ation	and Co	orrective A	ction		
						OPERA	FOR		🛛 Initia	l Report 🗌 Final Repor
		ConocoPhilli				Contact: Jo				
				ngton, NM 882			No.: 575-391-31	158		
		Elvis Batte	ry			Facility Typ	e: Oil & Gas	<u> </u>		
Surface Ow	ner: Fede	ral		Mineral C)wner:]	Federal			API No	. 188612
				LOCA	TION	N OF REI	LEASE			
Unit Letter	Section	Township	Range	Feet from the	North/	South Linc	Feet from the	East/We	est Line	County
	20	17	32							Lea
	•	т	atitude	32 49' 21.54"	L	Long	dendo: 103 472	26 0529	1 NV	
			Januac.				;itude: 103 47'	20.052"	vv	
Tune of Dala	oco: Crudo	Oil & Produ			URE	OF RELI		0.011		
							Release ~ 4 BBL Is ProducedWat		volume R bbls wate	ecovered : ~2 bbls oil & ~398
	lease: Relea	ase overflowed	d from top	of North West 50	00 bbl	Date and H	our of Occurrence	e I	Date and I	Hour of Discovery
oil tank						05/17/13 U	Jnknown Time ()5/17/13 (@ ~0730 Hours
Was Immedia	ate Notice (If YES, To	Whom?	······		
			Yes 🗋	No 🔲 Not Re	quired		eking NMOCD &			BLM
By Whom? Jo Was a Watero		hado					our: 05/17/13 @			
was a watch	course read		Yes 🛛	No		II YES, VO	lume Impacting t	he Waterc	course.	
If a Watercou	irse was Im	pacted. Descri	ibe Fully.*							······
Describe Cau	Describe Cause of Problem and Remedial Action Taken.* Release originated from top of produced water tanks inside battery. The tanks overflowed out of top hatch onto battery location and caliche road. Transfer									
Release origin	nated from	top of produce	ed water ta	nks inside battery	. The tai	nks overflow	ed out of top hate	h onto bat	tery locat	ion and caliche road. Transfer
pumps went of remediated in	lown which	subsequently	caused tai	iks to overflow. N	ASO shu	it in battery to	stop additional i	fluids fron	n being re	leased. Spill site will be
. remediated in				guideimes.						
Describe Area	n Affected	and Cleanum A	ation Tale							
Describe Area Majority of st	a Affected a bill was con	itained in surro	ounding ca	en.≁ liche location and	l roadwa	with small	amount running	west off lo	cation on	to sandy soil. Vacuum trucks
were called to	recover sta	anding fluids.	Approxim	ately 2 BBLS of a	oil and a	pproximately	398 bbls of wate	r were rec	overed.	
I hereby certi	fy that the i	nformation give	ven above	is true and compl	ete to th	e best of my l	cnowledge and m	nderstand i	that nurse	ant to NMOCD rules and
regulations al	l operators	are required to	o report and	d/or file certain re	lease no	tifications an	d perform correct	tive action	s for relea	uses which may endanger
public health should their o	or the envir	onment. The	acceptance	e of a C-141 report	t by the	NMOCD ma	rked as "Final Re	eport" does	s not relie	ve the operator of liability surface water, human health
or the environ	ment. In a	ddition, NMO	CD accept	ance of a C-141 r	eport do	es not relieve	the operator of r	esponsibil	ity for co	mpliance with any other
federal, state,	or local lav	vs and/or regu	lations.							
	()						OIL CONS	<u>SERVA</u>	<u>TION I</u>	DIVISION
Signature:	YM.	in W		1						
Printed Name	John W. C	lates			A	pproved by H	Environmental Sp	ecialist:		
······										
Title: LEAD I	HSE		<u> </u>		A	pproval Date	:	Exp	piration D	ate:
E-mail Addres	ss: John.	N.Gates@c	onocop	hillips.com	c	onditions of a	Approval:			
				-						Attacked 🗖
Date: 05/17/	/13			Phone:575-391-						Attached
3158				-						
					1					1

Released to Imaging: 11/30/2021 2:40:11 PM

APPENDIX B

•

Released to Imaging: 11/30/2021 2:40:11 PM

Water Well Data Average Depth to Groundwater (ft) ConocoPhillips - Elvis TB Lea County, New Mexico

	16 \$	South	:	32 East	
6	5	4	3	2	1
			65	265	265
7	8	9	10	11	12
					215
18	17	16	15	14	13
		221			215
19	20	21	22	23	24
220		210		210	
30	29	28	27	26	25
				243	
31	32	33	34	35	36
					260

	17 Sc	outh	32	East	
6	5	4 82	3	2 60	1 225
			175		
7	8	9	10	11 70	12
				88	120
18	17	16	15	14	13
19	20	21	22	23	24
		SITE			
30 180	29	28	27	26	25
dry					
31	32	33	34	35	36
Brown					

	18 S	outh	I	32	East		
6	5	4	65	3	2	1	
				Prong #2			
7 460	8	9		10	11	12	
82							
18	17	16		15	14	13	
		84					
19	20	21		22	23	24	
	164			429			
30	29	28		27	26	25	
31	32	33		34	35	36	
				117			

	16 So	uth	33	East	
6	5 180	4	3 130	2	1
		150		148	142
7	8	9	10	11	12
	200		182		142
18	17	16	15	14	13
	182	180	175	143	110
19	20	21	22	23	24
				120	
30	29	28	27	26	25
191		190	130	143	120
31	32	33	34	35	36
190	168		160		

		17 So	uth	33	East	
6	90	5	4	3 155	2 158	1 150
7 '	167	8 1 73	9 161	10	11	12
18 <mark>188</mark>		17 <mark>180</mark>	16	15	14	13 165
19		20 SITE	21	22	23 115	24
30	69	29 <mark>60</mark>	28	27	26	25
31		32	33 120	34	35 155	36

		120		155	
	18 So	outh	33	East	
;	5	4	3	2	1
			60		
•	8 100	9	10	11	12 143
			62	46	140
8	17	16	15	14	13
	85			36	60
9	20	21	22	23	24
140					195
0	29	28	27	26	25
5					
51	32	33	34	35	36
		177			

	16 So	uth	34	East	
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	17 Sc	outh		34 Ea	st
120	5	4	3	2	80
57		65	95		

80 1

157		65	95		77
7	8	9	10	11	12
140	140		95	92	115
18	17	16	15 114	14	13
160	113	60	60	79	84
19	20	21	22	23	24
78	140	153	109		
30	29	28	27	26	25
					82
31	32	33	34	35	36

	18 S	outh	34		
6	5	4	3	2	1
130	105		87	102	107
7	8	9	10	11	12 115
83	148		148	110	92
18	17	16	15 114	14	13
125		108	110	103	96
19	20	21	22	23	24
105	125				
30	29	28	27	26	25
			112		117
31	32	33	34	35	36
				118	

New Mexico State Engineers Well Reports

USGS Well Reports

Geology and Groundwater Conditions in Southern Eddy, County, NM

NMOCD - Groundwater Data

Field water level

New Mexico Water and Infrastructure Data System

Received by OCD: 1/5/2021 4:20:20 PM

Page 43 of 147

APPENDIX C

Released to Imaging: 11/30/2021 2:40:11 PM

September 06, 2013

Steven P. Tischer ConocoPhillips Company 3300 N. A Street, Bldg 6 Midland, TX 79710

RE: Project: 112MC05590/Conoco-Elvis Tank Pace Project No.: 757578

Dear Steven Tischer:

Enclosed are the analytical results for sample(s) received by the laboratory on August 16, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Report Revised 9/6/13 - Additional analysis requested.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Stelly Cornelly

Shelly Connelly

shelly.connelly@pacelabs.com Project Manager

Enclosures

Received by OCD: 1/5/2021 4:20:20 PM

cc: Tom Elliott, Tetra Tech

REPORT OF LABORATORY ANALYSIS

CERTIFICATIONS

Project: 112MC05590/Conoco-Elvis Tank Pace Project No.: 757578

Dallas Certification IDs 400 West Bethany Dr Suite 190 75013 Allen TX 75013 Texas Certification #: T104704232-12-4 Kansas Certification #: E-10388

Arkansas Certification #: 88-0647 Oklahoma Certification #: 2012-080 Louisiana Certification #: 02007

REPORT OF LABORATORY ANALYSIS

112MC05590/Conoco-Elvis Tank

Project:

Pace Analytical Services, Inc. 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

SAMPLE SUMMARY

Lab ID	Sample ID	Matrix	Date Collected	Date Received
757578001	AH-1 (0-1.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578002	AH-1 (1.5-2.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578003	AH-1 (2.6-3.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578004	AH-1 (3.5-4.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578005	AH-1 (4.5-5.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578006	AH-1 (5.5-6.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578007	AH-1 (6.5-7.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578008	AH-1 (7.5-8.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578009	AH-1 (8.5-9.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578010	AH-1 (9.5-10.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578011	AH-2 (0-1.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578012	AH-2 (1.5-2.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578013	AH-2 (2.5-3.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578014	AH-2 (3.5-4.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578015	AH-2 (4.5-5.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578016	AH-3 (0-1.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578017	AH-3 (1.5-2.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578018	AH-3 (2.5-3.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578019	AH-3 (3.5-4.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578020	AH-3 (4.5-5.0')	Solid	08/14/13 00:00	08/16/13 14:37
67678021	AH-4 (0-1.0')	Solid	08/14/13 00:00	08/16/13 14:37
67578022	AH-5 (0-1.0')	Solid	08/14/13 00:00	08/16/13 14:37
767678023	AH-6 (0-1.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578024	AH-7 (0-1.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578025	AH-7 (1.5-2.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578026	AH-7 (2.5-3.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578027	AH-7 (3.5-4.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578028	AH-7 (4.5-5.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578029	AH-8 (0-1.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578030	AH-8 (1.5-2.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578031	AH-8 (2.5-3.0')	Solid	08/14/13 00:00	08/16/13 14:37
67578032	AH-8 (3.5-4.0')	Solid	08/14/13 00:00	08/16/13 14:37
57578033	AH-9 (0-1.0')	Solid	08/14/13 00:00	08/16/13 14:37
67678034	AH-9 (1.5-2.0')	Solid	08/14/13 00:00	08/16/13 14:37
67578035	AH-9 (2.5-3.0')	Solid	08/14/13 00:00	08/16/13 14:37
67578036	AH-9 (3.5-4.0')	Solid	08/14/13 00:00	08/16/13 14:37
67578037	AH-10 (0-1.0')	Solid	08/14/13 00:00	08/16/13 14:37

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Lab ID	Sample ID	Matrix	Date Collected	Date Received
757578038	AH-10 (1.5-2.0')	Solid	08/14/13 00:00	08/16/13 14:37
767578039	AH-10 (2.5-3.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578040	AH-10 (3.5-4.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578041	AH-11 (0-1.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578042	АН-11 (1.5-2.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578043	AH-11 (2.5-3.0')	Solid	08/14/13 00:00	08/16/13 14:37
757578044	AH-11 (3.5-4.0')	Solid	08/14/13 00:00	08/16/13 14:37

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project:	112MC05590/Conoco-Elvis Tank
Pace Project No .:	757578

Lab ID	Sample ID	Method	Analysts	Analytes Reported	
757578001	AH-1 (0-1.0')	EPA 8015B Modified	 TA	3	
		EPA 8015B	ZST	2	
		EPA 8021	ZST	5	
		ASTM D2974-87	MDG	1	
		EPA 9056A	MDG	1	
757578002	AH-1 (1.5-2.0')	ASTM D2974-87	MDG	1	
		EPA 9056A	MDG	1	
757578003	AH-1 (2.5-3.0')	ASTM D2974-87	MDG	1	
		EPA 9056A	MDG	1	
757578004	AH-1 (3.5-4.0')	ASTM D2974-87	MDG	1	
		EPA 9056A	MDG	1	
757578005	AH-1 (4.5-5.0')	ASTM D2974-87	MDG	1	
		EPA 9056A	MDG	1	
757578006	AH-1 (5.5-6.0')	ASTM D2974-87	MDG	1	
		EPA 9056A	MDG	1	
757578007	AH-1 (6.5-7.0')	ASTM D2974-87	MDG	1	
		EPA 9056A	MDG	1	
757578008	AH-1 (7.5-8.0')	ASTM D2974-87	MDG	1	
		EPA 9056A	MDG	1	
757578009	AH-1 (8.5-9.0')	ASTM D2974-87	MDG	1	
		EPA 9056A	MDG	1	
767678010	AH-1 (9.5-10.0')	ASTM D2974-87	MDG	1	
		EPA 9056A	MDG	1	
757578011	AH-2 (0-1.0')	EPA 8015B Modified	ТА	3	
		EPA 8015B	ZST	2	
		EPA 8021	ZST	5	
		ASTM D2974-87	MDG	1	
		EPA 9056A	MDG	1	
757578012	AH-2 (1.5-2.0')	EPA 8015B Modified	PMS	3	
		EPA 8015B	ZST	2	
		ASTM D2974-87	MDG	1	
		EPA 9056A	MDG	1	
757578013	AH-2 (2.5-3.0')	ASTM D2974-87	MDG	1	
		EPA 9056A	MDG	1	
757578014	AH-2 (3.5-4.0')	ASTM D2974-87	MDG	1	
		EPA 9056A	MDG	1	
757578015	AH-2 (4.5-6.0')	ASTM D2974-87	MDG	1	
	· •				

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

_ab ID	Sample ID	Method	Analysts	Analyte: Reporte
		EPA 9056A	MDG	
757578016	AH-3 (0-1.0')	EPA 8015B Modified	ТА	:
		EPA 8015B	ZST	
		EPA 8021	ZST	
		ASTM D2974-87	MDG	
		EPA 9056A	MDG	
57578017	AH-3 (1.5-2.0')	ASTM D2974-87	MDG	
		EPA 9056A	MDG	
67578018	AH-3 (2.5-3.0')	ASTM D2974-87	MDG	
		EPA 9056A	MDG	
57578019	AH-3 (3.5-4.0')	ASTM D2974-87	MDG	
		EPA 9056A	MDG	
57578020	AH-3 (4.5-5.0')	ASTM D2974-87	MDG	
		EPA 9056A	MDG	
57578021	AH-4 (0-1.0')	EPA 8015B Modified	ТА	3
		EPA 8015B	ZST	:
		EPA 8021	ZST	ę
		ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
7578022	AH-5 (0-1.0')	EPA 8015B Modified	ТА	3
		EPA 8015B	ZST	2
		EPA 8021	ZST	5
		ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
57578023	AH-6 (0-1.0')	EPA 8015B Modified	TA	3
		EPA 8015B	ZST	2
		EPA 8021	ZST	5
		ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
7578024	AH-7 (0-1.0')	EPA 8015B Modified	ТА	3
		EPA 8015B	ZST	2
		EPA 8021	ZST	5
		ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
57578025	AH-7 (1.5-2.0')	ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
7578026	AH-7 (2.5-3.0')	ASTM D2974-87	MDG	1

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Received by OCD: 1/5/2021 4:20:20 PM

•

SAMPLE ANALYTE COUNT

ab ID	Sample ID	Method	Analysts	Analyte: Reported
		EPA 9056A	MDG	
57578027	AH-7 (3.5-4.0')	ASTM D2974-87	MDG	
		EPA 9056A	MDG	
57578028	AH-7 (4.5-5.0')	ASTM D2974-87	MDG	
		EPA 9056A	MDG	
57578029	AH-8 (0-1.0')	EPA 8015B Modified	TA	:
		EPA 8015B	ZST	2
		EPA 8021	ZST	ŧ
		ASTM D2974-87	MDG	-
		EPA 9056A	MDG	1
57578030	AH-8 (1.5-2.0')	ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
57578031	AH-8 (2.5-3.0')	ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
7578032	AH-8 (3.5-4.0')	ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
7578033	AH-9 (0-1.0')	EPA 8015B Modified	ТА	з
		EPA 8015B	ZST	2
		EPA 8021	ZST	5
		ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
7578034	AH-9 (1.5-2.0')	ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
7578035	AH-9 (2.5-3.0')	ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
57578036	AH-9 (3.5-4.0')	ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
57578037	AH-10 (0-1.0')	EPA 8015B Modified	TA	3
		EPA 8015B	ZST	2
		EPA 8021	ZST	5
		ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
7578038	AH-10 (1.5-2.0')	ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
7678039	AH-10 (2.5-3.0')	ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
7578040	AH-10 (3.5-4.0')	ASTM D2974-87	MDG	1

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: Pace Project N	112MC05590/Conoco-Elvis Tank No.: 757578			
Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 9056A	MDG	1
757578041	AH-11 (0-1.0')	EPA 8015B Modified	TA	3
		EPA 8015B	ZST	2
		EPA 8021	ZST	5
		ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
757578042	AH-11 (1.5-2.0')	ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
767678043	AH-11 (2.5-3.0')	ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1
757578044	AH-11 (3.5-4.0')	ASTM D2974-87	MDG	1
		EPA 9056A	MDG	1

REPORT OF LABORATORY ANALYSIS

Project: 112MC05590/ Pace Project No.: 757578	Conoco-Elvis Tank							
Sample: AH-1 (0-1.0')	Lab ID: 757678001	Collect	ed: 08/14/1	3 00:00	Received: 08	/16/13 14:37 Ma	atrix: Solid	
Results reported on a "dry-weigh	t" basis	Report						
Parameters	Results Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015M Diesel Range Organics	Analytical Method: EP	A 8015B Mod	lified Prepa	ration N	lethod: EPA 3550	Modified		
Diesel Range Organics Surrogates	705 mg/kg	38.8	21.1	10	08/21/13 12:25	08/22/13 14:05		M6
a-Pinene (S)	43 %.	10-140		10	08/21/13 12:25	08/22/13 14:05		
n-Triacontane (S)	213 %.	10-140		10	08/21/13 12:25	08/22/13 14:05		S4
Gasoline Range Organics	Analytical Method: EP	A 8015B Pre	paration Me	thod: E	PA 5035A/5030B			
Gasoline Range Organics Surrogates	0.40 mg/kg	0.058	0.0095	1	08/19/13 14:10	08/19/13 16:12		
4-Bromofluorobenzene (S)	109 %.	44-135		1	08/19/13 14:10	08/19/13 16:12	460-00-4	
8021 GCV Low BTEX	Analytical Method: EP	A 8021 Prepa	aration Meth	od: EP/	A 5030			
Benzene	ND mg/kg	0.0012	0.00015	1	08/19/13 14:33	08/19/13 16:12	71-43-2	
Ethylbenzene	ND mg/kg	0.0012	0.00012	1	08/19/13 14:33	08/19/13 16:12	100-41-4	
Toluene	ND mg/kg	0.0012	0.000082	1	08/19/13 14:33	08/19/13 16:12	108-88-3	
Xylene (Total) Surrogates	ND mg/kg	0.0035	0.0035	1	08/19/13 14:33	08/19/13 16:12	1330-20-7	
4-Bromofluorobenzene (S)	108 %.	70-130		1	08/19/13 14:33	08/19/13 16:12	460-00-4	
Percent Moisture	Analytical Method: AS	TM D2974-87						
Percent Moisture	12.9 %	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28 Days	Analytical Method: EP	A 9056A Prej	paration Met	hod: Ef	PA 9056A			
Chloride	7910 mg/kg	115	57.4	100	08/20/13 15:56	08/22/13 03:08	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 09/06/2013 02:13 PM

Project:	112MC05590)/Conoco-Elvis Ta	ink							
Pace Project No .:	757578									
Sample: AH-1 (1.8	5-2.0')	Lab ID:	767578002	Collected	d: 08/14/1:	3 00:00	Received: 08/	/16/13 14:37 Ma	atrix: Solid	
Results reported o	on a "dry-weig	ht" basis								
Parame	eters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Quai
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		12.2 %	6	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	aration Met	hod: Ef	PA 9056A			
Chloride		488 n	ng/kg	11.4	5.7	10	08/20/13 15:56	08/22/13 04:02	16887-00-6	

Date: 09/06/2013 02:13 PM

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC05590 757578	/Conoco-Elvis Ta	ink							
Sample: AH-1 (2.5	-3.0')	Lab ID:	757578003	Collected	08/14/13	3 00:00	Received: 08/	/16/13 14:37 M	atrix: Solid	
Results reported o	n a "dry-weigl	ht" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		3.6 %	6	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EF	PA 9056A			
Chloride 217 mg/kg		10.4	5.2	10	08/20/13 15:56	08/22/13 04:19	16887-00-6			

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 09/06/2013 02:13 PM

Project: Pace Project No.:	112MC05590 757578)/Conoco-Elvis Ta	nk							
Sample: AH-1 (3.6		Lab ID:	757578004	Collected	08/14/13	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported o	on a "dry-weig	ht" basis								
Parame	eters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: ASTI	M D2974-87						
Percent Moisture		2.0 %	6	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28 Days Analytical Method: EPA 9056A Preparation Method: EPA 9056A										
Chloride		18.9 m	ng/kg	1.0	0.51	1	08/20/13 15:56	08/21/13 14:01	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: 112MC05590/Conoco-Elvis Tank

Pace Project No.: 757578

Sample: AH-1 (4.6-6.0')	Lab ID:	757578005	Collected	d: 08/14/13	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported on a "dry-we	ight" basis								
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Quai
Percent Moisture	Analytica	I Method: AST	M D2974-87						
Percent Moisture	3.2 9	%	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28 Days	Analytica	Method: EPA	9056A Prepa	aration Met	hod: EP	A 9056A			
Chioride	48.7 r	ng/kg	1.0	0.52	1	08/20/13 15:56	08/21/13 14:37	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 09/06/2013 02:13 PM

Project: Pace Project No.:	112MC05590/ 757578	Conoco-Elvis Ta	nk							
Sample: AH-1 (5.5	-6.0')	Lab ID:	767578006	Collected	08/14/1	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported o	n a "dry-weigh	ıt" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Quai
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		9.7 %	, 0	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		374 m	ng/kg	11.1	5.5	10	08/20/13 15:56	08/22/13 08:34	16887-00-6	

Date: 09/06/2013 02:13 PM

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC0559 757578	90/Conoco-Elvis Ta	nk							
Sample: AH-1 (6.5	-7.0')	Lab ID:	757578007	Collected	08/14/13	8 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported o	n a "dry-wei	ght" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		6.4 %)	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	nod: EP	A 9056A			
Chloride		357 m	g/kg	10.7	5.3	10	08/20/13 15:56	08/22/13 08:52	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC05590/ 757578	Conoco-Elvis Ta	nk							
Sample: AH-1 (7.5	-8.0')	Lab ID:	757578008	Collected	: 08/14/1:	3 00:00	Received: 08/	/16/13 14:37 Ma	atrix: Solid	
Results reported o	n a "dry-weigh	t" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	VI D2974-87						
Percent Moisture		6.5 %)	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		463 m	ig/kg	10.7	5.3	10	08/20/13 15:56	08/22/13 09:09	16887-00-6	

Date: 09/06/2013 02:13 PM

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC0559 757578	90/Conoco-Elvis Ta	ink							
Sample: AH-1 (8.6	-9.0')	Lab ID:	757578009	Collected	08/14/1	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported o	n a "dry-wei	ght" basis								
Parame	eters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		7.1 %	6	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EF	A 9056A			
Chloride		629 n	ng/kg	10.8	5.4	10	08/20/13 15:56	08/22/13 09:27	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC05590/0 757578	Conoco-Elvis Ta	nk							
Sample: AH-1 (9.5	-10.0')	Lab ID:	757578010	Collected	08/14/13	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported of	n a "dry-weigh	t" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: ASTI	VI D2974-87						
Percent Moisture		19.9 %	0	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		324 m	ng/kg	12.5	6.2	10	08/20/13 15:56	08/22/13 09:45	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC05590/ 757578	Conoco-Elvis Ta	ank							
Sample: AH-2 (0-1	.0')	Lab ID:	757578011	Collecte	d: 08/14/1	3 00:00	Received: 08/	16/13 14:37 M	atrix: Solid	
Results reported of	n a "dry-weigh	t" basis								
				Report						
Parame	ters	Results	Units	Limit	MDL	DF	Prepared	Anaiyzed	CAS No.	Qual
8015M Diesel Rang	e Organics	Analytical	Method: EPA	8015B Modi	fied Prepar	ation M	ethod: EPA 3550	Modified		
Diesel Range Organ Surrogates	ics	5290 n	ng/kg	343	187	100	08/21/13 12:25	08/23/13 03:13		
a-Pinene (S)		208 %	6.	10-140		100	08/21/13 12:25	08/23/13 03:13		S4
n-Triacontane (S)		1260 %	6.	10-140		100	08/21/13 12:25	08/23/13 03:13		CH,S4
Gasoline Range Or	ganics	Analytical	Method: EPA	8015B Prep	aration Met	hod: Ef	PA 5035A/5030B			
Gasoline Range Org Surrogates	anics	265 n	ng/kg	25.8	4.2	500	08/19/13 14:10	08/20/13 20:18		
4-Bromofluorobenze	ne (S)	88 %	6.	44-135		500	08/19/13 14:10	08/20/13 20:18	460-00-4	
8021 GCV Low BTE	X	Analytical	Method: EPA	8021 Prepa	ration Meth	od: EPA	5030			
Benzene		ND n	ng/kg	0.0052	0.00069	5	08/19/13 14:33	08/20/13 15:06	71-43-2	
Ethylbenzene		6.6 n	ng/kg	0.052	0.0054	50	08/19/13 14:33	08/20/13 21:50	100-41-4	
Toluene		ND n	ng/kg	0.0052	0.00037	5	08/19/13 14:33	08/20/13 15:06	108-88-3	
Xylene (Total) Surrogates		9.9 n	ng/kg	0.15	0.15	50	08/19/13 14:33	08/20/13 21:50	1330-20-7	
4-Bromofluorobenze	ne (S)	80 %	6.	70-130		50	08/19/13 14:33	08/20/13 21:50	460-00-4	
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		1.8 %	6	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28 [Days	Analytical	Method: EPA	9056A Prep	aration Met	hod: EF	A 9056A			
Chloride		637 n	ng/kg	10.2	5.1	10	08/20/13 15:56	08/22/13 10:03	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project:	112MC05590/0	Conoco-Elvis Ta	ank							
Pace Project No.:	757578									
Sample: AH-2 (1.6	i-2.0')	Lab ID:	767578012	Collected	1: 08/14/1:	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported o	on a "dry-weigh	t" basis								
				Report						
Parame	eters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015M Diesel Rang	ge Organics	Analytical	I Method: EPA	8015B Modifi	ied Prepar	ation M	lethod: EPA 3550	Modified		
Diesel Range Organ Surrogates	nics	38.4 r	ng/kg	3.5	1.9	1	08/27/13 17:08	08/29/13 12:49		M1
a-Pinene (S)		41 %	ю.	10-140		1	08/27/13 17:08	08/29/13 12:49		
n-Triacontane (S)		68 %	6.	10-140		1	08/27/13 17:08	08/29/13 12:49		
Gasoline Range O	rganics	Analytical	Method: EPA	8015B Prepa	aration Met	thod: Ef	PA 5035A/5030B			
Gasoline Range Org Surrogates	ganics	1.2 n	ng/kg	0.26	0.043	5	08/27/13 16:38	08/27/13 18:55		M1
4-Bromofluorobenzo	ene (S)	152 %	6.	44-135		5	08/27/13 16:38	08/27/13 18:55	460-00-4	S0
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		4.3 %	6	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	aration Met	hod: EF	PA 9056A			
Chloride		400 n	ng/kg	10.5	5.2	10	08/20/13 15:56	08/22/13 10:57	16887-00-6	

REPORT OF LABORATORY ANALYSIS

•

ANALYTICAL RESULTS

Project: Pace Project No.:	112MC0559 757578	0/Conoco-Elvis Ta	ink							
Sample: AH-2 (2.6	-3.0')	Lab ID:	757578013	Collected	08/14/13	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported o	n a "dry-weig	tt" basis								
Parame	eters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		3.9 %	6	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EF	A 9056A			
Chloride		333 n	ng/kg	10.4	5.2	10	08/20/13 15:56	08/22/13 11:15	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 09/06/2013 02:13 PM

Project: Pace Project No.:	112MC0559 757578	0/Conoco-Elvis Ta	ink							
Sample: AH-2 (3.5	-4.0')	Lab ID:	757578014	Collected	1: 08/14/1:	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported of	n a "dry-weig	ıht" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		15.0 %	6	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28 I	Days	Analytical	Method: EPA	9056A Prepa	aration Met	hod: Ef	PA 9056A			
Chloride		192 n	ng/kg	1.2	0.59	1	08/20/13 15:56	08/21/13 21:47	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Date: 09/06/2013 02:13 PM

•

ANALYTICAL RESULTS

Project: Pace Project No.:	112MC05590/ 757578	/Conoco-Elvis Ta	ink							
Sample: AH-2 (4.5	-5.0')	Lab ID:	757578016	Collected:	08/14/13	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported o	n a "dry-weigh	nt" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: ASTI	M D2974-87						
Percent Moisture		17.0 %	6	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		574 n	ng/kg	12.1	6.0	10	08/20/13 15:56	08/22/13 12:10	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

•	/Conoco-Elvis Tank							
Pace Project No.: 757578 Sample: AH-3 (0-1.0')	Lab ID: 7576780	16 Collecter	d: 08/14/1	3 00.00	Received: 08/	/16/13 14:37 M	atrix: Solid	·
Results reported on a "dry-weigh								
Parameters	Results Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015M Diesel Range Organics	Analytical Method: I	EPA 8015B Modil	fied Prepar	ation M	ethod: EPA 3550	Modified		
Diesel Range Organics Surrogates	1670 mg/kg	172	93.6	50	08/21/13 12:25	08/22/13 16:50		
a-Pinene (S)	103 %.	10-140		50	08/21/13 12:25	08/22/13 16:50		
n-Triacontane (S)	547 %.	10-140		50	08/21/13 12:25	08/22/13 16:50		CH,S4
Gasoline Range Organics	Analytical Method: E	EPA 8015B Prep	aration Me	thod: Ef	PA 5035A/5030B			
Gasoline Range Organics Surrogates	163 mg/kg	25.7	4.2	500	08/19/13 14:10	08/20/13 20:48		
4-Bromofluorobenzene (S)	105 %.	44-135		500	08/19/13 14:10	08/20/13 20:48	460-00-4	
8021 GCV Low BTEX	Analytical Method: E	EPA 8021 Prepa	ration Meth	od: EPA	5030			
Benzene	ND mg/kg	0.0051	0.00068	5	08/19/13 14:33	08/20/13 15:37	71-43-2	1t
Ethylbenzene	0.98 mg/kg	0.051	0.0053	50	08/19/13 14:33	08/20/13 22:21	100-41-4	
Toluene	ND mg/kg	0.0051	0.00037	5	08/19/13 14:33	08/20/13 15:37	108-88-3	
Xylene (Total) Surrogates	4.9 mg/kg	0.15	0.15	50	08/19/13 14:33	08/20/13 22:21	1330-20-7	
4-Bromofluorobenzene (S)	111 %.	70-130		50	08/19/13 14:33	08/20/13 22:21	460-00-4	
Percent Moisture	Analytical Method: A	STM D2974-87						
Percent Moisture	1.8 %	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28 Days	Analytical Method: E	EPA 9056A Prepa	aration Met	hod: Ef	A 9056A			
Chloride	399 mg/kg	10.2	5.1	10	08/20/13 15:56	08/22/13 12:28	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: 112MC05590/Conoco-Elvis Tank

Pace Più	Ject No.:	15/5/8	
Sampler	ALL 2 /4 E	2.0%	

Sample: AH-3 (1.6-2.0')	Lab ID:	757578017	Collecte	d: 08/14/13	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported on a "dry-we	ight" basis								
_			Report						
Parameters	Results	Units		MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	16.4 %	6	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28 Days	Analytical	Method: EPA	9056A Prep	aration Met	hod: EP	A 9056A			
Chloride	17. 5 n	ng/kg	1.2	0.60	1	08/20/13 15:56	08/22/13 00:09	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 09/06/2013 02:13 PM

Project: Pace Project No.:	112MC05590/ 757578	Conoco-Elvis Ta	ink							
Sample: AH-3 (2.5	-3.0')	Lab ID:	757578018	Collected	: 08/14/1:	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported o	n a "dry-weigh	t" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		25.0 %	6	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28 I	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		39.5 m	ng/kg	1.3	0.67	1	08/20/13 15:56	08/22/13 00:45	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC05590 757578	/Conoco-Elvis Ta	ink							
Sample: AH-3 (3.5	-4.0')	Lab ID:	757578019	Collected	1: 08/14/13	3 00:00	Received: 08	/16/13 14:37 Ma	atrix: Solid	
Results reported o	n a "dry-weigl	ht" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	VI D2974-87						
Percent Moisture		21.5 %	6	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	aration Met	hod: EP	A 9056A			
Chloride		105 n	ng/kg	1.3	0.64	1	08/20/13 15:56	08/22/13 01:21	16887-00-6	

Date: 09/06/2013 02:13 PM

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: Pace Project No.:	112MC05590/0 757578	Conoco-Elvis Ta	nk							
Sample: AH-3 (4.5	-5.0')	Lab ID:	757578020	Collected	: 08/14/1:	3 00:00	Received: 08/	/16/13 14:37 M	atrix: Solid	
Results reported o	n a "dry-weight	" basis								
Parame	iters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: ASTI	M D2974-87						
Percent Moisture		19.0 %)	0.50	0.50	1		08/20/13 13:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		195 m	g/kg	1.2	0.62	1	08/20/13 15:56	08/22/13 01:57	16887-00-6	

Date: 09/06/2013 02:13 PM

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

•	90/Conoco-Elvis Tank							
Pace Project No.: 757578 Sample: AH-4 (0-1.0')	Lab ID: 75767802	1 Collect	ed: 08/14/1	3.00.00	Received: 08	/16/13 14·37 M	atrix: Solid	
Results reported on a "dry-we		001000	54. 00/14/1	0 00.00	neceived. 00	10/10/14:57 10	auix. Soliu	
		Report						
Parameters	Results Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015M Diesel Range Organics	Analytical Method: El	PA 8015B Mod	ified Prepa	ration N	lethod: EPA 3550	Modified		
Diesel Range Organics Surrogates	3770 mg/kg	363	198	100	08/21/13 12:25	08/22/13 17:45		
a-Pinene (S)	63 % .	10-140		100	08/21/13 12:25	08/22/13 17:45		
n-Triacontane (S)	1080 %.	10-140		100	08/21/13 12:25	08/22/13 17:45		CH,S4
Gasoline Range Organics	Analytical Method: EF	PA 8015B Pre	paration Me	thod: E	PA 5035A/5030B			
Gasoline Range Organics Surrogates	2.0 mg/kg	0.054	0.0089	1	08/19/13 14:10	08/19/13 17:44		
4-Bromofluorobenzene (S)	13 %.	44-135		1	08/19/13 14:10	08/19/13 17:44	460-00-4	S0
8021 GCV Low BTEX	Analytical Method: EF	PA 8021 Prepa	aration Meth	od: EP/	A 5030			
Benzene	ND mg/kg	0.0011	0.00014	1	08/19/13 14:33	08/19/13 17:44	71-43-2	
Ethylbenzene	ND mg/kg	0.0011	0.00011	1	08/19/13 14:33	08/19/13 17:44	100-41-4	
Toluene	ND mg/kg	0.0011	0.000077	1	08/19/13 14:33	08/19/13 17:44	108-88-3	
Xylene (Total) Surrogates	ND mg/kg	0.0033	0.0033	1	08/19/13 14:33	08/19/13 17:44	1330-20-7	
4-Bromofluorobenzene (S)	12 %.	70-130		1	08/19/13 14:33	08/19/13 17:44	460-00-4	S0
Percent Moisture	Analytical Method: AS	STM D2974-87						
Percent Moisture	6.7 %	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28 Days	Analytical Method: EF	A 9056A Prep	aration Met	hod: Ef	PA 9056A			
Chloride	10000 mg/kg	214	107	200	08/21/13 11:37	08/23/13 14:59	16887-00-6	

Date: 09/06/2013 02:13 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Released to Imaging: 11/30/2021 2:40:11 PM

,		Conoco-Elvis Ta	nk							
Pace Project No.: Sample: AH-6 (0-1.0	757578)')	Lab ID:	757578022	Collected	d: 08/14/1;	3 00:00	Received: 08/	16/13 14:37 M	atrix: Solid	
Results reported on	a "dry-weight	" basis								
Paramete	ers	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015M Diesel Range	Organics	Analytical	Method: EPA	8015B Modif	ied Prepar	ation M	ethod: EPA 3550	Modified		
Diesel Range Organio Surrogates	cs	1300 n	ng/kg	367	200	100	08/21/13 12:25	08/22/13 18:40		
a-Pinene (S)		59 %	, D.	10-140		100	08/21/13 12:25	08/22/13 18:40		
n-Triacontane (S)		1220 %	, D.	10-140		100	08/21/13 12:25	08/22/13 18:40		CH,S4
Gasoline Range Org	anics	Analytical	Method: EPA	8015B Prep	aration Mel	thod: Ef	PA 5035A/5030B			
Gasoline Range Orga Surrogates	inics	1.0 п	ıg/kg	0.28	0.045	5	08/19/13 14:10	08/20/13 10:10		
4-Bromofluorobenzen	e (S)	109 %	b .	44-135		5	08/19/13 14:10	08/20/13 10:10	460-00-4	
8021 GCV Low BTE	c	Analytical	Method: EPA	8021 Prepa	ration Meth	od: EPA	5030			
Benzene		ND m	ng/kg	0.0055	0.00073	5	08/19/13 14:33	08/20/13 10:10	71-43-2	
Ethylbenzene		ND m	ng/kg	0.0055	0.00057	5	08/19/13 14:33	08/20/13 10:10	100-41-4	
Toluene		ND m	ng/kg	0.0055	0.00039	5	08/19/13 14:33	08/20/13 10:10	108-88-3	
Xylene (Total) <i>Surrogates</i>		ND m	ng/kg	0.017	Ó.017	5	08/19/13 14:33	08/20/13 10:10	1330-20-7	
4-Bromofluorobenzen	e (S)	109 %	b.	70-130		5	08/19/13 14:33	08/20/13 10:10	460-00-4	
Percent Moisture		Analytical	Method: ASTI	M D2974-87						
Percent Moisture		8.0 %	5	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28 D	ays	Analytical	Method: EPA	9056A Prepa	aration Met	hod: EF	A 9056A			
Chloride		11900 m	ig/kg	217	109	200	08/21/13 11:37	08/23/13 15:52	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: 112MC05590/Conoco-Elvis Tank

Pace Project No.: 757578

Sample: AH-6 (0-1.0')	Lab ID: 757578023	Collecte	d: 08/14/1	3 00:00	Received: 08/	16/13 14:37 M	atrix: Solid	
Results reported on a "dry-weigh	t" basis							
		Report						
Parameters	Results Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015M Diesel Range Organics	Analytical Method: EPA	8015B Modi	ied Prepar	ation M	ethod: EPA 3550	Modified		
Diesel Range Organics Surrogates	3550 mg/kg	395	215	100	08/21/13 12:25	08/22/13 19:34		
a-Pinene (S)	262 %.	10-140		100	08/21/13 12:25	08/22/13 19:34		S4
n-Triacontane (S)	1120 %.	10-140		100	08/21/13 12:25	08/22/13 19:34		CH,S4
Gasoline Range Organics	Analytical Method: EPA	8015B Prep	aration Met	hod: EF	PA 5035A/5030B			
Gasoline Range Organics Surrogates	301 mg/kg	29.4	4.8	500	08/19/13 14:10	08/21/13 17:25		
4-Bromofluorobenzene (S)	88 %.	44-135		500	08/19/13 14:10	08/21/13 17:25	460-00-4	
8021 GCV Low BTEX	Analytical Method: EPA	8021 Prepa	ration Meth	od: EPA	5030			
Benzene	ND mg/kg	0.0059	0.00078	5	08/19/13 14:33	08/20/13 12:14	71-43-2	
Ethylbenzene	0.48 mg/kg	0.0059	0.00061	5	08/19/13 14:33	08/20/13 12:14	100-41-4	
Toluene	0.13 mg/kg	0.0059	0.00042	5	08/19/13 14:33	08/20/13 12:14	108-88-3	
Xylene (Total) Surrogates	14.0 mg/kg	0.71	0.71	200	08/19/13 14:33	08/21/13 15:32	1330-20-7	
4-Bromofluorobenzene (S)	91 %.	70-130		5	08/19/13 14:33	08/20/13 12:14	460-00-4	
Percent Moisture	Analytical Method: ASTI	M D2974-87						
Percent Moisture	14.4 %	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28 Days	Analytical Method: EPA	9056A Prep	aration Met	hod: EP	A 9056A			
Chloride	1480 mg/kg	11.7	5.8	10	08/21/13 11:37	08/23/13 16:10	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

•

ANALYTICAL RESULTS

Project: 112MC05590/ Pace Project No.: 757578	/Conoco-Elvis Tank							
Sample: AH-7 (0-1.0')	Lab ID: 757578024	Collecte	d: 08/14/13	3 00:00	Received: 08/	/16/13 14:37 Ma	atrix: Solid	
Results reported on a "dry-weigh	nt" basis							
Parameters	Results Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015M Diesel Range Organics	Analytical Method: EPA	8015B Modi	fied Prepar	ation M	ethod: EPA 3550	Modified		
Diesel Range Organics Surrogates	392 mg/kg	34.4	18.7	10	08/21/13 12:25	08/23/13 06:47		
a-Pinene (S)	47 %.	10-140		10	08/21/13 12:25	08/23/13 06:47		
n-Triacontane (S)	210 %.	10-140		10	08/21/13 12:25	08/23/13 06:47		CH,S4
Gasoline Range Organics	Analytical Method: EPA	8015B Prep	aration Met	hod: EF	PA 5035A/5030B			
Gasoline Range Organics Surrogates	1.2 mg/kg	1.0	0.17	20	08/19/13 14:10	08/20/13 18:14		
4-Bromofluorobenzene (S)	98 % .	44-135		20	08/19/13 14:10	08/20/13 18:14	460-00-4	
8021 GCV Low BTEX	Analytical Method: EPA	8021 Prepa	ration Meth	od: EPA	\$5030			
Benzene	ND mg/kg	0.0051	0.00068	5	08/19/13 14:33	08/20/13 10:41	71-43-2	1t
Ethylbenzene	ND mg/kg	0.0051	0.00054	5	08/19/13 14:33	08/20/13 10:41	100-41-4	
Toluene	ND mg/kg	0.0051	0.00037	5	08/19/13 14:33	08/20/13 10:41	108-88-3	
Xylene (Total) Surrogates	ND mg/kg	0.015	0.015	5	08/19/13 14:33	08/20/13 10:41	1330-20-7	
4-Bromofluorobenzene (S)	116 %.	70-130		5	08/19/13 14:33	08/20/13 10:41	460-00-4	
Percent Moisture	Analytical Method: AST	M D2974-87						
Percent Moisture	1.7 %	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28 Days	Analytical Method: EPA	9056A Prep	aration Met	hod: EF	PA 9056A			
Chloride	4400 mg/kg	102	50.9	100	08/21/13 11:37	08/23/13 16:28	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC0559 757578	0/Conoco-Elvis Ta	ink							
Sample: AH-7 (1.6	-2.0')	Lab ID:	757578025	Collected	1: 08/14/1	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported o	n a "dry-weig	ght" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		3.2 %	6	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	aration Met	thod: Ef	PA 9056A			
Chloride		4900 n	ng/kg	103	51.6	100	08/21/13 11:37	08/23/13 16:46	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC05590/C 757578	onoco-Elvis Ta	nk							
Sample: AH-7 (2.5-	-3.0')	Lab ID:	757578026	Collected	: 08/14/1:	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported of	n a "dry-weight"	" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	N D2974-87						
Percent Moisture		3.9 %	, D	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28 I	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		5870 m	ig/kg	104	52.0	100	08/21/13 11:37	08/23/13 17:04	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 09/06/2013 02:13 PM

Project: Pace Project No.:	112MC0559 757578	0/Conoco-Elvis Ta	ank							
Sample: AH-7 (3.6	5-4.0')	Lab ID:	757578027	Collected	d: 08/14/1	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported of	on a "dry-weig	ght" basis								
Parame	eters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytica	Method: AST	M D2974-87						
Percent Moisture		13.8 9	6	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28	Days	Analytica	Method: EPA	9056A Prepa	aration Met	thod: El	PA 9056A			
Chloride		13600 r	ng/kg	232	116	200	08/21/13 11:37	08/23/13 17:21	16887-00-6	

Date: 09/06/2013 02:13 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Released to Imaging: 11/30/2021 2:40:11 PM

...

. .

ANALYTICAL RESULTS

Project: Pace Project No.:	112MC05590 757578	D/Conoco-Elvis Ta	ink							
Sample: AH-7 (4.5	-5.0')	Lab ID:	757578028	Collected	: 08/14/1	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported of	n a "dry-weig	ht" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		9.7 %	6	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		8380 n	ng/kg	111	55.4	100	08/21/13 11:37	08/23/13 17:39	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC05590/0 757578	Conoco-Elvis Ta	ink							
Sample: AH-8 (0-1	.0')	Lab ID:	757578029	Collecte	ed: 08/14/13	3 00:00	Received: 08/	16/13 14:37 Ma	atrix: Solid	
Results reported of	n a "dry-weight	t" basis								
				Report						
Parame	ters	Results	Units	Limit	MDL.	DF	Prepared	Analyzed	CAS No.	Qual
8015M Diesel Rang	e Organics	Analytical	Method: EPA	8015B Mod	ified Prepar	ation M	ethod: EPA 3550	Modified		
Diesel Range Organ Surrogates	lics	56.1 n	ng/kg	34.7	18.9	10	08/21/13 12:25	08/23/13 07:40		
a-Pinene (S)		62 %	6.	10-140		10	08/21/13 12:25	08/23/13 07:40		
n-Triacontane (S)		202 %	6.	10-140		10	08/21/13 12:25	08/23/13 07:40		CH,S4
Gasoline Range Or	ganics	Analytical	Method: EPA	8015B Prej	paration Met	hod: EF	PA 5035A/5030B			
Gasoline Range Org Surrogates	anics	0.42 n	ng/kg	0.052	0.0085	1	08/19/13 14:10	08/19/13 19:48		
4-Bromofluorobenze	ene (S)	114 %	6.	44-135		1	08/19/13 14:10	08/19/13 19:48	460-00-4	
8021 GCV Low BTE	EX	Analytical	Method: EPA	8021 Prepa	aration Meth	od: EPA	5030			
Benzene		ND n	ng/kg	0.0010	0.00014	1	08/19/13 14:33	08/19/13 19:48	71-43-2	
Ethylbenzene		ND n	ng/kg	0.0010	0.00011	1	08/19/13 14:33	08/19/13 19:48	100-41-4	
Toluene		ND n	ng/kg	0.0010	0.000074	1	08/19/13 14:33	08/19/13 19:48	108-88-3	
Xylene (Total) Surrogates		ND n	ng/kg	0.0031	0.0031	1	08/19/13 14:33	08/19/13 19:48	1330-20-7	
4-Bromofluorobenze	ene (S)	112 9	6.	70-130		1	08/19/13 14:33	08/19/13 19:48	460-00-4	
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		2.7 %	6	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28 I	Days	Analytical	Method: EPA	9056A Prep	paration Met	hod: EF	A 9056A			
Chloride		3220 n	ng/kg	103	51.4	100	08/21/13 11:37	08/23/13 18:33	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC0559 757578	0/Conoco-Elvis Ta	ink							
Sample: AH-8 (1.5-	2.0')	Lab ID:	767678030	Collected	: 08/14/1	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported or	n a "dry-weig	ght" basis								
Paramet	ers	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Quat
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		10.3 %	, 0	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28 [Days	Analytical	Method: EPA	9056A Prepa	ration Met	ihod: EP	A 9056A			
Chloride		215 n	ng/kg	1.1	0.56	1	08/21/13 11:37	08/23/13 00:24	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project:	112MC05590	/Conoco-Elvis Ta	ink							
Pace Project No .:	757578									
Sample: AH-8 (2.5	i-3.0')	Lab ID:	757578031	Collected:	08/14/13	3 00:00	Received: 08	/16/13 14:37 M	latrix: Solid	
Results reported o	n a "dry-weigi	ht" basis								
Parame	iters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		11.1 %	6	0.50	0.50	1		08/20/13 13:30	l .	
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		8340 n	ng/kg	113	56.3	100	08/21/13 11:37	08/23/13 18:51	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 09/06/2013 02:13 PM

Project: Pace Project No.:	112MC05590/ 757578	Conoco-Elvis Ta	ink							
Sample: AH-8 (3.5	-4.0')	Lab ID:	767578032	Collected	d: 08/14/1:	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported of	n a "dry-weigł	nt" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		27.6 %	6	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28 I	Days	Analytical	Method: EPA	9056A Prepa	aration Met	hod: EF	PA 9056A			
Chloride		4350 m	ng/kg	138	69.1	100	08/21/13 11:37	08/23/13 19:44	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

	12MC05590/C	onoco-Elvis Tar	ık							
Sample: AH-9 (0-1.0			757578033	Collected	: 08/14/1	3 00:00	Received: 08/	/16/13 14:37 M	atrix: Solid	
Results reported on	a "dry-weight"	" basis		_						
Paramete	rs	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015M Diesel Range	Organics	Analytical I	Method: EPA	8015B Modifie	ed Prepar	ration M	ethod: EPA 3550	Modified		
Diesel Range Organic Surrogates	s	730 m	g/kg	41.2	22.5	10	08/21/13 12:25	08/23/13 08:33		
a-Pinene (S)		46 %		10-140		10	08/21/13 12:25	08/23/13 08:33		
n-Triacontane (S)		140 %		10-140		10	08/21/13 12:25	08/23/13 08:33		СН
Gasoline Range Orga	anics	Analytical I	Vethod: EPA	8015B Prepa	ration Met	thod: Ef	A 5035A/5030B			
Gasoline Range Orgai Surrogates	nics	1.6 m	g/kg	0.31	0.051	5	08/19/13 14:10	08/20/13 11:12		
4-Bromofluorobenzene	∋ (S)	133 %		44-135		5	08/19/13 14:10	08/20/13 11:12	460-00-4	
8021 GCV Low BTEX		Analytical I	Viethod: EPA	8021 Prepara	ation Meth	od: EPA	5030			
Benzene		ND m	q/kg	0.0062	0.00082	5	08/19/13 14:33	08/20/13 11:12	71-43-2	
Ethylbenzene		ND m	g/kg	0.0062	0.00064	5	08/19/13 14:33	08/20/13 11:12	100-41-4	
Toluene		ND m	g/kg	0.0062	0.00044	5	08/19/13 14:33	08/20/13 11:12	108-88-3	
Xylene (Total) <i>Surrogates</i>		ND m	g/kg	0.019	0.019	5	08/19/13 14:33	08/20/13 11:12	1330-20-7	
4-Bromofluorobenzene	∋ (S)	132 %		70-130		5	08/19/13 14:33	08/20/13 11:12	460-00-4	S3
Percent Moisture		Analytical I	Method: ASTN	1 D2974-87						
Percent Moisture		18.3 %		0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28 Da	iys	Analytical N	lethod: EPA §	056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		1360 m	g/kg	12.2	6.1	10	08/21/13 11:37	08/23/13 20:02	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC05590/ 757578	Conoco-Elvis Tar	nk							
Sample: AH-9 (1.5	-2.0')	Lab ID:	757578034	Collected	: 08/14/13	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported o	n a "dry-weigh	t" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	VI D2974-87						
Percent Moisture		8.5 %		0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		20.3 m	g/kg	1.1	0.55	1	08/21/13 11:37	08/23/13 03:58	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 09/06/2013 02:13 PM

Project: 112MC05590/Conoco-Elvis Tank

Pace Project No.: 757578

Sample: AH-9 (2.5-3.0')	Lab ID:	757578035	Collecte	d: 08/14/1	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported on a "dry-we	ight" basis								
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytica	I Method: ASTI	M D2974-87						
Percent Moisture	24.0	%	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28 Days	Analytica	I Method: EPA	9056A Prep	aration Met	hod: EF	PA 9056A			
Chloride	90.0 (mg/kg	1.3	0.66	1	08/21/13 11:37	08/23/13 07:30	16887-00-6	

Date: 09/06/2013 02:13 PM

REPORT OF LABORATORY ANALYSIS

Project:	112MC0559	0/Conoco-Elvis Ta	nk							
Pace Project No .:	757578									
Sample: AH-9 (3.5	-4.0')	Lab ID:	757578036	Collected	: 08/14/1	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported a	n a "dry-weig	ht" basis								
				Report						
Parame	eters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: ASTI	M D2974-87						
Percent Moisture		14.3 %)	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		208 m	ig/kg	1.2	0.58	1	08/21/13 11:37	08/23/13 08:05	16887-00-6	

Date: 09/06/2013 02:13 PM

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

•	112MC05590/ 757578	Conoco-Elvis Ta	ink							
Sample: AH-10 (0-1	.0')	Lab ID:	757578037	Collecte	d: 08/14/1	3 00:00	Received: 08/	/16/13 14:37 M	atrix: Solid	
Results reported on	a "dry-weigh	t" basis								
				Report						
Paramete	ers	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015M Diesel Range	Organics	Analytical	Method: EPA	8015B Modif	fied Prepar	ation M	ethod: EPA 3550	Modified		
Diesel Range Organic Surrogates	CS	3 790 n	ng/kg	340	185	100	08/21/13 12:25	08/22/13 23:11		
a-Pinene (S)		72 %	6.	10-140		100	08/21/13 12:25	08/22/13 23:11		
n-Triacontane (S)		855 %	6.	10-140		100	08/21/13 12:25	08/22/13 23:11		CH,S4
Gasoline Range Org	anics	Analytical	Method: EPA	8015B Prep	aration Me	hod: EF	PA 5035A/5030B			
Gasoline Range Orga Surrogates	inics	ND n	ng/kg	0.26	0.042	5	08/19/13 14:10	08/20/13 11:43		
4-Bromofluorobenzen	e (S)	106 %	, o.	44-135		5	08/19/13 14:10	08/20/13 11:43	460-00-4	
8021 GCV Low BTE	ĸ	Analytical	Method: EPA	8021 Prepa	ration Meth	od: EPA	5030			
Benzene		ND m	ng/kg	0.0051	0.00068	5	08/19/13 14:33	08/20/13 11:43	71-43-2	
Ethylbenzene		ND m	ng/kg	0.0051	0.00053	5	08/19/13 14:33	08/20/13 11:43	100-41-4	
Toluene		ND m	ng/kg	0.0051	0.00036	5	08/19/13 14:33	08/20/13 11:43	108-88-3	
Xylene (Total) Surrogates		ND m	ng/kg	0.015	0.015	5	08/19/13 14:33	08/20/13 11:43	1330-20-7	
4-Bromofluorobenzen	e (S)	105 %	, D.	70-130		5	08/19/13 14:33	08/20/13 11:43	460-00-4	
Percent Moisture		Analytical	Method: ASTN	1 D2974-87						
Percent Moisture		0.61 %	b	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28 Da	ays	Analytical	Method: EPA	9056A Prepa	aration Met	hod: EP	A 9056A			
Chloride		7.2 m	ig/kg	1.0	0.50	1	08/21/13 11:37	08/23/13 08:44	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC0559 757578	0/Conoco-Elvis Ta	ink							
Sample: AH-10 (1.	5-2.0')	Lab ID:	767578038	Collected	08/14/13	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported of	n a "dry-weig	ght" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		1.0 %	6	0.50	0.50	1		08/20/13 13:30		
9056 IC Anions 28 [Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EF	A 9056A			
Chloride		48.3 m	ng/kg	1.0	0.51	1	08/21/13 11:37	08/23/13 09:01	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Released to Imaging: 11/30/2021 2:40:11 PM

Project: 112MC0559 Pace Project No.: 757578	00/Conoco-Elvis Tank							
Sample: AH-10 (2.5-3.0')	Lab ID: 767678039	Collecter	d: 08/14/1	3 00:00	Received: 08	/16/13 14:37 M	latrix: Solid	
Results reported on a "dry-weig	ght" basis							
Parameters	Results Units	Report Limit	MDL.	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Method: AST	M D2974-87						
Percent Moisture	8.3 %	0.50	0.50	1		08/20/13 13:30	1	
9056 IC Anions 28 Days	Analytical Method: EPA	9056A Prepa	aration Met	hod: EF	A 9056A			
Chloride	825 mg/kg	10.9	5.5	10	08/21/13 11:37	08/23/13 20:20	16887-00-6	

Date: 09/06/2013 02:13 PM

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC05590 757578)/Conoco-Elvis Ta	nk							
Sample: AH-10 (3.	.5-4.0')	Lab ID:	757578040	Collected:	08/14/1	3 00:00	Received: 08	8/16/13 14:37 M	latrix: Solid	
Results reported o	n a "dry-weig	ht" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		13.9 %	, 0	0.50	0.50	1		08/20/13 13:30)	
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		1310 m	ng/kg	11.6	5.8	10	08/21/13 11:37	08/23/13 20:38	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 09/06/2013 02:13 PM

.....

ANALYTICAL RESULTS

	Conoco-Elvis Tank							
Pace Project No.: 757578 Sample: AH-11 (0-1.0')	Lab ID: 7575	78041 Collecte	ed: 08/14/13	3 00:00	Received: 08/	/16/13 14:37 M	atrix: Solid	
Results reported on a "dry-weigh								
		Report						
Parameters	Results Ur	nits Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015M Diesel Range Organics	Analytical Meth	od: EPA 8015B Mod	ified Prepar	ation N	lethod: EPA 3550	Modified		
Diesel Range Organics Surrogates	4910 mg/kg	341	186	100	08/21/13 12:25	08/23/13 00:32		
a-Pinene (S)	69 %.	10-140		100	08/21/13 12:25	08/23/13 00:32		
n-Triacontane (S)	945 %.	10-140		100	08/21/13 12:25	08/23/13 00:32		CH,S4
Gasoline Range Organics	Analytical Meth	od: EPA 8015B Prep	paration Me	hod: El	PA 5035A/5030B			
Gasoline Range Organics Surrogates	0.25 mg/kg	0.051	0.0084	1	08/19/13 14:10	08/19/13 21:21		
4-Bromofluorobenzene (S)	104 %.	44-135		1	08/19/13 14:10	08/19/13 21:21	460-00-4	
8021 GCV Low BTEX	Analytical Meth	od: EPA 8021 Prepa	aration Meth	od: EP/	A 5030			
Benzene	ND mg/kg	0.0010	0.00014	1	08/19/13 14:33	08/19/13 21:21	71-43-2	
Ethylbenzene	ND mg/kg	0.0010	0.00011	1	08/19/13 14:33	08/19/13 21:21	100-41-4	
Toluene	ND mg/kg	0.0010	0.000073	1	08/19/13 14:33	08/19/13 21:21	108-88-3	
Xylene (Total)	ND mg/kg	0.0031	0.0031	1	08/19/13 14:33	08/19/13 21:21	1330-20-7	
Surrogates 4-Bromofluorobenzene (S)	103 %.	70-130		1	08/19/13 14:33	08/19/13 21:21	460-00-4	
Percent Moisture	Analytical Metho	od: ASTM D2974-87						
Percent Moisture	0.98 %	0.50	0.50	1		08/20/13 14:00		
9056 IC Anions 28 Days	Analytical Metho	od: EPA 9056A Prep	paration Met	hod: El	PA 9056A			
Chloride	282 mg/kg	10.1	5.0	10	08/21/13 11:37	08/23/13 21:32	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC05590 757578	/Conoco-Elvis Ta	nk							
Sample: AH-11 (1.	5-2.0')	Lab ID:	757578042	Collected	: 08/14/13	3 00:00	Received: 08	/16/13 14:37 Ma	atrix: Solid	
Results reported o	n a "dry-weigl	ht" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		12.6 %	b	0.50	0.50	1		08/20/13 14:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		99.8 m	ig/kg	1.1	0.57	1	08/21/13 11:37	08/23/13 12:36	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC05590 757578	//Conoco-Elvis Ta	nk							
Sample: AH-11 (2.	5-3.0')	Lab ID:	757578043	Collected	: 08/14/1:	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported o	n a "dry-weigi	ht" basis								
Parame	ters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	VI D2974-87						
Percent Moisture		7.6 %	, 0	0.50	0.50	1		08/20/13 14:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		701 m	ng/kg	10.8	5.4	10	08/21/13 11:37	08/23/13 22:43	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: Pace Project No.:	112MC05590 757578)/Conoco-Elvis Ta	ink							
Sample: AH-11 (3.	5-4.0')	Lab ID:	757578044	Collected	: 08/14/1	3 00:00	Received: 08	/16/13 14:37 M	atrix: Solid	
Results reported o	n a "dry-weig	ht" basis								
Parame	eters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture		Analytical	Method: AST	M D2974-87						
Percent Moisture		17.5 %	6	0.50	0.50	1		08/20/13 14:00		
9056 IC Anions 28	Days	Analytical	Method: EPA	9056A Prepa	ration Met	hod: EP	A 9056A			
Chloride		1370 m	ng/kg	12.1	6.1	10	08/21/13 11:37	08/23/13 23:01	16887-00-6	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Page 96 of 147

QUALITY CONTROL DATA

-	112MC0 757578	5590/Conoco-I	Elvis Tank										
QC Batch:	GCV/1	172	····	Analys	sis Method	t: E	EPA 8015B						
QC Batch Method:	EPA 50)35A/5030B		Analys	sis Descrip	otion: (Gasoline Rar	nge Organi	cs				
Associated Lab Sam	ples:	757578001, 75 757578037, 75	7578011, 757 7578041		•					8029, 757	57803	3,	
METHOD BLANK:	36479				Matrix: So	lid							
Associated Lab Sam	ples:	757578001, 75 757578037, 75	7578011, 757 7578041	578016, 75	7578021,	757578022	2, 757578023	3, 7575780	24, 757578	3029, 757	57803	3,	
Param	eter		Units	Blani Resu	• •	Reporting Limit	Analyz	ed	Qualifiers				
Gasoline Range Org	anics	mg/k			ND	0.050	08/19/13	11.52					
4-Bromofluorobenzei	ne (S)	%.	-		111	44-135							
LABORATORY CON	TROL SA	AMPLE: 364	80		ù								
				Spike	LCS	S	LCS	% Red	•				
Param	eter		Units	Conc.	Resi	ult	% Rec	Limits	Q	ualifiers			
Gasoline Range Orga		mg/k	g	.5		0.50	100	63	3-116		-		
4-Bromofluorobenzer	ne (S)	%.					107	44	-135				
MATRIX SPIKE & MA			TE: 36481			36482	· · · ·						
			н <u>с</u> . 00401	MS	MSD	30462							
			757578001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	۱	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	% Rec	RPD		Qual
Gasoline Range Orga 4-Bromofluorobenzer		mg/kg %.	0.40	.57	.57	0.96	1.0	97 103	104 99	40-140 44-135	4	20	

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

	2MC05590/Coi 7578	noco-El	vis Tank										
QC Batch:	GCV/1177			Analys	is Method	: 6	PA 8015B						
QC Batch Method:	EPA 5035A/503	0B		Analys	is Descrip	tion: G	Basoline Ran	ige Organic	s				
Associated Lab Sample	es: 7575780	12			·								
METHOD BLANK: 37	693			N	Matrix: Sol	id							
Associated Lab Sample	es: 7575780 ⁻	12											
				Blank	K R	teporting							
Paramete	er		Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Gasoline Range Organ	ics	mg/kg	}		ND	0.050	08/27/13	17:53		—			
4-Bromofluorobenzene	(S)	%.			106	44-135	6 08/27/13	17:53					
LABORATORY CONTR	ROL SAMPLE:	3769	4										
				Spike	LCS		LCS	% Rec					
Paramete	er		Units	Conc.	Resu	uit	% Rec	Limits	Qi	ualifiers			
Gasoline Range Organ	ics	mg/kg)	.5		0.45	89	63	-116				
4-Bromofluorobenzene	(S)	%.					96	44	-135				
MATRIX SPIKE & MAT	RIX SPIKE DU	PLICAT	E: 37695			37696							
				MS	MSD								
			757578012	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Gasoline Range Organ	-	kg	1.2	2.6	2.6	4.9	4.0	141	107	40-140	20	20	M1
4-Bromofluorobenzene	(S) %.							140	103	44-135			S0

Date: 09/06/2013 02:13 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc...

Released to Imaging: 11/30/2021 2:40:11 PM

	757578												
QC Batch:	GCV	'1174		Analys	sis Method	: Е	PA 8021						
QC Batch Method:	EPA	5030		Analys	sis Descrip	tion: 8	021 Low Le	vel Solid G	CV				
Associated Lab San	nples:	757578001, 75 757578037, 75		7578016, 75	7578021,	757578022	, 757578023	3, 7575780	24, 757578	029, 7575	57803:	3,	
METHOD BLANK:	36500			l	Matrix: So	lid							
Associated Lab San	nples:	757578001, 75 757578037, 75		7578016, 75	7578021,	757578022	, 757578023	3, 7575780	24, 757578	029, 7575	578033	3,	
				Blani	K F	Reporting							
Paran	neter		Units	Resu	lt	Limit	Analyz	ed	Qualifiers				
Benzene		mg/k	g		ND	0.0010	08/19/13	11:52		_			
Ethylbenzene		mg/k	g		ND	0.0010	08/19/13	11:52					
Toluene		mg/k	-		ND	0.0010	08/19/13	11:52					
Xylene (Total)		mg/k	g		ND	0.0030	08/19/13	11:52					
4-Bromofluorobenze	ene (S)	%.			110	70-130	08/19/13	11:52					
LABORATORY CON	NTROL	SAMPLE: 3650)1									<u> </u>	
Paran	neter		Units	Spike Conc.	LC: Res		LCS % Rec	% Red Limits		ualifiers			
Benzene			g	.05		0.048	97	70	-130		-		
Ethylhonzono		mg/k	g	.05	;	0.050	99	70	-130				
Eurydenzene						0.040	97						
•		mg/k	g	.05		0.048	51	70	-130				
Toluene		÷	-	.05 .15		0.048	96		-130 -130				
Toluene Xylene (Total)	ene (S)	mg/k	-					70					
Ethylbenzene Toluene Xylene (Total) 4-Bromofluorobenze MATRIX SPIKE & M		mg/k mg/k %.	g	.15			96	70	-130				
Toluene Xylene (Total) 4-Bromofluorobenze		mg/k mg/k %.	g	.15		0.14	96	70	-130				
Toluene Xylene (Total) 4-Bromofluorobenze	ATRIX	mg/k mg/k %.	g	.15	;	0.14	96	70	-130	% Rec Limits	RPD	Max RPD	Qua
Toluene Xylene (Total) 4-Bromofluorobenze MATRIX SPIKE & M Paramet	ATRIX	mg/k mg/k %. SPIKE DUPLICA	g TE: 36502 757578001	.15 MS Spike	MSD Spike	0.14 36503 MS	96 105 MSD	70 70 MS	-130 -130 MSD		RPD 4		Qu
Toluene Xylene (Total) 4-Bromofluorobenze MATRIX SPIKE & M Paramet Benzene	ATRIX	mg/k mg/k %. SPIKE DUPLICA	g TE: 36502 757578001 Result	.15 MS Spike Conc.	MSD Spike Conc.	0.14 36503 MS Result	96 105 MSD Result	70 70 80 MS % Rec	-130 -130 MSD % Rec	Limits		RPD	Qu
Toluene Xylene (Total) 4-Bromofluorobenze MATRIX SPIKE & M Paramet Benzene Ethylbenzene Toluene	ATRIX	mg/k mg/k %. SPIKE DUPLICA Units mg/kg	g TE: 36502 757578001 	.15 MS Spike Conc. .057	MSD Spike Conc. .057	0.14 36503 MS Result 0.057	96 105 MSD Result 0.055	70 70 80 MS % Rec 98	-130 -130 MSD <u>% Rec</u> 95	Limits 70-130	4	RPD 20	Qua
Toluene Xylene (Total) 4-Bromofluorobenze MATRIX SPIKE & M Paramet Benzene Ethylbenzene	IATRIX	mg/k mg/k %. SPIKE DUPLICA Units mg/kg mg/kg	g TE: 36502 757578001 	.15 MS Spike Conc. .057 .057	MSD Spike Conc. .057 .057	0.14 36503 MS Result 0.057 0.046	96 105 MSD Result 0.055 0.049	70 70 70 80 80	-130 -130 MSD % Rec 95 85	Limits 70-130 70-130	4 6	RPD 20 20	Qua

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Released to Imaging: 11/30/2021 2:40:11 PM

-	112MC05590/Co 757578	noco-Elv	ris Tank										
QC Batch:	OEXT/2410			Analys	is Method:	E	PA 8015B M	lodified					
QC Batch Method:	EPA 3550 Modi	fied		Analys	is Descript	tion: E	PA 8015 Mo	dified					
Associated Lab Samp	oles: 7575780 7575780			578016, 75	7578021, 7	757578022	2, 757578023	8, 75757802	24, 75757	78029, 7575	57803	3,	
METHOD BLANK:	36878			N	Aatrix: Soli	id							
Associated Lab Samp	oles: 7575780 7575780	01, 7575 37, 7575	78011, 757 78041	578016, 75	7578021, 7	757578022	2, 757578023	8, 75757802	24, 75757	78029, 7575	578033	3,	
				Blank	R	eporting							
Parame	eter		Units	Result	t	Limit	Analyz	ed	Qualifiers	8			
Diesel Range Organic	cs	mg/kg			ND	3.4							
a-Pinene (S)		%.			77	10-140	08/22/13	12:04					
n-Triacontane (S)		%.			115	10-140	08/22/13	12:04					
LABORATORY CONT	ROL SAMPLE:	36879											
-				Spike	LCS	- <u></u>	LCS	% Rec					
LABORATORY CONT Parame			Units	Spike Conc.	LCS Resu		LCS % Rec	% Rec Limits		Qualifiers			
-	ter							Limits		Qualifiers	-		
Parame	ter			Conc.		lt	% Rec	Limits 40		Qualifiers			
Diesel Range Organic	ter	mg/kg		Conc.		lt	% Rec 77	Limits 40 10	-140	Qualifiers	-		
Parame Diesel Range Organic a-Pinene (S)	eter S	mg/kg %. %.	Units	Conc.		lt	% Rec 77 47	Limits 40 10	-140 -140	Qualifiers	-		
Parame Diesel Range Organic a-Pinene (S) n-Triacontane (S)	eter S	mg/kg %. %.	Units	Conc.		lt 25.6	% Rec 77 47	Limits 40 10	-140 -140	Qualifiers	-		
Parame Diesel Range Organic a-Pinene (S) n-Triacontane (S)	eter S	mg/kg %. %. PLICATE	Units	Conc. 33.3	Resu	lt 25.6	% Rec 77 47	Limits 40 10	-140 -140	Qualifiers % Rec	-	Мах	
Parame Diesel Range Organic a-Pinene (S) n-Triacontane (S)	ter S TRIX SPIKE DU	mg/kg %. %. PLICATE	Units E: 36880	Conc. 33.3 MS	Resu	lt 25.6 36881	% Rec 77 47 89	Limits 40. 10. 10.	-140 -140 -140		RPD	Max RPD	Qual
Parame Diesel Range Organic a-Pinene (S) n-Triacontane (S) MATRIX SPIKE & MA	ter S TRIX SPIKE DU	mg/kg %. %. PLICATE 7! Units	Units E: 36880 57578001	Conc. 33.3 MS Spike	Resu MSD Spike	lt 25.6 36881 MS	% Rec 77 47 89 MSD	Limits 40. 10. 10.	-140 -140 -140 -140 MSD	% Rec Limits	RPD	RPD	Qual
Parame Diesel Range Organic a-Pinene (S) n-Triacontane (S) MATRIX SPIKE & MA Parameter	ter S TRIX SPIKE DU	mg/kg %. %. PLICATE 7! Units	Units E: 36880 57578001 Result	Conc. 33.3 MS Spike Conc.	Resu MSD Spike Conc.	It 25.6 36881 MS Result	% Rec 77 47 89 MSD Result	Limits 40- 10- 10- 10- 80- 80- 80- 80- 80- 80- 80- 80- 80- 8	-140 -140 -140 MSD % Rec	% Rec Limits 0 40-140	6	RPD	

Date: 09/06/2013 02:13 PM

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

•	112MC0559 757578	90/Conoco-E	Elvis Tank										
QC Batch:	OEXT/244	2		Analys	sis Metho	d: f	EPA 8015B N	lodified					
QC Batch Method:	EPA 3550	Modified		•	sis Descri		EPA 8015 M						
Associated Lab Samp	oles: 757	578012				•							
METHOD BLANK: 3	37708				Matrix: So	olid							
Associated Lab Samp	oles: 757	578012											
Parame	ter		Units	Blanl Resu		Reporting Limit	Analyz	ed	Qualifiers				
Diesel Range Organic a-Pinene (S)	S	mg/k %.	g		ND 81	3.4 10-140				_			
n-Triacontane (S)		%.			112	10-140	08/29/13	10:07					
LABORATORY CONT	ROL SAM	PLE: 377(09										
Parame	ter		Units	Spike Conc.	LC Res		LCS % Rec	% Rec Limits		alifiers			
Diesel Range Organic a-Pinene (S)	s	mg/k %.	g	33.3		31.4	94 79		-140 -140		-		
n-Triacontane (S)		%.					100	10	-140				
MATRIX SPIKE & MA		E DUPLICA	TE: 37710			37711							
			757578012	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Quai
Diesel Range Organic	s	mg/kg	38.4	34.7	34.6	45.8	47.0	21	25	40-140	2	40	M1
a-Pinene (S)		%.						35	36	10-140			
n-Triacontane (S)		%.						39	42	10-140			

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project:	112MC05590/Conoco-I	Elvis Tank	
Pace Project No .:	757578		
QC Batch:	PMST/1190	Analysis Method:	ASTM D2974-87
QC Batch Method:	ASTM D2974-87	Analysis Description:	Dry Weight/Percent Moisture
Associated Lab Sam	nples: 757578001, 75 757578010, 75 757578019, 75	7578011, 757578012, 757578013, 7575780	005, 757578006, 757578007, 757578008, 757578009, 014, 757578015, 757578016, 757578017, 757578018,

Parameter	Units	757578001 Result	Dup Result	RPD	Max RPD	Qualifiers
Percent Moisture	%	12.9	13.9	7	20	

REPORT OF LABORATORY ANALYSIS

QC Batch:	PMS	r/1191	Anal	/sis Method:	ASTM D2974-87
QC Batch Method:	ASTN	1 D2974-87	Anal	sis Description:	Dry Weight/Percent Moisture
Associated Lab San	nples:	757578021, 7575 757578030, 7575 757578039, 7575	78031, 757578032, 7	57578024, 75757802 57578033, 75757803	5, 757578026, 757578027, 757578028, 757578029 4, 757578035, 757578036, 757578037, 757578038

Parameter	Units	757578021 Result	Dup Result	RPD	Max RPD	Qualifiers
Percent Moisture	%	6.7	6.0	11	20	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 09/06/2013 02:13 PM

Pace Analytical Services, Inc. 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

QUALITY CONTROL DATA

Pace Project No.: 757578								
QC Batch: PMST	71192	Analysis Meth	od:	ASTM D2974	-87			
QC Batch Method: ASTM	D2974-87	Analysis Desc	ription:	Dry Weight/P	ercent Mc	oisture		
Appendiated Lab Complex.	757570044 757570040 75	7570040 75757004	4					
	757578041, 757578042, 75 							<u> </u>
		757578043, 75757804				Max		
				RPD		Max RPD	Qualifiers	;

Date: 09/06/2013 02:13 PM

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	112MC	05590/Conoco-I	Elvis Tank										
QC Batch:	WETA			Anolu	sis Method								
				•			PA 9056A						
QC Batch Method:	EPA 9				sis Descrip		056 IC Anio						
Associated Lab Sam	nples:	757578001, 75 757578010, 75 757578019, 75	57578011, 757	7578003, 79 7578012, 79	57578004, 57578013,	757578005 757578014	5, 75757800 , 75757801	6, 7575780 5, 7575780	007, 757578 016, 757578	8008, 757 8017, 7579	57800 57801	9, 8,	
METHOD BLANK:	36666				Matrix: So	lid							
Associated Lab Sam	nples:	757578001, 75 757578010, 75 757578019, 75	7578011, 757	7578003, 75 7578012, 75	57578004, 57578013,	757578005 757578014	, 75757800 , 75757801	6, 7575780 5, 7575780	007, 757578 016, 757578	8008, 757 8017, 757	57800 57801	9, 8,	
				Blan	k R	Reporting							
Param	neter		Units	Resu	lt	Limit	Analyz	zed	Qualifiers				
Chloride		mg/l	kg		ND	1.0	08/21/13	12:32					
LABORATORY CON	NTROL S	SAMPLE: 366	67										
Param	neter		Units	Spike Conc.	LCS Resu		LCS % Rec	% Red Limits	-	ualifiers	_		
Param	neter			•	Resu			Limits	-	ualifiers	-		
			٩g	Conc. 50	Resu	.lt	% Rec	Limits	<u> </u>	ualifiers	-		
Chloride	ATRIX S		٩g	Conc. 50	Resu	46.3	% Rec	Limits	<u> </u>	% Rec	RPD	Max	Qual
Chioride MATRIX SPIKE & M	ATRIX S	PIKE DUPLICA	<pre><g< td=""><td>Conc. 50 MS Spike</td><td>MSD Spike</td><td>ult 46.3 36669 MS</td><td>% Rec 93 MSD</td><td>Limits 90 MS</td><td>5 Q D-110 MSD</td><td></td><td>RPD 0</td><td>RPD</td><td>Qual</td></g<></pre>	Conc. 50 MS Spike	MSD Spike	ult 46.3 36669 MS	% Rec 93 MSD	Limits 90 MS	5 Q D-110 MSD		RPD 0	RPD	Qual
Chloride MATRIX SPIKE & M Paramete	ATRIX S	SPIKE DUPLICA	kg NTE: 36668 757578001 Result 7910	MS Spike Conc. 5740	MSD Spike Conc.	46.3 36669 MS Result	% Rec 93 MSD Result	Limits 90 MS % Rec	SQ 0-110 MSD % Rec	% Rec Limits		RPD	Qual
Chloride MATRIX SPIKE & M Paramete Chloride	ATRIX S	SPIKE DUPLICA	kg NTE: 36668 757578001 Result 7910	MS Spike Conc. 5740	MSD Spike Conc.	46.3 36669 MS Result 13700	% Rec 93 MSD Result	Limits 90 MS % Rec	SQ 0-110 MSD % Rec	% Rec Limits		RPD	Qual
Chloride MATRIX SPIKE & M Paramete Chloride MATRIX SPIKE & M	er ATRIX S	SPIKE DUPLICA	kg NTE: 36668 757578001 Result 7910	Conc. 50 MS Spike Conc. 5740	MSD Spike Conc. 5740	46.3 36669 MS Result 13700	% Rec 93 MSD Result	Limits 90 MS % Rec	SQ 0-110 MSD % Rec	% Rec Limits		RPD	Qual
Chloride MATRIX SPIKE & M Paramete Chloride	er ATRIX S	SPIKE DUPLICA	kg TE: 36668 757578001 Result 7910 TE: 36670	Conc. 50 MS Spike Conc. 5740 MS	MSD Spike Conc. 5740 MSD	ult 46.3 36669 MS Result 13700 36671	% Rec 93 MSD Result 13700	Limits 90 MS % Rec 101	SQ 0-110 MSD % Rec 101	% Rec Limits 90-110		RPD 20 Max	Qual

61 c

Released to Imaging: 11/30/2021 2:40:11 PM

REPORT OF LABORATORY ANALYSIS

Project:	112MC0	5590/Conoco-I	Elvis Tank										
Pace Project No.:	757578												
QC Batch:	WETA	2850		Analy	sis Method	: E	PA 9056A			····		<u> </u>	
QC Batch Method:	EPA 90	56A		Analy	sis Descrip	tion: 9	056 IC Anio	ns					
Associated Lab San	7	757578021, 75 757578030, 75 757578039, 75	57578031, 75 [°]	7578023, 75 7578032, 75	57578024, 57578033,	757578025 757578034	, 75757802 , 75757803	6, 7575780 5, 7575780	27, 75757 36, 75757	8028, 757 8037, 757	57802 57803	9, 8,	
METHOD BLANK:	36672				Matrix: Sol	lid							
Associated Lab San	. 7	757578021, 75 757578030, 75 757578039, 75	7578031, 75	7578032, 75	57578033,	757578034	, 75757802 , 75757803	6, 7575780 5, 7575780	27, 75757 36, 75757	8028, 757 8037, 757	57802 57803	9, 8,	
Davaa				Blan		leporting							
Paran	neter		Units	Resu	lt	Limit	Analyz	zed	Qualifiers	_			
Chloride		mg/k	g		ND	1.0	08/22/13	16:40					
LABORATORY CON	NTROL SA	MPLE: 366	73		<u> </u>					<u> </u>			
		AMPLE: 3667		Spike	LCS	-	LCS	% Red					
Param			Units	Conc.	Resu	.lt	% Rec	Limits	Q	ualifiers			
		AMPLE: 366 	Units	•	Resu	-		Limits		ualifiers			
Param Chloride	neter		Units g	Conc. 50	Resu	ult	% Rec	Limits	Q	ualifiers	-		
Param Chloride	neter		Units g	Conc. 50	Resu	.lt	% Rec	Limits	Q	ualifiers	-		
Param Chloride	neter		Units g	Conc. 50	Resu) MSD	46.1 36675	% Rec 92	Limits 90	Q 0-110		-	Мах	
Param Chloride	neter IATRIX SF		Units 19 TE: 36674	Conc. 50 MS	Resu	ult	% Rec	Limits	Q	ualifiers % Rec Limits	RPD	Max RPD	Qual
Param Chloride MATRIX SPIKE & M	neter IATRIX SF	mg/k	Units 9 TE: 36674 757578021	Conc. 50 MS Spike	MSD Spike	46.1 36675 MS	% Rec 92 MSD	Limits 90 MS	Q)-110 MSD	% Rec	RPD 1		Qual
Param Chloride MATRIX SPIKE & M Paramete	neter IATRIX SF	mg/k PIKE DUPLICA Units	Units 9 TE: 36674 757578021 Result	Conc. 50 MS Spike Conc.	MSD Spike Conc.	46.1 36675 MS Result	% Rec 92 MSD Result	Limits 90 MS % Rec	Q)-110 MSD % Rec	% Rec Limits	<u> </u>	RPD	Qual
Param Chloride MATRIX SPIKE & M Paramete Chloride	neter IATRIX SF er	PIKE DUPLICA	Units 19 TE: 36674 757578021 Result 10000	Conc. 50 MS Spike Conc. 10700	MSD Spike Conc.	46.1 36675 MS Result	% Rec 92 MSD Result	Limits 90 MS % Rec	Q)-110 MSD % Rec	% Rec Limits	<u> </u>	RPD	Qual
Param Chloride MATRIX SPIKE & M Paramete Chloride	neter IATRIX SF er	PIKE DUPLICA	Units 9 TE: 36674 757578021 Result 10000	Conc. 50 MS Spike Conc. 10700	MSD Spike Conc.	46.1 36675 MS Result 20500	% Rec 92 MSD Result	Limits 90 MS % Rec	Q)-110 MSD % Rec	% Rec Limits	<u> </u>	RPD	Qual
Param Chloride MATRIX SPIKE & M Paramete Chloride MATRIX SPIKE & M	ATRIX SF	PIKE DUPLICA Units mg/kg	Units (g TE: 36674 757578021 Result 10000 TE: 36676 757578031	Conc. 50 MS Spike Conc. 10700 MS Spike	MSD Spike Conc. 10700	46.1 36675 MS Result 20500	% Rec 92 MSD Result	Limits 90 MS % Rec	Q)-110 MSD % Rec	% Rec Limits	<u> </u>	RPD	Qual
Param Chloride MATRIX SPIKE & M Paramete	ATRIX SF	PIKE DUPLICA	Units (g TE: 36674 757578021 Result 10000 TE: 36676	Conc. 50 MS Spike Conc. 10700 MS	MSD Spike Conc. 10700 MSD	46.1 36675 MS Result 20500 36677	% Rec 92 MSD Result 20300	Limits 90 MS % Rec 98	Q 0-110 MSD 96	% Rec Limits 90-110	1	RPD 20 Max	Qual

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Released to Imaging: 11/30/2021 2:40:11 PM

Project: Pace Project No.:	112MC05590/Conoc 757578	o-Elvis Tank										
QC Batch:	WETA/2851		Analys	is Method:		PA 9056A						
QC Batch Method:	EPA 9056A		-	is Descripti	on: 9	056 IC Anior	IS					
Associated Lab Sam	nples: 757578041,	757578042, 757	•	•								
METHOD BLANK:	36678		N	Aatrix: Solid	4					-		
Associated Lab San	nples: 757578041,	757578042, 757	578043, 75	7578044								
			Blank	Re	eporting							
Param	neter	Units	Result	t	Limit	Analyz	ed	Qualifiers				
Chloride	m	g/kg		ND	1.0	08/23/13	10:30		_			
LABORATORY CON		6679									,,,,,,,,,	
			Spike	LCS		LCS	% Rec					
Param	neter	Units	Conc.	Result	t	% Rec	Limits		ualifiers			
Chloride	······································									-		
Chionde	m	g/kg	50		46.4	93	90	-110				
	MATRIX SPIKE DUPLI					93	90	-110				
					46.4 36681	93	90	-110				
			MS			93 	90 MS	-110 MSD	% Rec		Max	
	ATRIX SPIKE DUPLI	CATE: 36680 757578041		MSD	36681				% Rec Limits	RPD	Max RPD	Qual

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Released to Imaging: 11/30/2021 2:40:11 PM

Date: 09/06/2013 02:13 PM

QUALIFIERS

Project: 112MC05590/Conoco-Elvis Tank Pace Project No.: 757578

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

ANALYTE QUALIFIERS

1t The internal standard response is below criteria confirmed by reanalysis. Results for all compounds may be biased high.

- CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
- S0 Surrogate recovery outside laboratory control limits.
- S3 Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
- S4 Surrogate recovery not evaluated against control limits due to sample dilution.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc... Released to Imaging: 11/30/2021 2:40:11 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 112MC05590/Conoco-Elvis Tank

 Pace Project No.:
 757578

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analyticai Batch
757578001	AH-1 (0-1.0')	EPA 3550 Modified	OEXT/2410	EPA 8015B Modified	
757578011	AH-2 (0-1.0')	EPA 3550 Modified	OEXT/2410	EPA 8015B Modified	GCSV/175
757578012	AH-2 (1.5-2.0')	EPA 3550 Modified	OEXT/2442	EPA 8015B Modified	GCSV/177
757578016	AH-3 (0-1.0')	EPA 3550 Modified	OEXT/2410	EPA 8015B Modified	GCSV/175
757578021	AH-4 (0-1.0')	EPA 3550 Modified	OEXT/2410	EPA 8015B Modified	GCSV/175
757578022	АН-б (0-1.0')	EPA 3550 Modified	OEXT/2410	EPA 8015B Modified	GCSV/175
757578023	AH-6 (0-1.0')	EPA 3550 Modified	OEXT/2410	EPA 8015B Modified	GCSV/175
67578024	AH-7 (0-1.0')	EPA 3550 Modified	OEXT/2410	EPA 8015B Modified	GCSV/175
′5757802 9	AH-8 (0-1.0')	EPA 3550 Modified	OEXT/2410	EPA 8015B Modified	GCSV/175
67578033	AH-9 (0-1.0')	EPA 3550 Modified	OEXT/2410	EPA 8015B Modified	GCSV/175
67678037	AH-10 (0-1.0')	EPA 3550 Modified	OEXT/2410	EPA 8015B Modified	GCSV/175
67578041	AH-11 (0-1.0')	EPA 3550 Modified	OEXT/2410	EPA 8015B Modified	GCSV/175
67678001	AH-1 (0-1.0')	EPA 5035A/5030B	GCV/1172	EPA 8015B	GCV/1173
757578011	AH-2 (0-1.0')	EPA 5035A/5030B	GCV/1172	EPA 8015B	GCV/1173
757578012	AH-2 (1.5-2.0')	EPA 5035A/5030B	GCV/1177	EPA 8015B	GCV/1178
67578016	AH-3 (0-1.0')	EPA 5035A/5030B	GCV/1172	EPA 8015B	GCV/1173
57578021	AH-4 (0-1.0')	EPA 5035A/5030B	GCV/1172	EPA 8015B	GCV/1173
57578022	AH-5 (0-1.0')	EPA 5035A/5030B	GCV/1172	EPA 8015B	GCV/1173
57578023	AH-6 (0-1.0')	EPA 5035A/5030B	GCV/1172	EPA 8015B	GCV/1173
67578024	AH-7 (0-1.0')	EPA 5035A/5030B	GCV/1172	EPA 8015B	GCV/1173
67678029	AH-8 (0-1.0')	EPA 5035A/5030B	GCV/1172	EPA 8015B	GCV/1173
67678033	AH-9 (0-1.0')	EPA 5035A/5030B	GCV/1172	EPA 8015B	GCV/1173
57578037	AH-10 (0-1.0')	EPA 5035A/5030B	GCV/1172	EPA 8015B	GCV/1173
57578041	AH-11 (0-1.0')	EPA 5035A/5030B	GCV/1172	EPA 8015B	GCV/1173
67578001	AH-1 (0-1.0')	EPA 5030	GCV/1174	EPA 8021	GCV/1175
67578011	AH-2 (0-1.0')	EPA 5030	GCV/1174	EPA 8021	GCV/1175
757578016	AH-3 (0-1.0')	EPA 5030	GCV/1174	EPA 8021	GCV/1175
57578021	AH-4 (0-1.0')	EPA 5030	GCV/1174	EPA 8021	GCV/1175
67578022	AH-5 (0-1.0')	EPA 5030	GCV/1174	EPA 8021	GCV/1175
67578023	AH-6 (0-1.0')	EPA 5030	GCV/1174	EPA 8021	GCV/1175
57578024	AH-7 (0-1.0')	EPA 5030	GCV/1174	EPA 8021	GCV/1175
57578029	AH-8 (0-1.0')	EPA 5030	GCV/1174	EPA 8021	GCV/1175
67678033	AH-9 (0-1.0')	EPA 5030	GCV/1174	EPA 8021	GCV/1175
67678037	AH-10 (0-1.0')	EPA 5030	GCV/1174	EPA 8021	GCV/1175
57578041	AH-11 (0-1.0')	EPA 5030	GCV/1174	EPA 8021	GCV/1175
57578001	AH-1 (0-1.0')	ASTM D2974-87	PMST/1190		
57578002	AH-1 (1.5-2.0')	ASTM D2974-87	PMST/1190		
57578003	AH-1 (2.5-3.0')	ASTM D2974-87	PMST/1190		
57578004	AH-1 (3.5-4.0')	ASTM D2974-87	PMST/1190		
57578005	AH-1 (4.5-5.0')	ASTM D2974-87	PMST/1190		
67578006	AH-1 (5.5-6.0')	ASTM D2974-87	PMST/1190		
57578007	AH-1 (6.5-7.0')	ASTM D2974-87	PMST/1190		
57578008	AH-1 (7.5-8.0')	ASTM D2974-87	PMST/1190		
57578009	AH-1 (8.5-9.0')	ASTM D2974-87	PMST/1190		
67578010	AH-1 (9.5-10.0')	ASTM D2974-87	PMST/1190		

REPORT OF LABORATORY ANALYSIS

Date: 09/06/2013 02:13 PM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Released to Imaging: 11/30/2021 2:40:11 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	112MC05590/Conoco-Elvis Tank
Pace Project No .:	757578

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
767578011	AH-2 (0-1.0')	ASTM D2974-87	PMST/1190		······
67578012	AH-2 (1.5-2.0')	ASTM D2974-87	PMST/1190		
57578013	AH-2 (2.5-3.0')	ASTM D2974-87	PMST/1190		
57578014	AH-2 (3.5-4.0')	ASTM D2974-87	PMST/1190		
57578015	AH-2 (4.5-5.0')	ASTM D2974-87	PMST/1190		
57578016	AH-3 (0-1.0')	ASTM D2974-87	PMST/1190		
67578017	AH-3 (1.5-2.0')	ASTM D2974-87	PMST/1190		
57578018	AH-3 (2.5-3.0')	ASTM D2974-87	PMST/1190		
57578019	AH-3 (3.5-4.0')	ASTM D2974-87	PMST/1190		
57578020	AH-3 (4.5-5.0')	ASTM D2974-87	PMST/1190		
57578021	AH-4 (0-1.0')	ASTM D2974-87	PMST/1191		
57578022	AH-5 (0-1.0')	ASTM D2974-87	PMST/1191		
57578023	AH-6 (0-1.0')	ASTM D2974-87	PMST/1191		
57578024	AH-7 (0-1.0')	ASTM D2974-87	PMST/1191		
57578025	AH-7 (1.5-2.0')	ASTM D2974-87	PMST/1191		
57578026	AH-7 (2.5-3.0')	ASTM D2974-87	PMST/1191		
57578027	AH-7 (3.5-4.0')	ASTM D2974-87	PMST/1191		
57578028	AH-7 (4.5-5.0')	ASTM D2974-87	PMST/1191		
57578029	AH-8 (0-1.0')	ASTM D2974-87	PMST/1191		
57578030	AH-8 (1.5-2.0')	ASTM D2974-87	PMST/1191		
57578031	AH-8 (2.5-3.0')	ASTM D2974-87	PMST/1191		
57578032	AH-8 (3.5-4.0')	ASTM D2974-87	PMST/1191		
57578033	AH-9 (0-1.0')	ASTM D2974-87	PMST/1191		
57578034	AH-9 (1.5-2.0')	ASTM D2974-87	PMST/1191		
7578035	AH-9 (2.5-3.0')	ASTM D2974-87	PMST/1191		
57578036	AH-9 (3.5-4.0')	ASTM D2974-87	PMST/1191		
57578037	AH-10 (0-1.0')	ASTM D2974-87	PMST/1191		
57578038	AH-10 (1.5-2.0')	ASTM D2974-87	PMST/1191		
57578039	AH-10 (2.5-3.0')	ASTM D2974-87	PMST/1191		
57578040	AH-10 (3.5-4.0')	ASTM D2974-87	PMST/1191		
57578041	AH-11 (0-1.0')	ASTM D2974-87	PMST/1192		
57578042	AH-11 (1.5-2.0')	ASTM D2974-87	PMST/1192		
57578043	AH-11 (2.5-3.0')	ASTM D2974-87	PMST/1192		
57578044	AH-11 (3.5-4.0')	ASTM D2974-87	PMST/1192		
7578001	AH-1 (0-1.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/285
57578002	AH-1 (1.5-2.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/285
57578003	AH-1 (2.5-3.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/285
7578004	AH-1 (3.5-4.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/285
7578005	AH-1 (4.5-5.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/285
7578006	AH-1 (5.5-6.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/285
7578007	AH-1 (6.5-7.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/285
7678008	AH-1 (7.5-8.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/285
57578009	AH-1 (8.5-9.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/285
57578010	AH-1 (9.5-10.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/285
57578011	AH-2 (0-1.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/285
57578012	AH-2 (1.5-2.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/285
57578013	AH-2 (2.5-3.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/285

REPORT OF LABORATORY ANALYSIS

Page 66 of 80

Released to Imaging: 11/30/2021 2:40:11 PM

Pace Analytical Services, Inc. 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 112MC05590/Conoco-Elvis Tank Pace Project No.: 757578

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
757578014	AH-2 (3.5-4.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/2856
757578015	AH-2 (4.5-5.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/2856
757578016	AH-3 (0-1.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/2856
757578017	AH-3 (1.5-2.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/2856
757578018	AH-3 (2.5-3.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/2856
757578019	AH-3 (3.5-4.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/2856
757578020	AH-3 (4.5-5.0')	EPA 9056A	WETA/2849	EPA 9056A	WETA/2856
767678021	AH-4 (0-1.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578022	AH-5 (0-1.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578023	AH-6 (0-1.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578024	AH-7 (0-1.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
767678026	AH-7 (1.5-2.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578026	AH-7 (2.5-3.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578027	AH-7 (3.5-4.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578028	AH-7 (4.5-5.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578029	AH-8 (0-1.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578030	AH-8 (1.5-2.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578031	AH-8 (2.5-3.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578032	AH-8 (3.5-4.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578033	AH-9 (0-1.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578034	AH-9 (1.5-2.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578035	AH-9 (2.5-3.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578036	AH-9 (3.5-4.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578037	AH-10 (0-1.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578038	AH-10 (1.5-2.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578039	AH-10 (2.6-3.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578040	AH-10 (3.5-4.0')	EPA 9056A	WETA/2850	EPA 9056A	WETA/2857
757578041	AH-11 (0-1.0')	EPA 9056A	WETA/2851	EPA 9056A	WETA/2858
757578042	AH-11 (1.5-2.0')	EPA 9056A	WETA/2851	EPA 9056A	WETA/2858
757578043	AH-11 (2.5-3.0')	EPA 9056A	WETA/2851	EPA 9056A	WETA/2858
757578044	AH-11 (3.5-4.0')	EPA 9056A	WETA/2851	EPA 9056A	WETA/2858

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. Released to Imaging: 11/30/2021 2:40:11 PM

Date: 09/06/2013 02:13 PM

Page 67 of 80

MO#: 757578	ор с (EXT to C36) -) 000000000000000000000000000000000000	the second s						~	×				SAMPLED BY: (Print & Initial) 10. m Elvisott & C C Time: 5-121 -2012	Y: (Circle) BUS	TETRA TECH CONTACT PERSON: Results by:	Town Bligh C RUSH Charges	- Jo/2 61/64 05 50000	Diffect 151/1 Concreption (11/10) Project Manager retains Pink copy - Accounting receives Gold copy.
Analysis Request of Chain of Custody Record		CONCO PHINING SITE MANAGER: TOM EINI OTT ES	112 MUCSSOC COMPERIENTERED (M) MUMBER 2012 - CONCOL - CIVIC TON BALLY OF	001 S/14 - 5 6 AH-4 (0-1.0) 1 1 1	002 / - / AM -1 (1.5-2.0)	003 - AH-1 (2.5-3.0)	004 - AH - A (3.5 - 4.0)	205 - AH-1 (4.5-5.0)	000 - AH - 2 (5.5 - 6. 0')	007 - AH - 1 (6.5 - 7.0°)	UVY - AH - 2 (7.5 8.0)	W W W HH-1 (8.5 A.C.) W W	+H-1 (a.5-10.0) 1	Time: 17:00 RECEIVED BY: (Signature)	Date:	RECEIVED BY: (Signature)	ge Statistic Dooldon	La 3 DATE 1-4 6-13 11 BIEL 14	くそにさく ちょびじ mg/KA、 / fellow copy - Return Orginal copy to Tetra Tech ->

•

Page 111 of 147

SE	к К К	ST od No.)	SQ1	r ,Hq ,2nc	(hiA) (soti	aq2 smmsD isteE sriqiA sedzA) M.I.9 noinA tolaM											C. C Time: S-14-20	AIRBILL #:	Results by:	RUSH Charges Authorizad:	Yes No	Gold copy.
W0# 75	PAGE:	ANALYSIS REQUEST (Circle or Specify Method No.)	а С- БР Н ^д 29	560/624 15 Ba Co 15 Ba Co	4 gA si is Ag k les Votatile 800428 11. Vol. f 8008	PAH 8270 RCRA Meta				α	X	M	Ň	× × × × × × × × × × × × × × × × × × ×	α		SAMPLED BY, Print & Initial III OH DO	ž.	TETRA TECH CONTACT PERSON:	-01- Ellion C		ns Pink copy - Accounting receives
	of Custody Record		I tenpol	PRESERVATIVE METHOD		Ц <u>Ы</u> Н 8012 ВLEX 8033 ИОИЕ ИСЕ НИОЗ НИС ИЛШВЕК ОЕ											Date: Time:	Date: Time:	Date:	MACCIEN	TIME: 1437 PM	 1 1
			TECH Spring St. tax 79705 • Fax (432) 682-3946	GER: Join Ellist	-Elvis Tink &	ee. C.e.) Now Nock is 8 SAMPLE IDENTIFICATION	$(c - 1, c^{\gamma})$	$\left(\tilde{I} \cdot \boldsymbol{\varsigma} - \boldsymbol{Z} \cdot \boldsymbol{\dot{\varsigma}} \right)$	(2.5-3.c)	(3.5 - 4.c)	(4.5 - S.V)	$(\circ - 1, \circ)$	11.5-2.0)	(2-5-3.0)	(3.5 4.0)	\sim		RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	RECEIVED	DATE: 8-16-13	
	Request of Chain	n in innt	TETRA 1910 N. Big Midland, Tey (432) 682-4559		PROJECT NAME:	8499	6 AH -2	1 44-2	6-44	44-2	AH-2	AH3	2 HY	AH 3	4 A.H -3	6 AH-3	Date: 2-15-2013	Date: Time:	Date: Time:	121 190	HONE 572-5729 1123	DN WHEN RECEIVED: THE REMARKS: \mathcal{SeC} ρ Please fill out all copies - Laboratory retains Yellow copy
	Analysis Rec			rece M	PROJECT NO.: //スがく ひらろのむ	LAB I.D. DATE TIME 産 NUMBER えっく 第 600	DI1 8/14 - S	013 / - 1	013	Did		Dite		0(}	019 10 - 1	5 - 17/15 OED	RELINQUISHED BY Signatria	RELINQUISHED BY: (Signature)	RELINQUISHED BY: (Signature)	DRESS, 4/DD W 13 CHAINY 1	NTACT: Shelly Connelly 6	Sample condition when received: 0 0 0 Please fill out all copies

•

Page 112 of 147

· V- h ŝ RUSH Charges Authorized: Results by: Yes Major Anions/Cations, pH, TDS ü - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy 578 Date: OTHER: (sotsedeA) MJ9 Time: (Circle or Specify Method No.) Tom. Elliptic Totalid. Com (niA) ste8 sdqlA Camma Spec ANALYSIS REQUEST 2 \mathcal{D} 2 Ż 2 2 5 ebhoine 121 HOM Ċ 809/808 '1Sed PAGE PCB's 8080/608 TETRA TECH CONTACT PERSON ŀ GC.MS Semi. Vol. 8270/625 SAMPLE SHIPPED BY: (Circle) FEDEX HAND DELIVERED UPS GC'W2 API: 8540/8560/624 SAMPLED BY: (Print & Initial 1.04 IJЯ TCLP Semi Volatiles selitelov 9JOT 510 Metals Ag As Ba Cd Vr Pd Hg Se TCLP RCRA Metals Ag As Ba Cd Cr Pb Hg Se 0728 HA9 2 N N N (Ext. to C35) SOOLXT -00W 9108 2 Hel \$ 0 BIEX 8021B 4370m PRESERVATIVE METHOD Baddon **JNONE** Flor Tenpoc Analysis Request of Chain of Custody Record BOI Time: Date: Time: Date: Date: Time: **EONH** пон (N/N) DERED (Y/N) IME 4 **SRENIATNOD FO REALMUN** ボー à fs í٥ 4 0 ,0, ,0 1.5-2.0 ') ~ RECEIVED BY: (Signature) 10, 1 Wir mak (432) 682-4559 • Fax (432) 682-3946 íc'. - 1.6 RECEIVED BY: (Signature) 1.0.7 RECEIVED BY: (Signature) Ś RECEIVED BY: (Signature) () \` SAMPLE IDENTIFICATION 8-16-1 ţ. ١ **TETRA TECH** 1 1910 N. Big Spring St. Midland, Texas 79705 1 ŧ ţ 5 Ŵ ŧ ţ Ś 0 Ĵ 0 Μ す Ö 0 5 copy 7-//2 DATE: SITE MANAGER: Date: <u>く・パープレリン</u> Time: <u>レフンムン</u> Date: Yellow 200 50/3 0000 4 - Laboratory retains 7 g 4 ゆ S rt 4 AH-58 AH-8 HARKHEAL ١ ١ ١ Ţ ł ١ ΨY エオ 414 ませ 44 5 T ゴ Time: Date: Time: PHONE: 972 PROJECT NAME: 1 Philling f 0 ç BARD Please fill out all copies SOMP XIATAM 9 STATE 06230 TIME Bruy Cappe NDITION WHEN RECEIVED Direco Ń, RECEIVING LABORATORY: + RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature 114 DATE 2012 3 ~ 2 r CLIENT NAME: PROJECT NO. RELINQUISHED BY LAB I.D. NUMBER eeo 030 Seg 0960 NOT THE CONTRACT OF THE CONTRA 093 2004 CBO Dal 9.60 550 PCONTACT: μË

W0# 757578	Page: 4 of: 5	ANALYSIS REQUEST (Circle or Specify Method No.)	и Ль Ба На Se и Ст Ръ На Se	s Ba Cd s Ba Cd s 250/624 270/625	A PA PA la PA PA la PA PA la PA PA la PA PA la PA PA PA PA la PA PA PA PA la PA	PAH 8270 Elem AROR			XV								SalyPLED BY: (Print & Initial) Date: 8-14-2013	Y: (Circle) Al BUS	Įõ	ctreted.co.		etains Pink copy - Accounting receives Gold copy.
	f Chain of Clistody Record	_	TETRA TECH 1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946	SITE MANAGER:	10 L A. Ky 05 2		8 (2.5-3.c) A N	8 (3.5.4.c)	(0-1.0)	(1.5-2.0)	7 (2.5-3.0)	A (3.5 - 4.5)	10 (0-1.0) 01	10 (1.5.2.3)	10 (2.5-3.0) W W	10 (3:5-4.0) A D	レビーンシュント RECEIVED BY: (Signature) Date: Date: Time: Time:		RECEIVED BY: (Signature) Date:	anatural ACU INDAM	27-1122 DATE: 5-110-13 1 TIME: 1437 DAY	K C PS I State A L Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy
17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Analysis Beduest of Chain		1910 Midit Midit (432) (once Millips	PROJECT NO .: PROJECT NAME: //2/10055690 Concie	LAB I.D. DATE TIME X NUMBER 2012 M E K E M E C C G B M E	031 8/14 - 5 6 AH-	033 / - 44-8	033 VH-9	034 - AH-G	035 - AH - G	036 - AH ~ C	037 - AN -	C38 - AH -	- HA - V - PEO	56		RELINQÜISHED BY: (Signature) Date:		naktie	PHONE: 9	Please fill out all copies - Laboratory retails

÷

•

1 W0# 157578		 ANALYSIS REQUEST (Circle or Specify Method No.) 	Vr Pd Hg Se Vr Pd Hg Se	MOD: 1X1005 60 8 Ag As Ba Cd 9240/8260/624 00881 93240/8260/624 00881 93240/8260/624 1740/8260/624 1740/8260/624 1740/8260/624	PAH 8270 RCLP Metal TCLP Metal TCLP Volatil TCLP Volatil RCI GC.MS Vel. 5 GC.MS Vel. 5 GC.MS Vel. 5 GC.MS Vel. 5 GC.MS Vel. 5 GC.MS Vel. 6 GC.MS Vel								SAMPLED.BY: Prints inligh - Kow El Nicht & C. 6. Time: S- 14-262		HANDDELWERED UPS OTHER: TETRA TECH CONTACT PERSON: Results by:	Tech. ewy	C/M Yes No	16 1 - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.
	In or custody Hecord		TECH pring St. エール / アル・ク us 79705 Fax (432) 682-3946	Town Ellict Contrainens	U EL - ALAGIZ &	(0-1.0) N N	(1.5-2.s) ([[[3.5.3.0)	3.5-4.5) 1 2				RECEIVED BY: (Signature) Date:		RECEIVED BY: (Signature) Date: Date: Time:	NED BY: (Signature) SACA NO DOO	0-16-13 TIME 1457	
Anchaio Docusot of Obe	Alialysis request of Unair		1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 68	CLIENT NAME: CILENT NAME: SITE MANAGER:	DATE TIME AT RIX COMP. LEN.	041 S/14 ~ S G AH-11 (043 / ~ / / H-11 /	043 V - V V AH-11 (044 8/44 - 5 6 4H-11 7				Date: X-12.20	Date: Time:	Date: Time:	1 2/2 1 10 5(1) 20 190	H	Please fill out all copies - Laboratory retains Yellow copy

•

Page 115 of 147

Face Analytical Client Name:	1	ondit I In O	ion l	Jpon Receipt Phillips Pace #: <u>151518</u>
Courier: Ted Ex UPS USPS Client Tracking #: 796475658781		ourier	□ls	O Pace Other
Custody Seal on Cooler/Box Present: 🛛 🕅 yes	no	I	Seals	intact: 💋 yes 🔲 no 🗌 N/A
Packing Material: Bubble Wrap Bubble B	lags	⊡No	ne	Other
Thermometer Used IR-01 IR-02	Туре о	of Ice:	Wet	Blue None A Samples on ice, cooling process has begun
Cooler Temperature 0.200	ice V	/isible	in Sar	nple Containers: 🛛 yes 🔲 no
Temp should be above freezing to 6°C				Comments: Date and Initials of person examining
Sample Receiving				
Chain of Custody Present:	K Yes	⊡No		1.
Chain of Custody Filled Out:	19 Yes	□No		2.
Chain of Custody Relinquished:	Yes	□No		3.
Sampler Name & Signature on COC:	K iYes			4.
Short Hold Time Analysis (<72hr):	□Yes	10No		5.
Rush Turn Around Time Requested:	□Yes	15No		6.
Containers Intact:	D Yes	□No		7.
Sample Labeis match COC:	Yes	□No		8.
-Includes date/time/ID/Analysis	•			x ²
All containers needing acid/base pres. have been checked?	□Yes			9. (Circle) HNO3 H2SO4 NaOH HCI
exceptions: VOA, coliform, O&G			,	If applicable see below.
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes	⊡No	IP N/A	pH strip lot #:
				Potassium lodide strip lot #:
				Lond Applete strip let #
Headspace in VOA Vials (>6mm):	□Yes		K N/A	Lead Acetate strip lot #:
Trip Blank Present:	□ Yes			
Trip Blank Custody Seals Present	□Yes		ØN/A	11
Samples Arrived within Hold Time:	1/2/Yes			12
Sufficient Volume:	QYes			
Correct Containers Used:	[] [] [] [] []] []] []] []] []] [
Client Notification/ Resolution:	13			
Person Contacted:			Date/	Time:
Comments/ Resolution:				
Project Manager Review:		(//	pic	Date: 8/19/13

.

F-DAL-C-001rev.00 11-5-2012

•

Released to Imaging: 11/30/2021 2:40:11 PM

•

Page 117 of 147

Core Role L of S Dece Project # JSJS Sample Line Pace Project # JSJS Pace Project # JSJS Pace Project # JSJS Sample Line Pace Project # JSJS Pace Project # JSJS Pace Project # JSJS Pace Project # JSS Pace Project # JSS Pace Project # JSS Pace Project # JSSS Pace Project # JSSS Pace Project # JSSS Pace Project # JSSS Pace Project # JSSS Pace Project # JSSS Pace Project # JSSSS Pace Project # JSSS Pace Project # JSSS Pace Project # JSSS Pace Project # JSSS <t< th=""><th></th><th>Sample</th><th>Sample Container Count</th><th>Earce Analutical"</th></t<>		Sample	Sample Container Count	Earce Analutical"
BPZN AG1U VGBU VGBU BPZU BPCIH AG1S BPZ0 SPST WGFU WGFU WGFU Image: Second Secon	coc PAGE of	Pace Project	157578	anoryspacetizetizetizetizetizetizetizetizetizetiz
1 1	BP2N AG1U VG9U	BP1U BP2U BG1H	SP5T	Comments
1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>				
8 1				
4 4 4 4 4 4 4 5 5 1	e contraction de la contractica de la contractic			
Container Container <thcontainer< th=""> <thcontainer< th=""> <thc< td=""><td>4</td><td></td><td>-</td><td></td></thc<></thcontainer<></thcontainer<>	4		-	
0 1	Ð			
7 1	Q		~	
B Image: Contrainent Contrelation Contrelatinent Contrainent Contrelation Contrainent Contra	7			
0 0 1	8			
0 1	6		~	
1 1	10			i.
2 Container Codes Container Codes Air Filter BP1N 1 fiter HN03 plastic DG9P AG1U 11iter unpreserved amber glass AG1H 1 fiter HZSO4 plastic DG9S AG1U 11iter unpreserved amber glass AG1H 1 fiter HZSO4 plastic DG9S AG1U 11iter unpreserved amber glass BP1A 1 fiter HZSO4 plastic DG9U NGFU 4oz clear soil jar AG17 1 fiter HZSO4 amber glass BP1A 1 fiter HZSO4 plastic DG9U NGFU 4oz clear soil jar AG17 1 fiter NaCH RP1Z 1 fiter NaCH, Zn, Ac DG9U NGFU 4oz clear soil jar AG17 1 fiter NaCH, Zn DG9U DG9U NGFU 4oz clear soil jar AG17 1 fiter NaCH, Zn, Ac DG9U DG9U S00mL HNO3 plastic AG23 S00mL unpreserved plastic DG9U U U BP2N S00mL HZSO4 plastic AG30 Z50mL unpreserved plastic JGFU U BP3N Z50mL HNO3 plastic AG30 Z50mL unpreserved plastic VG9U VG9U BP3N Z50mL HZSO4 amber glass BP3A	11			
Container Codes DG9H 40mL HCL amber voa vial AF Air Filter BP1N 1 liter HNO3 plastic DG9P AG1U 11iter unpreserved amber glass AG1H 1 liter H2SO4 BP1N 1 liter H2SO4 plastic DG9P AG1U 11iter unpreserved amber glass AG1H 1 liter H2SO4 amber glass BP1U 1 liter unpreserved plastic DG9U R terra core kit AG1T AG1T 1 liter H2SO4 amber glass BP1U 1 liter unpreserved plastic DG9U BP2N 500mL HNO3 plastic AG2N 500mL HNO3 amber glass BP1Z 500mL NaOH, Asc Acid plastic DG9U BP2N 500mL Unpreserved plastic AG2S 500mL unpreserved plastic AG3U 500mL unpreserved plastic DG9U BP2N 550mL Unpreserved plastic AG3U 500mL unpreserved plastic AG3U 500mL unpreserved plastic JGFU BP3N 250mL Unpreserved plastic AG3U 500mL unpreserved plastic JGFU JGFU BP3N 250mL Unpreserved plastic BG1H 1 liter H2SO4 clear glass BP3Z	12			
DG9H 40mL HCL amber voa vial AF Air Filter Die PTIN 1 liter HNO3 plastic DG9P AG1U 11ter unpreserved amber glass AG1H 1 liter HCL amber voa vial AG1 1 liter HCL amber voa vial DG9P AG1U 11ter unpreserved amber glass AG1H 1 liter H2SO4 amber glass BP10 1 liter H2SO4 plastic DG9D R terra core kit AG1T 1 liter Na Thiosuifate amber glass BP10 1 liter NaOH, Aix Acid plastic DG9U BP2N 500mL HNO3 plastic AG2N 500mL HNO3 amber glass BP12 1 liter NaOH, Aix Acid plastic D<0	Container Codes			
AG1U 1 fiter unpreserved amber glass AG1H 1 fiter HCL amber glass BP1S 1 fiter H2SO4 plastic DG3S1 R terra core kit AG1S 1 fiter H2SO4 amber glass BP1U 1 fiter unpreserved plastic DG3U BP2N 500mL HNO3 plastic AG1T 1 fiter Na H2A 500mL NAOH, Zn, Ac DG9U BP2N 500mL Unpreserved plastic AG2S 500mL HNO3 amber glass BP2A 500mL NaOH, Asc Acid plastic DG9U BP2N 500mL Unpreserved plastic AG2U 500mL unpreserved plastic JGFU J BP3N 250mL Uno3 plastic AG3U 500mL unpreserved glass BP3A 250mL NaOH, Asc Acid plastic JGFU BP3N 250mL Uno3 plastic BG1H 1 itter HCL clear glass BP3A 250mL NaOH, Asc Acid plastic VG9H BP3N 250mL Unoreserved plastic BG1H 1 itter HCL clear glass BP3A 250mL NaOH, Asc Acid plastic VG9H AG33 250mL Uno3 plastic BG1H 1 itter HCL clear glass BP3A 250mL NaOH, Asc Acid plastic VG9H AG33 250mL L2SO4 glass amber BG1H 1 itter HCL clear glass B				DG9P 40mL TSP amber vial
MGFU 4oz clear soil jar AG1S 1 liter H2SO4 amber glass BP1U 1 liter unpreserved plastic DG9U R terra core kit AG1T 1 liter Na Thiosulfate amber gl BP1Z 1 liter NaOH, Zn, Ac DG9U BP2N 500mL HNO3 plastic AG2N 500mL HNO3 amber glass BP1Z 500mL NaOH, Zn, Ac DG9U BP2N 500mL unpreserved plastic AG2S 500mL unpreserved amber glass BP2Z 500mL NaOH, Zn, Ac DG9U BP3N 250mL unpreserved plastic AG3U 500mL unpreserved amber glass BP3A 250mL NaOH, Zn Ac U BP3N 250mL unpreserved plastic BG1H 1 liter HCL clear glass BP3A 250mL NaOH, Zn Ac VG9U BP3N 250mL H2SO4 amber glass BP3Z 250mL NaOH, Zn Ac VG9U VG9U AG3S 250mL H2SO4 glastic BF3A 250mL NaOH, Zn Ac VG9U VG9U AG3S 250mL H2SO4 glass BF3Z 250mL NaOH, Zn Ac VG9U VG9U AG3S 250mL H2SO4 glasstic BF3Z 250mL NaOH, Zn Ac	ł			
Rterra core kitAG1TI fiter Na Thiosulfate amber glBP1ZI itter NaOH, Zn, AcDG9UBP2N500mL HNO3 plasticAG2N500mL HNO3 amber glassBP2A500mL NaOH, Asc Acid plasticJGFUBP2S500mL unpreserved plasticAG2S600mL Unpreserved amber glassBP2A500mL NaOH, Asc Acid plasticJGFUBP2N250mL Unpreserved plasticAG3U500mL unpreserved amber glassBP2Z500mL NaOH, Zn AcUBP3N250mL HNO3 plasticAG3U250mL unpreserved amber glasBP3Z250mL NaOH, Asc Acid plasticVG9HBP3U250mL H2SO4 plasticBG1H1 itter HCL clear glassBP3Z250mL NaOH, Asc Acid plasticVG9HBP3U250mL H2SO4 plasticBG1K1 itter H2SO4 dlear glassBP3Z250mL NaOH, Zn AcVG9HAG3S250mL H2SO4 glass amberBG1K1 itter H2SO4 dlear glassBP3Z250mL NaOH, Zn Ac plasticVG9HAG1S1 itter H2SO4 glass amberBG1K1 itter Manuffate clear glassBP3Z250mL NaOH, Zn Ac plasticVG9HAG1S1 itter H2SO4 glass amberBG1K1 itter Manuffate clear glassDG9B40mL NaOH, Zn Ac plasticVG9HAG1S1 itter H2SO4 glass amberBF1U1 itter Unpreserved glassBP3Z250mL NaOH, Zn Ac plasticVG9HAG1S1 itter Unpreserved glassBP3Z250mL NaOH, Zn Ac plasticVG9HVG9HAG1S1 itter Unpreserved glassBP1U1 itter H2SO4 glassDG9B40mL Na H2N Ac Acid plasticVG9H </td <td></td> <td></td> <td></td> <td></td>				
BP2N 500mL HNO3 plastic AG2N 500mL HNO3 and to the served plastic I BP2U 500mL unpreserved plastic AG2S 500mL H2SO4 amber glass BP2A 500mL NaOH Asc Acid plastic JGFU BP2N 500mL H2SO4 plastic AG2U 500mL unpreserved plastic AG2S 500mL unpreserved plastic JGFU BP3N 250mL HNO3 plastic AG3U 250mL unpreserved amber gla BP3A 250mL NaOH, Asc Acid plastic VG9H BP3N 250mL HNO3 plastic BG1H 1 liter HCL clear glass BP3A 250mL NaOH, Asc Acid plastic VG9H BP3N 250mL H2SO4 plastic BG1H 1 liter H2SO4 clear glass BP3A 250mL NaOH, Zh Ac VG9H AG3S 250mL H2SO4 glass amber BG1H 1 liter H2SO4 clear glass BP3C 250mL NaOH, Zh Ac plastic VG9U AG3S 250mL H2SO4 glass amber BG1H 1 liter H2SO4 clear glass BP3Z 250mL NaOH, Zh Ac plastic VG9U AG3S 1 liter Unpreserved glass BP3Z 250mL NaOH, Zh Ac plastic VG9U AG1 1 liter Na Thiosuffate clear glass DG9B 40mL NaOH, Zh Ac plastic VG9U AG		1 liter Na Thiosulfate amber		
BP2U500mL unpreserved plasticAG2S500mL H2SO4 plasticJGFUBP2S500mL H2SO4 plasticAG2U500mL unpreserved amber glaBP2Z500mL NaOH, Zn AcUBP3N250mL HNO3 plasticAG3U250mL unpreserved amber glaBP3A250mL NaOH, Zn AcUBP3U250mL unpreserved plasticBG1H1 liter HCL clear glassBP3A250mL NaOH, Asc Acid plasticVG9HBP31250mL unpreserved plasticBG131 liter HCL clear glassBP3Z250mL NaOH plasticVG9HBP32250mL H2SO4 plasticBG111 liter H2SO4 clear glassBP3Z250mL NaOH, PlasticVG9HAG32250mL H2SO4 glass amberBG111 liter Unpreserved glassBP3Z250mL NaOH, Zn Ac plasticVG9UAG151 liter H2SO4 amber glassBG101 liter unpreserved glassDG9B40mL Na Bisulfate amber vialVG9UAG151 liter Unpreserved plasticBP1A1 liter unpreserved glassDG9B40mL MeOH clear vialVG9UNGKUBoz wide jar upreservedSP51120mL Coliform Na ThiosulfateSP5U120mL Coliform unpreservedGNOtherOtherOtherSP51120mL Coliform Na ThiosulfateSP5U120mL Coliform unpreservedGN				I Wipe/Swab
BP2S500mL H2SO4 plasticAG2U500mL unpreserved amber glaBP3Z500mL NaOH, Zn AcUBP3N250mL HNO3 plasticAG3U250mL unpreserved amber glaBP3A250mL NaOH, Asc Acid plasticVG9HBP3U250mL unpreserved plasticBG1H1 liter HCL clear glassBP3Z250mL NaOH, Asc Acid plasticVG9TBP3S250mL unpreserved plasticBG1A1 liter HCL clear glassBP3Z250mL NaOH, Zn Ac plasticVG9UAG3S250mL H2SO4 plasticBG1A1 liter H2SO4 clear glassBP3Z250mL NaOH, Zn Ac plasticVG9UAG1S1 liter Unpreserved plasticBG1A1 liter unpreserved glassDG9B40mL NaOH, Zn Ac plasticVSGAG1S1 liter unpreserved plasticBP1A1 liter unpreserved glassDG9B40mL Na Bisulfate amber vialWGFXNGKUBoz wide jar upreservedSP51120mL Coliform Na ThiosulfateSP5U120mL Coliform unpreservedGNOtherOtherOtherActAcid plasticDG9M40mL more servedGN		AG2S 500mL H2SO4 amber glass	BP20 500mL NaOH plastic	
BP3N 250mL HNO3 plastic AG3U 250mL unpreserved plastic AG3U 250mL unpreserved plastic NaOH, Asc Acid plastic VG9T BP3U 250mL unpreserved plastic BG1H 1 liter HCL clear glass BP3C 250mL NaOH plastic VG9T BP3S 250mL H2SO4 plastic BG1H 1 liter HCL clear glass BP3C 250mL NaOH plastic VG9U AG3S 250mL H2SO4 plastic BG11 1 liter H2SO4 clear glass BP3Z 250mL NaOH, Zn Ac plastic VG9U AG1S 1 liter H2SO4 glass amber BG11 1 liter unpreserved glass BC10 1 liter unpreserved glass DG9B 40mL Na Bisulfate amber vial VSG AG1V 1 liter unpreserved plastic BP1A 1 liter unpreserved glass DG9B 40mL Na Bisulfate amber vial VSG VGKU Boz wide jar upreserved SP5T 120mL Coliform Na Thiosulfate SP5U ZPLC VGKU Boz wide jar upreserved SP5U 120mL Coliform unpreserved GN Other Other Other SP5U 120mL Coliform Na Thiosulfate SP5U Lol SP1C				
BP3U 250mL unpreserved plastic BG1H 1 liter HCL clear glass BP3C 250mL NaOH plastic VG91 BP3S 250mL H2SO4 plastic BG1S 1 liter H2SO4 clear glass BP3Z 250mL NaOH, Zn Ac plastic VG9U AG3S 250mL H2SO4 glass amber BG1T 1 liter H2SO4 clear glass BP3Z 250mL NaOH, Zn Ac plastic VG9U AG1S 1 liter H2SO4 glass amber BG1U 1 liter unpreserved glass DG9B 40mL Na Bisulfate amber vial WGFX AF1U 1 liter unpreserved plastic BP1A 1 liter NaOH, Asc Acid plastic DG9M 40mL Na Bisulfate amber vial WGFX NGKU Boz wide jar upreserved SP5T 120mL Coliform Na Thiosulfate SP5U ZPLC Other Other Other Other SP5T 120mL Coliform Na Thiosulfate SP5U ZPLC				
BP3S 250mL H2SO4 plastic BG1S 1 liter H2SO4 clear glass BP3Z 250mL NaOH, Zn Ac plastic VG9U AG3S 250mL H2SO4 glass amber BG1T 1 liter Na Thiosulfate clear gla C Air Cassettes VSG AG1S 1 liter H2SO4 glass amber BG1U 1 liter unpreserved glass DG9B 40mL Na Bisulfate amber vial WGFX BP1U 1 liter unpreserved plastic BP1A 1 liter NaOH, Asc Acid plastic DG9B 40mL MeOH clear vial ZPLC NGKU Boz wide jar upreserved SP5T 120mL Coliform Na Thiosulfate SP5U 120mL Coliform unpreserved GN Other Other Other Other SP5U 120mL Coliform Na Thiosulfate SP5U 20mL coliform unpreserved GN	- 1		BP3C 250mL NaOH plastic	
AG3S Z50mL H2SO4 glass amber BG1T 1 liter Na Thiosulfate clear gla C Air Cassettes VSG AG1S 1 liter H2SO4 amber glass BG1U 1 liter unpreserved glass DG9B 40mL Na Bisulfate amber vial WGFX BP1U 1 liter unpreserved plastic BP1A 1 liter NaOH, Asc Acid plastic DG9M 40mL MeOH clear vial ZPLC NGKU Boz wide jar upreserved SP5T 120mL Coliform Na Thiosulfate SP5U 120mL Coliform unpreserved GN Other Other Other Other SP5U 120mL Coliform Na Thiosulfate SP5U 120mL coliform unpreserved GN			BP3Z 250mL NaOH, Zn Ac plastic	VG9U 40mL unpreserved clear vial
AG1S 1 liter H2SO4 amber glass BG1U 1 liter unpreserved glass DG9B 40mL Na Bisulfate amber vial WGFX BP1U 1 liter unpreserved plastic BP1A 1 liter NaOH, Asc Acid plastic DG9M 40mL MeOH clear vial ZPLC NGKU Boz wide jar upreserved SP5T 120mL Coliform Na Thiosulfate SP5U 120mL Coliform unpreserved GN Other Other Other Other SP5U 120mL Coliform unpreserved GN	1 1		C Air Cassettes	
BP1U 1 litter unpreserved plastic BP1A 1 litter NaOH, Asc Acid plastic DG9M 40mL MeOH clear vial ZF NGKU 8oz wide jar upreserved SP5T 120mL Coliform Na Thiosulfate SP5U 120mL Coliform unpreserved ZF Other Other Other SP5U 120mL Coliform unpreserved ZF			DG9B 40mL Na Bisulfate amber vial	WGFX 4oz wide jar winexane wipe
NGKU Boz wide jar upreserved SP5T 120mL Coliform Na Thiosulfate SP5U 120mL Coliform unpreserved Other Other		BP1A 1 liter NaOH, Asc Acid plastic	DG9M 40mL MeOH clear vial	ZPLC Ziploc Bag
- Other Other Bage 24 o	WGKU 8oz wide jar upreserved	SP5T 120mL Coliform Na Thiosulfate	SP5U 120mL Coliform unpreserved	GN General unpreserved
age 74 o	n Other Other			
f	age 74 of			
80				

F-DAL-C-003 rev.00 11-5-2012

Released to Imaging: 11/30/2021 2:40:11 PM

•

Pace Analytical"

Page 118 of 147

น เงื่	
COC PAGE	

.

Pace Project # 757578

DG9H 40ml HCI amb	DG9H 40ml HCI amber voa vial	AF	AF Air Filter	BP1N	BP1N 1 liter HNO3 plastic	DG9P	DG9P 40mL TSP amber vial
AG1U	AG1U 11iter unpreserved amber glass	1	AG1H 1 liter HCL amber glass	BP1S	BP1S 1 liter H2SO4 plastic	DG9S	DG9S 40mL H2SO4 amber vial
WGFU	WGFU 4oz clear soil jar		AG1S 1 liter H2SO4 amber glass	BP1U	BP1U 1 liter unpreserved plastic	DG9T	40mL Na Thio amber vial
R.	terra core kit	AG1T	AG1T 1 liter Na Thiosulfate amber gt	BP1Z	1 liter NaOH, Zn, Ac	DG9U	40mL unpreserved amber vial
BP2N	500mL HNO3 plastic	AG2N	500mL HNO3 amber glass	BP2A	500mL NaOH, Asc Acid plastic	-	Wipe/Swab
1	500mL unpreserved plastic	AG2S	500mL H2SO4 amber glass	BP2O	BP20 500mL NaOH plastic	JGFU	JGFU 4oz unpreserved amber wide
BP2S	500mL H2SO4 plastic	AG2U	AG2U 500mL unpreserved amber gla	BP2Z	BP2Z 500mL NaOH, Zn Ac	D	U Summa Can
BP3N	BP3N 250mL HNO3 plastic	AG3U	AG3U 250mL unpreserved amber gla	BP3A	BP3A 250mL NaOh, Asc Acid plastic	VG9H	VG9H 40mL HCL clear vial
BP3U	BP3U 250mL unpreserved plastic	BG1H	BG1H 1 liter HCL clear glass	BP3C	BP3C 250mL NaOH plastic	VG9T	VG9T 40mL Na Thio. clear vial
BP3S	BP3S 250mL H2SO4 plastic	BG1S	BG1S 1 liter H2SO4 clear glass	BP3Z	BP3Z 250mL NaOH, Zn Ac plastic	VG9U	40mL unpreserved clear vial
AG3S	AG3S 250mL H2SO4 glass amber	BG1T	1 liter Na Thiosulfate clear gla	U	Air Cassettes	VSG	VSG Headspace septa vial & HCL
AG1S	AG1S 1 liter H2SO4 amber glass	BG1U	1 liter unpreserved glass	DG9B	DG9B 40mL Na Bisulfate amber vial	WGFX	WGFX 4oz wide jar w/hexane wipe
BP1U	1 liter unpreserved plastic	BP1A		DG9M	DG9M 40mL MeOH clear vial	ZPLC	ZPLC Ziploc Bag
WGKU 8	WGKU 8oz wide jar upreserved	SP5T	SP5T 120mL Coliform Na Thiosulfate	SP5U	SP5U 120mL Coliform unpreserved	U U U	GN General unpreserved
Other Other	Other						
ດ ເມ ອາf 80							

F-DAL-C-003 rev.00 11-5-2012

•

Page 119 of 147 Pace Analytical"

3 <u>"</u> S	
COC PAGE	20C ID#

	Comments										*			
,	NGKU													
0	NGFU \	~	/	/		/	,	1	-	/	,			
2	SP5T													
	BP20													
oject#	AG1S													
Pace Project # / 0 / 0 / 0	BG1H													
	BP2U BG1H AG1S BP20 SP5T WGFU WGKU													-
	BP1U													
	BP2S							-						
	NG9H													
	VG9U													
	BP2N AG1U VG9U VG9H BP2S BP1U													
	BP2N													
coc ID#	Sample Line Item	-	2	3	4	ى ا	9	7	ω	6	10	11	12	

L SO	DG9H 40mL HCL amber voa vial	AF	AF Air Filter	BP1N	BP1N 1 liter HNO3 plastic	DG9P	DG9P 40mL TSP amber vial
010	AG1U 1liter unpreserved amber glass	AG1H	AG1H 1 liter HCL amber glass	BP1S	BP1S 1 liter H2SO4 plastic	DG9S	DG9S 40mL H2SO4 amber vial
D E D	WGFU 4oz clear soil jar	AG1S	AG1S 1 liter H2SO4 amber glass	BP1U	BP1U 1 liter unpreserved plastic	DG9T	DG9T 40mL Na Thio amber vial
	R terra core kit	AG1T	AG1T 1 liter Na Thiosulfate amber gl	BP1Z	BP1Z 1 liter NaOH, Zn, Ac	DG9U	DG9U 40mL unpreserved amber vial
P2N	BP2N 500mL HNO3 plastic	AG2N	AG2N 500mL HNO3 amber glass	BP2A	BP2A 500mL NaOH, Asc Acid plastic		Wipe/Swab
P2U	BP2U 500mL unpreserved plastic	AG2S	AG2S 500mL H2SO4 amber glass	BP20	BP20 500mL NaOH plastic	JGFU	4oz unpreserved amber wide
P2S	BP2S 500mL H2SO4 plastic	AG2U	AG2U 500mL unpreserved amber gla	BP2Z	BP2Z 500mL NaOH, Zn Ac	D	U Summa Can
P3N	BP3N 250mL HNO3 plastic	AG3U	AG3U 250mL unpreserved amber gla	BP3A	BP3A 250mL NaOh, Asc Acid plastic	VG9H	VG9H 40mL HCL clear vial
P3U	BP3U 250mL unpreserved plastic	BG1H	BG1H 1 liter HCL clear glass	BP3C	BP3C 250mL NaOH plastic	VG9T	VG9T 40mL Na Thio. clear vial
P3S	RP3S 250mL H2SO4 plastic	BG1S	BG1S 1 liter H2SO4 clear glass	BP3Z	BP3Z 250mL NaOH, Zn Ac plastic	VG9U	VG9U 40mL unpreserved clear vial
C3S	AG3S 250mL H2SO4 dlass amber	BG1T	BG1T 1 liter Na Thiosulfate clear gla	U	C Air Cassettes	NSG	VSG Headspace septa vial & HCL
G1S	AG1S 1 liter H2SO4 amber glass	BG1U	BG1U 1 liter unpreserved glass	DG9B	DG9B 40mL Na Bisulfate amber vial	WGFX	WGFX 4oz wide jar w/hexane wipe
P1U	BP1U 1 liter unpreserved plastic	BP1A	BP1A 1 liter NaOH, Asc Acid plastic	DG9M	DG9M 40mL MeOH clear vial	ZPLC	ZPLC Ziploc Bag
IS IS	WGKU 802 wide jar upreserved	SP5T	SP5T 120mL Coliform Na Thiosulfate	SP5U	SP5U 120mL Coliform unpreserved	ßN	GN General unpreserved
The	Other Other						

F-DAL-C-003 rev.00 11-5-2012

age 76 of 80 .

Released to Imaging: 11/30/2021 2:40:11 PM

•

Page 120 of 147

:0C PAGE <u> </u>	S° T							Pace F	Pace Project # 757578	# 75	75.	82	,		Pace Analytical" umperintecan	
Sample Line Item	BP2N	BP2N AG1U VG9U VG9H	VG9U	VG9H	BP2S	BP1U	BP2U	BG1H AG1S	AG1S	BP20	SP5T	SP5T WGFU WGKU	WGKU		Comments	
1												-				
2												-				
S												_				
4												-				
5												_				
9																- 1
7												-				
ø												~				
6												~				
10												~				1
11																
12																
	Containe	Container Codes		=												
DG9H	DG9H 40mL HCL amber voa vial	+CL amt	Der voa v	rial	AF	AF Air Filter	5-			BP1N	1 liter H	BP1N 1 liter HNO3 plastic	stic	DG9P	DG9P 40mL TSP amber vial	- 1
AG1U		1liter unpreserved amber glass	red amb	er glass	AG1H	-	liter HCL amber glass	er glass		BP1S	1 liter H	BP1S 1 liter H2SO4 plastic	astic	DG9S	DG9S 40mL H2SO4 amber vial	
WGFU	WGFU 4oz clear soil jar	ar soil ja	١٢		AG1S 11	1 liter H	liter H2SO4 amber glass	nber gla	SS	BP1U	1 liter ui	npreserv	BP1U 1 liter unpreserved plastic	DG9T	DG9T 40mL Na Thio amber vial	

DG9U 40mL unpreserved amber vial

JGFU 4oz unpreserved amber wide

Wipe/Swab

BP2A 500mL NaOH, Asc Acid plastic

BP1Z 1 liter NaOH, Zn, Ac

AG1T 1 liter Na Thiosulfate amber gl

BP3A 250mL NaOh, Asc Acid plastic

BP2Z 500mL NaOH, Zn Ac

AG2U 500mL unpreserved amber gla AG3U 250mL unpreserved amber gla

AG2N 500mL HNO3 amber glass AG2S 500mL H2SO4 amber glass

BP2U 500mL unpreserved plastic

BP2N 500mL HNO3 plastic

terra core kit

C۲.

BP2S 500mL H2SO4 plastic

BP3N 250mL HNO3 plastic

BP20 500mL NaOH plastic

U Summa Can

VG9U 40mL unpreserved clear vial VSG Headspace septa vial & HCL WGFX 4oz wide jar w/hexane wipe

GN General unpreserved

ZPLC Ziploc Bag

DG9B 40mL Na Bisulfate amber vial

SP5U 120mL Coliform unpreserved

SP5T 120mL Coliform Na Thiosulfate

BP1A 1 liter NaOH, Asc Acid plastic

BG1U 1 liter unpreserved glass

DG9M 40mL MeOH clear vial

BP3Z 250mL NaOH, Zn Ac plastic

C Air Cassettes

BG1T 1 liter Na Thiosulfate clear gla

AG3S 250mL H2SO4 glass amber

AG1S 1 liter H2SO4 amber glass

BP1U 1 liter unpreserved plastic

WGKU 802 wide jar upreserved

Other Other

BP3U 250mL unpreserved plastic

BP3S 250mL H2SO4 plastic

BG1H 1 liter HCL clear glass BG1S 1 liter H2SO4 clear glass

BP3C 250mL NaOH plastic

VG9H 40mL HCL clear vial VG9T 40mL Na Thio. clear vial

Page 77 of 80

F-DAL-C-003 rev.00 11-5-2012

ء ارا
5
PAGE
õ

.

863636

	Comments								8				
	GKU												
0	SFU W	 											
2	T WG			~									
2	SP5	 											
) #	BP20												
roject	AG1S												
Pace Project # / J / J / J	BP2U BG1H AG1S BP20 SP5T WGFU WGKU												
	IP2U	 											
	2S BI	 											
	H	 											
	CG9	 											
4	NG9V												
	AG1U												
	BP2N AG1U VG9U VG9H BP2S BP1U					1							
SOC ID#	Sample Line Item	2	ო	4	2	9	2	œ	6	10	1	12	

	Container Codes							
DG9H	DG9H 40mL HCL amber voa vial	AF	AF Air Filter	BP1N	BP1N 1 liter HNO3 plastic	DG9P	DG9P 40mL TSP amber vial	
AG1U	1liter unpreserved amber glass	AG1H	1 liter HCL amber glass	BP1S	1 liter H2SO4 plastic	DG9S	40mL H2SO4 amber vial	
WGFU	4oz clear soil jar	AG1S	1 liter H2SO4 amber glass	BP1U	1 liter unpreserved plastic	DG9T	40mL Na Thio amber vial	
R	terra core kit	AG1T	1 liter Na Thiosulfate amber gl	BP1Z	1 liter NaOH, Zn, Ac	DG9U	40mL unpreserved amber vial	
BP2N	500mL HNO3 plastic	AG2N	AG2N 500mL HNO3 amber glass	BP2A	BP2A 500mL NaOH, Asc Acid plastic	-	Wipe/Swab	
BP2U	500mL unpreserved plastic	AG2S	AG2S 500mL H2SO4 amber glass	BP20	BP20 500mL NaOH plastic	JGFU	JGFU 4oz unpreserved amber wide	
BP2S	500mL H2SO4 plastic	AG2U	AG2U 500mL unpreserved amber gla	BP2Z	BP2Z 500mL NaOH, Zn Ac	D	U Summa Can	
BP3N	BP3N 250mL HNO3 plastic	AG3U	AG3U 250mL unpreserved amber gla	BP3A	BP3A 250mL NaOh, Asc Acid plastic	VG9H	VG9H 40mL HCL clear vial	
BP3U	250mL unpreserved plastic	BG1H	BG1H 1 liter HCL clear glass	BP3C	BP3C 250mL NaOH plastic	VG9T	VG9T 40mL Na Thio. clear vial	
BP3S	BP3S 250mL H2SO4 plastic	BG1S	1 liter H2SO4 clear glass	BP3Z	BP3Z 250mL NaOH, Zn Ac plastic	VG9U	VG9U 40mL unpreserved clear vial	
AG3S	250mL H2SO4 glass amber	BG1T	1 liter Na Thiosulfate clear gla	C	C Air Cassettes	VSG	VSG Headspace septa vial & HCL	
AG1S	1 liter H2SO4 amber glass	BG1U	BG1U 1 liter unpreserved glass	DG9B	DG9B 40mL Na Bisulfate amber vial	WGFX	WGFX 4oz wide jar w/hexane wipe	
BP1U	BP1U 1 liter unpreserved plastic	BP1A	BP1A 1 liter NaOH, Asc Acid plastic	DG9M	DG9M 40mL MeOH clear vial	ZPLC	ZPLC Ziploc Bag	
MGKU	WGKU 8oz wide jar upreserved	SP5T	SP5T 120mL Coliform Na Thiosulfate	SP5U	SP5U 120mL Coliform unpreserved	ßN	GN General unpreserved	
Other Other	Other							
Page								
78								
្រ ប of 80	E_DA1_0_003 rev 00 11_6_0049							

F-DAL-C-003 rev.00 11-5-2012

•

•

Shelly Connelly - RE: Report: 112MC05590/Conoco-Elvis Tank - Pace ID 757578

From: To:	"Elliott, Tom" <tom.elliott@tetratech.com> Shelly Connelly <shelly.connelly@pacelabs.com>, Steven Tischer <steve.p< th=""></steve.p<></shelly.connelly@pacelabs.com></tom.elliott@tetratech.com>
Date:	8/27/2013 2:25 PM
Subject:	RE: Report: 112MC05590/Conoco-Elvis Tank - Pace ID 757578

Shelly,

Please run the next horizon below the 0-1' for TPH only. It is listed below.

Sample: AH-2 (1.5-2.0') Lab ID: 757578012 Collected: 08/14/13 00:00 Received: 08/16/13 14:37 Matrix: Solid

Thanks,

Tom Elliott | Project Manager / Environmental Scientist Phone: 432.687.8120 | Mobile 432-631-0348 | Fax:432.682.3946 Tom.Elliott@tetratech.com

Tetra Tech | Complex World, CLEAR SOLUTIONS™ 4000 N. Big Spring | Suite 401 | Midland, TX 79705 | <u>www.tetratech.com</u>

From: Shelly Connelly [mailto:Shelly.Connelly@pacelabs.com]
Sent: Tuesday, August 27, 2013 2:13 PM
To: Steven Tischer
Cc: Elliott, Tom
Subject: Report: 112MC05590/Conoco-Elvis Tank - Pace ID 757578

Attached are the results from the Conoco Elvis Tank project. Please note that sample 757578011 [AH-2 (0-1)] did have a total TPH greater than 5000. According to the notes on the bottom of the C-O-C we need to run the deeper sample if Total BTEX exceeds 50 mg/kg and/or TPH >5000 mg/kg. This sample has TPH totaling 5555 mg/kg. I need to know which of the deeper depths you would like to have run and if you need the BTEX, TPH-DRO and TPH-GRO analyzed.

These samples expire tomorrow so a prompt response is needed to insure the holding times are met please.

Page 79 of 80

Released to Imaging: 11/30/2021 2:40:11 PM

Thanks and have a great day!

Pace Dallas will be closed, Monday, September 2nd in observance of Labor Day.

Shelly Connelly Client Services Manager- Dallas

Pace Analytical "

400 W. Bethany, Suite 190 Allen, TX 75013 Phone: (972) 727-1123 Fax: (972) 727-1175 Email: <u>Shelly.Connelly@pacelabs.com</u>

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com

Received by OCD: 1/5/2021 4:20:20 PM

APPENDIX D Diamondback Closure Report

.

									HOBB	SOCD
District I 1625 N. French	Dr., Hobbs, I	NM 88240				f New Mex	-		VIIC 0	6 2014 Form C-14 Revised August 8, 201
District II 811 S. First St.,				Energy Mi	neral	s and Natura	I Resources			Revised August 8, 20
District III 1000 Rio Brazo				Oil C	Conse	ervation Div	vision	Sub	mit I Copy	to appropriate District Office
District IV		•				th St. Franc		Ł	RECE	coverance with 19.15.29 NMAC
1220 S. St. Fran	icis Dr., Santi	a re, NM 87503				Fe, NM 875	Construction of the local distance of the lo			#PARCARANAN PARAMANANANANANANANANANANANANANANANANANAN
			Rela	ease Notific	eatio		orrective A	ction	-	
News	÷	D1 (1)				OPERA'			🛛 Initia	ll Report 🔲 Final Rep
		onocoPhilli Complex L		ngton, NM 882	60	Contact: Jo	<u>hn Gates</u> No.: 575-391-31	58		
		Elvis Batter					e: Oil & Gas		· · · · · · · · · · · · · · · · · ·	······
Surface Ow	ner: Feder	ral		Mineral C)wner	: Federal			API No	. 188612
				LOCA	ATIC	ON OF REI	LEASE			
Unit Letter	Section	Township	Range	Feet from the		th/South Line	Feet from the	East/V	Vest Line	County
	20	17	32					}	ĺ	Lea
	نــــــــــــــــــــــــــــــــــــ	ī	atitude:	32 49' 21.54"	 N	Long	gitude: 103 47'	26.052	" W	· .
					-	E OF REL				
Type of Rele	ase: Crude	Oil & Produ	ced Wate				Release ~ 4 BBL	S Oil	Volume F	ecovered : ~2 bbls oil & ~398
				of North West 5	10 LLI		ols ProducedWat lour of Occurrence		bbis wate	r Hour of Discovery
oil tank	1-030. KC/C8		r nour top	OT NOTH WEST OF	JU UUI		Unknown Time (@ ~0730 Hours
Was Immedia	to Notion C	linen 9				occurrenc				
was immedia	are motice (Yes [] No 📋 Not R	equire	If YES, To d Geoffrey L	eking NMOCD &	z Trishia	a Bad Bear	BLM
By Whom? J	ohn Gates						lour: 05/17/13 @			
Was a Water	course Read		Yes 🛛				olume Impacting t			
Release origi pumps went o	nated from to a lown which		ed water ta caused ta	inks inside battery nks to overflow. I						ion and caliche road. Transfer leased. Spill site will be
		and Cleanup A								
Majority of s	pill was con	tained in surr	ounding c	aliche location an	d road	way with small	amount running	west off	location of	to sandy soil. Vacuum trucks
were called to	o recover sta	anding fluids.	Арргохіп	ately 2 BBLS of	on and	a approximately	y 398 bbls of wate	r were r	ecovered.	
regulations al public health should their o	l operators a or the envir operations ha iment. In ad	are required to conment. The ave failed to a ddition, NMO	o report an acceptanc dequately CD accep	d/or file certain r e of a C-141 repo investigate and r	elcase ort by t emedia	notifications and the NMOCD mate contamination	nd perform correc arked as "Final Re on that pose a thre e the operator of r	tive acti eport" de eat to gro responsi	ons for rele oes not reli ound water bility for co	uant to NMOCD rules and ases which may endanger , eve the operator of liability , surface water, human health mpliance with any other
Signature:	Jul	in W		t			OILCON	SERV.	ATION	<u>DLVISION</u>
Printed Name	John W. C	Gates				Approved by	Environmental Sy	pecialist	:	
Title: LEAD	HSE					Approval Dat	e: 8-16-14	E	Expiration I	Date: 10-29-14
E-mail Addre	ss: John.	W.Gates@	conocoj	ohillips.com		Conditions of	Approval: IT the Syptem re	y n		Attacked
Date: 05/17 3158	/13			Phone:575-391	-	Qelu Naoc	1 te Syplane nile Enerding 10 grude 50 1 by 10-29-	onen frit f	apr Cul	Attached \Box
						C-141				00112 217817 00112 217817 ht01929 038926 pt01929 03905
sed to Imag	ging: 11/.	30/2021 2:4	40:11 P	М			AUG	28	2014	p 70/924 03905 K 70 194 03845。

Elvis Tank Battery

(Located in Section-20 Township 17S Range 32E)

Site Closure Plan

Presented to: ConocoPhillips HC 60, Box 66 Lovington, NM 88260

Prepared By:

iumondbuck

Diamondback Disposal Services, Inc. PO Box 2491 Hobbs, NM 88241

DISPOSAL SERVICES, INC. P.O. Box 2491•Hobbs, NM 88241 Ph: (575) 392-9996•Fx: (575) 392-9376

August 21, 2014

Conoco Phillips HC 60 Box 66 Lovington, NM 88260

Re: Closure Report Elvis Tank Battery

Dear Mr. Wright,

Diamondback Disposal Services, Inc. (Diamondback) would like to take this time to thank you and Conoco Phillips for the opportunity to be of service in the remediation of the above-mentioned site. Please find in the following closure report: the job overview, Remediation Activities, laboratory analysis, and site map of the project.

Note: Diamondback Disposal Services, Inc., (Diamondback) with offices at 2525 N. West County Road, Hobbs, New Mexico 88241 (the Company), has prepared this "Remediation Report" for the Elvis Tank Battery, to the best of its ability. No warranty, expressed or implied, is made or intended. The report was prepared for Conoco Phillips, which offices at 29 Vacuum Complex Lane, Lovington NM 88260 (the Client). All information disclosed in this plan is for internal purposes only and is considered confidential. By accepting this document, the recipient agrees to keep confidential the information contained herein. The recipient further agrees not to copy, reproduce or distribute to any third party this project plan in whole or in part, without express written permission from the Company or Client.

Once again if there is anything that Diamondback can be of assistance with, or if you have any questions, or need more data in regards to this project please call us at any time.

Sincerely

Kistin Roberts President Diamondback Disposal Services, Inc.

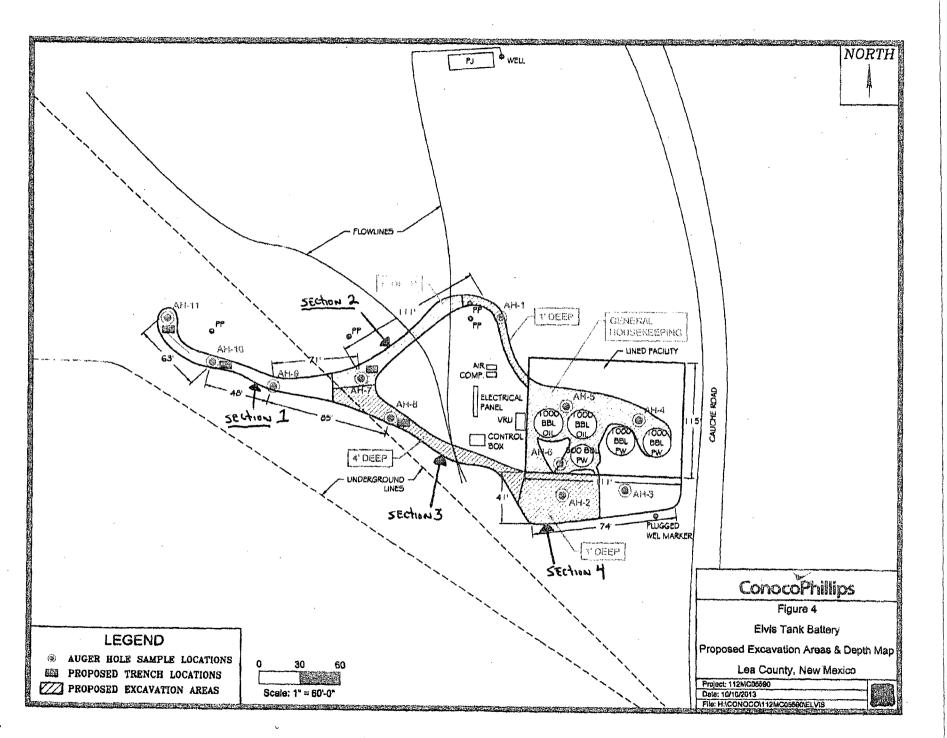
Conoco Phillips Elvis Tank Battery

Introduction

This report presents the results of remediation activities at the Elvis Tank Battery. The site is located in Section 20, Township 17S, Range 32E in Lea County, New Mexico. Impacted areas are owned by Bureau of Land Management. Diamondback Disposal Services, Inc. (Diamondback) was contacted April 7, 2014 by Mr. Justin Wright, of Conoco Phillips Inc, to perform the remediation activities at the spill site. The remediation was performed according to a NMOCD approved work plan (produced by others), which is in general accordance with the New Mexico Oil Conservation Division (NMOCD) rules and regulations. The following sections present: an overview, remediation activities, and recommendations of all remediation work performed on site.

<u>Overview</u>

The spill site is located mostly on BLM land consisting of good grass, prairie, or range lands with a little ponding on COPC location. Transfer pumps went down in the battery causing approximately 473 bbls of produced water, and 4 bbls of oil to be lost, with approximately 398 bbls and 2bbls, respectively being recovered from the use of a vacuum truck. Approximately 4,721 square feet of BLM land was impacted. Based on the information reviewed at the State Engineers web site, there are not any wells in Section 20. The depth to groundwater in the area is estimated to be greater than 150' below ground surface (BGS), according to the NMOCD groundwater map. There were no water courses affected, no water wells within 1,000 feet, and no surface water bodies within 1,000 feet of the site, giving this site a ranking criteria score of zero. The potential contaminates of concern are mid to high-level concentrations of petroleum-based hydrocarbons and chlorides that were lost due to a leak in the well casing.


Remediation Activities

On April 14, 2014 Diamondback began excavating impacted areas defined by maps from NMOCD approved work plan. Approximately 1,284 cy of impacted soils were excavated and transported to R-360, NMOCD approved disposal facility. After approval by Dr. Tomas Oberding with NMOCD, Diamondback installed a HDPE liner cap in the extended battery area (see attached map section 4), and backfilled with clean fill. The batter floor was brought to grade and berms were re-constructed. On August 18, 2104 Diamondback collected composite samples of the walls and floors of all sections of excavation (see attached map). The samples were packaged and sent to Cardinal Laboratory (with COC) for analysis of TPH, BTEX, and Chlorides (see analytical).

Recommendations

Upon reviewing the analytical provided by the third party independent lab, it is our belief the contaminants shown to be left are well below acceptable limits for sites with ranking criteria of zero. Diamondback feels all guidelines for remediation of leaks and spills have been met. This being said we propose to backfill the excavated area with clean granular soil, contour, crown, and seed area to promote vegetation growth. Diamondback feels this method will significantly reduce migration of impacted material through the vadose zone therefore leaving the site in a manner that will pose very little if any future environmental threat.

1

August 19, 2014

÷.

JUSTIN ROBERTS DIAMONDBACK DISPOSAL SERVICE INC. P. O. BOX 2491 HOBBS, NM 88241

RE: ELVIS TANK BATTERY

Enclosed are the results of analyses for samples received by the laboratory on 08/18/14 11:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-13-5. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celeg D. Keine

Celey D. Keene Lab Director/Quality Manager

Page 1 of 13

.

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

DIAMONDBACK DISPOSAL SERVICE INC. JUSTIN ROBERTS P. O. BOX 2491 HOBBS NM, 88241 (575) 392-9376 Fax To:

Received:	08/18/2014	Sampling Date:	08/18/2014
Reported:	08/19/2014	Sampling Type:	Soil
Project Name:	ELVIS TANK BATTERY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	MALJAMAR, NM		

Sample ID: SEC 1 S. WALL (H402521-01)

BTEX 8021B	mg/	kg	Analyze	d By: ck			1		
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/18/2014	ND	1.86	93.1	2.00	7.43	
Toluene*	<0.050	0.050	08/18/2014	ND	1.69	84.7	2.00	8.53	
Ethylbenzene*	<0.050	0.050	08/18/2014	ND	1.89	94.7	2.00	8.08	
Total Xylenes*	<0.150	0.150	08/18/2014	ND	5.63	93.8	6.00	8.05	
Total BTEX	<0.300	0.300	08/18/2014	ND					
Surrogate: 4-Bromofluorobenzene (PIL	104 %	6 89.4-12	6						
Chloride, SN4500Cl-B	mg/	kg	Analyze	d By: AP			<u></u>		
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	816	16.0	08/18/2014	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	08/18/2014	ND	180	90.0	200	0.458	
DRO >C10-C28	<10.0	10.0	08/18/2014	ND	182	90.8	200	2.60	
Surrogate: 1-Chlorooctane	90.5 \$	65.2-14	0						
Surrogate: 1-Chlorooctadecane	99.0 \$	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Continal's faibility and client's enclusive memory for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Candinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be limited to the services including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or rested to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Cleg 2 Kana

Celey D. Keene, Lab Director/Quality Manager

Page 2 of 13

: '

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

DIAMONDBACK DISPOSAL SERVICE INC. JUSTIN ROBERTS P. O. BOX 2491 HOBBS NM, 88241 Fax To: (575) 392-9376

Received:	08/18/2014	Sampling Date:	08/18/2014
Reported:	08/19/2014	Sampling Type:	Soil
Project Name:	ELVIS TANK BATTERY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	MALJAMAR, NM		

Sample ID: SEC 1 N. WALL (H402521-02)

BTEX 8021B	mg/	/kg	Analyze	d By: ck					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/18/2014	ND	1.86	93.1	2.00	7.43	
Toluene*	<0.050	0.050	08/18/2014	ND	1.69	84.7	2.00	8.53	
Ethylbenzene*	<0.050	0.050	08/18/2014	ND	1.89	94.7	2.00	8.08	
Total Xylenes*	<0.150	0.150	08/18/2014	ND	5.63	93.8	6.00	8.05	
Total BTEX	<0.300	0.300	08/18/2014	ND					
Surrogate: 4-Bromofluorobenzene (PIL	103 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	08/18/2014	ND	400	100	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	08/18/2014	ND	180	90.0	200	0.458	
DR0 >C10-C28	365	10.0	08/18/2014	ND	182	90.8	200	2.60	
Surrogate: 1-Chlorooctane	90.5	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	114 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

PLEXEE NOTE: Liability and Damages. Cardinal's liability and client's exclusive nemech for any daim ansing, whether based in contract or tort, shall be limited to the annount paid by dient for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidential or consequential damages, including, without limitation, business interruptions, loss of uses of profils incurred by client, its subsidiaries, antiliables or successors arising out of or rested to the performance of the services hereunder by Cardinal, regardless of whether such claims is based upon any of the above stated reasons otherwise. Results related and the limitation and the above stated reasonable.

Celling 2 Kana-

-

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

DIAMONDBACK DISPOSAL SERVICE INC. JUSTIN ROBERTS P. O. BOX 2491 HOBBS NM, 88241 Fax To: (575) 392-9376

Received:	08/18/2014	Sampling Date:	08/18/2014
Reported:	08/19/2014	Sampling Type:	Soil
Project Name:	ELVIS TANK BATTERY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	MALJAMAR, NM		

Sample ID: SEC 1 FLOOR (H402521-03)

BTEX 8021B	mg/	kg	Analyze	d By: ck					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/18/2014	ND	1.86	93.1	2.00	7.43	
Toluene*	<0.050	0.050	08/18/2014	ND	1.69	84.7	2.00	8.53	
Ethylbenzene*	<0.050	0.050	08/18/2014	ND	1.89	94.7	2.00	8.08	
Total Xylenes*	<0.150	0.150	08/18/2014	ND	5.63	93.8	6.00	8.05	
Total BTEX	<0.300	0.300	08/18/2014	ND					
Surrogate: 4-Bromofluorobenzene (PIL	102 %	6 89.4-12	6						
Chloride, SN4500Cl-B	mg/	kg	Analyze	d By: AP		. <u>.</u>			
Analyte	Result	Reporting Limit	Anatyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	08/18/2014	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Anałyze	d By: CK			<u></u>		
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	08/18/2014	ND	180	90.0	200	0.458	
DRO >C10-C28	<10.0	10.0	08/18/2014	ND	182	90.8	200	2.60	
Surrogate: 1-Chlorooctane	84.0 9	65.2-14	0		· · · · · · · · ·				
Surrogate: 1-Chlorooctadecane	93.8 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any cla im arising, whether based in contract or tort, shall be limited to the amount paid by oftent for analyses. All claims, including those for negligence and any other cause whatsoer shall be deemed waived unknown while and resulting and result and within thirty (30) days after completion of the applicable service. In no vert shall channel the individual of a consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or rested to the performance of the services hereunder by Cardinal, regardless of whether such chaim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

ally 2 Kane-

Analytical Results For:

DIAMONDBACK DISPOSAL SERVICE INC. JUSTIN ROBERTS P. O. BOX 2491 HOBBS NM, 88241 Fax To: (575) 392-9376

Received:	08/18/2014	Sampling Date:	08/18/2014
Reported:	08/19/2014	Sampling Type:	Soil
Project Name:	ELVIS TANK BATTERY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	MALJAMAR, NM		

Sample ID: SEC 2 S. WALL (H402521-04)

BTEX 8021B	mg/	/kg	Analyze	d By: ck			. <u> </u>		
Anaiyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/18/2014	ND	1.86	93.1	2.00	7.43	
Toluene*	<0.050	0.050	08/18/2014	ND	1.69	84.7	2.00	8.53	
Ethylbenzene*	<0.050	0.050	08/18/2014	ND	1.89	94.7	2.00	8.08	
Total Xylenes*	<0.150	0.150	08/18/2014	ND	5.63	93.8	6.00	8.05	
Total BTEX	<0.300	0.300	08/18/2014	ND					
Surrogate: 4-Bromofluorobenzene (PIL	101 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	08/18/2014	ND	400	100	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	08/18/2014	ND	180	90.0	200	0.458	
DRO >C10-C28	<10.0	10.0	08/18/2014	ND	182	90.8	200	2.60	
Surrogate: 1-Chlorooctane	96.8	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	106 9	% 63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

PEASE NOTE: Liability and Damages. Ourdinal's lability and ident's exclusive remedy for any daim axising, whether based in contract or toxt, shall be limited to the amount paid by dient for analyses. All daims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidential or consequential damages, including, without limitation, business interruptions, loss of profils incurred by dient, its advections, and the applicable service. In no event shall be induced by Cardinal, regardless of whether such daim is based upon any of the size reads relater only to the sample identified above. This reported except in full with initial provoid of cardinal laboratories.

Celez 2 Kane-

Analytical Results For:

DIAMONDBACK DISPOSAL SERVICE INC. JUSTIN ROBERTS P. O. BOX 2491 HOBBS NM, 88241 Fax To: (575) 392-9376

Received:	08/18/2014	Sampling Date:	08/18/2014
Reported:	08/19/2014	Sampling Type:	Soil
Project Name:	ELVIS TANK BATTERY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	MALJAMAR, NM		

Sample ID: SEC 2 N. WALL (H402521-05)

BTEX 8021B	mg/	/kg	Analyze	d By: ck	<u></u>				
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/18/2014	ND	1.86	93.1	2.00	7.43	
Toluene*	<0.050	0.050	08/18/2014	ND	1.69	84.7	2.00	8.53	
Ethylbenzene*	<0.050	0.050	08/18/2014	ND	1.89	94 .7	2.00	8.08	
Total Xylenes*	<0.150	0.150	08/18/2014	ND	5.63	93.8	6.00	8.05	
Total BTEX	<0.300	0.300	08/18/2014	ND					
Surrogate: 4-Bromofluorobenzene (PIL	102 %	% 89.4-12	б		~~~~				
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	08/18/2014	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Anatyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	08/18/2014	ND	180	90.0	200	0.458	
DRO >C10-C28	<10.0	10.0	08/18/2014	ND	182	90.8	200	2.60	
Surrogate: 1-Chlorooctane	92.0 9	% 65.2-14	0		i				
Surrogate: 1-Chlorooctadecane	103 %	63.6-15							

Cardinal Laboratories

,

*=Accredited Analyte

PLEXCE NOTE: Usbility and Damages. Cardinal's liability and ident's exclusive remedy for any daim arising, whether based in contract or tort, shall be limited to the amount paid by diert for analyses. All claims, inducting those for megligence and any other cause whatsoever shall be ideemed walved unless made in writing and received by Cardinal within thinty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidential or corsequential damages, inducting, without kimitation, business interruptions, loss of profils incurred by dient, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such damins based upon any of the above stated reasons or otherwise. Results related not be sampled effective in this with written approval of Cardinal Laboratories.

aling 2 there-

Celey D. Keene, Lab Director/Quality Manager

Page 6 of 13

Analytical Results For:

DIAMONDBACK DISPOSAL SERVICE INC. JUSTIN ROBERTS P. O. BOX 2491 HOBBS NM, 88241 Fax To: (575) 392-9376

Received:	08/18/2014	Sampling Date:	08/18/2014
Reported:	08/19/2014	Sampling Type:	Soil
Project Name:	ELVIS TANK BATTERY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	MALJAMAR, NM		

Sample ID: SEC 2 FLOOR (H402521-06)

BTEX 8021B	mg/	kg	Analyze	d By: ck				···· · · · · · ·	
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/18/2014	ND	1.86	93.1	2.00	7.43	
Toluene*	<0.050	0.050	08/18/2014	ND	1.69	84.7	2.00	8.53	
Ethylbenzene*	<0.050	0.050	08/18/2014	ND	1.89	94.7	2.00	8.08	
Total Xylenes*	<0.150	0.150	08/18/2014	ND	5.63	93.8	6.00	8.05	
Total BTEX	<0.300	0.300	08/18/2014	ND					
Surrogate: 4-Bromofluorobenzene (PIL	103 %	6 89.4-12	6			· · · · · · · · · · · · · · · · · · ·			
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AP				<u> </u>	
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	08/18/2014	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Anatyzed	Method Blank	BS	% Recovery	True Value QC	rpd	Qualifier
GRO C6-C10	<10.0	10.0	08/18/2014	ND	180	90.0	200	0.458	
DRO >C10-C28	<10.0	10.0	08/18/2014	ND	182	90.8	200	2.60	
Surrogate: 1-Chlorooctane	99.8 9	65.2-14	0						
Surrogate: 1-Chlorooctadecane	106 %	6 63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

PLEXE NOTE: Liability and Damages. Candinal's liability and elemit's exclusive remedy for any daim arising, whether based in contract or bort, shall be limited to the amount paid by dient for analyses. All claims, induding those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thiny (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidential or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profils incurred by dient, its subsidiaries, antiliates or successorial actions arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the site rest. easily relate marks the service to the services interruptions radial note performance end thing services.

Calley 2 Freena-

Celey D. Keene, Lab Director/Quality Manager

Page 7 of 13

Analytical Results For:

DIAMONDBACK DISPOSAL SERVICE INC. JUSTIN ROBERTS P. O. BOX 2491 HOBBS NM, 88241 Fax To: (575) 392-9376

Received:	08/18/2014	Sampling Date:	08/18/2014
Reported:	08/19/2014	Sampling Type:	Soil
Project Name:	ELVIS TANK BATTERY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	MALJAMAR, NM		

Sample ID: SEC 3 N. WALL (H402521-07)

BTEX 8021B	mg/	kg	Analyze	d By: ck					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/18/2014	ND	1.86	93.1	2.00	7.43	
Toluene*	<0.050	0.050	08/18/2014	ND	1.69	84.7	2.00	8.53	
Ethylbenzene*	<0.050	0.050	08/18/2014	ND	1.89	94.7	2.00	8.08	
Total Xylenes*	<0.150	0.150	08/18/2014	ND	5.63	93.8	6.00	8.05	
Total BTEX	<0.300	0.300	08/18/2014	ND					
Surrogate: 4-Bromofluorobenzene (PIL	102 9	6 89.4-12	6			· · · · · · · · · · · · · · · · · · ·			
Chioride, SM4500Cl-B	mg/	kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Anatyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	08/18/2014	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	08/18/2014	ND	180	90.0	200	0.458	
DRO >C10-C28	<10.0	10.0	08/18/2014	ND	182	90.8	200	2.60	
Surrogate: 1-Chlorooctane	93.3	65.2-]4	0						
Surrogate: 1-Chlorooctadecane	99.9 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Candinal's liability and disent's exclusive nemedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed walved unless made in writing and necelived by Candinal within thinty (30) days after completion of the applicable service. In no event shall Candinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of uses or loss of profils incurred by damit, bis subsidiaries, attiliates or successors attiliation of the applicable service. The performance of the services hereunder by Candinal, regardless of whether such damits based upon any of the store stated reasons or otherwise. Results related to the sample defined above. This reproduced except shall be reprodued except shall claorationes.

Celleg & Kenne-

Celey D. Keene, Lab Director/Quality Manager

Page 8 of 13

••

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

DIAMONDBACK DISPOSAL SERVICE INC. JUSTIN ROBERTS P. O. BOX 2491 HOBBS NM, 88241 Fax To: (575) 392-9376

Received:	08/18/2014	Sampling Date:	08/18/2014
Reported:	08/19/2014	Sampling Type:	Soil
Project Name:	ELVIS TANK BATTERY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	MALJAMAR, NM		

Sample ID: SEC 3 S. WALL (H402521-08)

BTEX 8021B	mg/	kg	Analyze	d By: ck					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/18/2014	ND	1.86	93.1	2.00	7.43	
Toluene*	<0.050	0.050	08/18/2014	ND	1.69	84.7	2.00	8.53	
Ethylbenzene*	<0.050	0.050	08/18/2014	ND	1.89	94 .7	2.00	8.08	
Total Xylenes*	<0.150	0.150	08/18/2014	ND	5.63	93.8	6.00	8.05	
Total BTEX	<0.300	0.300	08/18/2014	ND					
Surrogate: 4-Bromofluorobenzene (PIL	103 %	6 89.4-12	6						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Anatyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	08/18/2014	ND	400	100	400	0.00	
TPH 8015M	mg/l	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	08/18/2014	ND	180	90.0	200	0.458	
DRO >C10-C28	<10.0	10.0	08/18/2014	ND	182	90.8	200	2.60	
Surrogate: 1-Chlorooctane	87.0 %	65.2-14	0						
Surrogate: 1-Chlorooctadecane	98.4 %	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by dient for analyses. All claims, including those for negligence and any other cause whatoover shall be deemed walved unless made in writing and received by Cardinal within thin (30) days after completion of the applicable service. In no event shall Cardinal be liable for indefential or consequential damages, including those for negligence and any other cause whatoover shall be deemed walved unless made in writing and received by Cardinal within thin (30) days after completion of the applicable service. In no event shall Cardinal be liable for indefential or consequential damages, including whose limits to the services interaction, busines interruptions, loss of use, or loss of profils incurred by client, its sublicities or successors arising out of or rested to the performance of the services hereunder by Cardinal, regardless of whether such dam is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez Ditrene-

Celey D. Keene, Lab Director/Quality Manager

Page 9 of 13

Analytical Results For:

DIAMONDBACK DISPOSAL SERVICE INC. JUSTIN ROBERTS P. O. BOX 2491 HOBBS NM, 88241 Fax To: (575) 392-9376

Received:	08/18/2014	Sampling Date:	08/18/2014
Reported:	08/19/2014	Sampling Type:	Soil
Project Name:	ELVIS TANK BATTERY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	MALJAMAR, NM		

Sample ID: SEC 3 FLOOR (H402521-09)

BTEX 8021B	mg/	kg	Analyze	d By: ck					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/18/2014	ND	1.86	93.1	2.00	7.43	
Toluene*	<0.050	0.050	08/18/2014	ND	1.69	84.7	2,00	8.53	
Ethylbenzene*	<0.050	0.050	08/18/2014	ND	1.89	94 .7	2.00	8.08	
Total Xylenes*	<0.150	0.150	08/18/2014	ND	5.63	93.8	6.00	8.05	
Total BTEX	<0.300	0.300	08/18/2014	ND					
Surrogate: 4-Bromofluorobenzene (PIL	104 %	6 89.4-12	6						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	08/18/2014	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Anatyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	08/18/2014	ND	180	9 0.0	200	0.458	
DRO >C10-C28	<10.0	10.0	08/18/2014	ND	182	90.8	200	2.60	
Surrogate: 1-Chlorooctane	92.2	65.2-14	0						
Surrogate: 1-Chlorooctadecane	103 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

PLEXE NOTE: Liability and Damages. Cardinal's liability and effent's exclusive remedy for any daim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thin'n (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profils incurred by dent based within thin's difficults or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such daims is based unon any of the above Stater reasons or otherwise. Results relater only the sample risk of the service shall be deemed unders.

Celeg & trene-

Analytical Results For:

DIAMONDBACK DISPOSAL SERVICE INC. JUSTIN ROBERTS P. O. BOX 2491 HOBBS NM, 88241 Fax To: (575) 392-9376

Received:	08/18/2014	Sampling Date:	08/18/2014
Reported:	08/19/2014	Sampling Type:	Soil
Project Name:	ELVIS TANK BATTERY	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	MALJAMAR, NM		

Sample ID: SEC 4 FLOOR (H402521-10)

BTEX 8021B	mg/	/kg	Analyze	d By: ck					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/18/2014	ND	1.86	93.1	2.00	7.43	
Toluene*	<0.050	0.050	08/18/2014	ND	1.69	84.7	2.00	8.53	
Ethylbenzene*	<0.050	0.050	08/18/2014	ND	1.89	94.7	2.00	8.08	
Total Xylenes*	<0.150	0.150	08/18/2014	ND	5.63	93.8	6.00	8.05	
Total BTEX	<0.300	0.300	08/18/2014	ND					
Surrogate: 4-Bromofluorobenzene (PIL	104 9	89.4-12	6						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2120	16.0	08/18/2014	ND	400	100	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	08/18/2014	ND	180	90.0	200	0.458	
DRO >C10-C28	<10.0	10.0	08/18/2014	ND	182	90.8	200	2.60	
Surrogate: 1-Chlorooctane	88.9	% 65.2-14	0	· · · · · · · · · ·					
Surrogate: 1-Chlorooctadecane	98.0	% 63.6-15	A						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Candinal's liability and dient's exclusive nemedy for any daim arising, whether based in contract or tort, shall be limited to the amount paid by dient for analyses. All claims, induding those for negligence and any other cause wholsoever shall be deemed waved unless made in writing and received by Cardinal within thitty (30) days after completion of the applicable service. In no event shall Cardinal be limited to individually structure shall cardinal be limited to the performance of the services hereunder by Cardinal, regardless of whether such dishin is based upon any of the show stated reasons or otherwise. Results relate only to the sample behavior that not be reproduced except in full with written approad of Cardinal Laboratories.

Celegi Kene-

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEXEE NOTE: Liability and Damages. Candinal's liability and ident's exclusive remedy for any datin arising, whether based in contract or tort, shall be limited to the amount paid by dient for analyses. All datins, including those for negligence and any other cause whatsoever shall be deemed walved unless made in writing and received by Cardinal within thirty (20) days after completion of the applicable service. In no event shall Cardinal be liable for incidential or correctuential damages, including, without limitation, business interruptions, loss of use, or loss of profils incurred by dient, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such datin is based upon any of the allower station resons or otherwise. Results relate and use sample affiliates or any dire allowability.

Celez Here

RUSH!!

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

- 1	
	m
ł	÷ 1
	÷
	ð
	3
	÷-
- 1	
- 1	Page
	ŏ
	Ó.
	- 1

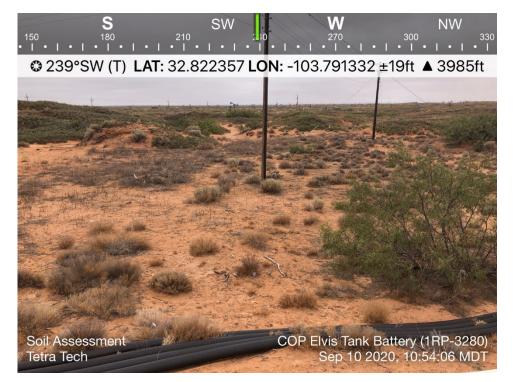
(576) 393-2326 FAX (675) 393-2476 Company Name: Digmon brief Disposition Project Manager: Dustin Redeets Project Manager: Dustin Redeets Project Manager: Dustin Redeets Output: Bill TO Address: P.O. Bux 249/ Company: City: 170655 State: NM Zip: 88740 Phone #: 575-392-9996 Fax #: 575-392-9376	
Address: P.O. Box 2497 Company: City: 170655 State: NM Zip: 88740 Attn:	
Address: P.O. Box 2497 Company: City: 170655 State: NM Zip: 88740 Attn:	
city: 170665 State: NM Zip: 88240 Attn:	
City: 170655 State: AVA Zip: 88790 Attn: Phone #: 57(-352-5996 Fax #: 575-392-6376 Address:	
IPhone #: 57(-(5)2-9996 Fax #: 595-392-4776 Address:	
the first the fi	
Project Name: Elvis JANK BATTERY State: Zip:	
Project Name: Elvis TANK BATTERY State: Zip: Project Location: MAJAMAN, Phone #: Sampler Name: Justin Robert Fax #:	
Sampler Name: JUSTIN ROBERTT Fax#:	
FOR LAB USE DIRLY MATRIX PRESERV. SAMPLING	
Lab I.D. Sample I.D. Wasterwiter Masterwiter Geologowater Masterwiter Actibilities Geologowater Masterwiter Actibilities Containters	
$1 \qquad 1 \leq \epsilon_{L} 7 \leq \lambda_{L} \epsilon_{L} 1 \leq x = x = x x x x x x x x $	
2 SEC 7 N. WALL CX X 3 SEL 7 FLOUR LY X 1 10:09 X X X	
4 SEC 2 S WALL (X X X) 10:16 X X X	
5 SEC 2 N. WALL CY Y I II 10:25 X X X	
6 SEC 2 Flood IN Y II 10:30 XXX	
7 50.3 WWAV $1 11 4 11 1032 K K$	
5 SEL 3 S WALL II K II 10:39 X X K	
9 SEC 3 Floor CIX 10:45 XXX	
LIDEASE NOTE: Latvity and Damages. Cardenal's excitative rements for any claim straining whether based in contract or tort, shall be limited to the amount paid by the clein for the	

• Control for the Description demographic carbon part carbon entropy for any cash as and when entropy of the carbon to the initial part of the Comparison of the applicable carbon to the initial part of the Comparison of the applicable service, in the entropy and server as a carbon to the initial part of the comparison of the applicable service, in the entropy and server as a carbon to the initial part of the comparison of the applicable service, in the entropy and server as a carbon to the initial part of the comparison of the applicable service, in the entropy and server as a carbon to the initial part of the comparison of the applicable service, in the entropy and the service of the comparison of the applicable service, in the entropy and the service of the comparison of the applicable service, in the entropy and the service of the entropy and service of the entropy a

Relinguished/By:	Date g-14 Received By:	Phone Result: I Yes I No Add'i Phone #: Fax Result: I Yes No Add'i Fax #:
	Hmg: : 45 CHOR HUNALDA. Data: Regeliced By:	REMARKS:
	V	damondback 24912
Delivered By: (Circle One)	Sample Condition CHECKED BY:	yahoo. com
Sampler - UPS - Bus - Other:	4.20 Gool Intact (Milling)	Yan ware

† Cardinal cannot accept verbal changes. Please fax written changes to (575) 393-2326

APPENDIX E Photographic Documentation


TETRA TECH, INC. PROJECT NO. 212C-MD-02304	DESCRIPTION	View southeast. Western edge of lease pad in northern portion of the release footprint.	1
	SITE NAME	Elvis Tank Battery Release – 1RP-3280	9/10/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View southeast. Overview of western portion of release footprint.	2
212C-MD-02304	SITE NAME	Elvis Tank Battery Release – 1RP-3280	9/10/2020

PROJECT NO.	DESCRIPTION	View southeast. Central portion of release footprint west of the lease pad.	3
	SITE NAME	Elvis Tank Battery Release – 1RP-3280	9/10/2020

TETRA TECH, INC. PROJECT NO. 212C-MD-02304	DESCRIPTION	View southwest. Western extent of release footprint.	4
	SITE NAME	Elvis Tank Battery Release – 1RP-3280	9/10/2020

TETRA TECH, INC. PROJECT NO. 212C-MD-02304DESCRIPTIONSITE NAME	View east. Extended and lined tank battery firewall.	5
	SITE NAME	Elvis Tank Battery Release – 1RP-3280

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CONOCOPHILLIPS COMPANY	217817
600 W. Illinois Avenue	Action Number:
Midland, TX 79701	13928
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
bbillings	None	11/30/2021

Page 147 of 147 CONDITIONS

Action 13928